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Abstract

Current thesis presents an Internet based collaborative framework for digital testing using 

genetic algorithms for test generation software modules. Genetic algorithms are proposed in 

order to overcome complexity of the test generation problem for modern digital integrated 

circuits. Issues of hierarchical fault simulation and defect oriented fault simulation for test 

quality analysis are discussed as simulation is critical issue in genetic test generation. Digital 

test design flow begins with behavioral level VHDL description. Suitable flow chart like input 

format is extracted from source VHDL and fed into academical high-level synthesis tool 

xTractor. Subsequently generation of decision diagram models for test generation tools 

follows. 

Current thesis also addresses issues of collaborative design and test. Universal state-of-the-art 

collaborative platform MOSCITO is described and possibilities of its use for digital design 

and test flow are analyzed and suitable strategies for workflow integration with existing test 

tools are proposed. In addition, necessary enhancements are proposed in order to use the 

MOSCITO system in firewall-protected environments. Finally, based on earlier studies and 

experience, the new completely http protocol based environment for remote tool usage is 

proposed. New platform has three-tier architecture using mostly Java applets as front-end, 

servlets on Tomcat as middleware and MySql as physical back end database server. 





Kokkuvõte

Doktoritöö raames on välja pakutud mitu geneetilisel algoritmil põhinevat testigenereerimise 

meetodit kombinatsioon- ja järjestikskeemide testimiseks. Vastavad realiseeritud 

tarkvaramoodulid on mõeldud kasutatamiseks ka allpool mainitud internetipõhises 

keskkonnas. Geneetilised algoritmid on testigenereerimise probleemi lahendamisel valitud 

selleks, et ületada skeemide testimisel tekkivat NP keerukat lahendi otsimise probleemi, et 

vähendada otsinguruumi. Käsitletud on ka hierarhilise ja defekt-orienteeritud rikete 

simuleerimise meetodeid, kuna geneetilise testigenereerimise algoritmi juures mängib rikete 

simuleerimine olulist rolli- testigeneraatori poolt pakutud testikomplekte tuleb adekvaatselt 

hinnata igal iteratiivsel sammul. Digitaalseadme testimine võib alata n. käitumusliku taseme 

VHDL keelsest kirjeldusest. Doktoritöö raames koostatud kompilaatori abiga ekstraheeritakse 

VHDL lähtekoodist oluline informatsioon ja teisendatakse voodiagrammi sarnasele kujule, 

mis edasi leiab kasutust akadeemilises kõrgtasemesünteesi süsteemis xTractor. Viimase 

väljundist on võimalik genereerida omakorda otsustusdiagramide mudelid kasutamiseks n. 

eelpoolmainitud testitarkvaraga. Testimine võib alata muidugi ka madalamalt, nn. 

loogikalülide tasemelt, kui vastav skeem olemas on.  

Käesolevas doktoritöös on välja töötatud ka internetipõhine virtuaalne keskkond kasutamiseks 

digitaalseadmete testimise valdkonnas. Keskkond on vajalik selleks, et olemasolevaid, seni 

ainult lokaalselt installeeritavaid tarkvaraprogramme üle interneti kasutada. Esmalt sai 

VILAB projekti raames välja töötatud moodus lokaalsete programmide distantskasutamiseks 

rakendades tarkvasasüsteemi MOSCITO võimalusi. Välja sai pakutud lahendus süsteemi 

kasutamiseks interneti tulemüüride olemasolu tingimustes ning sai teostatud hulgaliselt 

testeksperimente, sealhulgas ka tööstusliku disainiga. Kuna MOSCITO süsteemi võimalused 

on siiski piiratud, sai lõpuks välja pakutud uus, täiuslikum http protokolli põhine e. 

veebibrauseriga kasutatav kaugtöö keskond digitaalseadmete testi jaoks. Uuel süsteemil on 

kolmekihiline arhitektuur. Graafilise kasutajaliidesena kasutatakse Java applette, keskmises 

kihis kasutatakse Tomcat tarkvara ja servlette, andmebaasi serverina on kasutatud 

vabatarkvara MySQL.
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1 Introduction

The increasing complexity of VLSI circuits and transition to Systems-on-Chip (SoC) or even 

Networks-on-Chip (NoC) paradigm has made test generation one of the most complicated and 

time-consuming problems in the domain of digital design. The more complex are getting 

electronics systems, the more important become problems of test and design for testability, as 

costs of verification and testing are getting the major component of design and manufacturing 

costs of a new product. This fact makes the research in the area of testing and diagnosis of 

integrated circuits (IC) a very important topic for both the industry and the academy.  

Commercial CAD systems for VLSI design and test are both costly and do not provide a good 

variety of competing or complementary approaches to a given particular problem. They 

usually have a stiff workflow of standard integrated tools bound together and should be 

executed accordingly to a certain scenario. It may be not good for a designers and researcher 

whose goal is the search for new efficient solutions. In order to come up with innovative 

electronic systems in time and with competitive cost, lot of EDA problems should be solved: 

HW/SW co-design, high-level synthesis, testability evaluation, test pattern generation. During 

the last decade, many different low-cost tools running on PCs have been developed to fill this 

gap. They usually include the major basic tools needed for IC design: schematics capture, 

layout editors, simulators, and place and route tools. However, low-cost systems for solving a 

large class of tasks from the dependability and diagnostics area: test synthesis and analysis, 

fault diagnosis, testability analysis, built-in self-test (BIST), especially for research and 

educational purposes, are still missing. For this reason, a diagnostic software Turbo Tester 

[54] is being developed in Tallinn University of Technology. Genetic test tools presented in 

this thesis and belonging to Turbo Tester toolset contribute to solving digital test problems.  

Turbo Tester toolset was long time just a set of command line tools. There was strong need 

for user friendly graphical interface and even more – the need to make the tools available over 

the internet to avoid the installation overhead, simplify the maintenance and finally, to offer 

the computational power of fast application servers to end users. Another issue generally is 

that usually all the needed design and test tools are not available at persons working site. 

Therefore, current thesis partially addresses the issue of remote use of existing work tools. 

At the same time recent development trends show increasing use of various hardware 

description languages (HDL) among hardware designers because of the advantages they offer 

over traditional schematic techniques. The main advantage is the possibility to use the same 

description both to model the behavior and as a starting point for schematic synthesis. 

Another important feature of most of the HDL-s (e.g. VHDL) is the possibility to describe an 

algorithm at higher abstraction levels thus hiding target technology dependent hardware 

implementation details. The introduction of high-level synthesis (HLS), also known as 

behavioral synthesis, promised to automate the transformation of a design from 

system/behavioral level to register-transfer level as efficiently as the introduction of logic 

synthesis automated transformation from logic to physical level. Most of the HLS tools 

(methodologies) make use of HDL-s as the language of input and output data. Also fast and 

efficient hierarchical test generators need both high level (RTL) and low level (gate level) 

descriptions in order to work. Extracting high level information from VHDL for hierarchical 

test generator DECIDER and generating input for synthesis system xTractor has great 



2

importance. Current thesis addresses the issue of extracting the suitable information from 

behavioral level VHDL description for synthesis tool xTractor and decision diagram 

synthesis.

In current thesis chapter 2 gives overview of previous work in the field of test generation and 

Internet based collaborative design and test. Chapter 3 concentrates on test generation using 

genetic algorithms. Chapter 4 describes simulation algorithms. In chapter 5 is explained how 

data is extracted from VHDL for high-level synthesis and test generation. Complete digital 

design and test flow is presented. In chapter 6 state-of-the-art collaboration platform 

MOSCITO is described and possibilities of its use for digital design and test flow and suitable 

workflow integration strategies for existing test tools are discussed. Finally, enhanced web 

based system using HTTP protocol and MySQL database is proposed. 
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2 Review of State-of-the-Art 

2.1 Test of digital systems 

Sequential circuit test generation using deterministic algorithms is highly complex and time 

consuming. Classical deterministic (topological) test generators like HITEC [1,2] attain high 

fault coverage and are able to find test sequences for “hard” faults.  Each target fault must be 

activated and then propagated to a primary output. The activation state must be justified using 

reverse time processing. During test generation, the large number of backtracking must be 

handled. In order to decrease the number of faults to be modeled, fault simulation (fault 

dropping) is used. Nevertheless, test sets can be long. The major drawback of such generators 

is that they are too time consuming while working through search space. 

Functional level test generators like [3,4] use functional description of a circuit and exploit 

functional fault model. Test generation time is reduced. However, estimating fault coverage at 

the functional level is difficult because the accuracy of functional fault models is unproven 

and gate level models better characterize physical faults. Functional test based on FSM is used 

in [5]. The limitation of such functional method is also that a fault does not increase the 

number of states of machine and therefore does not help distinguish correct and faulty 

behavior.

As a solution, hierarchical approaches [6,7] have been proposed which take advantage of 

high-level information during generating tests for gate level faults. While hierarchical test 

pattern generation still remains the fastest method for solving the problem, it is not applicable 

for designs that do not have an appropriate modularity or where the higher-level information 

is not known. 

On the other hand, simulation-based techniques have proven their efficiency, being able to 

obtain high fault coverage using less time than classical topological Automatic Test Pattern 

Generation (ATPGs). Fault simulation based test generators have the advantage that they can 

be adapted to new fault models or different circuit descriptions with minimal effort by using a 

fault simulator suitable for the new fault model. The drawback of simulation-based test 

generators generally consists in that they do not identify undetectable faults due to absence of 

any deterministic test generation procedure. In addition, simulation based approaches are fast 

only for smaller circuits and become ineffective when number of primary inputs and 

sequential depth of the circuit increase. The first simulation-based test generator was proposed 

by Seshu and Freeman [8]. Since then, several simulation-based test generators have been 

developed  ([9], etc.). 

Simulation-based technique is also used by Genetic Algorithm (GA) based test generators. 

There are several GA based test generators now. Fitness functions were used to guide the GA 

in finding a test vector or sequence that maximizes given objectives for a single fault or group 

of faults. In GATEST [10] the fitness function is biased toward maximizing the number of 

faults detected and the number of fault-effects propagated to flip-flops; increasing the circuit 

activity is a major objective in CRIS [11] and GATTO [12]. Maximizing propagation of fault 

effects to flip-flops and increasing circuit activity were shown to increase the probability of 



4

detecting faults at the primary outputs. Activity means the change of the logic values in 

different circuit points. It is assumed that the more the input vector causes the circuit activity, 

the more likely the fault effect is carried to primary outputs. Although the fault-detection 

probability improves, activating a hard fault and propagating fault-effects from flip-flops to a 

primary output remain difficult problems. Increasing circuit activity may be ineffective in 

activating a hard fault or propagating fault effects. DIGATE [13] tackles the problem of fault-

effect propagation by intelligent use of distinguishing sequences. However, also here faults 

must be activated in order to apply that technique effectively.  

2.2 Web-based digital design 

Over the last years, with advancements in the networking technology, several solutions are 

worked out in order to ease the collaboration in digital design field, to share the software 

tools, reuse the IP blocks, etc.  Subsequently most interesting ones are described, classified by 

use case. 

Collaboration support (groupware) 

The design of complex hard- and software systems is a collaborative task and is typically 

solved in a workgroup. Despite of the interest in the field of groupware (computer-supported 

cooperative work) it is still the case that few systems have been adopted for widespread use. It 

is especially true for widely dispersed, cross-organizational design teams where problems of 

heterogeneity in computing hardware and software environments inhibit the deployment of 

groupware. Research in groupware field focuses on developing new theories and technologies 

for coordination of groups of people who work together. Key issues are group awareness, 

multi-user interfaces, concurrency control, communication and coordination within the group, 

shared information space and support of a heterogeneous, open environment which integrates 

existing single-user applications. 

Feature rich solution for collaboration support is proposed in [15]. Concept of shared 

workspace for asynchronous cooperation was developed based on the idea of a private 

workspace. The workspace of single person comprises his personal work context. Workspace 

is used to store and retrieve documents, which can be stored into different container objects, 

like folders, also work tools are accessed from this workspace. Additional information about 

the work process can be stored there, as well the notes and tools needed. Work processes in 

the group can be organized synchronously or asynchronously. In first case direct response to 

one’s activities is estimated, in second case response is usually delayed. The shared 

workspace is the central access point for common data and information of the state of the 

work process. Support of asynchronous aspects is of greater interest in teleworking of small 

and big companies. Participants may access and exchange documents at any time and all 

workgroup members are aware of the overall work progress. Proposed system has 

autonomously managed shared workspace, which the members of the working group install 

and use for the organization and coordination of their tasks. It is possible to upload documents 

from local computer to shared workspace and process documents in the workspace. Different 

type of objects can be in the workspace: folders, documents, tables, graphics, and links to 

www pages. There is notification of activities. Ordinary web browser is required only. 

Standard client-server architectural model is used. CGI (Common Gateway Interface) 
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technique is used in order to extend the web server functionality. Unix and Windows NT are 

supported. Apache web server and Microsoft IIS web server is supported. There is 

multilanguage support for user interface. Members can set access rights to control the 

visibility of the information or operations what can be done by others. HTML pages show the 

information and are refreshed when activities (buttons pressed etc.) are carried out. System 

permanently registers events i.e. what is going on, offers some version management. System 

supports building communities of interest- knowledge co production, support. Communities 

gather and develop existing information on the web and collaborate in synchronous or 

asynchronous manner. Developing means structuring and organizing the information. 

Different roles and different access rights are necessary. Java based user interfaces and role 

concept, document locking mechanism, moderated workspaces were added to system finally. 

Only major drawback of described system is use of old-fashioned CGI technique, which is 

slow. Interesting is that in final stadium Java based interfaces were introduced to system. This 

shows the tendency in favor of Java. 

IP Reuse Paradigm 

In paper [14] a virtual electronic component (Intellectual Property – IP) exchange 

infrastructure is presented, whose main components are: 1) XML based well structured IP 

catalog builder responsible for management and e-publishing IPs and 2) XML IP profiler 

extracting IP files from design directories, transferring files to the used site via IP distribution 

server. Both applications use Java servlets and have client-server architecture. XML files are 

used instead of database. 

Remote tool usage 

Paper [18] presents the concept of a distributed, web-based electronic design framework.  

System has client-server architecture with multiple tiers. Web server is serving client requests 

whilst acting as client to the tool servers. In the sample application of the framework, 

developed in Java, any of the servers can be based on Linux, MS Windows or Sun-SPARC 

server.  The web server has been used to demonstrate the framework for on-line access to 

VAMS (a VHDL-AMS parser) and Avant!

The multi-user nature of such framework requires the web server to have some ‘memory’ of 

what actions users have already been undertaken so that it can prompt for the next stage.  

HTTP is by definition a stateless protocol and therefore maintains no such ‘memory’. Session 

tracking API provided by Java language is used here. It makes use of the facilities available 

(allowed) in user’s web browser, such as cookies, URL rewriting or hidden fields to maintain 

this session ‘memory’. Simple Java servlet code was written to implement this session 

tracking. Web server is responsible to maintain a collection of these session objects, which are 

created while different users make requests allowing to store relevant information and 

maintain information about current state. Usage of Java session object is sufficient in case of 

simple system, otherwise real database backend offers much more flexibility and reliability. 

The nature of the framework also requires that files (e.g. design netlists) can be uploaded from 

a user’s computer to the web server for processing. The files can be streamed through Java 
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StreamReader classes in order to write out to the file system. This is job of second servlet.  

The two servlets form a system, which will uniquely record a user’s identification when 

writing the uploaded files to the web server file system. A system can store data about when 

files were written and last accessed in order to allow the web server to recover in the event of 

the crash and delete expired files. The Java RMI (Remote Method Invocation) was used as the 

communication method between web server and the tool servers. RMI provides a 

programming method that allows code development as if the remote Java classes are resident 

locally. This level of transparency is clearly excellent. For example, on the web server side it 

will look like as if the work tools reside on the web server itself. However, it is necessary to 

register the remote Java services with a Java RMI registry on the remote machine. When 

connection is made to a TCP socket, the correct service can be invoked to handle the 

connection. Java RMI is very elegant solution for distributed network programming indeed, 

only it has drawback that in presence of firefalls such solution will need opening additional 

communication ports and configuring firewall rules. Most probably, this will fail in case of 

big corporate firewalls with strict security policy. 

Graphical user interface is here Java based. Java provides a number of built-in classes that 

enable graphics programming. These are the abstract window toolkit AWT and the swing 

class that provides a number of reusable graphics components. A simple method of graphing 

data in Java is available, and indeed this should not be overlooked as a method to visualize 

numerical data. 

Simple name/password authentication provided by the HTTP protocol – called basic 

authentication was used in order to restrict access to preset domains within a web server. With 

this technique, the web server maintains a database of usernames and passwords and identifies 

certain resources as protected. When a user requests access to a protected resource, the server 

responds with a request for the client’s username and password. At this point, the browser 

usually pops up a dialog box where the user enters the information.  Basic authentication is 

very weak. It provides no confidentiality, no integrity, and only the most basic authentication. 

The problem is that passwords are transmitted over the network, thinly disguised by a well 

known and easily reversed Base64 encoding. Great amount of web server configuration is 

needed by simple authentication. Custom authentication technique, to which up-to-date 

security techniques may easily be applied, has been chosen for this application. This is a 

method where a servlet handles the access restriction, governing which servlets may then be 

accessed.

Paper [17] presents approach for dynamic and secure resource integration and administration, 

i.e., TRMS (Tool Registration and Management Services). TRMS allows the dynamic 

discovery of a tool using semantics descriptions of the desired tool behavior. A tool is 

described by a set of significant properties based on which it can be discovered in the 

network. Variant of that approach based on SNMP (Simple Network Management Protocol), 

which is a widely accepted standard for general network administration was presented. The 

implementation gives the context for an illustrating example in the area of a realistic PCB 

design flow based on the Zuken Hot-Stage tool suite. Presented approach was intended for 

intranet only.

Paper [19] uses web services as means to integrate remote tools in a workflow-driven design 

process for embedded systems. It is of course questionable if “providing a service” may offer 
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a greater market-potential than “supplying a tool”. Problem is that design environments must 

be highly cooperative. 

On the one side, definition and implementation on object level is still the adequate design 

style for tightly coupled components, on the other side when targeting Internet scenarios the 

concept of interacting services is now the state-of-the-art specification method. This service-

based programming paradigm is backed by new Internet protocols and languages like SOAP 

[21] and WSDL [22], which serve exactly the purpose of defining and describing services and 

their intercommunications. New applications or services can rely on services from other 

service-providers. Since the client of a service is not defined at the time the service is 

provided the deployment and publication are a most important part during its life cycle. With 

UDDI [23], a “dictionary” with a standardized access mechanism has been defined to 

alleviate this problem. This progress affects the traditional tool-centered engineering domains 

as well, since issues like time-to-market and distributed development and design are common 

factors in the affected processes. Moreover, the sophistication of tools gains a new level as the 

design technology for new products evolves rapidly. Therefore, they are valuable assets for a 

company forming an important part of their intellectual property (IP). Using the service-

centered approach, such companies have the chance to offer using their knowledge without 

having to externalize programs or algorithms. For the user of such services one important 

question is how to integrate such a service into their work environment. Usually integration 

focuses on the principle of coupling existing applications or components tightly together to 

ensure smooth and reliable operation. The resulting (and available) integration environments 

therefore use proprietary integration mechanisms on top of existing base-technologies like 

CORBA [20], JAVA [24], and JAVABEANS [25] or similar middleware components. In fact, 

CORBA-Services for instance constitute conceptually the same idea as web services with 

WSDL: to enable their use through a common interface by different applications. The 

important difference of this approach is that web services are build on top of a foundation that 

is centered on the Internet platform. Which means the common denominator for running such 

services is standard web server technology, TCP/IP networks and the HTTP protocol 

accompanied by the flexible XML meta-format. 

With web services there is no firewall traversal problem, however there will be problem with 

consuming these services. Question is about the granularity of the service pieces. Fine grain 

services are interesting for system integrators mainly. Average chip designer who wants to get 

a specific task done, will obviously not benefit from that. He needs complete tool not pieces 

of it. Complete tool must be made available, which falls out bit of the initial meaning of web 

services.

Remote access of reconfigurable hardware 

Paper [16] presented an approach for the integration of reconfigurable hardware and computer 

applications based on the concept of ubiquitous computing. A set of reconfigurable hardware 

modules can be plugged in a network and be transparently accessed by client software 

applications. The client applications must not have any information about the network 

location or the internal implementation of the reconfigurable modules. The connection 

between client and reconfigurable hardware is based in a lookup mechanism. The 

reconfigurable hardware is encapsulated by a service interface, and all the communication 

with the client is done in the API level, through method calls. 
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Jini – based technology was used here. This is a relatively new Java-based technology for 

distributed computing, publicly debuted by Sun Microsystems in January 1999. It claims to 

address the fundamental difficulties of distributed computing. These difficulties center around 

the fact that distributed systems are vulnerable to network latency and concurrency problems, 

complexities in memory management, and inevitable partial failures. Jini technology 

addresses the difficulties of distributed computing with a simple set of interfaces that are 

claimed to be well specified and open to implementation by any member of the Java 

community. Jini technology is built on top of the Java 2 platform. It uses core Java 

functionality to provide a reliable, portable, distributed computing model. In terms of the Java 

platform, Jini technology takes advantage of the following:  

The inherent security provided by the Java technology’s robust and publicly tested 

security model  

The portability of Java technology byte code, provided by the widespread availability 

of Java virtual machines (JVMs)  

The mobility of Java objects, provided by object serialization and remote method 

invocation (RMI)

Jini technology enables spontaneous networks of devices and software services to assemble 

themselves into working groups known as federations of clients and services, without the 

need for intervention by system administrators. The Java language’s ability (RMI) to move 

entire objects, both data and code, allows Jini technology-based systems to deal reliably with 

partial failures and network issues. Distributed memory management is taken care of using 

underlying RMI functionality, and concurrency and latency issues become tractable with Jini 

technology’s distributed event support, leasing, and transaction capabilities. Participants in 

one network can directly access and use the services provided by participants in another 

network by using objects that move around the network, the Jini architecture makes each 

service, as well as the entire network of services, adaptable to changes in the network. The 

Jini architecture specifies a way for clients and services to find each other on the network and 

to work together to get a task accomplished. Service providers supply clients with portable 

Java technology-based objects that give the client access to the service. This network 

interaction can use any type of networking technology such as RMI, CORBA, or SOAP, 

because the client only sees the Java technology-based object provided by the service and, 

subsequently, all network communication is confined to that Java object and the service from 

whence it came. When a service joins a network of Jini technology-enabled services and/or 

devices, it advertises itself by publishing a Java technology-based object that implements the 

service API. This object’s implementation can work in any way the service chooses. The 

client finds services by looking for an object that supports the API. When it gets the service’s 

published object, it will download any code it needs in order to talk to the service, thereby 

learning how to talk to the particular service implementation via the API. The programmer 

who implements the service chooses how to translate an API request into bits on the wire 

using RMI, CORBA, XML, or a private protocol. 

Jini technology is promising, especially when truly distributed spontaneous and robust 

systems must be designed. However, firewall traversal can be problematic again – dedicated 

communication ports are needed. Another issue is the bandwidth required for communication, 

especially in case of mobile devices. 
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2.3 Discussion 

Considering implementation approaches used above for web-based design activities, it is clear 

that most popular development platform is Java environment and that’s for reason – Java is 

portable, mature, fast enough nowadays, it is free and what’s most important – it is meant for 

network programming from start. 

There exist at least alternatives like Microsoft ASP .NET platform, PHP for web-based 

software development, but none of them was surprisingly considered in papers found. 

Development of web applications with .NET could be rapid, actually faster than in case of 

Java or PHP since GUI development and data access to Microsoft SQL server is well 

automated, manual coding is much less, web services development is supported as well. 

However, developer has to stick to Windows platform. Even change of back end database to 

something else (for example to open source db MySQL) will slow down the development 

process considerable since data access functions must be mastered by designer itself again. 

PHP in turn is essentially scripting language engine running as web server extension. PHP 

language is used much for building web sites. Therefore, it is suitable for development of user 

interfaces. If information polling strategy can be used then it is obviously possible to use also 

PHP for simpler remote tool usage system development. 

Considering further Java based implementations, RMI based solutions dominated. As it was 

stated earlier, RMI (Remote Method Invocation) is elegant programming solution for 

distributed computing were one program can remotely invoke methods physically residing in 

other machine. However, firewall traversal can be problematic, as dedicated communication 

ports are needed. Strict security policy might not allow that.  

It seems that approaches based on the eXtensible Markup Language (XML) are widely 

suggested. The W3C [26] defines a set of XML-based languages that are the foundation for 

the current notion of web services. The Web Service Description Language (WSDL) is used 

to describe the interfaces of a web service. These interfaces can be accessed using the Simple 

Object Access Protocol (SOAP). WSDL descriptions can be made available via a central 

UDDI registration (Universal Description, Discovery, and Integration), e.g., in order to 

implement resource discovery. 

However, currently there are some serious reservations using such web services for industrial 

applications. The related standards like SOAP are currently evolving fast with the side effect 

of introducing compatibility issues and general uncertainty. Since these technologies are not 

stable yet, it is undesirable to apply them today in a true industrial context. Integration 

technology for WSDL must change and hopefully become as transparent as accessing other 

content in the Internet in order to be successful in the future. The usage of this technology for 

embedded system design is of high interest, because it offers on one side more freedom for 

the user of such systems and on the other side for the tool vendor new business concepts or 

licensing models. 

The ordinary integration technologies still have their merits. Because web services represent a 

weak coupling and require more dynamic processing for the protocols a certain overhead is 

generated which slows down the interaction. Especially “popular” web services may have 
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long latencies that reflect the same behavior as visiting heavy-loaded web servers. In the 

intranet the common integration techniques are to be preferred because the location of tools 

and applications is known and under direct administration. Additionally this technique of 

integration allows an efficient adoption to the clients requirements, whereas changing a web 

service depends on the cooperation of the service provider. Usually there are different clients 

with contradicting requirements, which are not easy to meet by the provider. 

For site-spanning tool integration, one has to consider open and known security problems in 

order to highly protect the exchanged IP-s. Due to those problems, SNMP-based solutions 

seem to be less applicable for open networks. Nevertheless, also XML-based alternatives with 

SOAP servers currently have significant unsolved security problems. We see that network-

based solutions for non-secure environments still require significant investigations in 

authentication and encryption when exchanging control and highly sensitive (i.e., IP-

protected) design data [17]. 

One problem is that XML-based messages are larger and require more processing than those 

from existing protocols: data is represented inefficiently and binding requires more 

computation. It has been shown that an RMI service can perform up to an order of magnitude 

faster than an equivalent Web Service due to the processing required to parse and bind XML 

data into programmatic objects [27]. 

We see, there are many possibilities, which makes cooperation harder. For example, WSDL 

and CORBA are similar approaches, but technically different. This means that it is harder to 

cooperate between enterprises to come up with virtual laboratories for example. The hope is 

that interfaces will eventually be standardized allowing seamless operation. 

Jini based solution is not attractive alternative either because it is also based on RMI (Remote 

Methods Invocation). Such approach will not work well in firewall-protected environments. 

Considerable effort has to be made to configure enterprise firewalls. In some cases, this might 

not be possible at all. 

In conclusion, plain HTTP protocol based solutions seem to be still best choice, since HTTP 

is well established and such solutions are more flexible in firewall-protected environments. 

Communication port 80, used by ordinary web browsers is always available on the client side 

of the system. It is also possible to add SSL (Secure Socket Layer) encryption to 

communication between two endpoints. This is big advantage when exchanging possibly 

sensitive design and test information. Choosing Java as development platform gives us 

portability and rich and widely accepted development environment for network programming. 

Java has also powerful classes to simplify HTTP communication. Data can be simply sent 

over the network as objects i.e. data bundles.

As a final remark, all the papers found and discussed above were dealing design issues, there 

was no evidence of using web-based environment for testing or digital test tools implicitly. 
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3 Test Generation for Digital Systems with Genetic 

Algorithms

Several techniques for solving the problem of generating tests for structural faults in 

sequential circuits have been proposed over the years. On the gate-level, a number of 

deterministic test generation algorithms have been implemented. However, the execution 

times are extremely long and for medium and large circuits mostly rather low fault coverage 

has been achieved. Better performance has been reported of simulation-based approaches. The 

above approaches are fast for smaller circuits only and become ineffective when number of 

primary inputs and sequential depth of the circuit increase. 

Test generation approaches that rely on functional fault models only do not guarantee 

satisfactory structural level fault coverage. As a solution, hierarchical approaches have been 

proposed which take advantage of high-level information during generating tests for gate 

level faults. While hierarchical test pattern generation still remains the fastest method for 

solving the problem, it is not applicable for designs that do not have an appropriate 

modularity or where the higher-level information is not known. 

Genetic algorithm based test generation overcomes the difficulties when deterministic 

generators are too slow and fast approaches, like hierarchical test generation, are not 

applicable to circuit due to lack of proper information; when fault coverage is too low or 

amount of generated test vectors is too large. In current chapter three different test generators 

are presented: for combinational circuit, for circuits represented as FSM and finally fault 

oriented TPG for gate level sequential circuit. 

3.1 Overview of genetic algorithms 

John Holland, the founder of the field of genetic algorithms points out in [28] the ability of 

simple representations (bit strings) to encode complicated structures and the power of simple 

transformations to improve such structures. Holland showed that with the proper control 

structure, rapid improvements of bit strings could occur (under certain transformations). 

Population of bit strings “evolves” as populations of animals do. An important formal result 

stressed by Holland was that even in large and complicated search spaces, given certain 

conditions on the problem domain, genetic algorithms would tend to converge on solutions 

that were globally optimal or nearly so. 

In order to solve a problem genetic algorithm must have following components: 

1) A chromosomal representation of solution to the problem, 

2) A way to create an initial population of solutions, 

3) An evaluation function that plays the role of the environment, quality rating for 

solutions in terms of their “fitness” 

4) Genetic operators that alter the structure of “children” during reproduction 

5) Values for the parameters that genetic algorithm uses (population size, probabilities of 

applying genetic operators) 
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3.1.1 Representation 

In genetic framework, one possible solution to the problem is called individual. As we have 

different persons in society, we also have different solutions to the problem (one is more 

optimal than other is). All individuals together form population (society).    

We use binary representation for individuals (bit strings of 1’s and 0’s). Bit strings have been 

shown to be capable of usefully code variety of information, and they have been shown to be 

effective representations in unexpected domains. The properties of bit string representations 

for genetic algorithms have been extensively studied, and a good deal is known about genetic 

operators and parameter values that work well with them [28]. 

3.1.2 Initialization 

For research purpose, random initializing a population is suitable. Moving from a randomly 

created population to a well-adapted population is a good test of algorithm. Critical features of 

final solution will have been produced by the search and recombination mechanisms of the 

algorithm rather than the initialization procedures. To maximize the speed and quality of the 

final solution it is usually good to use direct methods for initializations. For example, output 

of another algorithm can be used or human solution to the problem. 

3.1.3 Fitness function 

It is used to evaluate the fitness of the individuals in population  (quality of the solutions). 

Better solutions will get higher score. Evaluation function directs population towards progress 

because good solutions (with high score) will be selected during selection process and pour 

solutions will be rejected.

3.1.4 Fitness scaling 

Many properties of evaluation function enhance or degrade a genetic algorithm’s 

performance. One is normalization process used. Normalization is fitness scaling (increasing 

the difference between the fitness values). As a population converges on a definitive solution, 

the difference between fitness values may become very small. Best solutions can’t have 

significant advantage in reproductive selection. For example, let us have scores 2 and 3. If 

these scores are used without any change as measures of each individual’s fitness for 

reproduction, it will take some time before the descendants of good individual will gain the 

majority in the population. Fitness scaling solves this problem by adjusting the fitness values 

to the advantage of the most-fit solutions. For example, we can use squared values of fitness 

scores. Then, continuing example above we receive new scores 4 and 9 which are much more 

different now. 

The performance of a genetic algorithm is highly sensitive to normalization technique used. If 

it stresses improvements to much it will lead to driving out of alternative genetic material in 

the population, and will promote the rapid dominance of a single strain. When this happens, 

crossover becomes of little value, and the algorithm ands up intensively searching the solution 

space in the region of the last good individual found. If the normalization process does not 

stress good performance, the algorithm may fail to converge on good results in a reasonable 

time and will more likely to lose the best members of its population. 
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3.1.5 Fitness function and noise 

In some cases, there will be no known fitness function that can accurately assess an 

individual’s fitness, so an approximate (noisy) fitness function must be used. The noise 

inherent from noisy fitness function causes the selection process for reproduction to also be 

noisy [29]. We assume that a noisy fitness function returns a fitness score for an individual 

equal to the sum of real fitness of the individual plus some noise. Noisy information may 

come from a variety of sources, including noisy data, knowledge uncertainty, etc. To improve 

run – time performance some genetic algorithms use fast but noisier fitness function instead 

of more accurate, but slower, fitness function that may also be available. Sampling fitness 

functions are a good example of this phenomena: fitness function uses smaller (reduced) 

sampler size to increase run – time speed, at the expense of decreased accuracy of the fitness 

evaluation.

3.1.6 Reproduction  

During reproductive phase of genetic algorithm, individuals are selected from population and 

recombined, producing child (individual), which will be added into next generation. Parents 

are selected randomly from the population using a scheme, which favors the more fit 

individuals. Good individuals will probably be selected several times in a generation, poor 

ones may not be at all. Having selected two parents, their genes are combined, typically using 

the mechanisms of crossover and mutation. Next, we take a closer look on genetic operators. 

3.1.7 Selection 

Selection mechanism finds two (or more) candidates for crossover. The selection pressure is 

the degree to which the better individuals are favored: the higher the selection pressure, the 

more the better individuals are favored. This selection pressure drives the genetic algorithm to 

improve the population fitness over succeeding generations. The convergence rate of genetic 

algorithm is largely determined by the selection pressure. Higher selection pressures result 

higher convergence rates. Genetic algorithms are able to identify optimal or near optimal 

solutions under a wide range of selection pressure [30]. However, if the selection rate is too 

low, the convergence rate will be slow, and the genetic algorithm will unnecessarily take 

longer to find the optimal solution. If the selection pressure is too high, there is an increased 

change of genetic algorithm prematurely converging to an incorrect (sub-optimal) solution. 

There are several selection strategies possible: 

1) Roulette wheel selection 

It is a standard gambler’s roulette wheel, a spinning circle divided into several equal size 

sections. The croupier sets the wheel spinning and throws marble into bowl. After the motion 

of the wheel decreases, marble comes to rest in one of the numbered sections. 

In the case of genetic algorithm roulette wheel could be used to select individuals for further 

reproduction. The wheel corresponds to fitness array and the marble is a random unsigned 

integer less than the sum of all fitnesses in population. Let us look at Figure 1. There is c- 

coded fragment of roulette wheel interpretation for genetic algorithm. To find an individual  
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 int select_individual()
   { 
     int j=0; 
     long int rnd_num; 

    rnd_num =  floor (Random_btw_0_1() * fit_sum); 

        while (rnd_num > fit_arr[j]) 
           { 
               rnd_num -= fit_arr[j]; 
               j++; 
           } 
               // returns index of the individual in population   
  return (j); 
   } 

associated with the marbles landing place, the algorithm  iterates through the fitness array. If 

the marbles value is less than the current fitness element, the corresponding individual 

becomes a parent. Otherwise, the algorithm subtracts the current fitness value from the marble 

and then repeats the process with the next element in the fitness array. Thus, the largest fitness 

values tend to be the most likely resting places for the marble, since they use a larger area of 

the abstract wheel. That’s why strategy described above is called proportional selection 

scheme. To clarify, let us look small example with a population size five. Table 1 shows the 

population and its corresponding fitness values.

Individual Fitness 

10110110 20 

10000000 5 

11101110 15 

10010011 8 

10100010 12 

Total fitness of this population is 60. Figure 2 shows pie chart representing relative sizes of 

pie slices as assigned by fitness. We can also imagine that pie chart as our roulette wheel 

discussed above. What we actually see is a wheel with slots of different size.  Sizes of slices 

correspond to roulette wheel slot sizes.

We see, that individual 10110110 has 34% chance of being selected as parent, whereas 

10000000 has only an 8% chance to be selected. Selecting five parents for example requires 

simply generating five random numbers, as shown in Table 2. Given a random number we 

determine a corresponding individual by looking at Figure 3. 

Figure 1 Pseudo c- code for proportional roulette wheel selection 

Table 1 Hypothetical population and its fitness 
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Random num. Individual 

44 10010011 

5 10110110 

49 10100010 

18  10110110 

22 10000000 

We see that individual 10110110 (with the highest fitness) is two times a parent for 

members of the new population, this is naturally allowable. Even the chromosome with the 

lowest fitness will be a parent once. However, second-most-fit chromosome did not 

reproduce- c’est la vie, life is unpredictable. 

2) Stochastic universal selection

It is a less noisy version of roulette wheel selection in which N markers are placed around 

the roulette wheel, where N is a number of individuals in the population. N individuals are 

Figure 2 Roulette wheel. Slots are proportional to individual’s fitness 

Table 2 Randomly selected numbers and corresponding individuals 

Figure 3 Slot ranges corresponding to certain individuals 

10110110

34%

10000000

8%
11101110

25%

10010011

13%

10100010

20%

10010011

41 - 48

11101110

26 - 40

10000000

21-25

10110110

1 - 20

10100010

49 - 60
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selected in a single spin of the roulette wheel, and the number of copies of each individual 

selected is equal to the number of markers inside the corresponding slot.  

3) Tournament selection

s individuals are taken at random, and the better individual is selected from them.  

It is possible to adjust its selection pressure by changing tournament size. The winner of the 

tournament is the individual with the highest fitness of the s tournament competitors, and the 

winner is inserted into mating pool. The mating pool, being filled with tournament winners, 

has a higher average fitness than the average population fitness. This fitness difference 

provides the selection pressure, which drives the genetic algorithm to improve the fitness of 

each succeeding generation. Tournament selection pressure can be increased (decreased) by 

increasing (decreasing) the tournament size s, as the winner from larger tournament will, on 

average, have a higher fitness than the winner of a smaller tournament.  

3.1.8 Crossover 

Exchanges corresponding genetic material from two parents, allowing useful genes on 

different parents to be combined in their offspring. Two parents may or may not be replaced 

in the original population for the next generation, these are different strategies. 

Crossover is the key to genetic algorithm’s power. Most successful parents reproduce more 

often. Beneficial properties of two parents combine.  Figure 4, Figure 5 and Figure 6 show 

most common crossover types. White and grey represent different individuals, their genetic 

material (genes).  We can see how genes get mixed in every particular case of crossover. 

Figure 4 One-point crossover 

Figure 5 Two-point crossover 

 m  m+11 L

m  m+11 L

 m  m+11 L

m m+11 L

 m  m+11 L r  r+1

 m  m+11 L r r+1

 m  m+11 L r  r+1

m m+11 L r  r+1
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Figure 6 Uniform crossover 

3.1.9 Mutation 

Random mutation provides background variation and occasionally introduces beneficial 

material into a species’ chromosomes. Without the mutation, all the individuals in population 

will eventually be the same (because of exchange of genetic material) and there will be no 

progress anymore. We will be stuck in local maximum as it is used to say. Mutation in case of 

binary string is just inverting a bit as shown in Figure 7. 

3.1.10 Parameters for genetic algorithm 

In order to converge, several parameters of genetic algorithm have to be fine-tuned.  

 Population size

Of course, considering algorithm’s convergence, bigger population is better, because we have 

more genetic material for selection and reproduction. Changes to build better individuals are 

bigger. However, there is one important aspect to consider though- aspect of algorithm’s 

speed. Bigger population means more evaluation. Every individual in population has to be 

measured in terms of fitness. Usually this is computationally most expensive procedure in 

genetic algorithm. Therefore, population size is kept about 32. Of course, it depends on 

evaluation complexity. 

Figure 7 Mutation in binary string 

1 L

1 L

1 L

1 L

0      1       1       0       1       0      1       1

0      1       1       0       1       1      1       1
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 Mutation rate 

It has to be small enough not to loose useful individuals developed so far and big enough to 

provide population with new genetic material at the same time. Different sources of literature 

suggest values between 0.1 and 0.01.There exists interesting relation between population size 

and mutation rate. When we lower population size, then it is useful to increase the mutation 

rate and vice versa. 

 Crossover rate

Normally, when two candidates are selected, they always do crossover.  

 Number of genetic generations 

In other words, how many cycles we do before we terminate.  It depends on task’s 

complexity. Sometimes hundred generations is enough, another time thousands of generations 

isn’t enough. It is probably wise to stop when no improvement in solution quality is made for 

certain time. Limit condition can be calculated taking account task’s dimensions. For complex 

task, we may allow more generations.      

When it is hard to determine appropriate a value for some parameter, it is good idea to use 

self-adaptation for that parameter. For example, we can change dynamically mutation rate 

along the progress of genetic algorithm: allowing mutations more often at the beginning and 

fewer mutations at the end, when solution needs only fine-tuning. Could be also that we need 

to use bigger mutation rate when progress has stopped, but we still are too far from plausible 

solution. Therefore, intelligent self-adaptation would be very promising.        

3.2 How genetic algorithms work 

In this section, questions like “What is though manipulated by genetic algorithm, and how to 

know that this manipulation (what ever it could be) leads to optimum or near optimum results 

for particular problem?” are answered. 

3.2.1 Exploration engine: important similarities  

Fundamental question has been not answered for long time. If in optimization process actually 

nothing else is used than values of fitness function, then what information could be extracted 

from a population of bit-strings and their fitness values? To clarify, let us consider bit-strings 

and fitness values in Table 3. This corresponds to black box output maximization problem in 

[31]. Function to optimize is f (x) = x
2
 .
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String  Fitness 

01101  169  

11000  576 

01000  64 

10011  361 

Table 3 Black box output maximization, inputs and fitness. 

So, what information could be extracted from this population to guide exploration toward 

progress? Actually, there is not much: four independent chains of bits and their fitness values. 

When examining closer, we naturally start evaluate column of bit-strings and we notice 

certain similarities between strings. Studying these similarities in detail, we can see that 

certain bits seem to be very correlated with good fitness results. It seems that all strings 

starting with ‘1’ are within best ones for example. Could that be important element for 

optimization of the function? Answer is yes. As we know, maximal value of the function f(x) 

= x
2
 is obtained when argument x is maximal.  In our 5 bit case x can be 31 in decimal coding 

which corresponds to ‘11111’ in binary coding.

In conclusion, we must look for similarities between strings in a population. Then, we have to 

seek for cause – effect relation between similarities and improved performance. That way we 

have received a new source of information, which helps us guide exploration.  

3.2.2 Schema concept 

Since important similarities can help to guide exploration, we are interested how one string 

can be associated with another class of strings containing invariant in a certain positions. A 

framework defined by schema concept will answer more or less these questions. 

Schema is a motive of similarity describing sub-set of bits in strings by similarities in certain 

positions, stated by Holland in [28]. To simplify we use just binary alphabet {0,1}, at the 

same time not loosing generality of discussion. We can easily introduce schemas by adding a 

special symbol ‘*’ to this alphabet, which stands for indifference. Now we can create strings 

based on this ternary alphabet {0,1, *}. Importance of schema comes clear when it is used as 

tool for (bit) pattern identification: 

A schema identifies a string if there is correspondence in all positions in schema and in string 

under identification. Namely, ‘1’ matches ‘1’ and ‘0’ matches ‘0’ and ‘*’ can match both ‘1’ 

and ‘0’. Let us take an example.  We consider strings and schemas with length 5. The schema 

*0000 corresponds to two strings {10000, 00000}. Schema 111 describes set of four elements 

{01110, 01111, 11110, 11111}. As we see, idea of schema lets us easily consider all the 

similarities between the strings of finite length on finite alphabet. Note that ‘’ is just a meta-

symbol, it is never manipulated by genetic algorithm, it is just notation which allows describe 

all the potential similarities between strings of particular length and on particular alphabet.  

Total number of similarities for previous example is 3
5
, because each of five positions can 

take values ‘0’, ‘1’, or ‘*’. Generally, for the alphabet with cardinality of k (number of 

characters in alphabet) there exist (k+1) 
l
 schemas, where l is length of schema. So, what 

quantity of useful information we have received taking account similarities? The answer lies 

in number of unique schemas contained in population. In order to count these, we need to 
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know strings in the population. What we can do is to count schemas related to one unique 

string; such a way we obtain number of upper bound of total schemas in a population. 

For example, we consider a string with length of 5 “11111”. 2
5

schemas belong to that string, 

because each position can take its actual value or indifference symbol ‘*’. Generally 

expressed, a string contains 2
l
 schemas. Therefore, a population with size n contains between 

2
l
and n*2

l
 schemas, depending on its diversity. As we see, it is much of information to help 

in guiding of exploration. Taking account similarities is justified.  It is also obvious that 

efficient (parallel) treatment is needed if we want to use all that information in reasonable 

time. 

Well, we know now the number of schemas, but how many of them are effectively treated by 

genetic algorithm? In order to answer that, we have to consider the effects of genetic 

operators (selection, crossover, and mutation) on development or disappearing of important 

schemas from generation to generation. Effect of selection on schema is easy to determine. 

Strings better adopted are selected with greater probability. Generally, schemas resembling 

the best ones are selected without loosing their advantage. Meanwhile, selection only is not 

capable of exploring new points in the space of search. Maybe crossover enters the game now. 

The crossover leaves schema intact when it is not cutting it, but in the opposite case it can 

degrade it. For example, let us consider two schemas ‘1***0’ and ‘**11*’. First schema has 

great changes to be destroyed by crossover (useful bits ‘1’ and ‘0’ will be probably 

separated). Second schema will probably be preserved (bits are close to each other). 

Consequently, schemas with short (useful) length are conserved by crossover, and are 

multiplied in quantity by selection operator. Mutation with normal (low) rate rarely destroys 

schemas as observations show. Schemas, which are well adopted and with short useful length, 

(elementary blocks, building blocks) are promoted from generation to generation. It is due to 

exponential growth of number of trials what are given to the best representatives. All this will 

happen in parallel, not requiring days of computing and much more memory than necessary 

for describing the population of n strings.

3.2.3 Schema theorem 

So far, we have seen that there is great number of similarities to exploit in a population of 

strings. Intuitively we have seen how genetic algorithm exploits all the similarities contained 

in elementary blocks (schemas with good performance). Now we are going to look at these 

observations in a more formal way. We will find precise number of schemas in a population. 

We will formally study, which schemas will multiply in quantity and which, will decease in a 

generation. We will conclude with fundamental theorem of genetic algorithm.  

To analyze development and degrading of great number of schemas contained in a population 

formal notations are needed. We are going to consider the effects of selection, crossover and 

mutation on schemas in a population. 

We assume (without loosing generality) that we have binary strings on alphabet V = {0,1,*}. 

Where ‘*’ stands for indifference (0 or 1) as we saw in 3.2.2. Let us define strings by capital 

letters and positions in string with small letters. For example, string of seven bits A = 

0111000 can be referred as:

A = a1 a2 a3 a4 a5 a6 a7
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Bit positions can be reordered, for example: 

A’ = a3 a2 a1 a4 a5 a7 a6

Set of strings Aj, j = 1,2…n, form a population A (t) in a time moment (or in generation) t. 

Let us recall that there was 3
l
 schemas possible (similarities) based on binary string length l.

Generally expressing, there was (k+1)
l
 schemas for alphabet of cardinality of k. In addition, 

there was n*2
l

schemas in a population with size n, because each string itself contains 2
l

schemas. This quantity shows importance of information treated by genetic algorithms. At the 

same time, in order to isolate elementary building blocks (for further investigation) in that 

vast quantity of information, we have to be able to make distinction among different type of 

schemas. 

Not all the schemas are created to be equal. Some of them are more specific than others are. 

For example, schema ‘011*1**’ tells more about of it’s important similarities than schema 

‘0******’. Even more, some schemas cover bigger part of the whole length of the string than 

others. For example, ‘1****1*’ covers bigger part of string than ‘1*1****’. In order to 

quantify these notations, we are going to define two characteristics of schema: it’s rank and 

useful length.

Rank of the schema H, o(H) is just number of the positions instantiated (0 or 1 in case of 

binary alphabet) in a sample. For example, for a ‘011*1**’ rank is 4 (o (011*1**) = 4), but 

for ‘0******’ rank is 1.

Useful length of schema H, (H) is the distance between first and last instantiated positions in 

the string.

 For example, for schema ‘011*1**’ useful length is 4, because last position instantiated is 5 

and first position is 1, and the distance what separates them is (H) = 5-1 = 4. For another 

schema ‘0******’, it is particularly simply to calculate. Because there is only one position 

instantiated, useful length will be 0.  

The schemas and properties defined so far, are instruments, which allow formally study and 

classify similarities between strings. Moreover, it is possible to analyze effects of genetic 

operators on elementary building blocks contained in population. What we are going to do 

now is to consider the effects of selection, crossover and mutation (first separately and then 

combined) on schemas contained in population.  

Effect of the selection on the expected number of schemas in a population is relatively easy to 

determine. Let us suppose that in given time moment t there is m exemplars of schema H in 

the population. We describe that m = m (H,t). Number of schemas can vary in different time 

moments.  In case of selection, a string is copied into next generation according to its fitness 

function (degree of adoption). More precisely, a string Ai is selected with probability

i

i
i

f

f
p

Having population with size n, we expect to have
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if

Hf
ntHmtHm ,1,  (1) 

representatives of schema in a population in a time moment t + 1, where f(H) is average 

fitness of the string represented by schema H in a time moment t.   

As average fitness of the population can be expressed as following: 

n

f
f

i
,

then we can rewrite expression (1) as following: 

f

Hf
tHmtHm ,1,  (2) 

Clearly saying, any schema develops (reproduces) with the speed, which is equal 

(proportionate) to the ratio of schema’s average fitness and population’s average fitness. In 

other words, schema, which has its fitness value greater than population’s average, will 

receive more copies in next generation. The same time, schemas which fitness values are less 

than population’s average, receive smaller number of copies in next generation. It is 

interesting to observe that this phenomena occurs in parallel for each schema H contained in 

population. In other words, all the schemas in a population multiply or decease according to 

their fitness thanks selection operator only. This is important. 

Effect of the selection on number of schemas is clear now from qualitative point of view. 

Maybe it is possible to estimate quantitative aspect to. Let us suppose that we have a schema 

H which has quantity of cf copies, what is more than average; c is a constant. Now it is 

possible to rewrite the equation of schema development (2) as following: 

tHmc
f

cff
tHmtHm ,1,1,  (3) 

When starting at time moment t = 0 and assuming that c a constant we obtain equation: 

m(H,t) = m(H,0)*(1+c)
t
 (4)  

We can recognize (4) as geometric progression, discrete analogue of exponential growth. 

Effect of selection is now clear quantitatively as well: it exponentially allocates space in a 

population to schemas which are better than average. Next, we are going to study in witch 

way crossover and mutations affect this allocation of space.  

Although, selection is surprisingly powerful, actually by itself it does not promote exploring 

new regions in search space. Therefore, no new points are found. If we are just copying old 

structures without changing them, how can we obtain something new? That is the reason why 

crossover enters the game. The crossover is an exchange of information between the schemas, 

which are structured into random parts, consequently. Crossover creates new structures 

avoiding as much as possible disturbing the allocation strategy dictated by selection only. 
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Therefore, it conserves the proportions of schemas exponentially increasing (or decreasing) in 

population.

In order to see which schemas are affected by crossover and which are not, let us consider a 

string of the length l = 7 and two schemas represented by that string: 

A  = 0 1 1 1 0 0 0 

H1 = * 1 * * * * 0 

H2 = * * * 1 0 * * 

It is evident that schemas H1 and H2 are represented in the string A.  Recall, that simple (one – 

point) crossover is carried out by randomly selecting another string, randomly selecting a 

crossover point, and then exchanging sub-parts between two strings started from crossover 

point until the end of the strings (see Crossover). Let us suppose that string A was selected for 

crossover. There are six positions in that string for possible crossover point. Let us suppose, 

randomly selected crossing point is between positions 3 and 4. Effect of crossover is visible in 

next example, where crossover point is marked with separator: 

A  = 0 1 1  |  1 0 0 0 

H1 = * 1 *  |  * * * 0 

H2 = * * *  |  1 0 * * 

We can see that schema H1 will be destroyed, because ‘1’ in the second position and ‘0’ in 

last position will be separated. It is also obvious that in case of the same crossover point 

(between positions 3 and 4), the schema H2 will survive. It is because ‘1’ in fourth position 

and ‘0’ in fifth position will be kept together in the same descendant (child). It is clear that 

schema H1 has less change to survive than schema H2, because the point of cut has more 

change to fall between extreme positions. To quantify that observation, we remark that 

schema H1 has useful length of 5. If the point of crossover is chosen uniformly or randomly 

among the l-1 = 7 – 1 = 6 positions possible, then its evident that the schema H1 has following 

possibility to be destroyed:

6

5

1l

H
pd

(There is probability to survive ps = 1 – pd = 1 /6). The same way, the schema H2 has a useful 

length of (H2) = 1, and it is destroyed only in case of unique event among of 6 possible, 

when cutting point occurs between positions 4 and 5. So pd = 1/6 and probability to survive is 

ps = 1 – pd = 5 / 6. 

More generally, we can find a lower bound of the probability ps for any schema. Schema 

survives when crossover point falls exterior of its useful length, probability to survive in case 

of simple crossover is  

1
1

l

H
ps
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at the same time, schema has great chances to loose when cutting point (chosen within l – 1 

possible points) drops into its useful length. If crossover takes place with probability pc then 

for any pairing, the probability to survive is can be expressed as following: 

1
1

l

H
pp cs

The expression remains actually same because we have crossover probability pc = 1.

Now we can consider combined effect of the selection and crossover. Supposing that selection 

and crossover operations are independent, we obtain following estimation: 

1
1,1,

l

H
p

f

Hf
tHmtHm c  (5) 

Let us compare expression (5) to expression (3), obtained earlier for selection only. We see 

that number of schemas expected to be in next generation is multiplied by surviving 

probability ps during crossover. Combination of selection and crossover increases number of 

schemas. Again, effect of operators has revealed- the schema H develops or degrades in 

function of certain factor. Considering selection and crossover together, this factor depends on 

two things: 

1)  is the schema below or over the of population’s average 

2)  is the useful length of schema short or long 

Evidently, the schemas with fitness over average and with short useful length are handled 

with exponential speed.

The last operator to take account is mutation. Mutation modifies randomly (with probability 

pm) one position in a given string. In order to schema H could survive, all its instantiated 

positions have to survive. In addition, probability that instantiated position remains 

unchanged (survives) is 1 – pm, and as every mutation is statistically independent from others, 

schema survives only if every position of its o (H) insatiate positions survives. Multiplying 

the surviving probability 1 – pm with it self o (H) times, we obtain surviving probability 

against mutation:

(1 – pm)
o(H)

As pm is small (pm << 1), then we can approximate last expression as 1 – o(H)*pm

In conclusion, we can say that expected number of copies a schema H receives due selection, 

crossover and mutation can be given by following equation: 

mc pHo
l

H
p

f

Hf
tHmtHm

1
1,1,

 Added mutation affects little our previous conclusions.  

Short schemas with small rank and with fitness greater than average are objects of under 

manipulation in genetic algorithm, they receive an exponentially increasing number of trials 
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in successive generations. This conclusion is so important that there is given a special name to 

it: Schema Theorem [28], [31].

3.2.4 Implicit parallelism  

We have seen so far that the number of schemas processed in a population is between 2
l
 and 

n*2
l
, where l is length of strings and n is population size. At the same time, we know now that 

certain schemas are not processed with such a high probability, because crossover destroys 

those schemas with relatively big useful length. It is showed in [31] that the number of 

schemas, which are effectively being processed in each generation, is of the order n
3
, where n 

is the population size. This property is one of the explanations for the good performance of 

genetic algorithms. 

3.2.5 Building block hypothesis 

The power of genetic algorithm comes much more clear from viewpoint of schema concept. 

Short schemas with low rank and with good fitness are selected, recombined and re-selected 

again leading to formation of individuals with even more improved performance. Such 

schemas are so important that they are called elementary blocks or building blocks.

Working with building blocks reduces search space. Instead of constructing efficient strings 

by trying all the combinations possible, only very best strings are constructed based on parts 

of best solutions tested before. Idea, that building blocks combine in order to form better 

individuals, seems quite logical. However, how to be sure it is right? There are many 

empirical confirmations starting with Bagley and Rosenberg 1967, Greffenstette 1985, 1987; 

building block hypothesis is confirmed in many domains. Regular, unimodal, multimodal, 

combinatorial optimization problems are successfully solved with similar type of selection, 

crossover and mutation operators as considered here so far. Bethke (1981) has researched this 

subject using Walsh functions and string transformations. His analytic method enables to 

determine if algorithm reaches optimum (or near optimum) result for given fitness function 

and coding (are the building blocks combining properly). Holland (1987b) extended that work 

by analyze of the average of the schema when population is not uniformly distributed.  

 Practical aspects

From practical point of view, it is important to follow the imperative, that simple genetic 

algorithm depends on recombination of building blocks in order to find the best solutions. If 

the building blocks are fuzzy because (improper) coding or because of (bad) evaluation 

function itself, algorithm may take long times for achieving optimal solutions.  

Successful coding scheme is such which encourages the formation of building blocks by 

ensuring that: 

1)  related genes (positions) in individual (string) are close together (short useful 

length),

2)  there is little interaction between genes 
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Interaction, (often referred as epistasis) between genes means that the contribution of the 

gene to the fitness depends on the value of other genes in the individual. In fact, there is 

always some interaction between genes in multimodal fitness functions (most real functions 

of interest). 

Unfortunately, conditions (1) and (2) are not always easy to meet. Genes may be related in a 

ways which do not allow all closely related ones to be placed together in a one – dimensional 

string (if they are related hierarchically for example). In many cases, the exact nature of the 

relationships is not known to the programmer, so even there are simple relationships, it is still 

impossible to arrange the coding to reflect this. 

3.2.6 Conclusions 

In this section we have seen why genetic algorithm works, why it has such a performance. We 

have used schema conception (model of similarities) for more formal analyze. Most important 

results conclude in fundamental theorem of genetic algorithms (Schema Theorem [28],[31]), 

which states that short schemas with small rank and with fitness greater than average are 

objects under manipulation in genetic algorithm, they receive an exponentially increasing 

number of trials in successive generations. This happens because selection allocates greater 

number of copies to the best schemas, and because simple crossover does not change short 

schemas too often. Mutation, at the same time, occurs relatively rarely so it has minor effect 

on important schemas.    

Manipulating similarities (schemas), genetic algorithm reduces complexity of any given 

problem. Short schemas with low rank and with good fitness are selected, recombined and re-

selected again leading to formation of individuals with even more improved performance. 

Such schemas are so important that they are called elementary blocks or building blocks. New 

solutions are constructed based on parts of great number of combinations of best solutions 

tested before. Building block hypothesis says implicitly that elementary building blocks surely 

lead to improved performance. 

It is important that constructive building blocks are contained in the string, which can be 

processed by the genetic algorithm. Accordingly, the combination of the fitness function, 

encoding of the problem parameters (e.g., real or binary), and type of crossover (e.g., uniform 

or n-point) must ensure the presence of these building blocks. 

Genetic algorithms are suitable for solving a test generation problem from building blocks 

imperative’s point of view. In that case individual will be test vector, which in essence is 

binary string. Test set will be a population. Everything we have discussed above (good 

performance, etc.) applies to test generation task as far as we can find appropriate fitness 

function.
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3.3 Genetic algorithm for combinational circuit testing 

In this section, the first aim was to compare genetic test generator with random generator, 

because it is known that in essence, genetic algorithm uses much of random numbers. 

Therefore, the algorithm is designed so that it allows direct comparison with random method. 

Some basics of gate level test development are recalled also. Genetic operators are revisited in 

terms of test generation. Example of crossover on hypothetical circuit is presented. Finally, 

results of experiments are presented. 

3.3.1 Introduction 

During recent years, great effort is put to overcome test generation complexity problem. 

Artificial intelligence methods are therefore gained much of attention. One among these 

techniques is evolutionary algorithms or often referred as genetic algorithms.  

Earlier genetic approach for combinational circuits was represented in [11]. The key feature 

there was the method of monitoring circuit activity. Namely, information about the activity of 

internal nodes during fault simulation was collected, and points in the circuit where fault 

propagation was blocked where identified. Based on that information fitness values for test 

vectors were calculated. Modified crossover operator, which swaps useful parts (identified 

before) of two individuals was used.

3.3.2 Fault model 

Stuck-at fault model is used here. There are two kinds of faults possible: stuck-at-1, what we 

will identify as 1, and stuck-at-0, identified as 0. In first case, due to some reason 

(fabrication defect for ex.), logic level of signal remains constantly “high”. In second case, 

logic level of signal remains constantly “low”. Stuck-at faults of AND gate are considered in 

Figure 9 and stuck-at faults of OR gate are represented in Figure 8. 

Figure 9 Stuck-at- faults detected for AND gate 

Figure 8 Stuck-at-faults detected for OR gate 
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We see that, in order to detect 1 in input of AND gate (Figure 9, a) ), we have to apply 

vector ‘0 1’. Normal response to such input vector should be ‘0’ in gate’s output. But due to 

fault, both inputs of gate are ‘1’ now, which in turn gives ‘1’ in output. In other words, output 

value has changed due to presence of fault. Fault effect on the component has revealed. We 

say, that fault is detected when fault effect can be observed. However, there is a problem to 

consider.

We can’t measure directly output of the gate under test, as fabricated integrated circuit is 

actually black box for us in that sense that we can manipulate its inputs and we can observe its 

outputs only. We cannot measure its inner points. Therefore, in order to be observable, fault 

effect must be propagated into circuit output- logical values of inner points of circuit have to 

have certain values.

In conclusion, in order to detect a fault in a circuit, we apply test vector (test impulse) to 

circuit inputs and observe circuit’s outputs. We know advance what should be output values 

in case of good circuit (by logical simulation). Therefore, if circuit output values are different, 

it is said that fault in the circuit is detected by this vector. Good test vector contains two 

properties at same time: 1) applies appropriate values to component under test, 2) propagates 

fault effect to circuit values  

3.3.3 Representation 

In a genetic framework, one possible solution to the problem is called an individual. As we 

have different persons in society, we also have different solutions to the problem (one is more 

optimal than the other). All individuals together form a population (society). 

In context of test generation, test vector (test pattern) will be the individual and the set of test 

vectors will correspond to population.

3.3.4 Initialization 

Initially, a random set of test vectors is generated. This set is subsequently given to a 

simulator tool for evaluation. For research purpose, random initializing a population is good. 

Moving from a randomly created population to a well adapted population is a good test of 

algorithm, since the critical features of final solution will have been produced by the search 

and recombination mechanisms of the algorithm rather than the initialization procedures. To 

maximize the speed and quality of the final solution it is usually good to use more direct 

methods for initializations. For example, output of another algorithm can be used or human 

solution to the problem. 

3.3.5 Evaluation of test vectors 

Evaluation is used to measure the fitness of the individuals, i.e. the quality of solutions, in a 

population. Better solutions will get higher score. Evaluation function directs population 

towards progress because good solutions (with high score) will be selected during selection 

process and poor solutions will be rejected. 
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We use fault simulation with fault dropping in order to evaluate the test vectors. The best 

vector in the population is determined and added to the selected test vector depository. The 

depository consists of test vectors that form the final set of test vectors. By adding only one 

best vector to the depository, we assure that the final test set will be close to minimal. 

3.3.6 Fitness scaling 

As a population converges on a definitive solution, the difference between fitness values may 

become very small. Best solutions cannot have significant advantage in reproductive 

selection. We use square values for test vector’s fitness values in order to differentiate good 

and bad test vectors.

3.3.7 Selection of candidate vectors 

Selection is needed for finding two (or more) candidates for crossover. Based on quality 

measures (weights), better test vectors in a test set are selected. Roulette wheel selection 

mechanism is used here. Number of slots on the roulette wheel will be equal to population 

size. Size of the roulette wheel slots is proportional to the fitness value of the test vectors. 

That means that better test vectors have a greater possibility to be selected. If our population 

size is N and N is an even number, we have N/2 pairs for reproduction. Candidates in pair will 

be determined by running roulette wheel twice. One run will determine one candidate. With 

such a selection scheme, it can happen that same candidate is selected two times. 

Reproduction with itself does not interfere. This means the selected vector is a good test 

vector and it carries its good genetic potential into new generation.

3.3.8 Crossover 

From pair of candidate vectors selected by roulette wheel mechanism, two new test vectors 

are produced by one-point crossover as following (see Figure 10):

1) we determine a random  position  m in a test vector by generating a random number 

between 1 and L, assuming that L is the length of  the test vector 

2) first m bits from the first candidate vector are copied to the first new vector 

3) first m bits from second candidate vector are copied to the second new vector 

4) bits m + 1 … L from first candidate vector are copied to second new vector (into bits m

+ 1…L)

5) bits m + 1 … L from the second candidate vector are copied to the first new vector 

(into bits m + 1…L)
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 m  m+11 L

m  m+11 L

 m  m+11 L

0      1       1       0       1       0      1       1

0      0       1       0       1       1      0       0

0      1       1       0       1       1       0      0

m m+11 L

0       0      1       0       1       0       1       1 

C language implementation of one-point crossover is given in Figure 11:  

1) First two candidate vectors in population are selected.  

2) Then, crossover point (bit position) for them is determined.  

3) Next, exchange of bits (genetic material) between carries out. Leftmost bits from first 

vector up to cutting point are replaced by leftmost bits from second vector.  

4) Then bit exchange continues in positions after crossing point.  

Steps 1 to 4 are carried out over the population with increment value 2, see for cycle. This 

means, two parents always produce two children (new vectors). Note that therefore population 

size has to be even number, too. New vectors are put into new population. Finally, current 

population is replaced entirely with new population. There exists actually a strategy where old 

population is replaced only partially. 

Void crossover() 
  { 
    int l,k; 
    int cross_point,mate1,mate2; 
    char **temp_ptr;

    for (k=0; k < popul_size; k+=2) 
    { 

mate1=select_individual();   // select one vector 
      mate2=select_individual();  // select other vector 

                 // determine crossing point of the two vectors 

  cross_point = floor (Random_btw_0_1() * InpCount); 

                 // exchange of bits until cutting-point

      for (l=0; l< cross_point; l++)
        { 
          new_popul[k][l] = popul[mate1][l]; 
          new_popul[k+1][l] = popul[mate2][l]; 
        }

     // exchange of bits after cutting-point

Figure 10 One – point crossover 
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      for (l=cut_point; l < InpCount; l++)
   {  
          new_popul[k][l] = popul[mate2][l];
          new_popul[k+1][l] = popul[mate1][l];
        } 
    } 

    // swapp current and new population, 
    // new built pop. Becomes current one 

       temp_ptr = popul; 
       popul=new_popul; 
       new_popul = temp_ptr; 

  } 

3.3.9 Mutation in test vectors 

Random mutation provides background variation and occasionally introduces beneficial 

material into a species’ chromosomes. Without the mutation, all the individuals in population 

will eventually be the same (because of the exchange of genetic material) and there will be no 

progress anymore. We will be stuck in a local maximum. 

In order to encourage genetic algorithm to explore new regions in space of all possible test 

vectors, we apply mutation operator to the test vectors produced by crossover. In all the test 

vectors, every bit is inverted with a certain probability p. It is also possible to use a strategy 

where only predefined number of mutations are made with probability p=1 in random bit 

positions. This should reduce the computational expense. However, experiments showed 

decrease in fault coverage. Therefore, this method is not used here. 

3.3.10 Getting uniform random numbers 

Although genetic algorithms are not pure random algorithms, they use extensively random 

numbers. Genetic algorithm needs many random numbers in order to converge. Unfortunately 

in C language built-in rand function is entirely inadequate in circumstances where thousands- 

or even millions- of random values need to be generated.  

Instead, combination of two random number generators based on L’Ecuyer’s algorithm, is 

used here. Which gives us a period of approximately 2.3 * 10
18

. Details of algorithm can be 

found in [32]. 

Figure 11 C code implementation of one-point crossover 
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3.3.11 Test generation algorithm 

Steps of selection, crossover and mutation are repeated until all the faults from the fault list 

are detected or a predefined limit of evolutionary generations is exceeded. Test generation 

terminates also when the number of noncontributing populations exceeds a certain value. The 

value depends on the circuit size and is equal to Number of inputs / const, where const is a 

constant that can be set by the user. The smaller the value of const, the more thoroughly we 

will search.  In current implementation, the test generation works in two stages, with different 

mutation rates: 

1) In the first stage, when there are many undetected faults and fitness of vectors is mostly 

greater than zero (in each evolutionary generation many faults are detected), a smaller 

mutation rate is used (p = 0.1). 

2) In the second stage, when there are only few undetected faults and none of the vectors in 

population detects these faults, the weights of the vectors will all be zeros. We cannot say 

which vector is actually better than others. Now the mutation rate is increased (p = 0.5) to 

bring more diversity into population, in order to explore new areas of the search space.  

Test generation algorithm is represented in Figure 12.  
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3.3.12 Experimental results 

The experiments with the genetic program developed above, were partly aimed at showing 

how much is the genetic approach better than random. In order to achieve that, same 

simulation procedures were used for random and genetic test generation. Population size for 

the genetic test generator was set to 32. It is a tradeoff between speed and fault coverage. In 

each (evolutionary) generation, or step, one vector from 32 is selected and put into final test 

set (vector depository). The random test generator performs in a similar way. It generates 

patterns in packages of 32 vectors. The best vector from the package (based on simulation 

results) will be selected, if it detects some previously not detected faults. Therefore, we can 

Figure 12 Genetic test generation for combinational circuits 
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compare the two methods adequately. Both of the test generation tools belong to the 

diagnostics software package Turbo Tester [33]. All of the experiments were run on a Sun 

SparcStation 20 computer. 

The experiments were carried out on ISCAS’85 benchmarks [34]. In first experiment, 

minimum number of test vectors was determined to detect all detectable faults.  It comes out 

that genetic method requires always fewer test vectors (patterns) to yield the same fault 

coverage than random method. For the ‘hard-to-test’ circuit c2670, equal number of test 

vector simulations for both methods was taken and then the fault coverage reached was 

estimated. Genetic method  

ISCAS 85 benchmarks             Genetic Test Generator  

circuit total 
faults

det.able
faults

Det.ed
faults

patt.
Sim.

Tests time,s 

c432 616 573 573 2048 46 0.93 
c499 1202 1194 1149 4096 85 2.74 
c880 994 994 994 4096 54 2.09 
c1908 1732 1723 1723 8192 126 7.33 
c2670 2626 2508 2393 138016 85 316 
c3540 3296 3149 3149 19200 149 28.5 
c5315 5424 3564 5364 6400 120 21.46 
c6288 7744 7693 7693 2048 23 20 
c7552 7104 6969 6834 787008 226 3600 

Figure 13 Fault detection in time. Circuit c2670 

Table 4 Results for genetic test pattern generator 
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ISCAS 85      Random Test Generator 

circuit det.ed 
faults

patt.
Sim.

Test
s

Time,
s

c432 573 2240 49 0.84 
c499 1149 4800 84 2.69 
c880 994 8416 63 3.83 
c1908 1723 10880 131 8.8 
c2670 2275 138016 84 278 
c3540 3149 46400 167 65.48
c5315 5364 33600 132 75 
c6288 7693 960 24 23.54
c7552 6801 787008 211 3180 

ISCAS 85 benchmarks CRIS [11]   Genetic Test Generator  

circuit det.able faults patt. Sim. Det.ed 

faults

tests patt. Sim. Det.ed faults tests 

c432 520 3674 519 72 2048 520 46 

c880 942 5309 937 229 4096 942 54 

c499 750 3152 749 553 4096 750 85 

c1908 1870 4501 1852 253 8192 1870 126 

c3540 3291 8000 3277 452 19200 3291 149 

c5315 5291 8000 5258 682 6400 5291 120 

c6288 7709 2822 7709 131 2048 7709 23 

discovers 118 faults more than random in the case of c2670 and 33 faults more in the case of 

c7552. Execution times for the random method were slightly shorter for smaller circuits like 

c432 and c499.

Subsequently, fault detection in time for random and genetic generators was investigated. One 

of the result graphs for bigger circuit is represented in Figure 13. Random generator achieves 

good fault coverage sooner but genetic generator detects additional faults in the end. Except 

for the smallest circuits c432 and c499 as we see in Table 4 and Table 5.  

Effectiveness of genetic generator comes evident in case of circuits that have a large number 

of inputs. Results obtained here were compared to the ones achieved in [35], where the key 

feature was keeping certain inputs together  (in order to better propagate fault effects) during 

reproduction process. The method detected all faults for c7552 and c2670. However, the 

approach given here uses (up to 2 times) less of test vectors for all circuits. There was not 

possible to compare execution times, because they were not revealed. 

Table 5 Results for random test pattern generator 

Table 6 Results for genetic test pattern generator and comparison with CRIS 
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In addition, results here were compared to the genetic approach in [11]. The key feature of the 

latter method is monitoring circuit activity. Namely, information about the activity of internal 

nodes during fault simulation is collected, and points in the circuit where fault propagation 

was blocked are identified. Based on that information fitness values for test vectors are given. 

The comparison between approach here and [11] is presented in Table 6. It is evident that 

logic simulation and such a monitoring used in [11] is not effective. 

Simple fault simulation based approach given here detects all detectable faults with a smaller 

time for all circuits and generates 1,6 – 6,5 times less test vectors than [11]. Comparison was 

not adequate for circuits c2670 and c7552 because in [11] the test generation was terminated 

too early. 

3.3.13 Conclusion 

Comparison of random and genetic test generators reveals that test sets of genetic generator 

are always more compact. During genetic test generation dynamic test vector ‘packing’ occurs 

because vectors are carefully chosen all the time. This was first remarkable result. Second 

interesting observation was that genetic generator performs better than random in last stadium 

in test generation when only hard-to-test faults are left. Shortly, genetic test generator is 

justified for large circuits. Tracing a program log file revealed that fitness values of 

individuals too often coincide. Therefore more accurate fitness function should be used. More 

information from fault simulation should be incorporated into fitness function. Simulation 

procedure should be modified. New fitness function could take following form: 

where Cd , Cd and Cd  constants (weights). 

Another experiment could be done using strategy that after fault dropping, entirely new 

population could be created for detecting new faults. Assumption is made here that new faults 

are ‘situated’ in different region in search space. However, some ‘seed’ vectors could be 

maintained from old population. This ensures that new search region will not be too far away 

from previous. 

Finally, in a stage of test generation, where fitness comes to zero (new faults were not 

detected), then uniform crossover could be used instead one-point crossover. It is known that 

uniform crossover is highly disruptive. It mixes bits in vectors. Other words, it encourages 

exploration.

stepsnpropagatioofnumCactivatedfaultsCectedfaultsCf pad ____det_
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3.4 Genetic algorithm for Finite State Machine testing 

In this section, first we give short overview of FSM testing. Second, we introduction to finite 

state machines. Fault model and test sequences are discussed. Difficulties faced in FSM 

testing are pointed out, third we develop systematically a genetic algorithm for FSM testing, 

and finally comparative experimental results with other approaches are given and future work 

is discussed. 

3.4.1 Introduction 

Finite state machine can be regarded as sequential circuit. Test generation for sequential 

circuits has been investigated widely and have been recognized as a difficult problem [36,1]. 

Traditional gate level test generation algorithms use an iterative array model where each time 

frame is represented by a cell of combinational logic. A single fault in the circuit is treated as 

a fault in each cell of the iterative array. Many of these algorithms use techniques developed 

for combinational circuits, which are applicable to this model. The complexity of test 

generation is very high because of line justification and fault propagation generally require 

multiple time frames. For large circuits these approaches have been time consuming because 

of the great number of backtracking. 

Several sequential circuits test generation algorithms exploit high-level information about 

circuits and use the finite state machine (FSM) as a model. Some of these algorithms use 

concepts of checking experiments. Others use the FSM model to get justification and 

propagation sequences for a fault during gate level test generation. There are approaches, 

which obtain a fault-independent sequence using FSM model. Further, this sequence is 

improved by adding another one to detect faults introduced in the gate-level implementation 

of FSM and not detected in first phase [37].

Functional approaches based on branch testing in state transition diagrams (STD) [38] are 

more effective than structural approaches, however the fault coverage of test sequences 

generated in relation to realistic structural faults remains open. 

New hierarchical technique of generating tests for sequential circuits represented by finite 

state machine (FSM) was proposed in [37]. It is assumed that high-level information in terms 

of FSM along with a gate-level description is available for circuits. The method is based on 

using decision diagrams (DD). For describing the function, structure and faults in FSM, three 

levels are used: functional (state transition diagrams), logic (or signal path) and gate levels. 

For each level uniform procedures based on DDs were elaborated. Faults from different 

classes are inserted and activated at different levels by these procedures. The results on 

synthesis benchmark circuits show that high stuck type fault coverage can be obtained with 

this technique. 

In current section of thesis, we are going to integrate that hierarchical technique with genetic 

algorithms. Genetic algorithm interacts with simulation procedure, which is used to evaluate 

new test sequences. Genetic program described below can work standalone or together with 

the test generator introduced in [39]. Evolutionary program tries to detect faults, which had 

remained undetected. 
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3.4.2 Definition of the finite machine 

A finite state machine is defined by the 6-tuple M=<S,I,O, , ,s0>, where S is a finite set of 

states, I is a finite set of input values, O is a finite set of output values,  is a state transition 

function,  is an output function, and s0 is the initial state [37].  

FSMs are modelled as either a Mealy or Moore machine. The next state transition function  

: S I S’, maps the present state and the input into the next state, where S’=S { }.

allows representing an unspecified next-state. The output function for Mealy machine is such 

as : S I O. It maps the present state and the input into the output. For Moore machine we 

have : S O.

A FSM is traditionally represented by its state transition diagram (STD) (Figure 14a).

3.4.3 Decision Diagrams for FSM 

There are different ways to represent finite state machine:  

3) in the structural way by a circuit which can be decomposed into a combinational part 

and a memory part (a set of flip-flops)   

4) in the functional way by STDs.  

The output functions and transition functions of the FSM are Boolean, and therefore can be 

represented by Structurally Synthesized BDDs (SSBDD) [40]. For the second case, we use a 

general form of decision diagrams [41], which exploit integer variables for representing 

inputs, outputs and internal states of the FSM. In these graphs, node variables may have, in 

general, more than two values. There exists a one-to-one correspondence between the values 

of a node variable and the successors of the node. The number of successors for each node 

can be more than two (differently from the binary case). Internal nodes of DDs are labelled by 

state and input variables. Terminal nodes are labelled by constants and their values 

correspond to internal states or output states of the FSM. 

Two extreme cases can be considered when representing FSMs by DDs:  

5) the case of an abstract FSM for which, we have two DDs to represent the transition and 

output functions respectively,

6) and the case where inputs, outputs and internal states of the automata are binary coded, 

and we can represent it by a set of Boolean output and transition functions. Mixed 

cases can be placed between these two extremes. 

As an example, two representations of the benchmark circuit dk27 are given in Figure 14: a 

state transition diagram and its corresponding DD representation. The DD represents the 

behaviour of the FSM:

Q = F (q’, xl),

where Q is next state variable. By q’ we denote the previous state variable. The input of the 

FSM is structured. Terminal nodes are labeled by constants, which represent the new state of 

the FSM. The illegal states of the FSM are specified by q = *. 
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There are two interesting properties of general DDs: 

7) similarity in the representation form with SSBDDs, that easily allows to generalize 

methods developed for the logic level as well to higher functional (state transition) 

levels;

8) in DDs, only one model in the form of graph is used whereas STDs consist in two 

models – a graph for representing transitions between states and Boolean expressions 

to give the branching conditions.

3.4.4 Fault classes 

Following fault classes are considered here:

a) transition faults that effect on transition conditions 

b) input faults that effect on the input  

c) state faults that effect on the state 

Figure 14 STD and DD for benchmark circuit dk27 
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3.4.5 Limitations 

In this approach, no observability at the output of the state registers is required. No complete 

or partial scan path insertion is needed. No design modifications are used. However, the reset 

state from the FSM is required. In other words, the simulation procedure assumes that the 

fault-free machine has always a predetermined initial state.  

3.4.6 Test sequence 

The test sequence for a single fault consists of three sub-sequences:

1) initialization sequence, which brings the FSM from current state to the state 

needed for activation the fault

2) activation sequence, which contains only one additional input pattern, needed for 

the fault activation  

3) fault propagation sequence, which is a ordered set of state-pairs, differentiating 

the good destination state from faulty destination states, and thus, propagates the 

fault effect to the primary output 

All these sub-sequences are created at the functional level (behavioral level) […]. Only fault 

activation and fault propagation procedures for transition faults are carried out at the 

structural level (corresponds to gate level). However, also for transition faults, after they have 

been activated at the lower structural level, the results can be easily transformed to the 

functional level by specifying the input and internal states needed for fault activation. 

The necessary but not sufficient condition to create a test is traversing a set of paths that 

contains all branches in the DD. If not all faults are tested yet by this sequence, we have to 

find new set of branches in order to activate the remaining faults. Thereafter, we have to 

traverse according set of paths that contain all these branches.

During simulation we try the given test sequences by dropping and activating faults along a 

set of control flow paths that contains all branches in the DD-model.  

3.4.7 Problems in FSM testing 

The difficulty in generating tests for finite state machines lies in two aspects:  

9) Setting the flip-flops to certain states, in order to activate fault under test 

10) Propagating the fault effect to primary outputs 

What is needed in both cases is a sequence of several vectors. The greater the length of the 

shortest input sequence needed is, the more difficult it is to find. Feedback, which we have in 

FSM, makes these sequences especially long. Here is the point where genetic algorithms can 

overcome the difficulty. Genetic algorithm reduces dramatically the number of trials needed 

to find appropriate vector sequence. 



41  

3.4.8 Representation for genetic algorithm 

In Holland’s [28] (and his follower’s) work, individuals are bit strings consisting 1’s and 0’s. 

Bit strings have been shown capable to represent of usefully variety of information, and they 

have been shown effective representations in unexpected domains. The properties of bit string 

representations for genetic algorithms have been extensively studied, and a good deal is 

known about genetic operators and parameter values that work well with them. According to 

Schema theorem (see 3.2.3), bit string coded implementations do have good performance.  

Bit string representation is very natural for representing input vectors for FSM. However, in 

essence FSM is sequential circuit. It includes feedback. It can take several time frames 

(cycles) in order to achieve required state. When in case of combinational circuit we needed 

only one input vector to detect a certain fault, then in case of FSM we normally need several 

vectors (a sequence) in order to detect a fault. 

The question is should we still consider one vector as an individual or should we take a whole 

sequence as an individual. Let us recall that in the genetic framework, individual corresponds 

to one possible solution to the problem. In population, we have many individuals, other words 

many solutions.  We have to estimate goodness (fitness) if each of them. Before choosing 

representation for individual we have to consider, what possibilities we have for estimation of 

goodness in a case of single vector and sequence of vectors. In order to estimate goodness, 

there have to be a condition to be fulfilled. Other words there have to be fitness function for 

individual to measure its fitness.  

What could be a fitness function for one single vector? What is a result of applying the vector 

to FSM’s inputs? In the best case, FSM changes to new state and new outputs are available. 

However, it is quite likely that a single vector does not activate any fault, nor does detect one. 

Here, the ultimate goal is to detect a fault or several faults in FSM. As only several vectors 

applied successively can do that, choosing a vector sequence as an individual is justified. 

However, the question remains how big should be the length of the sequence. We discussed 

that there is greater possibility to detect a fault by the longer sequence, but these sequences 

must be evaluated, too. Simulation, however can be quite time consuming (computationally 

costly). So, trade off must be made here. 

Now, as sequence of vectors corresponds to individual, then population will be a set of such 

sequences in genetic algorithm. Suitable representation for C language implementation using 

linked lists is shown in Figure 15. 
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3.4.9 Initialization 

For research purpose random initializing of population is the best. Moving from a randomly 

created population to a well adapted population is a good test of algorithm, since final 

solution will have been produced by the search and recombination mechanisms of algorithm 

rather than the initialization procedures. Therefore, random initialization for population is 

used here. 

To maximize the run speed of the program and the quality of the fault coverage for FSM, it is 

promising to use pre-calculated test vectors for initializing purpose. Initial test vectors can be 

obtained from deterministic FSM test generator. These vectors can also be mutated with 

certain probability before applying to encourage detecting new faults. 

3.4.10 Evaluating test sequences 

Evaluation method is needed to estimate the fitness of the test sequences (individuals) in 

population.  It is necessary to measure the quality of the test solutions in order to select best 

ones. Fault simulation is used for that purpose here. Every test sequence is simulated on FSM 

model using simulation procedures described in [39,37]. Simulation procedures were suitably 

modified for genetic algorithms in order to collect information about how many faults are 

activated, how many are propagated, how many are detected. This is the base information 

Figure 15 Memory structure of population 
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what is taken into account in fitness evaluation for an individual. Fitness function itself can be 

expressed as following: 

where w
a
 is a weight for an activation event of certain fault, and w

p
  is a weight for a 

propagation event of certain fault. Additional weights Ca and Cb in fitness function may or 

may not be used in last expression. They give additional possibility manually bias selection. 

Constants Cd, , Ca , Cp in fitness expression determine how much stress is given to 

corresponding parameter in expression. All these weights must be well tuned in order to 

achieve good performance of algorithm. Otherwise, fitness function will include much of 

noise and selection is less effective. 

Weights Ca, Cb and Cd in fitness function could be changed dynamically during run of 

program. For example, activating some faults gives higher reward to individual than 

activating other faults. At the same time, when fault is activated its weight is lowered. It is not 

so ‘attractive’ to individuals anymore. Individuals will concentrate to activating other faults. 

When certain faults are not activated for certain amount of time, their weights are increased. 

The same strategy can be applied to promote propagating certain faults.  

Better test sequences will get higher score according to this function. Fitness function directs 

population towards progress, because good test sequences (with high score) will be selected 

during reproductive selection process and pour ones will be rejected.

When determining values for the weights above, then we must consider which parameters 

affect the most the expected results (good fault coverage). In the program following default 

settings are used: Cd=1, Ca = 0.8 and Cp = 0.6  It is possible to adjust these parameters from 

command line of the program, too. 

Fitness scaling. When there will be only few faults left undetected for FSM, fitness values 

became small (not many new faults are detected by sequence). Therefore, squared values of 

fitness scores are used as fitness measures. 

3.4.11 Dynamically increasing test sequence length 

1) After certain genetic generations, length of sequence will be increased by one. One new 

vector will be added to test sequence. This is useful, because for some faults, longer 

sequences may be required in order to propagate fault effects to primary outputs.  

2) Increasing test sequence length when no progress is made for certain generations. Some 

heuristics can be used for determining how much should test sequence increased. 

Increasing test length brings along computational cost, however. Therefore, only new vectors 

incorporated into test sequence should be simulated again. Namely, before test generator 

enters to next stage (before sequence length is increased), all the state information about finite 

state machines associated with individuals in population, are stored in memory. Then, when 

best individual (test sequence) is known, sequence length for all individuals in the population 
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is increased by certain numbers of vectors (memory is reallocated for population). New part 

of each individual could be filled with random vectors for example.  

Now, when fitness estimation is needed for individuals, only new part of individual is 

simulated. This is possible because states information of FSM was saved before. Such state 

information amount can turned out to be quite large; therefore, we copy only best individuals’ 

test sequence into all individuals of newly allocated population. In that case, in future only 

information about one FSM is needed.  

If memory problem for such state information conservation turns out more severe, or just for 

simplicity, there is another solution for smartly increasing test sequence length. We can just 

simulate once the old part of individual, store the state information and in the future use this 

information as starting point for new part of individuals.

Identifying during simulation these flip-flops, which do not have distinguishing sequence and 

avoiding propagating fault-effects through hard-to–observable states.

3.4.12 Self-adaptive mutation rate 

In the beginning of the run, smaller mutation values can be preferred, because there is enough 

genetic material available, non-of the individuals is dominating. At the end of the run 

however, more exploration is needed for particular faults, bigger mutation rate could be 

promising. In addition, the circuits under test are different: for some circuit, less mutation is 

useful than for others (some circuits do have more ‘don’t care’ inputs than others for ex.).  

3.4.13 Fault sampling 

Since fault simulation is the most time consuming operation in genetic test generation, only 

partial set of faults could be used in that process. Sample faults can be selected from fault list 

randomly or based on faults’ equivalence classes. In latter case, in the sample fault list only 

representatives of similar faults are considered. The assumption is that test sequences 

developed for sample faults are able to cover also other similar faults. 

3.4.14 Selection 

Roulette wheel selection is used for determining of candidates for crossover. Change to 

reproduce is given proportionally to each individual according to its fitness. That means, most 

effective test sequences are more often used in process of creating new test sequences for next 

generation (iteration) of genetic program. 
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3.4.15 Crossover 

Crossover is the important feature to genetic algorithm's power. It exchanges genetic material 

from two parent individuals, allowing useful input vectors from different parents to be 

combined in new test sequence. However, crossover has to conserve important similarities 

between test sequences (schema conception). One-point crossover suitable for test sequences 

is shown in Figure 16 and corresponding C coded implementation is given in Figure 17. First, 

two individuals for crossover are randomly chosen, then crossover point c is randomly 

selected between 1 and L-1, where L is test sequence length. Parent test sequences are crossed 

at that point. The first child is identical to the first parent up to crossing point and identical to 

the second parent after the crossing point.

One – point crossover does not destroy single vectors- all values of inputs are kept together 

after crossover. This is important of point of view of building block concept, which tells that 

important elementary blocks must be conserved. 

Figure 16 Crossover of vector sequences 

1

L

c

c
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void crossover() 
{
  int k,i,j; 
  int cut_point,mate1,mate2; 
  char ***temp_ptr; 

   for (k=0;k<popul_size;k+=2) 
   {
    // selecting a pair for crossover 

      mate1=select_individual(); 
      mate2=select_individual(); 

    // determining of point of crossover 

cut_point = 1 + rint(rand_num_0_1() * (seq_length-2)); 

     // exchange of vectors, first stage 

     for (i=0;i<cut_point;i++) 
     { 
       strcpy(new_popul[k][i], popul[mate1][i]); // copying a vector 
       strcpy(new_popul[k+1][i], popul[mate2][i]); 
     } 

     // exchange of vectors, first stage 

     for (i=cut_point;i < seq_length;i++) 
      { 
       strcpy(new_popul[k][i], popul[mate2][i]); 
       strcpy(new_popul[k+1][i], popul[mate1][i]); 
      } 

   } 

// new population will be current, as memory addresses do not
// overlap, then data of new population is just overwritten into
// old population memory region (as it is not needed anymore) 
// new population gains old population’s memory region (will be 
// filled with appropriate information during next crossover)

  temp_ptr = popul; 
  popul=new_popul; 
  new_popul = temp_ptr; 

}

3.4.16 Mutation 

Random mutation provides background variation and occasionally introduces beneficial 

material into the individuals. Without the mutation, all the individuals in population will 

eventually be the same (because of exchange of genetic material) and there will be no 

progress anymore. Program will be stuck in local maximum as it is used to express. 

Figure 17 One-point crossover producing two children. 
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There are several ways to introduce mutations into test sequences: 

1) Adding a new randomly generated vector into random position within existing 

sequence with certain probability. That way, it is possible automatically increase test 

sequence length. New faults can be detected when longer sequence was needed for 

certain faults. 

2) Removing a randomly selected vector from a sequence with certain probability; if the 

vector was not essential, the fitness function’s value increases. These first two methods 

of mutation change vector sequence abruptly. It is not possible to introduce small 

mutations if necessary.   

3) Mutation can occur in every bit position in every vector with certain probability. This 

method was used in genetic algorithm, because it does not change vectors too much at 

once. It is possible to adjust mutation rate.  

4) Mutating randomly selected just one bit or some bits in test vector. It is less 

computationally costly than previous method of mutation, because it is not necessary to 

calculate so many random numbers. However, experiments with combinational circuits 

(results in 3.3.12) have shown a little decrease in final fault coverage. 

3.4.17 Description of algorithm 

Initially, random population (set of several test sequences) is provided for simulator tool for 

evaluation. Then, for every vector sequence (individual) a fitness value is calculated 

(according to its success in FSM state initialization, fault activation, and fault propagation to 

primary outputs). In addition, all the faults detected by the sequence are dropped from fault 

list.

Then, reproduction process is carried out. Roulette wheel (proportional) selection method is 

used for determining pairs of candidates for further crossover. Selection procedure randomly 

chooses one candidate at time. When a pair is determined that way, crossover point is 

randomly selected. Then crossover itself is carried out. One - point crossover is used. Two 

descendants are produced consequently because of the crossover act. Now, next two new 

candidates are selected and crossed over, and again two new individuals are produced. This 

takes place N/2 times in cycle, when population size is N (population size has to be therefore 

an even number).  

When crossover in the population is finished, mutation procedure is called out. Mutation 

operator is applied with given probability over whole population. As mutation rate is small 

(0.1 … 0.005), then just few bits in each test sequence are inverted. This is should be enough 

to encourage the genetic program to discover new test sequences, which can lead to activating 

and propagating new faults and eventually to detecting them. Mutation though, plays 

secondary role in genetic algorithm. Most important factors are still accurateness of fitness 

function and crossover mechanism.  

Creation on new population is finished at this point. It entirely replaces old population. This is 

done by swapping of pointers of new and old population. New test vectors are passed to 
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simulator for evaluation again. In turn, simulator returns quality measures, does fault 

dropping and reproduction process begins again. Subsequently, new vectors are developed 

again.

Process continues until all faults from fault list are detected or limit of evolutionary 

generations is exceeded or non-contributing test vectors limit is exceeded. 

3.4.18 Experimental results 

Results are presented in Table 8. The best results of series of runs are presented. Circuits lion9

and dk15 are smaller circuits, sand and planet are medium size circuits (see Table 7) for 

which mixed approach (hierarchic + genetic) was used in order to reduce run time. “Hard-to-

test faults” faults where left to genetic approach to test. 

FSM States Inputs Outputs Transitions 

lion9 9 1 2 25 

sand 32 11 9 184 

planet 48 7 19 115 

dk15 4 3 5 32 

Combined genetic FSM test generator receives much higher fault coverage in case of large 

circuits than HITEC, which is often actually considered a relatively good deterministic test 

generator for sequential circuits. For smaller circuits, test sets are much more compact as well. 

For larger circuits, mixed approach of test generation was tried in experiments here. After 

hierarchical test generator had traversed all paths in FSM (which is necessary, but not 

sufficient condition for detecting all faults), genetic test generator was launched 

automatically. The latter was able to detect additional faults, which is encouraging; however, 

run times were relatively long. Obviously longer test sequences were needed for detecting 

hard-to-test faults.

FsmGenetic HITEC Asyl
1

FSM Vec % T,s Vec % T,s Vec % T,s 

lion9 26 100 0.25 38 97,3 8.6 - - - 

dk15 35 100 0.78 53 100 0.73 44 99.3 - 

planet 2414 99.5 3219 91 64.5 917 284 98.8 - 

sand 648 98.7 311 52 45.2 1339 308 97 - 

                                                
1 Exact comparison is not possible due to different synthesis environment 

Table 7 Characteristics of sample circuits 

Table 8 Experimental results for genetic FSM test generation 



49  

Comparison with another tool, functional test generator Asyl, current genetic generator had 

better fault coverage, however difference is not so significant. Asyl is capable to develop 

shorter test sequences. 

In case of sand circuit, hierarchical generator alone was able to detect two faults more than 

combined one. It obviously takes advantage of the knowledge of FSM structure, state table.   

These are though preliminary results, it is too early to draw far conclusions. More 

experiments have to be done with different implementation strategies for genetic test 

generator.

3.4.19 Conclusion 

In this section, an approach based on genetic algorithms to generate test vectors for finite state 

machines (FSM) was presented in order to overcome difficulties with detecting hard-to-test 

faults. This method includes an evolution program that initially generates random sets of test 

vectors for FSM, and then these sets are given to a simulator tool for evaluation. Every vector 

set receives a quality measure (success of FSM initialization, activation of fault, and fault 

propagation). Based on these quality measures (weights) program builds better vector sets 

using such genetic operators as selection, crossover and mutation. New test vectors are passed 

to simulator for evaluation again. Process continues until all faults from fault list are detected 

or limit of evolutionary generations is exceeded. Program described above works standalone 

or together with the test generator introduced in [39][37]. Evolutionary program tries to detect 

faults, which had remained undetected. Preliminary results of experiments are encouraging.  

Comparison with deterministic test generator HITEC was made. Prototype program 

developed here received smaller run time and smaller number of vectors for benchmark 

circuits. In case of sand circuit, hierarchical generator alone was able to detect two faults 

more than combined one. It obviously takes advantage of the knowledge of FSM structure, 

state table. The future work would be to take only these undetected faults and try fault – 

oriented approach.
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3.5 Fault oriented genetic test generation for sequential circuits 

Current section presents a genetic algorithm based approach to test generation for gate level 

sequential circuits. This approach differs from most of the previous works by specifically 

targeting single faults, also some structural knowledge about the circuit is used. The priority 

was to improve the fault coverage, to detect additional faults. 

In order to solve the problem, the following components are must in genetic algorithm [31]: 

chromosomal representation of solution to the problem, 

way to create an initial population of solutions, 

an evaluation (fitness) function in order to estimate the quality of the solution 

genetic operators that alter the structure of  "children" during reproduction 

fine tuned parameters  

Subsequently we will present these issues in detail. 

3.5.1 Representation 

In context of test generation for sequential circuits, sequence of test vectors will be the 

individual. Several concurrent sequences form the population.  

3.5.2 Initialization 

Initially, a random set of test sequences is generated. Such an initial test sequence set is 

subsequently given to a simulator tool for evaluation. Following steps of algorithm are carried 

out repeatedly. 

3.5.3 Evaluation of test vectors 

Evaluation measures fitness of the individuals, i.e. the quality of solutions in a population. 

Better solutions will get higher score. Evaluation function directs population towards progress 

because good solutions (with high score) will be selected for crossover and poor solutions will 

be rejected. We use fault simulation in order to evaluate test sequences. Simulation is carried 

out only for particular fault under consideration. SSBDD based fault simulator [42][43] was 

improved to keep track the number of fault effects activated and propagated onto flip-flops 

and primary outputs.  

3.5.4 Fitness 

Fitness of the test sequence is calculated as following: 

        Ca* activated+ Cp *propagated, 
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where ‘activated’ is number of clock cycles when particular fault effect was activated in the 

circuit and  ‘propagated’ is the number of clock cycles when fault effect was propagated onto 

some flip-flop. Ca  and Cp are constants, which show how much stress is given to parameters. 

We selected 0.1 for Ca and 1 for Cp.

As a population converges on a definitive solution, the difference between fitness values may 

become very small. Best solutions cannot have significant advantage in reproductive 

selection. We use square values for test sequence’ fitness values in order to differentiate good 

and bad individuals. 

3.5.5 Selection of candidate sequences 

Selection is needed for finding two candidates for crossover. Based on fault simulation results 

better test sequences are selected. Roulette wheel selection mechanism was used here. 

Number of slots on the roulette wheel will be equal to population size. As we see in Figure 

18, size of the roulette wheel slots is proportional to the fitness value (denoted as f on the 

figure) of the test vector sequence. 

Figure 18 Roulette wheel selection

This means that better sequences have a greater possibility to be selected. If our population 

size is N, and N is an even number, we have N/2 pairs for reproduction. Candidates in pair 

will be determined by running roulette wheel twice. One run will determine one candidate. 

With such a selection scheme, it can happen that same candidate is selected two times. 

Reproduction with itself does not interfere. This means the selected test sequence is good   

and it carries its good genetic potential into new generation.

3.5.6 Crossover 

Swapping genetic material of the two parents allows useful genes (relevant bits) to be 

combined in their offspring (new test sequence). Most successful parents reproduce more 

often. Beneficial properties of two parents combine. Crossover and selection (fitness function) 

are the keys to genetic algorithm's power. Here, one-point horizontal and one-point vertical 

crossover (see Figure 19) were implemented. 

sequence 1

34% (f=20)

sequence 5

20% (f=12)

sequence 2

8% (f=5)
sequence 3

25% (f=15)

sequence 4

13% (f=8) 
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Figure 19. Vertical one point crossover

3.5.7 Mutation 

Random mutation provides background variation and occasionally introduces beneficial 

genetic material [9]. Without the mutation, all the individuals in population will eventually be 

the same (because of the exchange of genetic material) and there will be no progress anymore. 

In order to encourage genetic algorithm to explore new regions in space of all possible test 

sequences, we apply mutation operator (see Figure 20) to the test sequences produced by 

crossover.

Figure 20. Mutation in test vector. 

In all of the test vectors, every bit is inverted with a certain probability p. An alternative 

would be not to consider all vectors but select some with certain probability- this would be 

computationally less expensive. However, experiments did not justify the use of that 

alternative- fault coverage tend to be lower. Important is to point out that, bit position 

corresponding to reset input is not altered during mutation. Using such a novel knowledge 

based technique helps to reduce search space. 

3.5.8 Working algorithm 

GA works in two stages: 

In first stage, fault activation sequence for the particular fault is generated:  at first, short 

(given by user) random test sequence is simulated with fault simulator. If fault was not 

activated then test sequence length is automatically doubled and fault simulation is repeated. 

0      1       1       0       1       0      1       1

0      1       1       0       1       1      1       1
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This happens until fault is activated or test sequence length limit is exceeded. In latter case 

fault is aborted and next fault from list is taken. Activation process starts again with short 

sequence. Fault is considered activated when we could set up the necessary logic value in the 

particular schematic node.  

Important is that in such initialization sequence bit position corresponding to reset signal is 

filled with zeros. Only in second vector there is ‘one’ i.e. we describe behavior of the reset 

signal based on a priori knowledge. User can supply reset index with command line option.  

Second stage of GA begins if fault activation was successful. At first, activation sequence is 

distributed into all individuals- the beginning of all test sequences in our population is filled 

with fault activation vectors (keeping reset ‘0’). The rest of the sequences are filled with 

random patterns. Sequence length in this stage is twice as long as final fault activation 

sequence was. With command line option there is possible to select also vector sequence 

length dynamic increase- it takes into account if fault effect was not propagated onto primary 

outputs, but still progress was made compared to previous iteration. In such cases sequence 

length is doubled. This can happen until fault is detected (propagated to primary outputs) or 

until sequence length limit is reached. Such a technique has proved to be effective in terms of 

fault coverage increase and shorter test sequences. 

Mutation. Random mutation provides background variation and occasionally introduces 

beneficial genetic material. Without the mutation, all the individuals in population will 

eventually be the same (because of the exchange of genetic material) and there will be no 

progress anymore. In order to encourage genetic algorithm to explore new regions in space of 

all possible test sequences, we apply mutation operator to the test sequences produced by 

crossover. After the population of test sequences is initialized, GA main repetitive cycle 

begins. At first, all sequences are evaluated subsequently by simulation procedure again. For 

each sequence, numeric fitness value is calculated. Then, N/2 times roulette wheel selection 

routine is invoked in order to select candidates for crossover. N is here number of test 

sequences in our population. Each time to candidates are selected and crossed over by 

invoking appropriate sub routine. Crossover type can be selected by user. New population 

will be filled only with newly constructed sequences, however optionally it is possible to 

conserve the best individual from the last generation- this is called elitist selection. Finally, 

before new cycle begins, some mutation is introduced into newly engineered test sequences. 

Mutation probability is increased dynamically when several subsequent generations did not 

improve fault propagation. When there was success finally, then mutation rate is lowered 

again down to initial value. After new population of test sequences is ready, GA main cycle is 

repeated. This will last until current fault is detected or number of predetermined (by user) 

number of generations is exceeded. Thereafter new fault is considered if any is left. 

3.5.9 Experimental Results 

Experiments show that the fault oriented method and usage structural knowledge about the 

circuit is more effective in terms of achieved fault coverage than any other ATPG it was 

compared to. In all experiments following parameters for GA were used: population size 16, 

sequence length limit 200, maximum number of generations 200, crossover type- vertical one 

point, mutation rate 0.01, elitist selection. 
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In Table 9 main characteristics of the benchmark circuits are presented. Table 10 shows 

comparison of test generation results of four ATPG tools. These are, GATEST [10] and 

HITEC [1], DECIDER [7] and GA (based on the approach described in current section), 

respectively. GATEST is a genetic algorithm based test generator, HITEC is a deterministic 

gate-level ATPG, while DECIDER represents a hierarchical approach. 

Circuit Gates Faults PIs POs Flip-flops FSM states 

gcd 227 844 9 4 15 8 

mult8x8 1058 3915 17 16 95 8 

diffeq 4195 15,836 81 48 115 6 

huffmann 2000 2816 31 30 118 21 

Table 9 Characteristics of the benchmark circuits 

HITEC [1] GATEST [10] DECIDER [7] GA Circuit 

Cov., % time, s cov., % Time, s cov., % time, s cov., % Time, s 

gcd 89.3 196 92.2 90 91.0 3.4 93.0 702

mult8x8 63.5 2487 77.3 3027 79.4 13.6 80.5 19886

diffeq 95.1 > 4 h* 96.0 4280 95.9 80 97.9 53540

huffmann 12.5 16200 27.6 3553 12.5 8460 52.8 > 10 h* 

Table 10 Test generation results 

The experiments for the first three tools were run on a 300 MHz SUN UltraSPARC 10 

computer. Test for GA were generated on a 366 MHz SUN UltraSPARC 60 which is a 

slightly faster machine. On the other hand, GATEST and HITEC used internally the parallel 

fault simulator PROOFS, which is in average about 4 times faster than the serial simulation 

implemented in GA. Thus, the comparison of run times in Table 10 is not exactly correct, 

however it gives an idea of the speed differences between various algorithms. 

In order to perform straight comparison of the test quality, actual stuck-at fault coverages of 

the test patterns generated by all the four tools were evaluated by a single fault simulator. 

As it can be seen from Table 10, GA is capable of achieving the highest fault coverages on all 

the four circuits. Especially remarkable is its result with the hard-to-test Huffman encoder 

circuit. The CPU times of GA are by far longer than the ones of DECIDER and HITEC. 

However, if we take into account the speed differences between the fault simulators used 

these differences will be quite small. Important is that goal set – improving fault coverage – 

was fulfilled successfully. 
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3.6 Discussion 

In current chapter, genetic algorithms where used for creating tools for test pattern generation 

purposes. Genetic method is interesting because it is robust. It is based on mechanisms of 

natural selection what is also observed in nature. It is based on principles that 1) better 

adopted species (solutions) will survive throughout generations and 2) changes are made to 

information pseudo randomly so that with time a species adapt to it's environment, their 

properties optimize. In each generation, a new set of artificial creatures (sets of bits) is created 

using the parts of the best elements of the previous generation instead of using totally new 

elements randomly. Therefore, if used properly, genetic algorithms are not pure random 

algorithms. They use effectively previously obtained information for exploring new points in 

search space. The experiments have shown that results also depend of the quality of the 

pseudorandom numbers used in algorithms- changing the number generators will have 

considerable effect to results. When random numbers are not truly random then regions of 

solution space will not be explored. 

Three different test generators, all based on genetic algorithm, were implemented here: for 

combinational circuit, for FSM and for gate level sequential circuit. This shows the portability 

of genetic algorithms within the application domain. It is possible to reuse core functions with 

a relatively little of redesign. Of course finding a good fitness function for evaluation of 

solutions is always crucial. The more precise the evaluation is, the better (faster) the 

convergence of the algorithm will be. 

Although testing of combinational circuit is generally considered solved, it made a good 

experimental starting point for genetic algorithm study. One aim of implementing such test 

generator for combinational circuits was to compare genetic test generator with random 

generator, because it is known that in essence, genetic algorithm uses much of random 

numbers. Therefore, the algorithm was designed so that its direct comparison with random 

method was possible. It comes out that genetic method requires always fewer test vectors 

(patterns) to yield the same fault coverage than random method. Genetic method discovers 

more faults than random in the case of larger circuits. Random generator achieves good fault 

coverage sooner but genetic generator detects additional faults in the end. Execution times for 

the random method were slightly shorter for smaller circuits. It is because just small set of 

random combinations of inputs values are capable of detecting the all faults when same time 

genetic algorithm has to make n times more simulations, because there is n  individuals (test 

vectors) to evaluate “in parallel” in each evolutionary step. Therefore, the effect of the 

performance increase comes sensible with increase of circuit size, when circuit becomes 

hardly observable because small amount of inputs available compared to the number of inner 

points of circuit. Increase of the number of inputs itself raises complexity, too. That is the case 

genetic algorithm can take advantage. By its selection and crossover operators, it avoids 

searching through the whole space of test vectors. Instead, a small fraction is searched 

through.

Results obtained here were compared to the ones achieved in [35], where the key feature was 

keeping certain inputs together  (in order to better propagate fault effects) during reproduction 

process. The method detected all faults for benchmark circuits c7552 and c2670. However, 

the approach given here uses (up to 2 times) less of test vectors for all circuits. There was not 

possible to compare execution times, because they were not revealed. 
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The comparison between approach here and CRIS [11] revealed that such a monitoring circuit 

activity used in CRIS is not effective. Experiments show that using fault simulation leads 

better fault coverage than using logic simulation (CRIS). Simple approach given here detects 

all detectable faults with a smaller time for all circuits and generates 1,6 – 6,5 times less test 

vectors. Comparison was not adequate for circuits c2670 and c7552 because in [11] the test 

generation was terminated too early.  

The experience and knowledge gained by implementing and experimenting on prototype 

program discussed above, was applied in design process of test generator for finite state 

machine. It was aimed to solve the difficult problem of sequential circuit testing. The testing 

problem of sequential circuits is even more complicated because of the presence of feedback 

which causes observability and controllability problems in inner nodes of circuit. FSM model 

of sequential circuit was used. Difficulty here lies in finding appropriate input vector 

sequences. This problem is at least of magnitude of order harder than just finding one good 

vector. Genetic algorithm interactively uses fault simulation procedures of hierarchical test 

generator in order to evaluate test sequences. Although, such an interaction showed to be 

capable to improve fault coverage, several improvements can be made to algorithm. Field of 

genetic algorithms is developing and new advanced techniques like self-adoption concept, 

niching theory, penalties, multi - objective optimization, multi – parent crossover etc. are 

raised. More work must be done to evaluate these techniques effectiveness in test pattern 

generation domain. 

The main contribution of the work regarding genetic test generation is that differently from 

the known genetic algorithms, a fault oriented genetic approach for sequential gate level 

circuits is developed. Unique feature is the use of knowledge about the circuit under test. For 

example, input of reset signal is not altered during genetic manipulation because otherwise 

essential building blocks of test vector set are destroyed and noise is introduced to the 

algorithm which decreases convergence. Reset signal is made active once and then kept non 

active in the test sequences. Experiments show that targeting single faults can improve the 

convergence of a genetic algorithm. In comparison with other GA based generator GATEST, 

considerably better results were obtained, especially for Huffman encoder circuit. The 

experiments have shown that targeting single faults however suffers loss in run times in 

comparison to the other compared approaches. Good news is that better fault coverages are 

obtained by this technique compared to other solutions. Using more internal knowledge by 

doing some circuit preprocessing prior to test generation will probably have some potential in 

order to further limit the search space and improve the convergence of genetic algorithm.  

Comparing two last methods, hierarchical FSM based and gate level fault oriented sequential 

testing, the first one is suitable for use when circuit is described as state machine table 

(control path of the system) on multiple levels – both, state transition diagram in KISS format 

and also gate level description are needed. User must provide (synthesize) gate level 

description from state transition diagram. Second method can be used when the gate level 

netlist for circuit is available. Fault oriented approach also is targeting faults one by one. 

Since circuit models are different, there is no comparison information of fault coverage 

available yet. FSM based testing is faster since it is working on higher level, but other 

sequential method is more robust in terms of usability.  
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4 Fault simulation in digital systems 

A major part of the genetic test generator is a fault simulator. For this purpose, a research was 

carried out to improve the existing fault simulation methods.  

Simulators are widely used in many areas of electronic design. Test generation, fault 

diagnosis, test set compaction etc. – these are some examples where fault-free and fault 

simulation can be used. The quality of Automatic Test Pattern Generation (ATPG) 

significantly depends on efficient fault simulation, especially in the case of simulation-based 

test generators [44] and even more in case of Genetic Algorithm-based test tools, because 

simulation is used to distinguish good and bad solutions. Simulation   procedure for genetic 

test generator has to be fast as possible because very large number of evaluations is carried 

out during algorithm work. 

4.1 Test cover calculation in digital systems with multi-level 

decision diagrams 

Fault simulation has traditionally been performed at the gate-level with the stuck-at fault 

model. Usually these methods are time consuming. Hierarchical methods allow taking the 

advantage of high-level information while simulating tests for gate-level faults. Therefore 

using higher-level information during simulation is promising for speeding up general 

simulation process. 

Binary Decision Diagrams (BDDs) are now commonly used for representing Boolean 

functions because of their efficiency in terms of time and space [46,47]. They have become 

the state-of-the–art data structure in many VLSI CAD systems. On the other hand, there have 

been also several approaches to broaden the use of Decision Diagrams (DD) for representing 

digital systems at higher-level presentations. Decision Diagrams have been successfully 

introduced as a uniform mathematical model of the system behavior for the different domains 

of application in the design process: for system verification by simulation, test generation and 

fault simulation [48,49,50]. It has been shown that the performance of the simulation of a 

system represented by DDs is higher than the simulation of the hardware description language 

model [50].  

In this section, decision diagrams are introduced, hierarchical fault simulation process using a 

uniform DD model for all abstraction levels is presented. Fault detection criterias are outlined, 

the advantages are discussed and experimental results are given. RT netlist is regarded as the 

high level whereas gate network is regarded as the low-level representation. Faults are defined 

at the low-level and fault propagation is carried out at the high level. In such a way, the 

efficiency of high-level calculation is combined with the accuracy of low-level fault handling.
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4.1.1 High Level Decision Diagrams 

Consider a digital system as a network N = (Z, F) of components where Z is the set of all 

variables (Boolean, Boolean vectors or integers) of the system, which represent the 

connections between components, inputs and outputs of the network. Denote by X  Z and Y

 Z, correspondingly, the subsets of input and output variables. V(z) denotes the possible 

values for z  Z, which are finite.  

Let F be the set of digital functions on Z: zk = fk (zk,1, zk,2, ... , zk,p) = fk (Zk ) where zk  Z, 

fk  F, and Zk Z. Some of the functions fk  F, for the state variables z  ZSTATE Z, are

next state functions. 

 Definition 1 

A decision diagram (denoted as DD) is a directed acyclic graph G = (M, , z) where M is a 

set of nodes,  is a relation in M, and (m)  M denotes the set of successor nodes of m  M.

The nodes m  M are marked by labels z(m). The labels can be ether variables z  Z, or 

algebraic expressions of z  Z, or constants.

For non-terminal nodes m, where (m) , an onto function exists between the values of 

z(m) and the successors m
e

(m) of m. By m
e
 we denote the successor of m for the value 

z(m) = e. The edge (m, m
e
) which connects nodes m and m

e
 is called activated iff there exists 

an assignment z(m) = e. Activated edges, which connect mi and mj make up an activated path 

l(mi, mj). An activated path l(m
0
, m

T
) from the initial node m

0
 to a terminal node m

T
 is called 

full activated path.

 Definition 2

A decision diagram Gk = (M, , z) represents a function zk = fk (zk,1, zk,2, ... , zk,p) = fk (Zk ) iff 

for each value v(Zk) = v(zk,1)  v(zk,2)  ...  v(zk,p), a full path in Gk to a terminal node m
T
 is 

activated, where z(m
T
) = zk is valid. 

Each function fk  F in the system network N = (Z, F)  is represented by a decision diagram 

zk = Gk (Zk) [47,48]. Depending on the class of digital system (or level of its representation), 

we may have various DDs, in which nodes have different interpretations and relationships to 

the system structure. 

In register transfer level (RTL) descriptions, we usually decompose digital system into control 

and data parts. State and output variables of the control part serve as addresses and control 

words, and the variables in the data part serve as data words. High-level data word variables 

describe RTL component functions in data parts. 

Consider a digital system with a behavioral description in Figure 21. The system consists of 

control and data parts. The FSM of the control part of the system is given by the output 

function y =  (q’, x) and the next-state function q =  (q’, x), where y is an integer output 

vector variable, which represents a microinstruction with four control fields 

y = (yM, yz, yz,1, yz,2), x = (xA, xC) is a Boolean input vector variable, and q is the integer state 

variable. The value j of the state variable corresponds to the state sj of the FSM. The 

apostrophe refers to the value from the previous clock cycle. 

The data path consists of the memory block M with three registers A, B, C together with the 

addressing block ADR, represented by three DDs: A = GA (yM , z), B = GB (yM , z), 
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C = GC (yM , z); of the data manipulation block CC where z = Gz (yz , z1 , z2); and of two 

multiplexers z1 = Gz,1 (yz,1 , M) and z2 = Gz,2 (yz,2 , M). The block COND performs the 

calculation of the condition function x = Gx (A, C).

The component level model of the system consists of the following set of DDs:

N1={Gq ,Gy ,GA ,GB ,GC ,Gz ,Gz,1 ,Gz,2 ,Gx}.

Figure 21 A digital system and its behavior
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Figure 22 High Level Decision Diagrams for the system in Figure 21 

Using now the following chain of superposition of DDs: 

A = GA (yM , z) = GA (yM , Gz (yz , z1 , z2 )) =

= GA (yM , Gz (yz , Gz,1 (yz,1 , M), f4 (yz,2 , M))) = 

= GA (yM , yz , yz,1 , yz,2 , M) = GA (y, M) =  

= GA (Gy (q’, x), M) = G’A (q’, A, B, C) 

we create a new compact DD model of the system: 

N2 = {Gq , G’A , G’B , G’C }.

The part of the model related to the data path is represented in Figure 22 by three diagrams 

G’A, G’B, G’C . For simplicity, in these diagrams, the terminals nodes for the cases where the 

value of the function variable does not change, are omitted. 

4.1.2 Low-Level Decision Diagrams 

Binary Decision Diagrams (BDD) can be regarded as a special case of high-level DDs 

described in the previous section where all the variables z Z are binary. However, 

traditional BDDs can be used only for representing functions and not for the faults in gate 

networks. A special case of BDDs called structurally synthesized BDDs (SSBDD) [51]. Can 

be used also for directly representing faults. SSBDDs have the following important property: 

each node m in a Gy which describes a tree-like subnetwork Ny of the gate-level circuit N, 

represents a signal path Lm in Ny.
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Figure 23 Low-level decision diagram for a circuit 

An example of a SSBDD for the subcircuit extracted by dotted lines is represented in Figure 

23. For simplicity, the values of variables on edges are omitted (by convention, the right-hand 

branch corresponds to 1 and the lower-hand branch to 0). Also, terminal nodes with constants 

0 and 1 are omitted (leaving the SSBDD to the right corresponds to y = 1, and down  to y = 

0). The nodes are marked by indexes of the line variables at the beginning of the circuit path 

represented by a node. 

4.1.3 Hierarchical fault simulation 

In hierarchical simulation the fault analysis is made block by block at the higher-level 

network. An example of the approach is illustrated in Figure 24 where the network of the 

system consists of 3 blocks: A, B and C. The block B is taken as the target for fault analysis, 

and therefore is represented also at the lower level. Test sequence is simulated as usual, 

pattern by pattern, starting from the inputs of the system. When the target block B is reached 

by the first test pattern P, low-level fault analysis is carried out, and the set of all faults R 

activated by the pattern P is calculated. For each fault r  R, the corresponding faulty output 

pattern P(r) of the block B is calculated. Activated faults are grouped into subsets Ri  R, so 

that each r  Ri  for what the same (faulty) output pattern Pi=P(Ri) corresponds will be in the 

same subset. The fault-free pattern P, and all the faulty patterns P1, …,Pk where 

R1  R2  …  Rk  = R are simulated through other blocks of the network at the higher level. 

At the output of each observable block the faults in R that can be observed and detected are 
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removed from the further calculation and fixed as detected faults. In general, at the output of 

each higher level block, a data structure D = P, (P1,R1), …, (Pk,Rk)  will be generated where 

 R1  R2  …  Rk = R. When the target block B is reached by D, all the patterns P,P1,

…,Pk  should be fault simulated at low-level. For P, new faults will be determined which are 

activated by P; and for all the faults in Ri it will be detected if they are propagated at the 

pattern Pi through B or not. After that, a new data structure D will be created at the output of 

B.

Fault analysis on DDs is based on path traversing procedures. In path traversing, the values of 

node-variables are given, and we have to move along the path determined by these values. 

Consider, at first the SSBDDs and introduce the following notations: l(m) - activated path 

from the root node up to the node m; l(m,=1) (or l(m,=0)) - activated path from the node m up 

to the terminal node labeled by the constant 1 (or 0); m
l
 (or m

0
) - successor of the node m for 

the value z (m)=1 (or z(m)=0). 

Figure 24 Hierarchical simulation of faults 
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To analyse a test pattern for all faults detected, means:  

to find path l activated by the pattern with a terminal node m
T
 where z(m

T
) = e, for all nodes 

mk  l, find the value ek = z(mk
T
) where mk

T
 is the end node of l(mk

e
,mk

T
) activated by the 

same pattern; 

for all nodes mk  l, the given pattern detects the fault z (mk) / e  if  ek  e is valid.

For example, in Figure 23 for the input pattern (001000) we have: l = 6, 1, 5 . At this 

pattern, the faults z( 1) 0, z( 5) 0, are detected, but the fault at the node 6 is not detected. 

The faults in the circuit which are detected by this pattern are spread along the highlighted 

paths from 1 to y, and from 5 to y. These paths correspond to the nodes 1 and 5 in 

SSBDD.

The check of faults propagating at higher level DDs is carried out by simulation of all the 

patterns P,P1, …,Pk , and by subsequent comparing the results. For example, in Figure 21 

and Figure 22 a clock cycle is simulated where the following calculations are made: 

A:= A’ + 1,  q := 4. The traversed paths are shown in bold. 

4.1.4 Experimental results 

In Table 11, RT level simulation results in comparison with 2 commercial VHDL simulators 

for circuits GCD and DIFFEQ  (HLSynth benchmarks), MULT8X8 (8-bit multiplier) are 

given.

VHDL - 1 VHDL - 2 Circuit
DD

Time Ratio Time Ratio 

GCD 3.89 13.13 3.4 33.98 8.7 

DIFFEQ 8.96 81.51 9.1 331.62 37.0 

MULT8X8 5.79 25.38 4.4 64.81 11.2 

 Inputs Outputs States Gates F/F 

GCD 10 4 8 227 15 

DIFFEQ 82 32 6 4195 115 

MULT8X8 18 16 8 1058 95 

Table 11 High-level simulation efficiency 
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ISCAS Gates Fault 

cover

%

Number 

of test 

patterns

Fault sim. 

gate/macro 

speed ratio 

C432 232 97.33 55 3.86 

C880 383 100.00 100 5.15 

C1355 546 99.64 52 3.08 

C1908 880 99.75 122 6.46 

C2670 1193 99.67 119 6.47 

C3540 1669 95.58 145 8.81 

C5315 2307 99.78 108 8.37 

C6288 2416 99.80 33 2.55 

C7552 2978 99.46 198 9.04 

Table 12 Low-level fault simulation efficiency 

Table 13 Benchmark circuits for hierarchical simulation 

Table 14 Hierarchical fault simulation results 

FSM States Inp Out Transitions Cells Faults 

bbsse 16 7 7 56 80 562 

dk16 27 2 3 108 156 1038 

ex2 20 2 2 73 77 480 

ex3 10 2 2 37 38 274 

log 17 9 24 29 76 486 

s832 25 18 19 245 162 1090 

s1488 48 8 19 251 332 2234 

sand 32 11 9 184 259 1622 

scf 121 27 56 166 428 2800 

styr 30 9 10 166 262 1734 

 HSIM GSIM

Fsm TL Cover % Time,s Time,s

bbsse 300 74.1 0.01 0.38 

dk16 150 95.1 0.01 0.55 

ex2 600 25.9 0.01 1.21 

ex3 1000 46.2 0.01 0.77 

log 200 99.6 0.01 0.11 

s832 300 59.6 1.00 2.69 

s1488 400 63.48 2.00 9.17 

sand 400 84.2 1.00 3.18 

scf 700 34.5 33.0 39.32 

styr 500 74.1 2.00 6.81 
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In experiments, each circuit was simulated for 200000 random input vectors. Simulation time 

is given in seconds. “Ratio” is the VHDL simulation time to DD-based simulation time ratio. 

In Table 12, the gain in the speed for the low-level fault simulation of SSBDD macros 

compared to the gate-level fault simulation is demonstrated. For experiments, ISCAS’85 

benchmark circuits were used. The differences in speed are between 2.55 and 9.04. 

In Table 13 some FSM benchmark circuits are used for evaluating the hierarchical fault 

simulation approach. The hierarchical fault simulation results (HSIM) compared to the plain 

gate-level simulation (GSIM) are depicted in Table 14. Here TL is the length of test 

sequences. Hierarchical fault simulation results compared to the plain gate-level simulation 

results show speed gain up to 121 times. However, surprisingly in case of largest circuit speed 

gain is only minimal. Obviously gate-level generator takes the advantage of good 

observability of the circuit since number of outputs is large. 

4.2 Defect oriented mixed-level fault simulation in digital systems 

The quality of test generation significantly relies on the efficiency of fault simulation, 

especially in the case of simulation-based test generators like genetic test pattern generator. 

Traditionally, fault simulation is performed at the gate-level with using the stuck-at fault 

(SAF) model. On one hand, the gate-level SAF-based fault simulation is time-consuming; on 

the other hand, the SAF model doesn’t represent adequately the physical defects in transistor 

circuits. To overcome these disadvantages, mixed-level simulation is needed which allows to 

use the advantage of high level information to speed up the simulation process while 

analyzing the quality of tests still in relation to realistic physical defects. 

In this section, a new method for parametric defect modeling is presented for calculating the 

conditions for activating physical defects in the modules (e.g. library components) of digital 

circuits. A new method for multi-level defect-oriented fault simulation based on Decision 

Diagrams (DD) is proposed. We suppose that a register transfer level (RTL) information 

along with gate-level descriptions for blocks of the RTL structure are available. For defect 

simulation a new functional fault model is used which can be handled on the gate- and RT 

levels. Decision diagrams (DDs) are exploited as a uniform model for describing systems on 

both, RT and gate levels. 

In this section, mapping of physical defects onto the logical level is described, the general 

method of the hierarchical defect-oriented fault simulation is presented, then same simulation 

on the model of DDs is considered. Finally, experimental results are presented. 

4.2.1 Mapping Defects onto the Logical Level 

Subsequently we present a general fault model for describing and modeling arbitrary physical 

defects in the components of digital circuits and for mapping them onto the logical level. 
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Consider a Boolean function y = f (x1, x2, …, xn) implemented by an embedded component in 

a digital circuit. Introduce a Boolean variable d for representing a given defect in the 

component or in the neighbourhood layout of the component, which may affect the value y by 

converting the Boolean function f into another function y = f 
d
 (x1, x2, …, xn, xn+1, … xp).

Here, the new variables xn+1, … xp may be introduced to describe the influence of the 

neighbourhood layout of the component in the presence of the physical defect d.

For example, assume there is a short between x1 and x5 in the circuit in Figure 25.

The faulty function y = f(x1,x2) = (x1  x2) in the case of the defect d can be represented as

y = f
d
(x1,x2,x3,x4)= (x1 x5) x2= (x1  (x3  x4)) x2). 

Introduce now a generalized parametric function  

y* = f*( x1, x2, …, xn, xn+1, … xp, d) = d & f d & f
d

as a function of a defect variable d, which describes the behavior of the component simul-

taneously for both possible cases. For the erroneous case the value of the defect variable d as 

a parameter is equal to 1, and for the nonerroneous case d = 0. In other words, y* = f 
d

if d = 1,  and y* = f   if d = 0. 

Figure 25 A short between two signal leads 

The solution of the Boolean differential equation

                                                       W
d
 = y* / d = 1                                                        (1) 

describes the conditions which activate the fault d on a line y. For example for the short in 

Figure 25 we have 

y* = df df
d
 = d (x1  x2) d( x1 (x3  x4) x2). 

To find the conditions for activating the short to the line y we have to solve the logical 

equation W
d
 = y* / d = x1 x2 x3 x4.= 1.

The method of parametric defect modeling by logical conditions W
d
 can be generalized for the 

purpose of hierarchical fault simulation. A component of a circuit can be preprocessed by 

lower level defect simulation with the goal to generate a set of conditions W for all possible 

lower level defects d of the component. Each condition as a solution of W
d

= 1 can be 

regarded as a higher level functional fault model for a given defect d, since in the presence of 

this defect  the functional behavior of the component at the input where W
d
 = 1 will be 

erroneous. The functional fault model concept is illustrated in Figure 26. 
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Figure 26 Functional fault model for a physical defect 

The relationships between the functional faults (patterns) W
d
 and the defects d for all the logic 

level simple or complex gates g in the library L are given by defect tables DTg =  gid , g
L,   where an entry gid = 1 means that the input pattern i (solution of W

d
 = 1) of the gate 

detects the defect d , otherwise gid = 0.

4.2.2 Defect Oriented Hierarchical Fault Simulation 

Consider a task of defect oriented fault simulation in a system represented on three levels: 

register transfer, gate and defect levels. 

Formally, if Y is the system RTL  variable representing an observable point of the system, yM

is an output variable of a gate-level module and yC  is the output of a component (complex 

gate) in the module with a physical defect d, then the condition of detecting the defect d on 

the observable test point Y can be represented as 

                            W  = Y/ yM  yM / yC W
d
= 1,                                       (2) 

where Y/ yM is the Boolean derivative calculated by the high-level simulation, yM / yC is

the Boolean derivative calculated by the gate-level simulation, and W
d
 is the functional fault 

condition found by the gate defect-level preanalysis. 

In the hierarhical (i.e. multi-level) fault simulation approach proposed earlier in 4.1.3, the 

defect analysis is made module by module in the higher RT level network. An example of a 

RTL system to describe the main principles of the approach is illustrated in Figure 27. The 

network of the system consists of 3 blocks (modules): A, B, and C. The block B is taken 

currently as the target for defect oriented fault analysis, and therefore is represented at the 

lower gate-network level. The test sequence before reaching the target block is simulated on 

the RT level, pattern by pattern, starting from the inputs of the system. Let D be the set of all 

defects to be simulated in the target block B. The low-level fault simulation for a given input 

pattern P* in the target block B is carried out by the following procedure. 
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Figure 27 Hierarchical fault modeling in a digital system 

Procedure 1

When the target block B is reached by a pattern P* first, the fault-free output pattern P is 

calculated. Then, the low level defect analysis is carried out, and the set of all defects d  DB

D activated in B by the pattern P* is calculated by checking if at least for one output yB of 

the block B the condition 

W  =  yB / yG W
d
= 1           (3) 

is fulfilled. For each activated defect d DB in B, the corresponding faulty output pattern of 

the block B is calculated. Then the all activated defects d DB for which the same (faulty) 

output pattern of B is produced are grouped into the same subset DBi DB. As the result, a 

complex test pattern T = P, (P1,D1), …, (Pk,Dk)  at the output of B will be generated where 

D1 D2  … Dk = DB D.

Suppose now, a block C (which is not the target block) is to be simulated at the higher level. 

All the input patterns of the block C can be regarded in a general case as a set of complex test 

patterns TS = {T1, T2, …, Tm} where Ti = Pi,0, (Pi,1,,Di,2), …, (Pi,k,Di,k) . This set can be easily 

reformed as a single joint complex pattern T* = P*, (P*1,D*1), …, (P*n,D*n) . The high-

level (RT-level) fault simulation for a given complex input pattern T* in the non-target block 

C is carried out by the following procedure. 

Procedure 2

For each joint input pattern from the set  P*, P*1, …, P*n  at the high-level, the 

corresponding output complex pattern T’ = P, (P1,D*1), …, (Pn,D*n)   is calculated. If two 
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input patterns P*i and P*j produce the same output pattern Ph then the two pairs (Pi,D*i) and 

(Pj,D*j) in T’ should be merged, and the pattern Ph should be linked to a joint set of detects Dh

= Di  Dj . If the fault-free input pattern P*  and a faulty input pattern P*j produce the same 

output pattern P, then all the defects in D*j are self-masked, and the component (Pj,D*j)

should be removed from the complex pattern T’.  As the result, a new simplified complex test 

pattern T = P, (P1,D1), …, (Pk,Dk)  at the output of B where k n may be generated where 

D1 D2  … Dk DB D.

When during the fault simulation the target block B is again reached via the feedback loops by 

a complex pattern T* = P*, (P*1,D*1), …, (P*n,D*n) , all the patterns P*, P*1, …, P*n

should be fault simulated on the low-level at the presence of corresponding defects. For P,

new defects activated by P are calculated by using Procedure 1. After that, a new complex 

pattern T* will be created at the output of B using the operations described in Procedures 1 

and 2. 

4.2.3 Defect Oriented Fault Simulation on Decision Diagrams 

Fault simulation on DDs is carried out by tracing the activated paths on DDs in according to 

the given values of variables as specified in Definition 1 in  subsection 4.1.1.

For example, at the given input (state) pattern  P = {q’=1, xA =0} of the block A we reach the 

terminal node m
T
 of the graph GA with label A  + 1 (see the highlighted path in Figure 28 

below). The new value of A will be A = A  + 1.

In high-level fault propagation in the digital system S=(Z,F) through a block with function 

z = f (z1, z2, …, zn)=  f(Z’), Z’  Z, which is represented by a decision diagram Gz, we proceed 

from the fact that the defects may have been propagated to all of the variables zi  Z’ used in 

labels of nodes in the graph. To each node m of the DD with the label  z(m), a complex pattern  

Tz(m) = {Pz(m),0, (Pz(m),1,Dz(m),1), …, (Pz(m),kz,Dz(m),kz)}

corresponds. From this pattern, it results that a set of defects Dz(m)= Dz(m),1  … Dz(m),k has 

been propagated to the node m. Let D be the set of all faults currently activated and listed in 

Tz(m).

Consider the fault simulation on the decision diagram Gz as the following set of procedures. 

Procedure 3

First, the fault-free path is simulated in accordance to the fault-free input pattern Pz(m),0,, and 

the fault-free value of z=z(m
T,0

) is calculated, where m
T,0

 is the terminal node of the fault-free 

activated path. 

Denote the set of all nodes traced in the fault-free path up to the node m (m itself not included) 

by MFF(m). Let DFF (m) be the set of all faults propagated to the nodes m MFF(m). The 

condition of reaching the node m  in the fault-free path during fault simulation is the absence 

of all the faults in DFF (m). Denote by DCF(m) the set of faults consistent to the current faulty 

path from the initial node m
0
 up to the node m. For the nodes m on the fault-free path we have 

DCF(m) = D - DFF (m).
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Denote by L the list of all nodes of the DD to be fault simulated. All the nodes on the fault-

free path are included into L. For carrying out fault simulation of the nodes in L, either 

Procedure 4 or Procedure 5 will be used. As the result of the procedure the list L will be 

updated. Fault simulation is terminated when the list L gets empty. 

 Procedure 4

Fault simulation of a terminal node m
T,0

L with the function z = z(m
T,0

) = f(z1,…, zp) for the 

set of complex input patterns T = (T1,…, Tp), Ti = {Pi,0, (Pi,1,D’i,1), …, (Pi,ki,D’i,ki)}, i = 1,2, …, 

p, where  i,j: D’i,j = (Di,j - DFF (m
T,0

))  DCF(m)

is equivalent to Procedure 2 of high-level fault simulationdiscussed in Section 4.  

 Procedure 5

Fault simulation of a nonterminal node m L with the variable z(m) for the complex pattern 

Tz(m) = {Pz(m),0, (Pz(m),1,D’z(m),1), …, (Pz(m),km,D’z(m),km)} where  j: R’z(m),j = (Rz(m),j - RFF (m))

RCF(m), consists in the following: 

if m belongs to the fault-free path, and if D´z(m) = D’z(m),1  … D’z(m),km =  no nodes will be 

included into L;

if m does not belong to the fault-free path, and if D´z(m) = , the node m
e
 where e = Pz(m),0, will 

be included into L; for the new node m
e
 in L we calculate: DFF(m

e
) = DFF(m) Dz(me), and 

DCF(m
e
) = DCF(m),

if D´z(m) , all the nodes m
e
, where e = Pz(m),i, i: D’z(m),i , will be included into L; for all 

these nodes we calculate DCF(m
e
) = DCF(m)  D’z(m),i, DFF(m

e
) = DFF(m).

As the result of the fault simulation by Procedures 4 and 5 we create a complex pattern for the 

graph variable z: Dz = {Pz,0, (Pz,1,Dz,1), …, (Pz,kz,Dz,kz)}. All the pairs (Pz,i,Dz,i) where Pz,i = Pz,0

are eliminated since the defects Dz,i are self-masked at this point. All the groups of pairs 

{(Pz,i,Dz,i), (Pz,j,Dz,j)} where Pz,i = Pz,j are merged into a single pair (Pz,i,Dz,i) where Dz,i = Dz,i

 Dz,j.

Figure 28  DD for the subcircuit of A in the system in Figure 21
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Figure 29 Fault simulation on the graph GA on Figure 28

Example 

Consider the DD GA in Figure 28 with a set of complex patterns: Tq = {1, 0 (1,2,5), 4 (3,4)}, 

TxA = {0, 1 (3,5)}, TxC = {1, 0 (4,6)}, TA = {7, 3 (4,5,7), 4 (1,3,9), 8 (2,8)}, TB = {8, 3 (4,5), 4 

(3,7), 6 (2,8)}, TC = {4, 1 (1,3,4), 2 (2,6), 5 (6,7)}. All the paths traced during the fault 

simulation are highlighted and marked by details of simulation in Figure 29. The fault free 

paths are shown by bold lines both, in Figure 28 and Figure 29. The edges on paths in Figure 

29 are labelled by pairs e,(D), where e is the value of the node variable when leaving the node 

at this direction, and D is a subset of defects: DFF(m) for the next node m on the fault-free 

path, and DCF(m) for the next node m on the faulty paths. Since DFF(xA) = {1,2,3,4,5} includes 

both of the defects 3 and 5 propagated to xA, no faulty paths are simulated from the node xA:

for the value xA = 1: D’xA = (DxA - DFF (xA)) = . From all the defects propagated to A’, only 

the defects 8 and 9 are simulated at the node A’+1. At the terminal node B’+C’ only the 

defects 1,2,5 are simulated, since only they are consistent to the condition of leaving the node 

q’ at this direction.

After fault simulation of all 3 terminal nodes reached at the given complex pattern we 

compose the final result as follows: the defect 2 propagated to the node B’+C’ is self-masked 

because the value B’+C’ = 8 calculated for the defect 2 is equal to the fault-free value 

calculated at the node A’+1. The defects 4 and 5 propagated to different terminal nodes are 

merged into the same group because they produces the same new value 7 for A. Also the 

defects 1 and 8 are merged into the same group. The final value of the new complex pattern 

for A is: TA = {8, 5(9), 7 (4,5), 9 (1,8)}. 

q’ xA

1 (1,2,3,4,5) 0 (1,2,3,4,5)

A’+1

8 ( )
9 (8)
5 (9)B’+C’

0 (1,2,5)

8( ) + 1(1) = 9(1)
6(2) + 2(2) = 8(2)
3(5) + 4( ) = 7(5)

xA xC

A’

4 (3,4) 0 (3,4)

1 0 (4)

2

3

7 (4)

1

1
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4.2.4 Experimental results 

For investigation the correlation between fault coverages for stuck-at faults (SAF) and the 

defects, two benchmark circuits C1 and C2 were created – both, tree-like combinational 

networks, the first with 2-levels (5 complex gates, 16 inputs, 100 defects) and the second with 

3-levels (21 complex gates, 64 inputs, 420 defects). Both circuits were simulated for two tests 

Tmin (optimized test: 8 patterns for C1, and 16 patterns for C2) and Tmax (not optimized test: 

19 patterns for C1, and 70 patterns for C2) which both had 100% coverage for stuck-at faults. 

The results of the defect oriented simulation for the given tests are depicted in Table 15. 

Defect

coverage, % 
Circuit

Number 

of defects 

Stuck-at

Fault

Coverage Tmin Tmax

C1 100 100,00 81,00 83,00 

C2 420 100,00 84,29 84,76 

Table 15 Comparison of Defect and SAF simulation 

From these experiments we see that the stuck-at-fault based fault coverage is overestimated 

compared to the realistic defect coverage, and that the difference between stuck-at fault and 

physical defect coverages reduces when the complexity of the circuit increases. In the worst 

case we have noticed that the 100% SAF test may cover only 50% of realistic physical 

defects.

In Table 16 the results of multi-level simulation for FSM benchmark circuits are shown for 

evaluating the proposed mixed-level fault simulation approach. A hierarchical multi-level 

fault simulator (HSIM) is compared to the plain gate-level simulator (GSIM). Here we see 

that the mixed-level fault simulation can be carried out with significally higher speed than in 

the case of plain gate-level simulation, the difference is between 2,7 and 121 times, or in 

average 35 times. 

Time,sec FSM

circuit

Number 

of faults

Test

length

Fault

cover % HSIM GSIM 

bbsse 562 300 74.1 0.01 0.38 

dk16 1038 150 95.1 0.01 0.55 

ex2 480 600 25.9 0.01 1.21 

ex3 274 1000 46.2 0.01 0.77 

Log 486 200 99.6 0.01 0.11 

s832 1090 300 59.6 1.00 2.69 

s1488 2234 400 63.48 2.00 9.17 

Sand 1622 400 84.2 1.00 3.18 

Styr 1734 500 74.1 2.00 6.81 

Table 16 Mixed-level fault simulation results 



73  

4.3 Discussion 

Experiments with hierarchical simulation of digital circuits show considerable speed gain. For 

instance, RT level (high level) simulation results on decision diagrams in comparison with 

two commercial VHDL simulators reveal up to 37 time boost up in simulation speed. Speed 

difference increases with the size of the circuit. 

At the same time, the low level fault simulation of SSBDD macros in comparison to the gate-

level fault simulation on ISCAS’85 benchmark circuits demonstrated the differences in speed 

between 2.55 and 9.04 times. In addition, here, speed difference increases with size of the 

circuit in favor of SSBDD macros. 

Hierarchical fault simulation results compared to the plain gate-level simulation results show 

speed gain up to 121 times. However, surprisingly in case of largest circuit speed gain is only 

minimal. Obviously gate-level generator takes the advantage of good observability of the 

circuit since number of outputs is large. 

Hierarchical defect oriented fault simulation method for digital systems introduced here helps 

to reduce dramatically the computation cost of test quality analysis in digital systems.  

Decision diagrams are used as a mathematical model for systematic multi-level solution for 

fault simulation at three levels of abstraction - RT, gate- and defect levels respectively. 

Experiments show that the stuck-at-fault based fault coverage is overestimated compared to 

the realistic defect coverage, and that the difference between stuck-at fault and physical defect 

coverages reduces when the complexity of the circuit increases. In the worst case, it was 

observed that the 100% stuck-at-fault test may cover only 50% of realistic physical defects. 
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5 Design Flow with Test Tools 

5.1 Generating data for high-level synthesis and test generation 

Nowadays system design flow starts at higher abstraction level because of the design 

complexity problem. Namely, recent developments in microelectronic technology allow 

implementing a whole digital system as a single integrated circuit. Various hardware 

description languages (HDL) have gained therefore much popularity among designers 

because of the advantages they offer over traditional schematic techniques. The main 

advantage is the possibility to use the same description both to model the behavior and as a 

starting point for schematic synthesis. Another important feature of most of the HDL-s is the 

possibility to describe an algorithm at higher abstraction levels thus hiding target technology 

dependent hardware implementation details.  

VHDL (VHSIC Hardware Description Language) is one of the most popular languages, if not 

the most popular. VHDL supports top-down, bottom-up and mixed development 

methodologies. Designs in VHDL can be made technology-independent. That is, no redesign 

is needed, or a very limited redesign is required, when switching to a new technology. 

Development times in VHDL are shorter and maintenance is simpler compared to the 

traditional schematic design [52].  

The main problem when using VHDL is that only a limited set of constructions can be 

mapped onto hardware without different possible interpretations. This limited set is called 

synthesizable subset and it is defined differently for different abstraction levels. Subsequently 

in this section, we describe the principles of mapping a VHDL subset onto flow-chart like 

internal representation used by an academic HLS tool xTractor [53]. Important is that the 

ongoing research in high-level test generation makes it necessary to have a VHDL front-end 

available also for test generation tools.

The used internal representation, a synthesizable subset of IRSYD [55], is in essence a 

directed graph in which the arcs explicitly represent the flow of control. Four types of nodes 

are used currently: entry and exit nodes to mark beginning and end of the control flow, 

operation nodes to encapsulate computational activity, and condition nodes to describe 

branching on a variable. Edges of the graph can have special associations that represent either 

wait statements of the source code or states of the Mealy FSM corresponding to the IRSYD. 

An example code with the corresponding piece of flow-chart is shown in Figure 30. Flow

chart is actually represented textually during computations. 

Rest of the chapter is organized as follows. Supported VHDL constructs are described in 

section 5.1.1. The principles of mapping VHDL constructs onto IRSYD ones is explained in 

section 5.1.2. In section 5.1.3, the control flow extraction process is described. A brief 

overview of the xTractor tool is given in section 5.1.4 together with some characteristic 

synthesis results. Finally, decision diagram synthesis from RTL level VHDL is discussed. 
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5.1.1 Supported VHDL constructs 

Since VHDL is a very complex language and it was originally designed for simulation and 

not for synthesis, a synthesizable subset of the language had to be defined. The abstraction 

level used in HLS simplified the task - only constructs used for behavioral descriptions are 

needed (see, e.g., [56]). We have excluded constructs that cannot be mapped directly onto bit-

vectors or operations with them because additional decisions are needed. For instance, 

encoding is needed for enumerated data types or bit-layout is needed for floating point 

numbers. The front-end (compiler) is oriented to VHDL'93 standard because VHDL'86 lacks 

few constructs often used by hardware designers, e.g., built-in shift operations. The supported 

constructs are listed as follows. 

Data types

The supported types are bit, bit_vector, boolean, integer, signed, and unsigned - all of them 

can be mapped directly onto signed and/or unsigned bit-vectors (sets of wires in hardware). 

Conversion functions, needed by the strict rules of VHDL, are ignored because all supported 

data types map onto the same underlying type. Both variables and signals of supported types 

can be declared. One-dimensional arrays of allowed types are also supported. 

Operations

All operations with supported data types are allowed - they map onto basic operations with 

bit-vectors. The only difference is between few signed and unsigned operations, e.g., 

comparisons must treat the most significant bits differently. 

Figure 30  Control flow mapping example

-

case

true

exit next

false 

for
for i in 1 to 5 loop
  -- ... 
  case i is
    when 1 =>  next;
    when 5 =>  exit;
    when others => 
      x := x + 1;  
  end case;
  -- ... 
end loop ;

cond := i <=5

i :=1

x := x +1

i := i +1

cond

cond := i

cond
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Structure

From the structural constructs, entity and architecture are supported. Currently only port 

declarations are allowed in entities. 

Concurrent statements 

Only a single process is allowed per architecture because of the underlying single thread 

execution model of HLS. 

Behavioral statements

All statements that can be mapped onto control flow represented by a flow-chart are 

supported (see section 3 for details): 

assignments are divided into atomic operations and mapped onto sequences of 

operation blocks; 

if-then-else statements are mapped sequences of decision and operation blocks; 

case and loop statements are first mapped onto if-then-else constructs and then onto 

flow-chart blocks; and 

wait on statements are bound to special associations on the corresponding edges of the 

flow-chart.

Some of the unsupported constructs, especially those that support behavioral hierarchy, will 

be added later. They are not necessary to describe modules at behavioral level but allowing 

them makes descriptions more flexible and generic. The constructs to be added later are 

library, package (user defined), generic, function, and procedure. We do not intend to allow 

constructs that are either simulation oriented, e.g., configuration and file operations, or are at 

non-behavioral abstraction levels, e.g., components and data-flow constructs. The higher level 

constructs should be replaced with supported constructs during earlier design phases, and the 

lower level constructs can be easily handled by corresponding back-end synthesis tools.

5.1.2 Mapping VHDL onto IRSYD 

This section describes the correspondence between VHDL and flow chart constructs. 

Entity

All ports in a VHDL entity are kept as ports also in IRSYD. All data types are converted into 

signed or unsigned bit-vectors (IRSYD data types). 
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Architecture

Signals and variables remain intact in IRSYD, only data types are converted into signed or 

unsigned bit-vectors when necessary. VHDL constants are preserved also as constants in 

IRSYD but necessary data type conversions will be performed. 

Process

A process with the sensitivity list is first transformed into a process without the sensitivity list. 

The sensitivity list of signals is replaced with equivalent wait on statement in the very 

beginning of the process. After that, such transformed VHDL process or any other process 

with wait on statements is handled as simple process. 

Behavioral statements 

Behavioral constructs in VHDL process are translated into operation and control blocks of 

IRSYD. Figure 30 illustrates how loop and case constructs are mapped onto a sequence of 

IRSYD blocks. The other statements are also mapped onto sequences of control flow nodes. 

An if-then-else statement is modeled like the case statement except the condition node has 

only two successor nodes. 

5.1.3 Control flow extraction

The IRSYD flow-chart is extracted from the VHDL source file with the help of a special 

translator that consists of a symbol table, lexers and parsers. The translator has four passes 

and there is a dedicated parser for each pass. Several passes are needed because some features 

of the VHDL are difficult to handle in a single pass. 

Symbol table 

The symbol table contains information about identifiers and types in the source file. The table 

is an important component of interface between different translator passes. It is organized as a 

binary tree. During parsing, the data is searched and updated in the symbol table. The table is 

created and predefined data types are initialized at the beginning of the translation. 

Lexers

The task of the lexers is to recognize the tokens in the source code and pass them to parsers 

when asked. The translator is switching between lexers depending on the detected tokens. A 

separate lexer is used to handle VHDL comments, that is, to ignore them.  
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Parsers

The parsers used in the translator are of recursive descent type. The parser for the first pass, 

which reads the VHDL source, has to look at least two tokens ahead. In some cases, when this 

is not enough special syntactic predicates are used to determine correct parser rule production 

i.e. a concurrent grammar rule. A syntactic predicate specifies the syntactic context under 

which production will match successfully. 

Pass one: The first parsing pass builds up an intermediate representation (IR). We use abstract 

syntax tree (AST) as IR (see Figure 31). It should be noted that it contains not only the 

content of the input stream but the structure of the underlying language as well. For example, 

a linked list of the input tokens has complete content but it has no structure to indicate how 

the input was parsed. The purpose of IR is to simplify the parsing during the subsequent 

translation phases. AST structure is carefully crafted to simplify parsing, i.e., any parsed 

token should match only one production at time.  

During the first pass, some delimiters, e.g., brackets, colons, and obsolete keywords, are 

skipped. Several new tokens (tree nodes) are inserted into AST to simplify later parsing 

passes. In such a way, we can reduce parsing to look only one token ahead. All expressions 

will be translated into prefix notation - operation comes before arguments. The first pass starts 

also to fill up the symbol table. While parsing VHDL declarations - architecture, process, etc. 

- appropriate entries into the symbol table are made. That is, the name of the constant, signal 

or variable, its type, and value, if applicable, are inserted. Also, necessary type conversions 

are performed. At the same time, the syntax is checked and errors are reported. 

Figure 31  Compilation flow 

 Pass two: The IR, created during pass one, is kept in the main memory throughout all 

translation passes, temporary files are not used. During pass two, the IR is parsed again and 

further modifications are carried out using a special tree parser. The principles of the tree 

parsing are similar to that of ordinary parsing, only instead of tokens in a text file we have 

nodes in AST. During the second phase of translation, all sequential VHDL constructs - if,

case, for, etc. - are replaced with Control-and-Data-Flow-Graph (CDFG) primitives. That is, 
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jump, conditional jump, and label tokens are added to the intermediate tree in order to model 

control flow of sequential VHDL. Complex expressions are decomposed into simple two 

operand expressions. Intermediate variables are introduced when necessary, inserted into the 

symbol table, and propagated throughout decomposed expressions. For instance, an 

expression "y:=(a+b)*c;" is replaced with two expressions: "y:=v_1*c;" and "v_1:=a+b;". 

Pass three: The order of these atomic expressions is corrected in pass three. 

Pass four: The IRSYD output generation. First, all constant, port, signal and variable 

declarations are dumped from the symbol table into the target file. Then, once more the 

current AST is traversed. Since there is now one to one mapping between AST sub-trees and 

IRSYD constructs, translation to IRSYD is a straightforward process. Following synthesis 

steps of xTractor use the generated IRSYD flow-chart. 

A compiler construction tool-set PCCTS [57] from Purdue University was used for building 

lexers and parsers. PCCTS is similar to a highly integrated version of LEX and YACC [58], 

but it offers some additional features that make it easier to use. Now there is also Java based 

version of PCCTS called ANTLR available. 

5.1.4 HLS tool xTractor

High-level synthesis tool xTractor [55] uses IRSYD flow-chart produced as described above. 

xTraxtor is an academic high-level synthesis tool that was developed to test synthesis 

methodology of control and memory intensive systems (CMIST). The overall synthesis flow 

(see Figure 32) is similar to the synthesis flow of any HLS approach (see, e.g., [56]). The 

three main steps can be outlined as follows: 

in the partitioning phase memories are extracted from the initial behavioral;  

operations are assigned to states (control steps) during the scheduling phase; and

unified allocation and binding assigns operations to specific functional units. 

The separate steps of the flow are executed by component programs that input, output, and 

manipulate synthesizable subset of IRSYD. Two of the component tools are used as input and 

output of the tool-set. One of the programs - IRSYD Generator - compiles either a subset of C 

or VHDL into IRSYD. The second tool - RTL HDL Generator - generates register-transfer 

level VHDL or Verilog code for back-end logic level synthesis tools. Some simpler Data-Path 

Transformations can be applied before (or after) every main step. Although there are many 

different transformations are available, only the most obvious ones have been implemented - 

constant propagation, variable propagation, and simplification of operations with constants. 

Memory Extractor lists arrays and/or maps them onto memories. It should be noted that 

although most of the synthesis steps can be skipped, the Scheduling phase is an exception 

because it is the only step that assigns states to the behavioral control flow. So-called as-fast-

as-possible (AFAP) scheduling strategy is used [55]. Allocator/Binder allocates and binds 

operations and variables into functional units and registers. Interconnections (multiplexers) 

are allocated and bound together with related functional units and/or registers.
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Figure 32  xTractor synthesis flow 

A separate component, not shown in Figure 32, is an interactive shell that organizes the 

overall synthesis flow, that is, in which order and with which parameters the component 

programs are called. The shell organizes also the graphical user interface (GUI) and menu 

systems. To illustrate the power of CMIST approach, synthesis results of few sub-modules 

from Operation and Maintenance (OAM) module of ATM switch are presented in Table 17. 

The results characterize the area of modules in the number of equivalent gates for AMS 0.8-

micron target technology. The columns "Tool 1" and "Tool 2" show results from two 

commercial HLS tools.  

Design Tool 1 Tool 2 xTractor 

Full OAM 22434 22184 14663 

buffer 365 311 129 

FMCG 1222 1303 722 

input handler #1 6310 5783 4366 

input handler #2 3728 3423 2781 

input handler #3 3027 3203 1688 

output handler #1 3740 2891 2351 

output handler #2 351 519 248 

Table 17 Synthesis results of OAM module 
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5.1.5 Decision diagram synthesis from RTL level VHDL 

The main goal of representing VHDL descriptions by decision diagrams (DDs) for test 

generation is to extract the functionality of the design for setting up targets (primitive 

functions or operations) for testing and for carrying out the functional test generation or to 

guide efficiently the hierarchical test generator by using high-level diagnostic information. 

Here we assume that the architecture of the circuit is described at the Register-Transfer Level 

(RTL) as data path and a control path as shown in Figure 33 [59]. Control path is a Finite 

State Machine (FSM) with a state register xS, next state logic and output logic. Input signals 

to the FSM are the primary inputs of the design (variables xI), conditional signals originating 

from the data path (variables) and current value of the state variable xS. Outputs of the FSM 

are the primary outputs of the design (variables xO), control signals (variables xC) and the next 

value of xS.

Figure 33 Register-transfer level view of a digital circuit 

Data path can be viewed as a network consisting of modules or blocks. These include 

registers, multiplexers and functional units (for implementing operations). All the registers 

and some internal lines of the data path can be represented by variables in the RTL DD model 

(variables xR and xL, respectively). Inputs for the data path are the primary inputs xI and 

control signals xC (e.g. multiplexer addresses and register enable signals). Outputs are the 

primary outputs xO as well as conditional signals xN (e.g. from comparison operators) leading 

to the control part FSM.
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In DD models representing the data path, the non-terminal nodes correspond to control signals 

(labeled by variables xC). The terminal nodes represent operations (functional units). Register 

transfers and constant assignments are treated as special cases of operations. Figure 36 shows 

a simple example of a DD representation for a data path fragment. 

At the RT-level, data path is generally represented by a system of DDs. For each primary 

output, fan-out signal and register a DD corresponds. In addition, multiplexers that are 

connected to an input of an FU are represented by a separate DD. 

The DD synthesis from VHDL consists of several steps. Data path and control path will be 

converted into DDs separately. Additionally the entity declaration, signal declarations and 

constants should be converted. After initial synthesis the data path DD can have some 

redundancy which should be removed. As a final step, the DD model will be written to the 

file. 

Control path DD model generation 

The control path of the design should be represented as a finite state machine (FSM) transition 

table, behaviorally described in VHDL like in Figure 34. The FSM state transition table is 

presented as one process, describing next state value and output signal values in relation with 

the current state value and input values. 

entity fsm is 
    port( rst, clk       : in bit; 
          in1            : in bit; 
     y1, y2, y3, y4 : out bit 
    ); 
end fsm; 

architecture fsm_arc of fsm is 
    type states is (s1,s2,s3,s4,s5,s6,s7,s8,s9); 
    signal nState, cState: states; 

begin
    process( rst, clk ) 
    begin 
 if( rst = '1' ) then  
     cState <= S1; 
 elsif( clk'event and clk = '1' ) then  
     cState <= nState; 
 end if; 
    end process; 

    process(in1, cState) 
    begin 
 case cState is  

   when s1 =>   
    nState <= s2; 

       y1 <= '1'; 
       y2 <= '0'; 
       y3 <= '0'; 
       y4 <= '0'; 

   when s2 =>  
     if ( in1 = '1' ) then 
       nState <= s8; 
       y1 <= '0'; 
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       y2 <= '0'; 
       y3 <= '1'; 
       y4 <= '0'; 

     elsif ( in1 = '0' ) then 
       nState <= s9; 
       y1 <= '0'; 
       y2 <= '0'; 
       y3 <= '1'; 
       y4 <= '0'; 

   end if; 
           . 
           . 
           .   

        end case; 
    end process; 
end fsm_arc;

Figure 34 Example of  FSM description in VHDL 

The DD model is synthesised in two steps. At the first step, the RTL level VHDL description 

is converted into an intermediate memory structure. At the second step, the intermediate 

memory structure is converted into the DD. In Figure 35 is shown how the DD model is 

created from FSM state table description. 

Figure 35 DD generation from the FSM State Transition Table 
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Data path DD-model generation 

The data path DD-model is created from the device data-path specification. The data-path 

VHDL description is based on the library of predefined modules (registers, multiplexers, 

arithmetic and logic blocks). To provide flexibility, there is similar library of DD modules, 

which is used during the DD synthesis process. Such approach allows introducing additional 

modules, whenever needed. 

At the first step of the data path DD synthesis, for every functional unit (multiplexer, register, 

arithmetic or logic block) the corresponding DD from the library will be selected. At the 

second step minimization of the initially generated data path DD model will be done.  

For example, in Figure 36a the sample data path fragment is depicted, which contains two 

registers, one multiplexer and one adder. This fragment may initially be represented by three 

DDs - one for register reg2, one for multiplexer and one for adder. After selecting DD models 

for every VHDL component instantiation statement, obtained model should be minimized, 

using superposition process. Final, minimized DD is depicted in Figure 36b. 

(a)

            (b) 

Figure 36 A data path fragment (a) and its DD representation (b) 

+

… reg1

'1'

=0

=1

mux1_addr

reg2_ena

reg2

in1

reg2_ena
reg2

mux1_addr

reg2

reg1+'1'

in1

0

0

1

1



85  

5.2 Digital design flow with automated test generation 

5.2.1 Test generation flow with ATPG 

Test flow with gate level test generator and hierarchical test pattern generator is shown in 

Figure 37. In case of gate level test generation, design specified as register transfer VHDL can 

be synthesized with Synopsys Design Compiler. As a result, we get flattened gate level circuit 

model which in turn is converted into decision diagram  (SSBDD) model. Then gate level 

ATPG like genetic test generator can start. Second flow can be with hierarchical (two level) 

test generator [59]. Here, both RTL level decision diagram model and gate level decision 

diagram models (SSBDD models) for every functional unit in design under test are needed. 

Finally, test patterns generated by hierarchical ATPG, must be evaluated at gate level. 

Therefore, test patterns must be converted accordingly and fault simulated. 

Figure 37 Test generation flow

ATPG
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5.2.2 Description of the complete Design flow 

Generally, the FPGA development cycle can be interpreted as a sequence of the following 

design steps (Figure 38): 

working out the system specification as a behavioral description i.e. a VHDL system model 

(in most cases on algorithm level or register transfer (RT) level) and simulation patterns 

(1,2,3,14);

working out a synthesizable description (VHDL system model) with using methods and tools 

for modeling, simulation and analysis (4,5);  

synthesis by using methods and tools - high level synthesis, logic synthesis (8,9,21); 

partitioning, place and route with using tools for layout generation, back annotation and 

simulation (22);  programming the FPGA (23);  testing by a low-cost tester or logic analyzer 

(24).

 Figure 38 The combined FPGA Design and Test Flow 
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Each design step starts up from a system model given as representation (fitted to) appropriate 

to different abstraction levels to be passed through within the design process, and it ends up 

with a model of an implementation. Based on that, the next design step can be executed, and 

will lead to a more refined model of implementation, and so on. 

5.2.3 Experiments on proving the motivation of using the ATPG 

In the frame of EC COOPERNICUS JEP 977133 VILAB project, following experiments 

[60,61] were carried out in order to check the efficiency of using the ATPG. The Huffman 

encoder circuit developed in EAS IIS Dresden, a complex multiplier circuit mult8x8, and two 

well-known international high-level synthesis benchmark circuits diffeq and gcd were chosen 

as testing samples. The Huffman encoder is a part of the sender side of a video signal 

transmission system. The register-transfer level VHDL description of the encoder was 

synthesized by a high-level synthesis tool from Univ. Tuebingen, C-LAB Paderborn and 

Univ. GH Paderborn. The description was further applied to logic synthesis with SYNOPSYS 

Design Compiler and FPGA placement and routing with XILINX software. The resulting 

FPGA had a complexity of about 1300 gates. To show the real need of developing a dedicated 

compact structural test for a FPGA design, the quality and fault coverage of the designer’s 

functional test for the Huffman Decoder was investigated for comparison against the 

automatically synthesized structural tests.  

For this experiment, at first, the procedure of logic synthesis by Synopsys CAD tools (8) for 

the design (3) created at the EAS Dresden, was carried out. Then, a gate-level diagnostic 

model (11) of the logic design in the form of SSBDDs was generated by the converter (10). 

Finally, the fault simulation experiment (blocks 14-18) was carried out. A Test Format 

Converter (19) was needed for transforming the test sequence produced by the ATPG into the 

test program for the logic analyzer to carry out the test experiments on a low-cost tester (logic 

analyzer). Experimental results on structural test generation for three highly sequential 

circuits (with global feedback loops embracing the control and data paths) shown in Table 18. 

The experiments showed that the DD based test generation algorithm runs (on the example of 

gcd) an order of magnitude faster than previously published approaches [13]. The functional 

test of the Huffman encoder with a length of 3,5 millions of patterns led to fault coverage of 

61,5% only.

Circuit Gates Faults PI

s

POs FFs Control 

states

Fault

cover % 

Test

length

Time

s

Functional test 
Huff.enc. ~1300 5336 31 30 118 27 61,5 9658

*
-

Structural tests 

Huff.enc. ~1300 5336 31 30 118 27  

diffeq 4195 15836 81 48 115 6 95.4 3277 20.4 

mult8x8 1058 3975 17 16 95 8 79.5 2846 14.8 

gcd 227 844 9 4 15 8 91.0 924 5.6 

* Fault simulated part of the total 3,5 millions patterns (the last 5000 patterns gave only 1%) 

Table 18 Test Generation Results of the ATPG 
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5.3 Discussion 

Nowadays design flow often starts with description of the system on the behavioral level 

using hardware description languages like VHDL. We have presented here the key issues of 

translating descriptions written in behavioral VHDL into IRSYD, an internal representation 

format suitable for control and memory intensive digital systems synthesis used by academic 

high level synthesis tool xTractor. The main concern was the mapping of VHDL constructs 

onto IRSYD equivalents while preserving the semantics of the original VHDL code, and 

extracting the control flow from source code. A simple synthesizable subset was selected 

while keeping in mind possible future extensions. The front-end compiler is built with a 

popular compiler construction tool-set PCCTS. The compiler translates the behavioral VHDL 

subset into control oriented flow-chart like description IRSYD that is used by the synthesis 

tool for data exchange. Current design-pattern of compiler can be used for other HDL input 

languages as well. The compiler prototype has been tested in the design flow of an academic 

high-level synthesis tool xTractor which will output RTL level VHDL code what can be 

further used for Decision Diagrams synthesis, which in turn are used by test generators. 

Complete flow with design and test tools presented in this chapter, can be regarded as 

valuable result by itself. Usually design and test fields develop separately and results are 

therefore hard to unite. Here is created a link between results of design process and test 

generators. Consequently, ATPG-s elaborated in current thesis, are practically usable in 

automatic design and test flow, there is no need for manual intervention while preparing input 

for ATPG. 

During work with VILAB project several design and test tools were integrated into complete 

automatic flow functioning remotely over the Internet, it was shown that it is practically 

feasible. Different tools were situated geographically different places. Many experiments 

were carried out, among them with industrial example. 

Experiments with encoder circuit for telecommunication have shown that functional tests 

developed based on designers’ experience by hand are tainted with two essential drawbacks: 

they are much longer than the automatically synthesized structural tests, and generally, 

functional tests do not offer a sufficient structural fault coverage. The new automated 

approach tends to drastically reduce the test cost and brings out a remarkable progress to 

control (master) the test problem. 
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6 Web-based Environment for Digital Design and Test 

6.1 Internet-based collaborative design and test with MOSCITO 

The Internet offers a new dimension and new solutions in engineering works and gives new 

possibilities to use tools from different sources. Subsequently there is described how the new 

communication technologies were applied in the area of digital systems testing with 

MOSCITO system [62] developed at Fraunhofer IIS/EAS, Dresden, Germany. Several TPG 

tools running at geographically different places have been selected for integration into the 

new virtual environment.  

6.1.1 Overview of MOSCITO 

MOSCITO system was implemented with the purpose to connect different tools together via 

network to form a uniform workflow for solving problems in electronic circuit design. The 

software was developed regarding the following aspects: 

• Encapsulation of design tools and adaptation of the tool-specific control and data 

input/output to the MOSCITO framework (MOSCITO agent, see below). 

• Communication between the tools for data exchange to support distributed Internet-

based work. 

• Uniform graphical user front-end program for the configuration of the tools, the control 

of the whole workflow and the visualization of result data. One important goal is to 

provide the functionality of a tool (e.g. fault simulator, a test pattern generator, a netlist 

converter, ...) to a potential user as a service in a local area network (LAN) or in the 

entire Internet. 

This approach is similar to the ASP idea (Application Service Provider). In the present system 

the following tools have been integrated in MOSCITO: 

• several converters for EDIF, ISCAS, and VHDL design description formats 

• Turbo-Tester tools for logic level fault simulation and test generation [54] 

• DECIDER - a hierarchical test pattern generation for digital systems [63] 

• DefGen - ATPG for IDDQ and voltage testing of digital circuits [64,65] 

• Tst2Alb - a data converter between ATPG tools 

• ALB - an automatic fault library builder [66] 

All the tools can act as MOSCITO agents and each of them provides a certain service. The 

user should be able to combine all the services to a problem specific workflow. That means, 

the needed tools have not to be installed on the users local computer. It is sufficient, that the 

services are available via the network. Due to that fact for the user the effort for installation, 

configuration and maintenance of software will decrease. Furthermore, specialized tools can 

be executed on their native platform with a high performance (e.g. supercomputer with fast 

CPUs and large memory, Workstation-Cluster). This will speed up the entire workflow. 
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Remote computing in this way is important for application with huge amount of computing 

time: e.g. fault simulation as well as test pattern generation. 

The MOSCITO framework was implemented in JAVA and can be used on different 

computing platforms. At the moment MOSCITO is used on SUN workstation (Solaris) and on 

PCs (Microsoft Windows and LINUX). In the following, some of the most important 

concepts of the implementation are discussed. 

6.1.2 Software architecture 

MOSCITO consists of three software layers: 

kernel layer,

interface layer,

extensions.

The kernel provides functionality for basic object and data management, file handling, XML 

processing, and communication. Because MOSCITO is an open system, a special interface 

layer provides programming interfaces for integration of new tools, new workflows and 

appropriate viewers such as for diagrams, plain text and images. Each interface is represented 

by a Java class, which contains the basic functionality. The user only needs to extend this 

class and can implement its own extension. A large number of templates and example 

implementations help the user to integrate a new tool or workflows. 

6.1.3 Tool encapsulation 

In order to integrate design tools (e.g. fault simulators, test pattern generators, netlist 

converters) into other systems usually it is necessary to implement an additional software 

layer. In MOSCITO, this layer is realized as a special agent interface (MOSCITO agent). An 

agent must carry out the following tasks: 

adaptation of input data to the embedded tool, e.g. generation of configuration scripts or 

input files 

adaptation of output data, the tool-specific data formats (simulation results, log files, test 

vectors) have to be converted 

the mapping of control information to the embedded tool and the transfer and conversion 

of status information (warning and error messages), which have to be submitted to the 

user.

To provide the opportunity of the integration of a broad spectrum of tools and use them as a 

service in MOSCITO there are three ways for embedding programs into a MOSCITO agent: 

• Integration of the entire program: the software has to be able to run as a batch job (e.g. 

DefGen, ATPG). In this way the integration of a large number of commercial tools is 

possible.

• Embedding of a library via the Java Native Interface (JNI): this way functions (optimisation 

algorithms etc.) written in e.g. C, C++ or FORTRAN can be called. 

• Direct integration of Java-classes and applications, respectively - an easy way when the 

software which is to be integrated is written in JAVA. 
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Encapsulation of the tools as a MOSCITO agent guarantees a uniform interface to the 

framework. All tool specific details are in a special agent description file. Such file is used to 

create tool specific dialogs for the configuration of the tool via the front-end program. 

Originally, following tools were integrated in MOSCITO: 

• SABER (Analogy Inc.) and ELDO (Mentor Inc.) - mixed-signal circuit simulation 

supporting analog behavioral models  

• SPICE (University of California, Berkeley) for die analog circuit simulation 

• KOSIM (Fraunhofer IIS) - simulation of mixed-signal circuits and heterogeneous systems 

• ANSYS (ANSYS Inc.) - FEM-Simulation  

• MATLAB (MathWorks Inc.) - mathematical problems, block oriented simulation 

• OPAL (Fraunhofer IIS) - optimization module 

6.1.4 Communication 

The implementation of the tool communication is based on TCP/IP-sockets. The tools can be 

executed on different computers or on different computing platforms (e.g. UNIX, Windows).  

All we need for communication is a LAN or Internet access. Many problems caused by the 

limited availability of the tools (e.g. incompatible computing platform, insufficient resources) 

can be prevented in this way. A complicated aspect of communication is the format of data, 

which has to be submitted. Usually it is necessary to adapt/convert input as well as output 

data for each tool. To decrease the implementation effort for parsers and converters, the 

format for all data transmitted in MOSCITO was set to a special XML-Format, the Moscito 

Markup Language (MoscitoML). The main advantages of XML are:  

• XML is an ISO standard 

• XML allows the definition of application specific data formats (like used here for the 

Moscito Mark up Language) 

• for XML-based data formats there is free parsing software available. Thus the 

implementation effort decreases considerable 

• Data formats can be expanded in the future without changes in the parsers 

• The integration of any kind of data is possible. It is no problem to include model 

descriptions or configuration scripts into XML. 

6.1.5 General concept 

MOSCITO uses a Client-Server concept. There is one Master Server, several Slave servers 

and arbitrary number of clients. The requested service is provided by Slave servers. That is 

because so-called Agents were attached to each Slave server. The Agents encapsulate service 

providing work tools (program executables). An Agent can be seen as an intelligent wrapper 

around a stand-alone program, which is capable of communicating with the Servers. All Slave 

servers are registered at the Master Server, so all Agents (i.e. services) are also registered at 

the Master server. Users access first the Master server and will get a list of available services. 

After selecting a service (Agent), the user is automatically re-directed to the Slave server, and 

after that, the work with the service providing tool can start. 
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The MOSCITO framework was implemented in JAVA and can run on different computing 

platforms. The only prerequisite is an installed Java Virtual Machine. At the moment 

MOSCITO is used on SUN workstation (Solaris) and on PCs (Microsoft Windows and 

LINUX).

6.1.6 Graphical User Interface 

To offer a uniform and consistent concept for the user interaction the MOSCITO system has 

been provided with a graphical front-end with the following functionality: 

The problem description including all data can be read in from a MOSCITO project 

file.

Workflows can be chosen from a set of predefined flows for the specific problem.

A browser supports the choice of agents (tools) needed for the solution of the problem 

from the set of available services.

With buttons for start, pause, resume and stop the workflow can be controlled by the 

user.

A console window collects all messages from the running tools and allows the 

observation of the proper operation or trouble shooting, respectively.

The visualization module MOSCITO Scope supports the display of all result data (test 

vectors, statistic information).

The graphical front-end aims at using design tools via the Internet in a simple and efficient 

manner. Actually, the front-end is available as a JAVA application and has to be installed 

together with the MOSCITO software. 

6.1.7 Internet-based usage 

At first, it is necessary to start one MOSCITO server on each host belonging to a domain of 

services. After that, an administrator has to register one or more MOSCITO agents so that 

they are available as remote services via LAN or Internet. Now a user can start the MOSCITO 

front-end program (GUI) and can browse through registered agents, can select, configure, and 

initialise the appropriated workflow and the needed agents. MOSCITO automatically calls 

remote tools and establishes direct connections between the tools for data transfer. 

Furthermore, the GUI allows the user to control and observe the data processing provided by 

a certain workflow. Result data are transmitted to the front-end and displayed by appropriate 

viewers. Finally, MOSCITO closes the connections between all remote tools and organizes 

correct termination of them. 

6.1.8 Enhancements: working with firewall protection 

Nowadays it is common to protect computers and especially intranets against viruses and 

hackers by so called firewalls. 
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Firewall can be regarded as filter, which allows certain type of communication (e.g. TCP/IP 

protocol based) “go through” certain configurable chock points, called ports [67]. Firewall is 

implemented for example as specialized software running on a well-secured computer or in 

hardware. Firewall has its filter rules. Internet is accessible only via that computer and vice 

versa- any computer in intranet is accessible only via that computer (through firewall). While 

speaking about opening a port in a firewall, then usually is meant that firewall filtering rules 

are configured appropriately.

At first, MOSCITO was intended for local area network use, not for Internet based use across 

firewall-protected systems.  Therefore, it randomly used arbitrary number of the non-

restricted communication ports above 1024. The problem nowadays is that that many other 

network applications also use these so-called free ports. There is no harm in internal network 

generally, but there will be security problems when such programs are directly exposed to 

Internet. The reason is that some of them are known to be vulnerable, i.e. they can be misused 

to attack the host computer they are running on. Tolerating one of such vulnerable programs 

will compromise the host computer and finally entire network. Consequently, in a restrictive 

firewall protected system there are only few ports left open for incoming Internet connections 

(like port 80 for http web server). In the case of restrictive firewall such MOSCITO solution 

would not work, because firewall blocks all the communication. In order to comply with 

firewall requirements, the major MOSCITO communication scheme was modified. 

Simplified communication schema for MOSCITO in a firewall-protected environment is 

shown in Figure 39. Direct connections between subcomponents are not allowed. All the 

communication has to be organized through predetermined communication ports. Random 

port numbers are also not allowed. All the traffic goes only through firewall ports. 

One possible solution for solving the firewall traversal problem is to implement MOSCITO 

proxy as Java application (Figure 41). Here we relay on usual MOSCITO socket based 

communication (TCP/IP sockets). By default, only some vital ports for computer system are 

configured to be open while all the rest are blocked.  This means it is necessary to open up at 

least one dedicated port in a firewall for MOSCITO communication needs. 
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Figure 39 Communication between firewall protected MOSCITO subsystems: 

connections are allowed only between dedicated communication ports 

Figure 40 Communication between client and agents via proxy

Proxy mechanism (Authenticated Firewall Traversal) enables hosts in one side of proxy 

server to gain full access to hosts in the other side of the proxy server without requiring direct 

IP reach ability. It works by redirecting connection requests from hosts in one side to hosts in 

the other side to a proxy server, who authenticates and authorizes the requests, establishes a 

proxy connection and passes data back and forth. 
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6.1.9 Integrating test tools into the MOSCITO environment

Here is described the results of the COPERNICUS europroject JEP-97-7133 VILAB (Virtual 

LABoratory) on creating an environment for internet-based collaboration in the field of 

design and test of digital systems. Different CAD tools at geographically different places 

running under the virtual environment using the MOSCITO system can be used for 

microelectronics design, fault simulation and test generation purposes. The interfaces between 

the integrated tools were developed during the project work. The tools can be used separately, 

or in multiple applications in different complex flows. The functionality of the integrated 

design and test tools was verified in several collaborative experiments over Internet by 

partners located in different geographical sites. 

Figure 41 Work flows integrated to the MOSCITO environment 

On Figure 41 there is shown, which tools were integrated with MOSCITO and what 

workflows could be formed. For example, in case of using genetic test generation flows could 

be:  1, 2, 5, 8 or 2, 5, 8.  When using hierarchical test generator, then flow is more 

complicated since both high level and low level models are necessary:  1, 4, 7 and 2, 5. As we 

see hierarchical, ATPG (7) needs two inputs. 
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6.2 Enhanced WEB-based environment 

6.2.1 Motivation 

During the experiments with MOSCITO [62] virtual environment, the biggest problem was 

caused by corporate firewalls. It was hard to set up installations in a proper way. A proxy 

extension as Java program was proposed for MOSCITO, but it added undesirable effect of 

communication overhead. In addition, considerable amount of man-months would be needed 

to build next production quality MOSCITO release based on proxy solution. Therefore, more 

flexible solution using HTTP protocol and reusing some of general ideas of MOSCITO is 

presented subsequently. 

6.2.2 General concept 

A virtual environment to support the research and teaching of digital system testing is 

described below. User will be able to use test tools remotely over the Internet. System is 

based on an open architecture that allows easily add new tools later. 

System core for remote tool usage has client-server concept similar to MOSCITO. There is 

one master server, several application servers and arbitrary number of clients (see Figure 42). 

Master server holds the information about application servers, which provide service. On 

application server so called agents can be invoked. Agents encapsulate actual test tools 

(executables). User first accesses the master server and gets a list of services available. After 

selecting appropriate service, user is automatically re-directed to application server, and then 

the work with the actual tool can start. The big difference from MOSCITO is HTTP protocol 

based communication and use of Java applets and servlets. In addition, user tracking is 

unique. There is no need to install tools on the user’s local computer. Therefore, user’s effort 

for installation, configuration and maintenance of software will be drastically reduced. The 

system is implemented in Java and can therefore run on different computing platforms. Actual 

work tools must run on their native platform of course. 

Figure 42 General concept of WEB based system 
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Each tool will be wrapped into Java agent. Encapsulation of entire tools guarantees a uniform 

interface to the framework. There will be no need to reprogram existing tools. Only 

requirement for tool encapsulation is that tool is able to run from command line (in ‘text 

mode’). All tool-specific details are stored in a description file. This allows automatically 

display appropriate tool configuration dialogs for end user. 

Several tools can be started simultaneously. One servlet will serve many client applets in 

parallel. There is task queue management. Results reside initially on the server computer 

where servlet is running. Each user has its own server-side workspace. In the database, there 

is user’s workspace folder name where results for certain task id can be found. It is possible to 

query on results, make statistics. Subsequently, general concept is elaborated in detail. 

6.2.3 Implementation 

The environment for remote use of Test tools is built according to the client-server three-tier 

concept using HTML pages, Java applets/servlets and MySQL as database backend for user 

tracking and management tasks. General solution in details is given in Figure 43. Tomcat is 

the servlet container that is used in the official Reference Implementation for the Java Servlet 

and Java Server Pages technologies. Tomcat and servlets running on it play important role 

while gaining access to intranet resources on application servers and MySql database 

(platform independent open source DB). 

Figure 43 Implementation details 
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6.2.4 Usage scenario 

Below is described simplified scenario for end user (see Figure 43), let’s assume here that 

user has account already: 

1. User logs in with login name and password. Information is sent to servlet which 

accesses database and verifies user. If user exists, then servlet sends confirmation 

message back to applet. Login screen is dismissed; 

2. Applet displays tool’s parameters dialog; 

3. Tool’s parameters are sent to servlet, which launches appropriate program and makes 

a new entry to tracker database “Tasks” table; 

4. Client applet will be notified about successful start or failure; 

5.  Client can/must time-to-time check status of his task(s). E-mail could be sent to client 

when task is ready; 

6. When status of the task is “completed” then user can see the results on his applet, can 

save them onto his computer. 

6.2.5 Tool encapsulation 

In order to integrate different tools, it is necessary to implement additional software layer. 

Each tool has to be wrapped into Java agent, which allows to adapt the input data to the 

embedded tool, convert the tool-specific data, simulation results (log files, test vectors, etc), 

map the control information to the embedded tool, transfer and convert status information 

(warning and error messages) to be submitted to the user.  

Technically simplest way is to encapsulate tool as an entire program. Tool has to be able to 

run as a batch job. Integration of commercial tools is then also possible. Also embedding of a 

library (e.g. C, C++ routines) via the Java Native Interface (JNI) could be thinkable and also 

direct integration of Java-classes and applications (especially for Java software). 

6.2.6 Communication 

General communication is based on HTTP protocol. The tools on different computers and on 

different computing platforms (UNIX, Linux, Windows) can easily change data as serialized 

Java objects (datagrams). To minimize the implementation effort for parsers, translators and 

converters XML mark up language is used for configuration files and transmitted data. HTTP 

protocol allows us also easy firewall traversal as we can use default web server port and Java 

servlet extensions on web servers as sort of proxies in order to reach intranet resources. There 

is no need for opening extra ports in the firewall as it is the case in TCP/IP based 

communication. 
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6.2.7 User tracking 

User management module is described in this section. Without proper user management, 

anybody in the Internet could possibly use valuable computer resources. Better practice would 

be to allow registered users access the resources. User tracking system allows us to monitor 

and control the usage of services. It may allow also billing the business customers. Main goal 

here was to provide sufficient set of basic functions to allow support user registration, 

tracking and management. User tracking is database based. Tool execution and data base 

access over Internet is carried out via Java servlet technology. Below the implementation 

specifics are given. 

As we know, web-based http communication is stateless. This means that we have to keep 

track about all necessary information. As work tools tend to run long, then normal user’s http 

session is not valid for such time period and result data is lost. We want to provide a 

possibility for user to come back online later to check his results. Therefore, we need to 

identify (track) users and save all their relevant data. Using so called “cookies” could be one 

solution, but database approach offers many advantages like powerful SQL query mechanism, 

speed, reliability, and consistency of data and ease of use.  

User tracing module has open architecture, general API (application programming interface). 

With slight modifications, it is also usable for any similar web-based system, where user 

tracking is needed. It has three layers: presentation layer (user tier), business logic tier (data 

base queries, etc.), physical database (MySQL- platform independent open source DB). 

First two layers are implemented in Java programming language. User is accessing database 

via presentation layer, not directly. This makes architecture open. User tier consists several 

functions to run business layer queries. For example, we could have different user interfaces 

for different applications. Then if database structure or business logic changes, we don’t have 

to change our user interfaces. More over- it is easy to introduce user-tracking facility to new 

applications. It is much easier to invoke appropriate function (command), than construct a 

new query every time a new application needs one. 

6.2.8 User interface 

Graphical User interface (GUI) is based on collection of Java applets, which can be integrated 

into HTML page when needed (e-learning solutions). GUI applet reads the layout properties 

(field names, default values, etc) from initialization file. It would be easy for non-qualified 

Java programmer to introduce new tools into web-based environment by modifying 

initialization fail only. Features of GUI are following: 

– Reading in problem description including data from project file; 

– Selecting a service (tool) from the set of available services; 

– Buttons to start and stop the tools;

– A console window collects all messages from the running tools; 

– The visualization of all results (test vectors, statistic information); 

– Downloading results: user clicks appropriate button which displays html page containing   

appropriate link; 
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6.2.9 Concept of grid computing for Test tools 

Often testing tasks involve lots of computing power. Test tools tend to run too long on a 

single computer to obtain satisfactory test coverage or simulation results in everyday testing 

tasks. Therefore, a grid computing solution was worked out by extending a Web-based 

solution described above. This will allow running one task on several computing stations in 

parallel. Below is given overview of the concept (see Figure 44). 

Figure 44 General Web-based grid computing concept  

User specifies parameters and design file location for certain test tool. Thereafter user GUI 

contacts with coordinating web server and described parameters along the model are passed 

automatically. Task coordinator service process on Web server records all requests from 

user(s) and devides the task into subtasks. So called test agents poll constantly web server and 

if any subtask is sheduled by coordinator process, then test agent(s) receives the appropriate 

parameters and design file and will start actual native test tool. Test agent waits then until task 

will be completed and reports results back to coordinating web server which in turn assembles 
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processors. Test agent and native test tool must reside on the same computer. Web server 

resides separately from test agents, they may not reside in the same local area network. Each 

agent can be on different local area network. 

This solution is flexible and effectively works across the internet and through the firewalls as 
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6.3 Discussion 

In the field of digital design and test, many different software tools are needed, but usually not 

all of them are available for a designer in his working site. Internet opens a new dimension 

offering new chances using tools from different sources without installation. 

The ultimate goal of the work with MOSCITO platform was to have Internet based work 

environment  (virtual laboratory) for design and test tools. User had to install only GUI 

environment. Main effort here was analysis of requirements and redesign of MOSCITO. New 

workflows were introduced in order to carry out collaborative design and test at 

geographically different places. Second challenge was integrate all the single tools into one 

automatic workflow. Several data exchange problems had to be solved. The essential features 

of this integration environment were experimentally proved in the frame of VILAB project. 

The results obtained are presented also in several papers. 

During the integration, biggest problem was caused by corporate firewalls. It was hard to set 

up MOSCITO installations in a proper way. It very much depended on firewall 

configurations. Not all the systems allowed free outgoing Internet connections (i.e. 

connections with arbitrary port numbers). Therefore, proxy extension was proposed and 

implemented in Java for MOSCITO system. Connecting problem was solved in new 

prototype version of MOSCITO, but drawback was that such extra layer of Java software also 

slows down data exchange, although not critically. In section 6.2 there was proposed another 

possible solution to Internet based tool usage. 

Compared to initial MOSCITO system, enhanced system prototype has following advantages: 

firewall traversal is not major problem anymore as communication is HTTP based i.e. web 

browsers can be used now. Use of Java applets as graphical user interface ensures feature rich, 

responsive working environment as it was in case of MOSCITO desktop installation. 

Installation overhead is much smaller compared to MOSCITO since it is sufficient if end user 

has installed Java runtime environment, which normally is easy to do. Every time when user 

starts new working session, fresh, up-to-date Java applet is loaded to users machine. Since 

applets are light, i.e. small in size by multi tier system design, start up is fast. System also has 

built in, database based user tracking ensuring that licensed users have priority access to 

system resources. System has also merits to provide SSL encrypted communication. 

Described enhanced solution was approved as a paper at IFIP 18
th

 World Computer Congress, 

at Conference on Virtual Enterprises and Collaborative Networks. 
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7  Summary 

Current thesis deals with digital testing in a web environment. Proposed were three genetic 

test generation software tools, simulation methods with experimental data for multi-level 

simulation and defect oriented simulation using decision diagrams, behavioral level VHDL 

front-end compiler for high level synthesis tool xTractor. Several design and test tools were 

integrated into complete automatic workflow based on the state-of the-art network 

collaboration platform MOSCITO in the frame of VILAB project. MOSCITO system was 

extended by proxy solution for firewall traversal. Entire design and test flow was verified for 

feasibility with sample designs. Based on extensive experience and feedback new enhanced 

http protocol based virtual environment for remote test system was finally proposed. 

Subsequently, results are given in detail.

Comparison of random and genetic test generators reveals that test sets of genetic generator 

are always more compact. During genetic test generation, dynamic test vector ‘packing’ 

occurs because vectors are carefully chosen all the time. Genetic generator performs better 

than random in last stadium in test generation when only hard-to-test faults are left. Shortly, 

genetic test generator is justified for large circuits.  

For control path of digital system testing an approach based on genetic algorithms to generate 

test vectors was presented in order to detect hard-to-test faults. Circuits must be presented as 

state transition tables (functional level) and same information must presented also as gate 

level as hierarchical fault simulation was used to evaluate test sets. Program works standalone 

or together with the test generator introduced in [39][37]. Evolutionary program tries to detect 

faults, which had remained undetected. Comparison with deterministic test generator HITEC 

was made. Prototype program developed here received smaller run time and smaller number 

of vectors for benchmark circuits.  

The main contribution of the work regarding genetic test generation is that differently from 

the known genetic algorithms, a fault oriented genetic approach for sequential gate level 

circuits is developed. Unique feature is the use of knowledge about the circuit under test. For 

example, input of reset signal is not altered during genetic manipulation because otherwise 

essential building blocks of test vector set are destroyed and noise is introduced to the 

algorithm which decreases convergence. Reset signal is made active once and then kept non 

active in the test sequences. Experiments show that targeting single faults can improve the 

convergence of a genetic algorithm. In comparison with other GA based generator GATEST, 

considerably better results were obtained, especially for Huffman encoder circuit. The 

experiments have shown that targeting single faults however suffers loss in run times in 

comparison to the other compared approaches. Good news is that better fault coverages are 

obtained by this technique compared to other solutions. Using more internal knowledge by 

doing some circuit preprocessing prior to test generation will probably have some potential in 

order to further limit the search space and improve the convergence of genetic algorithm. This 

method can be used when only gate level netlist for circuit is available. In comparison, genetic 

FSM based testing is faster since it is working also on higher level to make decisions, but gate 

level sequential method is more robust in terms of usability. Since circuit models are 

different, there is no comparison information of fault coverage available yet.  
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Experiments with hierarchical simulation methods for digital system presented in current 

thesis, show considerable speed gain. For instance, RT level (high level) simulation results on 

decision diagrams in comparison with two commercial VHDL simulators reveal up to 37 time 

boost up in simulation speed. Speed difference increases with size of the circuit. 

At the same time, the low level fault simulation of SSBDD macros in comparison to the gate-

level fault simulation on ISCAS’85 benchmark circuits demonstrated the differences in speed 

between 2.55 and 9.04 times. In addition, here, speed difference increases with size of the 

circuit in favor of SSBDD macros. 

Hierarchical fault simulation results compared to the plain gate-level simulation results show 

speed gain up to 121 times. However, surprisingly in case of largest circuit speed gain is only 

minimal. Obviously gate-level generator takes the advantage of good observability of the 

circuit since number of outputs is large. 

Hierarchical defect oriented fault simulation method for digital systems introduced here helps 

to reduce dramatically the computation cost of test quality analysis in digital systems.  

Decision diagrams are used as a mathematical model for systematic multi-level solution for 

fault simulation at three levels of abstraction - RT, gate- and defect levels respectively. 

Experiments show that the stuck-at-fault based fault coverage is overestimated compared to 

the realistic defect coverage, and that the difference between stuck-at fault and physical defect 

coverages reduces when the complexity of the circuit increases. In the worst case, it was 

observed that the 100% stuck-at-fault test may cover only 50% of realistic physical defects. 

Nowadays design flow often starts with description of the system on the behavioral level 

using hardware description languages like VHDL. In order to link the VHDL descriptions to 

automatic design and test flow, compiler front-end for academic high-level synthesis tool 

xTractor was created. Key issues of translating descriptions written in behavioral VHDL into 

IRSYD, an internal representation format suitable for control and memory intensive digital 

systems synthesis used by xTractor were presented here. The main concern was the mapping 

of VHDL constructs onto IRSYD equivalents while preserving the semantics of the original 

VHDL code, and extracting the control flow from source code. A simple synthesizable subset 

was selected while keeping in mind possible future extensions. The front-end compiler was 

built with a popular compiler construction tool-set PCCTS. The compiler translates the 

behavioral VHDL subset into control oriented flow-chart like description IRSYD that is used 

by the synthesis tool for data exchange. Current design-pattern of compiler can be used for 

other HDL input languages as well. The compiler prototype has been tested in the design flow 

with xTractor synthesis tool, which will output RTL level VHDL code what can be further 

used for decision diagram synthesis, which in turn can be used by test generators. 

Complete, collaborative, Internet based workflow with several design and test tools as a result 

of integrative research in frame of VILAB project presented in this thesis can be regarded as 

valuable result. Usually design and test fields develop rather separately and are therefore hard 

to unite. Here is created a link between results of design process and test generators. 

Consequently, ATPG-s elaborated for example in this thesis, are practically usable in 

automatic design and test flow, there is no need for manual intervention while preparing input 

for ATPG. During VILAB project several design and test tools were integrated into automatic 
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flow functioning remotely over the Internet using MOSCITO software platform, it was shown 

that such integration it is practically feasible. Several challenges had to be solved. First, tools 

had to be linked together within proper work flows, secondly MOSCITO platform had to be 

tuned accordingly to support the flows over Internet, last but not least – firewall traversal 

problems had to be solved. Different tools were situated geographically different places. 

Many experiments were carried out, among them with industrial example. 

Experiments with encoder circuit for telecommunication have shown that functional tests 

developed based on designers’ experience by hand are tainted with two essential drawbacks: 

they are much longer than the automatically synthesized structural tests and generally, 

functional tests do not offer a sufficient structural fault coverage. The new automated 

workflow approach tends to drastically reduce the test cost and brings out a remarkable 

progress to control (master) the test problem. 

Finally, based on VILAB project experience, new enhanced web-based system was proposed 

in this thesis. All the critical components and communication are tested for feasibility in a 

prototype solution. Compared to initial MOSCITO system, enhanced system  has following 

advantages: firewall traversal is not major problem anymore as communication is HTTP 

based i.e. web browsers can be used now. Use of Java applets as graphical user interface 

ensures feature rich, responsive working environment as it was in case of MOSCITO desktop 

installation, actually as it is case in any installed application. Installation overhead from user 

perspective is much less compared to MOSCITO since it is sufficient if user has installed Java 

runtime environment, which normally is easy to do. Every time when user starts new working 

session, fresh, up-to-date Java applet is loaded to users machine. Since applets are light, i.e. 

small in size by multi tier system design, start up is fast. System also has built in, database 

based user tracking ensuring that licensed users have priority access to system resources. 

System has also merits to provide SSL encrypted communication to protect sensitive designs. 
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