

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Informatics

Chair of Foundations of Informatics

Realization of equivalence class based

clustering

Master’s thesis

Student: Meelis Pruks

Student code: 121866IAPM

Supervisors:

Grete Lind,

Rein Kuusik

Tallinn

2014

Autorideklaratsioon

Kinnitan, et olen koostanud antud lõputöö iseseisvalt ning seda ei ole kellegi teise poolt varem

kaitsmisele esitatud. Kõik töö koostamisel kasutatud teiste autorite tööd, olulised seisukohad,

kirjandusallikatest ja mujalt pärinevad andmed on töös viidatud.

(kuupäev) (allkiri)

Annotatsioon

Käesoleva magistritöö eesmärgiks on realiseerida ekvivalentsiklassidel põhinev

klasterdamisalgoritm ning võrrelda seda hetkel parima klasterdamisalgoritmiga ECCC.

Ekvivalentsiklasside leidmiseks kasutatakse Grete Lind’i poolt välja pakutud algoritmi, mida

võrreldakse hetkel parima algoritmiga samas vallas, DPMiner’iga, mida kasutab ECCC.

Põhiline töös käsitletud probleem on leida kiirem ja efektiivsem ekvivalentsiklassidel põhinev

klasterdamisalgoritm. Selleks tuleks analüüsida DPMiner’it ja ECCC’d ning võrrelda DPMinerit

G. Lind’i poolt välja pakutud algoritmiga.

Tulemuseks on uus ekvivalentsiklassidel põhinev klasterdamisalgoritm koos prototüübiga. Lisaks

näitab analüüs, et kuigi G. Lind’i poolt välja pakutud algoritm on kaks korda aeglasem

algoritmist DPMiner, on sellega leitud ekvivalentsiklassidega tehtav klasterdus 25% täpsem kui

DPMineri poolt leitavate ekvivalentsiklassidega, sest DPMiner leiab ainult -discriminatiivsed

ekvivalentsiklassid. Töös on ka näidatud, et kui kõik lähteandmed sisaldavad sama palju

attribuute, mida G. Lind’i algoritm eeldab, kuid DPMiner mitte , on võimalik klasterdamisel

saavutada oodatavalt 10-kordne keskmise kiiruse kasv.

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 73 leheküljel, 8 peatükki, 14 joonist, 9

tabelit.

Abstract

The purpose of this thesis is to prototype an equivalence class based clustering algorithm and

compare it against the current best algorithm for clustering, ECCC. The equivalence classes

should be found using Grete Lind’s algorithm which is compared against the best algorithm in the

same field, DPMiner, used by ECCC.

The main problem addressed in the thesis is to find a faster and more effective equivalence class

based clustering algorithm. In order to achieve that an analysis of DPMiner and ECCC along with

a comparison of DPMiner and G. Lind’s algorithm is made.

The result is a new equivalence class based clustering algorithm and its prototype. In addition to

that, the thesis shows that even though the algorithm proposed by G. Lind is two times slower

than DPMiner, the clusters created with its equivalence classes are 25% more accurate than the

clusters created using DPMiner’s equivalence classes because DPMiner finds only -

discriminative equivalence classes. Additionally, the thesis shows that if each row contains the

same number of attributes, which G. Lind’s algorithm assumes and DPMiner not, it is possible to

gain a 10 time increase in average clustering speed.

The thesis is in English and contains 73 pages of text, 8 chapters, 14 figures, 9 tables., etc.

Terms and Abbreviations

CS/CP Closed Set/Closed pattern

EC Equivalence Class

FP-Tree Frequency Pattern Tree

DPMiner Discriminative Pattern Miner

ECCC Equivalence Class based Clustering Algorithm for Categorical data

CC Candidate Cluster

ms Minimal Support Threshold/Minimal Frequency

List of Figures

Figure 1: Source table with frequency table ... 16

Figure 2: Sub table with frequency table for Atr2 value 1 ... 16

Figure 3: FP-Tree with header table [2] ... 25

Figure 4: Header table and FP-Tree for G. Lind's algorithms example data 27

Figure 5: Conditional FP-Tree and header table for value 22 .. 27

Figure 6: Conditional header table and FP-Tree for generator {11,22} 28

Figure 7: Condition header table and full FP-Tree for generator {11,22} 29

Figure 8: Header table with FP-Tree containing class label distribution[2]............................. 29

Figure 9: Speed test results for EC finding using mushroom dataset 32

Figure 10: Original DPMiner speed test result for EC finding with mushroom dataset[2] 32

Figure 11: Speed test result for finding equivalence classes using connect-4 dataset 33

Figure 12: Original DPMiner speed test result for EC finding with connect-4 dataset [2] 34

Figure 13: New ECCC algorithm speed test results on mushroom dataset 43

Figure 14: Original ECCC algorithm speed test on mushroom dataset [1] 43

List of Tables

Table 1: Frequency table showing existing closed set ... 17

Table 2: The source data used to build the FP-Tree [2] ... 24

Table 3: ECCC candidate clusters .. 38

Table 4: ECCC candidate clusters after final cluster removal .. 38

Table 5: Execution time distribution of new ECCC algorithm on mushroom dataset 44

Table 6: Execution time of new ECCC algorithm on connect-4 dataset 44

Table 7: Original ECCC to New ECCC accuracy comparison .. 45

Table 8: ECCCs comparison with multiple frequencies result... 45

Table 9: Clustering quality results for new ECCC on connect-4 dataset 46

Table of Contents

1. Introduction .. 10

1.1 Background and Problem ... 10

1.2 Goal of Thesis ... 10

1.3 Methodology ... 11

1.4 Overview of the Thesis ... 11

2. Definitions .. 13

3. Equivalence Class Finding Algorithm .. 14

3.1 Algorithm.. 15

3.2 Algorithm Optimizations .. 17

3.3 Implementation ... 20

4. Current Fastest Equivalence Class Finding Algorithm .. 23

4.1 FP-Tree ... 23

4.2 DPMiner Algorithm .. 25

4.3 DPMiner Equivalence Class Finding ... 26

4.4 Comparison of DPMiner and the New EC Finding Algorithm 30

4.4.1 Complexity Comparison of EC Finding Algorithms ... 30

4.4.2 Speed Comparison of EC Finding Algorithms .. 31

5. Equivalence Class Based Clustering Algorithm ... 35

5.1 ECCC Algorithm .. 35

5.1.1 ECCC Algorithm Base .. 35

5.1.2 ECCC Algorithm ... 37

5.2 ECCC Optimizations .. 38

5.2.1 Quality Index Optimization ... 38

5.2.2 Sort Clusters by Quality Index .. 40

5.2.3 Implementation Based Optimizations ... 41

5.3 Comparison of Clustering Algorithms ... 42

5.3.1 Speed Comparison of Clustering Algorithms .. 43

5.3.2 Accuracy Comparison of ECCC and the New ECCC ... 44

6. Use of the New Clustering Algorithm’s Application ... 47

6.1 Application Input .. 47

6.2 Application Output ... 47

7. Conclusions .. 49

7.1 Results .. 49

7.2 Future Research .. 50

7.3 Lessons Learned ... 50

8. Summary ... 51

Kokkuvõte .. 53

Bibliography ... 55

Appendix 1. Application Source Code ... 57

10

1. Introduction

We live in a time of information. Usually the quantity of the information gathered is too much

for people to be able to analyze it. This means that it has to be reduced to smaller groups. This

thesis will focus on a method to reduce the amount of data by grouping similar elements to

compact data clusters for further analysis.

1.1 Background and Problem

The authors’ main motivation to choose this topic was to learn more about data analysis and

pattern finding because the amount of data gathered in our society is growing rapidly and data

analysis will be one of the key components for future businesses.

The main problems associated with the clustering of data is that either it takes a very long

time or the resulting clusters are not describing the data properly meaning that anything

derived from them is not perfectly accurate.

The data grouping method used in this thesis is based on the finding of equivalence classes.

Currently the leading equivalence class finding algorithms use a frequency tree to find their

equivalence classes. However, Grete Lind proposed an alternative method without the use of

trees which this thesis will analyze by comparing it against the current leading algorithms in

the field.

The purpose of this thesis is to analyze the best equivalence class based clustering algorithm

ECCC [1] and develop a new one derived from it by using G. Lind’s algorithm for

equivalence class finding, and use it to prototype a new clustering algorithm.

1.2 Goal of Thesis

The following is a list of goals for the thesis:

 Develop a clustering algorithm’s prototype which clusters data based on equivalence

classes using G. Lind’s algorithm for finding the equivalence classes.

11

 Analyze the current fastest equivalence class finding algorithm DPMiner[2] and

compare it to G. Lind’s algorithm.

 Analyze the best equivalence class based clustering algorithm ECCC and compare it

with the new clustering algorithm.

1.3 Methodology

The algorithm will be created in C++ which is then compared against DPMiner using the

mushroom and connect-4 datasets. Comparison is done on two levels. First the complexity is

compared which is followed by a speed comparison of the applications.

After that a new equivalence class based clustering algorithm is created using G. Lind’s

algorithm for equivalence class finding. The basis for the clustering algorithm will be the best

equivalence class finding algorithm ECCC which uses DPMiner as its equivalence class

finding component. Then the new clustering algorithm is compared against the current

clustering algorithm by using the mushroom dataset.

The mushroom dataset was chosen because it was used in the original ECCC article [1] and

the DPMiner article [2], and since it was unable for the author to get the ECCC algorithms

application and reproduce the DPMiner’s result, that was the only way to compare the

algorithms. The connect-4 dataset was chosen to show the behavior of the new clustering

application on a larger dataset as well.

1.4 Overview of the Thesis

The first section (see section 2 Definitions) focuses on giving an overview of the equivalence

class clustering terminology used in the thesis.

This is followed by a description of G. Lind’s algorithm, its implementation and some

improvements (see section 3 Equivalence Class Finding Algorithm). After which an analysis

of the current fastest equivalence class finding algorithm DPMiner is made along with a

comparison against G. Lind’s algorithm (see section 4 Current Fastest Equivalence Class

Finding Algorithm).

12

Then the thesis focuses on the clustering by first analyzing the current best equivalence class

based clustering algorithm ECCC and suggesting an alternative solution (see section 5

Equivalence Class Based Clustering Algorithm). The section also compares the resulting

clusters created from the equivalence classes found by DPMiner and G. Lind’s algorithm.

The second to last section (see section 6 Use of the New Clustering Algorithm’s) describes

the usage of the new equivalence class finding algorithm’s implementation. And the final

section (see section 7 Conclusions) will analyze the results from the previous sections based

on which it will propose suggestions for any future research. The section also contains lessons

learned from the creation of the thesis.

13

2. Definitions

This section will cover the main definitions used in this thesis.

Cluster – “a cluster is a set of transactions satisfying for some closed

pattern in dataset ” [1].

Closed pattern / Closed set – “an itemset is closed in dataset if there exists no proper

super-itemset such that and in . is a closed

frequent pattern in if it is both closed and frequent in ” [3].

Generator – “an itemset is a generator in if there exists no proper sub-itemset such

that and ” [4].

Equivalence class - “an equivalence class is a set of itemsets that always occur together

in some transactions of dataset . That is, for all and , , where

 . Frequent equivalence classes can be uniquely represented by a set

of generators and their associated closed frequent patterns , in the form of

“[2].

14

3. Equivalence Class Finding Algorithm

In order to find the clusters it is necessary to first find all the closed patterns with their

respective generators and this section covers the algorithm created by Grete Lind (see section

3.1 Algorithm) along with some improvements (see section 3.2 Algorithm Optimizations).

And the final section will cover the implementation specific description (see section 3.3

Implementation).

15

3.1 Algorithm

The following is the pseudo code of the new equivalence class finding algorithm.

Input:

 is the initial data table;

 is the minimal support threshold;

Description:

1. find_all_ECs()

a. t 0 /*recursion level*/;

b. {} /*generator*/;
c. find /*frequency table for */;

d. max integer;

e. findFCs();

2. find_ECs(,)

a. FOR EACH element with frequency =min

 DO /* element is of value h of attribute f*/

b. make_extract(, ,);

c. ;

d. END FOR;

3. make_extract(, ,)

a. ;

b. ;
c. ;
d. separate submatrix such that ;

e. find ;
f. FOR EACH empty position in DO

g. IF exists element such that THEN

h. ;

i. IF

j. ;

k. EXIT FOR-cycle;

l. END IF;

m. END IF;

n. END FOR;
o. IF THEN
p. new_EC(, ,); /*Creates new */
q. ELSE
r. add_gen(, ,);/*Adds generator to existing */
s. END IF;

t. /*Zeroes Down*/

u. FOR EACH element with frequency > 0 DO

v. IF THEN
w. END FOR;

x. find_ECs(,); /*Recursion*/

16

The algorithm starts off by creating a frequency table for each attribute value (Line 1.c).

Afterwards it selects the element with the smallest frequency which is above or equal to the

minimal support threshold (Line 2.a) and below the previously found frequency. Then

selected frequency is marked as used (Line 2.c) (see Figure 1).The minimal support threshold

or is the smallest frequency that is still considered as a result. It is defined by the

algorithm executor. The final constraint in the line which defines that each frequency must be

smaller than the previously found frequency is necessary because of the anti-monotonous

property of the generator. “The idea is that an itemset is a generator if and only if

subset(G; X) < subset(K; X) for every immediate proper subset S of K. Therefore, G can be

identified as a generator, or filtered out, by just comparing the support of G with that of G's

(immediate) subsets” [2].

Figure 1: Source table with frequency table

The smallest element is then added to the current generator (Line 3.a) {-, 1, -, -} and a new

subset (Line 3.d) and frequency table (Line 3.e) are created for each row whose attribute value

equals the selected smallest element (see Figure 2).

Figure 2: Sub table with frequency table for Atr2 value 1

Having found the new frequency table, the algorithm then extracts any elements whose

frequency equals the previously found smallest frequency to the closed set(Line 3.h). In this

example the closed set would be {3, 1, 2, 1}.

When extracting the closed set it checks if the closed set has already been found (Line 3.i)

because any already used elements on the same recursion level were already marked (Line

2.c) and previous marked elements have been propagated (Line 3.u). For example if we

17

extract the next smallest frequency from the original table (see Figure 1), Atr3 value 2, we see

that the closed set {3, 1, 2, 1} created from the new frequency table contains an already

existing value, Atr2 value 1, (see Table 1).

Table 1: Frequency table showing existing closed set

Frequency table Atr3:2

Value Atr1 Atr2 Atr4

1 0 1 1

2 0 0 0

3 1 0 0

If the extracted closed set is new (Line 3.o) a new equivalence class is created containing the

closed set, generator and frequency (Line 3.p), otherwise the current generator is added to the

existing equivalence class.

3.2 Algorithm Optimizations

The following is a list of improvements made for the algorithm to make it slightly faster.

1. In order to avoid any unnecessary computation the zeroes down cycle (Line 3.u) is

combined with the minimal frequency finding cycle (Line 2.a).

2. It is also unnecessary to continue if the current frequency is equal to or lower than

the minimal support threshold. Because when the minimal frequency is equal to

then the check (Line 2.a) will be false in every case. But the

algorithm would waste time going through every element to verify that all of them fail.

3. Changed the closed set to be propagated to other recursion levels because

otherwise the already filled from the previous recursion level (Line 3.f) will be lost

IF THEN find_ECs(,); /*Recursion*/

FOR EACH element with frequency =min

 DO

 IF THEN

 make_extract(, ,);

 END IF;

 ;

END FOR;

18

in later levels and it is recalculated again which means going through every element in

the frequency table. As a result is found like .

4. Since the closed set is propagated to lower recursion levels a check to search only

empty attributes in the can be added to minimal frequency finding (Line 2.a):

The resulting new algorithm will look like:

FOR EACH element with frequency =min

 and DO

...

19

Input:

 is the initial data table;

 is the minimal support threshold;

Description:

1. find_all_ECs()

a. /*recursion level*/;

b. {} /*generator*/;
c.
d. find /*frequency table for */;

e. max integer;

f. findFCs();

2. find_ECs(,)

a. FOR EACH element with frequency =min

 and DO

b. IF THEN

c. make_extract(, ,);

d. END IF;

e. ;

f. END FOR;

3. make_extract(, ,)

a. ;

b. ;

c. ;
d. separate submatrix such that ;

e. find ;
f. FOR EACH empty position in DO

g. IF exists element such that THEN

h. ;

i. IF THEN

j. ;

k. EXIT FOR-CYCLE;

l. END IF;

m. END IF;

n. END FOR;
o. IF THEN
p. new_EC(,); /*Creates new */
q. ELSE
r. add_gen(, ,);/*Adds generator to existing */
s. END IF;

t. IF THEN find_ECs(,); /*Recursion*/

20

3.3 Implementation

The program is implemented in C++ because it allows for high level performance

improvements and memory management. The other reason for choosing C++ was that the

other equivalence class finding and clustering algorithms are also written in C++.

Since it is very easy to create memory leaks with arrays in C++, the choice for standard

library vectors were made instead of arrays. This of course meant a little performance hit of

about 5% of CPU cycles during array initialization [5]. But accessing elements is the same

speed.

When using regular multidimensional arrays the compiler actually changes the

multidimensional arrays to a single array to avoid the look up time of internal arrays [6].

However, because of the use of vectors this needed to be managed in the implementation. As

a result accessing element K of row L in table T looks like T[L*M + K] where M is the

number of elements in each row.

Since all multidimensional arrays are converted to a single dimension it is necessary to find

the number of different values in each attribute to be able to access the frequency table

properly since not every attribute has the same number of different values. So in addition to

the initial table and minimal support threshold the algorithm requires an additional input

parameter containing the number of different values each attribute can have.

Another speed improvement made is that instead of accessing the array the regular way using

the [] operand iterators were used which allow traversing through memory instead of doing a

look up like the [] operand does for every element accessed.

Minimal frequency element finding (Line 2.a in “3.1 Algorithm”) is implemented by using an

array of data structures which combine attribute, value and frequency into one object. “A data

structure is a group of data elements grouped together under one name” [7]. Afterwards the

vector is sorted using the standard sort method of the C++ library with a complexity of

 .[8] Frequencies are first sorted by frequency number then attribute order and finally

attribute value order in ascending order.

Since the most time consuming operation in the whole algorithm is traversing through every

line where is the number of rows and the number of attributes, the sub matrix

21

(Line 3.d in “3.1 Algorithm”) and frequency table calculation (Line 3.e in “3.1 Algorithm”)

were combined into one cycle.

Already found equivalence classes are stored in a hash table where the matching is done as

follows:

1. First during initialization, a coefficient is calculated and stored for each attribute.

2. When hashing an equivalence class the hash code is calculated by summing every

attribute multiplied by its coefficient. The resulting hash is unique for each

equivalence class. However, since the hash code is stored in a 32 bit integer, the

maximal hash code value is , afterwards it will start back at 0. Which means that if

 then . The other limit of the hash code is the size of

the hash table itself, as it is highly unlikely that the number of equivalence classes

reaches .

3. When the hash codes for two equivalence classes are equal or are mapped to the same

spot also known as a hash collision [9]. Then the frequencies along with the closed

sets for both equivalence classes are compared. Even though the closed set comparison

is enough the frequency comparison is a very good filter since in a large data set it is

highly unlikely that equivalence classes share the same hash code and frequency

which in turn spares from accessing the array.

For example when the closed set is {2, 1, -, 2} and the first column contains three possible

values and every other column two then the hash code for the closed set would be

 .

 ;

FOR EACH DO

 ;

END FOR;

 1;

 ;

FOR EACH attribute DO /* is a list with the number of different

values that each attribute can have*/

 ;

 ;

END FOR;

22

The tests show that on average the number of collisions is smaller than the number of closed

sets which means that equivalence class insertion will not affect the runtime of the

application.

23

4. Current Fastest Equivalence Class Finding Algorithm

As of writing this thesis the fastest equivalence class finding algorithm is DPMiner [2].

DPMiner is based on FP-Trees [10] which in order to understand DPMiner have to be covered

first (see section 4.1 FP-Tree). Then the next section will cover the DPMiner base algorithm

itself (see section 4.2 DPMiner) which is then followed by a detailed explanation of how it

finds the equivalence classes (see section 4.3 DPMiner Equivalence Class Finding). And the

final section compares the previously found algorithm (see section 3 Equivalence Class

Finding Algorithm) with DPMiner (see section 4.4 Comparison of DPMiner and the New EC

Finding Algorithm).

4.1 FP-Tree

The following is the FP tree construction algorithm.

[10]

It starts off by scanning the rows, which are called transactions, and creating a frequency table

for each value. Afterwards it sorts each attribute, called item, of every transaction according

Input:

 A transaction database DB and a minimal support threshold ms.

Output:

 Its frequent pattern tree, FP-tree

Method:

 The FP-tree is constructed in the following steps.

1. Scan the transaction database DB once. Collect the set of frequent items F and

their supports. Sort F in support descending order as L, the list of frequent

items.

2. Create the root of an FP-tree, T , and label it as "null".

3. For each transaction Trans in DB do the following.

a. Select and sort the frequent items in Trans according to the order of L.

Let the sorted frequent item list in Trans be [p|P], where p is the first

element and P is the remaining list.

b. Call insert_tree([p|P], T). The function insert tree([p|P], T) is

performed as follows.

i. If T has a child N such that N.item-name = p.item-name, then

increment N's count by 1.

ii. Else create a new node N, and let its count be 1, its parent link

be linked to T , and its node-link be linked to the nodes with the

same item-name via the node-link structure. If P is nonempty,

call insert tree(P, N) recursively.

24

to the incremental order of frequency in the previously found frequency table. In case the

frequency of the item is below the minimal threshold it is ignored. An example with a

minimal frequency of three can be seen in the following table (see Table 2) [10][11].

Table 2: The source data used to build the FP-Tree [2]

ID Items Ordered items

1 f, a, c, d, i, m, p f, c, a, m, p

2 a, b, c, f, l, m, o f, c, a, b, m

3 b, f, h, j, o f, b

4 b, c, k, s, p c, b, p

5 a, f, c, e, l, p, m, n f, c, a, m, p

Then it creates a tree [12] of all the items in a way that when traversing the tree to its leaf we

end up with a transaction. And this is how it maps every transaction to the tree. The mapped

items, called nodes, also contain the number of times a transaction was mapped to them [10]

[11].

In addition to the tree, a header table is created which contains all the nodes for each item.

The reason for that is since one item might be in different places for different transactions and

thus would have a different prefix. This means that the different items would belong to

separate nodes. The result will look like the following figure (see Figure 3)[10] [11].

25

Figure 3: FP-Tree with header table [2]

4.2 DPMiner Algorithm

DPMiner stands for Discriminative Pattern Miner. It finds closed frequent patterns and

frequent generators simultaneously to form equivalence classes. Given a dataset , suppose

can be divided into various disjoint classes, denoted by . Let be

the maximal threshold for each class of transactions (usually 1 or 2), be the minimal

support threshold, and be a frequent equivalence class of and be a closed pattern

of . An equivalence class is a -discriminative equivalence class provided that it’s

closed patterns ’s support is greater than in but less than in where .

Furthermore, is a non-redundant -discriminative equivalence class if and only if it is -

discriminative and there exists no such that , where and are the closed patterns

of and respectively [2].

“DPMiner uses a modified FP-Tree structure. The normal FP-Tree stores all frequent items

in descending frequency in the header table. DPMiner however excludes also those items

whose frequency is equal to the number of transactions because they and those itemsets

containing them are not generators due to the anti-monotone property of the generators. This

modification reduces the header table size” [2].

“Given non-empty classes of transactions — , — , a minimal support

threshold for each equivalence class and a maximal threshold for each class of

transactions the method to discover equivalence classes for the classes of transactions

consists of the following 5 steps” [2]:

26

1. Let

2. Construct a FP-tree based on dataset and run a depth-first search on the tree to find

frequent generators and closed patterns simultaneously. For each search path along the

tree, the search terminates whenever a -discriminative equivalence class is reached.

3. For every frequent closed pattern , determine the class label distribution. That is, find

the class where a closed pattern has the highest support. This step is necessary because

patterns are not mined separately for each , but rather on the entire .

4. Pair generators and closed frequent patterns to form -discriminative equivalence

classes.

5. Output the non-redundant -discriminative equivalence classes where .

4.3 DPMiner Equivalence Class Finding

This section shows the equivalence class finding aspect of DPMiner as it is the core aspect of

the algorithm. It is step 2 in the previous section.

DPMiner starts by first creating a FP-Tree (see section 4.1 FP-Tree). The following figure

(see Figure 4) shows an header table with a FP-Tree created from the same data as G. Lind’s

algorithm example (see Figure 1) but since DPMiner does not allow duplicate values they are

encoded to prefix plus the value of the attribute. For example, when the third attribute’s value

is one then it is encoded to 31 [2].

27

Figure 4: Header table and FP-Tree for G. Lind's algorithms example data

DPMiner then starts selecting elements one by one from the header table and traverses each of

the nodes containing the value to the root. Every value found is added to a new conditional

header table and also a new conditional FP-tree is created based on those values. The

following figure (see Figure 5) demonstrates the conditional header table and FP-Tree the

selected 22 with a frequency of 2 [2].

Figure 5: Conditional FP-Tree and header table for value 22

Whenever a value is selected from the header table it is added to the current generator. For

example, if the value 11 is selected from this conditional header table then the generator for

the next conditional header table would be {11, 22}. The current generator however consists

of only the value 22 [2].

The frequency of the current equivalence class is equal to the frequency of the selected value

which in this example is two [2].

In order to find the closed set the header table is traversed and each element where the

frequency is equal to the selected value’s frequency is added to the closed set along with the

generator. The order of the elements in the closed set is dictated by their order in the original

28

header table (see Figure 4). The elements added are also removed from the header table since

they cannot be generators because of the anti-monotone property of generators. Values, whose

frequency is lower than the minimal support threshold, are also removed from the header table

[2].

The resulting closed set then hashed and a check is made whether it has already been found. If

it is new then the equivalence class is inserted into the hash table which in this example

consists of the generator {22}, the closed set {31, 22} and a frequency of two. If however the

closed set has already been found then the new generator is added to the existing equivalence

class [2].

The FP-Tree shown is actually only created when there exist values whose frequency is

smaller than the selected element’s frequency [2].

The current FP-Tree is correct, however this is usually not the case that a FP-Tree created

from the conditional header table is complete. To demonstrate this we continue finding the

next equivalence class by choosing the value 11 from 22’s conditional header table (see

Figure 5). The resulting conditional header table along with its FP-Tree can be seen in the

following figure (see Figure 6).

Figure 6: Conditional header table and FP-Tree for generator {11,22}

In order to get the correct closed set the FP-Tree needs to be appended with elements from the

tail sub trees. The tail sub tree is the part of the previous FP-Tree which is after the selected

element. In this example it does not matter, however not all the tail sub tree elements are

selected but only elements whose frequency is equal to the specific branch frequency. The

branch frequency is the frequency of the selected element in the branch. Using this example

the branch {11, 31} frequency is one and the tail sub tree consists of the element 42 whose

frequency is also one, which means it can be appended to the FP-Tree. The tail sub tree

elements will not be included in the header table. The complete FP-Tree along with the header

table can be seen in the following figure (see Figure 7) [2].

29

Figure 7: Condition header table and full FP-Tree for generator {11,22}

The resulting equivalence class consists of a generator {22, 11}, a closed set {31, 11, 22, 42}

and a frequency of one.

The complete algorithm however only finds -discriminative equivalence classes. An

equivalence class is -discriminative when the value distribution among its sub classes is less

than the maximal threshold for each class of transactions. And whenever a -discriminative

equivalence class has been found the search terminates. Since in this example there is no class

label distribution, meaning that every element is in the same class, the algorithm will not

make any recursive calls like the previous 11 example. It will only find equivalence classes

from the main header table like the 22 example. In order to illustrate the class label

distribution we will use the following figure (see Figure 8) [2].

Figure 8: Header table with FP-Tree containing class label distribution[2]

In this example we can see that for example the element has been distributed among two

classes with a frequency of three elements in one class and two in the other.

The value distribution of an element can be calculated by subtracting the largest class

frequency from the total frequency of the element. For example if the maximal threshold is

30

two and we have an element whose distribution among three classes is 1:1:6, then the search

would not terminate because the distribution value is not less than the

maximal threshold of two [2].

4.4 Comparison of DPMiner and the New EC Finding Algorithm

This section compares the two algorithms by first comparing their complexity (see

4.4.1 Complexity Comparison) and then measuring the execution speed (see 4.4.2 Speed

Comparison).

4.4.1 Complexity Comparison of EC Finding Algorithms

In computer science complexity comparison is done using the big notation, which describes

the worst case complexity for each step [13].

The two algorithms start with the same thing, which is scan the table and find the frequency

of the values which is where is the number of rows and M the number of

attributes. Then they both sort the frequency table which is where the number

of values in the frequency table is .

The main difference between the two algorithms is in the data they are using. G. Lind’s

algorithm is meant for tables which have a fixed number of attributes in each row. DPMiner is

mainly used for shopping cart like data. This means that the number of elements in each row

is not fixed but is more of like either true or false depending on whether an attribute exists in

the row or not. However, the fixed length rows can also be processed by DPMiner when the

source data is presented in such a way that the same value does not appear in two different

attributes. This means that identical values have to be encoded to be unique for each attribute.

The result is that DPMiner operates on each attribute value separately and can eliminate

values when their frequency is below the minimal support threshold.

When the initial analysis of the data is finished DPMiner requires only one more additional

scan of the original data and afterwards it operates on the frequency values. G. Lind’s

algorithm however does not require this but it needs the initial data table to be scanned again

for every equivalence class found which is where and .

 and mean that in each step the number of rows and attributes is

reduced based on the extracted attribute value. DPMiner on the other hand only requires the

31

scanning of each tree branch containing the element which is where is

the number of attributes just like previously and is the number of different branches that

contain the current element. This in the worst case scenario is actually the number of rows

containing the attribute in the case when every row in the original table is different and does

not contain a similar prefix. And in the best case scenario it is if the attribute is present

only in one tree branch. On the other hand the worst case scenario for DPMiner is the

complexity of G. Lind’s algorithm. Another advantage that DPMiner has is that duplicate

rows are absorbed in the table and will not cause additional data scanning.

When an equivalence class has been found both algorithms use a hash table to link already

existing closed sets with generators. The difference here however lies in the fact that in G.

Lind’s algorithm it is already known if the closed set has been found and thus saves the time

of checking the hash table if it is new or not.

In conclusion, DPMiner should be theoretically faster since for each equivalence class it does

not need to traverse all the rows.

4.4.2 Speed Comparison of EC Finding Algorithms

The problem with comparing the two applications is that DPMiner terminates the search

whenever a -discriminative equivalence class is found (step 2 in section 4.2). In addition to

that, it only outputs -discriminative equivalence classes meaning that it is not possible to

compare the resulting equivalence classes of the two algorithms. The result is that the two

algorithms are not perfectly compatible.

Fortunately the DPMiner creators also created an alternative version called DPM-close of the

same algorithm to mine only closed patterns in order to compare it to other algorithms and in

the DPM-close algorithm they did not use the -discriminative constraint. The only downside

is that the algorithm does not find the generators. As a result it does not need to do a look up

in the equivalence class hash table in order to add a generator to an existing equivalence class.

This is actually something where G. Lind’s algorithm has an advantage since it does not need

to do a lookup in the case where the closed pattern is new. But since the lookup operation is

 for each equivalence class, it is not going to affect the result by a lot.

The following graph (see Figure 9) shows the execution speed of DPMiner-closed compared

to the new EC finding algorithm.

32

The data used for the speed test is the well-known mushroom dataset which has 8124 rows

and 22 attributes. The data describes the properties of the mushrooms and is used to determine

which mushrooms are edible and which poisonous [14].

Figure 9: Speed test results for EC finding using mushroom dataset

In the figure we can clearly see that DPMiner is on average 70% faster as was predicted in the

previous section (see 4.4.1 Complexity Comparison). This result however is not 100%

accurate since DPMiner closed only finds the closed sets and not the generators.

Since the author was unable to repeat the test results of the main DPMiner program done in

the original DPMiner speed test we’ll use the original test results as a reference point (see

Figure 10).

Figure 10: Original DPMiner speed test result for EC finding with mushroom dataset[2]

0.01

0.1

1

10

0 2 4 6 8 10 12

Ti
m

e
 (

se
c)

Minimal support threshold (%)

ECFinder

DPMiner-closed

33

The DPM-close results from both graphs look roughly the same which means that we can

derive that the main DPMiner algorithm DPM that also finds the generators is about two times

faster than the new algorithm. It is however unclear what the exact parameters were for the

DPM algorithm but judging from the execution times the result should be pretty accurate.

The next comparison was done using the connect-4 dataset [15] with 67558 rows and 42

attributes, which is a lot larger than the mushroom dataset (see Figure 11). This dataset

contains all legal 8 positions in the game of connect-4 in which neither player has won yet,

and in which the next move is not forced. So each attribute contains three possible values.

Either it is player one’s game piece, player two’s game piece or blank.

Figure 11: Speed test result for finding equivalence classes using connect-4 dataset

From here we can clearly see that when the amount of data increases the gap between the

algorithms also increases. This is due to the fact that DPMiner does not have to traverse all

the rows and can eliminate specific values which no longer fit the minimal support threshold

and thus would not need to traverse any extra values.

And when comparing that to the original data from the DPMiner creators (see Figure 12) we

can see that the main DPMiner algorithm is over 10 times faster.

1

10

100

1000

10000

10 20 30 40 50

Ti
m

e
 (

se
c)

Minimal support threshold (%)

ECFinder

DPMClosed

34

Figure 12: Original DPMiner speed test result for EC finding with connect-4 dataset [2]

35

5. Equivalence Class Based Clustering Algorithm

This section first describes the clustering algorithm ECCC which stands for Equivalence

Class based Clustering Algorithm for Categorical data [1] (see section 5.1 ECCC Algorithm)

which is currently the fastest clustering algorithm that uses equivalence classes. Afterwards a

few optimizations are proposed in order to be able to combine the new EC finding algorithm

with ECCC (see section 5.2 ECCC Optimizations). The final section compares the differences

between the previous ECCC implementation and the new one (see section 5.3 Comparison of

Clustering Algorithms).

5.1 ECCC Algorithm

This section first contains some base definitions in order to describe the ECCC algorithm (see

section 5.1.1 ECCC Algorithm Base) and later describes the full algorithm (see section 5.1.2

ECCC Algorithm).

5.1.1 ECCC Algorithm Base

ECCC is currently the fastest clustering algorithm that uses equivalence classes. As a base it

uses DPMiner to find the equivalence classes from which it then extracts the clusters [1].

First, each equivalence class is defined as a candidate cluster. “There are often many

candidate clusters, and only a few candidate clusters can become the final clusters. For

example, with minimal support threshold of 5%, there are 9738 candidate clusters in the

mushroom dataset. [14] So quality measures are needed to select the candidate clusters as

final clusters. The algorithm uses factor’s formula used by ECCLAT [16] and replaces the

other factor’s formula using a new one” [1].

“The Homogeneity Index [16] or of a candidate cluster is defined by:

Where “[1].

36

For example if we have a closed set {3, 2, 4, -} which contains the rows {3, 2, 4, 1} and {3, 2,

4, 2} the homogeneity index would be

“Homogeneity Index is used to measure the intra-cluster similarity. Larger values are better.

Using this index, it prefers those candidate clusters whose closed patterns are very long. If a

candidate cluster has a very long closed pattern , then all the rows in share

all items in , implying that is highly coherent. In this case is small

and is large” [1]. To demonstrate this we change the closed set from the previous

example to {3, 2, -, -}. Then the homogeneity index would be

 which is

smaller than .

For the inter-cluster diversity, they propose a measure called Discriminativeness Index or

which for a candidate cluster is defined as:

Where is the set of generators in the equivalence class, are the

number of attributes in the cs and [1].

For example if we have an equivalence class consisting of a closed set {3, 2, 4, -} and the

generators {3, -, -, -} and {-, 2, 4, -} then the Discriminativeness index would be

 .

“Larger values are better. Using this Discriminativeness Index, it prefers the

candidate cluster which has a very long closed pattern and many short generator

patterns” [1].

Finally it combines the Homogeneity and Discriminativeness Index to form the

Quality Index of the candidate cluster which is defined as follows:

This index is used to select candidate clusters with high Quality Index as the final clusters.[1]

37

5.1.2 ECCC Algorithm

The pseudo code of ECCC is given below:

[1]

On dataset , it first uses DPMiner algorithm [2] to mine the closed patterns and their

generators simultaneously by using a minimal frequency threshold or . Then, it determines

the candidate clusters of the frequent closed patterns which currently are equal to the

equivalence classes, calculates the quality of each candidate cluster (see Table 3), and selects

the candidate cluster with highest quality as the final cluster which in the

example is the cluster {3, 2, 1, 1}. When there are two highest quality candidate clusters, it

prefers the candidate cluster with larger number of rows [1].

Input:

 is a dataset to be clustered;

 is the minimal support threshold;

Output:

 is the set of Clusters;

 is the set of trash transactions;

Description:

1. mine ;
2. FOR EACH DO
3. calculate and ;
4. ;
5. END FOR;
6. select , s.t

 ;

7.
8. delete ;
9. insert into ;

10. FOR EACH DO

11. ;
12. IF THEN

13. delete ;
14. ELSE

15. recalculate , and ;
16. END IF;

17. END FOR;

18. repeat steps 6-17 until there are no candidate clusters;

19. classify the remaining transactions of into the ;

20. return and ;

38

Table 3: ECCC candidate clusters

Frequency Closed set Generators Rows Quality index ()

1 {3, 1, 2, 1} {-, 1, -, -}

{-, -, 2, -}

{3, 1, 2, 1}

2 {3, -, -, 1} {3, -, -, -} {3, 1, 2, 1}

{3, 2, 1, 1}

1 {3, 2, 1, 1} {3, 2, -, -}

{3, -, 1, -}

{3, 2, -, 1}

{3, 2, 1, 1}

For any remaining candidate cluster such that and ,

it modifies the candidate cluster as If , it

deletes the candidate cluster . Afterwards it recalculates , and

 of the candidate clusters (see Table 4), and selects the cluster with highest

quality as the next final cluster which in this example is the closed set {3, 1, 2, 1} [1].

Table 4: ECCC candidate clusters after final cluster removal

Frequency Closed set Generators Rows Quality index ()

1 {3, 1, 2, 1} {-, 1, -, -}

{-, -, 2, -}

{3, 1, 2, 1}

1 {3, -, -, 1} {3, -, -, -} {3, 1, 2, 1}

The process above is repeated until there are no candidate clusters left. At the end, it classifies

all remaining transactions into the trash set [1].

5.2 ECCC Optimizations

This section proves that it is possible to make the quality index calculation constant for a

given candidate cluster (see section 5.2.1 Quality Index Optimization) which in turn allows

reducing the number of candidate clusters traversed during clustering (see section 5.2.2 Sort

Clusters by Quality Index and “5.2.3 Implementation Based Optimizations).

5.2.1 Quality Index Optimization

Because in G. Lind’s algorithm the data used has a fixed number of attributes, it is possible to

reduce the complexity of ECCC by not having to recalculate the Quality Index of each

candidate cluster whenever a final cluster is found.

39

First we take the initial divergence formula of the Homogeneity Index:

Since each row has attributes and the closed set length is we can reduce the divergence

formula to:

Where is the number of rows in the candidate cluster and the number

of attributes missing from the closed set.

Now if we replace this in the original Homogeneity Index formula:

The result will be:

Since the frequency of the candidate cluster appears in each multiplication it cancels

out and as a result the equation will be:

In the denominator the number of attributes of the closed set also cancels out which

makes the final result look like:

Where is the number of attributes in the closed set and the number of attributes in the

data set .

The resulting Homogeneity Index formula is constant to the size change of the candidate

cluster. This means that it only needs to be calculated once for each cluster. And since the

40

Discriminativeness Index formula is also constant because the closed set and generators do

not change after they have been found, we can derive that with this change of the

Homogeneity Index the Quality Index will be constant to the change of the cluster size as

well. This in turn means that it is not necessary to traverse the rows of each candidate cluster

in order to determine the quality index which saves a lot of computational time since in the

original version of the algorithm it had to be done every time a final cluster is found.

5.2.2 Sort Clusters by Quality Index

When the Quality index is constant rows 6-18 of the algorithm can be changed to:

Instead of comparing each candidate cluster in order to find the maximal cluster which is

 where is the number of candidate clusters and the number of final clusters we

only need to sort the candidate clusters by quality index which is . Then we

can directly traverse through the candidate clusters which has a complexity of .

Now in order to get the final cluster a check needs to be made if any clusters with the same

quality index might have a higher frequency but since the candidate cluster list was already

sorted the possible final clusters must be one of the following candidate clusters. Of course

the worst case scenario in which every cluster has the same Quality index means that each

remaining cluster has to be traversed but this is highly unlikely as the quality index depends

on the size of the closed set and its generators. Which in turn means it can be reduced to .

Another change that was made was the removal of the quality index calculation from the

internal for cycle. This saves a lot of computational time because for each final cluster found

6. sort -s based on in descending order;

7. FOR EACH DO

8. select where = and
 =

 ;
9.
10. delete ;
11. insert into ;

12. FOR EACH DO

13. ;
14. IF THEN

15. delete ;
16. END IF;

17. END FOR;

18. END FOR;

41

the algorithm would no longer have to traverse each row of all the connected clusters to find

Quality Index.

5.2.3 Implementation Based Optimizations

The bottle neck in this algorithm is still the inner for cycle that was already trimmed in the

previous section. The operation in question is reducing the frequency of the candidate clusters

connected to the final cluster.

First of all, in order to get the connections, the rows contained in the closed set would need to

be known. This requires the traversal of the original data set at some point since the

equivalence class finding algorithms only return the closed set attributes. In addition to that,

the knowledge of which other closed sets are connected to the same row is also needed.

However this is something where speed can be traded for memory. If there is enough space it

is possible to store all inter closed set connections when finding them with the equivalence

class finding algorithm and then this operation is very quick. But in a large enough dataset

this is not possible.

With these changes in mind the algorithm from the previous section (see section 5.2.2 Sort

Clusters by Quality Index) would change to:

The changes made:

6. sort -s based on in descending order;

7. FOR EACH DO

8. calculate new frequency based on still active rows in ;

9. IF THEN

10. delete ;
11. continue for;

12. END IF;

13. calculate new frequency for where and =

14. select where = and

 =

 ;
15.
16. delete ;
17. insert into ;

18. mark as used;

19. END FOR;

42

1. (Line 8) For each potential cluster the frequency is recalculated by checking how

many rows have been used.

2. (Line 9-12) The algorithm still needs to check if after the new frequency has been

recalculated it is over the minimal support threshold. Otherwise it removes the

candidate cluster.

3. (Line 13) For each candidate cluster whose quality index is the same as the currently

selected cluster a new frequency needs to be calculated in order for the frequency

comparison in the next line (line 14) to be up to date.

4. (Line 18) Instead of updating every cluster connected to the current cluster, only the

initial data set is updated by marking the extracted rows as used.

5. Actually as a side note it is not even necessary to delete the candidate clusters since

the clusters are sorted and when a cluster has been passed it is no longer checked

again. Deletion usually means shifting all the elements in the right one position to the

left.

The result is that the updating of every cluster, with an average complexity of

where is the number of rows and the average number of candidate clusters connected to

each row, has been replaced by traversing each row of the cluster, which has a complexity of

 where is the number of rows and the number of unused candidate clusters with

the same quality index.

5.3 Comparison of Clustering Algorithms

There is no need to compare the complexity of the two algorithms as that has already been

done in the previous sections. As a result this section focuses on comparing the actual

implementations. First in order to determine if the improvements have had an effect a

comparison of the runtime of the two algorithms is made (see section 5.3.1 Speed

Comparison). After that a quality comparison is made to check whether clusters created from

the equivalence classes of G. Lind’s algorithm will have a better result than the equivalence

classes of the DPMiner algorithm (see section 5.3.2 Accuracy Comparison of ECCC and the

New ECCC”).

43

5.3.1 Speed Comparison of Clustering Algorithms

This section uses the mushroom dataset to compare the speed of the two algorithms.

The following figure (see Figure 13) shows the amount of time it takes the new ECCC

algorithm to find all the clusters from the mushroom dataset. Since the original ECCC

algorithm implementation could not be acquired we will use the graph from the original

ECCC article (see Figure 14). In order for the two algorithms to be comparable the mushroom

dataset has been divided into 1K to 8K rows containing datasets for the new ECCC speed test

just like in the original test.

Figure 13: New ECCC algorithm speed test results on mushroom dataset

Figure 14: Original ECCC algorithm speed test on mushroom dataset [1]

The results show that even though the equivalence class finding algorithm is five times slower

than DPMiner (see 4.4.2 Speed Comparison) the new ECCC algorithm is four times faster.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Ti
m

e
 (

se
c)

Number of rows

44

When looking at the execution time distribution (see Table 5) and the execution time

difference of DPMiner to the new EC finding algorithm (see 4.4.2 Speed Comparison) we can

conclude that the new ECCC is possibly 10 times faster than the old ECCC algorithm.

Table 5: Execution time distribution of new ECCC algorithm on mushroom dataset

#Rows EC finding time (ms) Clustering time (ms)

1000 113 7

2000 229 37

3000 363 51

4000 586 80

5000 828 109

6000 1062 112

7000 1645 141

8000 1611 144

The following table (see Table 6) will show the clustering time of the connect-4 dataset in

order to demonstrate that the new algorithm is capable of processing larger amounts of data.

Table 6: Execution time of new ECCC algorithm on connect-4 dataset

Minimal frequency (%) EC finding time (sec) Clustering time (sec) #ECs

40 523 231 175 340

35 642 133 234 829

30 1103 484 329 546

25 1581 232 565 934

20 2321 483 1 146 096

The table shows that the new clustering algorithm is capable of processing larger amounts of

data with a stable execution time.

5.3.2 Accuracy Comparison of ECCC and the New ECCC

This section uses the mushroom data set to compare the algorithms quality against each other.

The following table (see Table 7) shows the clusters created using the mushroom dataset and

a minimal support threshold or minimal frequency of 4%.

45

Table 7: Original ECCC to New ECCC accuracy comparison

Cluster No. New ECCC Original ECCC

#Poisonous #Edible #Poisonous #Edible

1 0 768 0 576

2 0 864 432 0

3 864 0 0 384

4 0 432 0 384

5 0 432 864 0

6 648 0 576 0

7 648 0 576 0

8 432 0 576 0

9 0 512 0 400

10 448 0 0 400

11 256 96 272 96

12 288 48 72 528

13 0 480 128 384

14 200 192 0 384

15 72 272 144 384

16 0 0 240 96

Trash 60 112 36 192

Error 468 572

The result is that the new ECCC which uses G. Lind’s algorithm will find 15 clusters instead

of 16 and it has 25% less errors. The number of errors is determined by the number of

elements in the smaller subset highlighted in bold.

To further compare the two implementations we use the same 10 different frequencies from

1% to 10% used by the ECCC authors in order to determine if the previous result is correct

[1]. The results are shown in the following table (see Table 7).

Table 8: ECCCs comparison with multiple frequencies result

minfr(%) New ECCC Original ECCC

#Clusters +

trash cluster

#Errors #Clusters +

trash cluster

#Errors

1 28+1 72 28+1 252

2 22+1 236 24+1 252

3 18+1 332 20+1 172

4 15+1 468 16+1 572

5 13+1 476 12+1 890

6 11+1 596 11+1 890

7 10+1 620 11+1 890

8 9+1 620 6+1 890

9 8+1 876 6+1 890

46

minfr(%) New ECCC Original ECCC

#Clusters +

trash cluster

#Errors #Clusters +

trash cluster

#Errors

10 8+1 876 5+1 890

The table shows that the error rates change with different frequencies. But the overall trend

indicates that the result by the new algorithm is more accurate with the exception of a

frequency of 3%. The best result was with a frequency of 1% where the error rate was 0.0088

whereas the best result for the original algorithm was only with an error rate of 0.0212. This is

a two fold increase in accuracy. We can also see that the error rate and cluster number change

is steady and monotonous for the new algorithm whereas in the previous algorithm when the

frequency drops from 7% to 8% the number of clusters halves.

The average clustering error rates for both algorithms are 0.0637 for the new ECCC and

0.0811 for the old algorithm. This indicates that the new algorithm is about 25% more

accurate as was also seen in the previous table (see Table 7).

Next up we will test if the error rates stay stable for larger amounts of data. We will use the

same connect-4 setup as in the speed tests (see Table 6). The following table (see Table 9)

shows the error rate, number of clusters plus trash cluster and number of equivalence classes

found for each frequency percentage.

Table 9: Clustering quality results for new ECCC on connect-4 dataset

Minimal frequency (%) #ECs #Clusters Error rate

40 175 340 2+1 0.0419

35 234 829 2+1 0.0649

30 329 546 3+1 0.0177

25 565 934 3+1 0.0471

20 1 146 096 4+1 0.0568

The table clearly indicates that the error rate stays stable even when the amount of

equivalence classes changes. In fact the result is actually better than for the mushroom dataset

with an average error rate of 0.0457 compared to 0.0637.

47

6. Use of the New Clustering Algorithm’s Application

This section describes the use of the new ECCC algorithm’s application by first describing its

input (see section 6.1 Application Input) and then the output (see section 6.2 Application

Output).

6.1 Application Input

The application input consists of the following parameters:

 Source file path

 Minimal support threshold - the minimal size of the cluster still considered as a result.

 Output file prefix - since there are multiple output files with different suffixes e.g.

“.cluster”, “.closed” etc.

In addition to that there are some optional parameters:

 c - if the source file contains a class label distribution

 A filter to select only specific attributes for analysis e.g. “1-3,14,15” will only use the

attributes 1, 2, 3, 14, 15 for analysis. The parameter should be comma separated with

no spaces.

The input file is a space separated table of integers. If the class label distribution parameter

was provided then the first column in the table is considered the class label for the row. The

class label can be a non-integer string; all the other elements should be integers.

6.2 Application Output

The output of the algorithm is divided into six files. Whenever an attribute value is missing

from a column it is marked by a “-” sign:

 [prefix].closed – is used to display the closed sets. The file consists of the following

columns: the number of attributes in the closed set, the attribute values, and the

48

frequency of the closed set. An example row from a closed set with a frequency of

1004 and two of the four possible attributes defined: “4 29 - 12 - 1004”

 [prefix].key – contains the generators. The file consists of the following columns: the

number of attributes in the generator and the generator attributes values. An example

row for a generator with two of the three values set would look like: “3 - 44 89”

 [prefix].pair – matches the generators to their closed sets. The first number is the index

of the generator in the “.key” file and the second number is the index of the closed set

in the “.closed” file.

 [prefix].fullpair – is an alternative method to combines all the previous files into one

single file. The previous three files used to compare the results with DPMiner which

has a similar output format. In this file columns of each row are: the frequency of the

generator, the generator number “G#” e.g. G24, the generators non-empty values in

the form of “V[attribute #].[value]”. In case the generator and closed set do not match

“ZeroF” is added followed by the values that are included in the closed set but not the

generator. The difference is in the same format as the generator values. An example

row for an equivalence class with a frequency of four, a generator with the second

attribute value of one and a closed set with the second attribute one and third attribute

two, would look like “4 G1 V2.1 ZeroF V3.2”.

 [prefix].cluster – contains the final clusters. The file consists of the following

columns: the number of attributes, the attributes of the cluster and the frequency of the

cluster. On top of that if the input file contained a class label then a class label

distribution for each cluster is also displayed. The last row will always be a trash

cluster with no attributes. The trash cluster contains the remaining data that was not

distributed to the clusters. An example row for a cluster with two of the three

attributes defined and a frequency of 4000 distributed among two classes 1500 and

2500 looks like: “3 12 – 44 4000 1500 2500”

 [prefix]-date-time.rowClusterPair – contains the row cluster distribution. The file

contains the data of the input file with the addition of the last column being the index

of the cluster in the “.cluster” file. The date and time are added to allow this file to be

used as an input file.

49

7. Conclusions

This section first analyses the results of the thesis (see 7.1 Results), then suggests possible

future research (see 7.2 Future Research) and finally contains some lessons learned (see

7.3 Lessons Learned).

7.1 Results

First up the comparison of the new equivalence class finding algorithm to DPMiner (see

section 4.4 Comparison of DPMiner and the New EC Finding Algorithm) shows that, even

though it was not possible to directly compare the two algorithms, DPMiner is at least two

times faster due to the fact that it only uses the frequency values instead of the initial rows for

equivalence class finding.

The analysis of the clustering algorithm ECCC showed that it was possible to make the

quality index calculation constant throughout the clustering process in case the number of

attributes for each row is fixed (see section 5.2.1 Quality Index Optimization). This in turn

allowed the algorithm to be optimized (see section 5.2 ECCC Optimizations) to the point

where it was four times faster than the previous algorithm (see section 5.3.1 Speed

Comparison of Clustering Algorithms).

Finally the quality comparison of the clusters showed that the clusters created with the new

clustering algorithm were 25% more accurate than the ones created with the old algorithm

(see section 5.3.2 Accuracy Comparison of ECCC and the New ECCC). The reason was that

DPMiner restricts the found equivalence classes to -discriminative equivalence classes (see

step 2 in section 4.2 DPMiner Algorithm). It is however unclear how much this affected the

speed results as the author was unable to replicate the speed test results from the original

DPMiner experiments (see Figure 10) using the main DPMiner implementation. The fact is

that removing the -discriminative constraint will make the algorithm slower as it will need to

traverse deeper into the FP-Tree as was seen in the DPMiner implementation example

(see 4.3 DPMiner Equivalence Class Finding).

50

7.2 Future Research

Considering the fact that the equivalence class finding algorithm was at least two times slower

than DPMiner in the mushroom dataset and the clustering algorithm four times faster it can be

concluded that it is possible to create an algorithm that is close to 10 times faster by using the

DPMiner algorithm without the -discriminative component combined with the new

clustering algorithm for fixed attribute count datasets.

7.3 Lessons Learned

The algorithm implementation was created using a test driven development style [17] which

helped a lot as it is otherwise quite easy to break some part of the algorithm without realizing.

And when the bug would finally be discovered it would be very difficult to track down the

origin of it. But the unit tests kept the amount of time wasted on bug finding at a minimum.

Sadly due to time constraints and last minute changes some parts of the final application were

not covered with tests.

The use of the Git version control system [18] when writing the prototype helped out a lot. As

it was possible to easily try new approaches, switch between different implementations and

quickly dismiss some methods with the use of different branches.

The full applications source code repository is publicly available at

https://bitbucket.org/meelispr/magistritoo-c.git.

51

8. Summary

The goal of the thesis was to create an equivalence class based clustering algorithm, using

Grete Lind’s algorithm for equivalence class finding, and comparing the clustering algorithm

against the current fastest algorithm in the field, ECCC, which uses DPMiner for equivalence

class finding.

The following is a list of results of the thesis:

 A comparison of G. Lind’s algorithm against the current best equivalence class finding

algorithm DPMiner. The comparison shows that DPMiner is at least two times faster

since it does not traverse through the data set but instead uses a frequency based tree

structure, FP-Tree. The tree enables element based reduction which gives DPMiner a

huge advantage in larger data tables.

 An analysis of ECCC which shows that, since DPMiner only returns -discriminative

equivalence classes, the resulting clusters are 25% less accurate than the clusters

created from the equivalence classes returned by G. Lind’s algorithm.

 A new clustering algorithm for data where each row contains the same number of

attributes. The algorithm is potentially 10 times faster than ECCC which is meant for

varying number of attributes.

 The prototype of the new clustering algorithm which contains G. Lind’s algorithm for

equivalence class finding and is meant for equal size rows. The algorithm is four times

faster and 25% more accurate from ECCC on the mushroom data set.

The main conclusions of the thesis are:

 If the -discriminative constraint is removed from DPMiner then the clusters created

from its equivalence classes would be at least 25% more accurate. The downside is

that the algorithm will be slower than the current DPMiner algorithm.

 If every row contains the same number of attributes then it is possible to achieve a 10

times increase in clustering speed with the proposed clustering algorithm. Assuming

52

that the modified DPMiner from the previous point is used for equivalence class

finding.

The result however is not perfectly accurate because using the DPMiner’s main algorithm it

was not possible to create the same results as in the original article. However, using

DPMiner’s closed version it was possible to compare the algorithms indirectly. In addition to

that it was not possible to get the implementation of the original ECCC algorithm from its

creators. But since the graphs from the DPMiner test matched pretty accurately and the ECCC

algorithm was created only a couple of years ago, we can conclude that the error is pretty

small.

For future research the new clustering algorithm’s prototype with the modified DPMiner

should be created and tested if it actually is 10 times faster as the current data points to.

In conclusion, the goal of creating a better equivalence class based clustering algorithm was

achieved. However the result is not optimal as it is possible to create a faster algorithm using

the proposed modified DPMiner algorithm.

53

Kokkuvõte

Töö põhilisteks eesmärkideks oli realiseerida ekvivalentsiklassidel põhinev

klasterdamisalgoritm, mis kasutab ekvivalentsiklasside leidmiseks Grete Lindi poolt välja

pakutud algoritmi ning võrrelda saadud klasterdamisalgoritmi hetkel parima algoritmiga

samas vallas, ECCC, mis kasutab DPMinerit ekvivalentsiklasside leidmiseks.

Põhiliste tulemuste loetelu:

 Võrdlus G. Lind’i algoritmi ja hetkel kiireima ekvivalentsiklasse leidva algoritmi,

DPMineri, vahel. Võrdlus näitab, et DPMiner on oodatavalt vähemalt kaks korda

kiirem kuna ei läbi iga ekvivalentsiklassi leidmiseks andmetabeli ridu, vaid selle

asemel läbib rea elementidest koostatud sageduspuud, FP-Tree. Sageduspuu omakorda

võimaldab väärtuse põhist kärpimist, mis annab DPMinerile veel suurema eelise

mahukate andmetabelite puhul.

 ECCC analüüs, mis näitab et kuna DPMiner tagastab ainult -diskriminatiivseid

ekvivalentsiklasse, on klastrite täpsus 25% madalam kui klastritel, mis on

moodustatud G. Lind’i algoritmi poolt tagastatud ekvivalentsiklassidest.

 Uus klasterdamisalgoritm juhuks kui kõik read sisaldavad sama palju attribuute.

Algoritm on potentsiaalselt 10 korda kiirem ECCC-st, mis on mõeldud varieeruva

atribuutide arvuga ridade jaoks.

 Klasterdamisalgoritmi prototüüp, mis sisaldab G. Lind’i poolt välja pakutud algoritmi

ekvivalentsiklasside leidmiseks ja fikseeritud atribuutide pikkusega

klasterdamisalgoritmi. Algoritm on mushroom andmehulga puhul neli korda kiirem

kui hetkel parim ekvivalentsiklassidel põhinev klasterdamisalgoritm ECCC.

Olulistemateks järeldusteks võib lugeda:

 Kui -diskriminatiivne kitsendus DPMinerilt ära võtta, siis tema ekvivalentsiklassidest

moodustatud klastrid oleksid 25% täpsemad. Sellega muidugi kaasneb aga töötlusaja

pikenemine.

54

 Kui eeldada, et iga rida sisaldab sama palju atribuute, siis on võimalik välja pakutud

klasterdamisalgoritmiga saada 10 korda kiirem rakendus kui kasutada

ekvivalentsiklasside leidmiseks eelmises punktis mainitud DPMinerit koos

modifikatsiooniga.

Analüüsi tulemused pole kahjuks 100% täpsed kuna DPMineri põhialgoritmiga ei olnud

võimalik replitseerida originaalartiklis mainitud tulemusi. Seega tuli kasutada DPMineri

closed varianti ja selle kaudu kaudselt võrrelda DPMineri põhialgoritmiga. Lisaks ei

õnnestunud leida ECCC algoritmi loojate poolt tehtud algoritmi rakendust. Seega võib

kiirustega seotud tulemustes esineda väiksemaid kõrvalekaldeid. Kuid arvestades asjaoluga, et

DPMineri kärbitud variandi kiiruste graafikud langesid suhteliselt täpselt kokku ja ECCC

algoritm oli realiseeritud paar aastat tagasi, ei ole oodatav viga kuigi suur.

Tulevikus võiks kindlasti realiseerida uue prototüübi välja pakutud klasterdamisalgoritmile

fikseeritud veergude jaoks, kasutades DPMineri uuendatud varianti ning analüüsida, kas

tulemus on tõepoolest 10 korda kiirem nagu praegused andmed näitavad.

Kokkuvõtvalt võib väita et saavutati eesmärk leida kiirem klasterdamisalgoritm, kuid hetke

lahendus pole optimaalne ja seega on võimalik luua tunduvalt kiirem algoritm kui kasutada

ekvivalentsiklasside leidmiseks DPMineri muudetud varianti, kus leitakse kõik

ekvivalentsiklassid.

55

Bibliography

[1] W. W. D. S. G. D. L. Qingbao, „An Equivalence Class Based Clustering Algorithm for

Categorical Data,“ The First International Conference on Advances in Information

Mining and Management, 2011.

[2] G. L. a. L. W. J. Li, "Mining Statistically Important Equivalence Classes and Delta-

Discriminative Emerging Patterns," KDD, pp. 1-10,430-439, 2007.

[3] J. H. a. M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann, 2nd

edition, 2006.

[4] J. L. a. L. W. Guimei Liu, „A New Concise Representation of Frequent,“ Knowledge and

Information Systems, kd. 17, nr 1, pp. 35-56, 2008.

[5] D. Lemire, „Do not waste time with STL vectors,“ 20-06-2012. [WWW]. Available:

http://lemire.me/blog/archives/2012/06/20/do-not-waste-time-with-stl-vectors/. [Visited

16-04-2014].

[6] The C++ Resources Network, „Arrays,“ The C++ Resources Network, [WWW].

Available: http://www.cplusplus.com/doc/tutorial/arrays/. [Visited 16-04-2014].

[7] The C++ Resources Network, „Structures,“ The C++ Resources Network, [WWW].

Available: http://www.cplusplus.com/doc/tutorial/structures/. [Visited 16-04 -2014].

[8] The C++ Resources Network, „Sort,“ The C++ Resources Network, [WWW]. Available:

http://www.cplusplus.com/reference/algorithm/sort/. [Visited 16-04-2014].

[9] J. Floyd, „What do Hash Collisions Really Mean?,“ 18-07-2008. [WWW]. Available:

http://permabit.wordpress.com/2008/07/18/what-do-hash-collisions-really-mean/.

[Visited 17-04-2014].

[10] J. P. a. Y. Y. J. Han, „Mining frequent patterns,“ SIGMOD, pp. 1-12, 05-2000.

[11] H. Perera, „How to identify frequent patterns using FP tree algorithm,“ 06-2011.

[WWW]. Available: http://hareenlaks.blogspot.com/2011/06/fp-tree-example-how-to-

identify.html. [Visited 17-04-2014].

[12] Wikipedia, „Tree (graph theory),“ Wikipedia, [WWW]. Available:

http://en.wikipedia.org/wiki/Tree_(graph_theory). [Visited 17-04-2014].

[13] Wikipedia, „Big O notation,“ Wikipedia, [WWW]. Available:

http://en.wikipedia.org/wiki/Big_O_notation. [Visited 21-04-2014].

[14] K. &. L. M. Bache, „UCI Machine Learning Repository Mushroom Data Set,“ University

of California, Irvine, School of Information and Computer Sciences, 2013. [WWW].

Available: http://archive.ics.uci.edu/ml/datasets/Mushroom. [Visited 21-04-2014].

[15] K. &. L. M. Bache, „UCI Machine Learning Repository Connect-4 Data Set,“ University

of California, Irvine, School of Information and Computer Sciences, 2013. [WWW].

Available: http://archive.ics.uci.edu/ml/datasets/Connect-4. [Visited 24-04-2014].

[16] N. D. a. B. Cr´emilleux, „ ECCLAT: a New Approach of Clusters Discovery in

Categorical Data,“ 22nd SGAI International Conference on Knowledge Based Systems,

2002.

[17] K. Beck, Test Driven Development: By Example, Addison Wesley, 2003.

56

[18] Software Freedom Conservancy, „Git home page,“ [WWW]. Available: http://git-

scm.com/. [Visited 18-05-2014].

57

Appendix 1. Application Source Code

The source code of the main application is divided into 4 files. These files do not contain file

reading and writing related code but only the algorithm implementation:

 ECFinder.h

 ECFinder.cpp – used to find equivalence classes

 ClusterFinder.h

 ClusterFinder.cpp – used to find clusters based on equivalence classes

58

ECFinder.h

#pragma once

#include <vector>

#include <unordered_map>

#include <memory>

struct FrequencyValue

{

 int frequency;

 int row;

 int col;

 int getOriginalTableCol() { return row; }

 int getOriginalTableColValue() { return col + 1; }

 FrequencyValue(int frequency, int row, int col) :frequency(frequency), row(row),

col(col){}

};

struct EquivalenceClass

{

 int frequency;

 std::vector<int> closedSet;

 std::vector<int> generators;

 double numberOfFilledColumnsInCS;

 double qualityIndex;

 double discriminativenessIndex;

 std::vector<int> rows;

 EquivalenceClass(int frequency, const std::vector<int> &closedSet, std::vector<int>

generators)

59

 :frequency(frequency), closedSet(closedSet), generators(generators){}

};

typedef std::shared_ptr<EquivalenceClass> EquivalenceClassPointer;

struct EquivalenceClassKey

{

 int frequency;

 std::vector<int> closedSet;

 EquivalenceClassKey(int frequency, const std::vector<int> &closedSet)

:frequency(frequency), closedSet(closedSet){}

 bool operator==(const EquivalenceClassKey &other) const

 {

 return frequency == other.frequency && closedSet == other.closedSet;

 }

};

struct EquivalenceClassKeyHasher

{

 static std::vector<size_t> colLengthHashed;

 size_t operator()(const EquivalenceClassKey& key) const

 {

 size_t hash = 0;

 for (size_t col = 0; col < key.closedSet.size(); col++)

 {

 hash += key.closedSet[col] * colLengthHashed[col];

 }

 return hash;

 }

};

class ECFinder

{

public:

60

 ECFinder(const std::vector<int> &table, const std::vector<size_t>&colLength, int

allowedMinFreq);

 ~ECFinder();

 inline void initializeFrequencytable(std::vector<int > &frequencyTable);

 inline void initializeSubMatrix(std::vector<int > &subMatrix);

 inline void orderFrequencyTableInAscendingOrderAndZeroesDown(std::vector< int>

&freqTable, const std::vector< int> &oldFreqTable, int maxFrequency,

std::vector<FrequencyValue> &orderedFrequencies, const std::vector< int> &closedSet);

 inline void populateNewSubMatrixAndFrequencyTable(const std::vector< int >

&oldSubMatrix, FrequencyValue &maxFrequency, std::vector< int > &newSubMatrix,

std::vector< int > &newFrequencyTable);

 inline bool populateClosedSetAndReturnIfExisting(const std::vector< int>

&oldFrequencyTable, const std::vector< int> &newFrequencyTable, int maxFrequency,

std::vector<int> &closedSet);

 inline bool addToResultAndReturnIfNew(const std::vector< int>

&oldFrequencyTable, const std::vector< int> &newFrequencyTable, int maxFrequency,

std::vector<int> &closedSet);

 inline void findEquivalenceClass(const std::vector< int > &oldSubmatrix, const

std::vector<int> &oldFrequencyTable, FrequencyValue &maxFrequency, const

std::vector<int> &oldClosedSet);

 void findAllEquivalenceClasses();

 void findFrequencyClasses(const std::vector<int> &submatrix, const std::vector< int >

&oldFrequencyTable, std::vector< int > &newFrequencyTable, int maxFrequency, const

std::vector< int > &closedSet);

 std::vector<int> currentGenerator;

 std::unordered_map<EquivalenceClassKey, EquivalenceClassPointer,

EquivalenceClassKeyHasher> resultMap;

private:

 std::vector<int> table;

 std::vector<size_t> colLength;

 size_t numberOfColumns;

 int allowedMinFreq;

};

61

ECFinder.cpp

#include "stdafx.h"

#include "ECFinder.h"

std::vector<size_t> EquivalenceClassKeyHasher::colLengthHashed;

ECFinder::ECFinder(const std::vector<int> &table, const std::vector<size_t>&colLength, int

allowedMinFreq)

:table(table), colLength(colLength), resultMap(200000), currentGenerator((colLength.size() -

1)),

allowedMinFreq(allowedMinFreq)

{

 numberOfColumns = (colLength.size() - 1);

 std::vector<size_t> colLengthHashed(numberOfColumns);

 colLengthHashed[0] = 1;

 for (size_t col = 1; col < colLengthHashed.size(); col++)

 {

 colLengthHashed[col] = (colLength[col] - colLength[col - 1]) *

colLengthHashed[col - 1];

 }

 EquivalenceClassKeyHasher::colLengthHashed = colLengthHashed;

}

ECFinder::~ECFinder(){}

void ECFinder::findAllEquivalenceClasses()

{

 std::vector< int > frequencyTable(colLength.back());

 std::vector< int > closedSet(numberOfColumns);

 std::vector<int > subMatrix(table.size() / numberOfColumns);

 initializeFrequencytable(frequencyTable);

62

 initializeSubMatrix(subMatrix);

 findFrequencyClasses(subMatrix, frequencyTable, frequencyTable,

std::numeric_limits<int>::max(), closedSet);

}

void ECFinder::findFrequencyClasses(const std::vector<int> &submatrix, const std::vector<

int > &oldFrequencyTable, std::vector< int > &newFrequencyTable, int maxFrequency, const

std::vector< int > &closedSet)

{

 std::vector< FrequencyValue > orderedFrequencies;

 orderFrequencyTableInAscendingOrderAndZeroesDown(newFrequencyTable,

oldFrequencyTable, maxFrequency, orderedFrequencies, closedSet);

 for (auto & minFrequency : orderedFrequencies)

 {

 currentGenerator[minFrequency.getOriginalTableCol()] =

minFrequency.getOriginalTableColValue();

 findEquivalenceClass(submatrix, newFrequencyTable, minFrequency,

closedSet);

 currentGenerator[minFrequency.getOriginalTableCol()] = 0;

 newFrequencyTable[colLength[minFrequency.row] + minFrequency.col] = 0;

 }

}

inline bool sortByFrequency(const FrequencyValue &leftFreq, const FrequencyValue

&rightFrequency)

{

 if (leftFreq.frequency == rightFrequency.frequency) {

 if (leftFreq.row == rightFrequency.row) {

 return leftFreq.col < rightFrequency.col;

 }

 return leftFreq.row < rightFrequency.row;

 }

 return leftFreq.frequency < rightFrequency.frequency;

}

63

inline void ECFinder::orderFrequencyTableInAscendingOrderAndZeroesDown(std::vector<

int> &freqTable, const std::vector< int> &oldFreqTable, int maxFrequency,

std::vector<FrequencyValue> &orderedFrequencies, const std::vector< int> &closedSet)

{

 orderedFrequencies.reserve(freqTable.size());

 auto freqIt = freqTable.begin();

 auto oldfreqIt = oldFreqTable.begin();

 auto colIt = colLength.begin();

 auto closedSetIt = closedSet.begin();

 for (size_t row = 0; colIt < colLength.end() - 1; row++, colIt++, closedSetIt++){

 if (*closedSetIt == 0) {

 for (size_t col = 0; freqIt < freqTable.begin() + *(colIt + 1); col++,

freqIt++, oldfreqIt++)

 {

 if (*oldfreqIt == 0) {

 *freqIt = 0;

 continue;

 }

 if (*freqIt >= allowedMinFreq && *freqIt < maxFrequency){

 orderedFrequencies.emplace_back(*freqIt, row, col);

 }

 }

 }

 else {

 freqIt += *(colIt + 1) - *colIt;

 oldfreqIt += *(colIt + 1) - *colIt;

 }

 }

 std::sort(orderedFrequencies.begin(), orderedFrequencies.end(), sortByFrequency);

}

64

inline void ECFinder::findEquivalenceClass(const std::vector< int > &oldSubmatrix, const

std::vector<int> &oldFrequencyTable, FrequencyValue &maxFrequency, const

std::vector<int> &oldClosedSet)

{

 std::vector< int > newSubmatrix(maxFrequency.frequency);

 std::vector< int > newFrequencyTable(oldFrequencyTable.size());

 std::vector< int > newClosedSet(oldClosedSet);

 newClosedSet[maxFrequency.getOriginalTableCol()] =

maxFrequency.getOriginalTableColValue();

 populateNewSubMatrixAndFrequencyTable(oldSubmatrix, maxFrequency,

newSubmatrix, newFrequencyTable);

 bool isNew = addToResultAndReturnIfNew(oldFrequencyTable, newFrequencyTable,

maxFrequency.frequency, newClosedSet);

 if (maxFrequency.frequency > allowedMinFreq) {

 findFrequencyClasses(newSubmatrix, oldFrequencyTable,

newFrequencyTable, maxFrequency.frequency, newClosedSet);

 }

}

inline void ECFinder::populateNewSubMatrixAndFrequencyTable(const std::vector< int >

&oldSubMatrix, FrequencyValue &maxFrequency, std::vector< int > &newSubMatrix,

std::vector< int > &newFrequencyTable)

{

 auto it = newSubMatrix.begin();

 auto tableIt = table.begin();

 for (const int rowIdx : oldSubMatrix)

 {

 tableIt = table.begin() + rowIdx * numberOfColumns;

 if (*(tableIt + maxFrequency.getOriginalTableCol()) ==

maxFrequency.getOriginalTableColValue()) {

 *it = rowIdx;

 ++it;

 for (auto colIt = colLength.begin(); colIt < colLength.end() - 1; colIt++,

tableIt++)

65

 {

 newFrequencyTable[*colIt + *tableIt - 1]++;

 }

 }

 }

}

inline bool ECFinder::addToResultAndReturnIfNew(const std::vector< int>

&oldFrequencyTable, const std::vector< int> &newFrequencyTable,

 int maxFrequency, std::vector<int> &closedSet)

{

 bool isExisting = populateClosedSetAndReturnIfExisting(oldFrequencyTable,

newFrequencyTable, maxFrequency, closedSet);

 if (isExisting) {

 EquivalenceClassPointer equivalenceClass = resultMap[{maxFrequency,

closedSet}];

 equivalenceClass->generators.reserve(equivalenceClass->generators.size() +

currentGenerator.size());

 equivalenceClass->generators.insert(equivalenceClass->generators.end(),

currentGenerator.begin(), currentGenerator.end());

 }

 else

 {

 EquivalenceClassPointer equivalenceClass(new

EquivalenceClass(maxFrequency, closedSet, currentGenerator));

 resultMap[{maxFrequency, closedSet}] = equivalenceClass;

 }

 return !isExisting;

}

inline bool ECFinder::populateClosedSetAndReturnIfExisting(const std::vector< int>

&oldFrequencyTable, const std::vector< int> &newFrequencyTable, int maxFrequency,

std::vector<int> &closedSet)

{

66

 int savedSize = 0;

 bool isExisting = false;

 auto freqIt = newFrequencyTable.begin();

 auto oldfreqIt = oldFrequencyTable.begin();

 auto colIt = colLength.begin();

 auto closedSetIt = closedSet.begin();

 for (size_t realCol = 0; colIt < colLength.end() - 1; colIt++, realCol++, closedSetIt++)

 {

 if (*closedSetIt == 0)

 {

 for (size_t col = 0; freqIt < newFrequencyTable.begin() + *(colIt + 1);

col++, freqIt++, oldfreqIt++)

 {

 if (*freqIt == maxFrequency) {

 *closedSetIt = col + 1;

 if (*oldfreqIt == 0) {

 isExisting = true;

 }

 freqIt = newFrequencyTable.begin() + *(colIt + 1);

 oldfreqIt = oldFrequencyTable.begin() + *(colIt + 1);

 break;

 }

 }

 }

 else {

 freqIt += *(colIt + 1) - *colIt;

 oldfreqIt += *(colIt + 1) - *colIt;

 }

 }

 return isExisting;

}

inline void ECFinder::initializeFrequencytable(std::vector<int > &frequencyTable)

{

67

 for (size_t count = 0; count < table.size(); count++)

 {

 frequencyTable[colLength[count % numberOfColumns] + (table[count] -

1)]++;

 }

}

inline void ECFinder::initializeSubMatrix(std::vector<int > &subMatrix)

{

 for (size_t count = 0; count < table.size() / numberOfColumns; count++)

 {

 subMatrix[count] = count;

 }

}

68

ClusterFinder.h

#pragma once

#include "ECFinder.h"

class ClusterFinder

{

public:

 ClusterFinder(size_t numberOfColumns, int minFrequency, std::vector<int> table);

 ~ClusterFinder();

 inline void findDiscriminativenessIndex(EquivalenceClassPointer &candidateCluster);

 inline double findHomogeneityIndex(EquivalenceClassPointer &candidateCluster);

 inline void findQualityIndex(EquivalenceClassPointer &candidateCluster);

 EquivalenceClassPointer findFinalCluster(std::vector<EquivalenceClassPointer>

&candidateClusters);

 inline void removeExtractedRowsAndReduceFrequencies(EquivalenceClassPointer

&finalCluster, std::vector<EquivalenceClassPointer> &candidateClusters);

 inline EquivalenceClassPointer

findNextFinalCluster(std::vector<EquivalenceClassPointer> &candidateClusters);

 void findClusters(std::vector<EquivalenceClassPointer> &candidateClusters);

 std::vector<int> table;

 std::vector<int> availableRows;

 std::vector<int> tempAvailableRows;

 std::vector<int> potentialAvailableRows;

 std::vector<int> tempUsedRows;

 std::vector<int> potentialUsedRows;

 std::vector<EquivalenceClassPointer> result;

private:

 inline int calculateFrequency(const std::vector<int> &closedSet);

 size_t numberOfColumns;

 int minFrequency;

};

69

ClusterFinder.cpp

#include "stdafx.h"

#include "ClusterFinder.h"

ClusterFinder::ClusterFinder(size_t numberOfColumns, int minFrequency, std::vector<int>

table)

: numberOfColumns(numberOfColumns), minFrequency(minFrequency), table(table),

availableRows(table.size() / numberOfColumns, 1)

{

 for (size_t count = 0; count < availableRows.size(); count++)

 {

 availableRows[count] = count;

 }

 tempAvailableRows.reserve(availableRows.size());

 potentialAvailableRows.reserve(availableRows.size());

 tempUsedRows.reserve(availableRows.size());

 potentialUsedRows.reserve(availableRows.size());

}

ClusterFinder::~ClusterFinder()

{

}

std::vector<EquivalenceClassPointer> tmpCandidateClusters;

inline void ClusterFinder::findDiscriminativenessIndex(EquivalenceClassPointer

&candidateCluster)

{

 int genFilledSize = 0;

 candidateCluster->numberOfFilledColumnsInCS = 0;

 candidateCluster->discriminativenessIndex = 1;

 for(const int value : candidateCluster->closedSet) {

70

 if (value != 0) {

 candidateCluster->numberOfFilledColumnsInCS++;

 }

 }

 for (size_t i = 0; i < candidateCluster->generators.size(); i++)

 {

 if (candidateCluster->generators[i] != 0)

 {

 genFilledSize++;

 }

 if ((i + 1) % numberOfColumns == 0)

 {

 candidateCluster->discriminativenessIndex *= (1 + (candidateCluster-

>numberOfFilledColumnsInCS - genFilledSize) / candidateCluster-

>numberOfFilledColumnsInCS);

 genFilledSize = 0;

 }

 }

}

inline double ClusterFinder::findHomogeneityIndex(EquivalenceClassPointer

&candidateCluster)

{

 return candidateCluster->numberOfFilledColumnsInCS / numberOfColumns;

}

inline void ClusterFinder::findQualityIndex(EquivalenceClassPointer &candidateCluster)

{

 findDiscriminativenessIndex(candidateCluster);

 candidateCluster->qualityIndex = candidateCluster->discriminativenessIndex *

 findHomogeneityIndex(candidateCluster);

}

71

inline bool sortByQualityIndex(const EquivalenceClassPointer &leftFreq, const

EquivalenceClassPointer &rightFrequency)

{

 if (leftFreq->qualityIndex == rightFrequency->qualityIndex) {

 return leftFreq->frequency > rightFrequency->frequency;

 }

 return leftFreq->qualityIndex > rightFrequency->qualityIndex;

}

void ClusterFinder::findClusters(std::vector<EquivalenceClassPointer> &candidateClusters)

{

 /*Find QIs*/

 for (auto & candidateCluster : candidateClusters)

 {

 findQualityIndex(candidateCluster);

 }

 /*sort*/

 std::sort(candidateClusters.begin(), candidateClusters.end(), sortByQualityIndex);

 /*find all clusters*/

 int frequency;

 int maxFrequency;

 EquivalenceClassPointer finalCluster;

 unsigned int unsignedMinFrequency = (unsigned int) minFrequency;

 for (auto cluster = candidateClusters.begin(); cluster < candidateClusters.end() &&

availableRows.size() >= unsignedMinFrequency; cluster++)

 {

 if ((*cluster)->frequency < minFrequency)

 {

 continue;

 }

 /* calculate new freq*/

 maxFrequency = calculateFrequency((*cluster)->closedSet);

 if (maxFrequency < minFrequency)

72

 {

 continue;

 }

 (*cluster)->frequency = maxFrequency;

 finalCluster = (*cluster);

 potentialAvailableRows.swap(tempAvailableRows);

 potentialUsedRows.swap(tempUsedRows);

 /*Check for same QI elements*/

 for (auto tempCluster = cluster + 1; tempCluster < candidateClusters.end() &&

!((*tempCluster)->qualityIndex < (*cluster)->qualityIndex); tempCluster++)

 {

 frequency = calculateFrequency((*tempCluster)->closedSet);

 (*tempCluster)->frequency = frequency;

 if (frequency > maxFrequency) {

 finalCluster = (*tempCluster);

 maxFrequency = frequency;

 potentialAvailableRows.swap(tempAvailableRows);

 potentialUsedRows.swap(tempUsedRows);

 }

 }

 if (finalCluster != (*cluster)) {

 cluster--; /* this step is necessary in order to recheck the current cluster

when it is not the final one*/

 }

 /*remove used rows*/

 availableRows.swap(potentialAvailableRows);

 finalCluster->rows = potentialUsedRows;

 result.push_back(finalCluster);

 }

}

73

inline int ClusterFinder::calculateFrequency(const std::vector<int> &closedSet){

 int frequency = 0;

 auto tableIt = table.begin();

 bool containedInRow;

 tempAvailableRows.clear();

 tempUsedRows.clear();

 for (const int rowIdx : availableRows){

 tableIt = table.begin() + rowIdx * numberOfColumns;

 containedInRow = true;

 for (auto closedSetIt = closedSet.begin(); closedSetIt < closedSet.end();

closedSetIt++, tableIt++) {

 if (*closedSetIt != 0 && *closedSetIt != *tableIt) {

 containedInRow = false;

 break;

 }

 }

 if (containedInRow) {

 frequency++;

 tempUsedRows.emplace_back(rowIdx);

 }

 else {

 tempAvailableRows.emplace_back(rowIdx);

 }

 }

 return frequency;

}

