
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Software Science

IT40LT

Roman Radionov 134204IAPB

POINT OF SALE SYSTEM’S TEST
AUTOMATION USING SELENIUM AND A

FOLLOWING ANALYSIS OF AUTOMATION
BENEFITS

Bachelor's thesis

Supervisor: Deniss Kumlander

PhD

Tallinn 2017

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Tarkvarateaduse instituut

IT40LT

Roman Radionov 134204IAPB

KASSASÜSTEEMI TESTIDE
AUTOMATISEERIMINE KASUTADES

SELENIUMI NING EDASPIDINE ANALÜÜS
AUTOMATISEERIMISE KASUMIST

Bakalaureusetöö

Juhendaja: Deniss Kumlander

PhD

Tallinn 2017

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: [Roman Radionov]

[25.04.2017]

3

Abstract

The main aim of this thesis consists of two parts.

The first part is to cover the application with test cases and automate them. The

application under test is a web application, which is a point of sale system written in

PHP with the use of framework Laravel. For test automation framework Selenium was

chosen. Chosen testing types: functional, system and regression testing.

The aim of the second part is to do an analysis based on the first and practical part of

this thesis. Author will analyse all the costs from manual testing and test automation

throughout the project. Cost will be measured as time. The result of this analysis will be

a conclusion, whether it is worth to invest resources in test automation in such type of

projects, taking into consideration not only time but all the advantages, disadvantages

and risks that come with test automation of such applications.

In this way author will be able to combine the practical part, experience and skills that

were developed through study in Tallinn University of Technology to write the code

and analytical part, analysis which will be build upon the written code and made work.

The final result of this thesis will be an automated web application and a conclusion,

whether it is worth to invest into test automation of such kind of projects or not.

This thesis is written in English language and is 44 pages long, including 10 chapters,

16 figures and 0 tables.

4

Annotatsioon

Selle lõputöö põhisuund koosneb kahest osast.

Esimeses osas kaetakse rakendus testilugudega ja testid automatiseeritakse. Testitavaks

rakenduseks on veebirakendus mis kujutab ennast müügisüsteemi ja on kirjutatud PHP

keeles kasutades Laravel raamistiku. Testide automatiseerimiseks valiti Selenium

raamistik. Testi tüüpideks on funktsionaalne, süsteem ja regressioon testimine.

Teise osa suunaks on teha esimese ja praktilise lõputöö osa peale analüüs. Autor

analüüsib manuaalse testimise ja testi automatiseerimise maksumuse projekti jooksul.

Maksumust mõõdetakse ajas. Analüüsi tulemuseks on järeldus, kas on väärt investeerida

testi automatiseerimisse selliste tüüpi projektides, võttes arvesse mitte ainult aja, vaid

kõik eelised, puudused ja riskid, mis kaasnevad sellist tüüpi projekti testide

automatiseerimisega.

Sellisel juhul autoril tekib võimalus antud lõputöö kirjutamisel kombineerida praktilist

osa – kogemusi ja oskusi koodi kirjutamiseks mis olid saadud Tallinna

Tehnikaülikoolist, ning analüütilist osa, mille analüüs baseerub eelnevalt kirjutatud

koodil ning tehtud tööl.

Antud lõputöö lõpptulemuseks on automatiseeritud veebirakendus ning otsus, kas

investeerimine sarnaste projektidesse testide automatiseerimiseks tasub ennast ära või

mitte.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 44 leheküljel, 10 peatükki, 16

joonist ja 0 tabelit.

5

List of abbreviations and terms

AUT Application under test

QA Quality assurance

POS Point of sale

XML Extensible markup language

API Application programming interface

URL Uniform resource locator

JSON JavaScript Object Notation

UI User interface

DOM Document Object Model

VGT Visual graphic user interface testing

CSS Cascading style sheets

XPath XML Path language

PHP Hypertext Preprocessor, scripting language

jQuery JavaScript library

AJAX Asynchronous JavaScript and XML. Technique used to send

and retrieve data in the background.

W3C World Wide Web Consortium – an international community

that develops web standards

KPI Key performance indicator

IE Internet Explorer

OS Operating system

IDE Integrated development environment

KanbanFlow Lean project management tool

6

Table of Contents

1 Introduction...10

1.1 Overview...10

1.2 Practical part...10

1.3 Specification of automation problem..11

2 Application under test..12

2.1 General description...12

2.2 Technologies and requirements..12

3 Test automation...14

3.1 Benefits and drawbacks...14

4 Tools selection...16

4.1 Selenium WebDriver..16

4.2 Alternatives to Selenium WebDriver..18

4.3 Selenide...19

4.4 TestNG..19

5 Setting the development environment...20

6 Chosen testing strategy and types..21

6.1 Black Box...21

6.2 Functional testing..22

6.3 System testing...23

6.4 Regression testing...23

6.5 Cross-browser...24

7 Automation process overview...25

7.1 LogInClass..25

7.2 TestNG class and TestNG XML...27

7.3 Time optimization...27

7.4 Implementing cross browser testing...29

7.4.1 LogInClass changes...29

7

7.4.2 TestNG class changes..30

7.4.3 TestNG XML changes...31

7.5 WebDriver limitation..32

8 Analysis...34

8.1 Metrics..34

8.2 Manual testing...36

8.3 Test automation...36

8.4 Calculations and conclusion...37

9 Future works..40

10 Summary..42

 References..43

 Appendix 1 – Excel documentation of test cases...45

 Appendix 2 – Time recording examples (KanbanFlow)..51

 Appendix 3 – Git link...54

8

List of Figures

Figure 1. POS main desktop..13

Figure 2. Payment page...13

Figure 3. Selenium WebDriver architecture..17

Figure 4. White box vs black box..22

Figure 5. Functional testing architecture...23

Figure 6. Initializing ChromeDriver..26

Figure 7. Basic authentication and log in credentials..26

Figure 8. LogInClass changes...30

Figure 9. @BeforeMethod changes...31

Figure 10. TestNG XML...32

Figure 11. Number of test cases and execution time...34

Figure 12. Lines of code..35

Figure 13. Code coverage..35

Figure 14. Kanbanflow overall time example...51

Figure 15. Kanbanflow Live testing example...52

Figure 16. Kanbanflow single tasks example..53

9

1 Introduction

1.1 Overview

Testing is an important part of developing a successful and high quality product.

Nowadays with rapid evolving software tools, development methods and complexity of

applications in general it is sometimes hard to decide, whether it is worth to invest into

test automation or just keep testing manually.

Automation indeed consumes more resources than manual testing and thus, taking into

consideration that test automation is more expensive and comes with risks, manual

testing is taken in use over automation, but is this decision made correctly? Yes, test

automation is more expensive, however, it makes testing much faster and eliminates so

called human error in which case rises the quality of the end product. There are a lot of

more positive and negative sides of test automation but information about those and a

closer look will be taken further in the thesis.

1.2 Practical part

Throughout the development process of this project author will be dealing with manual

testing as well as with test automation. First of all test cases of the first version will be

written. Afterwards these test cases will be tested manually. When manual testing is

done, necessary tests will be automated using Selenium WebDriver. This process will

continue with applied regression testing until the last development cycle. Spent time

will be measured in two flows. First flow is manual testing and manual regression

testing. Second flow is time spent on automation and management of these tests.

Functional, system and regression testing types will be applied. All the documented test

cases as well as the source code of automated tests will be attached to the Appendix. For

a more comfortable code understanding each package in the Eclipse (or any other IDE)

project will represent functionality of a certain compartment, for example, package

10

transactions will contain test cases that are located in the section transactions under the

“Test idea” column of the table which is attached to the Appendix 1.

Additionally, in this thesis author will be speaking about testing tools selection, how

was test automation executed, about interesting aspects and problems that might occur

in automation of such kind of projects.

1.3 Specification of automation problem

In most cases an experienced project manager or analytic is able to judge more or less

precisely, whether automation is beneficial or not. The aim of this thesis was a little

deeper than just picking a random application to be automated. The application was

specially chosen by analysing which, even for an experienced person it would be hard to

tell whether it is worth to implement automation or not. In such cases the decision, to

take in use manual testing over automation is made. Following criteria [1] indicated

that automation should not be used.

1. Insufficient time – The testing team might have a feeling that there is

insufficient time to look for alternatives to manual testing and learn how to build

and maintain scripts. This is why test automation was implemented parallelly.

Time consumed on the learning process was recorded to make a conclusion

whether such approach is sensible and possible in such conditions.

2. Cost – An organization might not own all the necessary tools for comfortable

automation nor wish to invest into them. In this thesis free open source tools will

be taken in use. It will be proven that in the first sight not comfortable tools can

be used with ease and fully replace software that costs. In such way additional

expenses on expensive tools will be avoided.

3. Job security – Testers might feel threatened by automation as they are

experienced and used to manual testing.

Author will try to prove that it is possible to adapt to such circumstances and overcome

the fear of implementing automation.

11

2 Application under test

2.1 General description

The web application to which test automation is implemented is a point of sale (POS)

system. POS is a system with rich functionality, which provides the user with a better

experience in maintaining his business, offering a variety of possibilities. A few

examples:

• Remotely monitor sales information about all the goods just in one place.

• Create accounts for the employees to track their activity.

• Established link between the kitchen and the waiter/waitress for a more efficient

and faster service of clients.

• Easily check for the quantity in the storage and time when to replenish stocks.

• Measure employee effectiveness by getting precise statistics on who exactly and

how much had sold.

• Fixate all the deals.

• Print checks after transactions are done.

• Get statistics of sold goods in order to rise profit.

• Digitally monitor the cash flow.

2.2 Technologies and requirements

As it was mentioned before, this is a web application. Back end was written in PHP by

using Laravel framework, frontend in JavaScript and jQuery libraries. POS UI design

12

example on figure 1 and 2. The main non functional requirements were that this

application must be reachable remotely and the main browser on which this application

should be working perfectly has to be Google Chrome. Synergy with other browsers

was not necessary in the set requirements, although this aspect might change in the

future.

13

Figure 2. Payment page

Figure 1. POS main desktop

3 Test automation

The precondition of high quality automated tests is a well documented list of important

test cases and manual execution. Information about manual testing will be provided

further in paragraphs 8.1 and 8.2, since the focus in the early stages of the written part

of this thesis is on test automation.

Test automation is a process of executing tests that are usually done manually,

automatically by using software tools specially designed for test automation. The main

idea is to compare two outcomes, predicted and actual. By choosing the right strategy,

sticking to the main principles of test automation ("The test automation manifesto" [2])

and by taking into consideration all the nuances of the AUT, it is possible to benefit a

lot from automating tests that would usually be executed manually.

3.1 Benefits and drawbacks

As it was stated before if test automation is done correctly it brings a lot of benefit to the

project and the business overall, however, there are some disadvantages and risks that

come with test automation, if not handled correctly they might turn into a disaster [3] .

Benefits

• Business expenses. Despite the fact that test automation requires more

investments in the beginning, after a certain number of development cycles

depending on the project a positive ROI [4] will be seen. Moreover, not only it

will become positive, it will also become greater and greater compared to ROI

of manual testing as time passes.

• Shortens the development time because a fast feedback is provided.

14

• Rises the quality of the end product by eliminating so called human error. It is

well known that tests that are repeated a lot of times manually tend to be skipped

or tested poorly from time to time [5] .

• Helps testing projects that are basically impossible to be tested completely by

using manual testing. For example if cross-browsing and cross-platform testing

is necessary.

Drawbacks and risks

• Test automation tools cost. Not all tools are free to use.

• False sense of security. There is always a possibility that even though all the

tests executed are green/passed the system is working incorrectly.

• Tests might get unreliable and bring unwanted expenses as the project develops.

With a frequently changing user interface if a test is written not professionally it

will fail. In this case test management is required which brings additional

expenses.

15

4 Tools selection

By choosing the correct tool four criteria that were set by the author were taken into

account. First of all the tool should have a strong compatibility with web applications.

Secondly, it must be aimed at system, functional and regression testing since taking into

consideration how and by whom this application will be used security, load, stress and

performance testing is not necessary and will only bring additional expenses. Thirdly, it

must be free to solve the problem in paragraph 1.3 under number 2. Finally, good

environment to write code.

There are software testing tools that allow recording certain actions. However, this

approach is at the moment not a standard, since tests that are recorded might get

unstable and fail as soon as certain changes will be implemented. There is a possibility

that in the near future these techniques will be implemented but at the moment more

development and researches must be made in order to solve the limitations of VGT [6] .

As an alternative VGT can be combined with scripting but such approach will not be

examined in this thesis as the AUT has to be with a very stable visual appearance [7] .

4.1 Selenium WebDriver

Selenium [8] is undoubtedly one of the most popular testing suits. This is a free open

source project which was released under Apache 2.0 license [9] . Interesting fact, the

name Selenium comes from a joke made by Huggins. He was looking for an alternative

to Mercury Interactive QuickTest Professional testing software and an idea that

selenium mineral supplements cure mercury poisoning came to his mind. For this

reason the software is called Selenium [10] . The most important component of

Selenium, in our case, is the Selenium WebDriver [11] .

Selenium WebDriver is a framework which is specially made to interact with the

browser by using special commands such as: close or open browser, click, send data

16

into a field, find an element, go to a certain URL and much more. In other words, it

allows the developer to mimic human(user) behaviour. All the commands are sent to the

browser through JSON Wire Protocol. Selenium WebDriver architecture on figure 3

[12] .

Another big reason in choosing Selenium WebDriver is the universality. WebDriver

supports a big variety of different browsers, operating systems and programming

languages.

• Browsers: Chrome, Firefox, Safari, Opera, Internet Explorer, HTMLUnit.

• Operating systems: Windows, Apple OS, Linux.

• Programming languages: C#, Java, JavaScript, Python, Ruby. These five are

supported by the main project hosted on google chrome. It means that it is

recommended to use these languages to avoid bugs and lack of support.

Although, it is possible to use other languages such as, PHP and Perl.

17

Figure 3. Selenium WebDriver architecture

4.2 Alternatives to Selenium WebDriver

1. PhantomJS [13] – is also a powerful tool for testing web applications. Its main

advantage is fast execution of test cases as it does not take any additional time to

launch a specific browser, because PhantomJS itself is a browser that exists in a

script. Another dominance over Selenium WebDriver is that it doesn’t require

much effort in setting up the environment and no third party services are needed.

There are a few reasons why it stays in the alternative section but the most

important one is that if there is a chance that cross browsing might be

implemented it is not worth to use PhantomJS over Selenium WebDriver as it

does not support this feature. It is worth to mention that it is a good practice to

use Selenium with PhantomJS in some cases, but it is out of scope of this thesis.

2. CODED UI [14] – supported by Microsoft Development Network this is

another alternative to Selenium WebDriver. Released in 2010 and till now it is a

powerful tool to automate Windows Applications as well as Web Applications

in which case beats Selenium. It does have a strong element identification

mechanism and does support AJAX controls. But for the same reason as

PhantomJS is stays in the alternative list. This tool only supports some versions

of IE (8, 9, 10). Although, it is possible to set up a cross browsing environment

with additional framework, but there will be some serious limitations in other

browsers when trying to reuse written scripts for IE. In other words, Selenium is

a better choice if it comes to cross browsing.

3. Cypress [15] – the start of the development of this tool began in 2015. Right

now it is in a private beta. Despite the fact, that is is a very young tool compared

with many others, it has the potential to be the next successor of Selenium as it

is incredibly comfortable to work with, it has no preconditions of setting up an

environment as it comes as one application, user friendly API and has all the

necessary tools built in.

Deeper comparison of tools is out of scope of this thesis, however, it is worth to

mention about them, since they might be easily applied if requirements were slightly

18

changed. Furthermore, Selenium is approved for its standards by W3C [16] , in such

way any other tool might be considered not as a standard solution.

4.3 Selenide

In this thesis it was decided not to take in use any additional libraries in order to get a

better understanding how to interact with application that uses a lot of AJAX and

manually manipulate waiting time. By succeeding this thesis’s goals by using only

Selenium WebDriver will only make the summary and conclusion stronger and more

reliable.

Although, it is worth to mention that a wrapper called Selenide exists. It actually makes

writing scripts much easier, since it helps to handle different kinds of exceptions,

problems that come with AJAX and a lot of other small aspects of web application

testing. Another big and important advantage of Selenide is that it makes the script

cleaner and easier to read.

4.4 TestNG

Selenium suit does not include a testing framework so it had to be implemented from

outside. Java languages was used for scripting, thus a choice between two popular

testing frameworks was available, TestNG and Junit.

In popularity JUnit overcomes TestNG but in the most part the reason is that JUnit is

included by default in a lot of Maven archetypes. These two frameworks both match

requirements for this project, despite the fact that they have different methods,

annotations and approaches in some cases, overall they are pretty much the same. In this

thesis TestNG was chosen for the purpose of new experience because JUnit was used by

author in the past.

19

5 Setting the development environment

Selenium Client and language bindings.

In selenium to make it possible to write scripts in a certain language, in our case in Java,

Selenium Java Client Driver and language bindings are required. This is a simple

process and all that needs to be done is to download these jars from the official

Selenium web page and configure them through the Java Build Path. This will provide

Selenium with all the necessary tools to create WebDriver scripts.

Driver Server

In order to use Selenium WebDriver on browsers besides HTMLUnit and Firefox a

third party plugin(driver) is required. For example to run tests in Chrome,

ChromeDriver is essential, for Opera OperaDriver, for InternetExplorer IEDriverServer.

This is an executable that starts a server and reserves a port on the machine. It basically

controlls the browser from the OS level. It is the second layer that can be found on the

figure 3. It is worth mentioning that Firefox is a special case. By using Selenium version

3.0 and above with Firefox version 47 and below no Driver Server is needed, however,

for versions 47 and above GeckoDriver is essential. There are two possible ways to look

up for the Driver Server when initializing the WebDriver either by

System.setProperty(“driverName”, “Path”) or by including the location of the

executable in the PATH environment variable. In this thesis automated tests will be

executed in Chrome as it is the most popular browser and covers all the requirements of

this web application. However, theoretical implementation of cross-browsing testing

together with code examples will be included further in this thesis.

20

6 Chosen testing strategy and types

Test automation as mentioned above might bring a lot of benefit to the development and

to the business overall but only if the strategy is chosen correctly. After analysing the

whole idea of how and by whom in particular this application will be used it was

decided that the optimal and most crucial testing that is necessary in the development

cycle of this product is system, functional and regression testing. These types of testing

are best suited to start executing tests right from the start of the development and with

high frequency of repetitivity.

It was very important to write all the tests such way that they would be resistant to

frequently changing user interface. Author’s aim was to get as much benefit from test

automation as possible and in order to do so, besides choosing the necessary testing

types it was also essential to pinpoint following tests cases, as it is impossible and not

rationally to automate everything [3] .

• Cases/functionality with high risk of failure due to complexity or frequently

changing web application design.

• Functionality that tends to fail in the future which is caused by human error.

• Tests that simply take too much time and effort to be tested manually.

6.1 Black Box

For a better and faster progression of project development fast feedback of bugs and

functionality that isn’t working properly after any other implementation is necessary,

thus black box method was chosen. Author’s main goal was to test the web application

from the perspective of the user and to get information of functionality failure as soon

as possible after any changes in the existing code were made or new code was added.

This type of method is perfectly suited for upper levels of testing such as functional and

21

system testing. Moreover there was no need to deal with PHP because in black box

testing knowledge of internal structure of this web application was not necessary.

This brings us to another benefits. In other words, it means that even a person without

knowledge of a specific language on which the AUT is written will be able to write or

maintain these automated tests. This mean that it will be easier to find such person and

the amount of people who will be able to take on this job will be bigger. In my case all

the necessary coding was done in Java. Comparison of black box testing and white box

testing on figure 4 [17] .

6.2 Functional testing

Functional testing is a sub type of black box testing and the most important one in this

thesis, since it took the most amount of time and heavily influences system testing. In

functional testing a bigger piece of functionality than just one function is being tested.

Important is to mention that functional testing is the type where regression testing is

crucial and most beneficial. It is not necessary to analyse the code and how exactly the

22

Figure 4. White box vs black box

input is being processed. However, it is important to know what the output is going to

be after a certain input. Simple structure of functional testing is shown on figure 5 [18] .

6.3 System testing

Usually system testing in waterfall methodology comes almost last, before acceptance

test, however, my practical part was made in agile development environment thus

system testing was made more frequently. This is why functional and system testing in

this project is proportionally related. The sooner functional testing gives positive results

the sooner system testing will be completed.

6.4 Regression testing

Regression testing main idea is to confirm that after any changes to the software were

made, previously developed functionality still works correctly. It is a very important

type of testing, especially in an agile development environment. Test automation

implemented on this type brings the most benefit as it usually has to be done a lot of

times over and over in which case by automating these tests human resources can be

used elsewhere. Regression bugs are a common phenomenon, especially in the early

stages of development as a big amount of enhancements and new features in a short

23

Figure 5. Functional testing architecture

period of time are added. Missing such bugs might lead to additional expenses in the

future development phases.

6.5 Cross-browser

Cross-browser testing is an inalienable part of the whole testing process if it has to be

implemented. It displays the ability of a web application to adapt to any browser that

was set in the requirements of a project. Cases where the application has to work

properly in more than two browsers might get very time consuming to test. There might

even be a possibility of testing this application on multiple different platforms which

also drastically increases the overall development time. Also the AUT in different

versions of a browser might behave differently which means that sometimes it is needed

to test not only different browsers but also different versions of browsers. If a project

must be working on different platforms, in different browsers and with different

browser versions at the same time it might get impossible to cover all these

requirements with manual testing. To sum it up, if the AUT is automated to execute

tests in such environments it brings enormous benefits in the form of saved time and

helps to assure a better quality of the end product.

24

7 Automation process overview

As the automation process began it was decided to start automating less complex test

cases with simple functionality and as isolated as possible from other components.

Sometimes functionality that is rarely used, isolated and small might make an

impression that it will always work and it is not worth being tested and especially

automated. However, in reality it is not always like that and in this project there was

such an example. In the earlier stages there was no problem in adding staff to the

database through the application, however, after certain changes were made to the

database, deleting a staff member and then trying to add him/her with same initials was

impossible. This bug was instantly detected through an automated test when it was

executed for the second time, since it always adds a staff person with the same name

and as it was executed for the second time while trying to add a person with the same

name this bug was detected.

After completing isolated test cases more complex test cases were written. These

complex test cases consisted of multiple components in such way checking the

application on a bigger scale. Not only these tests checked for actual results but they

also gave a more clear vision on how successful system testing might be in the present

moment.

7.1 LogInClass

First and the most important class which was created is the LogInClass. It had two main

purposes that were located in the loginMethod(). First one is to initialize the

ChromeDriver as it is shown below:

25

ChromeOptions is a class that can be used to set certain options to the created instance

of the browser by passing the ChromeOptions to the drivers constructor. By adding “-

start-maximized” argument to the options the browser starts in full size, which helps to

avoid false failed tests created by UI design. Of course it is possible to set specific

window size if there is such need, however, in our case maximum size was fine.

The second purpose was to store information of two accounts. The first account was

used to log in into the system. The second account was used to bypass the basic

authentication.

Elements can be found on the page by the following available to WebDriver locators:

by name, id, XPath, class name, tag name, link text, partial link and CSS. Choosing the

right locator, especially in projects with frequently changing functionality and design is

very important. It will influence the speed of locating an element, how often these test

cases will have to be maintained and how reliable they will be. The best practice is to

use the id locator. Referring to the W3C standards it is unique and thus by changing its

location there will be no problem in finding this specific element. Sometimes, for

example in case of a bad written code or the architecture, there might be no possibility

to use an id locator and then the second level of locators come into play where it is

possible to locate the element either by CSS or name. The worst practice is to use

26

Figure 7. Basic authentication and log in credentials

Figure 6. Initializing ChromeDriver

Xpath, since it is very vulnerable to location change and takes more time to look up for

the element.

7.2 TestNG class and TestNG XML

TestNG class

All the main code and test logic of a single test case is executed in this class. First of all

a new instance of LogInClass is initialized LogInClass login = new LogInClass() and

three annotations are created: @BeforeMethod, @Test and @AfterMethod for the

following purposes: @BeforeMethod starts first and this is where login.loginMethod()

is executed. In such way as each test starts, the whole login process is done and the user

is in the system. After @BeforeMethod comes @Test where all the main test logic is

written. In case the code in this annotation fails or completes @AfterMethod is executed

where ChromeDriver servers process is terminated: login.getDriver().quit(). Although it

is important to know, if a running test is terminated by the user manually in the IDE the

server process will not be canceled and will hang in the windows processes.

TestNG XML

This XML file was used to execute test suites as TestNG does not offer a possibility to

define a suite inside the source code of the TestNG class. In our case the XML has a

mandatory attribute name to define the suite, attribute parallel where it is defined

whether multiple threads should be running, multiple test and class names and a

parameter annotation with attributes name and value. All the test cases that should be

executed at once and the conditions how it should be done are all set in this one XML.

An example of the XML will be shown in the paragraph 7.5.3.

7.3 Time optimization

The most important part was time handling and optimization. Elements on the page in

certain conditions take longer time to be displayed, for example module loading through

Javascript/JQuery. In this case Selenium throws an exception as the element is invisible.

To avoid this exception a method that waits for the Selenium to find this element is

27

necessary. Method Thread.sleep() is a bad practice because it offers us to wait for a

fixed amount of time. This brings us to a row of negative effects and the most important

one of them is waste of time. If we, for example, set the thread to sleep for 5 seconds

and the element could be found in 3, we waste time. And in one test suit there might be

thousands of such moments which brings us to a colossal time loss. If we set the thread

to sleep for 3 seconds and the element appears only after 4, the whole test fails. To

avoid all these problems class WebDriverWait(Explicit Wait) was used. This class takes

as argument two values, first one the browser driver and second one the maximum

amount of time that the driver will be waiting for the element to meet certain conditions.

In the LogInClass an instance of WebDriverWait class was initialized as follows: wait

= WebDriverWait(driver, 10). This means that every time an instance of the LogInClass

is created in the TestNG class, the wait method is available and can be used throughout

the lifetime of the driver.

This class has an until method with prebuilt expected conditions. By standard this

method checks for the element every 500 milliseconds but it can be customized if

necessary. It returns a Boolean True if an element meets the condition. List of available

and used conditions:

1. Wait for the presence of an element. Used in case it is not needed to check

whether the element is visible or not and just check for its presence in the DOM:

wait.until(ExpectedConditions.presenceOfElementLocated(By locator));

2. Wait for the element to be clickable. Used to locate an element that is visible and

enabled: wait.until(ExpectedConditions.elementToBeClickable(By locator));

3. Wait for an element to get visible. Checks for the visibility of an element:

wait.until(ExpectedConditions.visibilityOfElementLocated(By locator));

4. Wait for the element to get invisible. Return Boolean True if the element is not

visible or not present in the DOM:

wait.until(ExpectedConditions.invisibilityOfElementLocated(By locator));

28

This wait method can be used not only for the purpose of getting any kind of

information from the element but also to avoid problems created by Javascript. As the

automation process began another problem occurred. When a module was being closed

by jQuery an element is not clickable exception was thrown. The reason to such

exceptions is that the element is actually clickable and visible, however, an

overlay/spinner is on top of it. A simple solution was found with use of the condition

that waits for the invisibility of an element. This method was used to wait for an

element with a unique locator in the module to disappear and only then look for the

other element.

7.4 Implementing cross browser testing

The point of this paragraph is to show how easy it is to implement cross browsing into

the project. Tests in other browsers were not analyzed and measured, since in the

requirements there was only one browser (Google Chrome) where this application must

be working properly. These requirements might change in the future and for this reason

a tool with strong cross browsing possibilities was chosen.

Testing additional browser types is out of scope in this thesis as it would be a waste of

time. Although, if the requirements change it will be very beneficial, because

optimizing one test case for another browser takes around 1/10 of the time taken to

write the script. Setting the environment for cross browsing also does not take a big

amount of time and will be shown further in this thesis. As an example Firefox was

taken in use.

7.4.1 LogInClass changes

First of all loginMethod() that is located in the LogInClass and which is responsible for

driver initialization and the account login process is changed. Changes: an argument

String browser is passed to the method. Two if statements are added for each browser

that check for the argument that was passed to the method. If the value is chrome it

launches the piece of code where chrome driver is initialized, if it is firefox that was

passed as the argument it launched the code where GeckoDriver is initialized.

29

Additionally a class variable browserName is declared. This variable’s value is assigned

when a certain driver is created. If it is GeckoDriver we assigne the value firefox , if it is

ChromeDriver - chrome. The purpose of this variable will be explained in the next

header. For a better understanding figure number 8 is attached.

7.4.2 TestNG class changes

In every TestNG class two mandatory things must be done. Firstly, a parameter

annotation is added as follows: @Parameters(“browserType”). Secondly, changes in

the @BeforeMethod annotation:

30

Figure 8. LogInClass changes

The if statement checks for the browserType parameter and compares it with the

TestNG XML parameter value and depending on the value a certain loginMethod() is

executed.

Now an explanation how the browserName variable in the LogInClass is being used. If

a piece of code does not work in one browser and works in another and there is no

possible way to make it work in two browser by using the same piece of code, if

statements are used. The if statement checks for the browserName variable and

depending on this variable the code that works with this specific browser is being

executed.

7.4.3 TestNG XML changes

In this suite we create two test names each containing the parameter and the parameter’s

value. In such way they will be executing one after another.

There is also a simple way to run tests in parallel as TestNG offers such feature,

however, it takes a lot of time to build up a good architecture of the tests execution in

order to avoid conflicts, as same data might be accessed and changed at the same time

which might lead to unexpected data output.

31

Figure 9. @BeforeMethod changes

7.5 WebDriver limitation

Throughout the project there were no problems that could not be resolved with

Selenium WebDriver except one. A print out dialogue, handling which is impossible

with this framework only. It was impossible to avoid and at the same time it was

necessary to pass through it, in order to execute important test cases. There was no other

choice but to look for a solution out of the box. The most simple way to pass through

this print dialogue was to import the Robot class. As the print preview appeared, key

32

Figure 10. TestNG XML

event of Escape button was simulated and the dialogue was closed. It is a simple

solution and works as intended, however there is a side effect. When the print preview

is handled it must be on the frontend of the desktop. This brings some limitations, since

the computer can not be used while this test case is being executed. If, for example, a

browser or an application is in front of the browser instance where the test runs the test

will fail.

33

8 Analysis

8.1 Metrics

There is a total of 21 automated test cases that execute in 6 minutes 30 seconds (+- 20

sec.), ~1440 pure lines of code (import and comments excluded). The code coverage is

97.4% which is considered as a high percent as the average acceptable code coverage is

around 70-80%. The reason for such high percent is the size of the application on its

early development stage. The percent of coverage together with the amount of code

lines gives a more clear picture on how much code is being used. A total amount of 108

test cases were written manually, that cover all the functionality that was rational to

document and test.

34

Figure 11. Number of test cases and execution time

35

Figure 13. Code coverage

Figure 12. Lines of code

8.2 Manual testing

Practical part of this thesis lasted for two months. All the records of time were made

accurately. Two types of recording were used, either in KanbanFlow (project

management tool) or manually. KanbanFlow time was divided into three categories,

overall testing time, testing made in Live environment and time spent on single tasks.

Examples attached to the Appendix 2.

70 hours of manual testing has been recorded. 5 hours has been spent on writing test

cases which are not included into calculations and comparison, since it is necessary in

any case. Approximately 10 hours has been spent on manual testing that either couldn’t

be replaced with automation or was made for prophylactic purposes. This leads us to a

total of 55 hours of manual testing which was parallelly automated.

8.3 Test automation

Test automation (writing scripts and maintaining) took 20 hours (without execution). Of

course the speed of learning depends on each person individually, but overall, the level

of difficulty in mastering Selenium WebDriver and learning how to write reliable tests

is not very high, thus it took 10 hours to set up the environment and master the

framework on a level that is acceptable. The only precondition is knowledge of one of

the languages supported by Selenium.

The average execution of a test suit which consisted of 21 automated test cases took

approximately 6 minutes. (+- 20sec). The AUT almost instantly achieved 8 frequently

used test cases and ended up with 21. Considering this fact and how fast the application

was developed the average amount of executed test cases that makes sense to use in

calculations is 15-16. The average time is 4 minutes for executing one test suite

containing 15 test cases. Manually testing such test suit takes ~10 minutes. It might take

even longer if manual testing was made a while ago, since the test steps are forgotten

and it takes extra time to accurately check the document and recreate them. Simple

36

calculations lead us to the following conclusion. Since automated tests are much faster

each suit saves us 6 minutes, additionally, not only the suit executes faster it gives us 4

extra minutes because the human resources can be used elsewhere while the tests are

running.

8.4 Calculations and conclusion

All the calculations were made in favor of manual testing in order to make the

conclusion and summary as reliable as possible. As it can be seen, 55 hours of manual

testing was necessary for the application to meet all the requirements. By using

automation 30 hours were required to automate the same amount of test cases. If we

take into consideration only time as the measurement unit it is obvious that automating

such projects even under such circumstances is undoubtedly beneficial for two reasons,

less working hours and a faster execution time. These two reasons will be approached

with a more precise explanation.

Converting time unit into currency is not a good practice as abstraction gives a better

overall view, however, one example based on the current average salaries on the market

is acceptable for additional information. Automation and manual testing is being

measured as 1:1 ratio if time is used as a unit of measurement, which might give a false

impression of benefit as automation engineer salary is higher than a manual tester

salary. In the following calculations we will assume, that 1 month contains 160 working

hours. In the year of 2017 the average salary of a manual tester per year according to

PayScale [19] is 53k. This is an approximate of 28 dollars per hour. An automation

engineer salary, also according to PayScale is 70k per year which brings us to an

approximate of 36 dollars per hour. 55 hours of manual testing equals to 1540 dollars,

30 hours of test automation equals to 1080 dollars which brings us to a net profit of 460

dollars. Of course every company has its own policy how working hours and payments

are approached, however, this a good standard to compare currency value.

Now lets take a closer look on a significant benefit which is not connected to the

currency value – the speed of execution. One test suit, as was mentioned before

executes 6 minute faster (4 min automated execution, 10 min manual testing), which

37

means that a feedback will be given 60% faster. We have 55 hours of manual testing, if

it would have been replaced with automation the execution time would take 22 hours

(55 – 55 * 0.6, 60% faster) which means that all the required testing would have been

done 33 hours faster. But this time does not include the automation process and

learning. This means the actual total amount of time spent on automation for the same

amount of testing is 22 + 30 (test automation + learning time) = 52 hours which already

gives us a time profit of 3 hours. Although, on the first sight this amount might seem

insignificant, but in the long-term perspective, lets assume in the next project, this same

person won’t need to spend any time on learning, moreover, his coding skills will be on

a higher level which will allow to write scripts faster. This will instantly make the

automation process 10 hours more profitable than manual testing and the profit will

keep rising over time.

As it was previously mentioned this application was specially chosen considering

nuances such as insufficient time, cost and job security in paragraph 1.2 and thus in

most cases it is tested manually. By converting theory into real life practice these

nuances become risks. Relying on the made practical part each risk will be approached

with an explanation why should it still be taken.

• Insufficient time – Undoubtedly there are companies with a busy schedule. But

lets approach this situation from another angle. First of all, it was proven on

practice that mastering functional/regression/system automation does not require

a colossal amount of time. The solution is a little bit out of the box but still

possible to apply in real life practice. There is an option to offer an employee

overtime work where he will be learning how to automate. First of all, it will not

take a lot of time and be beneficial to the development process and to the

company overall in the near future. Secondly, human error will be excluded as it

might arise in manual regression testing. Thirdly, not only it brings benefit to the

company but also to the employee himself. It will motivate him to improve

drastically in his career as automation becomes more and more popular.

Moreover, he will benefit financially as an automation engineer salary on the

38

market is higher than of a manual tester salary [5] . Why not to apply this

strategy if both sides benefit, a win-win game condition.

• Job security – As it was mentioned before testers that are used to manual testing

might be threatened by automation. A review will be given as the author was

sent in the same position and under the same circumstances. First of all, by

going out of the comfort zone, new opportunities are opened and these

opportunities are thous that were mentioned in the “Insufficient time” problem

(career and salary growth). It should be not considered as a threat, but as a

chance to improve yourself and benefit out of it. In addition, it was shown that

the level of difficulty in mastering automation (in such kind of projects) is not

that high. If this is not enough, then again lets think outside of the box.

Information technology is rapidly evolving and in the near future there will be

more and more automation. Without a doubt, manual testing will still be

necessary but in a much less amount. Employees that are able to automate and

execute testing manually will be required on a bigger scale and this should be

considered as a real threat.

• Cost – additional expenses might be avoided with ease. By paying for test

automation tools you are paying for comfort and conveniences. It is possible to

automate almost anything with free tools. The only side effect is a more complex

environment setup and use of combination of different frameworks.

39

9 Future works

Changes in manual testing documentation

In this thesis one of the most simple test documentation templates were used. As the

application didn’t have many versions, no cross platform testing was needed, only one

test designer was active, no fields such as executed by whom and date were necessary

nor any post condition fixation was required. Test cases were written in Excel. Template

column headings were created as follows “Test idea”, “Test description”, “Status”,

“Error description”, “Additional information”. In the future if the application gets more

complex, new and a more detailed template must be taken in use. Although, the light

version that was used had no disadvantages in this specific development cycle, as it

covered all the needs that are expected from test case documentation.

Email reports

Automated test suite results reporting via email was also not necessary. It is a good

feature indeed and can be implemented without any trouble to monitor results right after

a test suite finishes executing. In my case errors were handled as soon as automated test

suite was completed. No suits were running at night or remotely since the application

did not reach large scales. As soon as load reaches certain sizes email reporting might

be instantly taken in use.

Scheduled test runs

Scheduled tests are a good combination with email reports. It is possible to run required

test cases in a specific time by creating a batch file and setting a task in the windows

control panel that will run it. This method can be used in the combination of Selenium

and Windows. Of course there are other ways to configure this task depending on the

tools and operating system. If a fast, remote, and in a certain period of time reporting

environment will be needed it can be implemented.

40

Key performance indicator

On this stage of the development and in such conditions I did not find it necessary to

use metrics such as KPI. Although, it is considered as the backbone of the business. But

it has its place in the section of the future work as it might be integrated if precise

statistics of degradation or improvement will be required.

41

10 Summary

The first goal in this thesis was to cover the AUT with test cases and implement

automation with as much benefit as possible using functional, regression and system

testing.

The precondition of a successful automation is a documentation of test cases and

manual execution. At the end a total of 108 test cases were written (Excel) and

accurately tested manually. Afterwards necessary test cases were automated. These

automated tests are stable and reliable and were put under test after a decent amount of

new implementations. This way they can be considered as high quality tests as the

investments brought more profit than loss, which was proven by pure calculations.

While the practical part was executed time was accurately measured. The analysis that

was build upon the practical part has a strong foundation. All the tools that were used

are the newest versions available at the time of writing this thesis, so the methods and

technologies used were all up to date.

The results of the analysis are clear and the benefit of automation was proven. A

conclusion was written approaching and explaining all the problems and risks that come

with such project under concrete circumstances offering solutions how to handle them.

42

References

[1] Joe Fernandes (Oracle), Alex Di Fonzo (Synchronoss Technologies), "When to Automate

Your Testing (and When Not To)" [Online]. Available:

http://www.oracle.com/technetwork/topics/qa-testing/whatsnew/when-to-automate-

testing-1-130330.pdf. [Accessed 13 05 2017].

[2] Gerard Meszaros, Shaun M. Smith, Jennitta Andrea, "The Test Automation Manifesto"

[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-540-45122-8_9.

[Accessed 13 05 2017].

[3] Peter Sabev, Katalina Grigorova, "Manual to Automated Testing: An Effort-Based

Approach for Determining the Priority of Software Test Automation" [Online].

Available: http://waset.org/publications/10003250/manual-to-automated-testing-an-

effort-based-approach-for-determining-the-priority-of-software-test-automation.

[Accessed 13 05 2017].

[4] Stefan Münch, Peter Brandstetter, Konstantin Clevermann, Oliver Kieckhoefel, Reiner

Schäfer "The Return on Investment (ROI) of Test Automation" [Online]. Available:

https://www.ispe.org/pe-ja/roi-of-test-automation.pdf. [Accessed 13 05 2017].

[5] Prof. V. N. Maurya, Er. Rajender Kumar "Analytical Study on Manual vs. Automated

Testing Using with Simplistic Cost Model" [Online]. Available:

http://vixra.org/pdf/1208.0216v1.pdf. [Accessed 13 05 2017].

[6] Alégroth, E. , Feldt, R. & Ryrholm, L. , "Empir Software Eng", "Visual GUI testing in

practice: challenges, problemsand limitations" [Online]. Available:

https://link.springer.com/article/10.1007/s10664-013-9293-5#Abs1. [Accessed 13 05

2017].

[7] Leotta M., Clerissi D. , Ricca F. , Tonella P. (2014) "Visual vs. DOM-Based Web

Locators: An Empirical Study" [Online]. Available:

https://link.springer.com/chapter/10.1007/978-3-319-08245-5_19. [Access 13 05 2017].

[8] "Selenium" [Online]. Available:

http://www.seleniumhq.org/docs/01_introducing_selenium.jsp. [Accessed 13 05 2017].

[9] The Apache software foundation, "Apache License 2.0" [Online] Available:

https://www.apache.org/licenses/LICENSE-2.0. [Accessed 13 05 2017].

[10] Wikipedia, "Selenium (software)" [Online]. Available:

https://en.wikipedia.org/wiki/Selenium_(software). [Accessed 13 05 2017].

[11] Selenium project, "Selenium WebDriver" [Online]. Available:

http://www.seleniumhq.org/projects/webdriver/. [Accessed 13 05 2017].

[12] "Selenium WebDriver architecture" [Online]. Available:

https://www.youtube.com/watch?v=aujzqboRO9Y. [Accessed 21 05 2017].

43

https://www.youtube.com/watch?v=aujzqboRO9Y
http://www.seleniumhq.org/projects/webdriver/
https://en.wikipedia.org/wiki/Selenium_(software
https://www.apache.org/licenses/LICENSE-2.0
http://www.seleniumhq.org/docs/01_introducing_selenium.jsp
https://link.springer.com/chapter/10.1007/978-3-319-08245-5_19
https://link.springer.com/article/10.1007/s10664-013-9293-5#Abs1
http://vixra.org/pdf/1208.0216v1.pdf
https://www.ispe.org/pe-ja/roi-of-test-automation.pdf
http://waset.org/publications/10003250/manual-to-automated-testing-an-effort-based-approach-for-determining-the-priority-of-software-test-automation
http://waset.org/publications/10003250/manual-to-automated-testing-an-effort-based-approach-for-determining-the-priority-of-software-test-automation
https://link.springer.com/chapter/10.1007/978-3-540-45122-8_9
http://www.oracle.com/technetwork/topics/qa-testing/whatsnew/when-to-automate-testing-1-130330.pdf
http://www.oracle.com/technetwork/topics/qa-testing/whatsnew/when-to-automate-testing-1-130330.pdf

[13] "PhantomJS" [Online]. Available: http://phantomjs.org/. [Accessed 13 05 2017].

[14] "CODED UI" [Online]. Available: https://msdn.microsoft.com/en-

us/library/dd286726.aspx. [Accessed 13 05 2017].

[15] Cypress.io, Inc, "Cypress" [Online]. Available: https://www.cypress.io/. [Accessed 13 05

2017].

[16] "The World Wide Web Consortium (W3C)" [Online]. Available:

https://www.w3.org/TR/webdriver/. [Accessed 13 05 2017].

[17] "Black box and white box comparison" [Online]. Available:

https://www.pinterest.com/pin/181762534935799420/. [Accessed 21 05 2017].

[18] "Functional testing architecture" [Online]. Available:

https://www.packtpub.com/mapt/book/application-

development/9781783553372/9/ch09lvl1sec52/Functional+testing. [Accessed 21 05

2017].

[19] PayScale incorporated [Online]. Available: http://www.payscale.com/about/methodology.

[Accessed 21 05 2017].

44

http://www.payscale.com/about/methodology
https://www.packtpub.com/mapt/book/application-development/9781783553372/9/ch09lvl1sec52/Functional+testing
https://www.packtpub.com/mapt/book/application-development/9781783553372/9/ch09lvl1sec52/Functional+testing
https://www.pinterest.com/pin/181762534935799420/
https://www.w3.org/TR/webdriver/
https://www.cypress.io/
https://msdn.microsoft.com/en-us/library/dd286726.aspx
https://msdn.microsoft.com/en-us/library/dd286726.aspx
http://phantomjs.org/

Appendix 1 – Excel documentation of test cases

The development and testing was made within an Estonian speaking team thus the test

cases are written in Estonian language. Only important columns were added for a better

view. Columns such as priority, test steps and additional information were pulled out.

MOK means NOT OK.

Table 1. Test cases

1 Testiidee Testilugu Tulemus Vea kirjeldus

2 Sisselogimine
Sisselogimine kasutajanime ja
parooliga

OK

3 Kasutaja mäletamine OK

4
Väljalogimisel ühelt lehelt,
kõigil teistel suunatakse
ümber sisselogimis lehele

OK

5
6 Profiil Üldandmete muutmine OK
7 Ekraanilukk ülevalt menüüst OK

8
Kasutajakonto vaates
kasutajanimi muutmine

OK
Pärast nuppu Muuda vajutamist
midagi ei juhtu

9 Nime/perenime kuvamine OK
Liiga suure nime/perenime disain
läheb katki.

10

11 Lahter "Isikud"
Eraisiku lahtris isiku lisamine,
muutmine ja eemaldamine

OK

12
Juriidilised isikud lahtris isiku
lisamine, muutmine ja
eemaldamine

MOK

Juridilise isiku lisamisel ja
seejärel kustutamine ei võimalda
uut isikut sama initsiaalidega
luua.

13

14
Lahter "Töötajad".
Ainult Juhataja
ametil.

Põhitöötajate kustutamine ja
muutmine

OK

15
Hooajatöötajad kustutamine ja
muutmine

OK

16

17
Lahter
"Tehingud".Ainult
Juhataja ametil.

Pärast maksmist lahtris
"Kassa", lahtris "Tehingud"
Müük-i all ilmub uus rida
ostetud kaupa infoga

OK

45

18
Pärast tellimuse lisamist
lahtris "Tooted" toode laoseis
muutub.

OK

19
Kuupäeva valimine uue
tellimuse lisamisel

OK

20 Müügi ja Ostu kustutamine MOK

Kui proovida tehingud lahtris
"Müük" järjest ära kustutama
(kiiresti), siis kustutamise vahel
kuvatatakse tehingu
informatsioon. P.S juhtub väga
harva, arvan, et ei ole üldse
oluline.

21 Tehingute kuvamine OK
22

23 Lahter "Tooted"
Lisa toode üldandmete
sisadlamine

OK

24
Lisa toode müügikoha
andmete sisaldamine

OK

25
Toode muutmine ja
kustutamine

OK

26 Uue kategooria lisamine OK
27 Kategooria kustutamine OK
28 Toodete kuvamine lehel OK

29 Köögis valmistatav toode OK

Lahtris eelroad salvestades toodet
optioniga "Köögis valmistatav"
viskab errori ja ei salvesta. Muu
info muutmisel viskab errori,
kuid salvestab info

30 Valesti arvutan Neto/Bruto % OK
31

32
Lahter
"Müügikohad"

Kontaktandmete muutmine OK

33
Laudade lisamine Saalis ja
Terassis

OK

34 Müügikoha info kuvamine OK
35

36 Lahter "Kassa"

Luadade ja toodete korrektne
kuvatus pärast nende lisamist
lahtrides "Tooted" ja
"Müügikohad"

OK

37
Laud millel on maksmata
tellimus teise värviga

OK

38
Pärast nuppu Maksa
vajutamisel summa
sisestamine

OK

Oleks vaja kontrolli, et oleks
mingi piiratud maksimaalne
summa, muuljuhul suure arvu
puhul disain läheb katki

39
Tühja summa sisestamisel ja
pärast nuppu Kinnita
vajutamisel ilmub veateade

OK

40 Prindi nupp OK
Nupp toimub nagu "Kinnita", ehk
lisaks prindimisele ka makse
läheb läbi

41 Müümine ühes lauas nt. OK

46

kahele erinevale inimesele ja
samaegselt teises

42
Maksmisel valin toode.
Vajutan Kinnita. Tellimus
lõpetatud.

OK

Tellimus on tõepoolest lõpetatud
ainult siis, kui vajutatakse Tagasi
töölauale. Kui aga vajutatakse
Prindi leht refreshib. 13.03 Prindi
vajutamisel tehing kinnitab, kuid
leht ikka refreshib ja kõik toodet
jäävad. On võimalus juhuslikult
teist korda ära maksta sama
toodete eest, seljuhul tehingutes
viimane tehing lihtsalt muudab
Aega millal oli makstud.

43
Pärast nuppu Maksa
vajumatist müügi info
kuvamine

OK
Tulb Hind ei sisalda hinnas
nullid. Näiteks Summa tulbas on
1.90, Hind tulbas on 1.9

44

Maksmisel lisame paar toodet.
Maksame ühe toode eest
sularahas kus maksame 10-
euriga näiteks. Pärast Tagasi
Töölauale vajutamist Saldo
peaks muutma 0-ks.

OK
Ilmub mitte Saldo 0.00 vaid
summa mis oli sisestatud varem

45 Maksmisel saldo kuvamine OK

Test case: Maksmisel lisame paar
toodet. Maksame ühe toode eest
sularahas kus maksame 10-euriga
näiteks. Pärast Tagasi Töölauale
vajutamist Saldo peaks muutma
0-ks.

46
Erinevate toodete eest
maksmisel - tagasi töölauale
nupp ei tööta

OK

Lisame näiteks 4 toodet.
Maksame ühekaupa nende eest ja
viimase toode maksmisel tekkib
see probleem.

47
Maksmine nelja erineva
meetodiga

OK

Lisame näiteks 4 toodet.
Maksame ühekaupa nende eest ja
viimase toode maksmisel tekkib
probleem nupuga "Tagasi
töölauale".

48 Tellimuse lõppetamine OK

Lahter "Kassa". Tellimus on
tõepoolest lõpetatud ainult siis,
kui vajutatakse Tagasi töölauale.
Kui aga vajutatakse Prindi leht
refreshib.

49 Maksa nupp OK
Kui pole ühtegi tooted, siis
maksmine ei ole võimalik

50
Vahearve number ja kviitungi
number peavad kokku
klappima

OK Erinevad numbrid

51

52
Kööki modal - Söögikäigu
numbrid: min 1, max 10

OK

53
Kööki modal - Märkuse ja
Kommentaari lisamine

OK

54
Kööki saadetud toodete kogust
ei saa muuta

OK

55 Laud valmis toodega köögist OK

47

on lilla värviga ja ekooniga

56
Valmis toodete modalis
nuppud "Tulen hiljem" ja
"Vastuvõetud"

OK

57
58 Allpoolsed nuppud
59 Lõpeta vahetus nupp OK
60 Maksa nupp OK
61 Ekraanilukk OK

62 Tühista nupp MOK
Täpsustada. Kas funktsionaalsus
puudub või see peaks nii olema
(füüsiline nupp)

63 Vahearve nupp OK
Täpsustada. Kas funktsionaalsus
puudub või see peaks nii olema
(füüsiline nupp)

64 Vasakpoolsed nuppud

65 Koguse lisamine OK

Oleks vaja kontrolli, et oleks
mingi piiratud maksimaalne
kogus, muuljuhul suure arvu
puhul disain läheb katki

66 Koguse lisamine v2 OK
Murdarvud peavad olema
piiratud

67

Maksimaalse soodustuse
lisamine ehk kontrollida
võimalikult suure soodustuse
mida me täpsustame lahtris
"Tooted"

MOK
Kui soodustutst kustutada
Summas kuvab NaN. Üleküsida.

68 Kustuta nupp OK

69 Tehingud nupp MOK
Täpsustada, kas puudub
funktsionaalsus

70 Eraisik nupp MOK
Täpsustada, kas puudub
funktsionaalsus

71 Kööki nupp OK
Täpsustada, kas puudub
funktsionaalsus

72 Kommentaar nupp OK
73 Uus nupp OK
74
75 Admin vaade Lisa isik OK

76 Lisa isik v2 OK
Isiku lisamisel ükskõik mis
valitud amet pärast salvestamist
muutub juhatajaks.

77
Kasutaja üldandmete ja
kasutajakonto info muutmine

OK

78 Kasutaja kustutamine OK
79 Inimesele kasutaja loomine OK

80
Inimesele kasutaja
kustutamine

OK

Kasutaja üldandmete ja
kasutajakonto andmete
kustutamine ei õnnestu. Pärast
nuppu Salvesta vajutamisel
näeme, et sellel kasutajal staatus
"Kasutaja olemas" ei muutnud
staatuseks "pole olemas" , vaid
jäi "olemas".

48

81
82 Lahter "Sularaha" Sularaha lisamine kassasse OK

83
Sularaha lisamise kirje
kustutamine

OK

84
Sularaha lisamise kirje
muutmine

OK
Kui sisestada tähte, mitte arvu,
siis kohe kustutab rea. Oleks vaja
validaator.

85
Sularaha väljavõtmine
kassasst

OK

86
Sularaha väljavõtmine kirje
kustutamine

OK

87
Sularaha väljavõtmine kirje
muutmine

OK
Kui sisestada tähte, mitte arvu,
siis kohe kustutab rea. Oleks vaja
validaator.

88
Sularaha ülelugemised -
lisamine

OK Error

89
Sularaha ülelugemise
printimine

OK

90
Sularaha ülelugemised
kustutamine

OK

91 Refresh nupp OK

92
Ülelugemine erinevatel
töötajatel(tüübil andmebaasis)

OK

93

94
Vahetuse
lõpetamine aken

Sularaha kassas arvestuslikult
eelmisel ülelugemisel

OK

95
Sularaha tehingute summa
alates eelmisest lugemisest

OK

96 Sularaha kassast välja võetud OK
97 Sularaha kassasse lisatud OK

98
Sularaha kassas arvestuslikult
kokku

OK

99

100
Lõpeta vahetuse
aruanne

Jäägi muutus OK

101 Ülejäänud OK
102

103 Arve
Arve info kuvamine Maksmis
lehel printimisel(Üldine)

MOK

Kellaaeg mitte ilus. Näide:
Kuupäev: 22.3.2017 13:2 + Hind
ja Kokku ernevad. Näiteks Hind
on 9.5, Kokku on 9.50. Peaksid
olema samad.

104 Hind soodustusega MOK

Test case: Lisame toode hinnaga
9.5. Lisame soodustust 10%.
Maksame ära. Arve peal on näha
Hind = 9.5 ehk ilma soodustust.
Kokku = 8.55 ehk soodustusega.
Arve peal kuskil soodustuse
protsenti ei ole näha. Väga
ebamugav ja kliendile mitte
arusaadav.

105
106

49

107 Töö kiirus/üldine Kassa OK
108 Sularaha OK
109 Müügipäevad OK
110 Müügikohad OK
111 Tooted OK
112 Ladu MOK

113 Tehingud MOK
Ostu lisamisel töötab aeglaselt,
sest on seotud Laduga

114 Töötajad OK
115 Isikud OK

116

Klikkides palju kordu/kiiresti
nuppu peale, näiteks ava
vahetus, funktsioon
käivatatakse palju korda,
seega avatatakse palju
vahetusi

OK

117 Vale käibemaksu protsent OK
118

119 Lahter "Köök"
Tellimuste kuvamine iga 10
sekundiga

OK

120
Tellimuse staatus. Kui on
valmis - hall värv. Kui ei ole -
oranž

OK

121
Tellimusele "Märkuse"
lisamine

OK

122
Tellimuse kommentaari
kuvamine mis oli lisatud
Kassas

OK

123

124 Lahter "Ladu"
"Ost" õige kuvamine, juhul
kui ostetakse seda toodet

OK

125
"Müük" õige kuvamine, juhul
kui müüakse seda toodet

OK

126 "Laoseis" õige kuvamine OK
127 Perioodi filter OK
128

129
Lahter
"Köögitellimused"

Tellimuse kustutamine OK

130
Arvude(Hinnad) korrektne
kuvamine

OK
Neto hind = Bruto hind, ja
sellega tuleb vale Summa kokku

131
132 Count OK 98
133 Count MOK 10

50

Appendix 2 – Time recording examples (KanbanFlow)

51

Figure 14. Kanbanflow overall time example

52

Figure 15. Kanbanflow Live testing example

53

Figure 16. Kanbanflow single tasks example

Appendix 3 – Git link

https://github.com/iquinity/PointOfSale – Point of sale system’s automated test cases

54

https://github.com/iquinity/PointOfSale

	1 Introduction 10
	1.1 Overview 10
	1.2 Practical part 10
	1.3 Specification of automation problem 11

	2 Application under test 12
	2.1 General description 12
	2.2 Technologies and requirements 12

	3 Test automation 14
	3.1 Benefits and drawbacks 14

	4 Tools selection 16
	4.1 Selenium WebDriver 16
	4.2 Alternatives to Selenium WebDriver 18
	4.3 Selenide 19
	4.4 TestNG 19

	5 Setting the development environment 20
	6 Chosen testing strategy and types 21
	6.1 Black Box 21
	6.2 Functional testing 22
	6.3 System testing 23
	6.4 Regression testing 23
	6.5 Cross-browser 24

	7 Automation process overview 25
	7.1 LogInClass 25
	7.2 TestNG class and TestNG XML 27
	7.3 Time optimization 27
	7.4 Implementing cross browser testing 29
	7.5 WebDriver limitation 32

	8 Analysis 34
	8.1 Metrics 34
	8.2 Manual testing 36
	8.3 Test automation 36
	8.4 Calculations and conclusion 37

	9 Future works 40
	10 Summary 42
	References 43
	Appendix 1 – Excel documentation of test cases 45
	Appendix 2 – Time recording examples (KanbanFlow) 51
	Appendix 3 – Git link 54
	1 Introduction
	1.1 Overview
	1.2 Practical part
	1.3 Specification of automation problem

	2 Application under test
	2.1 General description
	2.2 Technologies and requirements

	3 Test automation
	3.1 Benefits and drawbacks

	4 Tools selection
	4.1 Selenium WebDriver
	4.2 Alternatives to Selenium WebDriver
	4.3 Selenide
	4.4 TestNG

	5 Setting the development environment
	6 Chosen testing strategy and types
	6.1 Black Box
	6.2 Functional testing
	6.3 System testing
	6.4 Regression testing
	6.5 Cross-browser

	7 Automation process overview
	7.1 LogInClass
	7.2 TestNG class and TestNG XML
	7.3 Time optimization
	7.4 Implementing cross browser testing
	7.4.1 LogInClass changes
	7.4.2 TestNG class changes
	7.4.3 TestNG XML changes

	7.5 WebDriver limitation

	8 Analysis
	8.1 Metrics
	8.2 Manual testing
	8.3 Test automation
	8.4 Calculations and conclusion

	9 Future works
	10 Summary
	References
	Appendix 1 – Excel documentation of test cases
	Appendix 2 – Time recording examples (KanbanFlow)
	Appendix 3 – Git link

