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Abstract

This paper developsreew paradigm for generating and optimizing test data for software
based tests of processors. The work aims to find the optimal amountdaitgefir testing
processors with RISC architecture, which would ensure wide coverage oahdjlow

level fauls. The quality of softwarbased tests on processors depends on the test
program, but the quality of the test program depends on the tesTldataew concept is

based on the separate generation of tests for the control and data processing parts of the
processor modules, which are defined by a set of certain processor functions. The
generation of test data is based on the division of the dahctions to be tested into
groups, where a higlevel decision diagram model is used to find the optimal
distribution. The optimization criterion is to ensure maximum fault coverage with a

minimum amount of test data at the minimum time required to gentests.

An innovative approach has been developed to minimize the amount of memory required
to store tests by mimizing test data. The novelty of the work is expressed in two aspects:
(1) the savings of memory required for storing the test by miniminiedest data, and

(2) the wider coverage of highnd lowlevel fault classes achieved by generating high

quality test data.

Experimental studies have been performed with a miniMIPS microprocessor. The
experiments were able to demonstrate that the developed method provides high fault
coverage at both high and low levels, but with fewer test data than the prewthgim

The resilt ensures high reliability and dependability of the processors.



Annotatsioon
Testandmete optimeeri mine protse

testidel e

Kaesolevas t00s arendatakse uut paradigmat testandmete genereerimiseks ja
optimeerimiseksprotessorite tarkvarapohistele testidele. To0 eesmargiks on leida
optimaalne testandmete hulk RISghitektuuriga protsessorite testimiseks, mis tagaksid
laia kbrg ja madalatasandi rikete katte. Protsessorite tarkvarapdhiste testide kvaliteet
sOltub tefprogammist, aga testprogrammi kvaliteet sdltub omakorda testandmetest. Uus
kontseptsioon pdhineb testide eraldi genereerimisel protsessori mooduliejguht
andmetootlusosadele, mis on defineeritud teatavate protsessori funktsioonide hulgaga.
Testandmet gerereerimine pdhineb testitava funktsioonide hulga jaotamisel gruppideks,
kus optimaalse jaotuse leidmiseks kasutatakse kdrgtaseme otsustusdiagrammide mudelit.
Optimeerimiskriteeriumiks on tagada maksimaalne rikete kate minimaalse testandmete
hulgaga nmimaalse testide genereerimiseks kuluva aja juures.

Toos on arendatud uudne lahenemine testide salvestamiseks vajaliku malumahu
minimeerimiseks testandmete kokku pakkimise teel. T60 uudsus valjendub kahes
aspektis: (1) testandmete minimeerimise teel @@ty testi salvestamiseks vajaliku
malumahu kokkuhoid, ja (2) kérge kvaliteediga testandmete genereerimisel saavutatav
laiem korg ja madalataseme rikete klassi kate.

Eksperimentaaluuringud on t60s labiviidud mikroprotsessoriga  MiniMIPS.
Eksperimentidegénnestus demonstreerida, et véljatéétatud meetod tagab kdrge rikete
katte nii korg kui ka madalal tasandil, kuid seejuures vaiksema testandmete hulgaga, kui
senise meetodi puhul. Saadud tulemusega on tagatud protsessorite kdrge usaldusvaarsus

ja téokindus.
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1l ntroducti on

This thesisaddresses how to generate an efficient test data for testing prog¢éssorain
emphasis is thahe quality of test datdetermines the quajitof the test program used by
SBST in testing the processor. Hence, the level of fault coverage in the processor depends
on the quality of the test program used. Based on this fact, we developed aal optim
method to optimize test datgeneration by an algehmic partitioning of the instruction

set architecture of the processor under test. A good ordering of instructions set for test
data generation is presented. A novel concept of HLDD synthesis was used to generate

the test program.

This introductory chaer presents the background and prolsdeffSBST leading to this
research, followed by a more detailed objective. Finally, an overview of the thesis

structureis provided.

1.1 Background andproblem of SBST

The realization of SBS$tarted in 1980 after the semnductor industry was challenged

to develop a novel testing method that can be integrated into MP test flow, due to the
increase in technology advandé$. Today even more technology advanceslimital
systems with massiwelbparallel computing now exista/hich open gaps into more way

of reasoning how systems could be tested correctly without delays in system release to
the market Themain subject in the SBST methodology is the test programrgéas,

which must comply wh the highquality fault coverage standards imposed by the
industry[2] [3]. The major problem of SBST when considering Hig¥el faults is the
difficulty of proving thatthe model covers all the lelevel detectable faultgl]. The

SBST approach is based on software programs that are designed to test the functionality
of the processor coregd]. The key idea ofSBST is to make full use of echip
programmable resources to run normal programs that test the process{g]it®eISEC
processor is aystemwith a judicious restriction to a small set of often used instructions
with an arcltecture tailored to fast execati of all the instructions in this g&f. The use

of SBST techniques for testing of a modern processor cannot be underestimated because
of the ease of synthesis usifumctionalapproaches, c@vage for difficult to test faust

norrintrusive nature, low hardware overhefl]. However, the test synthesis time

12



required by SBST is highndit is a problem thatelates tahe test program usedhe

test program is an ssmbly program devised to extranformation that reveals the
correctness or valid operation of the machine that executes it, rather than calculating a
function or performing a task. Test programs may be used to validate the correctness of a
processor dégn or to check the correct fummhality of a device after productig@]. The
complexity of the present digital systems has rendered-l@até test generation
impractical. However, functional testing has been developed aaltamative by

researcherpgl0].

The quality of the SBST is mainly affected by the test data used in test prdgtams

[11], divide and conquer approaches were m®red for modules under testdenerate
high-quality test data by ATPG. However, the difficulties of this method set from the fact
that functional constraints are needed to guide the ATPGdénto produce functionally
feasible test patterns. As si@te [12], the random test patterns are an alternative way to
generate test data for MUTResearcheri [13] proposed two constraints in generating
test data for detecting control faults basedpartitioning the instructions of MBn an
HLDD. These constraints are control constraints to activate the desired working modes
of the processor and the data constraints to test if the selected working modes were
correctly selected13] [14]. This thesis will also make use of the two constraints to
generate the test with HLDD. However, we have optimized the process of partitioning
the instructions of the MP on HLDD with an automated program that deseitze
HLDD, which is opposed tche previous ways of manually generating the HLDD. We
will further elaborate on the automation of the HLDD generation under the contribution
section in this thesis. [[15], the synthesized teprogram proposed for uGP technégu

could not realize a galevel fault coverage more than 90% because it could not detect
the hardto-detect faults.The inadequate fault coverage gave rise to greedy based
evolutionary approaches by Suriasarma whicleast40% of the hartb-detect fauts

but the synthesis time is long&6]. This brought researcher[#] [14] into the limelight

that testing MP at a high level ofstbaction using HLDD to generateetiiest program
improves the test program quality and it ensures a better fault coverage that covers the
gate level faults inclusively. Raimund et al. emphasiz§tinthat fault model for g@jital

circuits have been developéat a different type of failure mechanisms like signal line
bridges, transistor stuabpens or failures due to increasing circuit delays. However, the
oldest general fault modelling mechanisms that can effectively anatipgeary fault

13



types is called # D-Calculus[18]. In [13], a novel method for implementation

independent test generation

for modules of RISC type microprocessors was proposed. According toetmed it
covers a larger class ofuids than the traditional single SAF. This implementation
independence of tests was achieved by testing separately the control and data path of the

module explicitly.

In summary we concludethatthe challenges of SBSdrethe compacted test program
genergéion which depends on the quality of the test datace the test program is the

determinant of the quality of the fault coverage.

According to[14] the proper testing of the MP after mdaaturing process guaranteed
and enhaced the reliability of the MP during the operational stage. This test remains

crucial for the safety purpose of the safetifical systems like MP.

This leads to the goal of this thesis.

1.2 Objectives

The objective otthis thesis is to optimize the tedhta generation for Mih order to
achieve high fault coverages both at high andliewel. Thus, different experiments have
been carried out by autoneattransforming the given instruction set of the MP into
differentHLDDs. The goal of this thesis is dded into three phases each with a goal of
optimizing test data for testing processor. Hettus,thesis presents the following goals:

I. To develop a mathematical model for partitrapthe set ofinstructionsunder
test
II.  To optimize the test data geneoatifor testing of the MP at higlevel.
lll.  To prove that the higlevel faults model covers all the lelevel detectablénon
redundant) faults

1.3 Thesisorganization

Thethesis isconsists of7 chapers.
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Chapter 1 introduces the thesis, which includes tlokdvaund and problem of SBST,

andobjectives.

Chapter 2 presents the background information about the processor, digital systems,

defect, faults, fault model and level of abstractiodereloping digital systems.

Chapter 3 outlines the state of the ant tiesting of the processor. It coversdapth
ongoing research for testing of the processor. It also contains some literature review of

related work of this topic. The summary of thatebf-the-art is then presented.

Chapter 4 describes the methodoldipyw for generating a fault model. First, the
correlation between the DDs is studied, followed by the Higkl decision diagram used
for groupingfunctions together for a simulatidresed test. Furthermore. It also contains

the literature review of theslated works of this topic.

Chapter 5 presents the test generation approaches; it covers the test data generation and
test program generation, and it presents the algorithm proposdd@@ generation in

this thesis.

Chapter 6 describes the research emvirent for the SBST, and the experimental results

are presented.

Chapter 7 summarizes the conclusion and presents the future research direction

1.4 Overview of work

A novel approach is pposed for generating test data for SBST at-tegkl with regards

to the followings. Theapproachs based on automating the partitioning set of instruction
on HLDDs.An optimal testdatais then generatedom the partitioned set of instructions.
The HLDD is synthesized to generate the test program for testing the procCess
algorithmic partitioned approach of instruction set improves the test program quality,
reduces memory size usage and ensuregex feilt coverage as it considered the needed
patterns for a certain test based ontds data generatiatonstrairs. Our approach on

test generation for the processor using Heylel decision diagram is to represent the
functional behaviour of the @truction set of the processor in a way that it is easy to
observe and traverse its paths in the HLDD to the termiodé. The processor is then

tested at higlevel and the test covers the ghdeel faults inclusively. There are two
15



approaches in testynat highlevel, thus, in this thesis, the functional approach is used.
The functional approaches use instruction asthitecture whereas the structural
approaches are based on test generation using information from the lower level of design
(gatelevel or RTL-level description) of the processor under {&4t 19][20, 9] Due to

the increasing complexity of digital circuits that has renders classicaleyaietest
generationmpractical, higHevel fault models are used widely in the field of SH$T,

9].

The good way through which the instruction sets can be partitioned to generate high

quality test data for the test prograsrpresented

The processors testedat highlevel without resorting to its implementation detailhe

results forthe experimetts cover both higtevel and gatéevel inclusively.

The method for achieving an optimum test data generation is based algdhthmic
partitioning of the instruction set on HLDD, which reduces the memory size usage of the
MP for storing the test progra and ensure high fault coverage for both high

level(functional) and gatkevel (lowerlevel) faults
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2Pr ocessor

In this chapter, | present briefly the fundamental concepts of RISC processor design and

its subcomponents used for designing theg@seor before diving into the staikthe-art

of testing the processor. Special emphasis is placed on testing of the progkgdois

the main goal of this thesis. The modern technology advances are imposing new
challenges on processor testing withidis of transistors which can operate at gigahertz
frequencieqd4]. The first RISC was developedith a high volume of software with

hardware support for only the most thoensuming event§r]. The reason then was

based on the limited transistors that can be integrated onto a sindl€]chlpe transistor

i's the central c 0 mp o n ¢2d]tHoweVer, thehratiabijityrothe e s s or 0 ¢
transistor is becoming enervated since its geometry dimension approaches further down

the nanometre dimensi¢®2]. AccordingtoMo o r e dGnsvety d8xmonththe number

of transistors omtegrated circuitsloubleg23], [14]. Thedevelopmenin semiconductor

technology and nanotechnology are strengthening the existence of this law. Nowadays
advances in VLSI technology make it possible to realize the minicomputeesooé on

a single chip of silicor7]. Hence, teting at the gate level is becoming more difficult.
Most of the RISC instructionsafi r e gto-s ¢ @ir st er 0 and take pl ace
chip and the data memory is rested to the LOAD and STORE instructiof§. The

overhead of an MP is reduced with banks of registers equipped during architectural design

of the MP, this simplifies the process of procedure call by changing a hardware pointer,

thus avoiding the overhead of saving registers in melfiidry

GLOBAL Low LOCAL HIGH

RO R9 R10 R15 R16 R25 R26 R31

Figurel. RISC Register Window

The instructions in the processor can be grouped into four catepfgriesch a:
I.  Arithmetic-logical
II.  Memory access

. Branch

17



V. Miscellaneous

The execution time aheRISC processor is given by the cycle it takes to read a
register, perform an ALU operation, and store the result back into a registdr [16].

further present the foundatiaf MP as a digital system

2.1 Digital System

Digital systemis a system that stores data with 0 and 1, this system could be sequential
or combinational. There might be combinations of Os and 1s for a system to be operative
in some conditions. The O refersas OFF and 1 as ON. As a result, digital circuits are
the foundation for computers and digital communication. It was invented in twenty
centurieg20]. The complexity of digital circuits has rendered ¢gateel test generation
impractical [21]. This has ld to the development of SBST to reduce test generation
complexity for a complex digital system like a processor. The goal is for the new approach
to incorporates the benefits of functional (highiel) testing and still retains the accuracy

of gatelevel fault models.

2.1.1Development life cycle of a digital system

The developmental approach of the digital system starts with system requirements. What
will the system do? Based on that fact, testing ierogptional. Digital systems undergo

threemajor stage§l4]:
1 Design

{1 Production

1 Operaton

Each stage is prone to errbfence each stagaeeddo undergo review along the design

process. Several models have been used, such as vee model, waterfall model and linear
model, in @der to Dllow up design specification. This model guides the @sec
However, It doesnoét stop an error to occt
misinterpretation or omission of the specificatjid]. Fault in the production stagould

be as a result of component defects or defects due to component assembly issues. When

the system is operational, the system can suddenly fail due to the undetected defects

18



during production or due to environmental tast Testing then remains thein factor
to assure us that the system is doing what is supposed to do

2.2 Digital System Testing

Testing a digital system means checking if the system is working according to the

specification of its design and production éqerational use.

This processtarts with passing sets of inputs known as stimuli into the,@iiich at
that time isalsoreferred to as a black boXhen the black box is checked to see if it is

working in accor@nceto specifications, by observing its response at the output terminal

input 1 Ouput 1

Stimuli Output Response | » Pass / Fail

Analysis

Figure2: Process of Testin@igital System
The main reason for testing is to find outhi&é device is free of defects. A defect can lead

to faults. Fault can lead to an error. An error can lead to failure

2.3 Faults

2.3.1Defects,Err or, Failure

A defect is a failure mechanism in an electronic system which is the unintended physical
difference between the implemented hardware and its intended f&4ig25]. Defects

may therefoe, cause deviation in system specificatns

A fault is the representation of defects at the absdatunctional level (electrical,
Boolean or functional malfunctiofi4]o.

Tablel: Differencebetweem defect and a fault

Defect -~ Faut

Imperfection in hardware Imperfection in function

Multiple faults (functional deviations) could ocadue to a single physical defect
(deviation from intended specifications) on a chip and these multiple faults my not been

detected by a single test type.
19



Anerror i s an unexpected output signal prod

Failure is the result of aerror, e.g. A bad processor can usually cause system failure if
the processor is not functioning properly.

Also, defects, fault and error are examined Wiigure. 3below.

A
B —
Figure3: A NAND Gate with one input shorted to ground

1 A defect, in this case, is the connection of input B to ground, since the output of a
NAND gate produces only 0 when its inputs are 1. Therefore, thetdafets
specification will facilitate an erroin the presence of the shorte will only have
input combination 10 and 00 there will be no 11 to put of thatdke output

1 Fault, in this case, means that input B will always have a stack at 0 bduaudigit
will never change.

1 Error is the deviated output result generatethiygate due to the defect in the gate.
Note the error in the NAND gate is not permanent. The reason is that we will have
the correct output aswhenever we have 00 or 10 aputs patterns.

1 Failure in this caseis when the NAND gate is not performiag expected.

New technologies bring new defects andstbe modelled into fault#ccording to[17],

the presence of fauk in a circuitC transforns theC into a new faulty circuit . Let

W w be the logic function of a circu@ with perfect functionality. The presence of fault

in C y(x) changes the circuit and its function @ w (x). However, if a system

functionality does not change in the present of faults;allat redundant faudt

This raises the question of how do we address such fautsfombinational circuit that
contains undetectable SAF is said to be reduri@4dit[26]. Therefore, a redundafault

could be addresdeby removing the unnecessary inputs that cause its occuriegice
examine this statement with an AND gate of n inputsraridinput respectively, where

the extra input is redundant and remalwaysconstant. This is depicted kigure.4.
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FALILT FREE AND GATE AND GATE TRUTH TABLE

Input A Input B Cutput
o 0 0O
|I‘|FHL D .1 D
" AND Output
InE:..'l 1 ] 0
1 1 1
FAULTY AND GATE REDUNDANT AND GATE TRUTH TABLE
Stuck at 1 A B C OCutput
A —.— 1 0 0 0
B —— AND Output 1 0 " 0
C
1 1 0 0
1 1 1 1

Figure4: Comparison of Fault free afRedundanfaulty gate

In the second table, the presence of the redundant input does not change the result of an
AND gate.Hence, the two tables justify the correct output of an AJdEe everin the
presence of redundant inputs. Therefore, removingetthendangate input of the faulty

AND gateremoves the redundancy.

2.3.2Classification of faults

A fault can be classified into two types, soft and hard faults. A fault is mostly caused by
a defect,this defect could be either shorts, open, improper manufacture, induced by

thermal ageing or by environmental influences

| Faults |

l l

Soft Faults Hard Faults
|
Transient Intermittent Permanent

Figure5: classification of faults
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1 Transient fault occurs randomly and remains active for & pleapd.This can be

difficult to detect unless the result is seen at the propagation output as incorrect.

1 Intermittent fault occurs at irregular intervathie to aging or unexpected

environmental factors

1 Permanent faults are always active and will afiappear féer the system has
been repaired.

2.4 Fault models

A fault model is used for fault simulation, analysis and evaluation of the set of test.vectors

Depending on the level at which systems are handled fault models could be different and
this type ofinconsistency increase CAD system costs as there would be the need for tools
available for each level explicitly considered. According2d], the systems various
levels of abstractions need different mathematical tools for leaeh Defects must be
modelled at the higher abstracted level as faults. Consequently, the main goal of the fault
model is to reduce the infinite set of possible defect behaviours into a finite set of faults
[24].

2.4.1Stuck-at-faults

The most widely use fault model in digital testing is the single stack at fault f2édel
However, its limitations lie inits capability to model only a single fault. The

characteristics of this modategiven below:
1 Only one circuit line is faulty
1 Faulty line is permanently setto O or 1
1 The fault can be at the input or output of a gate.

For the testingf processor, Highevel fault model is adopted in this thesis.

22



2.5 Fault simulation

The ideal of fault simation is néhing than simulating a digital circuit in the presence of

fault [28]. The formula for fault coverage is given below.

Number of detected faults

Fault coverage=
9 Total number of faults

Hence,afault model is required inrderto evaluate the fducoverageof the simulated

circuit.

2.6 Levels ofAbstraction in Digital System Testing

The modern technology advances are imposing new challenges on digital system testing
with billions of transistors in a system which can operate at gigafiegaencieq4].

Hence, design for testability must be consedieturing the design procesas the key to
successful testing lies in the design process. Thus, the level of abstraction is used to
manage the design process @ tomplex digital systerf22]. It shows the design stage

that should be implemented before the next. A téylel of abstraction focuses on most
imperative data like the behavioural specification implementation. Figure 2.4sshow

different levels of astraction
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Behavioral(Architecture) Level

F High level of Abstraction

\ 4

Register-Transfer Level

Y

Logical (Gate) Level

F Low level of Abstraction

y

Physical Transistor Level

Figure6: Level of Abstractiorj29]
Before moving to tegtartlet us briefly explain the level of abstraction.
The design specification is thequirements to follow for the design flown®can say it
is the plan for the system execution.
The behavioural level is the highest level of abstraction that describes the system in term
of what it does or how it behaves. Hence, the behavioural letd interpretation of the
specification as aomputer program.
An example is a circuit that warns car passenger when the door is open, or theiseatbelt
not used29].

warning = Ignition_on AND (Door_open OR Seatbelt) off

As shown irfigure 6the RTL with structural information onxist once the behavioural

level is implementedThe RTL is synthesis to gatevel design in which sequential and
combinational logics are represented in the form of interconnects of logic gates such as
AND gate, OR gate, XOR gate €9], [14].

Finally, the gatdevel design is synthesized to the physical level where the gates are

represented by interconnections of transistb4$, [29].
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Both the logic and physical levale represented as the structural leVak structural
level describes a system as a collection of gates or components that are essential for the

performance of the system.

The gatdevel is the most common level of atasttion through which testing has been
targeted. On the other hand, due to the high numbers of gates for the digital system, testing
at gate level remains a bottleneck. However tésting accuracy in VLSI, the physical

layer has been targetbdcause athe direct contact to the layout and routing information

of the manufactured systdii¥], [29].

However, esting a digital system such #w processor requires a very high level of
abstraction. Tarefore, this work, we will be focusing on testing at a Hayel of

abstraction

2.7 Importance of Digital System Testing

The reliability of a digital system is enhatthrough testing. Thus, testing could detect
design errors, fabrication errors, fabricatidefects and physical failures such as wear

out and environmental factors before the system goes to the operational use. An early test
for fault detection beforeeteasing to the operational environment reduces the cost of test,
on the other hand, the stoof finding defects after the system has been released for
operational use can be overwhelming. Therefore, quality and economy are two vital
factors to be consided [5]. Failure cannot be tolerated in such a system sindtaldig

systems are widely used in safetytical systems.
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3St aotftehA f or tpersadensgs or

The approaches in the field of processor test caordp@nized into three major groups
[17], [3]: structural, functional and softwabmsed seltest methods. The structural
approach is based on applying DFT techniques into a digital design. Heaqaocess
can change the design implementation of the system undereseforejt is not saé

for testing a safetgritical system like a processor.

The functional approach is used for testing chip after manufacturing. However, the
functional automati tester is expensivedue tohigh cost of the functional approach, the
industry raised interegt the structural approach which on the other hand igffiotent

due to ovettesting.

The current statef-the-art is based ortesting theprocessorusing the gateevel
informationfor SAF. Howeverth e ¢ o mp | e x ipfogessathat uses ldllams/od s
transistorgequires more higtevel methodn testing thegprocessorather tharvia gate
level. Due to this reasom,methodthat gives less overheadanest budgetvas proposed
by the semiconductor industry that can be incorporated in an elstaipi®cessotest
flow [4]. This method is referred to a®ftwarebased selfestas mentioned in th

background section

Becauseof he growing density of integration in t
aremore sensive to faults while theaults detectiormechanisms of the latter become
more compleXq2]. The complexy of processors, and the limited accessibility of the
internal logic, makes them very difficult to t¢&2], [19], [30], [13]. According to[31],

the larger amount of logic fgrocessors based on the order of hundreds of thousands
of gateswhichmakes it very difficult to test using the classical approach of testing digital
circuits. Hence, it isnot enougho use the existing fault simulation and test generation
software to derive tests f@rocessorsOne easy approach of solvingstiproblemis to

use pseudorandom test pattefh8], but its drawback is the lengthy test result which
therefore remains impractical to test complex microprocedgdrsHowever, some
previous workin testinga complex microprocessarasbased on functional moddBs],

[32], [4], [13], [11], [33], and ha shown some method of successoat opers paths for

the improvement of test generation for a complex microprocessor
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The result of the test generation method proposg#irby Saucier and Robach wast
succeskl due to the results not directly observable. The reason is because of the
unavailability of the basic control commands to the user which are necessary during the
control state and its operands are not directly available to the functiotsa(likae ALU,

etc) of the microprocessor

In [32] two different fault modules were considered in testing theslmed
microprocessor. The methods were based on the combinational and sequential separation
of the microprocess into modules. They altered changes in the truth table for the
combinational mdule and in the state table for the sequential module. Based on these
fault model they generate tests to verify the correct functioning of each component
modules. The problein [32] is that the approach tests only the gethand assume that

the contropart of the MRs faultfree Also, it would be inefficient to generate tests when

the modules are complex

In [5] a microprocessor is represented by a set of functions such as 1) data trahsfer pa

2) data manipulation functions, 3) register decoding, 4) instruction sequencing.

A functional fault model is then developed for each of these functions, tests areagenerat
as to detect faults in the fault moddthoughthe generated test was onlylalo test
correctly the relatively simple functions except the instruction sequencing. The test
generation for the instruction sequencing fails because the fault model i@ssad on

the logical analysis of the instruction execution. However riteido test correctly the
instruction sequencing, each instruction is executed, and a test is generated to check for
the correct execution of the instruction without any otheructibn being executed

simultaneously.

The problem irf5] was partly solved if81] , where the researchers created a fault model
that treated the presence of faults in each instruction individuBliys, their result
detects some faults not covered[b], i.e. the instruction sequencing faults and the

complexity of their test generation is onlygO¢ ¢ € ).

It was proposed if85] and[10] that the processor can be divided into meduider test
to ease test data generation using ATRGPG is one of the means of generating test
data for SBST36]. However, the drawb&of using ATPG is the rutime for generating
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the test datéor microprocessor testind1]. In addition to the drawback, the traditional
ATPGs target only single SAF.

In [13] a novel highlevel implementatiorindependent test generation that covers high
multiple SAF and fault simulation that evaluates the eyl fault coverage as
proposedThe method is based on separate test generation for the control parts and data
partsof the MP at higHevd functional units. The control parts are tested with a-igh
level control fault model, whereas, they applied a psexthaustive test for the data
parts. The application of the pseuekhaustive test to the data part is to keep the
implementatiorindepen@nt property of the proposed methode&pproachn [13] can

be used for easy identification of redundant gewel faults in the control partRemind

that, redundancy occurs when the function of gatecioruits does not chmge in the
presence of a fault. Hence, a combinational circuit that contains undetectable SAF is said
to be redundariR4], [26]. The novelties of the method which are based)omodelling

the UUT ly symbolic EDNF and 2) the translation of the traditional fault propagating
task é to achieve full independence of the
to be effective and cover multiple faults in hilglvel than the wie-known traditional
ATPGs. However, the drawback of this approach is based on the high numbers of patterns
that the method uses for the test generation, which in returns increase computational time

but on the other hands aid the fault coverage capafilitys, optimization iseeded.

In [4], [33], [37] anovel highlevel functional control fault model was used to cover the
high-level and gatdevel faultsof the MP. The funttonal fault model suport hierarchical

test approach, where the test pattern, which activates a low level fault at low level (gate
level), can be consider as the higliel constraint for the functional fault defined at the
higherlevel (functional or be&wvioural)[13], [38]. The mentioned functional fault models

offer high flexibility in defect modelling beyond single SAF mod@é8]. The major
problem of these approaches is the not sufficient tawlerage achieved when comparing

with the gate level faults coverage approach. Perhaps, this is caused by the level of quality

of the test data used in test program for testing the micregsoc.

In [2] extension to the clasg functional faults model was propostat the modules of
RISC type MPThe goal of this approach is to cover large functional faults together with
a large class of structural faults while ngia highlevel fault model. That is, the fault

model implement& without the knowledge of the Mfatelevelimplementation details.
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The research if2] proves that the functional fault model could as well cover-igae
faultswithout using the gatkevel implementation details.

This apprach has a common implementation strategy with the already mentioned method
in [32]. However, here both control and data parts were tested without assumptians in th
correct functioning of any of its part§heir method put todleer the structural faults and
functional faults classes as a single measurablelbig functional fault model. Thus,
High-LevelDecision Diagramwas used for formalization of the higlevd test
generationThis method of testing enhanced fast tespegod and reduce test cobt.
Table 2 experimental result for this approach gives high SAF coverage compared with
other implementatioindependent and the staiéthe-art approaches for t#sg

microprocessor.

However, this approach has less coveragén®"Forward unit(see tabl®) of the MUT
in compare with the ATIG that uses implementation detail. A -@ndpult coverage is
one of the major challenges while covering@wel faultsusing highlevel fault model.

3.1 Summary of stateof-the-art

Sincethe traditional lowevel test methods for a complex system like MP has lost their
importance, due to the complexity of today's-suibron technologies, other approaches
test methods based tre high level functional and behavioural method are gainimg mo
popularity[39] [40]. Hierarchical mixed or muHievel approaches have also been used
both for test generaticand fault simulatio41] [42] [43].

These warieties of approaches have been used by researchedermmta improve fault
coverages during SBST @rocessorHowever,none have been able to generate high
fault coverages for the gate level faults testedhigh-level of abstraction (i.e. using

functional fault model).

Many researchers target both thieuctural and functional approaches. The structural
approaches make usé the processor lowdevel details for test generation, whereas

functional approaclseuse the processor hitgvel detailq6].
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To increase the speed of test generation, #ghl fault model has been chosen, but this
approacltt an be considered as figoodo if the test
SAF aoverage or physical defefet] [38].

In an attempt to improve these method, researchef83hhave proposed different
approaches in testing the MP at higliel, a good exmple is a proposed novel hitgvel
implementatioAindependent of test program generation method for RISC processors in
[13]. The highlevel nodel of the processor is derived from the instruction set and its
architectural featws. The experimental result i3] [33] gave high fault coverage for

the given MP without the information about the gateel implementation details.
However, the experiment used high numbers of patior test data generation

Thus,this thesidocuseson test data optimizatioTheinstrudion set architecture of the

MP is usedand a comprehensive functional fault modekdevelopedThe approach is
basedn topological reasoning of the speciaBE®s that generalize to HLDDBlence,

HLDD is genera@édautomaticallyusing the instruction $ef the MP in oder to improve

the test data generation, which in return improve the faults coverage for both the high and

low-level.

Experimentalresult obtaired in this thesis is compared with tbee proposedn [33]
which has already been compamgih other 3 methodBom the statef-the-art

Table2: Proposed submitted method Congshwrith other methodf33]

. Gate-level implementatiory] Gate level implementation
Module/unit| #faults . . .
details exploited independent
ATIG SBST SBST Proposed in [33]
ALU 203576 98.67% n.a 97.85% 99.06%
PPS EX 21134 97.62% 96.20% 84.12% 97.96%
Forward 3738 99.00%0 99.68% 93.64% 98.03%
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4Hi gh Level Deci si on Diagr ams

This chapter presents the approachdbafault model procedure for the SBST to tast
given processor (miniMIPSTheusefulness of Decision Diagram and its functionality in
the field of SBS is shown Theprocess for test program generation through the concept
of HLDD is analysedIt also, presentghe ISA of the given MP anldow theHLDD is
synthesized for the given MP based on the Bfepartitioning approaci this workis

an optimizedversion andlifferent from the work donm [2], [4], [13], [37], as a result

of the algorithmigartitioning ofprocessomstructions on HLDDor test data gemation.

Hence, the test program for SBST is generated via the synthesized HLDD.

Thus, he following sections explore the fundamental use of DDs, history of DDs, the
transition reason from BDDs to HLDDs, the fault modelling method adoptédiwork
for test generation, the benefit of the HLDDs as fault model foundation for complex
systemsand inchapter 5.41 present thalgorithm for generating the HLDDdeveloped

during the research of this work

4.1 Overview of Decision Diagrams

I n tsoditalysysten gatelevel test generation methods is obsolete as the complexity
of the digital systems continue to incred$8], [4], [44], [24], [45], [6]. Promising
approaches are higavel, or hierarchical methods that use functional descriptions of a
system[24].

Due, to diffeent system level of absttaun, there are no unique models as a uniform
approach to generates test at a different level. However, DD has been choosing to serve
as a base for uniform test generatitault simulation and fault locatidior mixed-level
representations of systems atie Boolean algebra as its plain logic lef2], [1].
Therefore, DD serves as manager of hierarchy in diagnostic modeliffgrent types

of DDs have been adopted anded for testing, such dase BDD, SSBDDand the
generalize HLDD that handle the test generation problem atlévgh

Thus, when the DDs is used for describing the complexity of the digital system, we have

to represent the system by a proper setteftonnected components fabinational or
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sequential swgircuits) [43]. Then,the components by their corresponding functions
which can be represented by D[2§].

In summary, DDsreused for mui-level and hierarchicalidgnostic modelling because

of their uniform cover of different levels of abstraction, and because of their capability
for uniform graphbased fault analysis and diagnostic reasof8ihd43], [47], [48]. This
means that instructions and faults can be modelled ateyagk RTL and behaviour level
using DD.

Hence, DD can be categorised into two major parts.

1) Logic lewel - (BDD)

2) Behavioural higHevelDD - (HLDD)

This work focuses on modelling the MP at the behavioural lesiab the HLDD

4.1.1History of Decision Diagram

BDDs have become the staikthe-art data structure iwvery-largescale integration
computeraided desigrfor representation ahmanipulation of Boolean functiorj49],
[50].

In 1959, C.Y. Lee intrduced a method for representing digital circuits by binary decision
programg51].

The same modebas introduced but with a different name as alternative graphs for test
generation purposes in 1976 by R. Ulpa},

Bryant proposed ROBDDs as a new data stru¢é8Ein 1986.

In [28], [48], [27], [52] SSBDDs was introduced as a special class of BDDs to represent
the topology of the gatlevel circuit in terms of signal paths. The advaetaff SSBDD
based approach is that the library of component is not needed founsthpath activation

and as clearly explained [24] the, SSBDD based test generation procedures do not
depend on whether the circuit is reprégse on the gate level or the whole circltits a
novel fact that the SBDD tegeneration procedures can be easily generalized for the
high-level DDs to handle digital systems represented at higher [&/@|$53], [54].
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4.2HLDD

The most important ipact of the HLDD is the possibility of generalization and extension
of the methods for test generation, fault simulation and diagii2is¢S2].

In orderto use HLDD to describe complex systeth® ystemmustbe partitioredinto

a suitable set of interconnected components (combinational or sequentciicsiitis)

[17]. HLDDs model allows magng the control functions of systems into silerminal
nodes, and the dataanipulation functions into terminal naxld.7].

The nonterminal nodsof the HLDDs represent the control varial&3], [4], [17]. Both
terminal and notterminal nodsof the HLDDsshouldbe tested10], [55], [24], [37]. We

verify the behawur of the circuit by testing the ngerminal nodes of an HLDD, on the
other hand, we verify the working mode of a circuit, when testing the terminas abde

an HLDD[37], [56].

The main purpose of modelling faultragjh-level is to speed up fault coverage evaluation
without reasoning about the gdéyel implementation detail§7] and the main idea of
this kind of fault modelling isa obtain from he high-level functional or behavioural
description of the system an incorrect version by introducing a fault into the desgription
[37], [24], [57], [26]. This approach is also referred torasdel perturbation [24].

The traditional gatéevel approach has lost their importance since the physical defects
that may occur in digital systems often do matnifest themdees as stuck at faulb8].
Hence, Igh-level faults represent the effect of a physical defect on the system
functionality. Therefore, to improve the test quality, there is a need to replace the
traditional faultmodels like SAF with a realistic defect mod®&8]. That is, the defect
modelthat can handle the defect orientation and the-lagél bénaviour of the system
Hence, HLDD in combination witla multi-level approach is the amgpriate way of
resolving this issudt was provedn [13] and[26] that a highlevel fault model can be
explidt or implicit. An explicit model identifies each fault individually and every fault in
the model is treated as a target for test generfgidn [26].

However, implicit fault identifies faultéitat bel ong t o t he same cl| as
properties, so that all fault in thensa class can be detected by the same procgtiite

[26], [57], [59].

In [13] different fault models have beemwkloped for digital circuits as to detect its
failure mechanisms like transistors stagen[60], signal line bridge$61], or failure

due to delays in circu[22]. High-level fault model is widely used in the field of SBST
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[11], [59] for test generation ahigh-level of abstraction without resorting to the
implementation details of the gatevel.

Its drawbackis its low fault coverage for gatevel faults.Thus theresearch in SBST
focuses on the drawback as to detect high-lgatel fault coverage baseoh test
generated from the higlevel of abstractiomvhile test data is les©n the other hand, the
advantage of higHevel fault model cannot be underestimated due to its independent
character on the system implementation details. Thus, it can beaigeatheck physical
faults of microprocessor only, but also as a verification tool with which we cheatkerh

the implementation is free of design err[#4].

In a general case beyond Beoleanalgebraa decision diagraman be defined as a non
cyclic directed graph

Definition 4.1:

"0 0 hohdd with a set of nodes M, a set of variablesand a relationl in M where

0 ) P M denotes the set of successors of the mog&1 [17], [3], [27].

The nodsmy M are labelledby variables x(m} X (constants or algebraic expressions
of x ¥ X). For each value e from a set of possible predefined vali®$¢m)) of a non
terminal node variable x(m), there exists a corresponding output edge from the node m
into a successor nod@ ¢ G ) [3], [56].

Note that the SSBDD model can be regarded as a special case of HLDD based on the
abovegiven definition[48]. While the above definition is thgraphical representation

of a systenusing graph theory, the formdefinition of HLDD regarding a system is given
below.

Definition 4.2

ConsideredS asa given digital system, consist of different components (subsystems),
which is denoted by a functioh  "Q & hx b 8 hx Q& wheredis the set of
variables(can be Boolean, vectors or integers)sad is the set of possible values for

@ N @which are finitg3], [14].

The cyclebased modelling concept for analysing the behaviour of a digital circuit is
adopted by HLDD. This means that HLDD allows system state determinati@yeea
Thus, since the MP is been modelled at Hegrel using the ISA, the struction cycle
based will be consideretlowever,the following presents the list of faults affecting the

operation of MP.
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4.2.1List of Faults affecting the Operation of MP

Before, presenting the fault model approaches for this worls itnperativeto list the
faults affecting the operation of MP. These faults can be divided into the following classes
[24]:

I.  addressing faults affecting the register dexgdunction;

II.  addressing faults affecting the instruction decoding and ingtrusequencing

functions;
[ll.  faults in the datstorage function;
IV.  faults in the dataransfer function;
V. faults in the datananipulation function.

4.2.2High-L evel Fault Modelling for MP with HLDDs

Knowing which fault model is right to choose is the central prold&tast generation in
fault simulation However, manypproacheske fault tuple mode[62] [3], patternfault
model[63] [3], input pattem fault model[64] [3], andfunctional fault mode[65] have
beenshown andused by researcher Thus, in oderto generate higiquality test a good
fault model should badopted. Test generation needs Higrel fault modelling because
of its high complexity{19], [16], [4], [17]. The main and general probleoh the fault
model is the difficulty of proving that the model covers all the-level detectable (nen
redundant) faultg38]. In this thesisattempt is madt® prove that by generating a separate
test for the control and dapart of the MP, using higlevel fault model.
According to[17], there are two opposite criie [that] should be followed while
developing tools for synthesis of tests:

1. Efficiency (the cost of test generation)

2. Quality of geneatedtest(fault coverage)
These criteria are highly dependent on the type of fault model used during test generation
andfault simulation for test quality ascension. Based on these obvious facts, a good fault
model reflects thaccuratghysical mechanm of the real defect in a system its modelled

for, which then support excellent test quality
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4.2.3Complexity and Accuracy in Fault Model

Complexity and accuracy are other issues that the HL fault model solved while reasoning

about test generation at high dodi-level with a tradeoff in consideration. The mudti

level approach should be consideasdcaccuracy requires leMvelfault models and fault
simulation[33] . On the other hand, higbvel fault model solves the issue ohgalexity

in test generation for the CUT and gives high fault coverage. Although the representation

of defect with higHheve | (| ess compl ex) fault model hasn

quality for the lowlevel fault coverage like the fault coveragetbe traditional ATPGs

However, due to the complexity of todayodos
low-level fault models is obsolete. The continuous research in this area has exposed the
tradeoff for balancing the accuracy and complexiiycepts. The result ilable2 above

Is a good comparison example, where three modules of MP arewettexhd wthout

the knowledge of its implementation details and the result from different researchers were

tabled and compared

Therefore, increasinthe accuracy of representing defects also increases the complexity

of the fault mode[30] [17], [66]. Sincethe new process of semiconductor technology

arises in today'gligital world, knowledge of knowow will always be needetb

understand the new type of defects that cealgsea failure mechanismihoday és and

in futurenanoelectronics.

Also, HLDDs support functional fault model where the system architecturasis fi
described at the system level and the system is partitioned into several functional blocks
or modules, whereasstructural fault modelapplies to gates, flflops and
interconnection between thdt/7]. HLDD-based higHevel fault model is well suitable
to supportthe development of a uniform and straightforward highel test generation
and fault simulation algorithib8], [3].

Other different higHevel models haveden presented {B], [67], [68], but none of these
techniques established the relationship betweenlpigd fault coverage and galievel
fault coverage. Thus, theseodels were only able to contribute to tgsheration but are
not suitable for the gatievel test quality assessments. Howevtke approachin this
thesisis different from these previously mentionedtas workconsidered both the high
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level and lowlevel faults coverage while modelling with BDs. Hence,this work
optimized the work if2] and[33] .

4.3 MiniMIPS ISA

The mniMIPS has a32-bit core based on a von Neumann architecture, avikstage
pipdine, instruction extractionjnstruction decoding, execution memory access and
update registerf69]. The following table shows the full instructionsf a miniMIPS
processor uskfor the experiment in this thesishe descriptio includesflags, list of
instructions, general purposegister, assembly language syntax and their binary
representatior{7]. The ISA (Table 3 serves as an abstract representation of the
microprocessor itself.High-level decsion diagrams can be constructed frdhe
instruction set architecture of #P. Therefore, for testing theicroprocessowe must

test that the instructions are executing correctly. Twenty instructions are chosen for the
experiment carriedut in thisthesis(Table 4)

Table3: Full miniMIPS instruction sef14], [69].
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MiniMIPS Instruction Set Architecture

S/N |Instruction OP1 OP2 Mnemonics ISA Level Operation
1|ADD 000000 (0) 100000 (32) ADD rd rs rt rd=rs +rt
2|ADDI 001000 (8) - ADDI rtrs | r=rs + |
3|ADDIU 001001 (9) - ADDIU rtrs | rt=rs+ |
4| ADDU 000000 (0 100001 (33) ADDU rd rs rt rd=rs +rt
5|AND 000000 (0) 100100 (36) AND rd rs rt rd=rsAND rt
6|ANDI 001100 (12) - ADDI rtrs | rt=rs AND |
7|BEQ 000100 (4) - BEQ rs rt offset If rs= rt then branch
8|BGEZ 000001 (1) 00001 (1) BGEZ rs offset If rs >=0 then branch
9|BGEZAL 000001 (1) 10001 (17) BGEZAL rs offset If rs >=0 then procedure
10|BGTZ 000111 (7) - BGTZ rs offset If rs > 0 then branch
11|BLEZ 000110 (6) - BLEZ rs offset If rs <=0 then branch
12(BLTZ 000001 (1) 00000 (0) BLTZ rs offset If rs < O then branch
13|BLTZAL 000001 (1) 10000 (16) BLTZAL rs offset If rs < 0 then procedure
14|BNE 000101 (5) - BNE rs offset If rs !=rt then branch
15]J 000010 (2) - J Target rd= return_address
16{JALR 000000 (0) 001001 (9) JALR s rd = return_address
JALR rd rs
171JR 000000 (0) 001000 (8) JRrs PC=rs
18|LUI 001111 (15) - LUIrt | =1
19|LW 100011 (35) - LW rt offset (base) rt = memory [base + offset]
20{MFHI 000000 (0) 010000 (16) MFHI rd rd=Hl
21|{MFLO 000000 (0) 010010 (18) MFLO rd rd=LO
22({MTHI 000000 (0 010001 (17) MTHI rs Hl=rs
23|MTLO 000000 (0) 010011 (19) MTLO rs LO=rs
24 MULT 000000 (0) 0110® (24) MULT rs 1t [LO, HI]=rs X1t
25(MULTU 000000 (0) 011001 (25) MULTU rs rt [LO, HI=rs X1t
26[|NOR 000000 (0) 100111 (39) NOR rd rsrt rd=rs NOR rt
27|OR 000000 (0) 100101 (37) ORrdrsrt rd=rs OR rt
28[ ORI 001101 (13) - ORIrtrs| rt =rsOR |
29(SLL 000000 (0) 000000 (0) SLLrd rt sa rd =rt<<sa
30[SLLV 000000 (0) 000100 (4) SLLV rdrtrs rd=rt<<rs
31|SLT 000000 (0) 101010 (42) SLT rd rsrt rd=rs<rt
32| SLTI 001010 (10) - SLTirtrs | nt=rs<lI
33|SLTIU 001011 (11) - SLTIUrtrs | nt=rs<I
34(SLTU 000000 (0) 101011 (43) SLTUrd rsrt rd=rs<rt
35[SRA 000000 (0) 000011 (3) SRArd rt sa rd =rt>>sa
36[SRAV 000000 (0) 000111 (7) SRAVrdrtrs rd=rt>>rs
37|SRL 000000 (0) 000010 (2) SRL rd rt sa rd =rt>>sa
38[SRLV 000000 (0) 000110 (6) SRLV rdrtrs rd = rt >>rs
39(suB 000000 (0) 100010 (34) SUBrdrsrt rd=rsi rt
40| SUBU 000000 (0) 100011(35) SUBUrd rs rt rd=rsi rt
41| SW 101011 (43) - SW rt offset(base) Memory[base + offset]=rt
42| SYSCALL 000000 (9 001100 (12) SYSCALL System call
43| XOR 000000 (0) 100110 (38) XORrdrsrt rd=rs XOR rt
44| XORI 001110 (14) XORIrtrs | rt =rsXOR |
45(JAL 000011(3) - JAL target rd=return_address
46| LWCO 110009 - LWCO cs, offset(base) cs=memory[base + offset]
47|MFCO 10000 O[MFCO 1, cs rt=cs
48|MTCO 10000 100|MTCO rt, cs cs=rt

The following table shows the set of instructions from the list of miniMIPS
instructions partitioned for testing the processor in this thesis.
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4 4HLDD Generationfor MP

Consider the behavioural level structureaaficroprocessor irfrigure. 7, and the HLDD

in Figure. 8 generatedisthe sourceof functional fault modefor the MPwith a set of
instructions inTable4.

Note, the HLDD generation has been optimised lideo o achieve high test data
generation for SBST. He optimization is based on the logic behind the position of the
terminal node and the connection between each function while less test data is used during
the test. Hence, the ordering is referred to as "gd@dapter 5 of this thesis will present

the test generation approach in det&iowever, this section serves as the foundation for

the test generation.

Table4: Instructions selected for Experiment

Number Instruction Code

19 SLL 000000=0
28 OP2 000001 =1
24 MFLO 010010 =18
26 MTLO 010011=19
17 MULT 011000 =24
18 MULTU 011001 =25
2 ADDU 100001 =33
3 SuUB 100010 =34
1 ADD 100000 = 32
4 SuUBU 100011=35
5 AND 100100 = 36
6 OR 100101 = 37
7 XOR 100110 =38
8 NOR 100111 =39
9 SLT 101010 =42
10 SLTU 101011=43
20 SRL 000010 =2
21 SRA 000011 =3
23 MFHI 010000 =16
25 MTHI 010001= 17
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Behavioral level variables of Microprocessor

PcM RoR1,R2R3  AM(A)
* Data part . | Data
! g ' | results
RDATA P [ ALU ‘
' Data
A '
Control operands
) Flags Memory
signals
Y : )
! Instructions
RCONTR | ” FSM B
i A © Addresses
. Control part i

Figure7: Behavioural Level Structure of the Microprocesghr

Consider MP functionality as a set of the following behavioural level funcidngL4]:
1) Yo= "FOYYY) = "G60,6,Y'Yo 0 MQAYoN Yosry,'90,1,2,3,8 19,
GEQYY9= Yoy, U 0 isa setofdata arguments for the functi®@& set o
the source registers over #ik instructions);
2) PC =", 00,086 ="Q §0,6,00 whered is the flag variable serving as

condition for thebranch operation;

3) 0 8=9 OYD & =Q00,6,Y0 0 whereSMA) = Yosr,, 0 0

The functionality of the MP can now be represented ket afvoehavioural level variables
zZ=Y Y * 0 6 and by a set of functiori®={"MFQRQ, OB FQ FQ FQ

[17], [4], [14]. In thiswork, we are testing the data path and the control path of the MP.
Which means we will model the behavioural level variables¥ = * 'Y and a

set of functionsO={"OFQRQ, "B FQ 8The behaviour of MP can be modelled by the
functional basis F and monitored through the variables Z. For modellin@dhe
behavioural level HLDD model ssel [4].

The following HLDDis automaticallygenerated, byhe algorithm developed for HLDD

generation in this work. The algorithm is discusseskiction5.4.
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Figure8:GeneratedHLDD for a subset of insuctions of MP with 19 decision nodes

In this thesis) have developed a prograto generate the HLDDwhich reduce the

complexity of theprocessofor test generatianThis type ofapproachs different from
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the manual approach adopted before. TAnapproach to test data optimizatim high
fault coverage

The generation of thEILDD for the selected instruction set allows calculating both the
highT and lowlevel fault coveragesA fault of the nodes caes an incorrect leaving the

path activated by a tef4].

The behaviour of the systeisidescriledin a specific working modby each path of the
HLDD [17] [3] Each of the nonterminal nodes can be referred to as a
superposition(subsystem) of the entire HLDD. The following definition givesdional

meaning of thédLDD graphical representation of a system

Definition 4.3 [3] ,[17], [70]:
A DD which represents a digital functiod "Q& is a directed aafic graph "O
0 hod , where the set of nodés 0 ° 0 s partitioned mto the subsets of nen
terminal nodes) and terminal node® , and the set of variable® 0° O is
partitioned into the subsets of control varési ( e.g. instruction variables and data
variablesO (operands). A terminal nodéx ~ 0 ={a& ;M ;} is labelled by a
constantQY /mip} and is called deaf, while all the norterminal nodest N O are
labelled by vambles nodeso ¥ @ and have successors whose number may be
SGad S wwa .Letus denote the associated with notieariable as(m),
thenm? is the successor of for the valuedw & mandd ! is the successor @f for
W A p. G4 EU denotes the set of all successorsiof O hand G (m)E M
denotes the set of gfiredecessors of / U 8For terminal nodeg N 0 we have
G a A. There is a single nodert/ O whereG™* & A called root node.
The HLDD-basedaults are classified into two general claggey, [3]:
I.  Control faultsi These are related to the Aterminal node®

[I.  Data faults These are related to the terminal nodes
The approachin this workto test the microprocessor gdee HLDD asa fault model
foundationfor ISA partitioning
The highlevel fault location in the HLDD model is represented byitiiernalnodes in
the grapt24].
The HLDD issynthesized, and since each node in the graph represents thevabiault

location, a certain structural fault collapsing resides in each HLDD nodes during the
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synthesis[4]. The HLDD in Figure 8 shows the partitiongdimplfied) version of a
complexprocessomto a subset that consiststbé control and data pa

As pointed out in other's work, the control path is corresponding to thtemomal
nodes iNtHLDD, and this is labelled by state or output variables of thé&r@lopart
serving as addresses or control wdr8, [46]. Terminal nodes are the data path,
which is labelled by the functions of data words or data w¢8d$, [24], [46].

The highlevel functionality ofthe MP isderivedfrom the ISA.

HLDD can have just one nelerminal node with multiple terminal nodes. On the other
hand, this same HLDD with one néerminal node can be simplified to reduce the
complexity of the system by partitioning the rAnminal node into multiple non
terminal nodes. Each ndgarminal node represents a ssystem of the whole system.
Thus, the simplification for complexity reduction washieved inFigure 8 where we
have 18 internalnontermina) nodes and 1 roghorntermina) node

It is good to also point ouhat various DDs, may occur where nodes have different
interpretations and relationships to the system strugslird his kind of DDs may exist
based on the representation level of Hystem [43]. However in the following,

relationship between SSBDDs and HLDDs are presented.

4.5 The Relationship of SSBDDs and HLDDs

SSBDDs reresent structural aspects of combinational cir¢gi§ Its usefulness ranges
from the representation of possible structural faults in circuits, for test generation

purposes.

The main goal of HLDDs was to generalize the d@sgiic algorithms based on Boolean
differential calculus and transformed to the graplylexge of BDDs for using them at
higher levels of system abstractifs6] [71]. HLDDs was introduced to overcontige
difficulties of highlevel diagnostic reasoning of complex digital systems whergusin

traditional hardware description languagfss].

The relationship between the SSBDDs and the HLDDs lies in the topological properties
of graphs for the generalization of diagnosis algorithms from logic level SSBDDs to
HLDDs. Consequently, SSBDDs that are used for representing logic circuits can be
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regarded as a special case of HLDDs for representing digital systems on higher
abstraction leels[55], [56]. However, the dierence between SSBDDs and the HLDDs
could be measuddrom the fact that each SSBDDs node has two output edges, with two
terminal nodes on the graph representeddnstants 0 and 1, HLDDs differ as in the
numberof edges a node could have is not limitedwo also it has more terminal nodes
[56].

SSBDD is a model with several critical features, it uses the equivalent parenthesis form
(EPF), that is, describes a digital circuit structurally [26%] clearly define and compare
SSBDD model with another mathematical model such as ROBDD. Consequently, the
linearity of SSBDDs model in respect to the number of Iggies makes it more efficient

for application us¢55]. Therefore, it preserves the actual structure of the circuit, while
other BDD models lack this featuf43]. Considering this fact, SSBDDs isrgzalized

as a special DD for HLDD!8]. Hence, theséeatures make HLDD useful for testing at

the behavioural level. This implies that testing the functionality of an MP atéwghto

cover the gatdevel faults inclusivel without resorting to the knowledge of the

implementatiordetails requires an HLDDs

4.6 Benefit of HLDDs to generate test for MP

HLDD is serve as a uniform model for both the gate and RT or behavioural level
simulation. Research has shown43] that high SAF coverage cannot guarantee high
quality of testingsicet he types of faults that can be
depend only on the logic function of the gate, but also on its physical design. Thus, HLDD
allows functional fault modelling of the systerthat helps to map faults from lower to

higher levés in multi-level diagnostic modelling of systerf#y.

HLDDs helps to develop uniform approaches and generalize the concepts of solving
different test problems like test generation, fault simulation, fault diagnosis, tegtabilit
analysis et¢24].

HLDDs fault model helps in testing exhaustively each (mdesystem) of a system
Remind that each node in the HLDD regepts a fault location.

In this work, HLDD serves as a base for higglality test geeration. This means quality

test cannot be generated by the test data generator without a good selection of functions
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under test. Hence, HLDD generalizes the base foighatlowing the logic connection

of functions in norterminal nodes which give fewéoptimized) test data. However, this
does not apply to all HLDD structures. The level (quality) of test data depends on the
HLDD character: good or bad. That is, if tAeDD partitioned is good then test data
generation will also be good else test dggaeration will be bad. This raises a question
which HLDD is good and which is badrhe algorithm for the good ordering of the

instruction sets handles this question ans depicted in section 5.4 of this thesis.

4.7 Synthesis of HLDDs

For thecreationof the HLDD model, the functional variables of the digital system should

be determinedThis functional variableepresentshe states of the system in both, data

and controlunits. Hence, the behaviour of the system is described as a stateeitransf
functions and for each functional variable in the set of variables, a separate state transfer
function correspondll7]. Therefore, in this workeach tansfer function is represented

by an HLDD.

Data Path M
A
B ADR
C
—:MUX1 A
7 CcC Z
_-MUX,| %2
— 1COND X )4

[Control Path q' ‘

Figure9. Digital system as a network of components and a flowchart of its behaviour

An example of a simple digital system (a processor) is presentédyume 9.A. It
describes asstructural RTL circuit, consisting of control and data paths and a traditional
data flow graptFigure 9.A. This digital system has a universe of functional variables
which are divided into two parts. The first pegpresents data functional variablds
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and the second represents the control functional varialesence, the univerdd of
the functional variables represents the level of granularity throughwiécbehaviour
of the system is described. Due to this reasonutieerseU represents thetate of the
system at each step of simulating the behaviour of the sysherthe data paththe
universe offunctional variables contains a set of data regi¥ter 6 which
represent the data ursitate of the systerwhereas theontrol part has a state varialje
that represestthe state of thecontrol unit EachY stand as a state of the control unit as

shown in the datflow graph of the systerfFigure 9.B).

This control and data part can be related to the HLDD gestefait the work of this thesis
(Figure 8, where the nodes of the HLDDs representtioelulesof the MP, and the faults

related to the HLDD nodes form the set of the representative fault of the MP under test.
There are three methods for the synthesis ddBi& for representing digital systefds].

I.  lterative superpositio of HLDDsi this method can be used when there are
different structural networks of subsystems within a system. An example of

such representation of a systemegpidted inFigure 9.A

II.  Symbolic execution of procedural descriptionsthis is the functional
representation of a system at higher behavioural levels. System functionality
can be given inform of HDL or in a flowchart form. An example of such

representationf a system is depicted Figure 9.B.
lll.  VHLDD T this is based on using a shared HLDDs forespnting the HLDD.

In this work the iterative superposition of HLD2&d symbolic execution of procedural
descriptions are considered as the hierarchical ori+hewkl approachesise for the
synthesis of HLDDsHence, A certain structural fault collapgi has been performed
during the HLDD synthesis, since the higlvel fault locations in the HLDD model are
represented by nodes in the HLDD. For instance, wistimgethe norterminal nodes of

the HLDD Figure 8 the low-level structural faults in the m&#ed control buses,
multiplexers and decoders are collapsed, hence faults can be determined only in relation
to the HLDD nodes.

Eachnonterminalnodeof the HLDD represents a suimodule and in each node resides

the MPfunctions"Q N "Owhich thenspread at the terminal node .
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4.8HLDD Conclusions

In this chapter, the usefulness of HLDD was presented. The reductimmcomplexity

of the MP for fault modlling and test generation was achieved based on the superposition
character of the HLDD whenraptitioned. That means, each module in the MP performs
its unique function, and each of this unique function makes the whole MP when

synthesized.

Each module wapresented as a node from the HLDDs. These nodes are referred to as
faults location in the MPThe nodes are classified as filerminal- where the control
path of the MP flows and the terminal nedehich is the data manipulation unit.

It was also show in this chapter, the fault model method adopted for the MP test
generationin the next chapte In order to synthesis the HLDD$wo different system
representatiomas shownn figure 9. Hence, Figure @xplainsclearly thetwo methods

for HLDDs synthess.

The first two methods, 1) the iterative superposition of HLDDs, which correspond to a
high-level structural representation of the system and 2) the symbolic execution of
procedural descriptions, which correspond to the functional representatiorsyp$tie,

are the hierarchical or mulivel approaches usddr HLDDs synthesis.The faults
influencing the behaviouof MP can be associated with nodes along the given path

whereas eachonterminalnode represents a structural unit or-surbuit of thesystem

The main motivation to introdu¢¢LDDs was to improve the efficiency of test generatio
methods for combinational circuits by exploiting the possibility to reduce the complexity
of the model compared to the traditional giateel approachefs6]. According to[49],
theoneto-one mapping techniques of the SSBDDs solve a lot of test and diagnosis related

problems of digital circuits

Hence, this chapter will serve as a guideline forgesgation in thenextchapter.
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5Test generation for microproces

The main assumn of the current approach to test generation is that the implementation
of the circuits of microprocessor is not given. Hence, the approach is fully functional, and

it is called implementationndependent test generation approach.
We divide the procesd test generation into two syfrocesses

1 test generation for the control part of MUT, and

1 test generation for the data part of MUT.

This work is devoted for test generatiam the control part of the MUT, where the target

is to verify functionally that the instruction is correctly selected. This test is called also
conformity test. For such a verificatiogpne must show by suitabtest dataselection

that the expected resuit the instruction under te@JT) is not corrupted in the process

of instructiondecodingby any faults in the instruction decoder. Thegass of test data

generation will beexplained in the next chapter.

Fortesting the data part of MUT, pseudrhaistive tests are generated. It is not

possible to apply all possible operands exhaustively to the adder, therefore the adder is
partitioned for testing purposes into-biices, where each bit will be tested

exhausively. For example, for testing the addty each bit of the addeall possible 8
singlebit patterns are applied (exhaustive test for this Ait)bit slicesare tested in
parallel.From that comes the terimpseudeexhaustive test.

5.1 Test datageneration concept

During the experiments, tess generated foeach MUT of thgrocessarA sub-circuit

of the processor involved in executing the selected group of functions undesatest
considered, that ishe UUT within the MUT. The UUT has two Hidevel inputs which

are data D and control sigaaC, and an observable output Y

Based on the functional test approach, all functions within the MUT are well comparable
due to the same observation node. What maksgapiproach to be higlevel is becaus

the logic structure of the UUT is unknown, dvaked on this fact, the traditional methods

of path activation from the fault site to the observation point is obsolete. On the under
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hand, since all functions of the group (MUT) under test are wwethparake, the
traditional fault propagation technique substituted by the direct generation of data
needed to differ all tested faulty behaviours from the correct behaviour, that is, to activate
all the highlevel functional faults

The concept is illustrated Figure.D.

D Subcircuit
Data involved in executing of

O functions under test v Observable

\ 4

UuT test
c E F response

1

1 No need for
1
; : ’} propagation
1 . > toY

0 Y ¥V

Control
Signals

Y
-0
-0

> .
Y Constraints Yes/No Ex;)eci;ced
> au
MR Fi<F detection
C >S5S Control states resul ts
Data generation for s'ing these constraints

Figurel10. lllustration of Unit under Test
Consider an HLDDO (figure 8) representing a function Y = F(Xps defined in
Definition 3.2. Let the test patteth, for testing the nodé N 0 , activates inO a
pathad & R M) from the root nodé to a terminal nodet " ~ § , so thato &

0,andd N aa ,a M.

If there is a functional faulti &b ~ 'Y Gh) related to the nodé N O , which
causes an incorrect exit from the pathd ,& ") and activates a wrong paéha h

h* instead of the correct pabhi b " . Hence, at the observation point the correct

a
path & & ha h should produce the value "Qa h wheeas the wrong path has

change the value to valde "Qd " . To detect this fault & [0 , the condition

Qa M i Qa b
must hold.

Hence, the main idea of test data generation for the control test is to davetbf
constraints, whichs satisfiedand guaranteg that independently ofhe real structural
implementation of the instruction decoder the instruction is correctly selected.
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According to[4], test data ishe determirant d the quality of the test programhe two
constraints to be satisfied by et ®f data operands for test data generation that detect

control faults in an Hlfault model are listed beloyl3]
la ND @:m@Y !l aQ@Ea) | éd84.@Q

ba g Ang (@):m@y !l Qo@ MHz@ M éeéé @
Where:
' meansero 0) and®z wmeans < b for logic OR
' meanone @) and®z wmeans a > b for logic AND
0 is the number of data word bits
@ is the test pattern
"G M) is thesysteminitial state
The constraints are summarised below:

The constraint 1: states thBILDD terminal nodes must not be equal to zero if the
implementation technology of the MP is logic OR or it must not be equal tdf tme

logic implementation is AND.

The constraint 2: states that if it is AND logic then the result of the terminalurabe
test must be greater than other terminal nodes if it is OR logic the result of the
terminal node under test must be less than the result of other terminal nodes in the HLDD

Each constraint represents a particular Heytel control faul{72].

In the following, the algorithifiL 7], [73] for generating the set T(c) of test data for testing

the control patls given
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Input : Instruction set of the processor

Output: Sets of test operan@for each instruction, and fault tab¥e
Notations: nT number of instructions (functiong,

Qi test operand

‘O71 current set of selected random test operands,

" €nN) T the result of the instructio@for the operand(9Hn),

Y1 fault table, Y¢g1 U -bit entry inY (0 T length of thedata word).

1. Initialize OP =n

2. Generate a set of R random data operands

3. fori= 1,n é,
*** generation of operands for instructién
4. Initialize 6 0o= N,
5. for j = 1 .,n(jéi
***operands for solving constraint®n < "@q
6. Initialize Og= 0
7. for all opN “Ywhile O O
*** adding new operands for coveritygy,
8. Oafén) ="QEeN ~ g €n § "QeEn)
*** calculating fault coverage fap
9. if (Ogfop) zZ O § Ol O
*** check for the coverage increment
10. begin
11. Omp= Om z O €N
*** update of the coverage vector
12. Include op intad 0o
*** new operand is selected
13. end
14. endfor op
15. endfor j
16. endfori

The algoritm result will be a set of operands0 for each’O, and the fault table D = ||
O || wheréO =1 means that thieinctional fault described by theonstraing "¢ <
"Q is coveed at least by one operadn™ O 0, otherwiséO = 0.

The geedyalgorithmsolves constraints for each function by selecting the best pattern
from the entire search space while random selects data sequentially.
However, two reasons couldake the constrain} < "Q, not solvable:1) due to

functional fault redundancy @) limited search spade.
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5.2The roles of HLDDs in test generation for microprocessors

In this work a new view is introduced to the test program generation using HLDDs. So
far, the role of HLDDs has been to repregba highlevel structure of the microprocessor

or its MUT, whereas in this work, a fully implementatimaependent approach to test
geneation is considered, and the role of HLDD will @ exploration of possible
partitioning of the instruction set msubsets as targets for testing.

Let us call this approach as functional use of HLDDs for Instruction set partitioning.

So far HLDDs lasbeen used as higlevel structural model where HLDD itself represent
asystem, whereabe nodes represent a ModWeder Test (MUT. The terminal nodes
represent the data part of MUT, in more details, operationatr&uhules corresponding

to the instructias of the microprocessor. The internal (tierminal) nodes, in their turn,
represent the suimodules of the contrgbart of MUT, for exampleseparate decoder
blocks for decoding the subfields of the instruction forrhignce, in this approach, the
nodesare the target of test generation at the module level, whereas HLDD itself is the
target at the system levelThe test stimuli are generated for nodes (representing the
submodules), but the nodes are made controllable and the responses to testiitineuli
observed at the system level.

Let us call this approach as structural use of HLDDs for +t@ded higHevel stuctural

testing.

For both applications of HLDDs, the concept of constructing the test program remains

the sameTest progrars areclassifia into two typed3]: conformity and scanning test

programs. The conformity test prograis use for testing the control part of the

processor, whereas the scanning test program @ fasdesting the data path of the

processtn The term fAconformityo comes from the ¢
compliance to specification, whereastht er m fiscanni ngo comes fro
the data part by checking its functionality with all pseeabaustive patterns oiig-

one.

Thethesis targets the conformity test progigeneratiorand use aghe furctional model

of the microprocessonstruction set
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5.2.1Conformity Test for processor

Conformity test is uskfor testing thecontrol path of the process{®], [14].

The theory and algorithm of conformity tesasgivenin [17]. Thus, it is stated below

as:

Consider an HLDD'O 0 hwhid with Y = F(X), as a functional motleof the

instruction set of a given processdhe HLDD use in this work is depicted in Figure 8.
WhereX=C* D denotes instructioformat of the processor
Y represents the destination,

C denotes the opcode which may be partitioned intefislds 6 N 0 of the instruction

format
D denotes source which may also be partitioned into several sé@ir¢e®©

The source and the damsition data variables can be referred to as the address of a register

or addressable memory locations.

The following figurell shows an example of mapping between the processor instruction

formats and the HLDD functional variablg}.

Op-code | Source | Destination
C D Y
Op-code Sources Destination
C D1 D2 Y
Op-code Sources Destination
C1 C D1 D2 Y

Figurell Mapping between thastruction formats and the HLDD functional variable.

This implies that the target of the control test are not the instructions of the processor,
becae the instruction present both the control path and the data path, hence, the target
of the control tesis the parts of the instruction format. That is if the opcode C is
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partitioned inb sub code® N 0, then the control test will test each of theexplicitly.
The general goal of this is to check if the controlBuixtions are correctly selectfid],
[3], [14].

Therefore, node m in the HLDD for all vamedd N w wd& must be tested for
checking if all control sutfunctions related t@ are selected correctlyAccording to
[17][3], the procedure for generating a fault 'Y & v is by finding a test pattarcy
that activates a patt(a & M) from the rootnodd N O to aterminal nodé N

0 ,sothatk(m)=v,and m I(a p& H); the patternd corresponds to a full opcode
C of instruction, which includes the value af . In addition, it is also imperativeo
compleethe pattermd by generating the test ddba so that the constraintsand 2were

satisfied.

The whole test with loops, can be represented as bgilog conformity test algorithm
[17].

1. foralld v OY "Hi

2: forallo v w(wa ) A

3 for all r do

4. execute {J ,0). (0,0, »
5 end for

6 end for

7. end for

Figurel2Algorithm for conformitytest

Explanation of the algorithm is as follows
Line 1, represents a teBfl ) for nonterminal nodesd ¥ 0 for the fault mode R

Lines 25, At first, it initializes all registers that are involya operation at every terminal
node with data that satisfying constraints 2. Secondly, it implements the instruction to
assgnthevalue ofvto x(m), and also activates a path'i@ to the nodem, and the paths

frommtoa N v (m); Thirdly, the value of Y is observed.

Hence, at line 6 the test for negrminal nodei N - endswhile line 7 ends the

conformity test for the HLDD.

The usefulness of the conformity test is to generate a test template that wiltllvathse

the control test patterns. The conformity test created a test template asfgpee 14.
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Test data for R (destinantion)

Test data for A2

Test data for A1

Test data for OP2

Test data for OP1

The OP1, OP2, Al, A2 and R represents the-teaminal node (control node) of the

HLDD. Eachcontrol nodehas a test template that is made up of instructions which

Test template for test
loops

Load test data to
memory

™

A 4

From mempry to

registers with data D

OP1 | OP2 A1 A2 R
Constant LOOP
OP1 | OP2 A1 A2 R
Constant LOOP
OP1 | OP2 A1 A2 R
Constant Loop Constant
OP1 oP2 A1 A2 R
Const  Loop Constant
OP1 | OP2 A1 A2 R
Loop Constant

Figurel3: Strucure of Conformitytest

\ y,
' N
Instruction execution
in the loop
A\ J
A
e ™
Write results in
memory
. J

enables anodeto be testedHence, the HDD in figure 8 categorizeghe instructions

based on the neterminal nodes they are connected to. Therefthre, instructions

connected to the node are usedtesing a node of the HLD[)14].

5.3 Test program generation

In accordance with the describe@timod of generating test data for testing a processor,
test is organize based on the architecture shown in filgur€he full test isorganized

into different parts, where the target of eactt gato test abset of functions F and same

template is usifor testing each functiohn F.
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The full test is structured into three embedded loofise same test template is Use
the first outer loop. Ideally, the number of loops and the number of differerdrtgsttes
are equal hence, it is a subrouting@ith a uniform structure that has three parts: 1)
initialization of the processor, 2) executiohthe instruction so that for each functidn

N F the response are propagating to the noadsérvationSince the same test template
is use for each fution, the second middle loop handles the selected test template by
repeating it for all functinsf; # F for a list of related Instructioris to be inserted into the
current templateTo addres A:;, Ao, the data operandd:, d> is reference by each
instruction pattern; = (opcodgAs,A2). Two consecutive loops will be executed for testing
the control pe and the data paof eachinstructionl;¥ F under testThetestdata d =
(d1,dk) ¥ Di* is use for testing the contrpéirt,whereas for testing éhdata part the number

of test patterns use is determined by the length of pseundiom test sequence.

Instructions Test data for
for testing F, testing f; € F;
Test 4| Instructions for _| Data for control
templates testingf. € F; partd € D%
I;: Opcode | A, A; d d; -
Test template /

for a set of
functions F,

y| Testpatterns
for data part

d;

Instructions for
testing f; € F, d

I Opcode A, A, /

Figurel4. Architecture of the test prograim4]

The novelty of the prgosed tesmethodstand in online test generation based on
unrolling on the fly the stored in compact way of all needed test information in the form

of the sets of test program templates, test instructions and related test data lists.

According to[17] the test program generation for a processor using the HLDD can be
achieved in two levels. These are system and module levels. Nodes are the target of test
generation at the module level, whereas HLDD itself is the target sygtesm level. This

mears that modules will be combined to form the system level since eaetemoimal

node on the HLDD represents a modtience, the results of tests will be observed at the

system level, once the test stimuli for the modules haverbade controllable
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Ted program are divided into two types: conformity and scanning test programs. The
conformity test program is use for testing the control part of the processor, whereas the

scanning test program is use for testing the data path pfabessor.

5.4 Using HLDDs for instruction set partitioning

A new paradigm for generating the HLDD was developed during the research work of
this thesis. The program is used for the partitioning instruction set of an MP on an HLDD.
The picture iglepicted inFigure 8 Thus, this prgram is referred to as HLDD generator.
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The inputs for the HLDD generator are

I.  number of instructions

Il.  data pattern® = 0%,
The output for the HLDD generator is:

. an HLDDs
High-level test data generatoses deterministic test daganeratioralgorithm to generates
datapatterns’dg@which distinguisheachinstruction and the HLDD is generated by the
HLDD generator.
The steps for thelLDD generatoAlgorithm areas follows:

1. | startedcreatng a 2D matrix of (n) size

a. Insideeach matrix cellresides thelata pa‘tterr’ﬁ‘?’fsa

i. The daa ’d‘-’mare calculated by the highvel fault simulatorfor all
instruction"@executed by thprocessar
b. EachdatapatternQ%pis asigned weightQ%, 0

2. Aloopis createdhat iterates through the matrix to hold each aslh 2dimensione

arrayexcept0(@E 0= Q

a. the diagonal cellsvhen'Ge "Grom thelist of indiceswere not considereds i
serves as redundanciesthe functional faults

b. where ‘Q "Qindexes of Qas "Q @M "Oso thatfor each 'QEQ'Q are

concatenatedogetherto hold eacfldatapattern'dgmand Weighquml') for
each'@,
3. A list 0 is creaed to getall the data pattern'd(?f,D matrix with respect to weig
%0 , then
a. thedatapattern’(ff%@ for each'@= "@aretakenas a list; wheredy® 0;
b. the weighfd‘?mo are taken foeachag
4. The sum of weights¥ for eachdgin O selected forpartitioning is calculatedas
"y (G
5. An algorithm is then developed for the generation of HLDD, taking inligheof

instruction based otie sum of weightor eachlist “@&"¥° (%) as an input
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Assune, we have the following matrix where size ghpwherethe "Qand"Qhave n size

each.Letn be 4. Note n denotes the numbers of instructions selected foopartjt
Analysisof the Algorithm for HLDDs generation

Table5: Sample of Matrix table for partitioning 4 instructions

Assume, each element in the matis the number of useful patterns generated by the
high-level test geerator. Note, that the diagonal cells are not considered.
Weight is assigned to these data patterns based on their hierarchpbfes

Table6. Shows how weights are assigned to patterns

Patterns | 25 20 5| 10 10 12| 5| 4 6] 2| 6 5
Weights 8 7| 3 5 5 6| 3| 2 4 1] 4 3

It is possible to have two or more instructions using the same numbers of patterns with
equal test length or different numbers of patterns with egsalength. Therefore, using

the same weight value. For instance, pattern 10 occur twice and have the sgihte we
value of 5.Table 7shows how each row and column is divided into four parts with each
having three unique matrix slots for the case of fostructions under partitioning. For

each cell in the matrix, weight is assigned to a pattern.
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Table7. Expansion of Tablé

no [Matrix Slot |no of pattern |Weight
1 [1<2] 25 8
2l [1< 3] 20 7
3 [1< 4] 5 3
4 [2< 1] 10 5
5 [2<3] 10 5
6 [2 < 4] 12 6
7 [3<1] 5 3
8 [3< 2] 4 2
9 [3<4] 6 4
100 [4<1] 2 1
111 [4<2] 6 4
12| [4<3] 5 3

Note that for four instructions selected for partitioning we H&possible slots. Hence,

it requires 12 data patterns to be generated for distinguishing those functiomsllizpgi

the number of length of patterns grows exponentially regarding the number of instructions
set under consideration for partitioning. In @xperiment, we have used 20 ISA for
testing the miniMIPS ALU. Therefore, the number of data patterns uséidfioguishing

those functions is 380 and that can be calculated with the following formula.

004 6} €' QUEQ NQDIONEIA T = € 26 z & 205 7¢

Note, the formula is also the size of the entire location under consideration in the matrix.
Where:

n - denoteghe size

0, - denote the row cell

0g,-denota the column cell
With more ISA under consideration to be partitioned on HLDD, we carhaew/é are

prone to errors if things are done manually. Thus, it can make the test generation and

fault coverage inefficient.
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Each cell was combined wheteete is the same sequence of occurrence in indexes into
a unique list, i.e. we create a list tetghe corresponding instruction patterns its
weights. This statement is depictedliable 8.

Table8: Shows thdist of patterns andaveights based on relationship

no |Corresponding Pattert no Corresponding Weightg
1 |[25, 20,5, 10, 5, 2] 1 [8,7,3,5, 3 1] =
2 |[25, 10, 10, 12, 4, 6] 2 [8,5,5,6,2,4] =
3 |[20, 10, 5, 4, 6, 5] 3 [7,5,3,2,4,3] =
4 |[5, 12, 6, 2, 6, 5] 4 [3,6,4,1,4, 3] =
Total sum of weights for 4 instructions | 102

The sum from the list asthen taken for all the indexes where each instruction resides.
The following matrix tables show the graphical selection cases for Table 8.

Table9: Selection case 1 THbI8election case 2
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Algorithms for Cells Selection

dis =]
m range( .Size):
=
i range( .Size):
j range( .Size):

(REH)E

(i==m j==m):

l.append(weights.index(

Jis.append(l)

The HLDDs is then generated recursively for the instructiori@at based on the
result in Table3. The algorithm for the HLDDs generation is shown below:

Algorithm for HLDD generation

hldd( instructions): *** Inputs are theinstructions of miniMIPS
total =
vals =[]
i Ins:
total += .sumlis[i - 1] ***get Sum list of patterns for each ins.
vals.append( .sumlisfi - 1))
half = total //
S =
firsthalf =[]
sechalf =]
i range(len(vals)):
s + vals[i] <= half:
s += vals]i]
firsthalf.append( I nstructions  [i])

sechalf.append( instructions [i])
print( i nstructions firsthalf sechalf)
(Ien(firsthalf) >= ):
.hidd(firsthalf)
(len(sechalf) >= ):
.hldd(sechalf)

Since thereareone row and one column for every node in HHeDD, the nunber of
edges required to fill the matrix gs . To this light, the topology of the instructions
under test fothe given MHAs well interrelated. Therefore, a set of digital functiohs
"O® of components or subircuits in digital systems may epresented as graj,
[38].
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The graphs generated througisthrogram were synthesized directly from the topology

of the gatdevel network. Such a topological view allowed to generalize the letyel

and methods of test synthesis and fault analysis from the Boolean level to higherregister
transfer and behaviolgvels of digital systems by introducing Hidgvel DDs (HLDD)

[56], [49].

5.5Condusion

This chapter explained the concept of test generaserin this workThe algorithm for
the HLDDs generation developed in this work waesented which is an optimized
approach of the previous HLDDs partitioning approaches ugétfiand[33]. This model

will be usedor the Experimentabkectionfor the SBSTin the next chapter.
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6Experi ment al part of the thesis

This chapter presents thesearch environment used during the reseairtdis work, and
the experimental resulfer thesoftwarebased testsf an MP.

6.1 SBST and Experimental Contributions

SBST is the process by whiehmicrgrocessor uses its resources to test itself. In this
case, we do not rely on external test®amird thatan instruction set architecture is an
abstract representation of a processor and its functionality provided in the architecture
documentationj4], [3]. Therefore, in mderto test the process, its instructions set are

used.The testfamework is divided mainly into three parts:
1 test data generations
{ test program generation
1 test evaluation

Figurel5: The tasks of SBST generation flow in this thesis
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The folowing shows theool frameworkused forthe SBST process.

ATPG

|
|
High-level High-Level
Test Data ATPG
Modules Generation 13

High-level
Test Program
Generation 2}

Test
Template

. Low-Level
Test Evaluation ¢33 FC%

Figurel16: Tool framework for test generation

The inputs to the tool are modules and the test templates. The modules are from the
instruction set architecture of theopessor when the complexity of the MRder tesis
reduced bypartitioning the instructions set into modules. This we can see from the set of
instructions on the neterminal nodes of the HLDD iRigure 8 As each notterminal

node of the HLDD represesw module The highlevel test data generator for the control

part ofthe processor, uses a novel constrdiased functional higtevel (HL) control

fault model in sectiorb.l, and generates tests to verify that all functionsnofiesare

selected correlst. This is called as conformity test and is describgd ).

The SBST generation flow is listed below:
Data generation

Manual preparation

Program generation

Program compilation

Test execution

o 00k~ w b RE

Fault grading/simulation
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6.2 Researt environment

The process begins with simulating thumctions ofmodules with random datasing
logic simulator The simulatorQuestasimgenerates for each data, a set of functional
outputsww  "QQ for every instructioiQ Thenthe functional output from the logic
simulator is passed as input to higlvel ATPG for control test datgeneration(1), the

HL ATPG is based on two algorithms, which aypeedyand randomHL test data
generationStep 2 is the manual preparation of test templates. Test templates and test data
serve as inputs for the test program genei@pthat generates a test program. The test
program then serves as input to grecessocompiler (4). Thecompiler compiled the
test program and outputs binary test program which then serves as inpytrocéssor
under tes(5). Then a .vcdlumpfile contains all signal value changes as the processor
executes is created. The dump fdethenused for grding by Tetramaxduring fault
simulation(6). The experiment saip for SBST applications for the given processor is

depicted inFigure 17 below.
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Figurel7: High-Level tool framework in action for test generation

6.3 Experimental research on test generation for MiniMIPS

| carried out experiments to compare the HLD&sed structural test generation
approach, whictwas the basis of the concept, recently published in JETTA pager

with the new HLDDbased functional test generation approach developed in this work.

In both approachewe consider for testing the control part of MUT for MMIPS
microprocessor, representing a part of ALU, and given as a set of instructions listed in
Table 4. The MUT is qgresented as the HLDD model in Figure 8.

As it was explained, the 19 internal nodes
the control art of MUT, and the 20 terminal nodes labelled by decimal numbers of
opcodes and related instruction acronyms.

Note,the HLDDs can be represented in different modifications, using different numbers
of decision nodes, however, having always the same nushiberminal nodes, equal to

the number of instructions of the MUT.
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