
THESES ON INFORMATICS AND SYSTEM ENGINEERING C38

Two State Space Reduction Techniques for
Explicit State Model Checking

JUHAN-PEEP ERNITS

TALLINN 2007

TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology
Department of Computer Science

This dissertation was accepted for the defence of the degree of Doctor of Philosophy
in Engineering on October 16, 2007.

Supervisor: Prof. Jüri Vain, Department of Computer Science, Tallinn University
of Technology

Opponents: Prof. Kim Guldstrand Larsen, Department of Computer Science, Uni-
versity of Aalborg
Prof. Varmo Vene, Department of Computer Science, University of
Tartu

Defence: November 29, 2007

Declaration: Hereby I declare that this doctoral thesis, my original investigation and
achievement, submitted for the doctoral degree at Tallinn University of Technology
has not previously been submitted for any degree or examination.

/Juhan-Peep Ernits/

Copyright: Juhan-Peep Ernits, 2007
ISSN 1406-4731
ISBN 978-9985-59-736-1

INFORMAATIKA JA SÜSTEEMITEHNIKA C38

Kaks olekuruumi kahandamise tehnikat olekute
otseesitusega mudelikontrollis

JUHAN-PEEP ERNITS

TALLINN 2007

Two State Space Reduction Techniques for Explicit State Model
Checking

Abstract
This thesis is focused on automated analysis of formalised requirements and mod-

els of software. We examine more closely two different but partly overlapping tech-
niques for analysis: model checking and model-based testing. In both applications,
the automation involves enumerating all possible states of the formalised model.
Such state spaces can easily grow too big to be tractable by present day comput-
ers. We propose and analyse two different techniques for reducing the state space
that needs to be enumerated for proving properties that can be defined in terms of
reachability.

Before proceeding to the actual techniques, we have a look at three different for-
malisms for writing the models. We look at Promela, which is the modelling formal-
ism used in Spin model checker and various other tools, the visual timed automata
formalism used in Uppaal and a way of modelling introduced in NModel using C#
programs that utilise the modelling library of the toolkit.

The notion of symmetry reductions has been around in the model checking and
program analysis community for a long time. By introducing the notion of model
programs that facilitate modelling using abstract data structures like sets, maps, and
multisets, and object instances, we present an algorithm to create state graphs and
an algorithm to perform a state graph isomorphism based symmetry reduction. Such
reduction allows to explore all reachable structurally distinct states.

Although powerful, the state isomorphism based reduction has its limitations as
calculating the state graph and comparing it to previously seen state graphs consumes
additional processor time.

To demonstrate how model checking can still yield interesting results for models
where full state space search with other reduction methods fails due to memory and
processor time limitations, we will introduce an extension of the sequential hashing
technique known in the context of bitstate hashing. The method is called iterated
search refinement with bitstate pruning. The key idea is that we will iteratively prune
the search space by collisions in small bitstate hash tables which can only distinguish
a fraction of the reachable states of the model at a time. We show how such method
hits interesting results when there exist paths to the state where our condition of in-
terest holds and evaluate the method in several different examples. We also propose
a way to extract an abstraction function from the successful runs of the bitstate prun-
ing based search method. Of course, there is a trade-off related to this method as
we give up traversing the whole state space of the model. When we find a path to a
state where the desired property holds, it is a valid path in the concrete model, but the
method is incomplete, as there are parts of the model that may remain unexplored,
thus it cannot be used for proving unreachability of states with given properties.

The last part of the thesis provides two case studies of applying the proposed iter-
ated search refinement with bitstate pruning for model-based offline test generation
and for a memory arbiter synthesis.

5

Kaks olekuruumi kahandamise tehnikat olekute otseesitusega
mudelikontrollis

Lühikokkuvõte
Käesolev doktoritöö keskendub tarkvara mudelite ja formaliseeritud nõuete automaat-
sele analüüsile. Me vaatleme lähemalt kahte erinevat, kuid osaliselt kattuvat analüüsi-
tehnikat: mudelikontrolli ja mudelipõhist testimist. Mõlemas rakenduses kätkeb
automatiseerimine endas formaliseeritud mudeli kõigi olekute läbivaatust. Selliselt
võivad olekuruumid kergesti kasvada tänapäevastele arvutitele täielikuks läbivaatu-
seks liiga suureks. Me pakume välja ja analüüsime kaht erinevat tehnikat läbitava
olekuruumi kahandamiseks saavutatavusülesannete puhul.

Enne konkreetsete tehnikate kirjeldamist vaatleme kolme erinevat modelleerim-
ise formalismi, kus kasutatakse mittedeterminismi. Käsitleme Promelat, mis on
Spini nimelises mudelikontrollijas kasutatav modelleerimiskeel, graafilist ajaga au-
tomaatidel põhinevat formalismi, mida kasutatakse Uppaalis, ning NModeli nimelises
tööriistakomplektis kasutatavat C# keeles mudelite kirjutamist kasutades NModeli
modelleerimisteegi vahendeid.

Sümmeetriareduktsioonidest on mudelikontrollis ja programmianalüüsis kõnele-
tud juba kaua. Võttes kasutusele mudelprogrammide mõiste, mis võimaldab model-
leerimisel kasutada abstraktseid andmetüüpe nagu hulgad ja kujutised ning objekte,
mille puhul konkreetne aadress mälus ei ole oluline, saame defineerida uue sümmeet-
riareduktsiooni, mis tugineb erinevate olekute olekugraafide isomorfismil. Selline
reduktsioon võimaldab olekute läbivaatusel uurida kõiki saavutatavaid struktuurilt
erinevaid olekuid.

Kuigi kirjeldatud sümmeetriareduktsioon on võimas, kulub olekugraafide tule-
tamisele ja isomorfismi arvutamisele märkimisväärselt arvutusressurssi.

Näitamaks, kuidas mudelikontroll annab siiski huvitavaid tulemusi mudelite kor-
ral, mille puhul terve olekuruumi läbimine ebaõnnestub piisavate operatiivmälu- ja
protsessoriressursside puudumise tõttu, kirjeldame ja analüüsime oleku paisktabelis
ühe bitina esitamise meetodile tugineva erinevate paiskfunktsioonide järjestikku ka-
sutamise tehnika edasiarendust. Väljapakutavaks tehnikaks on iteratiivne otsingutäp-
sustus oleku bitina esitamisel põhineva otsinguruumi kärpimisega. Põhiidee seis-
neb olekuruumi iteratiivses juhuslikus kärpimises väikestes paisktabelites erinevate
paiskfunktsioonide korral, kuna mudeli erinevatest olekutest arvutatakse paisktabelis
sama aadress ja peetakse olekuid seetõttu sarnasteks. Paiskfunktsiooni muutmine
muudab paisktabeli kokkulangevuste mustreid. Me muudame paiskfunktsiooni paisk-
tabeli suuruse muutmisega, alustame väga väikeste paisktabelitega ja näitame, kuidas
kirjeldatud meetod annab huvitavaid tulemusi mitmetel erinevatel näidetel, kus mude-
lis leidub tee meid huvitavasse olekusse. Loomulikult ei kata kõnealune meetod enam
garanteeritult mudeli kogu olekuruumi. Kui leiame tee olekusse, kus meid huvitav
omadus kehtib, siis on see tee olemas ka meie mudelis, kuid mõned olekuruumi osad
võivad jääda läbi vaatamata.

Töö viimases osas vaadeldakse kaht kirjeldatud iteratiivse otsingutäpsustuse ra-
kendust mudelipõhises testimise ja radarisüsteemi mäluarbiitri sünteesi näites.

6

Acknowledgments
First of all it should be said that writing a PhD thesis is bad for your health. Dur-

ing different phases of writing it causes sleeplessness and permanent fatigue, desire
to pull out all of one’s hair, lack of exercise and almost no chance to be exposed to
fresh air, and basically no social life. It can also wreck the nerves of you and your su-
pervisor. Still there are positive sides to PhD studies too, like getting to know things
you would othervise never have the time for and the possibility to travel to confer-
ences and summer schools and meet dozens of exciting people with crazy ideas. The
world opened up to me in a wonderful way while I was a PhD student. In addition
to numerous shorter trips to many different places I spent several months at Aalborg
University at the Distributed Systems and Semantics Group learning about Uppaal
and spent three months as an intern at Microsoft Research, Redmond.

Together with my primary and secondary school, International Baccalaureate,
BSc, MSc, and PhD studies I have been going to school for a quarter of a century. I
guess it is now time to move on with deep gratitude to my family, my teachers, my
friends, and the society in general that has facilitated such luxury.

The thesis would not have happened without the support and encouragement from
a number of people. First of all I would like to thank my parents for providing the
circumstances where obtaining education was viewed as a basic human right and
supported in every possible way. My wife, Eneken, has been extremely tolerant and
supportive and has been my main source of energy and inspiration. She played a
major role in getting me to complete my thesis. I also thank my brother, who I have
always looked up to, for providing the example that education matters and borders
do not matter when you want to get to know something.

I owe my supervisor, Prof. Jüri Vain, sincere and deep thanks for reqruiting me to
the Institute of Cybernetics almost 11 years ago and for providing an abundance of
interesting tasks and guidance while still leaving me enough freedom ever since. His
work in establishing and running the Department of Computer Science at the Faculty
of Information Technology of Tallinn University of Technology that provides courses
and specialisation with an emphasis on formal methods and logic has an important
impact to the landscape of education in information technology in Estonia.

It is crucial to have a work environment with people with close interests for bounc-
ing ideas and having discussions as understanding complicated things requires oc-
casional verbal expression accompanied by scribbling things on a whiteboard. In
addition to interaction with my wonderful colleagues at the Institute of Cybernetics
and the Department of Computer Science I have been very lucky to have met many
excellent people during guest lectures, winter and summer schools, theory days, and
a number of conferences and workshops that have happened in Estonia and abroad.
Thus I would like to thank all of my colleagues, in particular Tarmo Uustalu for his
energy, kindness, and successful effort in making the work environment international
and active, and Jaan Penjam and Jüri Vain for providing me the work environment
and for tackling the non-trivial administrative burden.

I thank Prof. Kim G. Larsen for letting me feel as one of the team during my stay
in Aalborg and for accepting to be one of my opponents. I thank Margus Veanes for
inviting me to do an internship at MSR and for aquainting me to model programs.

7

I thank all of the co-authors of the papers that form the basis of parts of this thesis:
Colin Campbell, Andres Kull, Kullo Raiend, Jüri Vain, and Margus Veanes. I am
grateful to Theo Ruys for valuable comments on my thesis.

I would also like to thank the opponents of my thesis whose scrutiny, critique, and
comments I sincerely respect and in most aspects agree to.

Last but not least thanks to the organisations that supported me during my PhD
work. I was employed part time by the Institute of Cybernetics and part time by the
Department of Computer Science of Tallinn University of Technology. Via the latter
I was involved in the “Integration Platform for Development Tools of Embedded
Systems” project of the ELIKO Competence Centre. In addition, I was supported by
the Tiigriülikool and Tiigriülikool+ projects of the Estonian Information Technology
Foundation, by the Information and Communication Technology Doctoral School, by
a Marie Curie Fellowship from the European Commission, by the Estonian Science
Foundation grant number ETF5775, and by the Centre of Excellence for Dependable
Computing financed by the Ministry of Education and Science of Estonia.

8

Contents
1 Introduction 11

1.1 Correctness of Software . 11
1.2 Common Types of Errors in Software 13

1.2.1 Sequential C code . 14
1.2.2 Sequential Code with Automatic Garbage Collection 14
1.2.3 Protocol Related Problems 14
1.2.4 Concurrency . 15
1.2.5 Time . 15

1.3 Verification . 15
1.3.1 Automated Verification . 16
1.3.2 Model Checking . 16
1.3.3 Model-Based Testing . 17

1.4 References to Previously Published Work 17
1.5 Summary of the Contribution . 18
1.6 Organisation of the Thesis . 18

2 Prerequisites and Related Work 21
2.1 State Space Reduction Techniques in Explicit State Mo-del Checking 21

2.1.1 Search Algorithms . 21
2.1.2 Partial Order Reduction 23
2.1.3 Symmetry Reductions . 23
2.1.4 State Compression and Hash Compaction 25

2.2 Bitstate Hashing . 26
2.3 Symbolic Methods . 26

2.3.1 Difference-Bounded Matrices 26
2.3.2 Binary Decision Diagrams 26

2.4 Model-Based Testing . 27
2.5 Modelling Languages . 27

2.5.1 Promela . 28
2.5.2 Uppaal . 29
2.5.3 Model Programs . 30

3 Symmetry Reductions 35
3.1 Introduction . 35

3.1.1 Example . 38

9

3.2 Definitions . 39
3.3 States as Graphs . 41

3.3.1 Field Maps . 45
3.4 Isomorphism Checking . 47

3.4.1 Linearization with Backtracking 47
3.5 State Isomorphism in the Dining Philosophers Example 50
3.6 Conclusion . 56

4 Iterated Search Refinement with Bitstate Pruning 58
4.1 Introduction . 58
4.2 Related Work . 61
4.3 Bitstate Hashing . 62

4.3.1 Collision probabilities . 63
4.4 Iterated Search Refinement . 64
4.5 Prototype implementation . 65
4.6 Evaluation . 67
4.7 Discussion and further work . 72
4.8 Conclusion . 72

5 Applications of Iterated Search Refinement with Bitstate Pruning 73
5.1 Generating Preset Tests . 73

5.1.1 Introduction . 73
5.1.2 Related Work . 74
5.1.3 Case Studies . 75
5.1.4 Model Construction for Test Generation 76
5.1.5 Iterated Search Refinement for Test Generation 78
5.1.6 Comparison of Search Strategies for Test Generation 80
5.1.7 Scalability of ISR and Guiding for Test Generation 83
5.1.8 Conclusion and Discussion 86

5.2 Memory Arbiter Synthesis for a Radar Memory Interface Card . . . 87
5.2.1 Introduction . 87
5.2.2 Related Work . 88
5.2.3 Radar Memory Interface Card 89
5.2.4 Construction of the Abstract Model 92
5.2.5 Arbiter Synthesis and Verification 96
5.2.6 Conclusion . 103

6 Conclusion 107

Bibliography 109

10

CHAPTER 1

INTRODUCTION

This thesis discusses two different state space reduction techniques to be used in
explicit state model checking and model-based testing. We will look at symmetry
reductions of model programs with abstract data structures and objects, and iterated
search refinement with bitstate pruning.

In this introductory chapter we will motivate the our work with the grand chal-
lenge of correct software and give a brief overview of some areas which have received
extensive attention from the research community. We will give a concise summary of
our contribution and a map to the rest of the thesis.

1.1 Correctness of Software

It is essential for an engineer to establish some degree of confidence in that the system
he/she builds will actually behave as expected with respect to the requirements. There
are a number of ways to build up such confidence and usually a combination of
different approaches is used. In the current work we will focus on two of the methods
used for the analysis of software – formal verification by model checking and model-
based testing.

A typical text about verification, i.e., ways of establishing the correctness rela-
tionship, starts with a reference to some examples where a silly software error has
caused some major damage, like the $475 million cash setback that the Pentium
FDIV bug [Nicely, 1994] caused to Intel. The current thesis is no exception as we
already mentioned the Pentium bug, but we refer the reader to more examples listed
in texts like, for example, [Edmund M. Clarke, Grumberg and Peled, 1999; Huth and
Ryan, 2000; Holzmann, 2003; Zeller, 2005].

Thus, as there are more and more automated systems that people use on daily
basis, we need to make sure that the systems, including the software contained in
the systems, are built rigorously. Rigorous construction of software means that the
key properties of the system are specified in some mathematically precise way and
that the validity of the properties in the system is established by some mathematical
means. For example, a typical safety requirement for a system involving multiple
active concurrent processes would be not to deadlock.

11

In [Hoare, 2003] Sir Tony Hoare presented a Grand Challenge of creating a verify-
ing compiler. The Verified Software: Theories, Tools, Experiments [VST, 2005] con-
ference in Zürich was attended by a prominent selection of researchers from different
branches of computer science. The different but relevant topics are best summarised
in a quote from [Hoare, 2006]:

The relevant topics of research include programming language seman-
tics, programming principles, type theory, compiler construction, pro-
gram analysis and optimisation, test case generation, mathematical mod-
elling, programming methodology, design patterns, dependability, soft-
ware evolution, and construction of programmer productivity tools. In
addition there are various approaches to mechanical theorem proving,
which include proof search, decision procedures, SAT solving, first-
order induction, higher order logic, algebraic reduction, resolution, con-
straint solving, model checking, invariant abstraction, and abstract inter-
pretation. These lists are not intended to be complete; new ideas are very
necessary, and will be welcomed from any quarter.

One of the ways to towards the goal is pursued by language theorists work to-
ward developing programming languages that prove a number of properties correct
at compile time. An example of a recent important increment of language technology
for the masses is the addition of generic types to Java 5 and .Net 2.0. The addition
of generics helps to root out a whole class of errors at compile time (even at write
time with on-line compilers embedded into integrated development environments
like, for example, Eclipse [http://www.eclipse.org] and Microsoft Visual
Studio [http://www.microsoft.com/vstudio]) and makes the programs
more readable. Still, the compilers of Java and C# are far from proving properties
like deadlock freedom of multithreaded applications and static array bounds checks.

Another way towards the goal of correct implementation is to prove the program
correct. This can be done by using interactive proof assistants like PVS, Coq, Is-
abelle/HOL, to name a few. These proof assistants help to formalise the design re-
quirements and the code implementing them and can cope with simpler proof steps
automatically, but generally rely on the user to choose the next proof step. This ap-
proach is powerful but laborious and slow. Wolfgang J. Paul said in a talk delivered
at the Grand Challenges in Informatics symposium in Budapest [GCI, 2006] that full
manual program verification using Hoare logic has a yield of 30-50 lines of code per
week per person with an average of 10 lines of proof generated per line of code. He
compared the productivity with that of manual testing with the productivity of 50
lines of code per week per person.

An alternative to using proof assistants that facilitate higher order logics with high
expressivity but require manual guidance for the proofs is to use a decidable subset
of some logic and make the decision procedure fully automatic. Model checking is
an example of such an approach.

12

According to [Myers, Badgett, Thomas and Sandler, 2004], both in 1979 and still
in 2004 approximately 50% of the time and more than 50% of the cost of producing
software is spent on testing while quite often still several annoying and/or critical
errors go undetected in the development phase. While having deep respect towards
proving the correctness of systems, this thesis is motivated in the spirit of one of the
less known citations of Edsger Dijkstra [Dijkstra, 1965]:

One can never guarantee that a proof is correct, the best one can say, is:
”I have not discovered any mistakes”.

As is also stressed in [Myers, 1979] the main goal of testing (or modelling and
analysing) a system is to actually discover some concrete issues rather than to state
that no issues were found. The main danger when stating that no issues were found
is that the requirements had mistakes that went undiscovered.

Simply stating that the system is correct has the danger that we might have also
made mistakes in the specification. Thus verification and testing must go hand-in-
hand and ideally the results of the proof of correctness should be utilised for designing
representative tests for the implemetation.

Another motivation for smarter testing is that an implementation that behaved cor-
rectly right after production might have deteriorated over time, thus there is a need
to periodically recheck the system. Evidence of the relevance of this claim can be
found in processor technology where processors must work under extreme condi-
tions (heat), from corrosion of socket connections, from degradation of electrolytic
capacitors, etc.

The following section will give a brief overview of frequent error types that are
addressed by whole communities of researchers.

1.2 Common Types of Errors in Software

The goal of this section is to give a non-exhaustive map of the types of errors that are
currently or were very recently active targets of research in computer science.

As programmers are humans, they make mistakes. The most common mistakes
during writing some program are in the program logic and are related to overlooking
some combinations of input data or imprecise assumptions about the data. The cor-
rectness of the program can be checked with respect to the requirements according to
which the program was written. In the ideal case it would be possible to automatically
prove whether the program is correct.

In addition to the problems at the conceptual level, there are whole classes of
problems that are specific to the programming task, the system where it is solved
in, and to the programming language and compiler which is used for solving the
problem.

To give some idea about such types of issues and to pinpoint where we stand in
the domain, we briefly outline some of the most common types of errors on which

13

either separate or ovelapping communities work, providing solutions to dealing with
such problems or avoiding them altogether.

The properties of systems are often divided into two categories: safety and live-
ness. Safety properties specify which properties should not be violated in the system
or which bad state should not be reached. Liveness properties specify which proper-
ties the system must satisfy or which desirable things should happen in the system.

1.2.1 Sequential C code

C code is an example of program code where the user has to manually take care of the
resource allocation for the program. Some call it “unmanaged” code. Memory has
to be allocated and freed for all data structures except those allocated on the stack.
Thus, in addition to potential errors with respect to the initial requirements, the C
language introduces a whole variety of errors related to memory management: mem-
ory leaks, aliasing, buffer overflows, and null pointer dereferencing. Memory leaks
are orphaned areas of allocated memory that have not been freed. Aliasing happens
when a single memory area is referenced by different pointers and manipulating ei-
ther variable causes changes to the single instance of the data structure. Buffer over-
flows occur when insufficient amount of memory is allocated for containing some
data and writing past the end of the allocated buffer will corrupt memory areas used
for other purposes potentially allowing the execution of arbitrary code. Null pointer
dereferencing is taking the address of a pointer that has not been assigned a value (i.e.
the pointer is null). This will usually end the execution of the program with the seg-
mentation fault signal. During the recent years also the property of termination has
received significant attention as an important step for proving liveness of programs.

1.2.2 Sequential Code with Automatic Garbage Collection

With the introduction of programming languages like Java and C#, which have ob-
ject oriented type systems and built in garbage collection, certain types of memory
corruption problems have been eliminated altogether. It is not possible to cause a
segmentation fault or corrupt memory by writing past the end of an allocated buffer
in a Java or C# program, provided the compiler and the underlying virtual machine
do not have errors. Memory leaks in the sense of a C program have also been elimi-
nated as all instances of objects that are not transitively referenced from the root get
garbage collected automatically.

Aliasing problem still perisists as it is possible to reference an instance of an object
from multiple variables and thus cause destructive updates to an instance of an object
that is expected to persist in some other part of the program. The buffer overflow
problem is reduced to still challenging array bounds problem. In the ideal case it
should be possible to verify statically that an array index will never exceed array size
thus eliminating the need to check array bounds at runtime.

14

1.2.3 Protocol Related Problems

A great deal of software is organised into libraries that provide application program-
ming interfaces (APIs) to other programs. It is often the case that in addition to
knowing the types of the parameters and the return type of an API function, it is nec-
cessary to know the protocol, i.e. the sequential restrictions of how different methods
of an API should be accessed. A typical example is the file access library, where a file
must be opened prior to being read from. These kinds of issues are closely related
to the requirements of the library. There are several relations that can and should
be checked: whether the library satisfies the protocol specification and whether the
application that uses several APIs with different protocols uses all protocols correctly.

A whole new field of research opens up when one looks at several concurrently
active programs that interact.

1.2.4 Concurrency

The problems related to concurrency are often very difficult to debug using methods
for sequential code, as it is very difficult to reproduce the exact conditions of all
parties interacting in a concurrent environment. Thus there is a whole field of research
dedicated to inventing better ways of coping with concurrency related issues.

In addition to making sure that concurrent access to some API does not violate
its protocol, a whole new set of problems related to concurrent access to resources
emerges. Often such concurrent accesses are guarded by semaphores to denote the
locking of the resource by some active program. Such protocols using locking are
subject to the possibility of deadlocks and livelocks. Such problems are often referred
to as course grain concurrency.

Sometimes semaphores are omitted for the sake of performance or because they
were never introduced as the software was originally written for sequential environ-
ments. In such cases the problem of data races emerges as there are different possible
interleavings of reading and writing a shared variable by different active programs.
Some security policies require that there should be no data races present at all, but
not all data races necessarily lead to bad behaviour. These problems are sometimes
called fine grain concurrency.

1.2.5 Time

Some programs interact with the environment via sensors and actuators in addition to
the human-computer interface. In cases where programs are used to control processes
in the environment the time related properties become increasingly important. Rea-
soning about the properties of real-time systems constitutes another whole domain of
research in verification which is not the focus of the current thesis. We will, though,
use a real-time model checker Uppaal [Amnell, Behrmann, Bengtsson, D’Argenio,
David, Fehnker, Hune, Jeannet, Larsen, Möller, Pettersson, Weise and Yi, 2001] but
focusing on other aspects of modelling and verification than time.

15

1.3 Verification

In previous section we described several different types of problems that occur in
software. Computer scientists have worked hard for several decades at providing
means to solve such problems. Such methods can be grouped together under the term
verification by which we mean ways and methods of ensuring that the implementation
corresponds to the requirements.

The term “verification” has a bit blurred meaning and may denote different things.
Sometimes verification means code reviews and sometimes it means rigorous mathe-
matical proof that the code satisfies its formally stated requirements. Although code
reviews can reveal issues in programs, the degree of confidence of correctness is
considerably higher when the code is verified using a mathematical method.

One way to establish the relationship between the requirements and the imple-
mentation is to prove it by formalising the implementation and the requirements in a
suitable logic or logic based specification language and providing a formal proof that
the implementation satisfies the requirements. Although powerful, such procedure is
also error prone when performed manually.

1.3.1 Automated Verification

The theory of computability [Hopcroft and Ullman, 1979] provides insight to what
can be decided by an algorithm. The most well known negative result is of course
the result by Alan Turing from 1936, where he proves that a problem now known
as the halting problem is undecidable [Wikipedia, 2007]1. Informally speaking, the
result says that there is no general algorithmic way to tell whether an arbitrary given
program terminates or not. In spite of such results, which exemplify that the prob-
lems the theoretical computer science deals with are of complex nature, researchers
have come up with a variety of different automatic solutions which establish certain
properties in models and/or program code.

1.3.2 Model Checking

Model checking [Edmund M. Clarke et al., 1999] is a technique for verifying finite
state concurrent systems. It is a technique that proves or disproves a property of a
model either by providing a witness trace to the state where the property is violated
or enumerating all reachable states of the model thus proving that the violation of
the property is not possible. The property to be proved can either be a reachability
property, i.e., whether a certain configuration of valuations of state varialbes is reach-
able from the initial state, or a property specified in some temporal logic like Linear
Temporal Logic (LTL) or Computation Tree Logic (CTL). In the current thesis we
will concentrate on reachability properties and refer the reader to, for example, [Huth
and Ryan, 2000] for an introduction and pointers about temporal logics.

1We are not analysing the halting problem and thus refer the reader to an article in an encyclopedia
that has pointers to the original paper and in addition provides some nice examples.

16

In the previous section we talked about different error types or security policies
of programs. Model checking is one possible tool for solving several of them, par-
ticularly for proving protocol and concurrency related properties. In some cases the
model is extracted from the program code automatically but in other cases it has to
be done manually by a verification engineer.

In a typical model checking task there is a model M of the system in some mod-
elling language (timed automata, Promela, BIR, ...) and the design requirements φ in
some logic (for example computation tree logic, CTL, linear temporal logic, LTL, or
µ-calculus). Model checker is used to check whether the model satisfies the require-
ments or not (M |= φ?). If not, (M 6|= φ), the method gives a trace leading to the error.
Another benefit of the method is a high level of automation, meaning that once the
model and requirements are there, it is possible to “push the button” and wait for the
answer. No user intervention is required during the search.

1.3.3 Model-Based Testing

Model-based testing is an automated technique for establishing a conformance rela-
tion between the requirements and the implementation. Model-based testing is typi-
cally used in cases where the implementation under test (IUT) is a black box and the
only thing visible to the tester is the interface over which the communication occurs.
Although it is not possible to verify the system correct using model-based testing, it
is possible to establish a conformance relation, like, for example, alternating refine-
ment [Veanes, Campbell, Schulte and Tillmann, 2005] between the tester model and
the IUT.

A very important phase of model-based testing is the formalisation of the require-
ments. Sometimes the requirements can be documents of several hundred pages long
and it is not trivial to build a model and keep the artefacts of the model traceable to a
paragraph in the textual specification. It is also very difficult to have any confidence
of the correctness of the specification itself unless it is analysed in some way. This
is where model-based testing and model checking meet as given the requirements
are formalised using a suitable formalism, it is possible to subject the requirements
model to automated analysis.

It is important to note that the term model has different meanings in model-based
testing and model checking. In model-based testing, the model is the formalisation of
the requirements, while in model checking the requirements are specified as formulae
in some temporal logic and the objective is to establish whether the model implements
the specification. On the other hand, model checking the model which is used for
model-based testing helps to establish the validity of the model of the requirements
which is often obtained by formalising a narrative of several hundreds of pages and
is thus an important task.

17

1.4 References to Previously Published Work

Several parts of this thesis have been previously published as conference papers or
journal articles.

Chapter 3 is based on “State isomorphism in model programs with abstract data
structures” [Veanes, Ernits and Campbell, 2007], a paper presented at FORTE‘07 in
June 2007 in Tallinn, Estonia.

Section 5.1 is based on “Generating tests from EFSM models using guided model
checking and iterated search refinement” [Ernits, Kull, Raiend and Vain, 2006], a
paper presented at FATES/RV‘06 in August 2006 in Seattle, USA.

And, Section 5.2 is based on “Memory Arbiter Synthesis and Verification for
a Radar Memory Interface Card” [Ernits, 2005], a paper published in the Nordic
Journal of Computing.

1.5 Summary of the Contribution

First of all we show on a very simple example how different formalisms can be
utilised to model the same aspects of a system. Promela models and Uppaal timed
automata are both well established formalisms. We show that model programs with
non-determinism on action argument and action selection level and that allow the use
of object instances and abstract data types like sets, can be used to model similar
systems. Further, we present algorithms to extract object graphs of the states of the
model programs at runtime and perform state graph isomorphism based symmetry
reduction. In such a way we have established a symmetry reduction that can recog-
nize more symmetries than the scalar set approach with the penalty of more work
to be done runtime. Although we were later referred to similar symmetry reduction
work in the GROOVE project [Rensink, 2006], the differences of our approach in the
context of model programs with explicit state analysis are outlined in Chapter 3.

In Chapter 4 we introduce a yet another variation of the bitstate hashing method
with surprising consequences. We apply sequential hashing with the purpose of prun-
ing the search space under each iteration and gain interesting reachability results by
using only a few dozen kilobytes of memory for the bitstate hash table. We call the
method iterated search refinement with bitstate pruning. Our contribution is the pre-
sentation of the approach and the application of the technique to several examples
in Chapter 5: offline test generation, memory arbiter synthesis, and solving planning
problems. The benefits of the approach are emphasised by easy parallelisability: the
time it takes for the iterated search refinement with bitstate pruning to reach a goal is
inversely proportional to the number of CPU cores used in the process.

1.6 Organisation of the Thesis

The thesis is organised into 3 logical parts. In Chapter 2 we give an overview of
the state space reduction techniques used in explicit state model checking and intro-

18

duce three alternative modelling formalisms: Promela, Uppaal automata, and model
programs of NModel. In Chapter 3 we present a state isomorphism based symme-
try reduction technique for model programs containing abstract data structures and
objects. In Chapter 4 we present an iterated search refinement with bitstate pruning
technique that can be applied for model checking models too large to yield any results
using other state space reduction methods. In Chapter 5 there are two case studies of
applying the previously introduced iterated search refinement with bitstate pruning
method.

19

CHAPTER 2

PREREQUISITES AND RELATED
WORK

This chapter gives a more detailed overview of the techniques used in explicit
state model checking with the emphasis on the two methods which will be looked
at in more detail in later chapters. In addition this chapter contains examples of
modelling the Dining Philosophers example using Promela, Uppaal automata, and
model programs of the NModel toolkit.

2.1 State Space Reduction Techniques in Explicit State Mo-
del Checking

As already mentioned, explicit state model checking involves the consideration of
all possible executions and states of the model. Due to the combinatorial explosion,
such state enumerations may need excessive amounts of memory and thus time to be
covered. It has therefore been an important direction of research to discover different
ways of reducing the requirement for memory but still being able to prove or disprove
the properties of interest.

In this section we will first list the basic search algorithms used in model checking
and then have a look at the most significant known state space resuction techniques.

2.1.1 Search Algorithms

Typically the implementations of search algorithms used in explicit state model check-
ers are variations of depth-first search (DFS) and breadth-first search (BFS) algo-
rithms. The graph the search is performed on is a finite state automaton (FSA) that is
constructed as a product of the finite state automata of the active processes. A FSA,
for example, [Holzmann, 2003] is a tuple A = (S,s0,L,T,F) where S is a finite set of
states, s0 is the initial state s0 ∈ S, L is the finite set of labels, T is the set of transitions
T ⊆ (S×L×S), and F is a set of final states F ⊆ S. The pseudo code for depth-first
and breadth-first algorithms is given in Figure 2.1 which summarise the core of the
search algorithms used in the Spin model checker.

21

Depth-First Search

The strategy followed by depth-first search is to search “deeper” in the graph when-
ever possible [Cormen, Leiserson and Rivest, 1994]. In depth-first search transitions
are explored out of the most recently discovered state s that still has unexplored tran-
sitions leaving it. When all of the outgoing transitions from s have been explored, the
search “backtracks” by popping the stack D to explore transitions leaving the state
from which s was discovered. In the case when a state violating the safety property
has been found, the path from s0 to s is directly represented by the stack D.

Breadth-First Search

Breadth-first search systematically explores the transitions of A to “discover” ev-
ery vertex that is reachable from s0 [Cormen et al., 1994]. Breadh-first search is so
named because it expands the frontier between discovered and undiscovered vertices
uniformly across the breadth of the frontier represented by the queue Q in Figure 2.1.
That is, the algorithm discovers all vertices at distance k from s0 before discovering
any vertices at distance k +1. Due to that, breadth-first search finds the shortest path
to a state. If a model checking task running a breadth-first search algorithm finds a
witness trace, it is guaranteed to be the shortest possible. In practice, breadth first
search will often lead to the exhaution of memory resources sooner than depth-first
search. As the BFSearch algorithm does not have a stack representing the path from
s0 to s, it is necessary to reconstruct the path in the FindPath procedure.

The advantage of the breadth-first search is that it is guaranteed to find the shortest
path to a state violating the safety property, but it comes at the cost of larger memory
requirements than depth-first search.

Guided Search

Guided search is a variation of breadth first search or depth first search that utilises
some guiding function to tell the search algorithm which transition to explore next.
In the case of breadth-first the next transition to be taken is selected from among
all enabled transitions of the frontier and in case of depth-first search only among
the enabled outgoing transitions of the current node. A cost function is one of such
guiding functions. Guided search in Spin is considered in [Edelkamp, Lafuente and
Leue, 2001] and in [Ruys, 2003]. The priced timed automata and guided search
principles implemented in Uppaal Cora are described in [Behrmann, Larsen and Ras-
mussen, 2005].

2.1.2 Partial Order Reduction

The most well known and established state space reduction techniques in explicit
state model checking are partial order reduction and symmetry reduction techniques.

Partial order reduction technique for model checking was introduced in [Godefroid,
1996] Almost a decade later the method received an dynamic extension [Flanagan and

22

Depth-First Search
Stack D = {A.s0}— Search stack
Set V = {A.s0}— Set of visited states
BOUND — Bound on search depth

DFSEARCH()
s← StackTop(D)
if !Safety(s)

PrintStack(D)
for each (s, l,s′) ∈ A.T

if !V.Contains(s′)
V.Add(s′)
if D.Depth < BOUND

D.Push(s′)
DFSearch(D,V)

D.Pop

Breadth-First Search
Queue Q = {A.s0}— Frontier of search
Set V = {A.s0}— Set of visited states

BFSEARCH()
s← Q.Head
Q.RemoveHead
if !Safety(s)

FindPath(s)
for each (s, l,s′) ∈ A.T

if !V.Contains(s′)
V.Add(s′)
Q.AddLast(s′)
BFSearch()

Figure 2.1: Depth-first and breadth-first search algorithms for model checking
[Holzmann, 2003].

Godefroid, 2005] that makes it possible to omit the static analysis step present in the
initial method. The key idea is to not consider all possible interleavings of processes
when it is clear that considering a single interleaving is sufficient. This is possible
when the statements executed by separate processes are independent, i.e. they do not
have effect on shared resources.

We admit that partial order reduction is a very important state space reduction
technique, but as it is not in the focus of the current thesis, we refer the reader to, for
example, [Peled, 1998].

2.1.3 Symmetry Reductions

Two program states, in the presence of pointers or objects, can be considered equiv-
alent if the structure of the logical links between data objects is equivalent while the
concrete physical addresses the pointers point to differ, i.e., when the actual arrange-
ment of objects in memory is different due to the effects of memory allocation and
garbage collection. This is known as one form of symmetry reduction and has been
used in software model checking. The principles of such symmetry reductions have
been outlined by Iosif in [Iosif, 2004]. One of the key ideas in [Iosif, 2004] is to
canonize the representation of program heap by ordering the heap graph during a
depth first walk. The order of outgoing edges (pointers) from a node (for example
an object) is given by a deterministic ordering by edge labels (field name and or-
der number, for example position in the array, in the parent data structure). Lack of
such ordering would render state comparison to an instance of the graph isomorphism
problem, which requires exponential time in the number of nodes in the general case
[Messmer, 1995]. In [Musuvathi and Dill, 2005] Musuvathi and Dill elaborate on

23

Iosif’s algorithm to allow incremental heap canonicalization, i.e., take into account
that state changes are often small and modify only a small part of the heap, thus it
should not be necessary to traverse the whole heap after each state change.

In addition to dSpin [Demartini, Iosif and Sisto, 1999], where the above men-
tioned principles were initially implemented, there are several analysis tools specif-
ically targeted for object-oriented software that utilize the approach, for example,
Java Pathfinder [Visser, Havelund, Brat, Park and Lerda, 2003], XRT [Grieskamp,
Tillmann and Schulte, 2006], and Bogor [Robby, Dwyer and Hatcliff, 2006].

Java Pathfinder, JPF, is an explicit state software model checker for Java byte-
code that grew out of a converter of Java to Promela and was originally developed at
NASA. It is now in its fifth major release [JPF, 2007].

XRT is a software checker for common intermediate language, CIL. It processes
.Net managed assemblies and provides means for analyzing the processed programs.

Bogor is a customizable software model checking engine that supports constructs
that are characteristic to object-oriented software. Although there is support for us-
ing abstract data types, like sets, the underlying state enumeration and comparison
engine performs heap canonicalization based on an ordering of object IDs based on
the previously mentioned work by Iosif [Iosif, 2004].

Korat [Boyapati, Khurshid and Marinov, 2002] is a tool for automated test gener-
ation based on Java specifications. It also uses the concept of heap isomorphism to
generate heaps that are non-isomorphic.

We have layered ASM semantics on top of the underlying programming environ-
ment and thus the concrete memory locations have been abstracted by interpreting
the program state in the ASM semantics. But in addition to using the concrete data
structures, we can declare some types to represent instances of abstract objects and
there are some data structures, such as the Set, Map and Bag, that are designed to
accommodate such objects, among others.

Symstra [Xie, Marinov, Schulte and Notkin, 2005] uses a technique that linearizes
heaps into integer sequences to reduce checking heap isomorphism to just comparing
the integer sequence equality. It starts from the root and traverses the heap depth first.
It assigns a unique identifier to each object, keeps this mapping in memory and reuses
it for objects that appear in cycles. It extends the previously mentioned approaches
[Iosif, 2004; Musuvathi and Dill, 2005] in that it also assigns a unique identifier to
each symbolic variable, keeps this mapping in memory and reuses it for variables that
appear several times in the heap.

In [Darga and Boyapati, 2006] a glass box approach of analyzing data structures is
presented. The reductions described therein involve isomorphism-based reductions,
but encoding the task requires manual attribution of the data structures to be analyzed.
The approach does not present a general way how to handle object-oriented programs
containing abstract data types.

Spec Explorer [Veanes, Campbell, Grieskamp, Nachmanson, Schulte and Till-
mann, 2005; SpecExplorer, 2006] is a tool for the analysis of model programs written
in AsmL and Spec#. It is possible in some cases to specify symmetry reductions in

24

Spec Explorer using state groupings but the tool does not have a built-in isomorphic
state checking mechanisms.

Graph isomorphism is a topic that has received scientific attention for decades.
Ullmann’s (sub)graph isomorphism algorithm [Ullmann, 1976] is a well known back-
tracking algorithm which combines a forward looking technique. As the algorithm is
relatively straightforward to implement, we used it as an oracle for testing purposes.

The algorithm described in Section 3.4 builds on another well known approach
also known as the Nauty algorithm, which uses node labelings and partitioning based
on such labelings [McKay, 1981].

It is known that there exist certain classes of graphs for which there is a poly-
nomial time algorithm for deciding graph isomorphism. In [Luks, 1982] a method
for deciding isomorphism of graphs with bounded valence in polynomial time is pre-
sented. The reason why such algorithms are not directly usable in practice is that the
polynomial complexity result contains large constants [Fortin, 1996].

There are model checkers, such as for example Murφ [Dill, 1996] and Symmetric
Spin [Bosnacki, Dams and Holenderski, 2000], that allow modeling using scalar sets
[Ip and Dill, 1996]. These sets are similar to the sets described in the current thesis
but they do not have support for abstract object IDs. A survey of symmetry reductions
in temporal logic model checking is given in [Miller, Donaldson and Calder, 2006].

In June 2007 Alastair Donaldson defended his PhD thesis [Donaldson, 2007]
where he analyses different methods for utilising symmetries in explicit state model
checking. His method is complementary to ours as in addition to utilising scalar sets
he exploits the topology of communication channels between the processes.

A good overview of the work on symmetries in Petri nets can be found in [Junttila,
2003].

GROOVE

Quite recently we were referred to the work done in the GROOVE project at the Uni-
versity of Twente [GROOVE, 2007]. In the approach taken there the state spaces of
object-oriented programs are generated using graph transformation systems. Such
transformations are subjected to CTL model checking [Kastenberg and Rensink,
2006]. In [Rensink, 2006] it is described how the state graph isomorphism based sym-
metry reduction works in GROOVE. In [Rensink, Schmidt and Varró, 2004] there are
some case studies of applying the GROOVE approach among other examples to the
dining philosophers problems, as is done in the current thesis. It should be said that
from the point of view of model checking object oriented programs, the approach
in GROOVE is more mature and the implementation yields better results than our
approach. On the other hand, our approach has valuable application in model-based
testing and is unique in the sense that it creates the state graphs of the model programs
automatically.

25

2.1.4 State Compression and Hash Compaction

One way to reduce the amount of required memory is to run a generic compression
function on the state vector before storing it. Compressing the state this method
consumes more cpu resources but enables to store more states in the available amount
of RAM.

Hash compaction is a method proposed to be used in verification by Pierre Wolper
[Holzmann, 2003]. In hash compaction each state is hashed to some value, for exam-
ple 64 or 128 bits, and this hash value is stored instead of the full state. The results
in [Holzmann, 1998] show that bitstate hashing generally performs better than hash
compaction.

2.2 Bitstate Hashing

Model checking in general involves searching possibly very large state spaces for
proving or disproving a query — a formula typically in some temporal logic. Bit-
state hashing [Holzmann, 1998], also known as supertrace, is a well known method
in explicit state model checking for reducing memory requirements for storing the
traversed state space by storing only a single bit for each seen state at the address
calculated by a hash function. The drawback of the method is the possibility of hash
collisions that will result in unexplored parts of the state space, rendering the method
to be sound but incomplete. The general significance of reachability checks has been
outlined in [Aceto, Bouyer, Burgueño and Larsen, 2003]. Even if it is not possi-
ble to prove unreachability, fast reachability checks on formal models that yield a
valid trace have applications in, for example, some types of planning and scheduling
[Hune, Larsen and Pettersson, 2001; Wijs, van de Pol and Bortnik, 2005; Ruys, 2003],
test generation [Hamon, de Moura and Rushby, 2004b; Ernits et al., 2006], soft-
ware/hardware synthesis [Ernits, 2005], and in debugging [Mercer and Jones, 2005].
In general, the bigger the hash table, the lower the probability of hash collisions. But
big bitstate hash tables may still require unavailable amounts of memory.

Bloom filters were introduced by Burton Bloom in [Bloom, 1970] and provide an
efficient way of lowering the probability of collisions of the bitstate hashing method
[Holzmann, 1998] by storing more than one bit per state in the given hash table.
The methods reduces the probability of collisions when the hash table is relatively
empty, but collision probabilities become larger than for bitstate hashing when the
table becomes more populated. An in-depth probabilistic analysis of bitstate hashing
is given in [Kuntz and Lampka, 2004].

2.3 Symbolic Methods
2.3.1 Difference-Bounded Matrices

Difference-bounded matrices provide an efficient region-based symbolic representa-
tion that can be used to abstract time. Difference bounded matrice representation is

26

in fact a weighted directed graph where the vertices correspond to clocks (includ-
ing zero clock) and the weights on the edges stand for the bounds on the differences
between pairs of clocks [Larsen, Larsson, Pettersson and Yi, 2003]. As it gives an
explicit bound for the difference between each pair of clocks, its space-usage is in the
order of O(n2). where n is the number of clocks. However, in practice it often turns
out that most of these bounds are redundant. Uppaal uses a minimal and canonical
representation of DBM-s, which allows efficient inclusion checks. The bitstate prun-
ing based iterated search refinement is orthogonal to this approach and can also be
used for models with time.

2.3.2 Binary Decision Diagrams

Binary decision diagrams (BDDs) are the core of a powerful symbolic way of repre-
senting Boolean functions and have since their introduction in [Bryant, 1986] been
successfully used in a number of applications, particularly in hardware verification
by using the graph based symbolic representation of Boolean circuits. The applica-
tion of BDDs for model checking was described by Kenneth McMillan in his PhD
thesis [McMillan, 1992]. We refer the reader to an extensive overview of symbolic
model checking in [Edmund M. Clarke et al., 1999].

2.4 Model-Based Testing

Model-based testing is an approach where the task is to establish the conformance
relationship between the formalised requirements (the model) and the implementa-
tion which is typically a black box with specified interfaces. In model-based testing
the model is the specification that is verified against the implementation, thus the
model has different role than in model checking. Establishing the conformance re-
lation between the implementation and the model involves exploring the model in
full. This is the aspect where model checking and model-based testing meet in the
context of the current thesis. The principles of model-based testing are explained in
the following recent books: [Utting and Legeard, 2006; Jacky, Veanes, Campbell and
Schulte, 2007].

2.5 Modelling Languages

There is a great number of various modelling languages around that are used to spec-
ify and model software. We will have a look at three different modelling formalisms
which facilitate simulation and model checking of the models.

The model checker Spin and the modelling language Promela used in Spin
[Holzmann, 2003] are relevant as Spin is the best-known explicit state software model
checker and there is a variety of examples and case studies readily available. Most
notably, recently, a database of benchmark models called BEnchmarks for Explicit

27

Model checkers [Pelánek, 2007] was set up with a number of interesting Promela
models readily available.

The model checker Uppaal [Amnell et al., 2001] and its guided counterpart Uppaal-
Cora [Behrmann, 2005] are used to compare the influence of guiding to the iterated
search refinement that will be presented in Chapter 4. Although it has been described
how to perform guiding in Promela models [Ruys, 2003], we felt that the built in
guiding support of Uppaal Cora provided greater flexibility. In addition, Uppaal of-
fers a nice graphical way of modelling and simulating automata in its graphical user
interface.

NModel [NModel, 2007] is a modelling library developed at Microsoft Research,
Redmond, that incorporates extensive experience of specification, modelling and
model-based testing of reactive software. It is an approach that builds on the ex-
perience with SpecExplorer
[SpecExplorer, 2006]. The library accompanies a forthcoming book [Jacky et al.,
2007] about model-based testing. One of the key ideas in NModel is that modelling
should happen in a known and supported programming language. The motivation is
that it is hard to maintain a compiler/interpreter of a custom language and it takes an
extra effort of the users to learn to use it. Thus, NModel provides an interesting ap-
proach, where learning to model is learning to use a library API. Another difference
is that NModel facilitates the use of object instances and abstract data structures,
like sets. This is interesting from several perspectives, but we will have a closer look
at a new way of calculating symmetries between states.

The key to the modelling languages in the current context is that they need to be
able to provide a reasonable level of abstraction for describing and modelling the
desired features and also be analysable.

To illustrate the modelling formalisms at work we use the dining philosophers
example introduced by Edsger Wybe Dijkstra [Dijkstra, 1971] that has been used for
more than 30 years to illustrate concurrency related problems. The description of the
problem can be paraphrased in the following way: The life of a philosopher consists
of an alternation of thinking and eating. Five philosophers live in a house where
the table is laid for them and each philosopher has his own place at the table. The
philosophers are served a very difficult kind of spaghetti, so that it has to be eaten with
two forks. When a philosopher gets hungry, he sits to the table, picks up the left fork
if it is free, then picks up the right fork or waits if it is unavailable, then eats, then puts
down the left fork and then, finally ,the right fork, and goes on to thinking again. Such
behaviour is modelled with an automaton containing four states: thinking, waiting,
eating, and finishing and transitions representing the previously described behaviour.

2.5.1 Promela

Promela stands for Process meta language and is intended to make it easier to find
good abstractions of systems designs [Holzmann, 2003]. It provides a vehicle for
making abstractions of protocols (or distributed systems in general) that suppress
details that are unrelated to process interaction. The intended use of Spin is to verify

28

fractions of process behaviour, that for one reason or another are considered suspect.
The relevant behaviour is modeled in Promela and verified.

Promela programs consist of processes, message channels, and variables. Pro-
cesses are global objects. Message channels and variables can be declared either
globally or locally within a process. Processes specify behavior, channels and global
variables define the environment in which the processes run. Unless statements are
grouped together by d step or atomic keywords, all statements may be interleaved
with enabled statements from other processes. The next statement to be executed is
chosen nondeterministically from the set of enabled statements. Boolean statements
like fork[0]==0 are blocking statements, they can be traversed when they evaluate
to true.

#define NrOfPhils 3

bit fork[NrOfPhils];

init {
byte frk;

atomic {
frk = 1;

do
:: frk <= NrOfPhils ->

run philosopher(frk-1, frk%NrOfPhils);

frk++

:: frk > NrOfPhils ->

break
od

}
}

proctype philosopher(byte left, right) {
think: if
:: d step {fork[left]==0;fork[left] = 1;} goto wait;
fi;
wait: if
:: d step {fork[right]==0;fork[right] = 1;} goto eat;
fi;
eat: if
:: fork[left] = 0; goto finish;
fi;
finish: if
:: fork[right] = 0; goto think;
fi;

}

Figure 2.2: Promela model of three dining philosophers.

In Figure 2.2 there is an example of three dining philosophers defined in Promela.

29

The example is a parameterised version of a model taken from the BEEM database
[Pelánek, 2007] that provides a selection of benchmark models for explicit state
model checkers. The model consists of a bit vector fork, where set bits denote which
forks are in use, an initialisation proces init, and a process template philosopher.
The given number, NrOfPhils, processes are instantiated in an atomic block in the
init process as we are in this case not interested in different interleavings of the
creations of the processes.

Please refer to [Holzmann, 2003; Ruys, 2001] for further details about Promela.

2.5.2 Uppaal

Uppaal automata [Behrmann, David and Larsen, 2004] are primarily meant for mod-
elling and verification of real-time systems. Uppaal automata are finite state automata
with CCS style synchronisation channels, global and local variables that can be either
clocks, booleans, integers, arrays or structs defined in C-like syntax.

Apart from time which is represented internally using difference bounded matri-
ces in Uppaal, it is an explicit state model checker. In addition, Uppaal has a guided
counterpart Uppaal-Cora which will be used later in the thesis for analysing the in-
fluence of guiding to the proposed iterated search refinement method.

An example how to model the dining philosophers problem in Uppaal is given in
Figure 2.3. An instance of the Phil automaton is created for each philosopher in
the process template instantiation section. When a transition leading from a location
of the automaton to the next is enabled the automaton can take a step. If there are
multiple transitions enabled from the current location, Uppaal chooses one transition
nondeterministically. The transition from one state to another can have two effects:
either the transition may be synchronised with some other transitions over synchroni-
sation channels (not present in the current model) or it may trigger a code block that
causes the states of the context variables to change. Assignment is a simple instance
of such code. forks[left]=UP is an example of such assignment.

2.5.3 Model Programs

A third alternative to modelling reactive systems is by using model programs
[Veanes, Campbell, Grieskamp, Nachmanson, Schulte and Tillmann, 2005]. The
model programs in our case are written in C# and utilise a .NET-based toolkit called
NModel [NModel, 2007]. It is a modelling library that accompanies the book:
[Jacky et al., 2007]. Models written in an industry standard programming language
have the benefit that at least part of the tool, C# language and compiler, will be sup-
ported as long as the language and the compiler. The general nature of the language
can also be a drawback, as there are various different ways of doing things.

Modelling using model programs is an interesting alternative in modelling com-
pared to other modelling formalisms, as users can learn to model without learning a
new syntax. They still have to learn how to use the library and tools of the toolkit.

30

Phil(const int LEFT, const int RIGHT)

Finishing

Eating

Waiting

Thinking

forks[LEFT]=DOWN

forks[RIGHT]=DOWN

forks[RIGHT]==DOWN

forks[RIGHT]=UP

forks[LEFT]==DOWN

forks[LEFT]=UP

//Global declarations

const int N=3;

const bool UP = true;
const bool DOWN = false;
bool forks[N];

//Process template instantiations
P1 = Phil(0,1);

P2 = Phil(1,2);

P3 = Phil(2,0);

//List of processes to be composed into a system
system P1,P2,P3;

Figure 2.3: Uppaal model of dining philosophers.

Model programs are a useful formalism for software modelling and design analy-
sis and are used as the foundation of industrial tools such as Spec Explorer [Veanes,
Campbell, Grieskamp, Nachmanson, Schulte and Tillmann, 2005]. The expressive
power of model programs is due largely to two characteristics. First, one can use
complex data structures, such as sequences, sets, maps and bags (multisets), which
is sometimes referred to as having a rich background universe. Second, one can use
instances of classes or elements from user-defined abstract types; we use the word
object to mean either case.

It is possible to can characterize a typical usage scenario of model programs as a
three step process [Jacky et al., 2007]: describe, analyze and test.

Describe: A contract model program is written to capture the intended behaviour of
a system or subsystem under consideration. Complex data structures and ab-
stract elements are utilised to produce a contract, or trace oracle, at the desired
level of abstraction.

Analyze: Zero or more scenario model programs are written to restrict the contract
to relevant or interesting cases. The scenarios are composed with the contract
and the resulting model program is explored to validate the contract. The pos-
sible traces of a composition of model programs is the intersection of possible
traces of the constituent model programs.

Test: The model program, that is, the contract possibly composed with additional
scenarios, is used to generate test cases or used as a test oracle.

In Figure 2.4 there are the class definitions of objects used in the model program
of the dining philosophers. Philosopher has fields referencing the left and the right

31

using System;
using NModel;
using NModel.Terms;
using NModel.Attributes;

namespace DiningPhilosophers
{

public enum State { Thinking, Waiting, Eating, Finishing }

[Sort("ControlMode")]

public enum Mode { Initializing, Running }

public class Philosopher : LabeledInstance<Philosopher>

{
public State state;

public Fork left, right;

public override void Initialize() { state = State.Thinking; }
public bool leftFree() { return left.isFree(); }
public bool rightFree() { return right.isFree(); }

}

public class Fork : LabeledInstance<Fork>

{
public Philosopher hasMe;

public override void Initialize() { hasMe = default(Philosopher); }
public bool isFree() { return hasMe == default(Philosopher); }
public void take(Philosopher p) { hasMe = p; }
public void release(Philosopher p) { hasMe = default(Philosopher); }

}

}

Figure 2.4: Model program modelling the dining philosophers problem: definition of
the classes.

32

namespace DiningPhilosophers {
public static class Contract {

public static Set<Philosopher> phils = Set<Philosopher>.EmptySet;

public static Mode mode = Mode.Initializing;

public const int numberOfPhils = 3;

[Action]

public static void Init()

{ Philosopher[] tmpP = new Philosopher[numberOfPhils];

Fork[] tmpF = new Fork[numberOfPhils];

for (int i = 0; i < numberOfPhils; i++) tmpF[i] = Fork.Create();

for (int i = 0; i < numberOfPhils; i++)

{ Philosopher p = Philosopher.Create();

p.left = tmpF[i];

p.right = tmpF[(i + 1) % numberOfPhils];

tmpP[i] = p;

}
for (int i = 0; i < numberOfPhils; i++) phils = phils.Add(tmpP[i]);

mode = Mode.Running;

}
public static bool InitEnabled() { return (mode == Mode.Initializing); }
[Action]

public static void TakeLeft([Domain("phils")] Philosopher p)

{ p.left.take(p);

p.state = State.Waiting;

}
public static bool TakeLeftEnabled(Philosopher p)

{ return mode==Mode.Running && p.leftFree() && p.state==State.Thinking; }
[Action]

public static void TakeRight([Domain("phils")] Philosopher p)

{ p.right.take(p);

p.state = State.Eating;

}
public static bool TakeRightEnabled(Philosopher p)

{ return mode==Mode.Running && p.rightFree() && p.state==State.Waiting; }
[Action]

public static void ReleaseLeft([Domain("phils")] Philosopher p)

{ p.left.release(p);

p.state = State.Finishing;

}
public static bool ReleaseLeftEnabled(Philosopher p)

{ return mode == Mode.Running && p.state == State.Eating; }
[Action]

public static void ReleaseRight([Domain("phils")] Philosopher p)

{ p.right.release(p);

p.state = State.Thinking;

}
public static bool ReleaseRightEnabled(Philosopher p)

{ return mode == Mode.Running && p.state == State.Finishing; }
}

}

Figure 2.5: Model program of the dining philosophers problem: definition of the
behaviour.

33

public static ModelProgram Create()

{
return new LibraryModelProgram(typeof(Contract).Assembly,"DiningPhilosophers");

}

Figure 2.6: Model program of the dining philosophers problem: factory method of
the class Contract.

fork and Fork has a reference to the philosopher instance that currently possesses it
or null otherwise.

In Figure 2.5 there is the contract representing the behaviour of the dining philoso-
phers system. The contract describes all possible actions that can take place in the
system. Actions are attributed with the [Action] attribute. The methods with the
name of an action and an ending containing the word “Enabled” are action guards.

Both the Philosopher and Fork class inherit from the LabeledInstance

class. The latter is a class of the modelling library that provides required mecha-
nisms for representing objects of the model at run-time. Please refer to [Jacky et al.,
2007; Veanes, Campbell and Schulte, 2007a; Veanes, Ernits and Campbell, 2007] for
further details about model programs.

Non-determinism is available on the action argument level, i.e. when a model
program is analysed, all permutations of action arguments are tried. For example, the
domain of the argument of the action TakeLeft is the set containing all philosophers.
This means that the TakeLeft action will be attempted with every instance of the
philosophers in the set. Sometimes the action guard might evaluate to false, as in the
case where the philosopher is already holding the left fork.

One thing to bear in mind with model programs is that the data structures are
immutable, meaning that changes to a data structure have effect only when the vari-
able denoting the data structure is assigned the modified instance. More specifi-
cally, all changes to data structures need to be in the form Set<Element> myset =

myset.Add(element); and not just Set<Element> myset.Add(element);.
Another important thing to keep in mind is that it is possible to define models

with potentially infinite state space, for example in the case of adding fresh objects
to a set. It is possible to enforce the model programs to have a finite state space by
introducing state filters that limit the number of elements in certain data structures.

To make it possible to instantiate the model, there has to be a factory method
that invoked by the model analysis tools to create an instance of the model program.
For the dining philosophers example, the class Contract should additionally have a
factory method like the one given in Figure 2.6.

34

CHAPTER 3

SYMMETRY REDUCTIONS

In this chapter1 we look more closely at model programs that can contain abstract
data structures. like sets and maps, and objects. Each state, i.e., the configuration
of all variables, can be represented as a graph. The combination of the presence of
abstract data structures and objects yields an interesting way to apply state graph
isomorphism for symmetry reduction.

3.1 Introduction

Model programs are a useful formalism for software modelling and design analysis
and are used as the foundation of industrial tools such as Spec Explorer [Veanes,
Campbell, Grieskamp, Nachmanson, Schulte and Tillmann, 2005]. The expressive
power of model programs is due largely to two characteristics. First, one can use
complex data structures, such as sequences, sets, maps and bags (multisets), which
is sometimes referred to as having a rich background universe. Second, one can use
instances of classes or elements from user-defined abstract types; we use the word
object to mean either case.

The lack of symmetry checking when program states include both unordered
structures and objects is a serious practical concern for users of tools like Spec Ex-
plorer. If symmetric states are not pruned, the number of states that must be con-
sidered during exploration will often become infeasibly large. Thus one natural way
to tackle the state space explosion problem is by detecting symmetries. Symmetry
reduction is not a universal solution for the state explosion problem but helps to re-
lieve it in many cases. In this chapter we present a symmetry reduction based on state
isomorphism for programs that contain both complex data structures and objects.

The expressive power of combining abstract, unordered data types with objects
is useful when describing a model but complicates analysis. The core problem is
to efficiently identify “relevant” states during exploration. By a state we mean a
collection of all state variables and their values at a given point along the exploration
path. It is often the case that two states that are isomorphic should be treated as

1The work presented in this chapter was done during an internship at Microsoft Research, Redmond,
WA, USA.

35

being equivalent. Isomorphism between states with a rich background universe is
well defined. It exists when there is a one-to-one mapping of objects (within each
abstract type) that induces a structure-preserving mapping between the states [Blass
and Gurevich, 2000].2 Informally, two states are isomorphic if they differ in choice
of object IDs (or elements of the reserve) but are otherwise structurally identical.

Consider for example a state signature containing two state variables V and E.
(States as in model programs are introduced in the next section.) The type of V is a
set of vertices (distinct values of an abstract type Vertex) and the type of E is a set of
vertex sets. Let v1,v2,v3,v4 be vertices and let S1 be a state where,

V = {v1,v2,v3,v4},
E1 = {{v1,v2},{v2,v3},{v3,v4},{v4,v1}}.

Intuitively, the state S1 is an undirected graph that is a rectangle with four vertices.
Let S2 be a state where V has the same value as in S1 and,

E2 = {{v1,v3},{v3,v2},{v2,v4},{v4,v1}}.

States S1 and S2 are isomorphic because structure is preserved if the reserve element
v2 is swapped with v3. This is an isomorphism that maps v3 to v2, v2 to v3 and every
other vertex to itself. Let S3 be a state where V has the same value as in S1 and,

E3 = {{v1,v2},{v2,v3},{v3,v1},{v4,v1}}.

State S3 is not isomorphic to S1, because all vertices in S1 are connected to two
vertices but v4 is only connected to one vertex in S3, i.e., there exists no structure-
preserving mapping from S1 to S3.

The example illustrates the point that state isomorphism is as hard as graph iso-
morphism, when objects and unordered data structures are combined. A customer
survey of Spec Explorer users within Microsoft has shown that this combination oc-
curs often in practice. It occurs in the standard Spec Explorer example included in
the distribution [SpecExplorer, 2006] known as the chat model [Veanes, Campbell,
Grieskamp, Nachmanson, Schulte and Tillmann, 2005; Utting and Legeard, 2006],
where chat clients are objects and the state has a state variable that maps receiv-
ing clients to sets of sending clients with pending messages. The state isomorphism
problem for reserve elements in unordered structures was not solved in Spec Ex-
plorer and to the best of our knowledge has not been addressed in other tools used
for model based testing or model checking that support unordered data structures.
There are model checkers that support scalar sets [Ip and Dill, 1996], which are basi-
cally ranges of integers, but we do not know of instances where such sets can contain
objects with abstract object IDs.

In practical terms this means that users must either use various pruning techniques
that only partially address the problem or extend the model program with custom

2In ASM theory, what we call objects are called reserve elements.

36

scenario control that tries to work around the problem by restricting the scope of
exploration. The results are not always satisfactory.

The pruning techniques that have been partially helpful in this context are state
grouping [Grieskamp, Gurevich, Schulte and Veanes, 2002] and multiple state group-
ing [Campbell and Veanes, 2005], [Veanes, Campbell, Grieskamp, Nachmanson,
Schulte and Tillmann, 2005]. But the grouping techniques have an orthogonal us-
age that is similar to abstraction in model checking, whereas state isomorphism is a
generalization of symmetry checking in model checking. In general, it is not possible
to write a grouping expression that maps two states into the same value if and only if
the states are isomorphic; the “only if” part is the problem.

If objects are not used, then state isomorphism reduces to state equality. State
equality can be checked in linear time. This is possible because the internal represen-
tation of all (unordered) data structures can then be ordered in a canonical way. The
same argument is true if objects are used but no unordered data structures are present.
Then state isomorphism reduces to what is called heap canonicalization in the context
of model checking and can also be implemented in linear time [Iosif, 2004; Musu-
vathi and Dill, 2005].

In this chapter we describe a solution for the state isomorphism problem for model
programs with states that have both unordered structures and objects. We do so by
providing a mapping from model program states to rooted labeled directed graphs
and use a graph isomorphism algorithm to solve the state isomorphism problem. The
graph construction and the labelling scheme use techniques from graph partitioning
algorithms and strong hashing algorithms to reduce the need to check isomorphism
for states that are known not to be isomorphic. We also outline a graph isomorphism
algorithm that is customized to the particularities of state graphs. Our algorithm
extends a linearisation based symmetry-checking algorithm with backtracking and
is, arguably, better suited for this application than existing graph isomorphism algo-
rithms.

Before we continue with the detailing how our symmetry reduction works, we
illustrate why state isomorphism checking is useful on a small example, shown in
Figure 3.1, that we use also in the later sections. The example is small but typi-
cal for similar situations that arise for example in the chat model [Utting and Leg-
eard, 2006] or when modeling multithreaded applications where threads are treated as
objects [Veanes, Campbell, Schulte and Tillmann, 2005]. The example is written in
C# and uses a modeling library and a toolkit called NModel. The formal definition of
a model program is given in Section 3.2, where it is also explained how the C# code
maps to a model program. NModel is available with source code [NModel, 2007]
and supports the text book [Jacky et al., 2007] that discusses the use of model pro-
grams as a practical modelling technique. All algorithms described in this chapter
have been implemented in NModel.

37

namespace Triangle
{

[Abstract]

enum Side { S1, S2, S3 }

[Abstract]

enum Color { RED, BLUE }

static class Contract
{

static Map<Side, Color> colorAssignments = Map<Side, Color>.EmptyMap;

static bool AssignColorEnabled(Side s)

{ return !colorAssignments.ContainsKey(s); }

[Action]

static void AssignColor(Side s, Color c)

{ colorAssignments = colorAssignments.Add(s, c); }
}

}

Figure 3.1: A model program where a color, either RED or BLUE, is assigned to the
sides of a triangle.

3.1.1 Example

Let us look at a simple model program that describes ways to assign colors to the
sides of a triangle. The model program is given in Figure 3.1. The triangle in the
program has three sides, S1, S2, and S3 and each side can be associated with the
color RED or BLUE. The model program has a single action that assigns a color to
one side at a time. There are (|Color|+1)|Side| = 27 possible combinations of such
assignments, including intermediate steps where some sides have not been colored
yet. There are three sides; each side has three possible values if you count “no color”
as a value.

The state transition graph visualising all possible transitions and all distinct states
of the triangle program is given in Figure 3.2. The numbers of the nodes denote ex-
ploration sequence. In this case the [Abstract] attributes of Side and Color have
not been taken into account and each combination of Side 7→ Color is considered
distinct.

3.2 Definitions

A formal treatment of model programs builds on the ASM theory [Gurevich, 1995]
and can for example be found in [Veanes, Campbell and Schulte, 2007b]. Here we
provide some basic terminology and intuition and illustrate the main concepts with
examples. A state here is a full first-order state, that is intuitively a mapping from a

38

0

3 1 62 45

16 262125 15 20 7 10 982217

19 141218 132423 11

Figure 3.2: The transition system representing the shape of the full state space of the
Triangle example in Figure 3.1. Each combination of Side 7→ Color is considered
distinct and thus the blowup of the state space.

fixed set of state variables to a fixed universe of values. States also have a rich back-
ground [Blass and Gurevich, 2000] that contains sequences, sets, maps, sets of sets,
maps of sets, etc. We assume here that all state variables are nullary.3 For example,
the model program in Figure 3.1 has one state variable colorAssignments.

Since states have a rich background universe they are infinite. However, for rep-
resentation, we are only interested in the foreground part of a state that is the inter-
pretation of the state variables. All values have a term representation. Terms that
do not include state variables are called value terms and are defined inductively over
a signature of function symbols. This signature includes constructors for the back-
ground elements.4 We identify a state with a conjunction of equalities of the form
x = t, where x is a state variable and t a value term.

The interpretation of a value term is the same in all states. Value terms are not
unique representations of the corresponding values, i.e., value terms that are syntac-
tically distinct may have the same interpretation. We say value for a value term when
it is clear from the context that the particular term representation is irrelevant.

For example, a set of integers, containing the values 1, 2, and 3 is represented
by the term Set<int>(1,2,3). The term Set<int>(2,1,3) has the same inter-
pretation. We use a relaxed notation where the arity of function symbols is omitted
but is implicitly part of the symbol. For example Set<int>(1,2) represents a set
containing 1 and 2, so the constructor Set<int> is binary here and ternary in the
previous case. Function symbols are typed. For example, a set containing two sets of
strings Set<string>("a") and Set<string>("b") is represented by the term

Set<Set<string>>(Set<string>("a"),Set<string>("b"))

Model programs typically also have user-defined types that are part of the back-
ground. For example the model program in Figure 3.1 has the user-defined type

3In ASM theory, state variables are called dynamic functions and may have arbitrary arities. Dy-
namic functions with positive arities can be encoded as state variables whose values are maps.

4In ASM theory, these function symbols are called static, their interpretation is the same in all states.

39

Color. This type has two elements Color.RED and Color.BLUE, respectively.
The initial state of this model program is (represented by the equality)

colorAssignments = Map<Side,Color>.EmptyMap.

A user-defined type may be annotated as being abstract, e.g., Color in Figure 3.1
is abstract. Elements of an abstract type are treated as typed reserve elements in the
sense of [Gurevich, 1995]. Intuitively this means that they are interchangeable ele-
ments so that a particular choice must not affect the behavior of the model program.
A valid model program must not explicitly reference any elements of an abstract type.
For example, even though the Color enumeration type provides an operation to re-
turn the string name of a color value, the model program must not use that operation
if color is to be considered abstract. Abstract types are similar to objects5 that are
treated the same way.

An update rule is a collection of (possibly conditional) assignments to state vari-
ables. An update rule p that has formal input parameters x̄ is denoted by p[x̄]. The
instantiation of p[x̄] with concrete input values v̄ of appropriate type, is denoted by
p[v̄]. An update rule p denotes a function [[p]] : States×Valuesn→ States

A guard ϕ is a state dependent formula that may contain free logic variables x̄ =
x1, . . . ,xn, denoted by ϕ[x̄]; ϕ is closed if it contains no free variables. Given values
v̄ = v1 . . . ,vn we write ϕ[v̄] for the replacement of xi in ϕ by vi for 1≤ i≤ n. A closed
formula ϕ has the standard truth interpretation s |= ϕ in a state s. A guarded update
rule is a pair (ϕ, p) containing a guard ϕ[x̄] and an update rule p[x̄]; intuitively (ϕ, p)
limits the execution of p to those states and arguments v̄ where ϕ[v̄] holds.

We use a simplified definition a model program here, by omitting control modes.
The state isomorphism problem is independent of the presence of explicit control
modes. Thus, this simplification does not affect the main topic of this chapter.

A model program P has the following components:

• A finite vocabulary X< of state variables

• A finite vocabulary Σ of action symbols

• An initial state s0 given by a conjunction
V

x∈X x = tx where tx is a value term.

• A reset action symbol Reset ∈ Σ.

• A family (ϕ f , p f) f∈Σ of guarded update rules.

– The arity of f is the number of input parameters of p f .

5By “objects” we mean object IDs. Instance fields associated with objects are considered to be state
variables in their own right and not part of any nested structure. In this way, we can consider only global
variables without loss of generality.

40

– The arity of Reset is 0 and [[pReset]](s) = s0 for all s |= ϕReset.

An action has the form f (v1, . . . ,vn) where f is an n-ary action symbol and each
vi is a value term that matches the required type of the corresponding input parameter
of p f . We say that an action f (v̄) is enabled in a state s if s |= ϕ f [v̄]. An action
f (v̄) that is enabled in a state s can be executed or invoked in s and yields the state
[[p f]](s, v̄).

The model program in Figure 3.1 has a single action symbol AssignColor. The
guard of AssignColor is given by the Boolean function AssignColorEnabled.
The action a = AssignColor(Side.S1, Color.RED) is enabled in the initial
state s0 because AssignColorEnabled(Side.S1) returns true in s0. The execu-
tion of a in s0 yields the state

colorAssignments = Map<Side,Color>(Side.S1 7→ Color.RED).

The unwinding of a model program from its initial state gives rise to a labeled
transition system (LTS). The LTS has the states generated by the unwinding of the
model program as its states and the actions as its labels.

A rooted directed labeled graph, G, is a graph that has a fixed root, has directed edges,
and contains labels of vertices and edges. Such graph can be formally represented as
a triple G = (vr,V,E) where vr ∈V is the root vertex, V is a set of vertices v that are
pairs v = (id, lv), where id is an identifier uniquely determining a vertex in a graph
and lv is the label of the vertex. E is the set of triples (v1.id, le,v2.id) where v1 is the
start vertex, v2 is the end vertex and le is the edge label.

3.3 States as Graphs

In this section we present a graph representation of the state of a model program.
The states of a model program can contain object instances and other complex data

structures, thus we do not deal only with primitive types, such as integers and Boolean
values, but also with instances of objects that can be dynamically instantiated and
refer to other instances of objects. The state space of a model program may be infinite,
but concrete states are finite first order structures. We look at the configuration of
values and object instances that have been assigned to the fields of objects and data
structures contained in the program. We do not consider the the program stack to be
part of the program state as states are only compared between performing actions.

A state is defined by an assignment of term representations of values to fields,
s =

V
x∈X<

x = tx. In the triangle example there is only one state variable and a state
of the model program is represented as colorAssignments =

Map<Side,Color>(Side("S1"),Color("BLUE"),Side("S2"),Color("RED")). There are two
kinds of fields in a model program: global fields, like colorAssignments in the

41

program on Figure 3.1 and fields of dynamically instantiated objects.6 For the sake
of clarity we will here look at states containing global fields and intoduce dynami-
cal instantiations of objects later. Assignments to global fields are simple equations
x = t. It is important to note that it is possible to establish a binary relation of total
ordering, <, of field names. This can be achieved by, for example, ordering the field
names alphabetically.

Algorithm 1 outlines the procedure of creating a graph from a term representation
of a state. In general the procedure is straightforward: the function CreateGraph

creates the graph by analysing the terms corresponding to each state variable x. The
analysis of a term, TermToGraph, adds a mapping of the field identifier to a value to
the label of the parent node, if t denotes a value and adds a new node to the graph,
if t is an object. A specialized procedure is used for creating nodes corresponding to
built-in abstract data types7. In fact, each ADT is handled in a slightly different way.

A Set becomes a node that has the count of its elements in the label of the incom-
ing edge. All outgoing edges of a set are given a label “∈”, denoting membership
in a set. It is possible that the label is extended with more arguments as the set may
contain other sets.

The representation of a bag (or multiset) has a sorted list of element multiplicities
on the incoming label. The label of the edge pointing to each element of a Bag is
labelled by the corresponding multiplicity. In fact, a Bag is a set of pairs, and using a
specialized representation is an optimization that helps to reduce the number of nodes
in the state graph. A Map is also a Set of pairs but can be converted to a reduced
fragment of the graph.

The labellings of outgoing edges may be unique, as in the case of different field
indices of a structure or with objects in a sequence, or unordered, as in the case of a
set.

Thus, it is possible to classify the outgoing edges of a node into ordered and
unordered edges. The graph representations of the abstract data structures Set, Bag,
and Map are summarized in Figure 3.3.

In fact, for the purposes of mathematical reasoning about the state graphs of model
programs, it suffices to consider only two types of nodes: the Set and Pair type.
Instances of the Set type can contain other sets and pairs and all of the edges from Set
to instances constituting its contents are unordered and labelled with “∈”. Instances
of the Pair type, on the other hand, have ordered outgoing edges, labelled f irst and
second that can point to sets and pairs or one to a set and the other one to a pair. Any
object can be represented in terms of a chain of pairs as the fields of the object are
ordered. A Map is a Set of key and value pairs. A Bag is a set of pairs where the f irst
is the element and second is the count. A simplified version of the TermToGraph
function is given in Figure 3.4:

6An instance field can be represented as a global field whose value is a map of objects to their
corresponding field values. In other words, objects don’t “contain” structure but are distinct identities.

7We have omitted the types Pair and Triple from Algorithm 1 as they are special cases of the
type Sequence.

42

Algorithm 1 Pseudocode for generating a rooted labelled directed graph from a state
s of a model program.

CREATEGRAPH(s)
� s – State of the model program in the form s =

V
x∈X<

x = tx

Create an empty rooted labelled directed graph g with root r
for x ∈ X

g = TermToGraph(tx,r, f ieldName(x),g)
return g

TERMTOGRAPH(t, p, f ld,g)
� t – Term
� p – Current parent vertex in the graph
� f ld – Current field
� g – Graph of the state

if t is not an object
then add f ld 7→ t to the label of the parent p

return g
if t. f unctionSymbol == Set

then Create a new vertex setv into g and
add an edge from p to setv with a label
containing f ld and t.argumentCount into g.
for targ ∈ t.arguments

TermToGraph(targ,setv,“ ∈ ”,g)
elseif t. f unctionSymbol == Bag

then Create a new vertex bagv into g.
Create a new bag of counts bagCounts.
for Pair<Term,Term>(targ,count) ∈ t.argumentPairs

TermToGraph(targ,bagv,count,g) bagCounts.Add(count)
Add an edge from p to bagv with a label
containing f ld and a sorted list of bagCounts into g.

elseif t. f unctionSymbol == Map
then for Pair<Term,Term>(key,value) ∈ t.argumentPairs

Create a new vertex maplet into g
TermToGraph(key,maplet,”key”,g)
TermToGraph(value,maplet,”value”,g)
Add an edge from p to maplet with a label
containing f ld and t.argumentPairCount into g

elseif t. f unctionSymbol == Sequence
then Create a new vertex sequencev into g and

add an edge from p to sequencev with a label
containing f ld and t.argumentCount into g.
for targ ∈ t.arguments

TermToGraph(targ,setv, t.currentArgumentIndex,g)
else � t is not a built-in object type

if abstract object ob j corresp. to t. f unctionSymbol and t. f irstArgument, ob j /∈ g
then add ob j into g

Add an edge fom p to ob j with a label containing f ld into g.
return g

43

Obj:1 Obj:2 Obj:3

Set:0

in in in

size(3)

Obj:1 Obj:2 Obj:3

Bag:0

in(2)in(1) in(1)

size(2, 1, 1, 2)

Obj:1

Map:0

key

Obj:2

value

Obj:3

Map:1

value key

size(2) size(2)

Set Bag Map

Figure 3.3: Graph representations of abstract data types used by model programs.

TERMTOGRAPH(t, p, f ld,g)
� t – Term
� p – Current parent vertex in the graph
� f ld – Current field
� g – Graph of the state

if t is not a Pair or Set
then add f ld 7→ t to the label of the parent p

return g
if t. f unctionSymbol == Set

then Create a new vertex setv into g and
add an edge from p to setv with a label
containing f ld and t.argumentCount into g.
for targ ∈ t.arguments

TermToGraph(targ,setv,“ ∈ ”,g)
elseif t. f unctionSymbol == Pair

then Create a new vertex pairv into g and
add an edge from p to pairv with a label
containing f ld into g.
TermToGraph(t.arg1, pairv,“ f irst”,g)
TermToGraph(t.arg2, pairv,“second”,g)

return g

Figure 3.4: Pseudocode for TermToGraph with only Set and Pair data types.

There are graphs representing some of the states of the Triangle example in Figure
3.5. The state graphs have been generated using the procedure outlined in Algorithm
1. These state graphs correspond to the states 11, 12, and 14 of the triangle example
in Figures 3.2 and 3.6. State 14 is isomorphic to state 12 but neither 12 nor 14 is
isomorphic to 11. The abbreviation cA stands for colorAssignments and (3)

denotes that there are 3 key-value pairs in the map.

44

S1

Map:0

key

RED

value

S2

Map:1

valuekey

S3

Map:2

value key

Root:1

cA(3) cA(3) cA(3)

S1

Map:0

key

BLUE

value

REDS2

Map:1

valuekey

S3

Map:2

value key

Root:1

cA(3) cA(3) cA(3)

S1

Map:0

key

RED

value

S2

Map:1

key

BLUE

value

S3

Map:2

value key

Root:1

cA(3) cA(3)cA(3)

State 11 State 12 State 14

Figure 3.5: State graphs of states 11, 12, and 14 of the triangle example on Fig. 3.2
and Fig. 3.6. State 14 is isomorphic to state 12 but neither 12 nor 14 is isomorphic to
11. The abbreviation cA stands for colorAssignments and (3) denotes that there
are 3 key-value pairs in the map.

Figure 3.6 illustrates the effects of isomorphism-based symmetry reduction ap-
plied to the triangle example. The state graph on the left shows at which stages of the
search isomorphic states were encountered. A dashed arrow points to a previously
encountered state that is isomorphic to the state the arrow starts from. The graph on
the right is obtained by showing a representative example of a family of isomorphic
states.

0

5 2 4 6 3

1

8 10

7 9

11 12

13 14

0

1
S3 -> RED

7
S3 -> RED
S2 -> RED

9
S3 -> RED

S2 -> BLUE

12
S3 -> RED
S2 -> RED

S1 -> BLUE

11
S3 -> RED
S2 -> RED
S1 -> RED

a) b)

Figure 3.6: State space of the Triangle example from Fig. 3.1, where exploration
of isomorphic states has been pruned. The dashed lines on a) exhibit encounters of
isomorphic states during exploration, b) exhibits the structure of the state graph when
isomorphic states are collapsed.

45

3.3.1 Field Maps

As mentioned earlier, objects are just abstract IDs or reserve elements. So how do we
deal with fields of objects? Fields of objects are represented by state variables, called
field maps, whose values are finite maps from objects of the given type to values of
the given field type.8 From the symmetry reduction point of view, field maps are
handled in the same way as map-valued state variables. A difference compared to
other map-valued state variables is that field maps can not be referenced as values
inside a model program, which can be used to simplify the graph representation of a
state.

namespace Triangle
{

[Abstract]

enum Color { RED, BLUE }

class Side : LabeledInstance<Side> { public Color color; }

static class Contract
{

static Set<Side> sides = Set<Side>.EmptySet;

[Action]

static void AssignColor([New] Side s, Color c)

{
s.color = c;

sides = sides.Add(s);

}

static bool AssignColorEnabled(Side s)

{ return sides.Count < 3; }
}

}

Figure 3.7: A version of the triangle model where sides are objects. The
AssignColor action is enabled if not all sides have been colored. The New key-
word indicates that the side is a new object (reserve element).

In order to illustrate field maps, consider a version of the triangle example, shown
in Figure 3.7, where sides are instances of a class Side. The fact that sides are reserve
elements is indicated by the base class. This model program has two state variables,
sides and color, where color is a field map. In the initial state, both color and
sides are empty. When a color c is assigned to a side s, the color map gets a
new entry s 7→ c. For example, the state of the triangle where all sides have been
coloured blue has the following representation:

8The name of a field map is uniquely determined from the fully qualified name of the class and the
name of the field.

46

color = Map(Side(1),Color("BLUE"),Side(2),Color("BLUE"),Side(3),Color("BLUE"))
sides = Set(Side(1),Side(2),Side(3))

The presented approach is also extended to states resulting in the composition of
model programs, as presented in [Veanes, Campbell and Schulte, 2007b]. The root
of a state of a composition of model programs becomes a set of two rooted graphs
that may share objects.

Intuitively, field maps represent arrows between objects. Thus, it is possible to
rewrite the CreateGraph procedure of Algorithm 1 in the following way to produce
arrows between objects rather than extra maplets stemming from the root node point-
ing to instance and the value nodes of the maplets of the field map.

CREATEGRAPH(s)
� s – State of the model program in the form s =

V
x∈X<

x = tx
� Create an empty rooted labelled directed graph g with root r
for x ∈ X ∧ x is not a fieldmap

g = TermToGraph(tx,r, f ieldName(x),g)
for x ∈ X ∧ x is a fieldmap

g = FieldMapToGraph(tx,r, f ieldName(x),g)
return g

FIELDMAPTOGRAPH(t,r,n,g)
if t has more than zero arguments

for (Instance,Value) ∈ t.ArgumentPairs
v = CreateOrGetInstanceNode(Instance,g)
g = TermToGraph(Value,v,n,g)

return g

3.4 Isomorphism Checking

Unlike arbitrary graphs, state graphs are rooted and encode state information in a
way that partially reflects the underlying static structure of a program. For example,
all objects of a given type have a fixed set of fields that are ordered alphabetically.
Several built-in ordered data types, such as sequences and pairs, also have an order of
the elements contained in them according to their position. Moreover, user-defined
types, other than abstract types, have a fixed alphabetical order of fields. A typical
model program uses both ordered and unordered data structures. As explained above,
the resulting state graph includes both ordered and unordered edges.

Our intent was to devise an algorithm for graph isomorphism that takes advantage
of the ordered edges as much as possible while handling the unordered cases as a
last resort through backtracking. The starting point is that all vertices of the graph
have been given strong labels through object ID-independent hashing that already
reduces the possible pairings of vertices dramatically. In the case when all edges are
ordered the algorithm should not do any backtracking at all. The basic idea of the

47

algorithm is an extension of the linearization algorithm used in Symstra [Xie et al.,
2005] with backtracking. The algorithm reduces to linearization when the graphs
that are being compared are fully ordered, i.e. have no unordered edges. A small
difference compared to Symstra is that the linearizations are computed and compared
simultaneously for the two graphs as depth first walks, rather than independently and
then compared.

3.4.1 Linearization with Backtracking

The following is an abstract description of the algorithm. Given are two state graphs
G1 and G2. The algorithm either fails to produce an isomorphism or returns an iso-
morphism from G1 to G2. The abstract description of the algorithm is non-deterministic.
In the concrete realization of the algorithm the choose operation is implemented
through backtracking to the previous backtrack point where more choices were pos-
sible. The details of the particular backtracking mechanism are omitted here.

We say that an edge with label l is an l-edge. The edge labels that originate from
ordered background data structures are called functional. It is known that for all
functional edge labels l and for all nodes x, there can be at most one outgoing l-edge
from x. Other edge labels are called relational.

Bucketing: Compute a “bucket map” Bi for all nodes in Gi, for i = 1,2. Each node
n in Gi with label l is placed in the bucket Bi(l). If either B1 and B2 do not
have the same labels and the same sizes of corresponding buckets for all labels
then fail. Otherwise execute Extend(/0,r1,r2), where ri is the root of Gi, for
i = 1,2.

Extend(ρ,x1,x2): Given is a partial isomorphism ρ and isomorphism candidates x1
and x2. If x1 and x2 have distinct labels then fail, else if x1 is already mapped
to x2 in ρ then return ρ, else if either x1 is in the domain of ρ or x2 is in the
range of ρ then fail, else let ρ0 = ρ∪{x1 7→ x2} and proceed as follows.

Let l1, . . . , lk be the outgoing edge labels from x1 ordered according to a fixed
label-order.9 For j = 1, . . . ,k,

• For i = 1,2, choose l j-edges (xi,yi) in Gi for some yi.
If Extend(ρ j−1,y1,y2) fails then fail, else let ρ j = Extend(ρ j−1,y1,y2).

Return ρk.

The corresponding pseudocode is given in Algorithm 2. The pseudo-code is more
detailed than the previous description as it distinguishes the functional and relational
edges. The non-deterministic choice function that is implemented using backtracking
is called chooseTargetNode in Algorithm 2 and is used only with relational edges.

9At this point we know that x2 must have the same outgoing edge labels in G2 as x1 has in G1 or
else x2 would have a different label than x1.

48

Algorithm 2 Pseudocode for computing the isomorphism of two rooted labelled di-
rected graphs

COMPUTEISOMORHISM(G1,G2)
� ρ – an isomorphism mapping of the graphs G1 and G2.
� B – Bucketing, a helper class providing functions used in Extend.

if ComputeBucketing succeeds
then if ρ = Extend(/0,G1.root,G2.root) succeeds

then return ρ

return failed

COMPUTEBUCKETING(G1,G2)
Create an empty maps of type Map<Label,Set<Node>> B1 and B2
for i ∈ {1,2}

for node n ∈ Gi
if Bi.containsLabel(n.label)

then Bi[n.label] = Bi[n.label].Add(n)
else Bi = Bi.Add(n.label,new Set<Node>(n))

if label sets of B1 and B2 do not match
then return fail

if node counts in bucket maps B1 and B2 do not match
then return fail

return new Bucketing(B1,B2,G1,G2)

EXTEND(ρ,x1,x2)
� ρ – Partial isomorphism
� x1,x2 – Isomorphism candidates

if x1 and x2 have distinct labels
then return fail

if {x1 7→ x2} ∈ ρ

then return ρ

if x1 ∈ Domain(ρ)∨ x2 ∈ Range(ρ)
then return fail

ρ0 = ρ∪{x1 7→ x2}
k = 0
for l f ∈ FunctionalOutgoingEdgeLabels(x1)

if Extend(ρk,x1.getTargetNode(l f),x2.getTargetNode(l f)) fails
then return fail
else ρk+1 = Extend(ρk,x1.getTargetNode(l f),x2.getTargetNode(l f))

k = k +1
for lr ∈ RelationalOutgoingEdgeLabels(x1)

for xr ∈ x1.getTargetNodes(lr)
if Extend(ρk,xr,x2.chooseTargetNode(lr)) fails

then return fail
else ρk+1 = Extend(ρk,xr,x2.chooseTargetNode(lr))

k = k +1
return ρk

49

Notice that the algorithm is deterministic and reduces to linearization when all
choices are made from singleton sets. A sufficient (but not necessary) condition for
this to be true is when all edge labels are functional. A heuristic we are using in the
implementation of this algorithm is that all functional edge labels appear before all
relational edge labels in the label-order that is used in the algorithm.

The implementation of the algorithm has also some optimizations when backtrack
points can be skipped, that have been omitted in the above abstract description. One
particular optimization is the following. When there are multiple l-edges outgoing
from a node x for some fixed relational edge label l, but all of the target nodes of
those edges have the same label and degree 1, then an arbitrary but fixed order of
the edges can be chosen that uses the order of the node labels and choice points can
be cut. The algorithm bears certain similarities to the practical graph isomorphism
algorithm in [McKay, 1981], by using a partitioning scheme of nodes that eliminates
a lot of the backtracking. The algorithm has been implemented in NModel.

3.5 State Isomorphism in the Dining Philosophers Example

Let us now build some intuition of what was presented in previous sections by look-
ing at the Dining Philosophers example specified in Chapter 2. The scalar set based
symmetry reduction does not help in the dining philosophers model, because the
philosophers are arranged in a restricted topology: not all philosophers have access
to all forks. Modelling such topology would require setting up some constraints on
the scalar sets but this is not allowed by the definition of the scalar sets. NModel
comes with a graphical tool called mpv.exe10 for exploring model programs. We as-
sume that the code given in Figures 2.4, 2.5, and 2.6 is in a single file called Phils.cs.
We can compile the example with the following command line using the Mono com-
piler
gmcs /out:Phils.dll /t:library /r:NModel.dll Phils.cs

and with the following command line using the C# compiler in the .Net SDK 2.0 by
Microsoft:
csc /out:Phils.dll /t:library /r:NModel.dll Phils.cs

The philosophers model can be opened in the model program viewer, mpv.exe,
using the following command line:
mpv.exe /r:Phils.dll DiningPhilosophers.Contract.Create

Model program viewer displays the labelled transition system that results in run-
ning the model program until the whole state space has been covered or the maximum
number of transitions to explore has been exceeded. By default the transition limit is
100, but it can be changed from the Advanced properties panel.

10mpv.exe is the only tool in the NModel toolkit that runs only in Microsoft Windows as it builds
on the GDI interface. The modelling libary and other tools have been tested to work with an open source
implementation of .Net and C# compiler called Mono version 1.2.3 and above.

50

0

1

Init()

4

TakeLeft(Phil(2))

3

TakeLeft(Phil(3))

2

TakeLeft(Phil(1))

13

TakeLeft(Phil(1))

20

TakeRight(Phil(2))

7

TakeLeft(Phil(3))

6

TakeLeft(Phil(1))

5

TakeRight(Phil(3))TakeLeft(Phil(2))

TakeLeft(Phil(3))

12

TakeRight(Phil(1))

TakeLeft(Phil(2))

10

TakeLeft(Phil(2))

15

TakeRight(Phil(1))

14

ReleaseLeft(Phil(1))

TakeLeft(Phil(3))

19

TakeRight(Phil(2))

TakeLeft(Phil(3))

22

ReleaseLeft(Phil(2))

ReleaseRight(Phil(2))

25

TakeRight(Phil(1))

ReleaseRight(Phil(2))

26

ReleaseLeft(Phil(1))

ReleaseRight(Phil(2))

21

ReleaseRight(Phil(1))

ReleaseRight(Phil(1))

16

TakeLeft(Phil(3))

ReleaseRight(Phil(2))

TakeLeft(Phil(1))

ReleaseRight(Phil(1))

17

TakeRight(Phil(3))

18

ReleaseLeft(Phil(3))ReleaseRight(Phil(1))

ReleaseRight(Phil(3))

8

ReleaseRight(Phil(1))ReleaseLeft(Phil(3))

9

TakeLeft(Phil(2))

ReleaseRight(Phil(3))

11

TakeLeft(Phil(2))

ReleaseLeft(Phil(3))

ReleaseRight(Phil(3))

23

TakeRight(Phil(2))

ReleaseRight(Phil(3))

24

ReleaseLeft(Phil(2))

TakeLeft(Phil(1))

ReleaseLeft(Phil(2))ReleaseRight(Phil(3))ReleaseRight(Phil(2))

ReleaseLeft(Phil(1))

TakeLeft(Phil(1)) TakeRight(Phil(3))

Figure 3.8: A transition system representing the full state space of the dining philoso-
phers model program introduced in Figure 2.5.

51

When the dining philosophers example with 3 philosophers is opened in mpv.exe
the user will see a graph representing the state space of the model program. The
transition system is given in Figure 4.1.

The graphical user interface of the mpv.exe is in Figure 3.9.

Figure 3.9: The graphical user interface of mpv.exe during exploration of the dining
philosophers example.

One can look at the values of the global fields and field maps of the object fields at
a model program location by selecting the corresponding node and opening the state
viewer toolbox. The variables mode and phils are global fields, the fields left,
right, and state are the fields of the instances of Philosopher, and the field
hasMe is the field of the instances of Fork. The [Domain Map] is a built in field
that is used for providing fresh abstract object IDs for new instances of objects.

The state isomorphism visualisation can be invoked by selecting ExcludeIsomor-
phicStates from the advanced properties panel, which appears when the appropriate
button from the toolbar is pressed. In Figure 3.10 one can find the transition system
representing the state space when state isomorphism checking has been switched on.

Figure 3.11 depicts the family of isomorphic states in the dining philosophers
example and is obtained by collapsing all isomorphic states into one.

In Figure 3.12 a) there is the state graph of the state where all philosophers are
thinking. The state graph in Figure 3.12 b) is the deadlock state where all philoso-
phers have acquired one fork and cannot proceed. Obviously these states have distinct
structure and are not isomorphic.

In Figure 3.13 there are the state graphs of states where one philosopher has
aquired one fork. In the both cases the concrete philosopher having a fork is dif-
ferent, but the structure of the states is isomorphic.

In Figure 3.14 there are some experimental results of the effects of state isomor-
phism based symmetry reductions. We can see that the number of structurally distinct
states grows much slower than the number of states in the system. Memory consump-
tion is also lower in the symmetric case than in the explicit case, but processor time
utilisation grows very fast with the number of philosophers. The latter indicates that
the current implementation of linearisation is not good enough for larger models as

52

0

1

Init()

3

TakeLeft(Phil(3))

4

TakeLeft(Phil(2))

2

TakeLeft(Phil(1))

IsomorphicTo()IsomorphicTo()

6

TakeLeft(Phil(3)) 7

TakeLeft(Phil(2))

5

TakeRight(Phil(1))

8

TakeRight(Phil(1))

9

TakeLeft(Phil(2))

IsomorphicTo()

TakeLeft(Phil(3))

10

ReleaseLeft(Phil(1))

11

ReleaseLeft(Phil(1))

ReleaseRight(Phil(1))

TakeLeft(Phil(3))

ReleaseRight(Phil(1))

12

TakeRight(Phil(3))

14

ReleaseRight(Phil(1))

13

ReleaseLeft(Phil(3))

IsomorphicTo()

ReleaseRight(Phil(3))15

ReleaseRight(Phil(1))

IsomorphicTo()

Figure 3.10: A transition system representing the state space of the dining philoso-
phers model program with isomorphic state detection switched on.

53

0

1

Init()

2,3,4

TakeLeft(Phil(1))
TakeLeft(Phil(2))
TakeLeft(Phil(3))

6,7

TakeLeft(Phil(2))
TakeLeft(Phil(3))

5,14

TakeRight(Phil(1))

8

TakeRight(Phil(1))

9

TakeLeft(Phil(2))

TakeLeft(Phil(3))

10,15

ReleaseLeft(Phil(1))

11

ReleaseLeft(Phil(1)) ReleaseRight(Phil(1))

TakeLeft(Phil(3))

ReleaseRight(Phil(1))

12

TakeRight(Phil(3))

ReleaseRight(Phil(1))

13

ReleaseLeft(Phil(3))

ReleaseRight(Phil(1))
ReleaseRight(Phil(3))

Figure 3.11: A transition system representing the family of isomorphic states in the
dining philosophers example.

54

Root()

Set(1)

phils(3)

Philosopher(3)

in

Philosopher(2)

in

Philosopher(1)

in

Fork(1)

right

Fork(3)

left

Fork(2)

left rightleft right

�

Root()

Set(1)

phils(3)

Philosopher(3)

in

Philosopher(1)

in

Philosopher(2)

in

Fork(3)

left

Fork(1)

right

Fork(2)

right

left

right

left

hasMe

hasMe

hasMe

a) b)

Figure 3.12: The state graphs of the dining philosophers example: a) The state where
all forks are on the table. b) The deadlock state where each philosopher has one fork.

55

Root()

Set(1)

phils(3)

Philosopher(1)

in

Philosopher(2)

in

Philosopher(3)

in

Fork(1)

left

Fork(2)

right

Fork(3)

rightleftleftrighthasMe

∼=

Root()

Set(1)

phils(3)

Philosopher(3)

in

Philosopher(1)

in

Philosopher(2)

in

Fork(3)

left

Fork(1)

right

Fork(2)

rightleftright lefthasMe

a) b)

Figure 3.13: Isomorphic states with sequence numbers 2 (a) and 3 (b) from the dining
philosophers example.

isomorphism checks need to carry out a substantial amount of backtracks. Improving
the implementation is planned as a future pursuit.

It should be mentioned that the symmetries exhibited by the dining philosophers
example are not total symmetries, i.e., the symmetry is dependent on the topology of
the arrangement of philosophers. Thus, it is not possbile to exploit such symmetries
in the symmetry reductions built on scalar sets, as is the corresponding implementa-
tion of Uppaal [Hendriks, Behrmann, Larsen, Niebert and Vaandrager, 2003].

3.6 Conclusion

In this chapter we showed how state isomorphism for states with both unordered
structures and objects may be understood in the context of model programs. We re-
viewed how the concept of background structures and reserve elements can formalise
the meaning of isomorphism for program states. We then described how to represent
state as a rooted directed labeled graph so that existing isomorphism algorithms could
be applied. We showed an isomorphism-checking algorithm that takes advantage of
the information contained in states with elements drawn from a rich background uni-
verse. Finally we showed how the state isomorphism reduction influences the dining
philosophers example.

The techniques in this chapter can be applied in a variety of industrially relevant
modeling and testing contexts and are motivated by practical concerns that arose from
the industrial use of the Spec Explorer tool in Microsoft.

While this current chapter gives a solid notion how program states of object-
oriented programs can be viewed as graphs, it also leads to a number of interesting
open problems. For example, how can one speed up isomorphism checking for the
particular graphs of program states? Would it be useful to describe graph isomor-

56

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

2 3 4 5 6 7 8 9

N
um

be
r

of
 s

ta
te

s

Number of philosophers

Full search
Isomorphism reduction

 0

 20000

 40000

 60000

 80000

 100000

 120000

2 3 4 5 6 7 8 9

N
um

be
r

of
 tr

an
si

tio
ns

Number of philosophers

Full search
Isomorphism reduction

 0

 100

 200

 300

 400

 500

 600

 700

2 3 4 5 6 7 8 9

M
em

or
y

co
ns

um
pt

io
n

(M
B

)

Number of philosophers

Full search
Isomorphism reduction

 0

 500

 1000

 1500

 2000

 2500

 3000

2 3 4 5 6 7 8 9

T
im

e
of

 e
xp

lo
ra

tio
n

(s
ec

)

Number of philosophers

Full search
Isomorphism reduction

Figure 3.14: The effects of symmetry reductions for dining philosopher problem with
different number of philosophers.

57

phism as a SAT problem? How could this be accomplished?
As future work, we plan on showing how hashing techniques can be used to im-

prove the performance of isomorphism checks for larger numbers of states.
There is one drawback in the state isomorphism approach presented here. The

problem is that state isomorphism is calculated on every transition, i.e., even if we
have perfect linearisation, the processing time increases when we have larger models.
Thus the next chapter looks at a different approach for state space reduction that
sacrifices completeness but is applicable on very large examples.

58

CHAPTER 4

ITERATED SEARCH REFINEMENT
WITH BITSTATE PRUNING

In this chapter we present a simple method of iterated search refinement where
bitstate hash tables are used for pruning the search space during individual iterations
of running explicit state model checking tasks. The method enables to apply model
checking for larger models than full state space search or previously known bitstate
hashing and Bloom filters based methods would allow due to very large memory
requirements.

4.1 Introduction

It is desirable to model software and systems in a way that renders itself to automated
analysis. Logic model checking is one of such automated analyses that has been
proven to be useful and applicable on practical systems. In the case of explicit state
model checking the method enumerates potentially all states of the system that are
reachable from the initial state and checks whether properties specified by the user
hold in the model. If a state violating the desired properties is found, model checker
produces a trace to the error state thus easing the debugging of why it was possible
to reach such state. Still, due to state space explosion, it is easy to construct models
which have state spaces intractable with the state enumeration approach.

In recent years model checking has also been applied in different contexts, for
example planning and scheduling where the target of search is not finding an error
but finding a valid trace to the desired state. In either case, when we find an error
or when we look for a plan satisfying the constraints set by our model, it is typically
desirable to find an as short as possible witness trace.

A number of methods has been devised for reducing the number of states that
needs to be enumerated for proving a property with model checking. The most no-
table of such methods in explicit state model checking are partial order and symmetry
reduction methods that prune the search space by reducing the number of state permu-
tations that needs to be considered for proving certain properties. In addition, there
are a number of methods that sacrifice completeness for resources, i.e. the need for

59

memory and cpu time is reduced by approximations that may overlook some states
that are reachable in the model. Examples of such methods in explicit state model
checking are bitstate hashing and hash compaction.

In bitstate hashing only a single bit per state is stored in the table of already visited
states at an address calculated by a hash function from the full state vector. Such
method drastically reduces the need for memory for storing the state already seen but
introduces the possibility that calculating the hash value of two distinct states yields
a coinciding address in the hash table. In such case the state encountered later in
the search is falsely considered as seen and thus parts of the state space may remain
uncovered by the search. This typically motivates increasing the size of the bitstate
hash table thus reducing the probability of omissions. Methods of multihash and
Bloom filters further refine reducing the probabilities of omissions in cases where the
number of bits in the hash table is of larger order of magnitude than the number of
reachable states of the model.

We take a different perspective on the bitstate hashing method. The hash table
is both in previous and our approaches used for distinguishing already seen states
from those not yet encountered. If we set the hash table to be much smaller than the
expected state space of the system, the bitstate hash table together with the search
algorithm prunes the full search tree since collisions are bound to happen. We will
see later in the chapter, that by changing the hash function the search tree gets pruned
in a random fashion, thus covering different parts of the search tree in different runs.
The same phenomenon is utilised in a different way in the Bloom filters approach
where the probability of collisions is lowered by storing more than one bit per state
at addresses calculated by independent hash functions. The fundamental difference
with our case is that we populate hash tables independently and potentially by tasks
running in parallel on a different cpu core or cluster node.

Another effect of the intentionally small bitstate hash table is that we bound the
depth of the search by the size of the hash table. Intuitively the maximum depth of
the search is the number of states we are able to distinguish — the number of bits
in the bitstate hash table. In practice the maximum depth reached is always smaller
than the size of the hash table. Combination of such effect and depth first search yiels
significantly shorter witness traces than with regular depth first search. Thus the
method can also be used for shortening witness traces found with depth first search
of unpruned state space.

We show that such method can find traces to error or goal states in several large
models from the Benchmarks for Explicit Model Checkers (BEEM) database [Pelánek,
2007] by presenting results obtained by running a prototype implementation that runs
such iterations in parallel on the available number of processor cores. We present the
results obtained by a prototype implementation of the iterated search refinement with
bitstate pruning using an appropriately patched instance of the Spin model checker.
We also give a reference to an experiment of the effects of guiding in the context of
iterated search refinement with bitstate pruning by using Uppaal-Cora.

60

Example

We will reuse the dining philosophers example introduced in Chapter 2. For experi-
ments with Spin we will use models of the dining philosophers that are crafted in the
same manner as in Figure 2.2.

Figure 4.1 shows the finite state automaton representing the full state space and all
possible transitions of the three dining philosophers model. We reduced the number
of philosophers from five to three for the purpose of visualising the effects of iterated
search refinement with bitstate pruning. There are 26 states and 52 transitions in the
model with 3 philosophers and there are 242 states and 806 transitions in the model
with 5 philosophers.

Initial state

P1(T),0,P2(T),0,P3(T),0

Initialise()

P1(T),1,P2(W),0,P3(T),0

TakeL(P2)

P1(T),0,P2(T),1,P3(W),0

TakeL(P3)

P1(W),0,P2(T),0,P3(T),1

TakeL(P1)

P1(W),1,P2(W),0,P3(T),1

TakeL(P1)

P1(T),1,P2(E),1,P3(T),0

TakeR(P2)

P1(T),1,P2(W),1,P3(W),0

TakeL(P3)

P1(W),0,P2(T),1,P3(W),1

TakeL(P1)

P1(T),0,P2(T),1,P3(E),1

TakeR(P3)TakeL(P2)

TakeL(P3)

P1(E),1,P2(T),0,P3(T),1

TakeR(P1)

TakeL(P2)

P1(E),1,P2(T),1,P3(W),1

TakeR(P1)

P1(W),1,P2(W),1,P3(W),1

TakeL(P2)

P1(F),1,P2(T),0,P3(T),0

PutL(P1)

TakeL(P3)

P1(W),1,P2(E),1,P3(T),1

TakeR(P2)

TakeL(P3)

P1(W),0,P2(F),1,P3(T),1

PutL(P2)

PutR(P2)

P1(E),1,P2(F),1,P3(T),1

TakeR(P1)

PutR(P2)

P1(F),1,P2(F),1,P3(T),0

PutL(P1)

PutR(P2)

P1(T),0,P2(F),1,P3(T),0

PutR(P1)

PutR(P1)

P1(F),1,P2(T),1,P3(W),0

TakeL(P3)

PutR(P2)

TakeL(P1)

PutR(P1)

P1(F),1,P2(T),1,P3(E),1

TakeR(P3)

P1(F),1,P2(T),0,P3(F),1

PutL(P3)PutR(P1)

PutR(P3)

P1(T),0,P2(T),0,P3(F),1

PutR(P1)PutL(P3)

P1(T),1,P2(W),1,P3(E),1

TakeL(P2)

PutR(P3)

P1(T),1,P2(W),0,P3(F),1

TakeL(P2)

PutL(P3)

PutR(P3)

P1(T),1,P2(E),1,P3(F),1

TakeR(P2)

PutR(P3)

P1(T),0,P2(F),1,P3(F),1

PutL(P2)

TakeL(P1)

PutL(P2)PutR(P3)PutR(P2)

PutL(P1)

TakeR(P3)TakeL(P1)

Figure 4.1: Transition system representing the full state space of the dining philoso-
phers example with 3 philosophers. Philosophers are denoted by P1, P2, and P3.
Philosopher states are thinking (T), waiting (W), eating (E), and finishing (F).

61

4.2 Related Work

There is a version of iterated search refinement built into Spin [Holzmann, 2003]. It
is possible to pass a -i or -I command line key to the checker to iteratively reduce
the depth of the witness trace. The method leads to the shortest possible path if there
are sufficient resources for performing the search. In most larger cases considered
in the current chapter, such approach did not succeed because of the exhaustion of
memory resources.

Iterated search refinement is briefly mentioned in [Holzmann and Smith, 2000].
We build on the idea and extend it with the surprising result that in many cases it
suffices to distinguish only a fraction of different states in the reachable state space
of a model to find a trace to state exhibiting the property we are interested in.

Gerard J. Holzmann describes a sequential multihash method in [Holzmann, 1998],
where the hash table is populated by independent hash functions under each iteration.
The idea is similar to the iterated search refinement with bitstate pruning with the dis-
tinction that we overpopulate the hash table on purpose and exploit hash collisions
for searching only a part of the total search space under each iteration. For us the
bitstate hash table acts as a random pruning function. Gerard J. Holzmann also refers
to Bloom filters named after Burton H. Bloom [Bloom, 1970], which permit to lower
the probability of hash collisions in relatively empty hash tables by storing more
than one bit per state. Gerard J. Holzmann chose to use double hashing for Spin
[Holzmann, 2003].

In [Dillinger and Manolios, 2004b], Peter C. Dillinger and Panagiotis Manolios
improve the double hashing method of Spin that is based on Jenkins’ [Jenkins, 1997]
hash function. In [Dillinger and Manolios, 2005] the method is further developed
and implemented in 3Spin and 3Murphi [Dillinger and Manolios, 2004a]. They do
not consider overpopulating the hash table on purpose but improve the efficiency of
using Bloom filters in Spin. They also show that although using hash table sizes of
powers of 2 has a certain performance advantage as the MOD function becomes bit
masking during compilation, the impact of using arbitrary sizes does not have that
great impact.

Bloom filters act in a direction unfavourable to iterated search refinement with
bitstate pruning.

The current approach has similarities with the re-initialisation enhancement of
the random walk method described in [Pelánek, Hanžl, Černá and Brim, 2005], but
our method has native support for trace generation and uses either depth first search
or random best depth first search [Behrmann, Larsen and Rasmussen, 2004] in the
guided case. The randomness is due to pruning the search space with Bloom filters
and in the guided case additionally due to the random factor in the random best depth
first search. In [Barnat, Brim and Chaloupka, 2003] parallel breadth first search for
LTL model checking is discussed. Our approach, when run in parallel, runs depth
first search on different partially overlapping parts of the state space bounded by the
size of the hash table. Additionally, when the hash table becomes large enough, it

62

will facilitate search of the full state space with some probability. Ways to calculate
this probability are discussed in [Holzmann, 1998].

4.3 Bitstate Hashing

Model checking in general involves searching possibly very large state spaces for
proving or disproving a query — a formula typically in some temporal logic. Bit-
state hashing [Holzmann, 1998], also known as supertrace, is a well known method
in explicit state model checking for reducing memory requirements of storing the
traversed state space by storing only a single bit for each seen state at the address
calculated by a hash function. The method has the feature of the possibility of hash
collisions that will result in unexplored parts of the state space, rendering the method
to be incomplete. Still, if a state exhibiting a property of interest is reached, the trace
produced is a valid trace in the model. Thus bitstate hashing is sound, i.e. it does not
yield false positives. In general, the bigger the hash table, the lower the probability
of hash collisions. But big bitstate hash tables may still require unavailable amounts
of memory.

The general significance of reachability checks has been outlined in [Aceto et al.,
2003]. Even if it is not possible to prove unreachability, fast reachability checks on
formal models that yield a valid trace have applications in, for example, some types
of planning and scheduling [Hune et al., 2001; Wijs et al., 2005; Ruys, 2003], test
generation [Hamon et al., 2004b; Ernits et al., 2006], software/hardware synthesis
[Ernits, 2005], and in debugging [Mercer and Jones, 2005].

Let us have a look at the example with three dining philosophers in Figure 4.1.
Let us assume that the states of a single philosopher are encoded using two bits in
the following way thinking = 00, waiting = 01, eating = 10, and f inishing = 11. A
fork is encoded using a single bit. If a fork is picked up it is 1 and if it is on the table
it is 0. The state vectors of the dining philosophers example with 3 philosophers are
given in Table 4.1. In the right part of the table there are the addresses of respective
states in a bitstate hash table obtained by calculating the division remainder (mod) of
the state. of the size indicated in the column header. The red (grey) numbers indicate
which states are reachable with depth-first (DF) and breadth-first (BF) search. If we
consider the states encountered during all separate DF searches, we get that by using
5 to 12 bits for distinguishing states in the model we encountered 17 of the total
26 states. This is the key to iterated search refinement with bitstate pruning. The
deadlock state (10) was first encountered when the bitstate hash table was just 7 bits.

In this small example the difference between breadth-first and depth-first search
does not show very clearly. The only difference is that breadth-first search encoun-
tered just 14 states of the total 26 over the searches. Experiments show that depth-first
search performs far better for bitstate pruning than breadth-first search. The intuition
is that depth first search will end up in deeper random corners of the search space
due to bitstate pruning while breadth-first search fills up the bitstate hash table by
reaching much shallower depths.

63

Table 4.1: State vectors of the dining philosophers example and reachable states using
depth-first (DF) and breadth-first (BF) search with different bitstate hash table sizes
in bits.

Address in bitstate hash table and search coverage

State St
at

e
nu

m
be

r

B
it

1
of

P1
B

it
0

of
P1

Fo
rk

1
B

it
1

of
P2

B
it

0
of

P2
Fo

rk
2

B
it

1
of

P3
B

it
0

of
P3

Fo
rk

3

St
at

e
as

a
de

ci
m

al
5

D
F

5
B

F
6

D
F

6
B

F
7

D
F

7
B

F
8

D
F

8
B

F
9

D
F

9
B

F
10

D
F

10
B

F

11
D

F

11
B

F

12
D

F

12
B

F

P1(T),0,P2(T),0,P3(T),0 1 0
P1(W),0,P2(T),0,P3(T),1 2 0 1 0 0 0 0 0 0 1 129 4 4 3 3 3 3 1 1 3 3 9 9 8 8 9 9
P1(T),0,P2(T),1,P3(W),0 3 0 0 0 0 0 1 0 1 0 10 0 0 4 4 3 3 2 2 1 1 0 0 10 10 10 10
P1(T),1,P2(W),0,P3(T),0 4 0 0 1 0 1 0 0 0 0 80 0 0 2 2 3 3 0 0 8 8 0 0 3 3 8 8
P1(T),0,P2(T),1,P3(E),1 5 0 0 0 0 0 1 1 0 1 13 3 3 1 1 6 6 5 5 4 4 3 3 2 2 1 1

P1(W),0,P2(T),1,P3(W),1 6 0 1 0 0 0 1 0 1 1 139 4 4 1 1 6 6 3 3 4 4 9 9 7 7 7 7
P1(T),1,P2(W),1,P3(W),0 7 0 0 1 0 1 1 0 1 0 90 0 0 0 0 6 6 2 2 0 0 0 0 2 2 6 6
P1(T),0,P2(T),0,P3(F),1 8 0 0 0 0 0 0 1 1 1 7 2 2 1 1 0 0 7 7 7 7 7 7 7 7 7 7
P1(T),1,P2(W),1,P3(E),1 9 0 0 1 0 1 1 1 0 1 93 3 3 3 3 2 2 5 5 3 3 3 3 5 5 9 9

P1(W),1,P2(W),1,P3(W),1 10 0 1 1 0 1 1 0 1 1 219 4 4 3 3 2 2 3 3 3 3 9 9 10 10 3 3
P1(T),1,P2(W),0,P3(F),1 11 0 0 1 0 1 0 1 1 1 87 2 2 3 3 3 3 7 7 6 6 7 7 10 10 3 3
P1(E),1,P2(T),0,P3(T),1 12 1 0 1 0 0 0 0 0 1 321 1 1 3 3 6 6 1 1 6 6 1 1 2 2 9 9

P1(W),1,P2(W),0,P3(T),1 13 0 1 1 0 1 0 0 0 1 209 4 4 5 5 6 6 1 1 2 2 9 9 0 0 5 5
P1(F),1,P2(T),0,P3(T),0 14 1 1 1 0 0 0 0 0 0 448 3 3 4 4 0 0 0 0 7 7 8 8 8 8 4 4
P1(E),1,P2(T),1,P3(W),1 15 1 0 1 0 0 1 0 1 1 331 1 1 1 1 2 2 3 3 7 7 1 1 1 1 7 7
P1(F),1,P2(T),1,P3(W),0 16 1 1 1 0 0 1 0 1 0 458 3 3 2 2 3 3 2 2 8 8 8 8 7 7 2 2
P1(F),1,P2(T),1,P3(E),1 17 1 1 1 0 0 1 1 0 1 461 1 1 5 5 6 6 5 5 2 2 1 1 10 10 5 5
P1(F),1,P2(T),0,P3(F),1 18 1 1 1 0 0 0 1 1 1 455 0 0 5 5 0 0 7 7 5 5 5 5 4 4 11 11
P1(W),1,P2(E),1,P3(T),1 19 0 1 1 1 0 1 0 0 1 233 3 3 5 5 2 2 1 1 8 8 3 3 2 2 5 5
P1(T),1,P2(E),1,P3(T),0 20 0 0 1 1 0 1 0 0 0 104 4 4 2 2 6 6 0 0 5 5 4 4 5 5 8 8
P1(T),0,P2(F),1,P3(T),0 21 0 0 0 1 1 1 0 0 0 56 1 1 2 2 0 0 0 0 2 2 6 6 1 1 8 8
P1(W),0,P2(F),1,P3(T),1 22 0 1 0 1 1 1 0 0 1 185 0 0 5 5 3 3 1 1 5 5 5 5 9 9 5 5
P1(T),1,P2(E),1,P3(F),1 23 0 0 1 1 0 1 1 1 1 111 1 1 3 3 6 6 7 7 3 3 1 1 1 1 3 3
P1(T),0,P2(F),1,P3(F),1 24 0 0 0 1 1 1 1 1 1 63 3 3 3 3 0 0 7 7 0 0 3 3 8 8 3 3
P1(E),1,P2(F),1,P3(T),1 25 1 0 1 1 1 1 0 0 1 377 2 2 5 5 6 6 1 1 8 8 7 7 3 3 5 5
P1(F),1,P2(F),1,P3(T),0 26 1 1 1 1 1 1 0 0 0 504 4 4 0 0 0 0 0 0 0 0 4 4 9 9 0 0

In the case of bitstate hashing a hash is calculated from the state vector to be stored
in the bitstate hash table. The hash function can either be the division remainder func-
tion or some faster hash function, but in both cases the hash function determines the
address of the bit to be stored. The division remainder function can be used to wrap
the hash value to bitstate hash table of any given size. The faster hash function used
in Spin to hash the states is the hash function by Jenkins [Jenkins, 1997] accompa-
nied with a division remainder function. Such combination also helps to lower the
influence of the ordering of the variables in the state vector.

4.3.1 Collision probabilities

Let us consider the probability distribution of collisions in a bitstate hash table. We
assume that we have a perfect hash function, which will cause a uniform distribution
of hash values along the bitstate hash table with size m.

The probability of collision is trivially 0 for the first bit entered into the hash table.
The probability of collision when entering the second bit is 1/m, the third bit 2/m
etc. Thus we get a linear distribution function Fk=1(x) = x/m where x is the number
of states stored and m is the hash table size in bits. A collision probability distribution

64

Figure 4.2: Collision probability distribution for a bitstate hash table of size m bits.
Fk=1 represents the collision distribution when a single bit per state is stored. Fk=3
represents the case when 3 bits per state are stored in the hash table. n is the axis
representing the number of states stored and P represents the collision probability.

function in such case is represented in Figure 4.2.
The analysis of the probability distribution of a Bloom filter requires us to consider

the best and the worst case. The collision probability of entering the first k bits is
trivially 0. In the best case, entering the first state occupies k bits and entering every
subsequent state occupies just one extra bit. The collision probability distribution
function is Fbest(x,k) = x/(m− k). In the worst case, entering every subsequent state
into the hash table occupies k bits. The distribution function in this case would be
Fworst(x,k) = kx/(m− k). Obviously, the actual collision probability is somewhere
in between the two extremes denoted by the grey area in Figure 4.2. Thus, Bloom
filters actually counteract the effect of bitstate pruning as they reduce the probability
of collisions towards the beginning of the search thus skewing the search tree towards
the “left” if we assume that depth first search explores left successors first. In fact,
applying bitstate hashing with a single bit per state and modifying the hash function
(by changing the hash table size by 1 byte) has the same effect as the best case of
Bloom filters: it pushes the probability distribution downwards as is described in
Figure 4.3.

4.4 Iterated Search Refinement

The algorithm of iterated search refinement with bitstate pruning is given in Algo-
rithm 3. ModelCheckbitstate(M,q,k,b) is a function of calling a model checker with
the model M, reachability query q (may also be empty if we are looking for assertion
violations), bitstate hash table size k, and the depth bound b. If the depth bound is 0
when calling IterationTask, the depth bound is set to 8k as the number of bits in the
bitstate hash table is the theoretical maximum of the witness trace length.

The algorithm works in the following way. Initially an IterationTask, which is
a batch of small steps, i.e., nss increments of one byte in the hash table size per

65

Figure 4.3: Collision probability distribution for repeated bitstate hashing with dis-
tinct hash functions at a hash table size of m bits. F1 represents the collision distribu-
tion when a single bit per state is stored. F3 represents the probability distribution for
3 runs and F50 the probability distribution of 50 runs.

iteration step, is asynchronously assigned to each available processor starting each at
a different base value. If any of the IterationTasks finishes, a new batch is submitted
and the bitstate hash table size is increased. If an IterationTask returns a trace to an
error or goal state, all other tasks are terminated and a set of fresh batches with the
new depth bound b is initiated. b is the length of the newly discovered trace. The
values of k and c, the current big step multiplier, are reset. The idea of starting to
increase the size of the bitstate hash table by the factor of cbs only after the threshold
lbs is because the iterations with very small bitstate hash tables take relatively little
time but often yield interesting results. The threshold lbs and the number of small
steps per batch nss may be tuned at runtime according to the specifics of the model.

The algorithm does not terminate after finding the first trace to a state of interest.
Instead, it continues to look for a shorter trace.

4.5 Prototype implementation

Implementation of the prototype consists of two parts: the implementation of submit-
ting search refinement tasks to the available number of processor cores and a patched
version of Spin that generates instances of checkers where it is possible to specify the
size of the bitstate hash table in bytes not just megabytes and gigabytes as by default.
The corresponding trivial but for our purpose necessary patch introducing the com-
mand line key “-B” enabling to specify the bistate hash table size in bytes to Spin
4.3.0 is rather straight forward.

The models, details of the experimental results, an implementation of the proto-
type, and the -B patch to Spin 4.3.0 are available from http://www.cc.ioc.

66

Algorithm 3 Iterated search refinement with bitstate pruning
M – Model of the system
q – Reachability query
P – Pool of processors to which we can asynchronously submit tasks
cbs – Big step multiplier
lbs – Big step threshold
nss – Number of small steps
b – Bound for the search depth

ITERATEDSEARCH()
� k – Size of the bitstate hash table in bytes
k← 1
b← 0
c← 1
for each processor ∈ P

P.Submit(IterationTask(k,b))
k← (k +nss)∗ c
if k > lbs

c← cbs
while (result, trace) = P.GetFinishedTask()

if result == FoundTrace
currentBestTrace← trace
b← trace.Length−1
P.KillAll
k← 1
c← 1
for each processor ∈ P

P.Submit(IterationTask(k,b))
k← (k +nss)∗ c
if k > lbs

c← cbs
if k < MaxHashTableSize

P.Submit(IterationTask(k,b))
k← round((k +nss)∗ c)

ITERATIONTASK(k,b)
if b == 0

b1← 8k
for i in {1, . . . ,nss}

(result, trace)←ModelCheckbitstate(M,q,k + i,b1)
if result == FoundTrace

return (result, trace)

67

#define MAX 999

int xx, yy ;

active proctype Inc() { do :: xx = (xx + 1) % MAX od }
active proctype Dec() { do :: yy = (yy - 1) % MAX od }
// Monitor process
#define P !((xx==MAX-1)&(yy==1-MAX))

active proctype monitor() { do :: assert(P) od }

Figure 4.4: A toy model in Promela representing an incrementer and a decrementer
process [Ruys, 2001].

ee/˜juhan/bitprune.
We performed all of the following experiments on a node with 8 dual core Opteron

processors (16 cores) running at 2.4 GHz and containing 1 MB of L2 cache per core.
The node has 32 GB of 667 MHz DDR2 memory and runs 64-bit GNU/Linux.

4.6 Evaluation

Let us consider the model of an incrementer and decrementer process inc-dec.pr
[Ruys, 2001] written in Promela given in Figure 4.4.

Theo Ruys demonstrated in [Ruys, 2001] that this kind of model is particularly
awkward for bitstate hashing. Using iterated search refinement with bitstate pruning
on the described experiment node yielded a trace to an error state in 143 seconds with
the length of 6016 steps using a single hash function and the bitstate hash table size
of 2855 bytes. The latter result is summarised in Figure 4.5.

Dining philosophers example

On Figure 4.6 there are the results of applying the iterated search refinement with
bitstate pruning on the dining philosophers example with varying number of philoso-
phers. The iteration parameters were the following: from 1 to 10000 bytes the hash
table was increased in one byte increments. From 10000 onwards the big step mul-
tiplier of 1.2 was applied. The iteration was terminated when the bitstate hash table
exceeded 200000 bytes.

In the upper left diagram in Figure 4.6 we see that the length of the first trace
found may vary to a quite large degree. The lengths of the traces to deadlock found
by the time the iteration terminates differ by a factor of approximately 10 from the
minimal result.

In the upper right diagram in Figure 4.6 there are the times in seconds it took
to reach the deadlock states with the iteration method. The spike in time it took to
find the shortest trace in the case of 20 philosophers is due to the phenomenon that
sometimes the iteration finds just one step shorter trace during each iteration and the

68

iteration is restarted from the hash table size 1 each time a shorter depth bound is
found.

The lower diagram in Figure 4.6 represents the hash table sizes in bytes at which
the traces to deadlock were found. Although the hash table sizes show steady in-
crease, the sizes are still surprisingly low, for example just 514 bytes for finding the
deadlock in the instance of 255 dining philosophers. The results of running Spin with
the dining philosophers example with 255 philosophers is given in Figure 4.7,

We could not go beyond 255 processes because of the process count limit of Spin.
We did not list the memory requirements of the instances of model checking tasks
because they are minor, just 10-50 MB depending on the amount of memory allocated
for the stack. It has to be kept in mind that in the case of the 255 philosopher example,
the C compiler gcc used to compile the checker generated by Spin required 3 Gb of
memory. The memory requirements of the compiler can be reduced by reducing the
level of optimisation thus sacrificing some speed.

Blocks example

In the BEEM database [Pelánek, 2007] there is a number of models where the goal is
to find a trace to the goal state. One of those examples is a typical blocks world plan-
ning example. The experiment with running our implementation against the hardest

> this filename : inc-dec.pr.out
> promela file : inc-dec.pr,
> options file : produced by BitPrune iterator
> date : 16-Sep-2007 12:35:29
> spin version : Spin Version 4.3.0 -- 22 June 2007, with ’-B’ patch
> gcc version : gcc (GCC) 4.1.2 20061115 (prerelease) (Debian 4.1.1-21)
> spin options : -a
> gcc options : -DBITSTATE -DSAFETY -DVECTORSZ=65535
> pan options : -k1 -B2855 -m22840 # 8*2855=22840

./pan -k1 -M2855 -m22840
pan: assertion violated !(((xx==(999-1))&(yy==(1-999)))) (at depth 5992)
pan: wrote inc-dec.pr.trail
(Spin Version 4.3.0 -- 22 June 2007, with ’-B’ patch)
Warning: Search not completed

+ Partial Order Reduction

Bit statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 44 byte, depth reached 6016, errors: 1
6815 states, stored
8634 states, matched
15449 transitions (= stored+matched)

0 atomic steps

hash factor: 1230.9 (best if > 100.)

bits set per state: 1 (-k1)

6.553 memory usage (Mbyte)
0.01 user, 0.02 system, 0.11 elapsed

Figure 4.5: Results found by iterated bitstate pruning for running Spin on the
inc-dec.pr example.

69

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 50 100 150 200 255

S
te

ps
 to

 d
ea

dl
oc

k

Number of philosophers

First found
ISR shortest

Theoretically shortest

 0

 50

 100

 150

 200

 250

 300

 350

 2 50 100 150 200 255

T
im

e
[s

ec
on

ds
]

Number of philosophers

First found
ISR shortest

 0

 200

 400

 600

 800

 1000

 2 50 100 150 200 255

H
as

h
ta

bl
e

si
ze

 [b
yt

es
]

Number of philosophers

First found
ISR shortest

Figure 4.6: Trace lengths to deadlock, times, and bitstate hash table sizes for finding
the deadlock states in dining philosopher examples with 2 . . .255 philosophers.

70

of the blocks examples in the BEEM database, blocks.4.pm, yielded a trace in 144
seconds containing 1525 steps to the goal state. The bitstate hashtable size was 2915
bytes. The Promela code of the model is given in Appendix B for reference.

The witness trace producing result of running the blocks.4.pm example is in
Figure 4.8

The effects of guiding

An experiment on the effects of guiding on iterated search refinement with bitstate
pruning can be found in the next chapter. The results indicate that cost helps to
shorten the resultant traces but the benefit depends highly on the how well we succeed
in defining the cost function.

Bitstate pruning and processor cache utilisation

One of the reasons why the presented approach works quite well in practice is that
the calls to model checker that use small bitstate hash tables allow the processor to
be very cache efficient. Experiments with Valgrind’s Cachegrind [Nethercote, Walsh

> this filename : phils.255.pr.out
> promela file : phils.255.pr,
> options file : produced by BitPrune iterator
> date : 16-Sep-2007 18:08:11
> spin version : Spin Version 4.3.0 -- 22 June 2007, with ’-B’ patch
> gcc version : gcc (GCC) 4.1.2 20061115 (prerelease) (Debian 4.1.1-21)
> spin options : -a
> gcc options : -DBITSTATE -DSAFETY -DVECTORSZ=65535
> pan options : -k1 -B514 -m3276

pan: invalid end state (at depth 2614)
pan: wrote phils.255.pr.trail
(Spin Version 4.3.0 -- 22 June 2007, with ’-B’ patch)
Warning: Search not completed

+ Partial Order Reduction

Bit statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 2300 byte, depth reached 2615, errors: 1
2623 states, stored
2063 states, matched
4686 transitions (= stored+matched)

0 atomic steps

hash factor: 3198.1 (best if > 100.)

bits set per state: 1 (-k1)

Stats on memory usage (in Megabytes):
6.064 equivalent memory usage for states (stored*(State-vector + overhead))
1.049 memory used for hash array (-B514)
0.184 memory used for DFS stack (-m3276)
5.321 other (proc and chan stacks)
6.553 total actual memory usage
0.02 user, 0.01 system, 0.11 elapsed

Figure 4.7: Results found by the iterated bitstate pruning for running Spin on the
dining philosophers problem with 255 philosophers.

71

> this filename : blocks.4.pm.out
> promela file : blocks.4.pm,
> options file : produced by BitPrune iterator
> date : 16-Sep-2007 17:08:11
> spin version : Spin Version 4.3.0 -- 22 June 2007, with ’-B’ patch
> gcc version : gcc (GCC) 4.1.2 20061115 (prerelease) (Debian 4.1.1-21)
> spin options : -a
> gcc options : -DBITSTATE -DSAFETY -DVECTORSZ=65535
> pan options : -k1 -B2915

pan: invalid end state (at depth 1524)
pan: wrote blocks.4.pm.trail
(Spin Version 4.3.0 -- 22 June 2007, with ’-B’ patch)
Warning: Search not completed

+ Partial Order Reduction

Bit statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 44 byte, depth reached 1525, errors: 1
1894 states, stored
1238 states, matched
3132 transitions (= stored+matched)

0 atomic steps

hash factor: 4429.04 (best if > 100.)

bits set per state: 1 (-k1)

6.553 memory usage (Mbyte)
0.01 user, 0.00 system, 0.11 elapsed

Figure 4.8: Verification result producing a plan for the blocks.4.pm example. The
desired end state is encoded as an assertion failure, thus Spin reports it as an “invalid
end state”.

72

and Fitzhardinge, 2006] indicate close to 100% utilisation of level 1 cache which
means that the processor can work with negligible need to wait for memory opera-
tions to complete.

4.7 Discussion and further work

The results where it is possible to reach some interesting state by distinguishing only
a fraction of the states of the reachable state space leads to the question of whether
it is possible to use the bitstate pruning approach for detecting useful abstractions of
the model. If a witness trace to a state with an interesting property is found, we can
use the parameters of bitstate pruning to define a distinguishing function δ : S→ E
on the automaton A where E defines a set of equivalence classes on S, i.e. several
distinct s ∈ S map to one e ∈ E.

Bitstate pruning acts as a distinguishing function with the following parameters:
the hash function hash() used for calculating a hash of the state vector, bitstate hash
table size k, the bound on the depth of the search b, and the search algorithm search().
Thus the distinguishing function of bitstate pruning is a function depending on four
arguments: δ(hash(),k,b,search()). We may wish to construct a function that maps
states to equivalence classes in the same manner as δ but that would not depend on
the search algorithm or hash function.

A primitive way to construct such function would be to construct sets of equiva-
lence classes while traversing the concrete search tree defined by
δ(hash(),k,b,search()). All states that have colliding hashes in the hash table would
go into the same equivalence class. There would need to be one extra equivalence
class for the states not encountered during the concrete search run. This is obviously
not the best possible way of constructing a new δ. But we consider the analysis
of ways how to learn state distinguishing functions from successful runs of bitstate
pruning as part of the future work.

4.8 Conclusion

In this chapter we presented a practical method of iterated search refinement with
bitstate pruning that can be applied in explicit state model checking to check models
that are otherwise intractable due to memory requirements. We showed that such
method can find traces to error or goal states in several large models — hundreds of
dining philosophers and a planning example of the blocks world. The results were
obtained using a prototype implementation that runs the iterations in parallel on any
available number of processor cores. The method works for finding traces to errors
or desired states and can be used for shortening traces found in depth first search. We
argued that Bloom filters act in an unfavourable direction to be used in this kind of
application as they reduce the probability of collisions in the beginning of the search
thus skewing the search density towards the “left” of the search tree. We carried out
the experiments with a prototype implementation that supports a modified version of

73

Spin 4.3.0. In the next chapter we will have a look at two different case studies where
the method presented in the current chapter yields interesting results.

74

CHAPTER 5

APPLICATIONS OF ITERATED
SEARCH REFINEMENT WITH
BITSTATE PRUNING

In this chapter we will have a look at two case studies where iterated search refine-
ment with bitstate pruning enables to use model checking for finding a solution. The
first case study is about model-based generation of preset tests and contains addition-
ally an analysis of different search strategies and effects of cost guiding in conjunc-
tion with the ISR method. The second case study is about applying model checking
for the synthesis of a memory arbiter for data streaming in a radar application.

5.1 Generating Preset Tests

In this chapter we will focus on two examples where the previously described iterated
search refinement with bitstate pruning makes it possible to solve the problem with
a model checker. The first example is about generating preset tests from models of
specification for off-line testing.

5.1.1 Introduction

In this section we target test generation for software systems from specifications in
the form of extended finite state machines (EFSMs). We propose a method of test
generation that combines techniques of model construction with iterated search re-
finement with bitstate pruning in model checking.

One possible motivation for working with EFSMs is that specifications provided
in terms of, for example, suitably restricted UML statecharts can be converted into
EFSMs. Converting UML statecharts to EFSMs is not the topic of the current section
and thus we use EFSMs as the starting point for the reason that they provide a se-
mantically well-defined model representation that can be applied for test generation.
The problem of generating test sequences is formulated as a bounded reachability
problem and solved by model checking.

75

The procedure of searching for a suitable test sequence is simple if the software
is modeled as a finite state machine that has neither variables nor guard conditions.
Introducing variables and guard conditions, as in EFSMs, makes the search much
more complex.

The complexity arises from the large number of combinations of values that the
variables can be assigned and from the need to satisfy guard conditions for taking
transitions. One well known option for generating tests for EFSMs is to use the
search machinery provided out-of-the-box by model checkers.

If a model checker solves a reachability task, it generates a witness trace that
corresponds to an abstract test sequence.

The most critical factor of space exploration based methods is scalability, i.e., the
ability to handle the exponential growth of the search space.

One example of problems where scalability quickly becomes acute, is targeting
some structural test coverage criteria that result in long traces. For example all tran-
sitions of the Implementation Under Test (IUT) model or all possible subsequences
of transitions of some length k > 1 of the IUT. Our goal is to generate preset tests for
models of deterministic IUT models.

We compare different search strategies and iterated search refinement on the well-
known benchmark examples of stopwatch and the INRES protocol [Hogrefe, 1991].

We show how guiding the search with a cost variable influences the lengths and
required amounts of memory of test generation. In fact, we merge guiding together
with iterated search refinement to reduce the lengths of generated test sequences and
to improve the scalability of applying explicit state model checking for test genera-
tion.

We use the model checker Uppaal and its guided counterpart Uppaal Cora
[Behrmann, Larsen and Rasmussen, 2004] because it enables us to demonstrate both,
the influence of guiding, and iterated search refinement, in the presented context of
test generation.

5.1.2 Related Work

The most common coverage criteria in the context of model-based testing are struc-
tural coverage criteria, such as state coverage and transition coverage [Farchi, Hart-
man and Pinter, 2002]. Test generation according to structural coverage criteria is
often treated as a reachability problem and solved either by symbolic or explicit state
model checking [Edmund M. Clarke et al., 1999].

An automated test generation tool SAL-ATG based on SAL2 symbolic model
checker is proposed in [Hamon, de Moura and Rushby, 2004a]. An alternative ap-
proach to test case generation by explicit state model checking is studied extensively
on the basis of the Uppaal family of tools1. Special testing environments Uppaal Tron
[Larsen, Mikucionis, Nielsen and Skou, 2005] and Uppaal CoVer [Blom, Hessel, Jon-

1The representation of time in Uppaal is symbolic. The representation of locations and integer and
boolean variables is explicit state [Bengtsson, 2002].

76

sson and Petterson, 2005], [Hessel, Larsen, Nielsen, Petterson and Skou, 2004] have
been built upon the main search engine of Uppaal.

Cost automata based Uppaal Cora [Behrmann, Larsen and Rasmussen, 2004] is
designed for solving cost guided reachability problems and can be used also for in-
troducing context information to guide test case generation. One important problem
in using model checking for test case generation is encoding test coverage criteria.
In [Hong, Lee, Sokolsky and Ural, 2002] the structural coverage criteria are repre-
sented by a set of CTL formulae. Similarly, temporal logics LTL and CTL are used
respectively in [Gunter and Peled, 2005] and in [Blom et al., 2005] for specifying
path conditions that are transformed to property automata. In SAL-ATG the test
purpose is stated directly as an observer state machine. Finding a minimal-cost or
time optimal witness for a formula is combinatorially hard. Existing model checkers
search minimal-cost witnesses typically by breadth-first search (enhanced with some
heuristic) of state space that is known to be a NP-hard problem [Hong et al., 2002].

The search options of model checking tools have a significant influence on the
performance of reachability search when the whole state space need not be traversed.
For instance, traversal options such as depth first, breath first, random first etc are
supported by the majority of model checkers. Optimization techniques used in model
checking include also preprocessing of the model, for example, cone of influence
reduction [Hamon et al., 2004a]. Instrumenting the model with trap variables is a
standard technique used in prioritized traversal [Blom et al., 2005]. One step further
is combining model checking with other methods using scriptable model checkers as
reported in [Hamon et al., 2004a]. It is shown that combining different methods by
scripting allows even a bounded model checker to reach deep states at low resource
footprint.

The work presented in the current section takes a different approach by combining
guiding of Uppaal Cora with iterated search refinement.

5.1.3 Case Studies

We use the following two case studies in the section: stopwatch [Hamon et al., 2004a]
and a modified INRES protocol [Hogrefe, 1991].

Stopwatch.

In [Hamon et al., 2004a] it was claimed that explicit state model checkers are not
suitable for finding test cases from models that have deep counter-dependent loops.
Such a counter (in the range 0..6000) is present in the stopwatch example. Refer-
ring to our experiments with Uppaal Cora we show how guiding and iterated arch
refinement improve test generation using explicit state model checking.

The stopwatch in [Hamon et al., 2004a] is modeled using Stateflow notation. In
Figure 5.1 there is an equivalent UML state machine. For our experiments we used a
flattened representation in Uppaal.

77

Figure 5.1: Stopwatch as UML state machine

Modified INRES Protocol.

INRES protocol is a well-known example in the model verification and test genera-
tion community. The protocol is simple but not trivial and provides a good reference
for studying performance and scalability issues of competing methods. We use it
to demonstrate the scalability of our test generation method. The case study shows
that the generation of test sequences for ”all transition triples” test coverage results
in very long test sequences. The protocol was introduced in [Hogrefe, 1991] and
was modified in [Bourhfir, Dssouli, Aboulhamid and Rico, 1997] and is depicted in
Figure 5.2 as an EFSM. We chose this particular model because it has several loops,
for example, a self loop (at the Sending state) and a (minimally) two-step loop
(Sending, Blocked, Sending), the depths of which depend on the input param-
eters datarequest.n and datarequest.b respectively.

Idle

Wait Connect ion

Connected

Wait Sending

Wait Disconnected

Sending

Blocked

t1
U:sendrequest /
L:cr

t17
L:disrequest /
U:disindication

t2
L:cc /
U:sendconfirm

t3
U:datarequest /
sdu:=datarequest.sdu;
number:=0;
counter:=0;
no_of_segment:=datarequest.n;
blockbound:=datarequest.b

t5
L:resume

t4
L:tokengive /

L:dt(sduElement=sdu[number]);
timer1.start;

number:=number+1
t6
timer1.timeout /
L:token_release;
number:=number-1

t7
L:ack [number == no_of_segment] /
U:monitor_complete(par=counter);
L:token_release;
L:disrequest

t8
L:ack [number < no_of_segment] /

L:dt(sduElement=sdu[number]);
timer1.start;

number:=number+1

t9
L:block /
counter:=counter+1

t10
L:resume

[counter<=blockbound]

t12
timer1.timeout
[counter<=blockbound] /
L:token_release;
number:=number-1

t13
L:resume

t14
L:block

t15
L:ack

t16
L:disrequest /
U:disindication

t11
[counter>blockbound] /
L:token_release;
U:monitor_incomplete
 (par=number);
L:disrequest

Figure 5.2: Modified version of the INRES protocol [Bourhfir et al., 1997].

78

5.1.4 Model Construction for Test Generation

An Extended Finite State Machine (EFSM) is a FSM extended with variables with
finite domains, for example, Booleans and bounded integers. In addition to input and
output, every transition may have a guard condition and assignments to variables. We
assume that the EFSM of the initial IUT is deterministic and strongly connected.

The source EFSM that is given as a UML state machine is transformed into a Up-
paal automaton in three steps. In the first step, the UML state machine is flattened
and parallel states are sequentialized. The result is transformed to a Uppaal automa-
ton in the second step. We are interested in finding a sequence of transitions that
satisfies the selected structural coverage criterion in the model, thus the inputs and
outputs of the model are abstracted away, so that only the information influencing the
control flow of the Uppaal model is kept. Thus we reduce the search space in a way
that makes trace generation by model checking feasible. In the last step the model is
annotated with auxiliary variables to mark passing certain states or transitions. Such
trap variable declarations, trap variable assignments and, additionally, cost functions
are added to each transition according to the selected coverage criterion. After the
generation of test sequence the inputs and outputs associated with each transition in
the test sequence are reintroduced in the tester code generation step, which is beyond
the scope of the current section.

As in [Hamon et al., 2004a], [Hong et al., 2002], [Mücke and Huhn, 2004], and
[Hessel, Larsen, Nielsen, Pettersson and Skou, 2003], we encode the coverage crite-
rion as a reachability problem using trap variables. For example, in the case of all
transitions criterion, an initially false boolean trap variable ti is added to the model
for each transition and an assignment ti = true is added to each transition. A wit-
ness trace that passes all transitions at least once is generated by the model checker
by checking reachability of the property E3(t1 ∧ t2 ∧ ...∧ tn), where n is the num-
ber of transitions in the model. We extend this approach for k-switch [Chow, 1978]
coverage criterion.

1-switch criterion requires that all pairs of consecutive transitions are covered by
a test sequence at least once. For the construction of a reachability property corre-
sponding to the 1-switch criterion we add trap variables tit j for each feasible transition
pair (ti, t j). Trap variables tit j are initially set to false. To remember the previously
visited transition an auxilary variable prev is declared. On each transition t j a case
statement is added for assigning 1-switch trap variables to true depending on the pre-
viously passed transition, in Figure 5.3 (left), where ti1, ..., til are incoming transitions
to the source state of transition t j. The property to be checked involves a conjunction
of all feasible 1-switch trap variables tit j: E3

V
i, j(tit j).

2-switch is a triple of consecutive transitions and a test satisfying all 2-switches
coverage criterion passes all feasible transition triples. For transforming all 2-switches
criterion to a reachability problem we add a trap variable tit jtk for each feasible triple
and auxilary variables prev and befprev to remember the previous and before-
the-previous traversed transition, respectively. In Figure 5.3 (right) there is an exam-
ple of a nested case statement that is added to each transition tk for assigning 2-switch

79

select (prev) {
case (prev==ti1) ti1tj=true;

break;
...
case (prev==til) tiltj=true;

}

select (prev) {
case (prev==i1)

select (befprev) {
case (befprev==tj1)

tj1ti1tk=true;
break;

...
case (befprev==tjm)

tjmti1tk=true;
}

...
case (prev==til)

select (befprev) {
case (befprev==tj1)

tj1ti1tk=true;
break;

...
case (befprev==tjm)

tjmti1tk=true;
}

}

Figure 5.3: Trap variable assignments for 1-switch for t j (left) and 2-switch for tk
(right)

trap variables where t j1, ..., t jm are incoming transitions to the source state of transi-
tion t j. The property to be checked contains a conjunction of all feasible 2-switch
trap variables tit jtk: E3

V
i, j,k(tit jtk).

Idle

WaitConnection

Connected

WaitSending Blocked

Sending

WaitDisconnected

//t1

cost+=cost_t1(),

trap_t1(), steps++//t17

cost+=cost_t17(),

trap_t17(), steps++
//t2

cost+=cost_t2(),

trap_t2(), steps++

//t3

cost+=cost_t3(),

number=0, counter=0,

no_of_segment=n,

blockbound=b,

trap_t3(), steps++

//t4

cost+=cost_t4(), number++,

trap_t4(),

steps++
//t6

cost+=cost_t6(), number--,

trap_t6(), steps++

counter<=blockbound
//t10

cost+=cost_t10(),

trap_t10(), steps++

//t9

cost+=cost_t9(),

counter++, trap_t9(),

steps++
counter>blockbound
//t11

cost+=cost_t11(),

trap_t11(), steps++

number ==no_of_segment
//t7

cost+=cost_t7(), trap_t7(), steps++

//t16

cost+=cost_t16(),

trap_t16(), steps++

//t5

cost+=cost_t5(),

trap_t5(), steps++

number <no_of_segment
//t8

cost+=cost_t8(), number++,

trap_t8(), steps++

//t15

cost+=cost_t15(), trap_t15(), steps++

//t13

cost+=cost_t13(),

trap_t13(), steps++

//t14

cost+=cost_t14(),

trap_t14(), steps++

counter<=blockbound

//t12

cost+=cost_t12(), number--, trap_t12(), steps++

Figure 5.4: Uppaal model of the modified INRES protocol with traps and cost
functions

In Figure 5.4 there is a Uppaal representation of the INRES model in Figure 5.2 for
generating all 2-switch test sequence. In Figure 5.5 (left) there is an example of the
relevant trap variable assignment function, where case statements are implemented
in terms of if-then-else.

Uppaal Cora has support for guiding the reachability search with a built-in cost
variable which can be used to minimise the lengths of generated test sequences. We
define the cost variable assignment on each transition so that the cost increment is
zero while the switch has not been passed (the trap variable of the switch is false) and
increases the cost by a fixed penalty after it is set to true. In Figure 5.5 (right) there
is an example of a cost function used in the experiments.

80

// 2-switch trap variable assignments
// procedure on the transition t1

void trap_t1() {
if (prev==16) {

if (befprev==7) t7t16t1=true;
else if (befprev==11) t11t16t1=true;
else if (befprev==13) t13t16t1=true;
else if (befprev==14) t14t16t1=true;
else if (befprev==15) t15t16t1=true;

}
else if (prev==17)

if (befprev==1)
t1t17t1=true;

befprev=prev; prev=1;
}

// 2-switch cost function on
// the transition t1

int cost_t1() {
if (prev==16 and (
(befprev==7 and t7t16t1) or
(befprev==11 and t11t16t1) or
(befprev==13 and t13t16t1) or
(befprev==14 and t14t16t1) or
(befprev==15 and t15t16t1)
)) return PENALTY;

if (prev==17 and (
(befprev==1 and t1t17t1)
)) return PENALTY;

return 0;
}

Figure 5.5: Implementations of the trap assignment function (left) and cost assign-
ment function (right)

5.1.5 Iterated Search Refinement for Test Generation

Model checking in general involves searching possibly very large state spaces to
prove or disprove a query — a formula typically in some temporal logic. We make
use of the feature of model checking to generate witness traces. We specify one test
coverage criterion at a time as a reachability query.

We chose to use Uppaal Cora version 060206 because it enabled us to demon-
strate the behaviour of regular search options and in addition the influence of guiding
and iterated search refinement in the presented context of test generation using a sin-
gle model format and thus avoiding influences to results that may be introduced by
converting a model to several modelling formalisms.

Standard Search and Trace Generation Options of Model Checking

Standard search strategies typically used to traverse the state space are depth first and
breadth first. The standard version of Uppaal implements both [Behrmann, David and
Larsen, 2004] and additionally also a random depth first search strategy. Breadth first
search looks for all reachable states at current search depth before proceeding deeper
while depth first search takes one path and goes along it deeper until the property is
satisfied or it needs to backtrack to look at alternative paths. Reachability queries
considered in the current context do not in practice require full traversal of the state
space if the property is satisfiable.

Trace generation options that Uppaal provides [Behrmann, David and Larsen,
2004] are for generating some, shortest, and fastest trace. Since we have currently
omitted the use of clocks in our models, we do not use the latter option in the experi-
ments.

Additional search strategies of guided model checking provided by Uppaal Cora
are best first, random best depth first, and smallest heur first [Behrmann, Larsen and
Rasmussen, 2004]. As we use only the cost variable for guiding, the latter search
option is not used in the experiments.

81

An additional trace generation option of guided model checking provided by Up-
paal Cora is best trace. This means that the trace generated has the lowest aggregate
value of cost in the context of the search strategy used.

Iterated Search Refinement Using Bitstate Hashing

Bitstate hashing, also known as supertrace, is a well known method applied for model
checking and thoroughly analysed in [Holzmann, 1998] for reducing memory con-
sumption of the whole state space search by storing only a single bit for each seen
state at the address calculated by a hash function. The drawback of the method is the
possibility of hash collisions that will result in unexplored parts of the search space,
rendering the method sound but incomplete. Still, fast reachability checks that yield
a valid trace can be quite useful for applying model checking, for example, for test
sequence generation from an EFSM model.

In general, the bigger the hash table, the lower the probability of hash collisions.
But big hash tables may still require unavailable amounts of memory. Iterated search
refinement is briefly mentioned in [Holzmann and Smith, 2000] and is based on the
idea of iteratively increasing the size of the hash table and thus search thoroughness.
We make use of the property of a division remainder based hash function to distribute
hash collisions pseudorandomly as the divisor (the hash table size) is changed. Thus,
the states considered similar by collisions change too. Since Uppaal uses a modu-
lus based hash function [Bengtsson, 2002] for bitstate hashing, we use unmodified
Uppaal Cora to compare the influences of different search options.

Basic Iterated Search Refinement, ISR, works as follows. There is a model M and
a reachability query q. The bitstate hash table is initially set very small (for example
1 bit). The reachability of the query q is checked on model M. If a trace to the
reachable state is not found then the bitstate hash table size is increased by 1. The
hash table size is increased by small steps for some configurable number of times and
then it is increased by some factor, for example 2. The small steps are necessary to
try several different paths at each thoroughness level and big steps are to speed up
finding the appropriate hash table size for the particular task. The minimal size of
the bitstate hash table yielding a trace may differ by many orders of magnitude for
different tasks. The bigger the hash table, the longer each iteration step takes.

Improvement of the first result gained in the basic approach is possible for some
specific types of models. Let us assume that we look for a trace that is as short as
possible and exhaustive search is not possible due to memory and/or processor time
limits. Then we can iteratively constrain the reachability query by the trace length
bound found in the previous step. In such an approach there is no clear criterion when
to stop, as we cannot be sure if the result gained at some iteration step is actually the
shortest possible. The most important criterion is the amount of time we have to wait
for an improved result.

Combining ISR with guiding is a very important aspect in the current approach.
Namely, the shape of the reachable search space of a model given a bitstate hash
table size is dependent on search strategy, as the state hashing to some address in the

82

bitstate hash table is traversed only during the first visit and the next states hashing to
the same value are already considered seen.

5.1.6 Comparison of Search Strategies for Test Generation

In this section we present a comparison of different search strategies and trace gen-
eration options that can be used in model checking for test sequence derivation. The
experiments are run on an EFSM represented as a Uppaal model of the stopwatch
example described in Section 5.1.3. All experiments described in this section were
run on a 2.4 GHz Xeon processor with 512 kB of cache, 533 MHz FSB and 6 GB of
266 MHz DDR memory.

Cl1_Running Cl2_Running
Cl3_RunningReset

Lap_stop

Running

Lap

Cl3_LapCl2_LapCl1_Lap

cent==maxcent
//t9

cost+=(t9?PENALTY:0),

cent=0, sec++, t9=true

sec==maxsec
//t10

cost+=(t10?PENALTY:0),

sec=0, min++, t10=true
sec<maxsec

//t11

cost+=(t11?PENALTY:0),

t11=true

cent<maxcent
//t8

cost+=(t8?PENALTY:0),

t8=true//t6

cost+=(t6?PENALTY:0),

disp_cent = 0,

disp_sec = 0,

disp_min = 0,

cent = 0,

sec = 0,

min = 0,

t6=true, steps++

//t5

cost+=(t5?PENALTY:0),

t5=true, steps++
//t7

cost+=(t7?PENALTY:0),

t7=true, steps++

//t0

cost+=(t0?PENALTY:0),

disp_cent = 0, disp_sec = 0,

disp_min = 0, cent = 0, sec = 0,

min = 0, t0=true, steps++

//t1

cost+=(t1?PENALTY:0),

t1=true, steps++
//t3

cost+=(t3?PENALTY:0),

t3=true, steps++
//t2

cost+=(t2?PENALTY:0),

t2=true, steps++
//t4

cost+=(t4?PENALTY:0),

t4=true, steps++

//t13

cost+=(t13?PENALTY:0),

cent++,

t13=true, steps++

//t13

cost+=(t13?PENALTY:0),

cent++,

t13=true, steps++

cent==maxcent
//t9

cost+=(t9?PENALTY:0),

cent=0, sec++, t9=true

sec==maxsec
//t10

cost+=(t10?PENALTY:0),

sec=0, min++, t10=true

sec<maxsec
//t11

cost+=(t11?PENALTY:0),

t11=truecent<maxcent
//t8

cost+=(t8?PENALTY:0),

t8=true

//t12

cost+=(t12?PENALTY:0), t12=true

//t12

cost+=(t12?PENALTY:0), disp_cent = cent, disp_sec = sec, disp_min = min, t12=true

Figure 5.6: Uppaal model of the stopwatch with trap variables and cost assignments.

The Uppaal model of the stopwatch is presented in Figure 5.6. The model is
decorated with trap variables that are used for finding a trace that passes through all
transitions. The transitions are labelled by the names of trap variables, for example
//t0. To make the comparison of all available search options possible, the model is
optimised by declaring variables min, disp cent, disp sec, disp min, and
steps as hidden (meta), meaning that the states where only the values of such
hidden variables are different are considered equivalent by the model checker. The
steps variable is used for capturing the length of the trace.

The model is also decorated with assignments to a special purpose built-in cost
variable which is used for guiding the model checker.

In Table 5.1 there are experimental results of applying Breadth First (BF), Depth
First (DF) and Random Depth First (RDF) search strategies on the model in Figure
5.6 with the goal of covering all transitions (equivalent to all trap variables t0...t13
becoming true). The trace generation option is set to some because setting it to best
caused the model checker to run out of memory (3GB per process due to 32 bit
architecture). Breadth first search did not yield an answer without declaring some
of the integer variables to be hidden. We can see that depth first search yielded an
answer quickly but the trace is 5 times longer than the minimal, which is 6011 steps

83

Table 5.1: Test sequence lengths found using different search options for the model
without guiding

Search order Trace No. of steps Time [sec] Memory [MB]

BF some 6012 21 146
DF some 30009 52 45

RDF some 8988 12 12

Table 5.2: Test sequence lengths found using ISR and model without guiding (first
trace found)

Search order Trace No. of steps Time [sec] Mem. [MB] Hash table [Mbit]
BF some 6141 276 48 44
DF some 6137 106 11 1

RDF some 9000 80 11 3

in length. Random depth first search yielded a better answer than regular depth first.
In Table 5.2 there are results for applying the iterated search refinement with the

same search strategies. The figures show that using breadth first search consumes
considerably more memory and requires considerably more time to find an answer
than depth first and random depth first search. By comparing the results in Table 5.1
and in Table 5.2, we can see that the result obtained by depth first search using ISR
is considerably shorter.

But can we improve these results? Intuitively, if we could guide the search, we
should find a shorter trace sooner.

First, we add cost assignments to all transitions that are equipped with trap vari-
ables. The cost assignments cost+=(trap?PENALTY:0) are C style assign-
ments, meaning that PENALTY is added to cost only when the corresponding trap
variable has already become true before evaluating the assignment.

Table 5.3 summarizes the results of applying Uppaal Cora with Best First (BeF)
and Random Best Depth First (RBDF) search. One can see that best first strategy
yields the optimal answer but requires a considerable amount of memory for this
rather small example. In fact, the result is very close to breadth first search in the
model without guiding. Random best depth first did not yield an answer at all due to
running out of memory.

Next we combine guiding and ISR. The results of running ISR with cost assign-

Table 5.3: Test sequence lengths found using guiding with cost variable definition
Search order Trace No. of steps Time [sec] Memory [MB]

BeF best 6011 22 147
RBDF best N/A 2230 out of memory

84

Table 5.4: Test sequence lengths found using ISR and a model with cost assignments
on all transitions (first trace found)

Search order Trace No. of steps Time [sec] Mem. [MB] Hash table [Mbit]
BeF some 6302 6063 622 1408
BeF best 6155 5837 628 1408

RBDF some 8508 138 17 3
RBDF best 8505 138 21 3

Table 5.5: Test sequence lengths found by Uppaal Cora using ISR and model with
guiding and loop entry optimisations

Search order Trace No. of steps Time [sec] Mem. [MB] Hash table [Mbit]

First trace found
BeF some 6226 5745 625 1408
BeF best 6254 5485 599 1408

RBDF some 7279 259 12 5
RBDF best 6714 286 27 5

Shortest trace found before system memory or hash table overflow
BeF some 6151 7431 628 1408
BeF best 6133 8059 599 1408

RBDF some 6011 3810 265 176
RBDF best 6011 3515 310 176

ments on every transition are presented in Table 5.4. The results show that using
the best first search strategy combined with ISR produces considerably worse results
than breadth first search. Random best depth first search gives interesting results that
are comparable to random depth first search in the uniterated case (Table 5.1) and to
depth first and random depth first in the iterated case without guiding (Table 5.2).

The results are not significantly improved. Can we tune guiding for better results?
We tune the model by removing the cost of taking entry transitions to loops where

counters are incremented, for example transition t13 in Figure 5.6. In this way we
relieve multiple entries to loops from penalties and thus make the model checker
choose such transitions more often. This requires an extra analysis of the model
which is currently not automated.

The results of running the ISR on the tuned guided model are presented in Table
5.5. The first results obtained by the ISR algorithm by random best depth first search
with either some or best trace generation option are significantly better than in the
previous case. Additionally, if the iteration is continued, the actual optimum is also
reachable by ISR (the lower half of Table 5.5.). The drawback of ISR is that there is
no indication how far the current result is from the optimal value.

We presented a comparison of different search strategies on a relatively small and
optimised example. In the next section we look at how depth first search without
iteration, depth first search with iteration and random best depth first with best trace

85

Table 5.6: Combinations of search options used for the INRES case study
Abbreviation ISR Search order Trace Guiding

DF - depth first some -
IterDF first result depth first some -

IterRBDF first result random best depth first best uniform
IterRBDF tuned first result random best depth first best tuned

generation option behave on a larger example. These options are chosen because
these have low memory footprint and yield relatively good results and thus have the
potential to be scalable.

5.1.7 Scalability of ISR and Guiding for Test Generation

The modified INRES protocol in Figure 5.2 contains a self-loop where a variable is
incremented (transition t8) and several cycles of two or more transitions (for exam-
ple, a variable is incremented in the cycle containing t9 and t10). The test sequence
length depends on the parameters n and b defining the upper limits of loop counters.
A manually obtained estimation of the shortest length of all 2-switch test sequence
can be given as 352+15n+26b, when n≥ 5 and b≥ 3.

Next we present the results of searching for all 2-switch test sequences in the
model in Figure 5.2 using options listed in Table 5.6. The results that are obtained
using random best depth first search and ISR are average values of 3 runs. While
the first value found can vary considerably in different runs, the value obtained by
refining the initial result for some proportional amount of time converges fast. Uni-
form guiding means that all trap variables are associated with similar cost and tuned
guiding means that the cost functions have been modified not to penalize for enter-
ing the loops where counters are incremented, i.e. consequent incrementations of the
counters is favoured.

The trace lengths of all 2-switch test sequences generated with different search
options are given in Figure 5.7. Estim. stands for the estimated value. The line
representing DF search ends at n = 300 on the rightmost diagram because the model
checker ran out of memory. We see that the iterated approach scales with all selected
combinations of options for larger models than the depth first search. Tuned guiding
yields traces that are quite close to the estimated shortest.

The maximum amount of memory that was required to generate the traces is given
in Figure 5.8. We can see that DF search takes little memory in the case where
counters are shallow (the diagram on the left) but the amount of required memory
increases rapidly when the counters become deeper (the diagram on the right). The
iterated approach requires much less memory than plain DF search.

The time it took to generate the traces is given in Figure 5.9. We can see that the
gain in memory and shorter trace lengths is paid for with processor time. The iterative
approach takes generally much longer than depth first search. This problem can be
relieved by running the iterations on multiple processors in parallel as each iteration

86

 0

 10000

 20000

 30000

 40000

 50000

 60000

 200 150 100 50 5

T
es

t s
eq

ue
nc

e
le

ng
th

 (
st

ep
s)

Size of n (b=5)

DF
IterDF

IterRBDF
IterRBDF tuned

Estim.

 0

 10000

 20000

 30000

 40000

 50000

 60000

5004003002001005

T
es

t s
eq

ue
nc

e
le

ng
th

 (
st

ep
s)

Size of n (b=200)

DF
IterDF

IterRBDF
IterRBDF tuned

Estim.

Figure 5.7: Lengths of sequences in the INRES model for the 2-switch coverage
criterion

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 200 150 100 50 5

M
em

or
y

us
ed

 (
M

B
)

Size of n (b=5)

DF
IterDF

IterRBDF
IterRBDF tuned

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

5004003002001005

M
em

or
y

us
ed

 (
M

B
)

Size of n (b=200)

DF
IterDF

IterRBDF
IterRBDF tuned

Figure 5.8: Memory required to find sequences for the 2-switch coverage criterion

is independent. In addition, in most cases, it is acceptable to wait for more than just a
few seconds for a test sequence satisfying some stronger structural coverage criterion.

5.1.8 Conclusion and Discussion

We presented a way to build Uppaal models from EFSM models to generate test
sequences covering some structural criteria, for example all transitions, all transi-
tion pairs and all transition triples. We conducted a comparison of different search
strategies on a stopwatch model. The comparison confirmed what has previously
been stated in the literature, that explicit state model checking does not scale well
for test sequence generation purpose: breadth first search, which would yield a short

87

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 200 150 100 50 5

T
im

e
(s

)

Size of n (b=5)

DF
IterDF

IterRBDF
IterRBDF tuned

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

5004003002001005

T
im

e
(s

)

Size of n (b=200)

DF
IterDF

IterRBDF
IterRBDF tuned

Figure 5.9: Time spent for finding sequences for the 2-switch coverage criterion

sequence, runs out of memory with quite simple models and depth first search pro-
duces very long sequences while consuming large amounts of memory as the model
becomes more complex. A bitstate hashing based iterated search refinement method
for checking reachability proved to be more scalable on unmodified models for test
generation than the traditional search strategies used in model checking. Addition-
ally, extending the EFSM model with guiding cost expressions yielded better results
in terms of sequence length. Some tuning of the cost expressions further improved
the results. Thus, we have shown how the lengths of test sequences generated using
explicit state model checking can be improved by combining guiding and iterated
search refinement.

88

5.2 Memory Arbiter Synthesis for a Radar Memory Inter-
face Card

5.2.1 Introduction

In this section we analyse a radar system memory interface card described in a
case study from the IST Advanced Methods for Timed Systems project, [AMETIST,
2002–2005]. It was contributed to the project by Terma A/S [Behrmann, Bernicot,
Hune, Larsen, Lecamp and Skou, 2002]. The memory interface card performs signal
processing calculations on two streams of input data and their delayed counterparts.
The stream data is temporarily stored in synchronous dynamic RAM (SDRAM) that
is shared by all streams. Dynamic memory is generally considerably less costly in
larger amounts than static memory which is used for intermediate buffers.

We present a way to synthesise a memory arbiter for the system in a way that
minimises the amount of static RAM used for buffering the streams. In addition,
we verify that the resulting arbiter indeed does not deadlock and never starves nor
overflows any of the intermediate buffers. Both the synthesis and the verification
problem are solved by model checking.

The synthesis task is generally computationally harder than verification, thus we
need to apply a number of abstractions to the system to make the task solvable by
model checking. Still, even with the manually abstracted model, full state space
search requires unavailable amounts of memory. The synthesis part succeeds while
consuming modest memory resources when we use the iterated search refinement
with bitstate pruning.

Model checking

In this section we specify our questions to the system as reachability queries. We
apply the approach for establishing the existence of a schedule for the system and for
establishing the correctness of the resulting schedule. We apply model checking for
two distinct purposes—synthesis and verification. In the case of synthesis we set up
the problem in such a way that a positive answer to the reachability question gives us
a trace from which we extract the schedule for the memory arbiter. Due to memory
limitations we bound the depth of the search.

Thus, after we have found a recurring cycle in the system by using a depth bounded
search, we build a system based on the schedule gained in the previous stem and ver-
ify it without bounds to see whether it behaves expectedly.

Choice of the Model Checking Tool

There is a variety of different implementations of model checkers available. We chose
Uppaal [Amnell et al., 2001] because it enabled us to

• Model the current case study conveniently using the Uppaal extended timed
automata formalism;

89

• Leverage an implementation of bit-state hashing symbolic state space repre-
sentation feature built into Uppaal;

• Leverage the uniformly priced timed automata extension of Uppaal with only
minor modifications to the model.

The latter extension is available in a recently released version of extended Uppaal
— Uppaal CORA [Behrmann, Larsen and Rasmussen, 2004].

Outline

The rest of the section is organised as follows. Section 5.2.2 gives an overview of
related work. Section 5.2.3 introduces the radar memory interface board. In Sec-
tion 5.2.4 we describe a set of abstractions to tailor the model to arbiter synthesis for
the memory interface board. In Section 5.2.5 we give an overview of the steps of
synthesising the arbiter for the shared memory bus and of verification of the resultant
system containing the synthesised arbiter.

5.2.2 Related Work

This case study has previously been analysed by [Weiss, 2002]. The solution de-
scribed in the current section differs from the former solution described in the fol-
lowing aspects:

• The one presented by [Weiss, 2002] involves using SMV [McMillan, 1999].
The current solution uses Uppaal [Pettersson and Larsen., 2000] as the model
checker;

• In [Weiss, 2002] the schedule for the example is reached using a parameterised
model as model checking the full system was infeasible due to state space
explosion. In the current approach, the Uppaal model of the component system
contains abstractions that enable the schedule to be synthesised for the relevant
aspect of the whole system.

Uppaal has been previously applied for batch plant scheduling by [Hune et al.,
2001]. The approach presented therein is similar to the work presented here in the
sense that they use model checking for finding a valid schedule. In addition, they
leverage bit-state hashing to reduce memory consumption of the model checking
task. Our work differs from the latter in that we model the system as a synchronous
system and the state of the target system is represented in terms of integers. We look
for a suitable ordering of such states. The application domain is also different — job
shop scheduling versus hardware analysis. We model the state of the target system in
terms of integer variables which are updated on one transition by a nontrivial update,
thus disregarding uninteresting interleaving.

[Goel and Lee, 2000] present a case study based on IBM CoreConnectTM pro-
cessor local bus arbiter core. The case study presented therein is similar to current

90

problem. The authors of the paper call for potential solutions for analysing the arbiter
core.

[Amnell, Fersman, Pettersson, Yi and Sun, 2002] present a way to synthesise
code for LEGO RCX bricks. The approach has more emphasis on the timed aspect
of target systems.

5.2.3 Radar Memory Interface Card

As was mentioned above, we use a case study from the IST AMETIST project by
[Behrmann et al., 2002]. The case study was provided to the project by Terma who
is producing radar sensors mainly used for traffic control in ports and airports and
for coastal surveillance. Some configurations of their radar sensor systems employ
a technique known as frequency diversity. In this mode, two subsequent pulses that
differ slightly in frequency are emitted right after each other from the antenna. As
usually, the echo (in this case of two signals) is received, but due to the characteristics
of the antenna, the signals got propagated in slightly different directions, and there-
fore the two simultaneously received signals do not correspond to exactly the same
direction. To align the signals, one of the signals has to be delayed. This approach
has two immediate benefits: it increases the output power of the radar for the purpose
of better range and more reliable signal as two pulses are emitted and provides time
diversity, i.e., makes it possible to compare the echoes of two signals from one direc-
tion at two slightly different subsequent moments for distinguishing, for example, a
big wave from a small boat.

To remove noise, another technique, known as sweep integration, is used. The
idea is to integrate the signal at the same direction from multiple sweeps. In the case
of frequency diversity, sweep integration is performed on both return signals before
the signals are combined.

In total, the signal processing board serves four purposes: sweep integration, fre-
quency diversity combination, noise cancellation and a kind of differentiation (high
pass filtering). The board uses dynamic synchronous RAM (SDRAM) for intermedi-
ate storage of the two input streams and their processed counterparts.

The signal processing board consists of signal processing units, SDRAM con-
nected by a shared memory bus interfaced by 9 FIFO (First In First Out) buffers and
governed by an arbiter which is responsible for setting up communication between
memory and one FIFO at a time so that none of the buffers is neither starved nor
overflowed. A block diagram of the system is presented in Figure 5.10 ([Behrmann
et al., 2002]).

Figure 5.11 represents the internal structure of the 9 FIFO buffers in the con-
text of their surroundings. The size of the buffers range from 512 bytes to 2048
bytes (2KBytes) and they are implemented as ring buffers. The buffers that mediate
data streams to SDRAM are called input buffers and, that mediate data streams from
SDRAM are called output buffers.

91

Figure 5.10: Radar memory interface card.

92

Observations of the system

1. The smallest quantity of data that can be moved in the system is 1 byte. For
example, inputs A and B in Figure 5.10.

2. Data is written at fixed rate in 1 byte or 2 byte quantities (Fig. 5.11, a). It is
assumed that uninterrupted data flow of 1 byte at the frequency of 100 MHz is
fed into the inputs A and B. Equivalently, it is assumed that outputs S and T
can always be written to at the rate of 2 bytes at 100 MHz.

3. Data is read from the ring buffer into the register in 4 byte quantities (Fig. 5.11,
b) whenever the two registers are not full and there are at least 4 bytes in the
buffer at the beginning of a system clock cycle. The duration of this transfer is
one clock cycle. If there is less data in the buffer or the registers are full, no
data is transferred. (This works vice versa in the case of output buffers. Data
is written from the register to the buffer whenever the register is not empty and
there is at least 4 bytes worth of space in the ring buffer).

4. On the memory bus (Fig. 5.11, c) data is always transferred when the register
is full, i.e. in quantities of 512 bits = 64 bytes. (In the case of output buffers,
data is transferred whenever the register is empty).

5. There is a multiplexer on the bus from the register to SDRAM as the memory
bus runs in double data rate (DDR) mode and, is 128 bits wide but the register
outputs 256 bits at 100 MHz. The DDR mode is achieved by transferring data

Figure 5.11: The structure of a FIFO buffer in the context of its surroundings.

93

between memory and the multiplexer on both the rising and the descending
edge of a clock cycle.

6. Whenever an output register is full, the send signal is set. Whenever an input
register is empty, the receive signal is set.

Arbiter

The arbiter is responsible for setting up connections between SDRAM and registers
that are ready for communication. The arbiter, that is presented in the case study,
checks the send/receive signals of the buffers in a round-robin way. When a buffer is
ready, a select line signal is issued by the arbiter.

1. Whenever an output register is full, the send signal is set (Fig. 5.11). Whenever
an input register is empty, the receive signal is set.

2. The calculation of the memory addresses for memory communication is not
considered in the current approach.

3. Transferring 64 bytes between the registers and SDRAM takes two additional
system clock cycles, making it a total of 4 cycles.

4. SDRAM needs to be refreshed every 15625 ns. The refresh takes 100 ns (10
system clock cycles).

The aim of the original case study was to verify that the behaviour of the round-
robin scheduling algorithm is correct. A further step would be to synthesise a sched-
uler for a set of buffers.

We modify the original goal slightly and seek solution to the following problems:

1. Check that no input buffers are full at the beginning of a clock cycle.

2. Check that no output buffers are empty at the beginning of a clock cycle.

3. Check that the system does not deadlock.

4. Synthesise an arbiter for the memory bus that guarantees that the above prop-
erties are always satisfied.

5. Find the smallest possible buffer values for the arbiter synthesised.

6. Check that the schedule guarantees that no data transfers are interrupted by a
memory refresh.

94

Table 5.7: Data rates of the data streams. (A, . . . , T’ denote corresponding streams
in Figure 5.10. b denotes the corresponding stream in Figure 5.11.)

Data stream A A’ B B’ S S’ T T’ b
Bus width (bytes) 1 1 1 1 2 2 2 2 4
Frequency (MHz) 100 100 100 100 100 100 100 100 100
Abstract bus width (bytes) 4 4 4 4 8 8 8 8 32
Abstrtract frequency (MHz) 25 25 25 25 25 25 25 25 25
Rate (MByte/s) 100 100 100 100 200 200 200 200 400

5.2.4 Construction of the Abstract Model

In this section we summarise the decisions taken during the process of modelling the
memory interface board. We are interested in one specific aspect of the behaviour of
the board, namely the control behaviour of the memory arbiter, and thus we disregard
all detail that we manage to classify as not directly relevant. We model the system in
terms of Uppaal modelling language [Bengtsson and Yi, 2004], which corresponds
to finite state automata extended with integer variables and clocks.

The most significant observation in approaching the memory card is that the sys-
tem is fully synchronous meaning that all events are aligned to the system clock ticks.
Memory refresh, as specified by Observation 4 in Section 5.2.3, is the only exception
to this rule. Keeping the synchronous nature of the system in mind enables us to
reduce the number of intermediate states that should be distinguished in automatic
analysis.

The first step in the current modelling approach is to choose the aspect of the
system to focus on. We assume that the system is modelled in terms of some other
(more or less formal) language, for example some block diagram language as in
Figure 5.10. If the system is sufficiently specified it is possible for the engineer to
point to some part of the system and ask for assistance there. We assume that the
engineer pointed to the shared memory bus and asked to remove nondeterminism
from the model or, in other words, synthesise an arbiter.

Memory bus

As said, we pay special attention to the memory bus as the arbiter of the memory bus
is what we are specifically interested in. We observe closely how the other compo-
nents of the system interact with the memory bus. The properties of the memory bus
determine the parameters of our model, such as, for example, time and data granular-
ity.

Observation 3 in Section 5.2.3 refers to that data is transferred in bursts along the
memory bus and that it takes 4 system clock cycles per burst. Thus we align our
abstract system clock to the bursts on the memory bus.

Let us consider the main characteristics of the data streams, when dividing the
system clock frequency by 4. The properties of the data streams are summarised in
Table 5.7. As the data rates should stay constant, we abstract the busses by widening

95

them proportionally to the factor by which we reduced the clock frequency. The
effect of this modification will be discussed in detail below.

Now let us look at how the implementation details of the memory bus affect this
approach. The data transfer from a register to memory and vice versa is performed
on a 16 byte wide 200 MHz bus in the quantities of 64 bytes (Observation 4). As
mentioned above, it takes 4 clock cycles to complete the transfer, so the memory-
buffer data rate can be considered to be 64/4 = 16 bytes/cycle = 1600 Mbytes/sec.

It is easy to estimate the solvability of the task in this case by the following simple
sanity check:

throughputmb− refresh≥ ∑
streams

throughputstream, (5.1)

where throughputmb is the (abstract) data rate of the memory bus (1600 Mbytes/sec),
refresh is bandwidth lost by staying in refresh state (100 ns / 15625 ns×throughputmb),
and the right hand side is the aggregate throughput of the data streams.

We assume that there is enough stream data stored in the SDRAM, so that we
can always initiate a burst from some memory location to an output register when
the latter is empty and vice versa for the input register. This assumption allows us to
concentrate on the data levels of the buffers and registers and not to model the double
data rate behaviour of the dynamic memory (Figure 5.11, bus d).

We will model the behaviour of the system in terms of data levels in the buffers
and the registers. Under the above assumption we do not need to model data levels in
memory. We model the data levels as values of integer variables in Uppaal automata.

Communication between Inputs, Outputs, and Buffers

We now turn to how the buffers and signal processing units behave from the point of
view of the memory bus.

We observe that all of the input-adder, input-buffer, adder-output, adder-buffer,
buffer-adder (Figure 5.10) communication occurs in constant streams. We can model
a constant flow by adding or subtracting a constant value to the integer variable rep-
resenting a particular buffer at every (coarse) clock tick. Thus we can omit modelling
the adders altogether.

Let us now have a look at how the interconnection of buffers and registers behaves.
For example, take data transfer from buffer to register (Figure 5.11, b). The width of
the buffer to register bus is 4 bytes. In one abstract clock cycle (four concrete cycles)
this amounts to 16 bytes. If the data level in the register is less than the allowed
maximum of 64 bytes, data is written from the buffer to the register. Such analysis is
repeated for all buffer-register pairs.

Figure 5.12 gives an overview of the effect of the widening of the data paths that
happens due to the coarsened clock. In the case of an input buffer, the buffer is
considered empty until it is possible to read a whole coarse unit of data from it. In
the case of output buffers, the buffer must have space for a whole coarse unit of data
before data can be written to it.

96

Figure 5.12: Abstractions of the data flow.

Due to synchronicity we are not interested in the interleaving between the filling
and emptying of independent buffers and registers. Therefore all such interleaving
is discarded by performing the updates of all registers and buffers as an update of a
single transition of the automata model.

Assembly of the Model

The resultant model consists of three automata:

• The automaton which is responsible for updating the states of buffers and reg-
isters is called Buffers.

• The automaton that simulates the behaviour of memory (its need for refreshes)
is called MemoryRefresh.

• The automaton for generating clock ticks is called Clock.

In the next section we describe how the synthesis and verification problems are
approached and what additional modifications are needed to the model described thus
far.

5.2.5 Arbiter Synthesis and Verification

For the purpose of arbiter synthesis we create a conservative model of the system.
By conservative we mean that we allow only valid behaviours of the system. We
explicitly restrict the starvation and overflow of any of the buffers by introducing
relevant guards.

The model in Figure 5.13 has the following characteristics:

• It consists of three concurrent automata : Buffers, Clock, and MemoryRefresh.
Buffers models the states of the buffers and registers, Clock provides system
clock ticks and MemoryRefresh models the need of SDRAM to be refreshed
periodically.

97

c<1000aftertick

blockmembus?
membusstate:=REFRESHING

unblockmembus?
membusstate:=IDLE

tick?

//Update the state of all buffers

buf1>=0, buf1<=BUF1MAX,
buf2>=0, buf2<=BUF2MAX,
buf3>=0, buf3<=BUF2MAX,
buf4>=0, buf4<=BUF4MAX,
buf5>=0, buf5<=BUF5MAX,
buf6>=0, buf6<=BUF6MAX,
buf7>=0, buf7<=BUF7MAX,
buf8>=0, buf8<=BUF8MAX,
buf9>=0, buf9<=BUF9MAX

nextmbstate:=IDLEmembusstate>REFRESHING

membusstate>REFRESHING, reg1==REGMAX nextmbstate:=B

membusstate>REFRESHING, reg2==REGMAX nextmbstate:=A

membusstate>REFRESHING, reg3==0 nextmbstate:=MAP

membusstate>REFRESHING, reg4==0 nextmbstate:=MSP

membusstate>REFRESHING, reg5==0 nextmbstate:=MB

membusstate>REFRESHING, reg6==0 nextmbstate:=MBP

membusstate>REFRESHING, reg7==0 nextmbstate:=MTP

membusstate>REFRESHING, reg8==REGMAX nextmbstate:=T

membusstate>REFRESHING, reg9==REGMAX nextmbstate:=S

membusstate==REFRESHING

Buffers

c<=TICKCYCLE

c==TICKCYCLE
tick!
c:=0

endrefresh

idle

 c<=REFRESHCYCLE

refreshing

 c<=REFRESHDELAY

startrefresh

c==REFRESHDELAY

 unblockmembus!

c==REFRESHCYCLE

blockmembus!
c:=0

Clock MemoryRefresh

Figure 5.13: The Uppaal model for schedule synthesis consists of three automata:
Buffers, Clock and MemoryRefresh.

98

• The state of the buffers and registers is represented by integers in the Buffers
automaton.

• To model synchronicity, all variables representing buffers and registers are up-
dated on one state transition, thus discarding a great deal of interleaving that is
irrelevant in the current context. There is a separate variable representing the
behaviour of the arbiter that controls which register can access memory at a
time.

• The granularity of clock ticks is aligned with the duration of a transfer on the
shared bus. The buffers and registers are updated by relevant multiples of bytes
at the beginning of each such abstract tick.

For each buffer-to-memory and memory-to-buffer communication there is a tran-
sition in the Buffers automaton that sets up relevant communication in the next clock
cycle. In addition, there is a transition for memory update and idling.

The update of the states of the buffers and registers is performed by an update
presented in Figure 5.14. The semantics is that the update is taken at the end of the
abstract clock cycle, to make sure that no memory refresh would invalidate a data
burst.

Memory refreshes are triggered by the MemoryRefresh automaton.

Schedule synthesis

The current solution builds on the Uppaal model checker and its bit-state hashing
implementation of symbolic representation of state space described by [Bengtsson,
2002]. Bit-state hashing is a memory consumption reduction technique that is applied
to finding schedules. A clock variable that is never reset and is checked in an invariant
(c < 1000 ns) in a state of the Buffers automaton (Figure 5.13) is used for bounding
the depth of the search.

Specification of the Synthesis Property

The schedule is found using a reachability query given in Figure 5.15.
The query poses the following question to the system: Does there exist a state,

apart from the initial state, along some path of computation, where the sum of data
in each corresponding register and buffer equals to the initial sum? It is important to
note that memory refresh is triggered at first clock cycle, meaning, that the memory
bus is blocked at start. The amounts of data specified in the query are set to a quarter
of the capacity of each buffer (we have reduced the buffer sizes by a factor of two).
Notice that the specified reachability property does not hold along the path to the de-
sired state. To make sure that only valid paths are explored we incorporated the path
property (no buffers can be starved nor overflowed) into the guards of the synthesis
model. This reduces the reachable state space.

99

//Update the state of all buffers
//first we need to set up help variables:
// (for input buffers)
buf1help=((reg1<=(REGMAX-BUF1OUT))&&(buf1>=BUF1OUT)?1:0),

// (for output buffers)
buf3help=((reg3>=BUF3IN)?1:0),

// (for memory)
// next memory transaction:
// input buffers
reg1idle=((nextmbstate==1)&&(reg1==REGMAX)&&(membusstate>REFRESHING)?0:1),

// output buffers
reg3idle=((nextmbstate==3)&&(reg3==0)&&(membusstate>REFRESHING)?0:1),

//
//
//input buffers
//
buf1=(buf1help?buf1+BUF1IN-(reg1idle*BUF1OUT):buf1+BUF1IN),

reg1=(buf1help?reg1+(reg1idle*BUF1OUT):reg1),

//
//
// output buffers
//
buf3=(buf3help?buf3-BUF3OUT+(reg3idle*BUF3IN):buf3-BUF3OUT),

reg3=(buf3help?reg3-(reg3idle*BUF3IN):reg3),

//
// Memory
//
membusstate=(membusstate>REFRESHING?0:membusstate),

//
membusstate=(reg1idle==0&&membusstate>REFRESHING?1:membusstate),

membusstate=(reg3idle==0&&membusstate>REFRESHING?3:membusstate),

memB=(reg1idle==0&&membusstate==1?memB+REGMAX:memB),

memA=(reg3idle==0&&membusstate==3?memA-REGMAX:memA),

//trasfer to and from registers
reg1=(reg1idle==0&&membusstate==1?0:reg1),

reg3=(reg3idle==0&&membusstate==3?REGMAX:reg3),

//
// clear help variables
reg1idle=1,

reg3idle=1,

//clean up:
buf1help=0,

buf3help=0,

initcomplete=(membusstate>REFRESHING?1:initcomplete)

Figure 5.14: The update on the lower transition of the Buffers automaton that updates
the states of registers and buffers. (The actual updates are only shown for one input
buffer and register (buf1, reg1), and one output buffer and register (buf3, reg3).)

100

E<> Buffers.buf3+Buffers.reg3==128 and
Buffers.buf5+Buffers.reg5==128 and
Buffers.buf6+Buffers.reg6==128 and
Buffers.buf1+Buffers.reg1==64 and
Buffers.buf2+Buffers.reg2==64 and
Buffers.buf4+Buffers.reg4==256 and
Buffers.buf7+Buffers.reg7==256 and
Buffers.buf8+Buffers.reg8==256 and
Buffers.buf9+Buffers.reg9==256 and
Buffers.initcomplete==1

Figure 5.15: The query used for finding the schedule for the memory arbiter.

Table 5.8: Two synthesised schedules resulting from depth first search and cost opti-
mally guided search.

Time (ns) 40 80 120 160 200 240 280 320
Depth first schedule -1 -1 0 7 9 8 4 2
Cost optimal schedule -1 -1 0 4 7 2 1 8
Time (ns) 360 400 440 480 520 560 600 640
Depth first schedule 7 9 8 6 5 4 1 3
Cost optimal schedule 9 4 7 6 3 5 8 9

The schedule is produced as a sequence of memory bus states indicated by the
MemBusState variable. Examples of schedules can be found in Table 5.8. The num-
bers indicate corresponding numbers of registers that communicate with memory in
each 40 ns time slot (an abstract clock cycle). Number 0 stands for either an idle
state of the memory bus or a state where the memory bus becomes idle by the end
of a clock cycle. Number -1 stands for memory refreshing state. The data should be
interpreted in the following way: memory bus is blocked due to refresh (-1) at the
end of the first 40 ns. It is also blocked during the next 40 ns ending with the 80th
nanosecond. The bus becomes idle by the end of the third abstract clock cycle (120th
ns). During the period 120 ns to 160 ns 64 bytes are transferred from the memory to
register number 7 (in the case of the depth first schedule). Etc.

Buffer Memory Minimisation

Uppaal CORA [Behrmann, 2005] is a tool that contains two different extensions
to the Uppaal timed automata formalism. One extension is called Linearly Priced
Timed Automata (LPTA) and the other Uniformly Priced Timed Automata (UPTA)
[Behrmann and Fehnker, 2001]. In this example we make use of the UPTA exten-
sion by specifying a variable cost that is increased monotonously according to the
increase in the range of buffer memory used. The cost value is the sum of differ-
ences of the maxima and minima of the amount of data in buffers. The appropriate
modifications to the model that are shown in Figure 5.16.

A schedule derived using the cost guided model is presented in Table 5.8. The
difference between the behaviours of resultant schedules in terms of buffer sizes is
visualised in Figure 5.17. Attention should be paid to the difference between the
maxima and minima of corresponding data levels in buffers. This suggests that the

101

// Input buffers
//
buf1=(buf1help?buf1+BUF1IN-(reg1idle*BUF1OUT):buf1+BUF1IN),

cost+=(buf1>buf1max?1:0),

buf1max=(buf1>buf1max?buf1:buf1max),

cost+=(buf1<buf1min?1:0),

buf1min=(buf1<buf1min?buf1:buf1min),

reg1=(buf1help?reg1+(reg1idle*BUF1OUT):reg1),

// Output buffers
//
buf3=(buf3help?buf3-BUF3OUT+(reg3idle*BUF3IN):buf3-BUF3OUT),

cost+=(buf3>buf3max?1:0),

buf3max=(buf3>buf3max?buf3:buf3max),

cost+=(buf3<buf3min?1:0),

buf3min=(buf3<buf3min?buf3:buf3min),

reg3=(buf3help?reg3-(reg3idle*BUF3IN):reg3),

Figure 5.16: Specification of the model in terms of Uniformly Priced Timed Au-
tomata (modifications to the original model).

buffer sizes can be reduced drastically even when looking at the problem from a con-
servatively abstract point of view. The model lends itself better for further analysis
with reduced buffer sizes.

It is visible from Figure 5.17 that the schedule obtained by using the guided
model utilises less memory than the previous one. The top-most graph is gained
with bounded depth first search and the sum of utilised buffer ranges is 536 bytes.
The lower one is obtained by using uniformly priced timed automata extensions to
the model. The sum of the utilised buffer ranges is 444 bytes. It should be stated that
search was equally bounded by 1000 ns in both cases.

Processor Time and Memory Requirements of the Synthesis Tasks

The synthesis task ran out of memory on a 32 bit x86 machine (the limit is 3 GB
of memory per process) when using a model checker (Uppaal 3.4.x) in the explicit
state space representation mode. Thus the need for some relevant space optimisation.
Turning on bit-state hashing may yield a desired trace or an uninformative ”may be”
answer in which case the search should be pursued further by modifying the model
or, preferably, the hash table size. It appears that a synthesis task described above
can be solved using just a few kilobytes of memory for the bit-state hashing table
of passed states. It is shown in Figure 5.18 that, for example, approximately 25%
of hash table sizes around 200 kB yield a schedule for the synthesis task. But about
75% of hash table sizes return a ”may be” answer. This suggests that iterated search
refinement using bit-state hashing may need very small amount of memory to provide
an aswer for a reachability task.

102

 0

 64

 128

 192

 256

 320

 0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640

D
at

a
in

 b
uf

fe
rs

 (
by

te
s)

Time (ns)

Buffer 1
Buffer 2

Buffer 3
Buffer 4

Buffer 5
Buffer 6

Buffer 7
Buffer 8

Buffer 9

 0

 64

 128

 192

 256

 320

 0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640

D
at

a
in

 b
uf

fe
rs

 (
by

te
s)

Time (ns)

Buffer 1
Buffer 2

Buffer 3
Buffer 4

Buffer 5
Buffer 6

Buffer 7
Buffer 8

Buffer 9

Figure 5.17: Data fluctuations in buffers during a synthesised cycle. The top-most
graph is gained with bounded depth first search and the lower one is by using uni-
formly priced timed automata extensions to the model.

103

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250

%
 o

f s
iz

es

Passed list size (kilobytes)

Figure 5.18: The percentage of passed list (hashtable) sizes that yield a concrete
schedule. The rest yield a ”may be” answer.

Modelling and Verification of the Memory Arbiter

In the previous section we created a schedule for the memory arbiter that should
satisfy the desired properties presented in the case study. As we did not present any
formal correctness proofs for modifications for simplifying the synthesis task, for
example depth bounding the search, we should show in some way that the synthesised
schedule and the resultant arbiter is indeed such that does not deadlock nor causes
any over or underflow of buffers. In addition, as was indicated in Figure 5.17, the
initial sizes of the buffers were unnecessarily big, so we can reduce the buffer sizes
accordingly. The resultant verification model is represented in Figure 5.19.

c<=TICKCYCLE

c==TICKCYCLE
tick!
c:=0

aftertick

tick?

//Update the state of all buffers

arbit!

Clock Buffers

arbit?

mbs:=REFRESHING

arbit?

mbs:=REFRESHING

arbit?

mbs:=REFRESHING

arbit?

mbs:=MTP

arbit?

mbs:=S

arbit?

mbs:=T

arbit?

mbs:=MSP
arbit?

mbs:=A

arbit?

mbs:=MTP

arbit?

mbs:=S

arbit?

mbs:=T

arbit?

mbs:=MBP

arbit?

mbs:=B

arbit?

mbs:=MAP

arbit?
mbs:=MSP

arbit?

mbs:=MB

Arbiter

Figure 5.19: The Uppaal model for verification of the system. The Arbiter automaton
is based on the cost optimal synthesised schedule presented in Table 5.8.

104

Modelling the Arbiter

The Arbiter automaton (Figure 5.19) consists of a linear sequence of locations and
transitions that are connected into a loop. On each transition there is an assignment
of a variable that dictates the memory bus state of the Buffers automaton. The as-
signments to the mbs variable are taken from the cost optimally generated schedule
presented in Table 5.8.

Verification of the Arbiter

After building the Arbiter automaton we assemble the model of the system by adding
the Clock and the Buffers automata. The resultant model is represented in Figure
5.19. The update on the lower transition of the Buffers automaton is the same as
in Figure 5.14 but the transitions enabling switch to different memory transfers are
removed. The guards that restricted the buffers from being starved and overflowed
are also removed.

It appears that the result is a deterministic automaton that should satisfy the prop-
erties of never deadlocking and never starving nor overflowing any of the buffers
under the assumption that memory refresh can be scheduled. The MemoryRefresh
automaton that was present in Figure 5.13 is omitted from the verification model as
memory refreshes are scheduled by the arbiter. It is necessary to construct a more
complicated arbiter if memory refreshes are for some reason required to be allowed
to occur periodically out of sync of the arbiter. In the current case such deterministic
automaton is desirable because if the memory burst set-up needs to precede the actual
burst by some short interval, it can be directly integrated into the scheduler.

a) A[] Buffers.buf1>=0 and Buffers.buf1<=Buffers.BUF1MAX and
Buffers.buf2>=0 and Buffers.buf2<=Buffers.BUF2MAX and
Buffers.buf3>=0 and Buffers.buf3<=Buffers.BUF3MAX and
Buffers.buf4>=0 and Buffers.buf4<=Buffers.BUF4MAX and
Buffers.buf5>=0 and Buffers.buf5<=Buffers.BUF5MAX and
Buffers.buf6>=0 and Buffers.buf6<=Buffers.BUF6MAX and
Buffers.buf7>=0 and Buffers.buf7<=Buffers.BUF7MAX and
Buffers.buf8>=0 and Buffers.buf8<=Buffers.BUF8MAX and
Buffers.buf9>=0 and Buffers.buf9<=Buffers.BUF9MAX

b) A[] not deadlock

c) E<> Buffers.c>1240

Figure 5.20: The queries used for the analysis of the verification model of the memory
arbiter.

The verification model proved itself useful in the following ways: It was possible
to adjust the buffer sizes and initial values to satisfy the required properties a) and b)
in Figure 5.20. The diagnostic traces generated by the model checker brought out a
typing error in the query that was used for generating the schedule. Additionally it
was possible to generate a trace that represents the behaviour of the arbiter. The trace
was generated by using query c) in Figure 5.20 and the results are presented in Figure
5.21. The graphs indicate a regular pattern with the exception of the three first cycles

105

(0-120 ns). The model can be further enhanced with specifying initial buffer and
register levels to reduce the required buffer sizes. Note that all data fluctuations are
of the order of magnitude of the registers, so with further analysis it could be shown
that the buffers could be omitted altogether and the registers modified accordingly.

 0
 8

 16
 24
 32
 40
 48
 56
 64
 72

 0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800 1920

D
at

a
in

 b
uf

fe
rs

 (
by

te
s)

Time (ns)

Buffer 1
Buffer 2
Buffer 4

 0
 8

 16
 24
 32
 40
 48
 56
 64
 72

 0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800 1920

D
at

a
in

 b
uf

fe
rs

 (
by

te
s)

Time (ns)

Buffer 3
Buffer 5
Buffer 6

 0
 8

 16
 24
 32
 40
 48
 56
 64
 72

 0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800 1920

D
at

a
in

 b
uf

fe
rs

 (
by

te
s)

Time (ns)

Buffer 7
Buffer 8
Buffer 9

Figure 5.21: Data fluctuations in buffers in the system containing a synthesised ar-
biter. Additionally, buffer sizes were chosen based on the cost optimal synthesis task.
(Data fluctuations have been divided into three different diagrams for the sake of
readability).

5.2.6 Conclusion

In this section we analysed the radar memory interface card presented by Terma AS
to the IST AMETIST project. We outlined a way to synthesise a memory arbiter for
the system, to minimise the amount of static RAM used for buffering the streams
and to verify that the the synthesised arbiter does not deadlock and never starves nor
overflows any of the intermediate buffers. We presented the synthesis and verification
tasks as two different problems of logic model checking. We designed the model for
the synthesis task very carefully to reduce the potential state space that needs to be

106

searched in the process. To achieve that, unwanted behaviour was restricted on the
guard level of the model by disabling transitions which would starve or overflow the
intermediate buffers. We used the assumption of synchronicity in modelling. This
enabled us to make a number of simplifications in the model. As we used bounded
(in terms of search depth) search for arbiter synthesis, it was necessary to verify
whether it behaves expectedly under all circumstances. For this purpose we con-
structed another model which differs from the first one by containing an arbiter but
not the restrictions mentioned in the synthesis model case. The model was verified
against the buffer starvation/overflow invariant and was checked that it is deadlock
free.

Synthesis tasks are generally computationally more challenging than verification
tasks. The success of the synthesis task is largely concealed in the rather simple
abstract model of the system. The other key factor is the application of a sound
but incomplete method for space saving—bit-state hashing, where each visited state
is represented by one bit in the hash table in a location determined by the hash of
the state. We showed that it is possible to synthesise a reasonable arbiter using this
approach. Additionally, we augmented the model with cost variables (taking into ac-
count the range of buffers used) and applied the guided version of Uppaal—Uppaal-
Cora to the synthesis task. This resulted in an optimal schedule in terms of buffer
memory on the abstraction level of the model. Experiments with a resultant model
of the arbiter showed that the fluctuations of data levels in buffers were reduced to
amounts that are equivalent to the sizes of registers.

107

CHAPTER 6

CONCLUSION

This thesis focused on automated analysis of formalised requirements and models
of software. We had a look at two different but partly overlapping techniques for anal-
ysis: model checking and model-based testing and a problem occurring in both —
the need for enumerating states for performing reachability analysis. Such analysis
can be used for proving that the model can not reach an unsafe state and for find-
ing desired behaviours as in planning and scheduling tasks. The state spaces of such
models can easily grow too big to be tractable by present day computers. We pro-
posed and analysed two different techniques for reducing the state space that needs
to be enumerated for proving properties that can be defined in terms of reachability.

Before proceeding to the actual techniques, we had a look at three different for-
malisms for writing the specifications and models of software. We looked at Promela,
which is the modelling formalism used in Spin model checker and various other tools,
the visual timed automata based formalism used in Uppaal and a way introduced in
NModel for modelling using the C# programming language and predefined constructs
and data types from the modelling library. All of the modelling approaches were used
later in the thesis in different examples.

By introducing the notion of model programs that allow modelling using abstract
data structures like sets and object instances, we introduced a new symmetry reduc-
tion which is based on state graph isomorphism of distinct states. Such reduction
allows to explore all structurally distinct states that are reachable from the inital state
thus reducing the total number of states that need to be considered.

Although powerful, the state isomorphism based reduction techique has its limi-
tations as calculating the state graph and comparing it to previously seen state graphs
consumes both extra memory and extra processor time.

We demonstrated how model checking can still yield interesting results for spec-
ification models where full model checking fails due to memory and processor time
limitations, we observed that deliberately overpopulated bitstate hash tables act as
a sort of pruning mechanism of the search tree. Based on the result we defined an
iterated search refinement algorithm that utilises bitstate pruning. The algorithm runs
on parallel architectures, thus the method can natively be speeded up by increaseing
the number of processors available to the iteration algorithm. Although the method

109

implies that the parts of the state space of the model get traversed over and over again
during different iterations, the fact that each individual iteration process consumes
very little memory compensates by making each iteration much more processor cache
efficient than search with hundreds of megabytes or gigabytes of memory. Of course,
it should be stressed, that the iterated search refinement with bitstate pruning cannot
be used for disproving a property as it is not guaranteed to cover the full state space.

Iterated Search Refinement with bitstate pruning is a powerful alternative for dis-
covering shorter traces to error / desired state. Usually reachability of such states
can be established using depth first search but the resultant trace is unfeasibly long.
Breadth first search theoretically yields the shortest trace but often the amount of
memory resources required exceeds the amount available yielding no answer. It-
erated search refinement with bitstate pruning makes it possible to discover shorter
traces using low memory resources. The tradeoff lies in that the method requires large
amount of processing power, but the tradeoff can be remedied by applying multiple
processors in the search.

The research presented in the current thesis uncovered several topics that will re-
quire attention during future research. Experiments with the current implementation
of the isomorphism checking algorithm in NModel show that the implementation
needs to be improved by, for example, extending the labelling of the nodes in the
state graph.

Experimenting with iterated search refinement with bitstate pruning opened up the
question whether the distinguishing functionality of the bitstate hash table, the search
function and the search depth bound could be used for learning abstractions from the
model.

110

Bibliography

Aceto, L., Bouyer, P., Burgueño, A. and Larsen, K. G.: 2003, The power of reacha-
bility testing for timed automata, Theor. Comput. Sci. 300(1-3), 411–475.

AMETIST: 2002–2005, The eu information society technologies project ist-2001-
35304: ”advanced methods for timed systems”, http://ametist.cs.utwente.nl.

Amnell, T., Behrmann, G., Bengtsson, J., D’Argenio, P. R., David, A., Fehnker, A.,
Hune, T., Jeannet, B., Larsen, K. G., Möller, M. O., Pettersson, P., Weise, C.
and Yi, W.: 2001, UPPAAL - Now, Next, and Future, in F. Cassez, C. Jard,
B. Rozoy and M. Ryan (eds), Modelling and Verification of Parallel Processes,
number 2067 in Lecture Notes in Computer Science Tutorial, Springer–Verlag,
pp. 100–125.

Amnell, T., Fersman, E., Pettersson, P., Yi, W. and Sun, H.: 2002, Code synthesis for
timed automata, Nordic J. of Computing 9(4), 269–300.

Barnat, J., Brim, L. and Chaloupka, J.: 2003, Parallel breadth-first search LTL model-
checking, Proceedings 18th IEEE International Conference on Automated Soft-
ware Engineering 00, 106.

Behrmann, G.: 2005, Uppaal CORA, http://www.cs.aau.dk/˜behrmann/cora/.

Behrmann, G., Bernicot, S., Hune, T., Larsen, K. G., Lecamp, S. and Skou, A.:
2002, Case study 2: Memory interface for radar system, Deliverable to the IST
AMETIST project No. IST-2001-35304.

Behrmann, G., David, A. and Larsen, K. G.: 2004, A tutorial on Uppaal., in
M. Bernardo and F. Corradini (eds), SFM, Vol. 3185 of Lecture Notes in
Computer Science, Springer, pp. 200–236. (updated version available from
http://www.uppaal.com).

Behrmann, G. and Fehnker, A.: 2001, Efficient guiding towards cost-optimality in
uppaal, TACAS 2001: Proceedings of the 7th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, Springer-Verlag,
pp. 174–188.

111

Behrmann, G., Larsen, K. G. and Rasmussen, J. I.: 2004, Priced timed automata:
Algorithms and applications., in F. S. de Boer, M. M. Bonsangue, S. Graf and
W. P. de Roever (eds), FMCO, Vol. 3657 of Lect. Notes in Comp. Sci., Springer,
pp. 162–182.

Behrmann, G., Larsen, K. G. and Rasmussen, J. I.: 2005, Optimal scheduling using
priced timed automata, SIGMETRICS Perform. Eval. Rev. 32(4), 34–40.

Bengtsson, J.: 2002, Clocks, DBMs and states in timed systems, PhD thesis.

Bengtsson, J. and Yi, W.: 2004, Timed automata: Semantics, algorithms and tools, in
W. Reisig and G. Rozenberg (eds), In Lecture Notes on Concurrency and Petri
Nets, Lecture Notes in Computer Science vol 3098, Springer–Verlag.

Blass, A. and Gurevich, Y.: 2000, Background, reserve, and gandy machines, Pro-
ceedings of the 14th Annual Conference of the EACSL on Computer Science
Logic, Springer-Verlag, London, UK, pp. 1–17.

Blom, J., Hessel, A., Jonsson, B. and Petterson, P.: 2005, Specifying and Generating
Test Cases Using Observer Automata, in J. Gabowski and B. Nielsen (eds),
Proc. of the 4th International Workshop on Formal Approaches to Testing of
Software (FATES 2004), number 3395 in Lect. Notes in Comp. Sci., Springer,
pp. 125–139.

Bloom, B. H.: 1970, Space/time trade-offs in hash coding with allowable errors,
Communications of the ACM 13(7), 422–426.

Bosnacki, D., Dams, D. and Holenderski, L.: 2000, Symmetric spin., in K. Havelund,
J. Penix and W. Visser (eds), SPIN, Vol. 1885 of Lecture Notes in Computer
Science, Springer, pp. 1–19.

Bourhfir, C., Dssouli, R., Aboulhamid, E. and Rico, N.: 1997, Automatic executable
test case generation for extended finite state machine protocols, Proceedings
of the 10th International IFIP Workshop on Testing of Communicating Systems
(IWTCS’97), Cheju Islands, Korea, Chapman & Hall, pp. 75–90.

Boyapati, C., Khurshid, S. and Marinov, D.: 2002, Korat: automated testing based
on java predicates, SIGSOFT Softw. Eng. Notes 27(4), 123–133.

Bryant, R. E.: 1986, Graph-based algorithms for boolean function manipulation,
IEEE Trans. Comput. 35(8), 677–691.

Campbell, C. and Veanes, M.: 2005, State exploration with multiple state groupings,
in D. Beauquier, E. Börger and A. Slissenko (eds), 12th International Workshop
on Abstract State Machines, ASM’05, Laboratory of Algorithms, Complexity
and Logic, Créteil, France, pp. 119–130.

112

Chow, T. S.: 1978, Testing software design modeled by finite-state machines., IEEE
Trans. Software Eng. 4(3), 178–187.

Cormen, T. H., Leiserson, C. E. and Rivest, R. L.: 1994, Introduction to Algorithms,
McGraw-Hill, Inc., New York, NY, USA.

Darga, P. T. and Boyapati, C.: 2006, Efficient software model checking of data struc-
ture properties, OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and applica-
tions, ACM Press, New York, NY, USA, pp. 363–382.

Demartini, C., Iosif, R. and Sisto, R.: 1999, dSPIN: A dynamic extension of SPIN,
Proceedings of the 5th and 6th International SPIN Workshops on Theoretical
and Practical Aspects of SPIN Model Checking, Springer-Verlag, London, UK,
pp. 261–276.

Dijkstra, E. W.: 1965, Programming considered as a human activity, Proc. IFIP
Congress, Vol. 65, pp. 213–217.

Dijkstra, E. W.: 1971, Hierarchical ordering of sequential processes, Acta Inf. 1, 115–
138.

Dill, D. L.: 1996, The murphi verification system, CAV ’96: Proceedings of the
8th International Conference on Computer Aided Verification, Springer-Verlag,
London, UK, pp. 390–393.

Dillinger, P. C. and Manolios, P.: 2004a, Bloom filters in probabilistic verification.,
in A. J. Hu and A. K. Martin (eds), FMCAD, Vol. 3312 of Lecture Notes in
Computer Science, Springer, pp. 367–381.

Dillinger, P. C. and Manolios, P.: 2004b, Fast and accurate bitstate verification for
SPIN, 11th SPIN Workshop on Model Checking Software, Vol. 2989 of LNCS,
Springer-Verlag.

Dillinger, P. C. and Manolios, P.: 2005, Enhanced probabilistic verification with 3spin
and 3murphi., in P. Godefroid (ed.), SPIN, Vol. 3639 of Lecture Notes in Com-
puter Science, Springer, pp. 272–276.

Donaldson, A. F.: 2007, Automatic Techniques for Detecting and Exploiting Symme-
try in Model Checking, PhD thesis, University of Glasgow.

Edelkamp, S., Lafuente, A. L. and Leue, S.: 2001, Directed explicit model checking
with hsf-spin, SPIN ’01: Proceedings of the 8th international SPIN workshop
on Model checking of software, Springer-Verlag New York, Inc., New York, NY,
USA, pp. 57–79.

Edmund M. Clarke, J., Grumberg, O. and Peled, D. A.: 1999, Model checking, MIT
Press, Cambridge, MA, USA.

113

Ernits, J.: 2005, Memory arbiter synthesis and verification for a radar memory inter-
face card, Nordic Journal of Computing 12(2), 68–88.

Ernits, J. P., Kull, A., Raiend, K. and Vain, J.: 2006, Generating tests from efsm mod-
els using guided model checking and iterated search refinement, in K. Havelund,
M. Núñez, G. Rosu and B. Wolff (eds), FATES/RV, Vol. 4262 of Lecture Notes
in Computer Science, Springer, pp. 85–99.

Farchi, E., Hartman, A. and Pinter, S. S.: 2002, Using a model-based test generator
to test for standard conformance., IBM Systems Journal 41(1), 89–110.

Flanagan, C. and Godefroid, P.: 2005, Dynamic partial-order reduction for model
checking software, POPL ’05: Proceedings of the 32nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, ACM Press,
New York, NY, USA, pp. 110–121.

Fortin, S.: 1996, The graph isomorphism problem.

GCI: 2006, Academia europaea informatics symposium: Grand challenges of in-
formatics budapest. Hungary, 19–20 September, 2006. See http://www.
jaist.ac.jp/˜bjorner/ae-is-budapest/.

Godefroid, P.: 1996, Partial-Order Methods for the Verification of Concurrent Sys-
tems: An Approach to the State-Explosion Problem, Springer-Verlag New York,
Inc., Secaucus, NJ, USA. Foreword By-Pierre Wolper.

Goel, A. and Lee, W. R.: 2000, Formal verification of an ibm coreconnect processor
local bus arbiter core, DAC ’00: Proceedings of the 37th conference on Design
automation, ACM Press, pp. 196–200.

Grieskamp, W., Gurevich, Y., Schulte, W. and Veanes, M.: 2002, Generating finite
state machines from abstract state machines, ISSTA’02, Vol. 27 of Software En-
gineering Notes, ACM, pp. 112–122.

Grieskamp, W., Tillmann, N. and Schulte, W.: 2006, XRT — exploring runtime for
.Net architecture and applications., Electr. Notes Theor. Comput. Sci. 144(3), 3–
26.

GROOVE: 2007, Groove web page. http://groove.cs.utwente.nl/.

Gunter, E. L. and Peled, D.: 2005, Model checking, testing and verification working
together., Formal Asp. Comput. 17(2), 201–221.

Gurevich, Y.: 1995, Specification and Validation Methods, Oxford University Press,
chapter Evolving Algebras 1993: Lipari Guide, pp. 9–36.

Hamon, G., de Moura, L. and Rushby, J.: 2004a, Generating efficient test sets with
a model checker, 2nd International Conference on Software Engineering and
Formal Methods, IEEE Computer Society, Beijing, China, pp. 261–270.

114

Hamon, H., de Moura, L. and Rushby, J.: 2004b, Generating efficient test sets with a
model checker, SEFM ’04: Proceedings of the Software Engineering and For-
mal Methods, Second International Conference on (SEFM’04), IEEE Computer
Society, Washington, DC, USA, pp. 261–270.

Hendriks, M., Behrmann, G., Larsen, K. G., Niebert, P. and Vaandrager, F. W.: 2003,
Adding symmetry reduction to Uppaal, in K. G. Larsen and P. Niebert (eds),
FORMATS, Vol. 2791 of Lecture Notes in Computer Science, Springer, pp. 46–
59.

Hessel, A., Larsen, K. G., Nielsen, B., Petterson, P. and Skou, A.: 2004, Time-
optimal Real-Time Test Case Generation using UPPAAL, in A. Petrenko and
A. Ulrich (eds), Proc. of the 3rd International Workshop on Formal Approaches
to Testing of Software (FATES 2003), number 2931 in Lect. Notes in Comp. Sci.,
Springer, pp. 136–151.

Hessel, A., Larsen, K., Nielsen, B., Pettersson, P. and Skou, A.: 2003, Time-optimal
realtime test case generation using UPPAAL, FATES’03, Montreal.

Hoare, T.: 2003, The verifying compiler: A grand challenge for computing research,
J. ACM 50(1), 63–69.

Hoare, T.: 2006, The ideal of verified software, in T. Ball and R. B. Jones (eds), CAV,
Vol. 4144 of Lecture Notes in Computer Science, Springer, pp. 5–16.

Hogrefe, D.: 1991, OSI-formal specification case study: The INRES protocol and
service. Technical Report 91-012, University of Bern.

Holzmann, G. J.: 1998, An analysis of bitstate hashing, Form. Methods Syst. Des.
13(3), 289–307.

Holzmann, G. J.: 2003, The Spin Model Checker, Primer and Reference Manual,
Addison-Wesley, Reading, Massachusetts.

Holzmann, G. J. and Smith, M. H.: 2000, Automating software feature verification,
Bell Labs Technical Journal 5(2), 72–87.

Hong, H. S., Lee, I., Sokolsky, O. and Ural, H.: 2002, A temporal logic based theory
of test coverage and generation, TACAS ’02: Proceedings of the 8th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis
of Systems, Springer-Verlag, London, UK, pp. 327–341.

Hopcroft, J. E. and Ullman, J. D.: 1979, Introduction to Automata Theory, Lan-
guages, and Computation, Addison-Wesley, Reading, Massachusetts.

Hune, T., Larsen, K. G. and Pettersson, P.: 2001, Guided Synthesis of Control Pro-
grams using UPPAAL, Nordic Journal of Computing 8(1), 43–64.

115

Huth, M. R. A. and Ryan, M. D.: 2000, Logic in Computer Science: Modelling and
Reasoning about Systems, Cambridge University Press, Cambridge, England.

Iosif, R.: 2004, Symmetry reductions for model checking of concurrent dynamic
software., STTT 6(4), 302–319.

Ip, C. N. and Dill, D. L.: 1996, Better verification through symmetry, Form. Methods
Syst. Des. 9(1-2), 41–75.

Jacky, J., Veanes, M., Campbell, C. and Schulte, W.: 2007, Model-based Software
Testing and Analysis with C#, Cambridge University Press. Forthcoming.

Jenkins, B.: 1997, Algorithm alley: Hash functions, Dr. Dobbs 22(9).

JPF: 2007, Java Pathfinder web page. http://javapathfinder.
sourceforge.net/.

Junttila, T.: 2003, On the symmetry reduction method for Petri nets and similar for-
malisms, Research Report A80, Helsinki University of Technology, Laboratory
for Theoretical Computer Science, Espoo, Finland. Doctoral dissertation.

Kastenberg, H. and Rensink, A.: 2006, Model checking dynamic states in groove,
in A. Valmari (ed.), SPIN, Vol. 3925 of Lecture Notes in Computer Science,
Springer, pp. 299–305.

Kuntz, M. and Lampka, K.: 2004, Probabilistic methods in state space analysis, in
C. Baier, B. R. Haverkort, H. Hermanns, J.-P. Katoen and M. Siegle (eds), Vali-
dation of Stochastic Systems, Vol. 2925 of Lecture Notes in Computer Science,
Springer, pp. 339–383.

Larsen, K. G., Larsson, F., Pettersson, P. and Yi, W.: 2003, Compact data struc-
tures and state-space reduction for model-checking real-time systems, Real-
Time Syst. 25(2-3), 255–275.

Larsen, K. G., Mikucionis, M., Nielsen, B. and Skou, A.: 2005, Testing real-time
embedded software using UPPAAL-TRON: an industrial case study, EMSOFT
’05: Proc. of the 5th ACM International Conference on Embedded Software,
ACM Press, New York, NY, USA, pp. 299–306.

Luks, E. M.: 1982, Isomorphism of graphs of bounded valence can be tested in
polynomial time., J. Comput. Syst. Sci. 25(1), 42–65.

McKay, B. D.: 1981, Practical graph isomorphism, Congressus Numerantium 30, 45–
87.

McMillan, K. L.: 1992, Symbolic Model Checking: An approach to the state explo-
sion problem, PhD thesis, Carnegie Mellon University. CMU-CS-92-131.

McMillan, K. L.: 1999, The SMV language. Cadence Berkeley Labs.

116

Mercer, E. and Jones, M.: 2005, Model checking machine code with the GNU de-
bugger., in P. Godefroid (ed.), SPIN, Vol. 3639 of Lecture Notes in Computer
Science, Springer, pp. 251–265.

Messmer, B. T.: 1995, Efficient graph matching algorithms.

Miller, A., Donaldson, A. and Calder, M.: 2006, Symmetry in temporal logic model
checking, ACM Comput. Surv. 38(3), 8.

Mücke, T. and Huhn, M.: 2004, Generation of optimized testsuites for UML state-
charts with time., in R. Groz and R. M. Hierons (eds), TestCom, Vol. 2978 of
Lecture Notes in Computer Science, Springer, pp. 128–143.

Musuvathi, M. and Dill, D. L.: 2005, An incremental heap canonicalization algo-
rithm., in P. Godefroid (ed.), SPIN, Vol. 3639 of Lecture Notes in Computer
Science, Springer, pp. 28–42.

Myers, G. J.: 1979, Art of Software Testing, John Wiley & Sons, Inc., New York, NY,
USA.

Myers, G. J., Badgett, T., Thomas, T. M. and Sandler, C.: 2004, Art of Software
Testing, John Wiley & Sons, Inc., New York, NY, USA. 2nd edition.

Nethercote, N., Walsh, R. and Fitzhardinge, J.: 2006, Building workload character-
ization tools with Valgrind, Invited tutorial, IEEE International Symposium on
Workload Characterization (IISWC 2006), San José, California, USA.

Nicely, T. R.: 1994, Pentium FDIV flaw. http://www.trnicely.net/
pentbug/pentbug.html.

NModel: 2007, NModel web site. http://www.codeplex.com/NModel.

Pelánek, R.: 2007, BEEM: Benchmarks for explicit model checkers, in D. Bosnacki
and S. Edelkamp (eds), SPIN, Vol. 4595 of Lecture Notes in Computer Science,
Springer, pp. 263–267.

Pelánek, R., Hanžl, T., Černá, I. and Brim, L.: 2005, Enhancing random walk state
space exploration, FMICS ’05: Proceedings of the 10th international workshop
on Formal methods for industrial critical systems, ACM Press, New York, NY,
USA, pp. 98–105.

Peled, D.: 1998, Ten years of partial order reduction, CAV ’98: Proceedings of
the 10th International Conference on Computer Aided Verification, Springer-
Verlag, London, UK, pp. 17–28.

Pettersson, P. and Larsen., K. G.: 2000, UPPAAL2k, Bulletin of the European Asso-
ciation for Theoretical Computer Science 70, 40–44.

117

Rensink, A.: 2006, Isomorphism checking in GROOVE, Electronic Communications
of the EASST 1, 1–11.

Rensink, A., Schmidt, Á. and Varró, D.: 2004, Model checking graph transforma-
tions: A comparison of two approaches, in H. Ehrig, G. Engels, F. Parisi-
Presicce and G. Rozenberg (eds), ICGT, Vol. 3256 of Lecture Notes in Com-
puter Science, Springer, pp. 226–241.

Robby, Dwyer, M. B. and Hatcliff, J.: 2006, Domain-specific model checking us-
ing the bogor framework, ASE ’06: Proceedings of the 21st IEEE International
Conference on Automated Software Engineering (ASE’06), IEEE Computer So-
ciety, Washington, DC, USA, pp. 369–370.

Ruys, T. C.: 2001, Towards Effective Model Checking, PhD thesis, University of
Twente.

Ruys, T. C.: 2003, Optimal scheduling using branch and bound with SPIN 4.0., in
T. Ball and S. K. Rajamani (eds), SPIN, Vol. 2648 of Lecture Notes in Computer
Science, Springer, pp. 1–17.

SpecExplorer: 2006, http://research.microsoft.com/
SpecExplorer.

Ullmann, J. R.: 1976, An algorithm for subgraph isomorphism, J. ACM 23(1), 31–42.

Utting, M. and Legeard, B.: 2006, Practical Model-Based Testing - A tools approach,
Elsevier Science.

Veanes, M., Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W. and Till-
mann, N.: 2005, Model-based testing of object-oriented reactive systems with
Spec Explorer. Tech. Rep. MSR-TR-2005-59, Microsoft Research. Preliminary
version of a book chapter in the forthcoming text book Formal Methods and
Testing.

Veanes, M., Campbell, C. and Schulte, W.: 2007a, Composition of model programs,
in J. Derrick and J. Vain (eds), FORTE, Vol. 4574 of Lecture Notes in Computer
Science, Springer, pp. 128–142.

Veanes, M., Campbell, C. and Schulte, W.: 2007b, Parallel and serial composition of
model programs, Technical Report MSR-TR-2007-22, Microsoft Research.

Veanes, M., Campbell, C., Schulte, W. and Tillmann, N.: 2005, Online testing with
model programs, ESEC/FSE-13: Proceedings of the 10th European software
engineering conference held jointly with 13th ACM SIGSOFT international
symposium on Foundations of software engineering, ACM Press, New York,
NY, USA, pp. 273–282.

118

Veanes, M., Ernits, J. P. and Campbell, C.: 2007, State isomorphism in model pro-
grams with abstract data structures, in J. Derrick and J. Vain (eds), FORTE, Vol.
4574 of Lecture Notes in Computer Science, Springer, pp. 112–127.

Visser, W., Havelund, K., Brat, G., Park, S. and Lerda, F.: 2003, Model Checking
Programs, Automated Software Engineering 10(2), 203–232.

VST: 2005, Conference on verified software: theories, tools, experiments. Eid-
genössische Technische Hochschule Zürich, Zürich 10–13, October 2005. See
http://vstte.ethz.ch.

Weiss, G.: 2002, Optimal Scheduler for a Memory Card, Research report, Weizmann.

Wijs, A., van de Pol, J. and Bortnik, E.: 2005, Solving scheduling problems by
untimed model checking: the clinical chemical analyser case study, FMICS
’05: Proceedings of the 10th international workshop on Formal methods for
industrial critical systems, ACM Press, New York, NY, USA, pp. 54–61.

Wikipedia: 2007, Halting problem — Wikipedia, the Free Encyclopedia. http:
//en.wikipedia.org/w/index.php?title=Halting_problem.

Xie, T., Marinov, D., Schulte, W. and Notkin, D.: 2005, Symstra: A framework for
generating object-oriented unit tests using symbolic execution, in N. Halbwachs
and L. D. Zuck (eds), TACAS, Vol. 3440 of Lecture Notes in Computer Science,
Springer, pp. 365–381.

Zeller, A.: 2005, Why Programs Fail: A Guide to Systematic Debugging, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

119

List of Publications

• Jüri Vain, Kullo Raiend, Andres Kull, Juhan-Peep Ernits: 2007, Synthesis of test pur-
pose directed reactive planning tester for nondeterministic systems. Proceedings of
the 22nd IEEE/ACM International Conference on Automated Software Engineering
(ASE’07). November 5-9, 2007 in Atlanta, Georgia, USA, ACM Press, 363 – 372.

• Margus Veanes, Juhan-Peep Ernits, Colin Campbell: 2007, State isomorphism in
model programs with abstract data structures. In J. Derrick and J. Vain (eds) For-
mal Techniques for Networked and Distributed Systems - FORTE 2007 : 27th IFIP
WG 6.1 International Conference, Tallinn, Estonia, June 27-29, 2007, Proceedings.
Berlin: Springer, Vol 4574 of Lecture Notes in Computer Science, 112 – 127.

• Juhan-Peep Ernits, Andres Kull, Kullo Raiend, Jüri Vain: 2006, Generating tests
from EFSM models using guided model checking and iterated search refinement. In
K. Havelund, M. Núñez, G. Rosu and B. Wolff (eds) Formal Approaches to Software
Testing and Runtime Verification : First Combined International Workshops FATES
2006 and RV 2006, Seattle, WA, USA, August 15-16, 2006, Revised Selected Papers.
Berlin: Springer, Vol 4262 of Lecture Notes in Computer Science, 85 – 99.

• Juhan-Peep Ernits, Andres Kull, Kullo Raiend, Jüri Vain: 2006, Generating TTCN-
3 test cases from EFSM models of reactive software using model checking. In C.
Hochberger and R. Liskowsky Informatik 2006 - Informatik für Menschen : Pro-
ceedings: Beiträge der 36.Jahrestagung der Gesellschaft für Informatik e.V.(GI), 2.bis
6.Oktober 2006 in Dresden. Bonn: Köllen, Vol. 94 of Lecture Notes in Informatics;
Bd 2, 241 – 248.

• Juhan-Peep Ernits: 2005, Memory arbiter synthesis and verification for a radar mem-
ory interface card. Nordic Journal of Computing, 12(2), 68 – 88.

• Jüri Vain, Juhan-Peep Ernits: 2003, Model checking in pattern based control systems
design. Proceedings of the 15th IFAC World Congress : International Federation of
Automatic Control, 21-26 July 2002, Barcelona, Spain. Vol. L. Computers for Control.
Amsterdam: Pergamon, 237 – 242.

• Jüri Vain, Ingmar Randvee, Tiit Riismaa, Juhan-Peep Ernits: 2002, Solving line bal-
ancing problems with model checking. Proceedings of the Estonian Academy of Sci-
ences.Engineering, 8(4), 211 – 222.

• Juhan-Peep Ernits: 2002. Model checking hybrid dynamical systems. MSc Thesis
Tallinn: Tallinn Technical University, 62 pp.

• Jüri Vain, Juhan-Peep Ernits, Mati Littover, Ingmar Randvee, Tiit Riismaa: 1999, A
tool for flexible planning of resource routes. Control in Natural Disasters (CND ’98):
A Proceedings volume from the IFAC Workshop, Tokyo, Japan, 21-22 September 1998.
Oxford: Pergamon, 1999, 85 – 90.

120

Curriculum Vitae

Personal Data
Name Juhan-Peep Ernits
Birth date and place 16.12.1974, Tartu
Citizenship Estonian
Marital status married

Contact Data
Address Institute of Cybernetics at TUT, Akadeemia tee 21, 12618 Tallinn
Phone 6204194
E-mail juhan@cc.ioc.ee

Education
School Year Degree
St. Olav Videregående Skole 1994 International Baccalaureate
Tallinn Technical University 1999 BSc, comp. and systems technology, Cum Laude
Tallinn Technical University 2002 MSc, computer science

Positions Held
2002 - ... Tallinn University of Technology, Institute of Cybernetics; researcher
2002 - ... TUT, Department of Computer science, researcher
2007 - 2007 Internship at Microsoft Research, Redmond, WA USA (01/2007-03/2007)
2003 - 2004 Marie Curie Fellowship to visit BRICS, Denmark (09/2003-01/2004)
1997 - 2002 Tallinn University of Technology, Institute of Cybernetics, assistant

Research Interests
Formal modelling of software and systems with the emphasis on automated analysis; methods
of automated analysis of formal models – model checking; model-based testing.

Professional Activities
2007 Chair of local organisation, 19th IFIP International Conference on Testing of Communicating Systems

and 7th International Workshop on Formal Approaches to Testing of Software, and 27th IFIP WG 6.1 In-
ternational Conference on Formal Methods for Networked and Distributed Systems, TestCom/FATES’07
and FORTE’07

2007 Member of the organising and programme committee, 6th Estonian Summer School in Computer and
Systems Science, ESSCaSS’07

2006 One of the organisers, ROBOTEX 2006
2006 One of the local organisers, 8th International Conference of Mathematics of Program Construction and

11th International Conference on Algrebaic Methodology and Software Technology, MPC/AMAST 2007
2006 Member of the organising and programme committee, ESSCaSS’06
2005 One of the organisers, ROBOTEX 2005
2005 Main organiser and member of the programme committee, ESSCaSS’05
2005 One of the local organisers, 6th International Symposium on Trends in Functional Programming, 10th

ACM SIGPLAN International Conference on Functional Programming, and 4th International Conference
on Generative Programming and Component Engineering, TFP/ICFP/GPCE

2004 Main organiser and member of the programme committee, ESSCaSS’04
2004 One of the local organisers, 2nd APPSEM II Workshop
2003 Main organiser and member of the programme committee, ESSCaSS’03
2002 One of the local organisers, 14th Nordic Workshop on Programming Theory, NWPT’02

121

Elulookirjeldus

Isikuandmed
Ees- ja perekonnanimi Juhan-Peep Ernits
Sünniaeg ja koht 16.12.1974, Tartu
Kodakondsus Eesti
Perekonnaseis abielus

Kontaktandmed
Aadress TTÜ Küberneetika Instituut, Akadeemia tee 21, 12618 Tallinn
Telefon 6204194
E-posti aadress juhan@cc.ioc.ee

Hariduskäik
Õppeasutus Aasta Haridus
St. Olav Videregående Skole 1994 International Baccalaureate
Tallinna Tehnikaülikool 1999 tehnikateaduste bakalaureus, arvuti- ja süst.-tehnika
Tallinna Tehnikaülikool 2002 tehnikateaduste magister, arvutiteadus

Teenistuskäik
2002 - ... Tallinna Tehnikaülikool, Küberneetika Instituut; teadur
2002 - ... TTÜ, Infotehnoloogia teaduskond, Arvutiteaduse instituut, teadur
2007 - 2007 Intern Microsoft Researchi Redmondi uurimislaboris (01.2007-03.2007)
2003 - 2004 Doktorikool BRICS Taanis, Marie Curie Fellowship (09.2003-01.2004)
1997 - 2002 TTÜ Küberneetika Instituut, insener

Teadustöö põhisuunad
Tarkvara formaalne modelleerimine rõhuga automaatsel analüüsil; formaalsete mudelite au-
tomaatse analüüsi meetodid – mudelikontroll; mudelipõhine testimine.
Teadusorganisatsiooniline ja - admistratiivne tegevus

2007 Kohaliku korraldustoimkonna juht, 19. IFIP International Conference on Testing of Communicating
Systems and 7th International Workshop on Formal Approaches to Testing of Software, and 27. IFIP
WG 6.1 International Conference on Formal Methods for Networked and Distributed Systems, Test-
Com/FATES’07 and FORTE’07

2007 Korraldus- ja programmitoimkonna liige, 6. Eesti Arvuti- ja Süsteemiteaduse Suvekool, ESSCaSS’07
2006 Üks korraldajatest, ROBOTEX 2006
2006 Kohaliku korraldustoimkonna liige, 8. International Conference of Mathematics of Program Con-

struction and 11. International Conference on Algrebaic Methodology and Software Technology,
MPC/AMAST 2007

2006 Korraldus- ja programmitoimkonna liige, ESSCaSS’06
2005 Üks korraldajatest, ROBOTEX 2005
2005 Põhikorraldaja ja programmitoimkonna liige, ESSCaSS’05
2005 Kohaliku korraldustoimkonna liige, 6. International Symposium on Trends in Functional Programming,

10. ACM SIGPLAN International Conference on Functional Programming, and 4. International Confer-
ence on Generative Programming and Component Engineering, TFP/ICFP/GPCE

2004 Põhikorraldaja ja programmitoimkonna liige, ESSCaSS’04
2004 Kohaliku korraldustoimkonna liige, 2. APPSEM II Workshop
2003 Põhikorraldaja ja programmitoimkonna liige, ESSCaSS’03
2002 Kohaliku korraldustoimkonna liige, 14. Nordic Workshop on Programming Theory, NWPT’02

122

