
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Computer Systems

Natalia Cherezova 194204IASM

HLS-based Optimization of Tau Triggering
Algorithms for LHC@CERN Application

Master’s Thesis

Supervisor: Artur Jutman
PhD

Co-Supervisor: Dmitri Mihhailov
PhD

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond
Arvutisüsteemide instituut

Natalia Cherezova 194204IASM

Kõrgtasemesünteesil põhinev
tau-vallandumise algoritmide

optimeerimine CERNi Suurele Hadronite
Põrgutile

Magistritöö

Juhendaja: Artur Jutman
PhD

Kaasjuhendaja: Dmitri Mihhailov
PhD

Tallinn 2021

Declaration of Originality

Declaration: I hereby declare that this thesis, my original investigation and achieve-
ment, submitted for the Master’s degree at Tallinn University of Technology, has not
been submitted for any degree or examination.

Author: Natalia Cherezova

May 10, 2021

Abstract

With the current increase of the data produced by the Large Hadron Collider (LHC)
at CERN, it becomes important to process this data in a corresponding manner.
To begin with, to efficiently select events that contain relevant information from a
massive flow of data. This is the task of the tau lepton decay triggering algorithm
developed by the National Institute of Chemical Physics and Biophysics (NICPB)
group and Tallinn University of Technology (TalTech). The task of the TalTech
group is to implement the algorithm on the FPGA board in accordance with time
and area constraints.

The implementation is based on the High-Level Synthesis (HLS) approach that
allows to generate a hardware description of the design from the algorithm written in
high-level programming language like C++. HLS tools are intended to decrease the
time and complexity of the hardware design development, however, their capabilities
are limited. Development of an efficient application requires substantial knowledge
of the hardware design and HLS specifics.

The thesis describes the optimizations introduced to the algorithm that improved
latency and area and more importantly solved the problems with the routing, making
it possible to implement the algorithm on the FPGA fabric.

The thesis is in English and contains 49 pages of text, 5 chapters, 22 figures, 8 tables.

4

Annotatsioon

CERNis olev Suur Hadronite Põrguti (Large Hadron Collider — LHC) toodab üha
enam uusi andmeid, mistõttu on tekkivate andmete korrektne ja ajakohane töötlemine
muutunud üha olulisemaks. Esmalt tuleb suurandmetest efektiivselt üles leida
sündmused, mis sisaldavad endas olulist informatsiooni. Üheks selliseks sündmuseks
on tau-lepton osakeste lagunemise trigeri algoritmi arendamine, millega tegelevad
Keemilise ja Bioloogilise Füüsika Instituudi (NICPB) ja Tallinna Tehnikaülikooli
(TalTech) teadlased. Tallinna Tehnikaülikoolis oleva grupi eesmärgiks on luua ja
rakendada vastav algoritm programmeeritava ventiilmaatriksi (FPGA) peal, järgides
sealjuures kitsendusi nii ajale kui suurusele.

Loodav lahendus põhineb kõrgtaseme sünteesil (HLS), mille abil saab luua riistvara
disaini kirjelduse kasutades algoritme, mis on kirjutatud kõrgtaseme programmeer-
imiskeeltes nagu C++. HLS tööriistade eesmärgiks on vähendada riistvara loomiseks
kuluvat aega ning keerukust. Paraku on selliste tööriistade võimekus on limiteeritud,
mistõttu on efektiivse lahenduse loomiseks vaja teadmisi nii riistvara disainist kui ka
HLS tööriistade eripäradest.

Antud lõputöö kirjeldab algoritmide optimeerimisi, mis aitavad vähendada nii loodava
disaini viiteid kui ka suurust. Kõige olulisem osa lõputööst on lahenduste leidmine
marsruutimisprobleemidele, mis võimaldab algoritmi rakendada FPGA peal.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 49 leheküljel, 5 peatükki, 22
joonist, 8 tabelit.

5

List of abbreviations and terms

BRAM Block Random Access Memory (RAM)
CDFG Control and Data Flow Graph
CPU Central Processing Unit
DSP Digital Signal Processing
FF Flip-Flop
FIFO First In, First Out
FPGA Field-Programmable Gate Array
FSM Finite State Machine
GPU Graphical Processing Unit
HDL Hardware Description Language
HLS High-Level Synthesis
II Initiation Interval
IP Intellectual Property
IR Intermediate Representation
LHC Large Hadron Collider
LUT Look-Up Table
MUX Multiplexer
RTL Register-Transfer Level
SIMD Same Instruction Multiple Data
VHDL VHSIC (Very High Speed Integrated Circuits) HDL

6

Contents

1 Introduction 10

2 Background 12
2.1 High-Level Synthesis . 12

2.1.1 Motivation for HLS . 12
2.1.2 HLS overview . 13
2.1.3 Brief history of HLS tools . 14
2.1.4 Current state of HLS . 16
2.1.5 Vivado HLS overview . 19

2.2 Project overview . 21

3 Hardware optimizations 24
3.1 Overview of the optimization methods in hardware 24
3.2 Optimizations introduced to the project 28

3.2.1 Design space exploration of seed regions selection 28
3.2.2 Control logic optimization of the candidates preselection . . . 32
3.2.3 Latency optimization of the second step 35
3.2.4 Discussions . 36

4 Sorting 37
4.1 Sorting algorithms overview from the hardware point of view 37
4.2 Development of the sorting algorithm 41

4.2.1 Original algorithm . 41
4.2.2 Streaming merge sort . 42
4.2.3 Spatial insertion sort . 44
4.2.4 Discussions . 48

5 Summary 49

References 51

Appendix 1 Select seed regions 55

Appendix 2 Pre-select candidates 57

Appendix 3 Step 1 v.1 60

Appendix 4 Step 1 v.2 64

7

List of Figures

1 Scheduling and binding example . 14
2 High-level synthesis workflow . 15
3 Results of the case study from Matai et al. 17
4 AutoPilot workflow . 20
5 Data flow of the algorithm . 22
6 Example of the dataflow optimization 25
7 Function execution with and without pipelining 26
8 Adder tree before and after balancing 27
9 Original design of the select_seed_regions function 29
10 Region selection based on the seed coordinates 32
11 New regions representation . 33
12 Seed regions structure . 34
13 Preselect candidates selection process 35
14 Architecture of the spatial sorter . 38
15 Architecture of the linear sorter . 39
16 Bitonic sorting network and odd-even transposition sorting network . 40
17 Merge sorter tree architecture . 42
18 Merge unit implementation . 43
19 Spatial sorter architecture . 45
20 Sorting cell architecture . 45
21 Insertion cell implementation . 46
22 Modified spatial sorter . 47

8

List of Tables

1 Static region selection designs . 30
2 Static regions selection designs with function pipeline 30
3 Static regions selection designs with pipelined loops 31
4 Dynamic region selection results . 31
5 Step 2 functions results . 36
6 Results of the original algorithm modifications 42
7 Results of the original algorithm modifications 44
8 Results for spatial insertion sorter versus original algorithm 48

9

1. Introduction

With the current increase of the data produced by the Large Hadron Collider
(LHC) at CERN, it becomes important to process this data in a corresponding
manner. Firstly, to efficiently select events that contain relevant information from
a massive flow of data. This is the main objective of the joint project of the
National Institute of Chemical Physics and Biophysics (NICPB) group and Tallinn
University of Technology (TalTech). Within the scope of the project a tau lepton
decay triggering algorithm should be developed and implemented on the FPGA
(Field-Programmable Gate Array) board in accordance with time and area constraints.
Hardware implementation of the algorithm is the task of the TalTech group.

The implementation is based on the High-Level Synthesis (HLS) approach that
allows to generate a hardware description from the algorithm written in high-level
programming language like C++. HLS tools are intended to decrease the time
and complexity of the hardware design development, which is especially useful in
case of compute- and data-intensive applications like the developed algorithm for
CERN. However, the capabilities of HLS tools are limited. Proper optimization of
the algorithm requires the knowledge of the hardware design and HLS specifics.

The algorithm is developed using Vivado HLS and will be eventually implemented
on Xilinx Virtex UltraScale+ FPGA VCU118 Evaluation Kit.

The task of the thesis is to optimize the critical parts of the algorithm in order to solve
problems with the timing, area or routing. Considering the selected development
approach, in order to optimize the algorithm two tasks should be solved: first, an
optimized design development and, second, its implementation in a correct way so
that Vivado HLS can synthesize it accordingly.

Several design optimizations were introduced during the work on the project that
improved the latency, decreased the resource usage of the algorithm and more
importantly solved the problems with the routing, making it possible to implement
the algorithm on FPGA fabric.

The thesis is organized in the following way. Chapter 2 presents the main concepts
of high-level synthesis and its current state and also gives the overview of the whole
algorithm. Chapter 3 provides an overview of the hardware optimizations methods
available and describes the optimizations introduced to the algorithm. Chapter 4

10

gives an overview of the sorting algorithms from the hardware point of view and
presents the sorting algorithm developed for the project. Conclusions are given in
the Summary section.

11

2. Background

2.1. High-Level Synthesis

2.1.1. Motivation for HLS

With the increased popularity of the FPGAs (Field-Programmable Gate Array)
and heterogeneous systems combining processor units and programming logic on
one platform, there arises the necessity to introduce new programming methods for
the FPGAs that will make them more accessible for the broader public. FPGAs
are integrated circuits consisting of programmable logic blocks and reconfigurable
interconnects that run without operating systems and processor-like instructions and
can be configured by the user to implement specific applications, hence the name
field-programmable.

FPGAs are programmed with hardware description languages (HDL) such as VHDL
(Very High Speed Integrated Circuit Hardware Description Language) and Verilog.
Hardware description languages use RTL (Register-Transfer Level) abstraction that
represents the hardware circuit as a flow of digital signals between storage elements
in sequential logic and arithmetic or logical operations performed on those signals in
combinatorial logic. RTL design is usually implemented as a datapath controlled by
FSM (Finite State Machine). Datapath describes the data flow through the circuit.
FSM describes the states that control the data flow and operations on the data. In
RTL description, they should be defined explicitly.

FPGAs have certain benefits over the traditional computational platforms like CPU
and GPU. Due to their natural parallel computing capabilities, they are faster than
CPU. While GPUs are capable of parallel computing as well, FPGAs are characterized
by lower cost and much lower power consumption.

However, the complexity of programming that requires the substantial knowledge of
the underlying architecture and hardware specifics and increased time to develop
the product makes FPGA platforms less accessible for the broader public. Using
IP (Intellectual Property) cores, ready to use functional blocks, is one way to solve
the problem, they allow to build an application in a Lego-like fashion by combining
needed blocks together. Nevertheless, not every functionality can be implemented

12

using IPs. More complex algorithms require tailored solutions designed specifically
for the application.

A better way to solve the problem is the High-Level Synthesis (HLS) tools that
introduce a higher level of abstraction for the hardware programming, namely
they allow developers to write algorithms in high-level languages like C and C++
that will be automatically translated by the tool into HDL specification taking
into account characteristics of the selected board. This way, HLS tools allow non-
hardware specialists to program FPGAs. Additionally, they increase portability
and maintainability of the application, code written in C/C++ can be easily re-
synthesised for different target platforms, debugged and changed in case there is a
need. Since input code for HLS describes the algorithm, what the program does,
rather than how exactly it is implemented on the target platform.

2.1.2. HLS overview

High Level Synthesis, also called Behavioral Synthesis and Algorithm Level Synthesis,
consists of two major steps: control logic and datapath extraction and generation of
RTL specification. During the first step, a Control and Data Flow Graph (CDFG) is
created from the input code. CDFG is a directed graph where each node or basic
block represents a statement or a sequence of statements without branches and each
edge represents a control flow. Statements include logical and arithmetic operations
and assignments, in other words, the data flow. Based on the CDFG a standard
architecture with FSM and datapath can be implemented [1, 2].

During the second step, three tasks should be performed: scheduling, allocation and
binding. Scheduling refers to scheduling or assigning operations to the specific clock
cycles. Scheduling takes into account extracted control flow and datapath, as well
as the user constraints. Allocation refers to the allocation or selection of hardware
resources necessary for the design: functional units, storage components, buses. The
types and amount of elements required to implement the algorithm are defined during
the allocation. Binding refers to assigning operations to the specific functional units,
variables to the storage elements and data transfers to the connectivity components.
Binding stage utilizes the detailed documentation of the target platform architecture:
availability and characteristics (such as area, delay and power consumption) of the
hardware components.

Simple scheduling and binding example from [3] is presented in Figure 1.

13

Figure 1. Scheduling and binding example [3]

Allocation, scheduling and binding are often constrained by time or resources, since
high-level synthesis approach is oriented towards optimization of the design. HLS
task can be considered as an optimization problem to minimize the cost function for
one of the design metrics with constraints on the other [4, 5]. High-level synthesis
also performs interface synthesis, implementing appropriate interfaces (data signals
and hand-shaking control signals) for the data transfer between the periphery and
the application, storage components and functional units.

The generalized workflow of the HLS tools is presented in Figure 2. Control and data-
path extraction is represented by the first two tasks: compilation and transformation
of the input code using optimization directives.

2.1.3. Brief history of HLS tools

Early research on high-level synthesis started in the 1970s at Carnegie Mellon
University. Martin et al. [7] calls it “groundbreaking research”, however, notes that
it did not have much effect on the electronic design automation (EDA) industry.

14

Figure 2. High-level synthesis workflow [6]

In the 1980s HLS gained more interest from the research community. Work done at
the time established a strong foundation for the future development and research,
however, it was not until the second half of the 1990s when the first commercial HLS
tools appeared: Behavioral Compiler from Synopsys, Monet from Mentor Graphics
and Visual Architect from Cadence accepted behavioral HDL code as an input.
Behavioral HDL code describes the algorithm in a higher level of abstraction than
RTL. The new approach was considered very promising [8], however, it was reported
that the first generation of HLS tools required “a deep knowledge of their internal
synthesis methods and architectural models” [9]. Those tools did not perform
architecture optimization, rather synthesizing design that satisfied requirements
specified by the designer (amount and type of functional units and memory elements,
latency of the design, etc) [4]. And the quality of generated designs was very low [7].
In the end this approach was not able to replace RTL design flow [10, 11] and was
considered “a commercial failure” [7].

In the 2000s appeared the new generation of HLS tools that accepted input code in
C-like languages and used an iterative optimisation approach. Among the first tools
were Forte Cynthesizer, Mentor Graphics Catapult C Synthesis, Celoxica Agility
compiler, Bluespec Compiler, NEC CyberWorkBench [4].

15

Second generation of the HLS tools was more successful for various reasons [7, 10].

1. Improved quality of results.

2. Change of the input language that moved the algorithm description closer to
the algorithm specification and allowed system and algorithm designers to use
the new tools without the necessity to learn hardware description languages.
Additionally, it allows for easier hardware and software co-simulation.

3. The increased deployment of the FPGAs and heterogeneous systems with
programmable cores allowing for comparatively simple acceleration of the
whole application or some part of it.

The success of the second generation of HLS tools drew a lot of attention to the
topic. Recent years have been very prolific for the HLS community, bringing many
new tools to the market [12]. Research community published many studies on the
design optimization.

Nane et al. [12] reports 17 currently active tools that can be divided into commercial
and academic, tools that accept input code written in domain-specific languages
and general-purpose languages, tools for general purpose applications and limited to
specific domains, like image processing or streaming applications. Numan et al. [13]
updates the list, reporting 16 active commercial and academic tools: only in 5 recent
years several new tools appeared (Intel FPGA SDK for OpenCL), some old tools
have merged (Forte Cynthesizer and Cadence C-to-Silicon Compiler have merged
into Stratus HLS), and some lost their importance (eXcite, NAPA-C).

2.1.4. Current state of HLS

Current generation of HLS tools has achieved substantial results and gained popularity
within industry and academia. One of the reasons of their success, as it was mentioned
before, is the use of high-level programming languages at the input. Working with
the application written with high-level language, makes it easier to debug and do
behavioural verification of the algorithm [14].

According to [15] a complex design utilizing one million gates requires around 300,000
lines of RTL code, however the same algorithm can be expressed in C language with

16

only 30,000-40,000 lines of code, thus reducing the complexity of the task and the
workload.

However, HLS is not a panacea. It still requires domain specific knowledge to write
well optimized code. HLS tools suggest different pragma directives for hardware-
specific optimization of the algorithm. Nevertheless, those directives alone are not
enough to synthesize optimal RTL implementation. They will not be able to improve
the algorithm not suitable for the hardware implementation. In order to produce
efficient hardware description, the input code should be restructured accordingly.
Licht et al. [16] states that naive unoptimized HLS implementations show worser
performance than naive software implementations. Matai et al. [17] presents a
case study for insertion sort optimization, showing how properly written code can
increase the performance of the algorithm, reducing the latency and resource usage.
Restructured code shows the best result time- and area-wise compared to the software
version of the algorithm optimized with different pragma directives. Results of the
case study for comparison are presented in Figure 3.

Figure 3. Results of the case study from [17]

Li et al. [1] compares three optimization approaches: polyhedral framework, Vivado
HLS optimizations and code refactoring method proposed in the paper. Comparison
is based on the synthesis results of four benchmarks. According to the results,
proposed method decrease the latency of the applications 5 times more efficiently.

Huang et al. [6] compares HLS-based development process to embedded systems
development. Even though companies like STM and Arduino producing development
boards provide great support for their products including frameworks for automated
settings and board specific libraries in order to make the programming of the devices

17

easier, it still requires domain specific knowledge to write efficient applications and
solve arising problems.

The main difference is that high-level languages used in HLS for input code are not
designed to describe hardware specifications, they are designed to describe software
instructions executed sequentially, which introduces a challenge of describing hardware
constructs with software languages.

Additionally, it requires the knowledge of how HLS tools themselves work, in what
order they implement directives, how they represent the algorithm internally, how
they synthesize different constructs in order to restructure design of the application
in a way that will produce a desirable result.

Even though HLS tools provide an opportunity to create a plethora of different
hardware designs from the same input code using different directives and hardware-
specific optimization techniques without the necessity to write thousands of lines
of code in VHDL or Verilog, the development of the product using HLS approach
is still time consuming. Synthesis, code refactoring and identification of the best
approach for the product take significant time. A lot of works have been published
by the academic community to address the time consuming problem of the design
space exploration in HLS [18].

Several works report that quality of results (QoR) of the HLS generated hardware
description is far behind that of manually written RTL design [6, 16, 19, 20, 21]. On
the contrary, [10] shows an HLS generated design that reduces the resource usage
by 11-13 % compared to the design written by RTL expert, proving that HLS can
produce competitive results. Case study presented in [22] shows comparable results
as well.

Another drawback of the HLS tools is that reported metrics of the design, such as
latency and area, are only approximate, and in order to obtain the accurate metrics
of the generated design it is necessary to run logic synthesis and implementation,
which in turn increase the evaluation time of the design. Therefore, it is impossible
to evaluate changes introduced to the algorithm purely from the HLS report and
simulation.

A serious limitation of HLS tools is that physical layout and routing estimation is
difficult on the HLS level and therefore requires again logic synthesis and imple-
mentation in order to identify whether synthesized design has routing problems and

18

congestions. Reported congested areas should then be mapped to the original code,
which is a problem on its own, since the generated hardware description of the design
differs drastically from the input code.

Nevertheless, the complex nature of the algorithm that is both compute-intensive
and data-intensive calls for the HLS-based development process. And therefore the
aforementioned specifics of the HLS should be addressed and solved during the work
on the project. The project is developed using Vivado HLS by Xilinx, which is
described in the next subsection.

2.1.5. Vivado HLS overview

Vivado HLS [23] is the commercial tool provided by Xilinx company. Originally
named AutoPilot it was developed by AutoESL. Xilinx bought AutoPilot in 2011
and released the first version of Vivado HLS in 2013 instead of their previous tool
AccelDSP. Li et al. [1] calls it ”the world-leading HLS tool”.

Vivado HLS accepts code written in C, C++ and SystemC as an input and synthesize
hardware description in VHDL, Verilog and SystemC. The tool includes a variety of
pragma directives for design optimization and libraries for hardware specific features,
such as arbitrary precision data types, Xilinx IP (Intellectual Property) functions for
streams, shift-registers, etc. Additionally, it provides automatic test-bench creation,
C and RTL co-simulation, and support for floating-point and fixed-point arithmetics.

After synthesis Vivado HLS creates a report describing the performance metrics
of the generated design, including the maximum frequency of the design based on
the longest combinational delay, latency of the design, initiation interval (number
of clock cycles before the application can accept new input), amount of utilized
resources based on the number of resources available on the target platform, types
of interfaces used for input and output signals. The same information is presented
for every function and loop instantiated in the design.

In order to guarantee synthesizability of the design, Vivado HLS does not accept
some C/C++ language constructs, including recursion, dynamic memory allocation,
function pointers and operating system calls.

Vivado HLS uses LLVM compiler infrastructure that first transforms the input
code into LLVM-IR (intermediate representation based on LLVM instruction set),

19

which then undergoes standard compiler transformations and optimizations, such as
dead and redundant code elimination, constant propagation, logic and arithmetic
expressions refactoring to replace computationally expensive operations with simple
ones. On top of that, hardware-specific optimizations are performed: bitwidth
analysis and propagation through the design in order to optimize the usage of
the resources, memory dependency analysis to uncover parallelism, memory blocks
partition to increase memory bandwidth, loop transformations [10, 13].

Optimized LLVM-IR is used for further optimizations during scheduling and binding.

Since Vivado HLS is a commercial tool, its internal workflow is not disclosed, however,
the workflow of AutoPilot is known as it is based on the academic project xPilot. It
is then logical to assume that the workflow of Vivado HLS is based on it. AutoPilot
workflow is presented in Figure 4 [24].

Figure 4. AutoPilot workflow [24]

Design of the system written in C, C++ or SystemC and user defined constraints
are accepted as an input. Input code is compiled and passed through a series of
compiler transformations. Transformed design representation is then used for HLS
optimizations. When synthesis is done, an RTL implementation in HDL or SystemC
is generated.

20

2.2. Project overview

The work on the thesis was held within the joint project of the National Institute
of Chemical Physics and Biophysics (NICPB) group and Tallinn University of
Technology (TalTech) dedicated to the development of the tau lepton decay triggering
algorithm for the LHC. The algorithm should be implemented on the Xilinx Virtex
UltraScale+ FPGA VCU118 Evaluation Kit, and the hardware implementation of
the algorithm according to the time and area constraints is the task of the TalTech
group.

Tau lepton is an important particle for analysis of the physical processes happening
in LHC, it “plays an important role in both precise measurement of Standard Model
physics and search for physics beyond the Standard Model” [25]. However, it has a
short life time and short decay length, and can be found and reconstructed only by
its decay products. The tau triggering algorithm is designed to identify the events
that have hadronically decaying tau leptons [25].

The algorithm consists of 3 major steps. The principal data flow of the algorithm is
presented in Figure 5.

At the first step, the event data is buffered and 16 best seeds are selected based on
their pT (transverse momentum) value. Every event consists of 36 regions that come
one region at a time. Every region contains 22 charged tracks, 13 photon tracks
and 10 tracks from neutral particles. For brevity, they will be referred to as tracks,
photons and neutrals, the same way as it is done in the code. Data from each region
comes packed as one long sequence of bits. Step 1 divides it into separate tracks and
buffers them into three 2D arrays. 4 best charged tracks from every region form an
array of seed candidates (4 × 36 = 144). 16 tracks with high pT value, which can be
an indication of tau lepton decay, are selected as seeds from those candidates.

Selected seeds and buffered data from the whole event are then passed to the select
candidates block. The task of this intermediate step is to select up to 30 tau
candidates for each seed.

Select candidates block consists of the following stages:

1. Selection of 4 regions for every seed from its neighborhood performed by the
select_seed_regions function.

21

Figure 5. Data flow of the algorithm

2. Saving tracks, photons and neutrals from those regions into separate arrays
performed by the preselect_cands function. Originally, it was also done by the
select_seed_regions function.

3. Filtering those elements in order to find tau candidates that potentially contain
relevant information about tau lepton decay done by the filter_cands function.

4. Merging found candidates (30 × 16 = 480) into one array performed by the
merge_cands function.

22

At the second step, selected tau candidates are analyzed to find signal objects
that can be used to reconstruct tau objects. Using obtained data, tau leptons are
reconstructed and verified whether they are valid or not.

At the third step, possible duplicates are eliminated from the reconstructed tau
leptons and cleaned tau objects are written to the output.

The algorithm is data and computationally intensive and has very strict time and
area constraints. The output should be ready within 250 clock cycles. Therefore, it
is important that the algorithm is well optimized and area efficient.

Moreover, originally, the algorithm had problems with routing due to the high resource
utilization of the step1 function and huge multiplexers in the preselect_cands function
that were solved within the work on the thesis.

23

3. Hardware optimizations

The chapter is dedicated to the hardware optimization methods and their availabil-
ity through HLS tools. The first section of the chapter gives an overview of the
optimization methods, the second section describes optimizations introduced in the
project.

3.1. Overview of the optimization methods in hardware

HLS tools suggest numerous hardware optimization techniques that can be used
to create an efficient RTL implementation of the designed application, including
several levels of parallelism and memory usage optimizations to improve latency and
throughput, arbitrary precision and function inlining to optimize area usage, logic
optimization, etc.

Function level parallelism. In the RTL description, functions are represented as sepa-
rate entities that can be executed concurrently if they do not have data dependencies.
By default, Vivado HLS generates highly sequential design [26], however, it will try
to schedule independent functions to work in parallel if possible. Additionally, there
is a way to parallelize functions that have data dependency by using streaming data
and dataflow directive. Dataflow region should comply with several requirements:
it should follow one producer–one consumer model, meaning data passed between
the functions should be written and read exactly once; there should be no feedback
between the functions and no conditional execution [3]. Depending on the way the
streamed data is accessed, the channels between the functions can be implemented
either as FIFOs (First In First Out) or as ping-pong buffers (PIPO). Sequentially
accessed data channels are implemented as FIFOs, out-of-order accessed data as
PIPOs. The example of the dataflow optimization is presented in Figure 6. Dataflow
is a powerful hardware optimization that can significantly improve the latency of the
application.

Loop level parallelism and loop manipulations. Parallelism in loops can be achieved
through unrolling, executing every iteration of the loop at the same time in a SIMD-
like (Single Instruction Multiple Data) fashion. The level of parallelism and even
the possibility to unroll the loop is determined by the used memory interface and
loop-carried dependencies, data dependencies between iterations. In order to resolve

24

Figure 6. Example of the dataflow optimization

loop-carried dependencies, [16] suggest several solutions including iteration space
transposition, buffered accumulation, tiled and batched accumulation, since even
partial loop unrolling can increase the throughput and efficiency of the application.

Another way to increase the parallelism of the loops is to merge consecutive loops or
flatten nested loops. HLS assigns every loop to a different state during the control
and datapath extraction process, therefore, even independent loops will be executed
sequentially [1]. Moreover, moving between those states will take one clock cycle.
For the nested loops, it is even worse, because there are two transitions between
states every outer iteration of the outer loop: from outer to inner and then from
inner back to outer [3]. By merging or flattening, loops are assigned to the same
state and execute concurrently. It can be done manually by reorganizing the code or
by using appropriate directives in Vivado HLS.

Instruction level parallelism. Instruction level parallelism can be achieved by pipelin-
ing the design. Pipelining can be applied to both functions and loops. Result of the
function pipelining is presented in Figure 7. Without pipelining, function can read
new input only after fully processing the previous one, thus the total latency of the
application equals the latency of the function multiplied by the number of inputs
it needs to process. With pipelining, the function can read new input every cycle,
while still processing the previous one, thus reducing the latency compared to the
original design using the same hardware resources. Morvan et al. [27] calls it “a key
transformation in high level synthesis as it helps maximizing both computational
throughput and hardware utilization”. An important parameter of the pipelined

25

design is the initiation interval (II), the number of cycles after which a function can
accept the new input or a loop can start its next iteration.

Figure 7. Function execution with and without pipelining

Another way to achieve instruction level parallelism on hardware platforms is an if-
conversion [2, 12, 28]. If-conversion refers to the implementation of if-else construction
as two independent but mutually exclusive instruction blocks, if block and else block,
guarded by the predicate and negated predicate consecutively. It is called a predicated
execution and allows for two disjoint branches to run in parallel, thus, reducing the
latency of the application. However, it does increase the usage of the resources, as
they cannot be shared in that case. Vivado HLS does if-conversion automatically.

Memory usage optimizations. As it was already mentioned, the memory interface
can prevent the loop from being unrolled or pipelined. For example, BRAM (Block
RAM) allows only one read or write access per clock cycle. Therefore, an array
mapped to BRAM cannot be vectorized. However, an array can be mapped to
individual registers that can be accessed in parallel or to a memory core with more
read/write ports if available. For these, Vivado HLS has array_partition and resource
directives accordingly. Array partition can be used to divide multidimensional arrays
into several arrays along the chosen dimension. It should be noted that complete
partitioning of the array into individual elements will increase the resource usage.
Therefore, a balance should be found between the latency and the area.

Additionally, arrays can be reshaped or several smaller arrays can be mapped together
into a larger one to improve the area using array_reshape and array_map directives.

26

Bitwidth optimization. Unlike traditional processors that support a limited number
of data types, hardware platforms allow to create data types of arbitrary precision.
Creating operands with the minimum number of bits required to store the data leads
to decrease in the area of functional and storage units, shorter critical paths and
smaller power consumption [12]. Vivado HLS can automatically determine the exact
number of bits needed to store the variables that have their range explicitly specified
in the code, e.g. for iterators, however, for most variables the knowledge of the input
data is required.

Function inline. It was already mentioned that each function is synthesized into a
separate entity in the RTL implementation. Inlining simplifies the hierarchy of the
design by assembling several functions into one entity, thus eliminating interface
connections and providing a possibility to increase resource sharing. This can improve
the overall latency and area of the design. At the same time, inlining increases the
complexity of the synthesized functional units and can cause routing congestions
[29]. Vivado HLS automatically inlines small functions, designers can enforce inlining
using pragma directive.

Logic and arithmetic expressions optimization. Expressions optimization can increase
instruction level parallelism, improve the latency of the design and decrease the area.
One of the possible optimizations is expression balancing or height reduction of long
expression chains [2], rearrangement of operands for a balanced implementation. For
example, an expression like sum = a + b + c + d will result in sequential computation
that will take 3 clock cycles. In comparison, balanced expression sum = (a+b)+(c+d)
will be computed in 2 clock cycles, since terms (a + b) and (c + d) can be calculated
in parallel. The architectures for both examples are presented in Figure 8. Vivado
HLS does expression balancing for integers automatically.

Figure 8. Adder tree before balancing (left) and after balancing (right)

27

Another possible expression optimization is a transformation of computationally
expensive arithmetic operations like multiplication and division into shifting and
addition/subtraction. Such transformations are performed even by software compilers,
however, they become more crucial for hardware platforms. In Vivado HLS, arithmetic
expression optimizations are handled by the LLVM compiler that can handle simple
cases but will not perform transformations that are not beneficial for a CPU, like
replacing one multiplication with 2 additions and 2 shifts [30]. Therefore, more
intricate arithmetic expression optimizations should still be done by the designer.

3.2. Optimizations introduced to the project

3.2.1. Design space exploration of seed regions selection

The first task was to optimize select_seed_regions function that accepted buffered
tracks, photons and neutrals and one of the selected seeds as an input and output
tracks, photons and neutrals from the region, where the seed was found, plus from
the three adjacent regions for further analysis. Originally, the selection of the regions
was static: for each region the other three regions were predefined. Hence, the
original solution consisted of 37 if-else statements (one statement for each region
number) and three loops to write data from selected regions to the output arrays
(see Figure 9). Additionally, the original design did not have any pragma directives,
so it was a great opportunity to explore the possibilities of Vivado HLS.

Several designs were tried in order to optimize the function, including:

• generalization of the if-else statements that decreased their amount to 5 and
then to 3,

• mathematical solution that replaced if-else statements with simple formulas,

• matrix solution that stored the predefined regions into a 2D matrix.

The results for different solutions are given in Table 1. Results include the latency
of the function in clock cycles and the amount of used flip-flops (FF) and Look-up
tables (LUT).

28

region_num_t Region1 , Region2 , Region3 , Region4 ;

if (Seed. hwRegion == 0) {
Region1 = 0; Region2 = 1; Region3 = 2; Region4 = 3;

} else if (Seed. hwRegion == 1) {
Region1 = 0; Region2 = 1; Region3 = 2; Region4 = 3;

<...>
} else if (Seed. hwRegion == 35) {

Region1 = 32; Region2 = 33; Region3 = 34; Region4 = 35;
} else {

Region1 = 0; Region2 = 1; Region3 = 2; Region4 = 3;
}

for (int j = 0; j < NTRACK ; ++j) {
Seed_Tracks [0][j] = All_Tracks [Region1][j];
Seed_Tracks [1][j] = All_Tracks [Region2][j];
Seed_Tracks [2][j] = All_Tracks [Region3][j];
Seed_Tracks [3][j] = All_Tracks [Region4][j];

}
for (int j = 0; j < NPHOTON ; ++j) {

<...>
}
for (int j = 0; j < NSELCALO ; ++j) {

<...>
}

Figure 9. Original design of the select_seed_regions function

The pattern observed from the first series of experiments showed that the decrease
in amount of if-else statements and, therefore, decrease in the amount of predicated
instructions executed in parallel, decrease the amount of FF/LUTs used. Those
experiments also proved the point that by default Vivado HLS will generate a
sequential design, executing rolled loops one after another.

The next set of experiments explored the aforementioned designs with the function
pipelining and additionally the effect of using different memory cores to store the
matrix in the fifth design. The results are presented in Table. 2.

Pipelined design truly decreased the latency of the function but noticeably increased
the number of LUTs used. It should be noted that the initiation interval in every
case was equal to the latency of the function. It is not always possible to pipeline the
design in a way that new input can be accepted while the previous one is processed,
nevertheless, pipeline directive forces Vivado HLS to generate more parallelized
architecture.

29

Table 1. Static region selection designs

Design Latency, cycles FF LUT
Original design 139 231 (<1%)* 2504 (<1%)
Design #2 (5 if-else
statements)

139 218 (<1%) 1601 (<1%)

Design #3 (3 if-else
statements)

139 220 (<1%) 1564 (<1%)

Design #4
(mathematical solution)

139 214 (<1%) 1528 (<1%)

Design #5 (matrix
solution)

139 243 (<1%) 1447 (<1%)

* Number in the brackets is the percentage from the total number of resources
available on the board.

Table 2. Static regions selection designs with function pipeline

Design Latency, cycles BRAM FF LUT
Original design 45 0 207 (<1%) 11,622 (1%)
Design #2 (5 if-else
statements)

45 0 203 (<1%) 10,844 (<1%)

Design #3 (3 if-else
statements)

45 0 196 (<1%) 10,844 (<1%)

Design #4
(mathematical solution)

45 0 195 (<1%) 10,644 (<1%)

Design #5 (matrix
solution, matrix is
implemented as
distributed ROMs)

46 0 212 (<1%) 10,691 (<1%)

Design #5 (matrix
solution, matrix is
mapped to BRAM)

46 1 182 (<1%) 10,726 (<1%)

An alternative way to decrease the latency of the design is by pipelining the loops
instead of the whole function. The results of the next set of experiments are presented
in Table 3. They show that latency can be decreased without significant increase
in the used resources as well, though the latency of the function pipeline version is
indeed much better.

Later, the algorithm got updated and selection of the regions became dynamic. The
regions are organized in a 4 × 9 grid and folded like a torus, so the first and last

30

Table 3. Static regions selection designs with pipelined loops

Design Latency, cycles FF LUT
Original design 97 210 (<1%) 2564 (<1%)
Design #2 (5 if-else
statements)

96 193 (<1%) 1661 (<1%)

Design #3 (3 if-else
statements)

97 195 (<1%) 1624 (<1%)

Design #4
(mathematical solution)

97 193 (<1%) 1588 (<1%)

Design #5 (matrix
solution)

97 218 (<1%) 1507 (<1%)

rows are connected. The regions are selected based on the position of the seed on
the region. The position of the seed is defined by its Eta and Phi parameters: Eta
specifies horizontal coordinate and Phi specifies vertical coordinate. Center of the
region is denoted as (0, 0), the coordinates are local to the region. The developed
dynamic solution is presented in Figure 10. The results for the dynamic regions
selection is presented in Table 4.

Table 4. Dynamic region selection results

Design Latency, cycles FF LUT
Function pipeline 45 206 (<1%) 10,624 (<1%)
Function pipeline +
array partition

11 45 (<1%) 71,960 (6%)

By partitioning all input arrays and increasing the number of read/write ports, it
became possible to unroll the loops and decrease the latency of the function further,
however, 4× increase in speed came along with the 7× increase in the area, which
should be taken into account during the optimization process.

It can be seen that even this small function provided a great opportunity for design
space exploration, including both manual changes of the design and automatic
changes caused by pragma directives applied.

31

ap_uint <4> row;
ap_uint <2> col;
(row ,col) = Seed. hwRegion ;

/* Helping variables denote whether seed is in the region
* on the border of the 4x9 grid */

ap_uint <1> x_edge_0 = (col == 0);
ap_uint <1> x_edge_1 = (col == 3);
/* If the region is on the 0th or 8th row ,

* we can add or subtract 8
* to get 0 as the next row for the 8th row
* and 8 as the previous row for the 0th row */

ap_uint <4> y_edge_0 = (row == 0) ? 7 : 0;
ap_uint <4> y_edge_1 = (row == 8) ? 7 : 0;

ap_uint <2> x0 , x1;
ap_uint <4> y0 , y1;

/* Eta gives x coordinate in the region ,
* Phi gives y coordinate .
* Center of the region is denoted as (0 ,0) */

if (Seed.hwEta < 0) {
x0 = col - 1 + x_edge_0 ; x1 = col + x_edge_0 ;

}
else {

x0 = col - x_edge_1 ; x1 = col + 1 - x_edge_1 ;
}

if (Seed.hwPhi < 0) {
y0 = row - 1 - y_edge_0 ; y1 = row;

}
else {

y0 = row; y1 = row + 1 + y_edge_1 ;
}

Region1 = (y0 ,x0); Region2 = (y0 ,x1);
Region3 = (y1 ,x0); Region4 = (y1 ,x1);

Figure 10. Region selection based on the seed coordinates

3.2.2. Control logic optimization of the candidates preselection

There was a problem with the way tracks, photons and neutrals from the selected
regions were read from the input and written to the output. Access through non-
sequential indices created huge multiplexers and caused serious routing problems.
A new representation of selected regions and a new way to write the data from the
buffered arrays were required. At the time, the selection of regions and retrieving

32

the data from those regions were divided between two functions: select_seed_regions
and preselect_cands.

A new way to represent the selected regions by the row and column according to
Figure 11 was suggested by the supervisors.

Figure 11. New regions representation

Every row and column was marked as either odd or even, and every odd-even pair
was numbered. This way, selected regions can be represented by their position in the
grid in the following fashion: region 1 is represented by the odd row and odd column,
region 2 is represented by the odd row and even column, region 3 is represented by
the even row and odd column, and region 4 is represented by the even row and even
column. Now, instead of 4 regions function select_seed_regions returns a structure
with rows and columns. Since the first row and the last row are both odd, two
additional parameters are added to the structure that indicates whether the last row
is used or not and if it is used then whether it is considered as even or as odd. The
structure is presented in Figure 12. New design for the select_seed_regions function
is presented in Appendix 1.

However, more important changes should have been introduced to the preselect_cands
function. It was thought that changes in the selected regions representation should
result in 8-to-1 MUXs (multiplexers) for row selection, 2-to-1 MUXs for last row

33

typedef struct seed_regions_t {
ap_uint <2> rowEven ;
ap_uint <2> rowOdd ;
ap_uint <1> lastRowEven ;
ap_uint <1> lastRowOdd ;
ap_uint <1> colEven ;
ap_uint <1> colOdd ;

} seed_regions_t ;

Figure 12. Seed regions structure

selection, and 2-to-1 MUXs for column selection instead of previous 36-to-1 MUXs.
The problem was to make Vivado HLS infer it from the design.

Preselect candidates function was redesigned in the following way. First, two rows
should be selected: one even and one odd. Since the number of rows is uneven, the
last row is considered as a special case. This way, if the candidate row is not the last
one, then the selection is done from only four rows: 0, 2, 4, 6 for the even row and
1, 3, 5, 7 for the odd. Then, from those two rows, two columns should be selected.
Again, one even and one odd, therefore, in each case the selection is done from two
columns: 0 and 2 for the even column and 1 and 3 for the odd.

In order to make Vivado HLS synthesize appropriate MUXs, the following idea was
implemented (presented on the example of tracks.) Tracks were saved in two arrays:
2D 4 × 8 track array for the first 8 rows and 1D trackLastRow array for the last row.
Each row in the track array contains two rows from the original grid. This way, all
even rows are on the left and all odd rows are on the right. Selected rows are copied
to two 2D 2 × 2 arrays: tRowEven and tRowOdd. This way, even columns end up
in the first column and odd columns in the second column. The function code is
presented in Appendix 2.

Described architecture is presented in Figure 13. Those shapes make it clear for
Vivado HLS which elements are valid for each selection. This design gives 2-to-1
MUXs for last row selection, 4-to-1 MUXs for row selection, and 2-to-1 for column
selection, which is even better than predicted.

This task made it clear that creating a well optimized algorithm using HLS tools
requires to solve two problems: first, to design an efficient architecture and, second,
to write an implementation that Vivado HLS will be able to synthesize according to
the idea.

34

Figure 13. Preselect candidates selection process

3.2.3. Latency optimization of the second step

Another task was to explore the possibility to decrease the latency of the step 2
functions. Step 2 functions process 30 selected candidates for every seed in order to
find those that carry tau lepton decay data. Functions step2_3 and step2_4a process
one candidate for every seed at a time and work in parallel. step2_3 writes 16 signal
candidates at a time, and passes them to the step2_4a function that accumulates
the tau parameters data for every seed. step2_4b waits for the step2_4a to finish,
because it needs the accumulated data from step2_4a. The idea was to change the
way the data is processed in order to make all three functions execute in parallel
and pass the data in dataflow fashion.

Functions step2_3 and step2_4a were rewritten in order to process all candidates
for one seed at a time, this way, function step2_4b gets the data seed by seed
and can start working on it before step2_4a finishes. The new design required to
change the dimensionality of the input and output data for functions step2_3 and
step2_4a, change of the memory interface for data passed between function step2_4a
and step2_4b from individual elements to FIFO, and introduction of the buffered
accumulation in step2_3 and step2_4a.

The total latency of three functions has decreased from 64 cycles to 51 cycles. The
resource utilization results are presented in Table 5.

35

Table 5. Step 2 functions results

Function DSP48* FF LUT
step2_3 original 16 15,120 (<1%) 14,049 (1%)

modified 30 39,077 (1%) 38,447 (3%)
step2_4a original 32 4336 (<1%) 6922 (<1%)

modified 30 2068 (<1%) 5893 (<1%)
step2_4b original 0 9850 (<1%) 5860 (<1%)

modified 0 2577 (<1%) 2027 (<1%)
* Digital Signal Processing (DSP) block.

It can be seen that the resource usage for function step2_3 increased more than twice
as expected, since now it needs 30 units working in parallel compared to 16 before,
however, the change in data processing scheme decreased the amount of resources for
the other two functions. This example shows that the change in scheduling and data
processing can affect different functions in a different way that should be considered
during the design analysis.

3.2.4. Discussions

Different optimizations were introduced during the work on the algorithm, proving
that HLS tools provide a convenient way for design space exploration of the algorithm
without the need to rewrite the source code and give an opportunity to analyse
possible RTL implementations in terms of latency–area trade-off and select the most
suitable one in a manageable time. It also proved that a restructured code or a better
design, optimized for both hardware and high-level synthesis workflow, will always
show better results compared to the naive implementation even with the pragma
directives applied. Additionally, a routing problem was solved by introducing a more
efficient design of the preselect_cands function and by implementing this design in
a way that will create a correct CDFG of the function. Instead of huge 36-to-1
multiplexers, the suggested version of the preselect_cands function uses 4-to-1 and
2-to-1 multiplexers.

36

4. Sorting

The first step of the algorithm is dedicated to buffering the input data and selecting
16 seeds out of 144 candidates with the highest pT (transverse momentum) value.
The candidates are sorted, and 16 elements from the top are saved into the Seeds
array for further analysis.

The first section of the chapter presents the overview of the sorting algorithms from
the hardware point of view. The second section describes the development process
of the new sorting algorithm for the project.

4.1. Sorting algorithms overview from the hardware point
of view

Effectiveness of the sorting algorithm is usually determined based on the amount
of time or steps and the amount of memory the algorithm needs to sort an input
sequence denoted by the big O notation. Big O notation defines the asymptotic
upper bound. Even though the actual time and amount of memory used depend on
many factors, including the size of the sorted data, the order of the elements, etc,
big O notation is a good approximation of the algorithm efficiency for comparison
purposes.

However, for hardware implementation of sorting algorithms there are specific factors
that predetermine their effectiveness, such as possible frequency, complexity of the
sorting logic and consequently the amount of area used, possibility to decrease the
latency by exploiting computational parallelism. The overview given below is based
on the factors important for hardware implementation.

Selection sort. Selection sort divides the input array into two parts: sorted and
unsorted. It iteratively finds either minimum or maximum in an unsorted part of the
array and swaps it with the first element in an unsorted part, thus expanding the
sorted part. The algorithm is simple and area efficient, however, it has latency of
O(n2), where n is the length of the input array, even for hardware implementation.
Parallel search for minimum and maximum can decrease the latency of the algorithm
only to O(n2/2) [17].

37

Rank sort. Rank sort is composed of two steps. At the first step, the rank of each
element is calculated. Rank is defined by the number of elements greater or smaller
than the one to be sorted. At the second step, elements are rearranged based on
their rank indices. The algorithm has a latency of O(n2) as well, however, the rank
calculation step can be easily parallelized with n functional units working at the same
time, giving the latency of O(n). Unfortunately, the parallel implementation has a
high storage requirement of O(2n2) [17] and might produce massive multiplexers for
the second step, where elements should be written to the new array based on their
ranks.

Insertion sort. Insertion sort, similar to selection sort, divides the input array into
sorted and unsorted parts, and iteratively finds a place for each element from the
unsorted part in the sorted one, shifting bigger or smaller elements if necessary. The
latency of the insertion sort is O(n2), however, it can be implemented in hardware
in the form of a linear or spatial sorter with latency O(n) or O(2n). Spatial sorter
is a linear sequence or an array of n nodes or cells that can sort n elements in 2n

steps [17, 31]. Each node is an insertion cell primitive consisting of a comparator,
a multiplexer, a register to keep the current value and a control logic. The node
compares the input value with the current value, the smallest or biggest value
depending on the sorting order is saved in the register, the other value is passed
to the next cell. The architecture of the spatial sorter is shown in Figure 14. The
architecture does work well with the streaming data.

Figure 14. Architecture of the spatial sorter [31]

Another linear architecture is possible that can sort n elements in n steps. Instead
of traversing through the whole sequence of nodes one by one, the new input is sent
to all nodes at the same time. Each node compares the input value with the current
value and its neighbors values, when the new value is inserted in the correct place,

38

the bigger or smaller values are shifted [32, 33, 34]. The described architecture is
presented in Figure 15.

Figure 15. Architecture of the linear sorter [34]

Hardware implementation of insertion sort requires n sorting units working in parallel,
and is considered as a fairly good choice for smaller arrays [34, 35].

Merge sort. Merge sort is a recursive algorithm that successively merges the smaller
subsequences into a big sorted sequence. The latency of merge sort is O(n log n). In
hardware, merge sort is usually implemented without recursion. Instead a streaming
architecture is used. Basic merge sorter consists of two input FIFOs, a select-value
primitive (comparator and multiplexer) and an output FIFO [34, 36]. Input FIFOs
can be sorted using other sorting algorithms or basic merge sorters can be organized
in a tree based architecture for efficient sorting of big sequences with linear time
complexity, since the latency of the streaming merge sort is O(n). However, unlike
linear insertion sort for example, it requires more storage units.

Quick sort. Quick sort is a very popular software algorithm using the divide-and-
conquer approach. It randomly selects a pivot point and moves all elements smaller
than the pivot on one side and all elements greater than the pivot on the other side,
then recursively repeats the procedure for each part. The time complexity of the
algorithm is O(n2) in the worst case and O(n log n) on average. However, because of
its recursive nature and the fact that the efficiency of the algorithm highly depends
on the selected pivot point, the algorithm is not used much in hardware [17].

Counting sort. Counting sort is an example of non-comparison sorting algorithms.
Counting sort is composed of three stages. On the first stage, for each unique
value the number of times it appears in an input array is calculated and saved in
a temporary array, creating a histogram. The size of the temporary array depends
on the maximum value in the input array. On the second stage, the index for each
element in the output array is calculated by incrementing each value in the temporary
array by the sum of all previous values. On the third stage, the elements are moved
from the input array to the output using values from the temporary array as indices.

39

Parallel counting sort has a latency of O(n) and requires O(nk) storage area, where
k is the maximum value in the input array [17]. Additionally, the last stage, similar
to rank sort, can create huge multiplexers.

Sorting networks. Sorting network is a very popular sorting algorithm for hardware
implementation due to their parallel nature. Sorting network is a set of compare-
swap primitives connected by wires. Two common examples of sorting network
architectures are presented in Figure 16. Bitonic sorting network has the time
complexity of O(log2 n) and requires O(n log2 n) sorting logic and O(n log2 n) storage.
The advantage of the sorting network architecture is a very high throughput, however,
it is achieved at the expense of a very high resource usage [17, 31, 32, 33, 34, 37].

Figure 16. Bitonic sorting network (a) and odd-even transposition sorting network
(b) [17]

For a similar application, Farmahini-Farahani et al. [38] suggest an n-to-m sorting
units that select m largest (or smallest) elements from n inputs (m < n) based on the
bitonic sorting algorithm. Proposed solution has a time complexity of O(log n×log m)
and area complexity O(n log2 m). Even though it is an improvement over the classic
bitonic sorting network, it still requires a lot of resources. It also assumes that data
comes all at once.

From reviewed sorting algorithms two algorithms can be emphasized: insertion sort
and merge sort. Insertion sort is recommended for smaller arrays due to its simplicity
and fairly good time complexity. In addition, it is a good candidate for the tau
trigger project because of its natural ability to handle streaming data. Merge sort
gives a simple parallel architecture for a small amount of data and suits for streaming
data as well. The way they can be implemented in the project is discussed in the
next section.

40

4.2. Development of the sorting algorithm

As it was said before, the first step of the algorithm has two important tasks: buffering
of the input data and selecting 16 seeds out of 144 seed candidates. Input data
is a continuous stream of particle events. Each event consists of 36 regions, new
region data comes every clock cycle. Every region consists of 22 tracks, 13 photons
and 10 neutrals. First 4 tracks from every region form an array of seed candidates
(36 × 4 = 144). Later an array of seed candidates is sorted to find 16 best seeds
based on their pT value.

4.2.1. Original algorithm

Original sorting algorithm was a hardware optimized version of bubble sort that was
taking too much resources causing problems with the routing of the whole algorithm.
The task was to develop a new sorting algorithm that will significantly decrease the
amount of utilized resources and potentially decrease the latency of the first step,
since the total latency of the algorithm is very strict. The latency of the first step
can be defined as max(B, S), where B is the latency of the buffering process and S

is the latency of the sorting. Buffering takes 56 clock cycles, original sorting solution
takes 57 clock cycles. Therefore, an optimized solution should take the same amount
of clock cycles or less than the buffering.

At the beginning it was decided to try some modifications of the original algorithm
to explore possible optimizations without introducing a completely new sorting
algorithm. Each seed candidate object is represented by a structure with 6 members.
During the sorting, seed candidates are read and written numerous times. The idea
was to use a smaller structure containing pT value and index of the candidate for
the sorting and then write 16 best seeds using obtained indices. Another idea was
instead of a smaller structure use a temporary array of 8 + 16 bit integers that
will hold both the index of the candidate (8 bits) and its pT value (16 bits). Both
approaches only slightly reduced the resource usage of the function, did not reduce
the latency and introduced a problem of using many multiplexers at the stage when
the selected seeds should be written to the output array based on their indices in
the seed candidates array. The results are presented in Table 6.

Eventually, it was decided to try a different sorting algorithm. The algorithm should
take into account the streaming nature of incoming data, the fact that it comes

41

Table 6. Results of the original algorithm modifications

Algorithm Latency, cycles FF LUT
Original 57 151,287 (6%) 262,690 (22%)
Smaller struct 58 132,448 (5%) 208,487 (17%)
8 + 16 bit integer 72 146,627 (6%) 238,428 (20%)

in chunks of 4, and that only 16 elements out of 144 should be saved for further
processing. The straightforward approach to use some hardware optimized sorting
architecture to sort all 144 elements would not be applicable, because even sorting
algorithms with time complexity O(n) would take much more clock cycles than
desired.

4.2.2. Streaming merge sort

At first it was decided to implement a merge sorter tree that at every level will leave
only 16 best elements, discarding the other. The architecture of the sorter tree is
presented in Figure 17.

Figure 17. Merge sorter tree architecture

On the first level, there are 16 arrays, 9 elements each (16 × 9 = 144). On the second
level, they are merged into 8 arrays of size 16, and so on until there is only one array
left with the best seeds. 16 arrays on the first level were sorted in an insertion sort
manner: a new coming element would traverse through the array to find its place,
then if needed elements greater than the new one will be shifted and a new element
inserted. To parallelize the process, each seed candidate from one region would be

42

inserted into a different array. This way, new element is inserted in the array on
the first level every third cycle, giving the previous element 2 clock cycles to find its
place, which was proved sufficient during the runs of the algorithm.

Merge unit is based on the example from [17] and is presented in Figure 18.

void merge_unit16 (PFSeedObj IN1[SIZE],
PFSeedObj IN2[SIZE],
PFSeedObj OUT[NSEED])
{

pragma HLS ARRAY_PARTITION variable =IN1 complete
pragma HLS ARRAY_PARTITION variable =IN2 complete
pragma HLS ARRAY_PARTITION variable =OUT complete
pragma HLS inline

PFSeedObj a, b;
int subIdx1 = 1, subIdx2 = 1;
a = IN1 [0]; b = IN2 [0];

for (int i = 0; i < NSEED; i++){
pragma HLS PIPELINE

if (subIdx1 == SIZE){
OUT[i] = b;
b = IN2[subIdx2];
subIdx2 ++;

}
else if (subIdx2 == SIZE){

OUT[i] = a;
a = IN1[subIdx1];
subIdx1 ++;

}
else if (a.hwPt > b.hwPt) {

OUT[i] = a;
a = IN1[subIdx1];
subIdx1 ++;

}
else {

OUT[i] = b;
b = IN2[subIdx2];
subIdx2 ++;

}
}

}

Figure 18. Merge unit implementation

Three different variants of the merge sorter were tried: OUT arrays implemented as
BRAMs, OUT arrays partitioned and implemented as separate registers, and finally
OUT arrays implemented as FIFO streams. The results prove that streams are the
best solution for the merge sorter as they decrease the latency of the merge stage.

43

However, they have a certain drawback: all elements from the previous level that are
not passed to the next level should anyway be read from the stream. The results are
presented in Table 7.

Table 7. Results of the original algorithm modifications

Algorithm Latency, c BRAM FF LUT
Merge sort: OUT arrays
as BRAM

104 48 35,333 (1%) 146,998 (12%)

Merge sort: OUT arrays
partitioned

84 0 63,552 (2%) 439,358 (37%)

Merge sort: OUT arrays
as streams

72 0 41,117 (1%) 391,176 (33%)

It can be seen that the implemented merge sort does not fit into defined latency and
does not decrease the amount of resources used and therefore does not satisfy the task
description. The increased latency is attributed to the fact that it was required to
divide the buffering process and merge sorter between different functions. Buffering
requires a pipeline directive in order to read new region data every clock cycle and
start processing new event data every 36 cycles. Merge sorter though requires a
dataflow directive to make all merge levels work in parallel; and Vivado HLS cannot
instantiate dataflow region from pipelined function. Therefore, merge sorter waits
until the buffering stage is over and starts to work only after.

4.2.3. Spatial insertion sort

First algorithm developed that improved the timing and the resource usage was a
modification of insertion sort. A spatial sorter was built that included 16 insertion
cells. The sorting architecture is presented in Figure 19.

The sorting algorithm takes into account that 4 inputs from each region are already
sorted and, therefore, 4 elements are used as an input for each insertion cell, unlike
traditional implementation that has 1 new coming element as an input.

Each insertion cell works on one element of the Seeds array. First, the insertion cell
gets 4 elements from the new region and compares it to the first element of the Seeds
array. The biggest element is saved to the CURR_REG variable. Since it is known
that elements in the IN array are sorted, the biggest element is either CURR_REG
or IN[0]. If it is not CURR_REG, IN[0] is saved into the CURR_REG, the previous

44

Figure 19. Spatial sorter architecture

value of CURR_REG is inserted in the appropriate place in the OUT array. The
OUT array is then passed to the next sorting cell. The work of the insertion cell
is presented in Figure 20. The code for the insertion cell primitive is presented in
Figure 21. For the whole step1 function, see Appendix 3.

Figure 20. Sorting cell architecture

In order to make Vivado HLS implement 16 different instantiations of the insertion
cell function, so each of them will use their own static variable CURR_REG, the
function is defined as a template with integer parameter number that acts as an
ID number of sort. Otherwise Vivado HLS will generate the design, in which all
insertion cells will share the same CURR_REG variable.

With this approach, sorting takes 36 + 1 + 16 (53 cycles), because the first region
elements are passed to the first sorting cell on the second cycle and the elements
from the last region take 16 cycles to pass through all sorting cells. Since the latency
of the first step function is determined by either buffering or sorting, depending on

45

template <int number >
PFSeedObj insertion_cell (PFSeedObj IN[4], PFSeedObj OUT [4],

int i) {
pragma HLS ARRAY_PARTITION variable =IN complete
pragma HLS ARRAY_PARTITION variable =OUT complete

static PFSeedObj CURR_REG = {0};

int idx = 3;
PFSeedObj max = IN [0];
PFSeedObj temp = CURR_REG ;

for (int j = 0; j < 4; j++) {
pragma HLS UNROLL

OUT[j] = IN[j];
if (j == 0 && CURR_REG .hwPt >= IN [0]. hwPt) {

idx = 0;
max = CURR_REG ; temp = IN [0];

}
if (j != 3 && CURR_REG .hwPt < IN[j]. hwPt

&& CURR_REG .hwPt >= IN[j + 1]. hwPt) {
idx = j;
max = IN [0]; temp = CURR_REG ;

}
}

if (i != 35) CURR_REG = max;
else clear(CURR_REG);
shift_array (OUT ,idx);
OUT[idx] = temp;
return max;

}

Figure 21. Insertion cell implementation

which operation takes more clock cycles, the total latency of the function with the
described sorting algorithm is 56 clock cycles.

It was possible to modify the created algorithm to decrease the timing of sorting part
even more. Instead of working on 1 element from the Seeds array, new sorting cells
work on 2 elements from the Seeds array. Graphically, a modified sorter is presented
in Figure 22.

The architecture of the insertion cell has changed as well. The solution for the
modified insertion cell was inspired by [39] that presents a single-stage N sorter
based on a comparison counting matrix. Suggested N -sorter does not require to
calculate the rank of each element, it is built according to the equations derived from
the comparison counting result.

46

Figure 22. Modified spatial sorter

Since it is known that the IN array is sorted and REG0 and REG1 are sorted, several
simple rules were deducted to sort those elements. 6 elements should be sorted into
6 output positions: out1, out2, out3, out4, out5, and out6. out1 and out2 are saved
into REG0 and REG1, out3–out6 are saved into the OUT array.

The examples of the rules are presented below:

1. Only two elements can go to the out1: REG0 or IN[0]. The biggest one goes
to the out1.

2. Four elements can go to the out2: REG0, REG1, IN[0] or IN[1]. If REG1 is
bigger than IN[0], then it goes to the out2. If IN[0] is smaller than REG0 but
greater than REG1, then it goes to the out2. If IN[1] is bigger than REG0,
then it goes to the out2. Else, REG0 goes to the out2.

3. The rules for the other output positions are depicted in the same way. For the
code, see Appendix 4.

The latency of the modified sorting algorithm is 36 + 1 + 8 (45) cycles. The resource
usage for the spatial sorter modifications is presented in Table 8.

It can be seen that developed spatial sorter significantly decrease the usage of the
resources and provide an opportunity to decrease the latency of the first step function
if it will be possible to decrease the latency of the buffering process.

47

Table 8. Results for spatial insertion sorter versus original algorithm

Algorithm Latency, cycles FF LUT
Original 57 (57)* 151,287 (6%) 262,690 (22%)
Spatial sorter 56 (53) 104,749 (4%) 33,822 (2%)
Modified spatial sorter 56 (45) 103,783 (4%) 22,987 (1%)
* The latency of the sorting process is given in the brackets.

4.2.4. Discussions

Two different sorting algorithms were implemented and compared with the original
solution: streaming merge sort and spatial insertion sort. Merge sort solution has
shown that not every design can be implemented using HLS due to the limitations
of the tools. It was not possible to write the code in a way that Vivado HLS can
schedule merge sorter with a streaming data in parallel with the buffer process.

Insertion sort solution, on the other hand, was able to reduce the resource usage of
the function drastically (7× less LUTs for the first version and 11× less LUTs for the
modified version compared to the original algorithm) as well as decrease the latency
of the sorting part (21 % for the modified version) and solve the problem with the
routing. Suggested insertion sort algorithm takes into account the properties of the
input data (new data comes presorted in blocks of 4) and the task specification (only
16 best elements out of 144 should be selected), proving that a solution tailored to
the task provides a better design.

48

5. Summary

Large Hadron Collider (LHC) experiments produce a huge amount of data that should
be processed in a timely manner. Before this data can be used for scientific analysis,
it should be filtered in order to extract events that contain relevant information.
This is the task of the tau lepton decay triggering algorithm developed by National
Institute of Chemical Physics and Biophysics (NICPB) and Tallinn University of
Technology (TalTech). The algorithm should be implemented on an FPGA platform
according to very strict time and area constraints.

Due to its complexity, the algorithm is developed using high-level synthesis approach
(HLS). However, the capabilities of the HLS tools are limited, and an intimate
knowledge of the hardware specifics is required in order to design and implement an
efficient algorithm.

The goal of the thesis was to optimize the algorithm in terms of run-time and resource
usage using Vivado HLS. Two problems should have been solved during the work
on the thesis: development of the well optimized design for the task and proper
implementation of it so that the HLS tool will synthesize it accordingly.

The main contribution of the thesis is the optimization of the sorting task in the
first step and the candidates selection task.

For the first step of the algorithm, an application-specific sorting algorithm based on
the spatial insertion sort was developed that decreased the amount of resources used
7 times compared to the original solution. Moreover, this improvement of the area
resolved the problem with routing, making it possible to implement the algorithm
on the FPGA fabric. The modified version of the suggested sorting architecture
decreased the number of used resources even more and uses 11 times less resources
than the original solution. In addition, the modified version decreased the latency of
the sorting part by 21 %, thus allowing to decrease the total latency of the step1
function in the future if the buffering part will be optimized in terms of time.

For the candidates selection task, two functions, select_seed_regions and prese-
lect_cands, were rewritten to introduce a new way to select 4 regions for each seed
and access the data from those regions in order to avoid huge multiplexers in the
RTL design that originally caused problems with routing as well. New design instead

49

of 36-to-1 MUXs uses 4-to-1 and 2-to-1 MUXs, which take less area and do not cause
problems with implementation on FPGA.

For the future work, the presented changes in data processing pattern in the second
step can be considered further in order to find whether it will be possible to introduce
it in the previous steps and decrease the latency of the whole algorithm.

50

References

[1] C. Li, Y. Bi, Y. Benezeth, D. Ginhac, and F. Yang, “High-level synthesis for
FPGAs: code optimization strategies for real-time image processing,” Journal
of Real-Time Image Processing, vol. 14, no. 3, pp. 701–712, oct 2017.

[2] N. D. Dutt, D. D. Gajski, S. Y.-L. Lin, and A. C.-H. Wu, High-Level Synthesis:
Introduction to Chip and System design. Springer US, Feb. 1992.

[3] Xilinx, “Vivado design suite user guide: High-level synthesis,” Tech. Rep., 2018.

[4] D. Bruni, A. Bogliolo, and L. Benini, “Statistical design space exploration for
application-specific unit synthesis,” in Proceedings of the 38th conference on
Design automation - DAC '01. ACM Press, 2001.

[5] G. Micheli, Synthesis and optimization of digital circuits. New York: McGraw-
Hill, 1994.

[6] L. Huang, D.-L. Li, K.-P. Wang, T. Gao, and A. Tavares, “A survey on perfor-
mance optimization of high-level synthesis tools,” Journal of Computer Science
and Technology, vol. 35, no. 3, pp. 697–720, may 2020.

[7] G. Martin and G. Smith, “High-level synthesis: Past, present, and future,” IEEE
Design & Test of Computers, vol. 26, no. 4, pp. 18–25, Aug. 2009.

[8] (1994) Synopsys sings the praises of its behavioral compiler
for chip designers. [Last access: 24.04.2021]. [Online]. Avail-
able: https://techmonitor.ai/techonology/synopsys_sings_the_praises_of_
its_behavioral_compiler_for_chip_designers

[9] E. M. G Savaton, E Casseau, “Behavioral VHDL styles and high-level synthesis
for IPs,” FDL 2000, Forum on Design Languages, pp. 107–115, Sep. 2000.

[10] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang, “High-
level synthesis for FPGAs: From prototyping to deployment,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 4,
pp. 473–491, apr 2011.

[11] J. Cong, B. Liu, G. Luo, and R. Prabhakar, “Towards layout-friendly high-
level synthesis,” in Proceedings of the 2012 ACM international symposium on
International Symposium on Physical Design - ISPD '12. ACM Press, 2012.

51

https://techmonitor.ai/techonology/synopsys_sings_the_praises_of_its_behavioral_compiler_for_chip_designers
https://techmonitor.ai/techonology/synopsys_sings_the_praises_of_its_behavioral_compiler_for_chip_designers

[12] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao,
S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, “A survey and evaluation
of FPGA high-level synthesis tools,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 35, no. 10, pp. 1591–1604, oct
2016.

[13] M. W. Numan, B. J. Phillips, G. S. Puddy, and K. Falkner, “Towards automatic
high-level code deployment on reconfigurable platforms: A survey of high-level
synthesis tools and toolchains,” IEEE Access, vol. 8, pp. 174 692–174 722, 2020.

[14] J. Goeders and S. J. E. Wilton, “Allowing software developers to debug HLS
hardware,” Aug. 2015.

[15] K. Wakabayashi, “C-based behavioral synthesis and verification analysis on
industrial design examples,” in Proceedings of the 2004 Asia and South Pacific
Design Automation Conference, ser. ASP-DAC ’04. IEEE Press, 2004, pp.
344–348.

[16] J. de Fine Licht, M. Besta, S. Meierhans, and T. Hoefler, “Transformations of
high-level synthesis codes for high-performance computing,” IEEE Transactions
on Parallel and Distributed Systems, vol. 32, no. 5, pp. 1014–1029, may 2021.

[17] J. Matai, D. Richmond, D. Lee, Z. Blair, Q. Wu, A. Abazari, and R. Kastner,
“Resolve: Generation of high-performance sorting architectures from high-level
synthesis,” in Proceedings of the 2016 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. ACM, feb 2016.

[18] N. K. Pham, A. K. Singh, A. Kumar, and M. M. A. Khin, “Exploiting loop-array
dependencies to accelerate the design space exploration with high level synthesis,”
in Design, Automation & Test in Europe Conference & Exhibition (DATE),
2015. IEEE Conference Publications, 2015.

[19] Y. Liang, K. Rupnow, Y. Li, D. Min, M. N. Do, and D. Chen, “High-level
synthesis: Productivity, performance, and software constraints,” Journal of
Electrical and Computer Engineering, vol. 2012, pp. 1–14, 2012.

[20] K. Rupnow, Y. Liang, Y. Li, D. Min, M. Do, and D. Chen, “High level synthesis
of stereo matching: Productivity, performance, and software constraints,” in
2011 International Conference on Field-Programmable Technology. IEEE, dec
2011.

[21] S. Lahti, P. Sjovall, J. Vanne, and T. D. Hamalainen, “Are we there yet? A study
on the state of high-level synthesis,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 38, no. 5, pp. 898–911, may 2019.

52

[22] Z. Zhao and J. C. Hoe, “Using Vivado HLS for structural design,” in Proceedings
of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. ACM, feb 2017.

[23] Vivado design suite—Vivado HLS. Xilinx Inc. [Last access: 04.05.2021]. [Online].
Available: https://www.xilinx.com/products/design-tools/vivado.html

[24] Z. Zhang, Y. Fan, W. Jiang, G. Han, C. Yang, and J. Cong, “AutoPilot: A
platform-based ESL synthesis system,” in High-Level Synthesis. Springer
Netherlands, 2008, pp. 99–112.

[25] Y. Sakurai, “The ATLAS tau trigger performance during LHC Run 1 and
prospects for Run 2,” arXiv: High Energy Physics - Experiment, Sep. 2014.

[26] R. Kastner, J. Matai, and S. Neuendorffer, “Parallel programming for FPGAs,”
ArXiv e-prints, May 2018.

[27] A. Morvan, S. Derrien, and P. Quinton, “Efficient nested loop pipelining in
high level synthesis using polyhedral bubble insertion,” in 2011 International
Conference on Field-Programmable Technology. IEEE, dec 2011.

[28] M. Hohenauer, F. Engel, R. Leupers, G. Ascheid, H. Meyr, G. Bette, and
B. Singh, “Retargetable code optimization for predicated execution,” in 2008
Design, Automation and Test in Europe. IEEE, mar 2008.

[29] J. Zhao, T. Liang, S. Sinha, and W. Zhang, “Machine learning based routing
congestion prediction in FPGA high-level synthesis,” in 2019 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, mar 2019.

[30] Y. Uguen, F. D. Dinechin, V. Lezaud, and S. Derrien, “Application-specific
arithmetic in high-level synthesis tools,” ACM Transactions on Architecture and
Code Optimization, vol. 17, no. 1, pp. 1–23, mar 2020.

[31] O. Arcas-Abella, G. Ndu, N. Sonmez, M. Ghasempour, A. Armejach, J. Navari-
das, W. Song, J. Mawer, A. Cristal, and M. Lujan, “An empirical evaluation of
high-level synthesis languages and tools for database acceleration,” in 2014 24th
International Conference on Field Programmable Logic and Applications (FPL).
IEEE, sep 2014.

[32] J. Ortiz and D. Andrews, “A streaming high-throughput linear sorter system
with contention buffering,” International Journal of Reconfigurable Computing,
vol. 2011, pp. 1–12, 2011.

53

https://www.xilinx.com/products/design-tools/vivado.html

[33] M. Zuluaga, P. Milder, and M. Püschel, “Streaming sorting networks,” ACM
Transactions on Design Automation of Electronic Systems, vol. 21, no. 4, pp.
1–30, sep 2016.

[34] D. Koch and J. Torresen, “FPGASort: A high performance sorting architec-
ture exploiting run-time reconfiguration on fpgas for large problem sorting,”
in Proceedings of the 19th ACM/SIGDA international symposium on Field
programmable gate arrays - FPGA '11. ACM Press, 2011.

[35] Y. B. Jmaa, R. B. Atitallah, D. Duvivier, and M. B. Jemaa, “A comparative
study of sorting algorithms with FPGA acceleration by high level synthesis,”
Computación y Sistemas, vol. 23, no. 1, mar 2019.

[36] R. Marcelino, H. Neto, and J. M. Cardoso, “Sorting units for FPGA-based
embedded systems,” in Distributed Embedded Systems: Design, Middleware and
Resources. Springer US, 2008, pp. 11–22.

[37] R. Mueller, J. Teubner, and G. Alonso, “Sorting networks on FPGAs,” The
VLDB Journal, vol. 21, no. 1, pp. 1–23, jun 2012.

[38] A. Farmahini-Farahani, A. Gregerson, M. Schulte, and K. Compton, “Modular
high-throughput and low-latency sorting units for FPGAs in the Large Hadron
Collider,” in 2011 IEEE 9th Symposium on Application Specific Processors
(SASP). IEEE, jun 2011.

[39] R. B. Kent and M. S. Pattichis, “Design, implementation, and analysis of high-
speed single-stage N-sorters and N-filters,” IEEE Access, vol. 9, pp. 2576–2591,
2021.

54

Appendix 1 Select seed regions

void select_seed_regions (const PFSeedObj & Seed ,

seed_regions_t & regions) {

ap_uint <1> row1_coeff , row2_coeff ;

ap_uint <1> col1 , col2 , col1_coeff ;

ap_uint <2> t2;

ap_uint <3> row1 , row2 , t1;

/* Find row and column of the seed region */

(row1 , t1) = Seed. hwRegion ;

(row1_coeff , t2) = t1;

(col1 , col1_coeff) = t2;

/* Find rows based on the coordinates .

* Eta gives x coordinate in the region ,

* Phi gives y coordinate .

* Center of the region is denoted as (0 ,0) */

if (Seed.hwEta < 0) {

if (col1_coeff == 1)

col2 = col1;

else col2 = 0;

} else {

if (col1_coeff == 0)

col2 = col1;

else

col2 = 1;

}

if (Seed.hwPhi < 0) {

row2 = row1 - (row1_coeff ^ 1);

}

else {

row2 = row1 + row1_coeff ;

}

row2_coeff = row1_coeff ^ 1;

if (row2 == 7) {

row2 = 4; row2_coeff = 0;

}

55

if (row2 == 4 && row2_coeff == 1) {

row2 = 0; row2_coeff = 0;

}

if (col1_coeff == 0) {

regions . colEven = col1; regions . colOdd = col2;

}

else {

regions . colEven = col2; regions . colOdd = col1;

}

if (row1_coeff == 0 && row2_coeff == 1) {

(regions . lastRowEven , regions . rowEven) = row1;

(regions .lastRowOdd , regions . rowOdd) = row2;

}

else if (row1_coeff == 1 && row2_coeff == 0) {

(regions . lastRowEven , regions . rowEven) = row2;

(regions .lastRowOdd , regions . rowOdd) = row1;

}

else {

(regions . lastRowEven , regions . rowEven)=(ap_uint <3>)0;

(regions .lastRowOdd , regions . rowOdd) = (ap_uint <3>)4;

}

}

56

Appendix 2 Pre-select candidates

void select_seed_regions (

const seed_regions_t seedRegions [NSEED],

hls :: stream < PFChargedObj > allTracks [NREGIONS],

hls :: stream < PFNeutralObj > allPhotonsNeutrals [NREGIONS],

hls :: stream < PFChargedObj > trackCands [NSEED][NSEEDREGIONS

],

hls :: stream < PFNeutralObj > neutralCands [NSEED][

NSEEDREGIONS])

{

// Three loops will be merged into one

pragma HLS LOOP_MERGE

// Pre - select tracks

for (int i = 0; i < NTRACK ; i++) {

pragma HLS PIPELINE II=1

PFChargedObj track [4][8];

PFChargedObj trackLastRow [4];

pragma HLS ARRAY_PARTITION variable =track complete dim =0

pragma HLS ARRAY_PARTITION variable = trackLastRow complete

for (int j = 0; j < 4; j++) {

for (int c = 0; c < 8; c++){

allTracks [j*8 + c]. read(track[j][c]);

}

}

for (int j = 0; j < 4; j++){

allTracks [32 + j]. read(trackLastRow [j]);

}

for (int j = 0; j < NSEED; j++) {

ap_uint <2> rowEven = seedRegions [j]. rowEven ;

ap_uint <2> rowOdd = seedRegions [j]. rowOdd ;

ap_uint <1> lastRowEven = seedRegions [j]. lastRowEven ;

ap_uint <1> lastRowOdd = seedRegions [j]. lastRowOdd ;

ap_uint <1> colEven = seedRegions [j]. colEven ;

ap_uint <1> colOdd = seedRegions [j]. colOdd ;

57

PFChargedObj tRowEven [2][2] , tRowOdd [2][2];

pragma HLS ARRAY_PARTITION variable = pRowEven complete dim =0

pragma HLS ARRAY_PARTITION variable = pRowOdd complete dim =0

for (int r = 0; r < 2; r++) {

for (int c = 0; c < 2; c++) {

if (lastRowEven == 1)

tRowEven [r][c] = trackLastRow [r*2+c];

else tRowEven [r][c] = track[rowEven][r*2+c];

if (lastRowOdd == 1)

tRowOdd [r][c] = trackLastRow [r*2+c];

else tRowOdd [r][c] = track[rowOdd][(r*2) +(c+4)

];

}

}

trackCands [j][0]. write(tRowEven [colEven][0]);

trackCands [j][1]. write(tRowEven [colOdd][1]);

trackCands [j][2]. write(tRowOdd [colEven][0]);

trackCands [j][3]. write(tRowOdd [colOdd][1]);

}

}

// Pre - select photons / neutrals

for (int i = 0; i < NPHOTON + NSELCALO ; i++) {

pragma HLS PIPELINE II=1

PFNeutralObj neutral [4][8];

PFNeutralObj neutralLastRow [4];

pragma HLS ARRAY_PARTITION variable = photonNeutral complete

dim =0

pragma HLS ARRAY_PARTITION variable = photonNeutralLastRow

complete

for (int j = 0; j < 4; j++) {

for (int c = 0; c < 8; c++)

allPhotonsNeutrals [j*8 + c]. read(neutral [j][c]);

}

for (int j = 0; j < 4; j++){

allPhotonsNeutrals [32 + j]. read(neutralLastRow [j]);

}

58

for (int j = 0; j < NSEED; j++) {

ap_uint <2> rowEven = seedRegions [j]. rowEven ;

ap_uint <2> rowOdd = seedRegions [j]. rowOdd ;

ap_uint <1> lastRowEven = seedRegions [j]. lastRowEven ;

ap_uint <1> lastRowOdd = seedRegions [j]. lastRowOdd ;

ap_uint <1> colEven = seedRegions [j]. colEven ;

ap_uint <1> colOdd = seedRegions [j]. colOdd ;

PFNeutralObj pRowEven [2][2] , pRowOdd [2][2];

pragma HLS ARRAY_PARTITION variable = pRowEven complete dim =0

pragma HLS ARRAY_PARTITION variable = pRowOdd complete dim =0

for (int r = 0; r < 2; r++) {

for (int c = 0; c < 2; c++) {

if (lastRowEven == 1)

pRowEven [r][c] = neutralLastRow [r*2+c];

else pRowEven [r][c] = neutral [rowEven][r*2+c];

if (lastRowOdd == 1)

pRowOdd [r][c] = neutralLastRow [r*2+c];

else pRowOdd [r][c] = neutral [rowOdd][(r*2) +(c

+4)];

}

}

neutralCands [j][0]. write(pRowEven [colEven][0]);

neutralCands [j][1]. write(pRowEven [colOdd][1]);

neutralCands [j][2]. write(pRowOdd [colEven][0]);

neutralCands [j][3]. write(pRowOdd [colOdd][1]);

}

}

}

59

Appendix 3 Step 1 v.1

void algo_kbfi_step1 (

hls :: stream <ap_uint < STREAM_SIZE >> &stream_in ,

hls :: stream < PFChargedObj > Tracks [NREGIONS],

hls :: stream < PFNeutralObj > Photons [NREGIONS],

hls :: stream < PFNeutralObj > Neutrals [NREGIONS],

PFSeedObj Seeds[NSEED]) {

pragma HLS ARRAY_PARTITION variable =Seeds complete

pragma HLS data_pack variable = Tracks

pragma HLS data_pack variable = Photons

pragma HLS data_pack variable = Neutrals

pragma HLS PIPELINE II =36

for (int i = 0; i < NREGIONS ; i++){

pragma HLS PIPELINE

// Read next region

ap_uint < STREAM_SIZE > buf;

stream_in .read(buf);

// Extract relevant data

ap_uint < PACKING_DATA_SIZE > data[NCHANN_IN];

pragma HLS ARRAY_PARTITION variable =data complete

for (int j = 0; j < NCHANN_IN ; ++j) {

pragma HLS UNROLL

data[j] = buf(PACKING_DATA_SIZE *(j+1) -1,

PACKING_DATA_SIZE *j);

}

PFSeedObj Buffer [4], OUT1 [4], OUT2 [4], OUT3 [4], OUT4 [4];

PFSeedObj OUT5 [4], OUT6 [4], OUT7 [4], OUT8 [4], OUT9 [4];

PFSeedObj OUT10 [4], OUT11 [4], OUT12 [4], OUT13 [4]

PFSeedObj OUT14 [4], OUT15 [4], OUT16 [4];

// Extract tracks /seeds

for (int j = 0; j < NTRACK ; j++) {

PFChargedObj TrackCand ;

pragma HLS data_pack variable = TrackCand

l1pf_pattern_unpack <1 ,0 >(& data[j], & TrackCand);

60

Tracks [i]. write(TrackCand);

if (j < NSEEDNEW) {

// Fetch first seeds and add as seed candidates

Buffer [j]. hwRegion = i;

Buffer [j]. hwPt = TrackCand .hwPt;

Buffer [j]. hwEta = TrackCand .hwEta;

Buffer [j]. hwPhi = TrackCand .hwPhi;

Buffer [j]. hwId = TrackCand .hwId;

Buffer [j]. hwZ0 = TrackCand .hwZ0;

}

}

if (i != 35) {

insertion_cell <0>(Buffer ,OUT1 ,i);

insertion_cell <1>(OUT1 ,OUT2 ,i);

insertion_cell <2>(OUT2 ,OUT3 ,i);

insertion_cell <3>(OUT3 ,OUT4 ,i);

insertion_cell <4>(OUT4 ,OUT5 ,i);

insertion_cell <5>(OUT5 ,OUT6 ,i);

insertion_cell <6>(OUT6 ,OUT7 ,i);

insertion_cell <7>(OUT7 ,OUT8 ,i);

insertion_cell <8>(OUT8 ,OUT9 ,i);

insertion_cell <9>(OUT9 ,OUT10 ,i);

insertion_cell <10 >(OUT10 ,OUT11 ,i);

insertion_cell <11 >(OUT11 ,OUT12 ,i);

insertion_cell <12 >(OUT12 ,OUT13 ,i);

insertion_cell <13 >(OUT13 ,OUT14 ,i);

insertion_cell <14 >(OUT14 ,OUT15 ,i);

insertion_cell <15 >(OUT15 ,OUT16 ,i);

}

else {

Seeds [0] = insertion_cell <0>(Buffer ,OUT1 ,i);

Seeds [1] = insertion_cell <1>(OUT1 ,OUT2 ,i);

Seeds [2] = insertion_cell <2>(OUT2 ,OUT3 ,i);

Seeds [3] = insertion_cell <3>(OUT3 ,OUT4 ,i);

Seeds [4] = insertion_cell <4>(OUT4 ,OUT5 ,i);

Seeds [5] = insertion_cell <5>(OUT5 ,OUT6 ,i);

Seeds [6] = insertion_cell <6>(OUT6 ,OUT7 ,i);

Seeds [7] = insertion_cell <7>(OUT7 ,OUT8 ,i);

Seeds [8] = insertion_cell <8>(OUT8 ,OUT9 ,i);

Seeds [9] = insertion_cell <9>(OUT9 ,OUT10 ,i);

61

Seeds [10] = insertion_cell <10 >(OUT10 ,OUT11 ,i);

Seeds [11] = insertion_cell <11 >(OUT11 ,OUT12 ,i);

Seeds [12] = insertion_cell <12 >(OUT12 ,OUT13 ,i);

Seeds [13] = insertion_cell <13 >(OUT13 ,OUT14 ,i);

Seeds [14] = insertion_cell <14 >(OUT14 ,OUT15 ,i);

Seeds [15] = insertion_cell <15 >(OUT15 ,OUT16 ,i);

}

for (int j = 0; j < NPHOTON ; j++) {

PFNeutralObj PhotonCand ;

pragma HLS data_pack variable = PhotonCand

l1pf_pattern_unpack <1 ,0 >(& data[NTRACK +j],

& PhotonCand);

Photons [i]. write(PhotonCand);

}

for (int j = 0; j < NSELCALO ; j++) {

PFNeutralObj NeutralCand ;

pragma HLS data_pack variable = NeutralCand

l1pf_pattern_unpack <1 ,0 >(& data[NTRACK + NPHOTON +j],

& NeutralCand);

Neutrals [i]. write(NeutralCand);

}

}

}

template <int number >

PFSeedObj insertion_cell (PFSeedObj IN[4], PFSeedObj OUT [4],

int i){

pragma HLS ARRAY_PARTITION variable =IN complete

pragma HLS ARRAY_PARTITION variable =OUT complete

static PFSeedObj CURR_REG = {0};

int idx = 3;

PFSeedObj max = IN [0];

PFSeedObj temp = CURR_REG ;

for (int j = 0; j < 4; j++){

62

pragma HLS UNROLL

OUT[j] = IN[j];

if (j == 0 && CURR_REG .hwPt >= IN [0]. hwPt){

idx = 0;

max = CURR_REG ; temp = IN [0];

}

if (j != 3 && CURR_REG .hwPt < IN[j]. hwPt &&

CURR_REG .hwPt >= IN[j + 1]. hwPt){

idx = j;

max = IN [0]; temp = CURR_REG ;

}

}

if (i != 35) CURR_REG = max;

else clear(CURR_REG);

shift_array (OUT ,idx);

OUT[idx] = temp;

return max;

}

void shift_array (PFSeedObj Buffer [4], int last){

pragma HLS inline

pragma HLS ARRAY_PARTITION variable = Buffer complete

for (int i = 0; i < 4; i++){

pragma HLS unroll

if (i < last){

Buffer [i] = Buffer [i + 1];

}

}

}

63

Appendix 4 Step 1 v.2

void algo_kbfi_step1 (

hls :: stream <ap_uint < STREAM_SIZE >> &stream_in ,

hls :: stream < PFChargedObj > Tracks [NREGIONS],

hls :: stream < PFNeutralObj > Photons [NREGIONS],

hls :: stream < PFNeutralObj > Neutrals [NREGIONS],

PFSeedObj Seeds[NSEED]) {

pragma HLS ARRAY_PARTITION variable =Seeds complete

pragma HLS data_pack variable = Tracks

pragma HLS data_pack variable = Photons

pragma HLS data_pack variable = Neutrals

pragma HLS PIPELINE II =36

for (int i = 0; i < NREGIONS ; i++){

pragma HLS PIPELINE

// Read next region

ap_uint < STREAM_SIZE > buf;

stream_in .read(buf);

// Extract relevant data

ap_uint < PACKING_DATA_SIZE > data[NCHANN_IN];

pragma HLS ARRAY_PARTITION variable =data complete

for (int j = 0; j < NCHANN_IN ; ++j) {

pragma HLS UNROLL

data[j] = buf(PACKING_DATA_SIZE *(j+1) -1,

PACKING_DATA_SIZE *j);

}

PFSeedObj Buffer [4], OUT1 [4], OUT2 [4], OUT3 [4], OUT4 [4];

PFSeedObj OUT5 [4], OUT6 [4], OUT7 [4], OUT8 [4];

PFSeedObj SOUT1 [2], SOUT2 [2], SOUT3 [2], SOUT4 [2];

PFSeedObj SOUT5 [2], SOUT6 [2], SOUT7 [2], SOUT8 [2];

// Extract tracks /seeds

for (int j = 0; j < NTRACK ; j++) {

PFChargedObj TrackCand ;

pragma HLS data_pack variable = TrackCand

l1pf_pattern_unpack <1 ,0 >(& data[j], & TrackCand);

64

Tracks [i]. write(TrackCand);

if (j < NSEEDNEW) {

// Fetch first seeds and add as seed candidates

Buffer [j]. hwRegion = i;

Buffer [j]. hwPt = TrackCand .hwPt;

Buffer [j]. hwEta = TrackCand .hwEta;

Buffer [j]. hwPhi = TrackCand .hwPhi;

Buffer [j]. hwId = TrackCand .hwId;

Buffer [j]. hwZ0 = TrackCand .hwZ0;

}

}

insertion_cell <0>(Buffer ,OUT1 ,SOUT1 ,i);

insertion_cell <2>(OUT1 ,OUT2 ,SOUT2 ,i);

insertion_cell <4>(OUT2 ,OUT3 ,SOUT3 ,i);

insertion_cell <6>(OUT3 ,OUT4 ,SOUT4 ,i);

insertion_cell <8>(OUT4 ,OUT5 ,SOUT5 ,i);

insertion_cell <10 >(OUT5 ,OUT6 ,SOUT6 ,i);

insertion_cell <12 >(OUT6 ,OUT7 ,SOUT7 ,i);

insertion_cell <14 >(OUT7 ,OUT8 ,SOUT8 ,i);

if (i == 35){

Seeds [0] = SOUT1 [0]; Seeds [1] = SOUT1 [1];

Seeds [2] = SOUT2 [0]; Seeds [3] = SOUT2 [1];

Seeds [4] = SOUT3 [0]; Seeds [5] = SOUT3 [1];

Seeds [6] = SOUT4 [0]; Seeds [7] = SOUT4 [1];

Seeds [8] = SOUT5 [0]; Seeds [9] = SOUT5 [1];

Seeds [10] = SOUT6 [0]; Seeds [11] = SOUT6 [1];

Seeds [12] = SOUT7 [0]; Seeds [13] = SOUT7 [1];

Seeds [14] = SOUT8 [0]; Seeds [15] = SOUT8 [1];

}

for (int j = 0; j < NPHOTON ; j++) {

PFNeutralObj PhotonCand ;

pragma HLS data_pack variable = PhotonCand

l1pf_pattern_unpack <1 ,0 >(& data[NTRACK +j],

& PhotonCand);

Photons [i]. write(PhotonCand);

}

65

for (int j = 0; j < NSELCALO ; j++) {

PFNeutralObj NeutralCand ;

pragma HLS data_pack variable = NeutralCand

l1pf_pattern_unpack <1 ,0 >(& data[NTRACK + NPHOTON +j],

& NeutralCand);

Neutrals [i]. write(NeutralCand);

}

}

}

template <int number >

void insertion_cell (PFSeedObj IN[4], PFSeedObj OUT [4],

PFSeedObj SEEDS [2] , int i) {

pragma HLS ARRAY_PARTITION variable =SEEDS complete

pragma HLS ARRAY_PARTITION variable =IN complete

pragma HLS ARRAY_PARTITION variable =OUT complete

static PFSeedObj CURR_REG_0 = {0};

static PFSeedObj CURR_REG_1 = {0};

pragma HLS data_pack variable = CURR_REG_0

pragma HLS data_pack variable = CURR_REG_1

PFSeedObj out1 , out2 , out3 , out4 , out5 , out6;

pragma HLS data_pack variable =out1

pragma HLS data_pack variable =out2

pragma HLS data_pack variable =out3

pragma HLS data_pack variable =out4

pragma HLS data_pack variable =out5

pragma HLS data_pack variable =out6

if (IN [0]. hwPt >= CURR_REG_0 .hwPt)

out1 = IN [0];

else out1 = CURR_REG_0 ;

if (IN [1]. hwPt >= CURR_REG_0 .hwPt)

out2 = IN [1];

else if (IN [0]. hwPt < CURR_REG_0 .hwPt && IN [0]. hwPt >=

CURR_REG_1 .hwPt)

out2 = IN [0];

else if (IN [0]. hwPt < CURR_REG_1 .hwPt)

66

out2 = CURR_REG_1 ;

else out2 = CURR_REG_0 ;

if (IN [2]. hwPt >= CURR_REG_0 .hwPt)

out3 = IN [2];

else if (IN [1]. hwPt >= CURR_REG_1 .hwPt && IN [1]. hwPt <

CURR_REG_0 .hwPt)

out3 = IN [1];

else if (IN [0]. hwPt < CURR_REG_1 .hwPt)

out3 = IN [0];

else if (IN [1]. hwPt >= CURR_REG_0 .hwPt && IN [2]. hwPt <

CURR_REG_0 .hwPt)

out3 = CURR_REG_0 ;

else out3 = CURR_REG_1 ;

if (IN [3]. hwPt >= CURR_REG_0 .hwPt)

out4 = IN [3];

else if (IN [2]. hwPt >= CURR_REG_1 .hwPt && IN [2]. hwPt <

CURR_REG_0 .hwPt)

out4 = IN [2];

else if (IN [1]. hwPt < CURR_REG_1 .hwPt)

out4 = IN [1];

else if (IN [2]. hwPt >= CURR_REG_0 .hwPt && IN [3]. hwPt <

CURR_REG_0 .hwPt)

out4 = CURR_REG_0 ;

else out4 = CURR_REG_1 ;

if (IN [3]. hwPt >= CURR_REG_0 .hwPt)

out5 = CURR_REG_0 ;

else if (IN [3]. hwPt >= CURR_REG_1 .hwPt)

out5 = IN [3];

else if (IN [2]. hwPt < CURR_REG_1 .hwPt)

out5 = IN [2];

else out5 = CURR_REG_1 ;

if (IN [3]. hwPt >= CURR_REG_1 .hwPt)

out6 = CURR_REG_1 ;

else out6 = IN [3];

// Reset the registers

if (i == 35) {

67

SEEDS [0] = out1; SEEDS [1] = out2;

clear(CURR_REG_0); clear(CURR_REG_1);

}

else {

CURR_REG_0 = out1; CURR_REG_1 = out2;

}

OUT [0] = out3; OUT [1] = out4;

OUT [2] = out5; OUT [3] = out6;

}

68

	Introduction
	Background
	High-Level Synthesis
	Motivation for HLS
	HLS overview
	Brief history of HLS tools
	Current state of HLS
	Vivado HLS overview

	Project overview

	Hardware optimizations
	Overview of the optimization methods in hardware
	Optimizations introduced to the project
	Design space exploration of seed regions selection
	Control logic optimization of the candidates preselection
	Latency optimization of the second step
	Discussions

	Sorting
	Sorting algorithms overview from the hardware point of view
	Development of the sorting algorithm
	Original algorithm
	Streaming merge sort
	Spatial insertion sort
	Discussions

	Summary
	References
	Appendix Select seed regions
	Appendix Pre-select candidates
	Appendix Step 1 v.1
	Appendix Step 1 v.2

