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Abstract 

This thesis explores the intricacies and difficulties associated with mobile malware, particularly 

from the perspective of malware analysts. As mobile devices become more widespread, there is a 

corresponding rise in the complexity and sophistication of malware targeting them. The research 

offers an in-depth look at the factors that make mobile malware complex, focusing on how these 

factors impact the analysis process, the expertise needed for practical analysis, and the duration 

required to conduct such analyses. 

 

This investigation adopted a combined quantitative and qualitative research design for a more 

holistic understanding. The methodology included a detailed review of relevant literature, 

creating a tool prototype, and analysing 158 samples of mobile malware. The literature review 

aimed to identify everyday complexities in mobile malware, while the prototype tool facilitated 

the automated analysis and complexity scoring of each malware sample. 

 

Findings from the study reveal that the complexity of mobile malware varies considerably, 

depending on factors such as the malware's design, the obfuscation techniques used, the 

malware's behaviour, and the execution strategies employed. The study confirmed that more 

complex malware strains typically require more sophisticated knowledge and longer analysis 

times, straining resources and making effective mitigation more challenging. The study also 

confirmed that the complexity score of malware samples calculated in this research does increase 

over time. 

 

Furthermore, the research highlighted that modern mobile malware often uses advanced 

obfuscation and evasion techniques, significantly contributing to its complexity. These 

techniques complicate detection and analysis, requiring analysts to adapt their approaches and 

constantly learn new skills. The findings suggest that a deeper understanding of these techniques 

and continuous upskilling are crucial for effective and timely malware analysis. 

 

This thesis enhances mobile malware complexity knowledge, providing valuable insights for 

academic researchers and cybersecurity practitioners. The findings can assist in improving 

mobile malware analysis techniques and developing more effective cyber defence strategies. The 
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research also identifies potential areas for further investigation, such as developing advanced 

tools and methodologies to assist in analysing and mitigating high-complexity mobile malware. 
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1. Introduction 

1.1 Background of the Study 

1.1.1 Relevance 

In the last decade, the use of smartphones has accelerated globally, outstripping desktop and 

tablet computers in terms of units shipped and usage [1]. They support various tasks, from 

recording videos to performing financial transactions, gaming, and networking. Equipped 

predominantly with either Android or iOS operating systems, with Android maintaining a 

leading 70.8% market share [2], these devices host millions of apps designed for various tasks 

[3] 

 

However, with their increased use and versatility, smartphones store large amounts of valuable 

information, posing significant threats to security and privacy. Mobile malware can infect these 

devices to steal classified information, share and track activities, and perform unauthorised tasks. 

For instance, the XCodeGhost malware incident 2015 infected numerous iOS applications, 

leading to the unauthorised access of user information [4]. Similarly, the Judy malware 2017 

infected 8.5 million and 36.5 million Android devices through the Google Play Store, generating 

fraudulent advertising clicks [5]. 

Such examples underscore the significant and ever-present threat of mobile malware. Therefore, 

understanding the complex criteria of these malware and their influence on the analysis process 

is critical to devising robust detection and mitigation strategies. This significance leads us to 

examine the field's current state and identify where our research can contribute. 

1.1.2 Current State of the field 

Mobile malware analysis has witnessed substantial progress, yet it faces increasing challenges 

due to the growing complexity of malware threats. The field has adopted many methods to 

analyse and counter these threats effectively. Static and dynamic analyses remain the foundation 

of mobile malware examination [6]. Static analysis dissects the code without executing it, 
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scrutinising the structure and contents of the application's package for potential malware. 

Conversely, dynamic analysis runs the application in a controlled setting and observes its 

behaviour to detect malicious activities. 

 

Machine learning models have progressively been utilised in mobile malware detection, 

leveraging characteristics such as requested permissions, API calls, and code patterns to 

differentiate between harmless and malicious apps [7][8]. Meanwhile, the emergence of more 

advanced threats has shifted towards behaviour-based analysis, prioritising malware detection 

through their behaviour patterns instead of depending solely on signatures. Manual heuristics 

analysis is an effective strategy for malware detection. Machine learning methods are considered 

for recognising and identifying behaviour-based malware detection, potentially offering the best 

solution. The activity of each piece of malware in a simulated environment would be constantly 

monitored, with behavioural assessments being generated. Consequently, a significant challenge 

is the real-time detection of malware using signature-matching algorithms [9]. 

 

The era of big data and artificial intelligence has also seen the adoption of deep learning 

techniques in malware detection, aiming to unearth subtle, complex patterns in extensive datasets 

[10][11][14]. The inception of federated learning has opened new avenues for privacy-preserving 

and distributed machine learning, particularly pertinent when handling sensitive user data [12]. 

We have also seen the adoption of MobileApp-in-the-middle Attacks, MAitM, has demonstrated 

various methods to effectively bypass numerous ways of multifactor authentication [20]. 

 

Despite these advancements, the rise of AI-driven mobile malware, which leverages AI 

techniques to bypass detection, poses a significant challenge to current detection mechanisms 

[13]. In the constant cat-and-mouse game between security professionals and malicious actors, 

the latter continually refine their methods to evade the most sophisticated defences. The field's 

current state reflects a landscape of ongoing innovation and persistent challenges. The 

intersection of AI, deep learning, and privacy-preserving techniques promises to shape the future 

of mobile malware analysis. However, the escalating complexity of mobile malware necessitates 

continuous research and adaptation of new methodologies. 
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However, a detailed investigation into the complexity criteria of mobile malware and its 

influence on the analysis process is largely overlooked in the current body of literature. This 

research gap is a critical area to explore, as it may hold the key to improving existing analysis 

techniques and paving the way for more effective detection and mitigation strategies in the face 

of increasingly complex mobile malware threats. 

 

1.1.3 Gap in the Literature  

 

While significant strides have been made in the field of mobile malware analysis, some notable 

gaps and questions still need addressing. A critical area that is largely overlooked in the existing 

body of literature is a comprehensive understanding of the complex criteria of mobile malware 

and the implications these criteria have on the analysis process. 

 

Many studies have focused on detection methodologies and mitigation strategies, often using 

machine learning and artificial intelligence. However, a thorough exploration of how the varying 

complexity levels of malware impact the success and efficiency of these techniques has been 

limited. Factors such as the time it takes to analyse different types of malware, the level of 

sophistication of malware structures, and the expertise required to dissect them are pivotal in 

shaping a more complete and practical approach to mobile malware analysis. 

 

This research seeks to bridge this gap by focusing on the complexity criteria of mobile malware, 

examining how they affect the malware analysis process, and how different levels of complexity 

may require different analysis methods. The expectations are that this study's outcomes will add 

value by: 

1. It evaluates criteria that contribute to the complexity of the Android malware analysis. 

2. Contribute to the malware analyst process of analysing malware. 

This research seeks to enhance the detection, analysis, and mitigation of increasingly mobile 

malware threats by addressing these points. 
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1.2 Problem Statement 

Mobile malware's ubiquity and evolving complexity pose significant challenges to cyber-security 

professionals, IT practitioners, and organisations. Cybercriminals are progressively focusing on 

mobile devices because of the vast amount of valuable personal and professional data they hold. 

As the sophistication and complexity of mobile malware grows, so does the difficulty and time 

commitment involved in their analysis, detection, and mitigation.  

  

A crucial challenge in the field lies in the complexity of mobile malware, which can vary widely 

depending on the malware's features, behaviour, and obfuscation techniques. This complexity 

impacts the difficulty and resource intensity of the analysis process and can also influence the 

effectiveness of detection and mitigation strategies. As malware evolves to evade detection, it 

often uses polymorphism, metamorphism, encryption, and packing techniques, further 

complicating its analysis.  

  

Despite the critical role of complexity in the mobile malware analysis process, there is a dearth 

of comprehensive studies specifically focused on understanding the complexity criteria of mobile 

malware. As a result, the field needs a standardised approach to quantify the complexity of 

mobile malware, and the effect of these complexity levels on the efficiency and success of 

analysis methods remains to be determined. This leads to significant implications, as different 

malware may require different analysis methods, and the resources required for analysis could 

vary widely depending on the malware's complexity. 

  

Furthermore, the evolving nature of mobile malware and the constant Development of new 

obfuscation and evasion techniques necessitate a dynamic approach to malware analysis. There 

may need to be more than a static or one-size-fits-all approach in the face of increasingly 

complex threats. Hence, there is a need for an adaptable methodology that accounts for the 

complexity of the malware and adjusts the analysis process accordingly.  

 

As pointed out by Almomani I, Ahmed M, and El-Shafai W in their 2022 work on Android 

malware analysis, several factors contribute to the complexity of analyzing malware. These 
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factors encompass the type of analysis being performed, whether it's static, dynamic, hybrid, or 

vision-based, as well as the specific components of the Android application package (APK) 

being examined, which can include the entire APK file, the Android manifest file, the SMALI 

file, or the Classes.dex file, and the nature of the Android dataset being analysed (balanced or 

imbalanced) [15]. Despite recognizing complexity as a significant factor in malware analysis, a 

detailed understanding of these criteria still needs to be improved in the field. This void in 

research presents a critical area of exploration as it could be vital to improving existing analysis 

techniques and inform the Development of more effective detection and mitigation strategies. 

 

The study analyzed a broad spectrum of factors potentially impacting the efficiency of malware 

analysis, viewed from a complexity perspective. It included an examination of malware dataset 

properties, the processes and results involved in converting APK files, the use of convolutional 

neural network (CNN) methods, and the evaluation standards employed [15]. Such methodology 

reflects an increased acknowledgment of complexity's role in the analysis of malware. 

Nonetheless, there remains a gap in the establishment of methods to measure and classify these 

complexities. 

  

The overarching problem, therefore, is the need for more understanding and underestimation of 

the complexity criteria of mobile malware and its influence on the analysis process. This 

research aims to explore these complexity criteria, how they impact the analysis process, and 

how different levels of complexity may necessitate different analysis approaches. By doing so, 

this research seeks to contribute to a more nuanced, practical, and resource-efficient approach to 

mobile malware analysis.  

  

In summary, the key issues to be addressed in this research are: 

1. Lack of comprehensive academic studies specifically focused on understanding the 

complexity criteria of mobile malware. 

2. The field's lack of a standardized approach to quantify the complexity of mobile 

malware. 

3. The unclear impact of different complexity levels on the efficiency and success of 

analysis methods. 
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4. The Development of a prototype to calculate the complexity score of malwares 

automatically. 

1.3 Research Questions 

To address the fundamental gap in the complexity criteria of mobile malware and how these 

criteria influence the work of malware analysts, this research endeavoured to answer the 

following questions: 

1. What are the most common complexity criteria of mobile malware, and how do they 

influence the analysis process? 

2. Can a tool be developed to operationalize the identification and quantification of 

complexity criteria in android mobile malware way? 

3. How has the complexity of mobile malware evolved over time? 

1.4 Scope and Limitations of the Study 

While there is a multitude of malware targeting different platforms, the scope of this study is 

limited explicitly to malware affecting mobile Android devices. It delves into understanding the 

complexity criteria of Android mobile malware, how these criteria influence the analysis process, 

and how the complexity has evolved. 

 

The complexity criteria considered in this study encompass a broad range of factors, such as the 

sophistication of malware structures, the level of expertise required for analysis, obfuscation and 

evasion techniques employed by malware, and the time it takes to analyse different types of 

malware. The study also examines the impact of these complexity criteria on the efficiency and 

effectiveness of different malware analysis techniques, including but not limited to static and 

dynamic analyses, machine learning, behaviour-based analysis, and deep learning techniques. 

Finally, the study explores the trends and future implications of the escalating complexity of 

mobile malware, as this may inform the Development of more effective detection and mitigation 

strategies. 
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Every research has its limitations, and this study is no exception. Given yearly emergence of new 

malware threats, it was only feasible to cover some Android mobile malware families in the 

analysis. This is discussed in Chapter 3.1 Selection of Malware Samples 

 

While the study strives to develop a comprehensive understanding of the complexity criteria of 

mobile malware, it should be noted that these criteria might change as malware evolves. 

Consequently, the findings of this study are subject to the limitations of time, as future 

developments in the field of malware creation and analysis may introduce new complexity 

criteria or modify existing ones. 

 

The study leverages many resources, including published literature. However, specific data may 

remain inaccessible due to confidentiality, proprietary restrictions, or information not being in 

the public domain. This limitation may affect the breadth of the analysis. 

 

The dataset used in this study may only encompass part of the spectrum of Android malware and 

benign applications. Although sufficient for initial analysis, the number of samples limits the 

generalizability of the findings. Larger datasets could reveal more nuanced patterns. The variety 

of APK samples, considering their source, functionality, and intricacy, is essential for 

comprehensive analysis. Should the dataset mainly include specific kinds of applications or 

neglect certain malware families, it might distort the outcomes and affect the effectiveness of the 

tool in diverse practical situations. 

 

Similarly, the creation of MalDroidAnalyzer, a tool intended to operationalise complexity 

analysis, introduces a practical component to the research. The tool's effectiveness will be 

evaluated against the malware samples selected, which may not encompass the full spectrum of 

Android malware. Additionally, the tool's Development is subject to constraints such as available 

technology, time, and resources. 

2. Literature Review 

Chapter 2 of this thesis provides a review of the current state of literature related to mobile 

malware, its complexity criteria, and the implications of this complexity on the analysis process. 
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It also identifies potential gaps in the existing literature that the present study seeks to address. 

This chapter serves as a crucial foundation for the subsequent analysis and discussions, situating 

the current research within the broader academic and professional context. 

 

Mobile malware has emerged as a significant topic for concern and research over the past ten 

years. Notably, there was a 15% increase in mobile malware installations in the first quarter of 

2021 compared to the final quarter of 2020 [15]. Regarding the categories of mobile malware, 

RiskTool AndroidOS was the predominant type in Q1 2021, accounting for 39.7% of all detected 

mobile malware. Trojan-Dropper AndroidOS and Trojan AndroidOS were also prominent, 

making up 21.5% and 15.8%, respectively [15]. 

 

Russia, with a 0.95% share of mobile users attacked by malware, stood out as the most attacked 

country in the first quarter of 2021, followed by Iran and Algeria, both at 0.9% [15]. In terms of 

mobile malware subcategories, banking Trojans saw a substantial increase in attacks, with a 2.8 

times growth in users attacked between Q4 2020 and Q1 2021 [15]. Adware attacks have also 

seen a significant surge, accounting for 55% of all attacks in Q1 2021, a marked increase from 

29% in the previous year [15]. As such, the topic is one of considerable relevance and urgency, 

and it is critical to examine and understand the ongoing conversations and research in this field. 

2.1 Complexity in Mobile Malware 

The complexity of mobile malware has evolved significantly over the years, from simple scripts 

to sophisticated, multifaceted threats. Mobile malware's complexity refers to its multifaceted 

nature, encompassing its structure, behaviour, obfuscation techniques, and evasion strategies. 

Complexity is crucial in the analysis process, affecting the time, resources, and expertise 

required for efficient identification and resolution. This section explores the various dimensions 

of complexity in mobile malware and their implications for malware analysis, concentrating on 

Android, the most frequently targeted mobile operating system, owing to its large user base and 

open-source nature [27]. 

 

The widespread adoption of Android has inadvertently positioned it as a favored target for 

malicious software attacks. Such malware is intricately crafted to exploit the Android Dalvik 
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virtual machine (DVM) and its fundamental Java libraries. The intricacy of this issue stems from 

the malware's utilization of various concealment and evasion tactics that complicate detection, 

casting even the safeguards of the Google Play Store into doubt. Malicious code authors persist 

in ingeniously disguising harmful applications as benign ones, leveraging system flaws and 

seeking access to various device functionalities [28]. This study assesses a spectrum of detection 

strategies, embracing static, dynamic, and those based on machine learning. It underscores the 

observation that current detection methods fall short in identifying new, previously unseen 

malware and variants that use obfuscation techniques to slip past security barriers. The 

challenges outlined include: 

• Techniques of Evasion and Disguise: Malicious software employs complex evasion and 

disguise strategies to slip through the nets of conventional detection systems, presenting a 

significant challenge for these methods to effectively pinpoint [28]. 

• Insufficient Depth in Analysis: Certain analytical approaches neglect to scrutinize the 

mobile device's RAM for forensic traces or to delve into essential aspects such as the 

primary logic, exploitative binaries, and native code libraries. 

• Shortcomings of Signature Dependency: The reliance on signature recognition in 

numerous antivirus solutions hinders their responsiveness to malware, which results in a 

reduced efficacy against disguised or altered forms of mobile malware. 

• Challenges in Identifying Advanced Variants: Although a variety of detection methods 

are employed, imperfections persist, and there's a notable deficit in studies that delineate 

the weaknesses and strengths inherent in these methodologies. 

 

In a parallel vein, the intriguing research by S. Venkatraman and M. Alazab titled "Use of Data 

Visualisation for Zero-Day Malware Detection" delves into the intricacies of mobile malware, 

with a particular emphasis on the identification of zero-day threats. Data visualization has been 

recognized as a vital aid for analysts burdened with the labor-intensive task of monitoring 

suspicious behaviors. These approaches not only summarize the existing visualization strategies 

for anomaly detection but also introduce a unique matrix-based visualization for precise malware 

categorization [31]. 
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The objective of the study is the detection of disguised malware by visualizing patterns of 

similarity in x86 IA-32 (opcode) sequences, which are typically challenging to discern through 

conventional methods. The suggested technique merges static and dynamic analyses of malware 

with similarity matrix visualization to enhance the classification and detection of zero-day 

threats. 

 

Furthermore, zero-day malware, also referred to as novel malware, camouflages its operations to 

avoid detection. These variants are termed 'zero-day' due to the absence of a time gap between 

their initial assault and their subsequent identification. Traditional methods of malware detection 

encounter substantial obstacles when dealing with such attacks. Malware detection approaches 

are primarily categorized into static and dynamic analysis. Static analysis involves examining the 

syntax and structure of a file, while dynamic analysis observes the file's behavior during 

execution. Malware creators often use transformation techniques to evade detection, including 

adding superfluous code, reordering subroutines, and changing code locations. Additionally, the 

use of packers to hide complete programs further complicates reverse engineering efforts. 

 

Understanding the complexity of mobile malware involves considering multiple factors crucial 

to grasping its nature and behaviour within mobile environments. A primary factor is CPU usage, 

representing the computational resources the malware consumes, which can impair the 

performance and responsiveness of the infected mobile device [14]. Another vital factor is 

storage size, indicating the malware's memory space, impacting storage availability for 

legitimate applications and user data. 

 

Testing time and pre-processing speed are also essential elements of complexity, denoting the 

time needed to analyse and process the malware. These can affect the efficiency and efficacy of 

malware detection and analysis processes [14]. These factors are interconnected, contributing to 

the overall complexity of mobile malware and necessitating refined approaches for its analysis 

and mitigation. 

 

The rise of novel malware variants and the use of sophisticated evasion tactics necessitate the 

creation and implementation of cutting-edge analysis models and containment methods [42]. The 
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challenge of dealing with mobile malware is intensified by the inherent constraints and 

limitations associated with mobile devices. 

 

The fundamental functional limitations of mobile phones significantly impact the propagation 

and behavior of mobile malware [43]. These limitations can be a double-edged sword: they 

restrict the reach of malware but also constrain the effectiveness of anti-malware solutions. 

Grasping these limitations and their implications is vital for developing strong and effective 

malware detection and prevention systems, which can proactively tackle malware threats and 

protect mobile ecosystems. 

 

In the age of Big Data and the Internet of Things (IoT), malware analysis has become 

exceedingly labour-intensive and intricate. Current automatic methods often struggle to identify 

unknown obfuscated malware, necessitating the involvement of human experts to examine 

extensive data volumes. Visualisation techniques can integrate human and computer analysis 

processes, offering a more intuitive and interactive way to present data. 

2.2 Existing Techniques for Malware Analysis 

The ever-increasing complexity of mobile malware has led to significant challenges in the field 

of cybersecurity. This section explores the existing techniques for malware analysis, focusing on 

the complexity criteria of mobile malware. The discussion is structured around static, dynamic, 

and hybrid analysis methods. It emphasises the need for a nuanced approach to address the 

unique challenges posed by the complexity of mobile malware. 

2.3.1 Static Analysis 

Static analysis is a method that examines a program's code, structure, and properties without 

executing it. It is widely used in malware analysis to understand its functionality, behaviour, and 

potential impact. In the context of mobile malware, static analysis is particularly crucial due to 

the increasing complexity and evolving nature of mobile malware [32]. 

 

Static analysis in mobile malware involves several techniques, including: 
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- Code Inspection: This involves analyzing the source or binary code to identify 

suspicious patterns, functions, and structure [33]. 

- Signature-Based Detection: This technique utilizes predefined signatures or patterns to 

identify known malware [33]. 

- Control Flow Analysis: This involves analyzing the control flow graph of a program to 

detect anomalies or malicious patterns [33]. 

 
Recent studies have started investigating the use of deep learning models in the field of 

cybersecurity, leveraging their remarkable capabilities in data mining, learning, and pattern 

recognition. These models have proven to alleviate the workload of malware analysts, especially 

in managing the complexities associated with IoT malware [34]. 

 

One such approach is a cutting-edge, vision-based technique has been developed for the 

detection and categorization of IoT malware, drawing on the deep transfer learning paradigm. 

This method enhances the effectiveness of detection and classification by fine-tuning pre-

existing models and employing a variety of ensemble tactics, eliminating the need to construct 

new training models from the beginning. It utilizes a random forest voting approach to synergize 

the capabilities of three distinct Convolutional Neural Networks (CNNs): ResNet18, 

MobileNetV2, and DenseNet161 [34]. 

 

This approach's effectiveness was evaluated using the MaleVis dataset, an open-source 

compilation of 14,226 images in RGB format. These images represent 25 malware types and one 

non-malicious category. A comparative study shows that this method outperforms existing 

leading solutions in both detection and classification. It has achieved a precision rate of 98.74%, 

a recall rate of 98.67%, a specificity of 98.79%, an F1-score of 98.70%, a Matthews correlation 

coefficient (MCC) of 98.65%, an overall accuracy of 98.68%, and an average processing time of 

672 milliseconds per malware classification instance [34]. 
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This method showcases the potential of deep learning models to enhance the efficiency and 

effectiveness of malware analysis, especially when applied to IoT devices. It underscores the 

necessity of accounting for malware complexity in the development and implementation of these 

models. 

2.3.2 limitations of static analysis  

A major challenge in this field is addressing highly obfuscated or encrypted malware. Such 

malware is crafted to avoid detection by concealing its actual intent or functions, posing a 

significant obstacle for static analysis techniques to effectively recognize them as malicious [35]. 

This limitation is particularly problematic when dealing with zero-day malware, which are new 

or previously unknown types of malwares that have not yet been identified by security 

researchers. Because static analysis relies on known patterns or signatures to detect malware, it 

can struggle to identify these new threats [36]. 

 

Another limitation of static analysis is the high rate of false positives it can produce. False 

positives occur when a benign application or piece of code is incorrectly identified as malicious. 

This can lead to unnecessary alerts and can require significant manual effort to resolve [37]. 

Moreover, static analysis demands considerable processing capability and time to thoroughly 

examine each app's code, which becomes especially demanding with an extensive array of apps 

or with particularly intricate malware. Research conducted by Sutter and Tellenbach in 2023 

unveiled FirmwareDroid, a security toolkit for analyzing Android firmware, which is distributed 

as open-source. It streamlines the process of extracting and evaluating pre-installed software 

[35]. Their research underscored how resource-heavy static analysis can be. Utilizing 

FirmwareDroid, they scrutinized 5,728 samples of Android firmware from multiple 

manufacturers, which included a review of 75,141 unique pre-installed Android applications 

[35]. Although the analysis was exhaustive, it underscored the sheer amount of computing power 

and time required, reflecting the inherent challenges static analysis faces in processing a 

voluminous quantity of applications or particularly elaborate malware. 

 

Ultimately, the limitations of static analysis are highlighted by its incapacity to consider dynamic 

behaviors. Since it examines an application's code in its static form, without execution, it fails to 
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identify malicious activities that manifest only during the application's operation. As a result, 

malware employing dynamic tactics to dodge detection, like unpacking encrypted code at 

runtime, often slips past static analysis [37]. 

Despite these drawbacks, static analysis continues to be an essential instrument in combating 

mobile malware. Its capability to swiftly and effectively examine vast quantities of code renders 

it an invaluable initial defense. Nevertheless, these limitations emphasize the necessity for 

supplementary analysis methods, like dynamic analysis, to achieve a more thorough approach to 

malware detection. 

2.3.3 Dynamic Analysis 

Dynamic analysis sets itself apart from static analysis by running the application and monitoring 

its behavior as it unfolds. This approach is adept at identifying and assessing complex malware 

that employs tactics such as dynamic loading, which involves runtime library loading, function 

address retrieval, function execution, and subsequent library release from memory. 

The advantage of dynamic analysis lies in its capability to deliver an in-depth understanding of 

an app's conduct by tracking its interactions within a live setting. It can uncover the way different 

components of an app communicate, the system operations it performs, and the resources it 

utilizes while running [38]. 

 

In dynamic analysis, a pivotal technique employed is the ptrace (Process Trace) system call. This 

function enables one process to oversee and alter the state of another process, proving 

particularly effective for monitoring the system calls of a targeted process. This technique helps 

to unveil the complexities of dynamic payloads at both Java and native code levels [38]. 

 

Additionally, artificial intelligence tools such as neural networks and decision trees are utilized 

to identify concealed communication channels. These tools can discern the presence of 

surreptitious communications by learning from historical energy consumption data, thereby 

unmasking threats [39].There are various tools designed for the dynamic analysis of Android 

applications. DroidTrace is one such ptrace-based tool, capable of tracking dynamic payload 
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behaviors across Java and native codes. Compatible with all Android versions and executable on 

actual devices, DroidTrace stands out for its adaptability [38]. 

2.3.4 limitations of dynamic analysis  

Despite its benefits, dynamic analysis is not without its drawbacks. Identifying the exact code 

path that activates dynamic loading poses a challenge. Additionally, dynamic analysis can 

demand significant time and computational resources, especially with complex malware types. 

For instance, Zhang et al.'s 2023 study observed that analyzing Android malware dynamically 

could extend to several hours for each sample, influenced by the malware's complexity and 

analysis depth [40]. Such time consumption becomes problematic with extensive app quantities 

or intricate malware cases. 

 

Moreover, dynamic analysis might not completely uncover behaviors of malware that are 

designed to evade detection, such as those that only act maliciously under certain conditions or 

after a delay—behaviors that might go undetected in analysis.Yet, dynamic analysis remains 

essential for uncovering and understanding sophisticated mobile malware, providing insights into 

real-time behaviors that static analysis may miss 

2.3.5 Hybrid Analysis 

Hybrid analysis merges static and dynamic techniques, aiming for a thorough and effective 

malware detection method. It attempts to address the shortcomings of each approach, like static 

analysis's struggle with complex code and dynamic analysis's resource demands [41]. Hybrid 

techniques might use machine learning to assess features gathered from both static and dynamic 

analyses. For example, a system could evaluate opcode frequency histograms from static analysis 

alongside network traffic patterns specific to the user from dynamic analysis. 

 

Among the tools that incorporate hybrid approaches is A5, an automated system that blends 

static and dynamic malware analysis. It engages with malware in novel ways to induce malicious 

actions and employs both virtual and actual Android environments to catch otherwise elusive 

behaviors. Cuckoo Droid is another hybrid tool, leveraging Cuckoo Sandbox capabilities for 

analyzing Android malware via static and dynamic means [42]. 
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Hybrid systems, despite their integrative advantage, confront complexities due to the intricate 

nature of dynamic analysis components like virtual platforms and input emulators. Moreover, 

sophisticated apps may detect emulated environments and thus avoid detection, posing a 

limitation to hybrid analysis's effectiveness. Nevertheless, hybrid analysis is invaluable for 

detecting and analyzing complex mobile malware, capitalizing on the combined strengths of 

static and dynamic analysis to form a robust strategy. 

3. Methodology 

Initially, the research intended to incorporate insights from industry professionals through 

interviews. Given the challenges in securing participation from industry professionals for 

interviews, the research pivoted to a more hands-on approach. Direct analysis of mobile malware 

samples offers a tangible and empirical method to understand the complexity criteria of malware, 

providing a foundation for the subsequent chapters. 

3.1 Selection of Malware Samples 

The robust analysis of malware complexity necessitates diverse samples encompassing a wide 

range of obfuscation techniques, behaviours, and attack vectors. For this study, 158 Android 

malware samples were meticulously chosen from a well-maintained repository known as the 

malware database on GitHub [48]. The malware database repository is a comprehensive 

collection of malware samples, providing a broad spectrum of malicious software types. It 

includes, but is not limited to, trojans, ransomware, adware, banking malware, botnets, email 

worms, and spyware. Including such a variety ensures a holistic assessment of the evolving 

landscape of Android malware. Benign APK samples for this research were meticulously chosen 

and sourced from F-Droid, which is a free and open-source repository for Android apps, utilizes 

a script created for this task can be found at Appendix 2 – Scrape.py [Python Script To Fetch 

Benign Samples. These samples were then scanned using Virus Total to ensure they were not 

flagged as malicious by multiple antivirus engines. This method ensures the integrity and non-

malicious nature of the benign APK dataset [91]. We establish a baseline of normal behaviour 
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and characteristics in APK files by analyzing benign applications, this is expanded upon in 

Chapter 4. Discussion and Results. The complete dataset is available to download [92] 

 

Furthermore, timestamps for the malware samples were manually obtained to facilitate a 

chronological analysis of complexity evolution. This was achieved by leveraging the robust 

capabilities of the VirusTotal API, which provides historical data on file submissions. Each 

malware sample's unique hash, generated during the initial assessment phase, was a critical 

identifier in querying the VirusTotal database. The response from VirusTotal typically includes 

the first submission date of the sample, which is used as a proxy for the sample's discovery date. 

This data acquisition process was conducted systematically, respecting the API's rate limit to 

ensure a comprehensive dataset. Due to the limitations of manual retrieval and potential 

discrepancies in first submission dates, this approach does not guarantee the exact creation date 

of the malware. However, it provides a reasonable approximation of its emergence in the wild. 

 

The manual process of timestamp retrieval involved structured querying of the VirusTotal 

database, followed by meticulous record-keeping to pair each malware sample with its 

corresponding discovery timestamp. These timestamps were then collated and organised to form 

a temporal dataset, enabling the analysis of trends in malware complexity over time.  

 

Each malware family exhibits unique characteristics that can illuminate specific aspects of 

complexity. The families of malware samples can be seen in Appendix 1 – Malware Sample 

Families: 

• Fake Inst: Characterized by its deceptive nature, often disguising itself as legitimate 

applications. Its complexity arises from mimicking real applications' behavior, 

making discernment challenging for users and detection systems [51]. 

• Fakenotify: Known for generating deceptive notifications to trick users. This adds 

complexity, requiring analysis techniques to differentiate between legitimate and 

malicious notification triggers [52]. 

• Jitfake: Employs just-in-time tactics for revealing its malicious payload, complicating 

static analysis processes [53]. 
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• Simplocker: Uses strong encryption to lock user data, necessitating a cryptographic 

approach to complexity analysis [54]. 

• LockerPin: Alters device PINs to prevent user access, adding an additional layer of 

complexity in restoring user control [55]. 

• Wannalocker: Combines ransomware tactics with worm-like capabilities, increasing 

difficulty in containment and decryption [56]. 

• Nandrobox: Notorious for displaying unwanted ads and potentially enrolling devices 

in botnets, obfuscating malicious network traffic as benign [57]. 

• Plankton, SMSsniffer, Zsone: Known for abusing SMS services, complicating billing 

and spam detection systems. They may intercept and manipulate SMS messages, 

requiring complex analysis for message flow and content [58]. 

• CovidLockRansomware: Emerged during the COVID-19 pandemic, leveraging 

topical fear to extort victims, indicating an evolution in social engineering tactics 

[59]. 

• DoubleLockerRansomware: Combines banking trojan functionality with ransomware, 

highlighting the trend of hybridization in malware types [60]. 

 

Malware behaviours span a wide range, from data theft to system disruption. To understand the 

full spectrum of these behaviours, the selection process drew on cybersecurity research 

classifications, categorising malware based on their actions post-infiltration. This diversity 

ensures an analysis that reflects malware authors' various tactics and strategies. For instance, the 

classification system proposed by Barría et al. [64] emphasises the diverse range of evasion 

tactics used by malware, including sophisticated obfuscation techniques like code encryption and 

polymorphism. This highlights the need to consider the complexity of evasion methods in 

malware analysis. 

 

Furthermore, Schofield et al. [65] demonstrate the use of convolutional neural networks to 

classify malware based on API call streams, revealing distinct behavioural patterns among 

different malware types. Additionally, Chowdhury et al. [66] explore the categorisation of 

malware using data mining and machine learning, further underscoring the breadth of malware 

behaviours and the importance of employing diverse analytical methods to capture this range. 
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Collectively, these studies illustrate the necessity of a multifaceted approach in analysing 

malware, which is central to the selection criteria of this research. 

 

The landscape of malware threats continually evolves, with authors increasingly adopting 

sophisticated obfuscation and evasion tactics. These techniques are not just ancillary features but 

core aspects of modern malware, significantly complicating the analysis and detection processes. 

As highlighted by Mawgoud, Rady, and Tawfik [67], these techniques have been developed to 

provide high evasion rates against anti-malware systems, mainly through dynamic analysis 

methods. This evolution underscores the necessity of including malware samples that exhibit 

such advanced obfuscation techniques in any robust analysis. Furthermore, the survey by 

Aboaoja et al. [68] emphasises the challenges and future directions in malware detection, 

particularly in the face of such evasion tactics. The rapid Development of these techniques, as 

discussed by Liu et al. [69], especially in the context of the Android platform, demonstrates their 

critical role in evading traditional security measures. Lastly, the game-based framework for 

comparing program classifiers and evaders, as proposed by Damásio et al. [70], provides a 

unique perspective on the effectiveness of various obfuscation techniques. This body of 

academic literature collectively highlights the importance of selecting malware samples that 

implement these advanced techniques, as they are vital for assessing the robustness and 

effectiveness of current analysis tools and methodologies. 

 

The complexity of malware is intricately linked to its code structure, execution flow, and 

interaction with the operating system. Recognizing this multifaceted nature, the selection of 

malware samples for this study was strategically guided by a proprietary assessment model that 

is inspired by and aligned with current research in the field which is discussed further in chapter 

3.2 Rationale Behind Factors influencing analysis of malware.. This model specifically focuses 

on evaluating key complexity indicators: code entropy, API call patterns, and permission usage.  

3.2 Rationale Behind Factors influencing analysis of malware. 

Permissions and API calls  

These are a cornerstone of Android security, dictating what an application can access or perform 

on a device. The number of permissions requested by an APK can indicate potential overreach 
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for malicious intent, making it a primary factor in complexity scoring. Excessive permissions 

may signal an application's capability to conduct activities beyond its advertised functionality, 

necessitating a higher weight in the complexity calculation [77]. The patterns of API calls made 

by malware are pivotal for detection and provide a window into the complexity of malware's 

behaviour and operational intricacies. Huang et al. (2022) leveraged dynamic analysis to label 

malicious behaviours in Windows API calls, employing a neural network-based approach to 

classify and detect malware, reflecting the sophisticated patterns that malware can exhibit [73]. 

Similarly, Daeef et al. (2022) emphasised the efficacy of feature engineering based on API call 

patterns, which proves instrumental in classifying malware into families, underscoring the 

diverse and complex behaviours that different malware families can exhibit [74]. 

 

The complexity of malware, in this context, is derived from the depth and sophistication of its 

operational behaviours as manifested through API calls. Complex malware tends to use API calls 

in non-standard sequences or to access unusual combinations of system resources, which can be 

a strong indicator of malicious intent and sophistication. This is particularly relevant in the case 

of advanced persistent threats (APTs) and multi-stage malware, which may use API calls to 

stealthily establish persistence, exfiltrate data, or perform other malicious activities over an 

extended period. 

 

The complexity indicators derived from API call patterns are crucial in our study. They provide 

insight into the sophistication level of the malware's behaviour, which might not be apparent 

through static analysis alone. The MalDroidAnalyzer tool assesses these patterns within the static 

context of Android APKs, considering the permissions that govern API access and the potential 

for their abuse. The tool's analysis includes examining the API call structures embedded within 

the code and the permissions that could facilitate such calls, contributing to a complexity score 

that reflects both the potential for and the sophistication of malicious behaviour. 

 

Thus, while Huang et al. and Daeef et al. focus on the detection capabilities provided by 

analysing API calls, our study extends this by using such analyses as a measure of complexity, 

integrating it into a broader assessment framework that captures the multifaceted nature of 

Android malware threats. 
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Native Code 

Using native code libraries in Android applications can serve dual purposes: while they may 

enhance performance, they may also be employed to obfuscate malicious behaviour. Native code 

execution, due to its direct interaction with the system at a lower level, presents considerable 

challenges in terms of monitoring and analysis compared to its Java counterparts. It can bypass 

several of the security mechanisms provided by the Android runtime environment, thus 

necessitating its consideration as a significant factor in the complexity analysis of an application. 

 

In the MalDroidAnalyzer tool, we quantify this complexity factor by enumerating the native 

libraries included within the APK. This is achieved by parsing the APK file structure to list all 

native library files (.so files). Furthermore, the tool inspects the APK for any JNI references that 

indicate calls to native functions. Both the count of native libraries and the diversity of native 

function calls are combined to form an aggregate score that reflects the extent of native code 

usage. 

 

Specifically, the tool's analysis accounts for: 

• Native Library Count: Each native library used by the APK increments the 

complexity score, with the assumption that each library could potentially introduce 

additional complexity. 

• Unique Native Function Calls: A higher number of distinct native function calls 

suggests a more intricate use of native code, which could correlate with complex or 

obfuscated malware behavior. 

 
By integrating these measurements, the weight assigned to the native code complexity factor in 

the MalDroidAnalyzer is justified. The tool encapsulates this aspect of complexity to provide a 

more comprehensive understanding of the application's potential threat level, reflected in its 

overall complexity score [78]. 
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Obfuscated strings 

Obfuscated strings within an APK serve a nefarious purpose: to veil the true intent of the code 

from both human analysts and automated analysis tools. The presence of obfuscated strings is a 

significant indicator of complexity due to the challenges they pose in the reverse engineering 

process. To quantify this aspect of complexity, the MalDroidAnalyzer tool employs a heuristic-

based approach, evaluating strings based on their entropy—a measure of randomness in their 

character distribution—and their length. 

 

Strings with unusually high entropy values and lengths exceeding typical use cases are flagged as 

potentially obfuscated. The tool then counts the number of such obfuscated strings, with each 

one incrementing the complexity score of the APK. The rationale behind this methodology aligns 

with the findings of Rastogi et al. (2013), who demonstrated the effectiveness of obfuscation 

techniques in evading anti-malware mechanisms [79]. By considering the prevalence and 

sophistication of obfuscated strings, the tool's complexity scoring system reflects the degree to 

which an APK employs obfuscation tactics to thwart analysis and detection. 

 

Therefore, in our complexity assessment model, obfuscated strings are weighted significantly, 

contributing to a composite score that encapsulates the intricacy and stealthiness of the malware. 

This score is essential not only for detecting the presence of malware but also for understanding 

the depth of its concealment strategies, offering insights into the sophistication of its design and 

the potential difficulties it may pose to deobfuscation efforts. 

 

Dynamic code execution 

Dynamic code execution, such as the loading of code at runtime, is a potent mechanism used by 

malware to evade static analysis. This technique can be used to download and execute code from 

external sources after installation, making the malware's behavior unpredictable and analysis 

more complex [80].  

 

Entropy 

APK Entropy is a measure of randomness and is used to detect encryption and obfuscation 

within binaries. A higher average entropy of an APK suggests sophisticated obfuscation 
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techniques, which increase the complexity of the analysis. Code entropy, a significant factor in 

determining the complexity of malware, refers to the randomness or unpredictability in the code 

structure of malware, posing challenges for detection and analysis. Singh and Singh (2020) 

illustrated that behavior-based malware detection techniques that assess runtime features, such as 

string features and Shannon entropy, achieve high accuracy in distinguishing between benign 

and malicious applications [71]. Their findings underscore the limitations of traditional static 

analysis methods when faced with the sophisticated obfuscation techniques increasingly 

employed by malware authors. Shannon entropy, therefore, becomes a critical measure of 

complexity, indicative of the degree to which code obfuscation can thwart signature-based 

detection systems. 

 

Incorporating these insights, our study leverages a static-based approach to assess malware 

complexity, acknowledging that while dynamic analysis provides a clearer indication of 

malicious intent, static analysis offers the advantage of being executable at scale without 

execution of the code. The MalDroidAnalyzer tool, developed as part of this research, utilizes 

static analysis to calculate the Shannon entropy of code segments and string features, assessing 

the level of obfuscation within a malware sample. This evaluation of randomness is vital for 

pinpointing areas of code intentionally crafted to be cryptic, hence aiding in the generation of a 

complexity score for each sample. 

 

Furthermore, the methodological relevance of entropy in analyzing malware complexity is 

corroborated by the work of Gibert Llauradó et al. (2018). They proposed a file-agnostic 

approach that leverages the visual similarity between streams of entropy to categorize malware, 

thereby validating the significance of entropy in the broader context of malware analysis [72]. 

While their approach utilizes deep learning, the MalDroidAnalyzer adapts these principles within 

a static analysis framework, affirming the importance of entropy as a foundational element of 

malware complexity assessment. 

 

Code Length 

The work of Christodorescu et al. (2005) suggests that the semantic analysis of executable code 

can reveal the presence of malware and its potential complexity. The longer the code, the greater 
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the possibility for such code to perform a variety of functions, including malicious ones. This 

increase in code length can correspondingly elevate the complexity of analysis, as it provides 

more space for malware creators to hide malicious intent within seemingly benign code 

structures [82]. In the context of the MalDroidAnalyzer, code length is measured as the total 

number of executable instructions present in the APK's bytecode. Each instruction is evaluated, 

contributing to a comprehensive complexity score that considers both the quantity and the 

potential sophistication of the code. 

 

File Size 

As noted by Crussell, Gibler, and Chen (2012), the file size of an application, especially when 

inflated beyond what is typical for its functionality, can be indicative of cloned applications 

which may include malicious additions. While a large file size is not in itself a sign of malware, 

it can be associated with an application that has been padded with extraneous content, which 

could include malicious payloads [83]. In the MalDroidAnalyzer, the APK file size is normalized 

to megabytes to maintain a standard scale for comparison. This normalized file size is then 

integrated into the complexity scoring mechanism, reflecting how the size of the application can 

contribute to its potential for complexity in terms of both analysis and malicious capability. 

 

The inclusion of these factors in the MalDroidAnalyzer tool's complexity score calculation 

represents an effort to quantify the multifaceted nature of malware. By assessing both the code 

length and file size, the tool provides a more nuanced view of an APK's complexity, accounting 

for the varied ways in which malware may be constructed and obfuscated. These factors are 

weighted within the tool's scoring algorithm to reflect their relative importance as identified in 

the literature, ensuring that the complexity score it generates is both empirically grounded and 

practically informative. 

3.3 Development of the Analysis Tool 

The core objective of this research is not only to understand the complexity inherent in Android 

malware but also to develop a tool that can systematically analyse and quantify this complexity. 

This tool, named MalDroidAnalyzer, is designed to dissect APK files and evaluate them based 

on predefined complexity criteria. The development process of MalDroidAnalyzer integrates 
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theoretical foundations with practical considerations, ultimately aiming to provide a reliable 

measure of malware complexity. 

 

MalDroidAnalyzer is the culmination of extensive research into the attributes most significantly 

contribute to malware complexity. The tool's design is informed by the latest findings in the field 

of cybersecurity. As such, the tool is built to assess various features that collectively paint a 

comprehensive picture of an APK's complexity, and a static-based approach of malware analysis 

is implemented. 

 

The implementation of MalDroidAnalyzer leverages a Python-based environment due to its rich 

ecosystem of libraries and frameworks suitable for data analysis and machine learning. The tool 

utilises the Androguard library for APK analysis and dissection, providing access to the various 

metrics required for complexity scoring and it is opensource available in GitHub [93]. Each 

feature is extracted, normalized, and then combined into a final complexity score using a 

weighted formula that reflects the relative importance of each factor. The process of normalizing 

and weighting is explained in 3.3.1 Analytical Model 

3.3.1 Analytical Model 

To objectively quantify the complexity of each malware sample, MalDroidAnalyzer employs a 

bespoke analytical model. This model integrates a set of features meticulously extracted from the 

APK Samples, each representing a specific aspect of the application's behavior or structure that 

contributes to its overall complexity. These features include: 

1. Permissions 

2. Native Code 

3. Obfuscated String. 

4. Dynamic Code Execution. 

5. APK Entropy 

6. Code Length 

7.  File Size 

The complexity score for each malware sample is determined by a weighted sum of these 

extracted features: 
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Equation 1 Malware Analysis Complexity (MAC) Formula 

 

where 𝑤! represents the weight assigned to feature 𝑖  and  𝑓! is the normalized value of feature 

𝑖. This formula ensures that each feature's influence on the final score is proportional to its 

significance in indicating complexity. 

 

Each feature is associated with a predefined maximum value, representing the expected upper 

limit in the results. This maximum value is hypothesised about what constitutes an unusually 

high feature value within the context of Android malware. 

 

Normalisation ensures that each feature contributes proportionately to the overall complexity 

score. This process involves scaling each feature to a uniform range to ensure balanced feature 

contribution. Each feature is scaled to a range between 0 and 1, where 0 indicates the minimum 

and 1 the maximum observed value. The normalisation formula is: 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝐹𝑒𝑎𝑡𝑢𝑟𝑒	𝑉𝑎𝑙𝑢𝑒 =
𝐴𝑐𝑡𝑢𝑎𝑙	𝐹𝑒𝑎𝑡𝑢𝑟𝑒	𝑉𝑎𝑙𝑢𝑒

𝑀𝑎𝑥𝑖𝑢𝑚𝑢𝑚	𝐹𝑒𝑎𝑡𝑢𝑟𝑒	𝑉𝑎𝑙𝑢𝑒 

Equation 2 Feature Value Normalization (FVN) Formula 

 
The normalize function in the code embodies this formula. It takes the actual value of the feature 

and the predefined maximum value as inputs. The function then returns the normalized value, 

ensuring it does not exceed 1 even if the actual feature value surpasses the expected maximum 

due to an outlier or an exceptionally complex sample. Once normalized, each feature is 

multiplied by its assigned weight, reflecting its relative importance in determining the 

complexity score. The calculate_complexity_score function aggregates these weighted features 

into a final complexity score for each APK. 

 

The table below details the features considered and their corresponding weights based on data of 

existing literature as discussed in chapter 3.2 Rationale Behind Factors influencing analysis of 
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malware.  Table 1 Complexity Score Calculation Factors and Assigned Weights shows each of 

the features and its corresponding weights. 

 

Feature Description Assigned 

Weight 

Weight 

variable 

Permissions The number of Permissions 

requested by the APK 

1.0 W1 

Native Code The use of native code 

libraries within the APK 

1.5 W2 

Obfuscated Strings The number of strings with 

high entropy 

2.0 W3 

Dynamic Code 

Execution 

The use of dynamic code 

loading mechanisms 

2.5 W4 

APK Entropy The average entropy of the 

APK, indicating randomness 

3.0 W5 

Code Length The total length of executable 

code within the APK 

1.0 W6 

File Size The size of the APK file 

normalized to megabytes 

0.5 W7 

 

Table 1 Complexity Score Calculation Factors and Assigned Weights 

 

3.3.2 Feature Calculation and Analysis in the script 

One of the main scripts developed in development of this tool prototype is called complexity.py. 

Each feature is calculated within the script as follows:  

 

Permissions Count - The script extracts permissions requested by the APK using 

a.get_permissions() method after analyzing the APK with AnalyzeAPK. The complexity score 
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incorporates the number of permissions directly, as each permission is considered to potentially 

increase the complexity of the APK. This is described in detail in Chapter 3.2 Rationale Behind 

Factors influencing analysis of malware. 

 

Native Code Count - Native code usage is identified with a.get_libraries(), which looks for 

native code libraries included in the APK. The complexity score accounts for the presence of 

native code by adding the count of native libraries identified. 

 

Obfuscated Strings Count - The script detects obfuscated strings by calculating the entropy of 

each string using the entropy function. A string is considered obfuscated if it has a high entropy 

value (greater than 4.5) and is longer than 20 characters, as checked by is_string_obfuscated. It 

then counts the number of such obfuscated strings across all DEX files of the APK using 

extract_obfuscation_features. 

 

Dynamic Code Execution Count - The script searches for dynamic code execution by looking 

for instances of classes associated with dynamic code loading (e.g., DexClassLoader and 

PathClassLoader) within the methods of the DEX files using extract_dynamic_code_features. A 

count of such instances is then added to the complexity score. 

 

APK Entropy - The script calculates the average entropy of all strings in the DEX files with 

calculate_apk_entropy. This measure helps indicate the randomness or unpredictability within 

the APK, with higher values potentially signifying obfuscation or complexity. 

 

Code Length - The total length of executable code is calculated by iterating through the methods 

in the DEX files and summing the length of the instructions for each method with 

calculate_code_length. This length is then normalized by dividing by 1000 to prevent it from 

disproportionately influencing the overall complexity score.  The process of normalization has 

been discussed in the previous chapters. 
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File Size - The size of the APK file is obtained by os.path.getsize(apk_path) and then normalized 

to megabytes within the process_apk_files function. The file size is considered in the complexity 

score, with the understanding that larger files may contain more complex features. 

3.3.3 Complexity Score Calculation 

After the individual features are extracted and calculated, the script normalizes each feature to a 

scale of 0 to 1 using the normalize function. This is important to ensure that each feature 

contributes proportionally to the final score. The normalized values are then weighted according 

to the predefined weights in the weights dictionary, which reflect the relative importance or 

impact of each feature on the perceived complexity of the malware. 

 

The weighted sum of these normalized features constitutes the APK's complexity score, as 

calculated by calculate_complexity_score. The final score is a single value that represents the 

complexity of the APK, integrating all the different aspects analyzed. 

4. Discussion and Results 

 

 
 

Figure 1 Distribution of Complexity of Benign Samples 
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In Figure 1 Distribution of Complexity of Benign Samples, the histogram is overlaid with a 

kernel density estimate (KDE) that represents the distribution of complexity scores for benign 

(non-malicious) samples. The bars represent the frequency of benign samples that fall within 

specific ranges of complexity scores. The x-axis shows the complexity score, while the y-axis 

shows the frequency of samples. Each bar's height indicates how many samples have complexity 

scores within the range covered by that bar. The smooth curve is the KDE, which is a way to 

provide a smooth representation of the distribution and is useful for visualizing the shape of the 

data distribution. There's a vertical dotted line that represents the mean of the complexity scores. 

It serves as a reference point to quickly assess the central tendency of the data. From the 

histogram, we can interpret several things: 

- The distribution has multiple peaks (multimodal), suggesting that there are several 

subgroups within the benign samples that have different typical complexity scores. 

- There's a frequency of samples with low complexity scores (around 1.0 to 2.0). 

- The distribution seems to be right skewed, as indicated by the tail extending towards the 

higher complexity scores. This skewness suggests that while most benign samples have a 

lower complexity score, there are some with significantly higher complexity. 

 

 
 

Figure 2 Distribution of Complexity of Malware Samples 
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Conversely, this histogram for malware samples in Figure 2 Distribution of Complexity of 

Malware Samples reveals: 

- The distribution of malware complexity scores is also multimodal, with several peaks, 

suggesting variability in the complexity of malware samples. 

- There's a significant peak at the higher end of the complexity scores (around 4.0 to 4.5), 

indicating that a considerable number of malware samples have high complexity scores. 

- Unlike the benign distribution, which was right skewed, this distribution appears to have 

a pronounced peak at the higher end, suggesting that, within this dataset, malware tends 

to have a higher complexity score. 

This comparison suggests that, based on this dataset, malware samples might be characterized by 

higher complexity scores when compared to benign samples, which could potentially be a 

distinguishing feature used for classification or analysis.  
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Figure 3 Complexity Score Distribution of Malware Families 
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To meticulously find the family of each of the malware sample used in this research, virus total 

API was used to extract the suggested_threat_label value from the API response. The list of 

malware families covered a total of up to 70 different families of which are listed in Appendix 1 

– Malware Sample Families 

 

In Figure 3 Complexity Score Distribution of Malware Families above, the analysis reveals 

significant variability in complexity scores across different malware families. The results 

indicate a diverse range of complexities, with some families demonstrating exceedingly high 

complexity levels, while others maintain lower profiles. For instance, certain families like 

trojan.stealer/trojansms and trojan.locker/coravin exhibit remarkably high average complexities 

(above 4.3), reflecting their sophisticated nature and potentially higher threat levels. Conversely, 

families such as trojan.jifake/smssend and trojan.hamad/smssend register lower average 

complexities (below 1.0), indicating less sophistication. 

 

The distribution of complexities not only underscores the diverse tactics employed by different 

malware types but also highlights the evolving landscape of cyber threats. Some families show a 

narrow range of complexity scores, suggesting a consistent behavior pattern within that family. 

 
The scatter plot in the following sections visualizes the relationship between the complexity 

score and analysis time of the APK samples, classified into two categories: benign and malware. 

Each point on the plot represents an individual APK sample. The different colors represent 

whether the APK is labeled as 'benign' or 'malware'. 
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4.1 Correlation Between Complexity Score and Analysis Time 

 
Figure 4 Scatter Plot of Complexity Score vs Analysis Time 

 

In Figure 4 Scatter Plot of Complexity Score vs Analysis Time. Analysis Time refers to the 

duration required to analyze a sample by MalDroidAnalyzer, either malware or benign. This 

metric is calculated from the moment the analysis begins when the script is run until a conclusive 

result is obtained. The time is measured in seconds and the intricacies involved in deconstructing 

and extracting the malware features sample behavior. 

 

 The scatter plot seems to show that there is not a clear trend between the complexity score and 

the analysis time for either malware or benign samples. Most malware samples appear to have 

complexity scores distributed across the complexity score levels and the analysis time for these 
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samples is relatively low, mostly under 5 seconds. The benign samples are scattered across the 

complexity score spectrum likewise, with most of the analysis times still under 5 seconds.  

 

However, there's a visible cluster of both benign samples and malware samples at the higher end 

of complexity, suggesting that a significant number of benign and malware samples are complex 

(at least according to the complexity score metric used). The outliers among the benign samples 

could indicate that a few benign applications are either very complex or take a long time to 

analyze, which could be due to a variety of benign reasons, such as larger size, more features, or 

more sophisticated coding practices. There are a few benign samples with very high analysis 

times (over 25 seconds, with the highest close to 175 seconds) which are outliers considering the 

rest of the data. One benign sample has a high complexity score (between 4.5 and 5.0) with an 

analysis time of around 25 seconds. 

4.2 Correlation Between Complexity Score and APK Entropy 

 
Figure 5 Scatter Plot of Complexity Score vs APK Entropy 
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In Figure 5 Scatter Plot of Complexity Score vs APK Entropy, the scatter plot illustrates the 

relationship between complexity scores and APK entropy for both malware (in red) and benign 

(in blue) mobile applications. It is observed that some percentage of malware samples in the 

dataset tend to cluster in the lower complexity score region, predominantly between scores of 1.0 

and 2.5, displaying a wide range of entropy values. Likewise, some percentage of malware 

samples appear to also be clustered in the highest complexity region. This distribution suggests a 

variability in the level of obfuscation techniques employed. Notably, as the complexity score 

increases, there is an emergent upward trend in entropy among the malware samples, although 

not as pronounced as in benign applications. 

 

Benign samples demonstrate a broader distribution across the complexity spectrum, with a 

concentration of points in the higher complexity score area, suggesting a greater structural or 

functional complexity. There is a discernible positive correlation between complexity scores and 

APK entropy within benign samples, indicating that as applications become more complex, the 

entropy tends to increase. This correlation aligns with existing literature, reinforcing the 

association between higher entropy and increased complexity, particularly due to obfuscation 

techniques. 

 

However, it is crucial to acknowledge that the correlation depicted is influenced by the design of 

the complexity scoring system utilized in this study. APK entropy is a significant factor within 

this system, carrying the highest weight in the calculation of the complexity score. Consequently, 

the observed correlation is not an independent finding, but a reflection of the scoring 

methodology employed by the MalDroidAnalyzer tool. The dense clustering of points on the 

right side, particularly among benign instances, further emphasizes this methodological impact. 

 

The visualization underscores the influence of APK entropy on the complexity score and the 

subsequent classification of samples as malware or benign. It confirms the relevance of entropy 

as a determinant in the analysis process, as posited by Singh and Singh (2020) and Gibert 

Llauradó et al. (2018) [71][72]. However, it also brings to the fore of highlighting the importance 

of considering the weightage of variables in the complexity assessment tool. 
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4.3 Correlation Between Complexity Score and Code Length 

 
Figure 6 Scatter Plot of Complexity Score vs code length 

 
In Figure 6 Scatter Plot of Complexity Score vs code length, the scatter plot illustrates the 

relationship between the complexity score of APKs and their code length. The code length for 

both malware and benign applications exhibits a wide range, from under 10,000 characters to 

over 1 million (as indicated by the Y-axis scale which extends up to 1e6, or 1,000,000 

characters). A substantial number of applications, regardless of their classification as malware or 

benign, demonstrate a smaller codebase, characterized by code lengths of less than 50,000 

characters. 

 

Benign applications show a tendency towards higher complexity scores (above 3.5) associated 

with increased code lengths. Notably, outliers in the benign category present with particularly 
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high code lengths, including one instance approaching 1 million characters with a complexity 

score just below 4.5. Contrarily, most malware samples cluster at lower code lengths, though 

there are exceptions showcasing elevated code lengths yet maintaining lower complexity scores 

than comparable benign applications. This pattern suggests that while benign applications may 

exhibit a correlation between increasing complexity and code length, this trend is not as apparent 

for malware. The relative absence of a consistent upward trend in complexity with code length 

among malware samples could imply a strategic design by malware authors to maintain 

complexity without proportionally expanding code length, potentially as a tactic to evade 

detection. 

4.4 Correlation Between Complexity Score and File Size 

 

 
Figure 7 Scatter Plot of Complexity Score vs File Size 

 
In Figure 7 Scatter Plot of Complexity Score vs File Size, complexity scores are plotted along 

the X-axis, showing a broad distribution for both benign and malware apps. There is a distinct 
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concentration of both app types with lower complexity scores, specifically in the range between 

1.0 and 2.5. 

 

File sizes, as shown on the Y-axis, vary widely among the APKs, extending from less than 10 

MB to beyond 120 MB. Benign apps demonstrate a more diverse array of file sizes, including 

outliers with significantly large files. These outliers are likely reflective of applications packed 

with extensive features or substantial multimedia resources, contributing to their larger size. 

 

Notably, there is a dense aggregation of data points at the higher end of the complexity scale, 

indicating a cluster of apps—both benign and malware—with complexity scores above 3.5. This 

dense region suggests that a non-negligible subset of applications, regardless of their intent, 

incorporate a level of complexity that is not directly proportional to file size. 

 

While larger APKs may suggest the presence of additional features or content, ranging from 

innocuous to potentially malicious, an increased file size does not invariably correspond to a 

higher complexity score. It does, however, often coincide with a more intricate structural 

composition that may require more detailed scrutiny. 

 

Echoing the insights of Crussell, Gibler, and Chen (2012) [83], an unusually large file size can 

be a hallmark of cloned applications that are repackaged with malicious payloads. Consequently, 

while file size alone is not a definitive marker for malware, it is a contributing factor in an 

APK’s complexity assessment. The MalDroidAnalyzer tool integrates file size into its 

complexity scoring system, recognizing that while it may have a subdued effect relative to other 

metrics, it is instrumental in delivering a comprehensive evaluation of an APK’s propensity for 

complexity and possible maliciousness. 
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4.5 Correlation Between Complexity Score and Obfuscated String Count 

 

 
Figure 8 Scatter Plot of Complexity Score vs Obfuscated String Count 

 
In Figure 8 Scatter Plot of Complexity Score vs Obfuscated String Count, The count of 

obfuscated strings among most APKs is low, with a significant number of both benign and 

malware applications having counts close to zero. There are a few benign applications with 

extremely high obfuscated strings counts, going up to 35,000, which are outliers in the dataset. 

Malware APKs consistently have low counts of obfuscated strings regardless of their complexity 

score. For benign APKs, while most also have lower counts of obfuscated strings, the presence 

of outliers with very high counts suggests that obfuscation is not exclusively a characteristic of 

malware. It might be used in benign applications for protecting intellectual property or other 

legitimate reasons. 
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4.6 Correlation Between Complexity Score and Permissions Count 

 
 

Figure 9 Scatter Plot of Complexity Score vs Permissions Count 

 
In Figure 9 Scatter Plot of Complexity Score vs Permissions Count, the scatter plot presents the 

relationship between the complexity score and the permissions count for both malware and 

benign applications. Permissions requested range broadly from 0 to over 80 across the dataset. 

Notably, malware applications exhibit a wider variance in the number of permissions requested, 

with certain malware samples requesting a substantially high number of permissions. 

 

While applications are distributed across a spectrum of complexity scores, there is a discernible 

aggregation of applications with lower complexity scores, predominantly situated between 1.0 

and 3.0. Alongside this, there is also a noticeable clustering of applications—both malware and 

benign—at the higher end of the complexity scale, indicating that a subset of apps, irrespective 

of their intent, are characterized by both higher complexity and a larger number of permissions. 

The correlation between permissions count and complexity is nuanced. An increased number of 

permissions in isolation does not necessarily equate to a higher complexity score; however, it 
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may signal an application’s potential to overreach its expected functionalities. This overreach 

could manifest as an application requesting permissions that are not strictly required for its stated 

purpose, thereby exposing users to unnecessary risks. 

 

In the context of malware analysis, a high permissions count, particularly when paired with other 

indicators of complexity, can be suggestive of malicious intent. It may indicate an application's 

preparedness to perform actions that could compromise user privacy or system integrity. While 

the permissions count does contribute to the overall complexity assessment within the 

MalDroidAnalyzer framework, its influence is calibrated to ensure that it does not overshadow 

other critical indicators of complexity and malignancy. 

 

This balanced consideration of permissions count acknowledges its importance in the broader 

security landscape of Android applications. It recognizes that while a high permissions count is a 

noteworthy attribute, the true complexity and potential maliciousness of an APK are determined 

by a constellation of factors assessed in unison. 
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4.7 Evolution of Complexity Over Time 

In this research, the earliest recorded submission date of the malware samples in the dataset is on 

February 9, 2011. The most recent submission date in the dataset is March 15, 2020. The average 

complexity score for the malware samples is approximately 2.70. 

 

 
 

Figure 10 Complexity score over time 

 
Figure 10 Complexity score over time represents a time series plot of complexity scores for 

malware samples against their first submission dates, aiming to visualize how the complexity of 

malware has evolved over time.  

• Actual Score (Light Blue Dots): Each dot represents the complexity score of an 

individual malware sample at the time of its first submission. The spread of the dots 

shows the variance in complexity scores at different times. 

• Rolling Average (Dark Blue Line): This line smooths out short-term fluctuations 

and shows the trend of complexity scores using a rolling average with a window of 5. 
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This helps to identify the general direction of the data over time, reducing the noise 

from individual outliers. 

• Trend Line (Red Line): The straight red line is likely a linear regression line that 

indicates the overall trend of the complexity scores. If the line has a positive slope, as 

it appears to have here, it suggests that there is an overall increasing trend in the 

complexity scores of malwares over time. 

• Confidence Interval (Red Shaded Area): The shaded area around the trend line 

represents the confidence interval for the regression line. It provides a range where 

the true trend line is likely to exist. A wider interval suggests more uncertainty in the 

prediction at that point in time. 

 
The complexity scores show considerable variance throughout the time period, with some peaks 

and troughs. There is an observable increase in complexity scores from around 2011 to 2013. 

Following that, there seems to be a period of volatility with complexity scores both increasing 

and decreasing. The latter years show a cluster of higher complexity scores, with some outliers 

showing particularly high values. The upward slope of the red trend line indicates that, despite 

the variability, the general trend is toward increasing complexity over time. 

 

 
Figure 11 Box plot of complexity score by year for malware samples 
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Figure 11 Box plot of complexity score by year for malware samples represents the box plots of 

the complexity scores over time: 

• Central Rectangle (Box): The box symbolizes the interquartile range (IQR), 

encompassing the central 50% of the data. The bottom and top edges of the box 

indicate the first quartile (25th percentile) and the third quartile (75th percentile) of 

the data, respectively. 

• Horizontal Line in the Box (Median): The line within the box denotes the median 

complexity score for that year. The median is the point that splits the dataset into two 

equal parts. 

• Whiskers: The lines protruding from the box's top and bottom, referred to as 

whiskers, display the data's spread. Usually, they extend to 1.5 times the interquartile 

range (IQR) from both the first and third quartiles. Points that fall outside of these 

whiskers are often considered outliers. 

• Outliers (Circles): The individual points that lie outside the whiskers are considered 

outliers. They represent complexity scores that are unusually low or high compared to 

the rest of the data for that year. 

 
From Figure 11 Box plot of complexity score by year for malware samples, there is considerable 

variation in the complexity scores over the years. Some years have a wider range of complexity 

scores (e.g., 2011 and 2017), indicating more variability in malware complexity during those 

times. 

 

The median complexity appears to fluctuate over the years. Without seeing the actual numbers or 

having a trend line, it's hard to make a definitive statement about the trend, but there does not 

seem to be a consistent upward or downward trend across the years. Certain years have outliers 

that are well above or below the main bulk of the data, suggesting the existence of malware 

samples with exceptionally high or low complexity scores. Some years, like 2015, have a very 

narrow box with no whiskers, which suggests very little variation in complexity scores among 

malware samples for that year. Conversely, years like 2011 and 2017 show a much wider spread, 

indicating a significant variation in the complexity of malware samples. 
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These findings indicate that over time, the complexity scores of malware samples are trending 

upwards, suggesting that malware is becoming more sophisticated. This increasing complexity 

underscores the need for continuous enhancement of security measures and malware detection 

systems to keep pace with the evolving threat landscape. 

5. Conclusion and Future Work 

This thesis has embarked on an ambitious journey to unravel the intricacies of mobile malware, 

within the Android ecosystem. The primary focus was to identify, analyze, quantify the factors 

affecting the complexity of Android mobile malware and to develop a tool to operationalize the 

identification and quantification of complexity criteria in a systemic way. The journey has been 

both challenging and enlightening, leading to several significant findings and contributions to the 

field of cybersecurity. 

 

This research revealed that the complexity of mobile malware is influenced by various factors 

such as malware design, obfuscation techniques, behavior, execution strategies, and the evasion 

tactics employed. The development and successful implementation of MalDroidAnalyzer stand 

as a testament to the feasibility of creating tools that systematically quantify the complexity of 

malware. This tool utilizes a Python-based environment and a variety of analytical techniques, 

including Shannon entropy calculation and API call pattern analysis, to evaluate and score the 

complexity of Android malware. This study provides an understanding of the complexity 

inherent in Android malware and provides an insight into the features affecting the complexity of 

android malware, it offers insights into the evolving tactics of malware creators. 

 

Reflecting on the Scope and Limitations as outlined in Chapter 1.4 Scope and Limitations of the 

Study, the study acknowledges certain constraints. Among these is the dataset's scope. The 

current dataset, while adequate to showcase MalDroidAnalyzer's functionality and to explain 

various complexity factors, is not without its shortcomings. A dataset of greater breadth and 

depth could unveil more distinct patterns and facilitate more precise outcomes. The enriched 

variance and comprehensive nature of a larger dataset would undoubtedly bolster the analytical 

prowess of the tool, enabling it to discern more nuanced behaviors within malware. 
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This pivot to a more substantial dataset, however, implies that MalDroidAnalyzer must be 

tailored to accommodate and interpret the enhanced data pool—a task that, while necessary, 

presents its own set of challenges. Adaptation to new data characteristics and potential 

recalibration of analytical algorithms may be required to maintain the tool’s efficacy, 

representing a notable area for future enhancement. 

 

 This could tool serve as an asset for security professionals and researchers in their ongoing 

battle against malware threats. This study underscores the importance of continuous research and 

adaptation in the field of cybersecurity. The dynamic nature of malware requires that security 

measures and analysis tools are continually evolving. Future research should focus on enhancing 

the capabilities of tools like MalDroidAnalyzer, perhaps integrating machine learning and 

artificial intelligence to further refine the analysis and prediction of malware behavior. Also, 

future research should prioritize a larger and more robust dataset especially for drawing more 

conclusive patterns for the plots. 

 

In conclusion, the journey through this research has not only contributed valuable insights and 

tools to the field of cybersecurity but also highlighted the constant need for vigilance and 

innovation in combating cyber threats. As malware continues to evolve in complexity and 

sophistication, so too must our approaches and tools for its analysis and mitigation. It is hoped 

that the findings and contributions of this study will serve as a steppingstone for further research 

and development in the ongoing effort to secure our digital world. 
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Appendix 1 – Malware Sample Families 

 Family Number of Samples 

 trojan.fakenotify/opfake 10 

trojan.congur/lockscreen 6 

trojan.faketoken/fakeinst 5 

trojan.wannalocker 5 

trojan.boogr/locker 4 

trojan.jifake/fakeinst 4 

trojan.tiny/smspay 4 

trojan.zitmo/fakesecsuit 4 

trojan.svpeng/crosate 4 

 trojan.locker/congur 4 

 trojan.nandrobox 3 

 trojan.congur/jisut 3 

 trojan.jisut/congur 3 

 pua.ffob 3 

 trojan.lockerpin 3 

 trojan.plankton/airpush 3 

 trojan.plankton/apperhand 3 

 trojan.bankbot/mazarbot 2 

 trojan.jisut/lockscreen 2 

 trojan.svpeng/bankbot 2 

 trojan.mazarbot/bankbot 2 

  trojan.wannalocker/encoder 2 

 trojan.plankton/leadbolt 2 

 trojan.congur/locker 2 

 trojan.smsreg/trojansms 2 

 trojan.zitmo/decrypter 2 

 trojan.simplocker/svpeng 1 
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 trojan.ffob 1 

 trojan.hiddenapp 1 

 trojan.nandrobox/nandrob 1 

 trojan.nandrob/nandrobox 1 

 trojan.fakeinst/opfake 1 

 trojan.smssend/trojansms 1 

 trojan.fakeinst/jifake 1 

 trojan.hamad/smssend 1 

 trojan.airpush/plankton 1 

 trojan.zitmo/spitmo 1 

 trojan.zitmo/ibhh 1 

 trojan.zitmo/andr 1 

 trojan.qysly/ztorg 1 

 trojan.smspay/egame 1 

 trojan.smsreg/smssend 1 

 trojan.xafekopy 1 

 trojan.stealer/trojansms 1 

 trojan.smskey/smsreg 1 

 trojan.raden/zsone 1 

 pua.smspay/sendpay 1 

 trojan.smssend 1 

 trojan.smsspy/smsthief 1 

 trojan.pjapps/adrd 1 

 trojan.tiny/fjyo 1 

 trojan.airpush/andr 1 

 trojan.mazarbot/fggc 1 

 adware.wiyun/andr 1 

 trojan.svpeng 1 

 trojan.bankbot/razam 1 

 trojan.locker/coravin 1 
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 trojan.fakerun/plankton 1 

 trojan.monocle/monokle 1 

 adware.dnotua/pushad 1 

 trojan.cepsbot/viking 1 

 adware.xynyin/xinyinhe 1 

 trojan.lockscreen/jisut 1 

 adware.dowgin/andr 1 

 adware.youmi/dnotua 1 

 adware.airpush/leadbolt 1 

 trojan.doublelocker/locker 1 

 trojan.hqwar/bank 1 

 trojan.fakeinst/svpeng 1 

 trojan.smsthief/fjkw 1 

 trojan.svpeng/smsspy 1 

  ransomware.wannalocker 1 

 trojan.lockerpin/locker 1 

  trojan.lockerpin/slocker 1 

 trojan.fakeinst/smsbot 1 

 pua.dnotua/mobserv 1 

 trojan.jifake/smssend 1 

 trojan.wipelock/soceng 1 

 trojan.nandrobox/smsreg 1 

 trojan.plankton/startapp 1 

 trojan.smsthief/zz15 1 

 pua.smspay/risk 1 

Benign APK   127 

Total Unique Samples 279 
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Appendix 2 – Scrape.py [Python Script To Fetch Benign Samples] 

import os 
import requests 
from bs4 import BeautifulSoup 
import time 
import re 
 
def download_apk(download_url, output_folder): 
    app_name = os.path.basename(download_url)  # Extracts the file name from the URL 
    response = requests.get(download_url) 
    if response.status_code == 200: 
        with open(os.path.join(output_folder, app_name), 'wb') as file: 
            file.write(response.content) 
        print(f"Downloaded {app_name}") 
    else: 
        print(f"Failed to download {app_name}") 
 
def get_app_links(category_url): 
    response = requests.get(category_url) 
    soup = BeautifulSoup(response.text, 'html.parser') 
    return [a['href'] for a in soup.find_all('a', href=True) if '/en/packages/' in a['href']] 
 
def get_apk_download_link(app_page_url): 
    full_url = f"https://f-droid.org{app_page_url}" 
    response = requests.get(full_url) 
    soup = BeautifulSoup(response.text, 'html.parser') 
 
    # Use a regular expression to find the APK download link 
    apk_link_pattern = re.compile(r'https://f-droid.org/repo/.+\.apk') 
    apk_link = soup.find('a', href=apk_link_pattern) 
    if apk_link and 'href' in apk_link.attrs: 
        return apk_link['href'] 
    else: 
        return None 
 
def main(): 
    category_url = 'https://f-droid.org/en/categories/development/4/index.html' 
    output_folder = 'downloaded_apks' 
    os.makedirs(output_folder, exist_ok=True) 
 
    app_links = get_app_links(category_url) 
 
    for app_link in app_links: 
        apk_download_link = get_apk_download_link(app_link) 
        if apk_download_link: 
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            download_apk(apk_download_link, output_folder) 
            time.sleep(1)  # Respectful scraping by adding delay 
 
if __name__ == "__main__": 
    main() 


