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Abstract

For nearly five decades, black-box reductions are the common technique to prove the
security of cryptographic constructions based on other cryptographic primitives.
Informally, a black-box reduction of a primitive P to a primitive Q is a construction of P
out of Q that does not use any internals of the primitive Q except the input and output
behavior. However not all cryptographic primitives can reduce to other cryptographic
primitives. As the opposition of black-box reductions, black-box separation results also
have been widely used to argue the infeasibility of constructing certain cryptographic
primitives.

Reingold et al. were the first to provide a widely adopted framework, called the RTV
framework, to classify and relate different notions of black-box reductions. After that
Paul Baecher et al. extended the original RTV framework in several respects using a more
fine-grained and systematic way. The new framework provided by Paul Baecher et al.
namely CAP framework clarifies the role of efficiency of adversaries and primitives within
reductions and covers meta-reduction separations. Based on their enlightening work, we
further consider the relations between different reductions such as the relation between
the black-box use of efficient adversaries and non-black-box use of efficient adversaries.
Then we prove the conjecture through a different approach.

Oracle separation methods are used in cryptography to rule out black-box reductions
between cryptographic primitives. However, there is a big limitation for traditional
oracle separation approach, namely it usually requires the number of adversaries is
countable, and hence it cannot work in the non-uniform security model. To avoid the
countability argument, Buldas and Niitsoo proposed an alternative oracle separation
approach where the oracle extraction step is unnecessary. In this thesis we study the
oracle separation approach so-called averaging approach, then we use the CAP
framework to extend the notions of reductions in both the traditional oracle extraction
based separation and the averaging-based separation.
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Annotatsioon

Ligikaudu pool sajandit on musta kasti taandused olnud põhiline meetod, millega
tõestada krüptograafilise konstruktsiooni turvalisust lähtudes primitiivide turvalisusest.
Primitiivi P musta kasti taandus primitiivile Q on P konstruktsioon Q abil, mis ei kasuta
Q siseehitust vaid ainult sisend-väljund käitumist. Kuid primitiive ei saa alati
konstrueerida suvalisest teisest primitiivist. Ka selliseid taanduste olemasolule
vastanduvaid negatiivseid tulemusi on palju kasutatud näitamaks teatud krüptograafiliste
konstruktsioonide mitteeksisteerimist või ebaefektiivsust.

Reingold jt olid esimesed, kes pakkusid välja laialdaselt kasutatava raamistiku, nn RTV
raamistiku, mis võimaldab klassifitseerida ja omavahel suhtestada erinevat tüüpi musta
kasti taandusi. Peale neid on Paul Baecher jt laiendanud RTV raamistikku mitmes
aspektis kasutades veelgi täpsemat ja süstemaatilisemat lähenemist. Uus, nn CAP
raamistik selgitab täpsemini vastaste ja primitiivide efektiivsuse rolli taandustes ja katab
ka nn meta-taandused ja eraldused. Käesolevas töös täpsustatakse CAP raamistikus
mitmete klasside omavahelisi suhteid, nagu näiteks küsimust, kas efektiivsete vastaste
musta kastina käsitlemine on ekvivalentne mitte-musta kasti käsitlusega. Selle hüpoteesi
tõestamiseks kasutatakse erinevaid lähenemisi.

Oraakliga eraldamise meetodeid kasutatakse krüptograafias musta kasti taanduste
mitteolemasolu tõestamiseks mingi kahe primitiivi vahel. Traditsiooniliste
eraldusmeetodite kasutatavus on piiratud tänu neis kasutatavale eeldusele, et võimalike
vastaste hulk on loenduv ja seetõttu ei välista traditsioonilised eraldusmeetodid näiteks
mitte-ühtlaste taanduste olemasolu. Loenduvuse eelduse vältimiseks pakkusid Buldas,
Laur ja Niitsoo välja alternatiivse lähenemise, nn. keskmistamise meetodi, kus ühe
kindla eraldava oraakli valik ei ole vajalik. Selles töös uuritakse ka keskmistamise
meetodi kohaldatavust CAP raamistikku.
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1 Introduction

Constructing complex primitives from simpler ones is one of the most fundamental
questions in cryptography. For nearly five decades, a lot of research has been done to
show that existence of some important primitives implies the existence of other
cryptographic primitives. It is well known that pseudo-random generators [11],
statistically binding commitments [13], zero-knowledge proofs [14] and private-key
encryption [15, 12, 11] were proved to be constructible from one-way functions. So far
almost all security proofs for previous cryptographic constructions use a special kind of
reductions called black-box reductions.

1.1 Black-Box Reductions

Informally, a black-box reduction of a primitive P to a primitive Q is a construction of P
out of Q that does not use any internals of the primitive Q except the input and output
behavior. It is, therefore, natural to study if all cryptographic primitives can be reduced
to other cryptographic primitives through black-box reductions. Impagliazzo and
Rudich [8] were the first to prove arguments against the existence of black-box
reductions. They showed that constructions of key agreement (KA) based on one-way
functions (OWP) imply a proof that P 6= NP. After that, many works had subsequently
been done to address other questions on cryptographic constructions such as the relation
between one-way functions and collision-resistant hash functions [10], one-way
functions and one-way permutations [17], public-key encryption and trapdoor
permutations [4], pseudorandom generators and one-way permutations [18]. By
revisiting these negative results Reingold et al. [9] put forward a general framework
about black-box reductions. They considered that there might be a weaker forms of
black-box reductions between the primitives that do not contradict the existing
separations. In their paper, they showed 7 types of different reductions and provided a
widely adopted framework, called the RTV framework, to classify and relate different
notions of black-box reductions. Inspired by the RTV framework, Paul Baecher et
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al. [16] extended the framework in several respects by using a more fine-grained
approach. They augmented more than 4 new different types of reductions to the RTV
framework which formed a new framework called the CAP(a,p) framework. In [16] they
distinguished explicitly between efficient and inefficient primitives, as well as
adversaries for black-box reductions by using the index notation p and a. They also gave
a comprehension of the relations of almost all reduction types in their framework.
However, in their work, some relations between reduction types are still not clear. We
will discuss these results in more detail in this thesis.

1.2 Black-Box Separations

A reduction is relativizing if it holds in the presence of any oracle, i.e., the reductions
are valid in any computational model where ordinary Turing machines have access to a
certain oracle. Hence, to show that there exist no black-box reductions from P to Q, one
has to find an oracle relativize to which there exists secure instance of Q but no instance
of P is secure, which means there is no reduction from P to Q in the computational model
with this oracle. This also shows that there is no black-box reduction from P to Q in the
ordinary computational model, because such a reduction would also be valid relative to
the oracle.

1.2.1 One-Oracle Techniques

Three main techniques have been used to show the black-box separations. The first
technique was suggested by Impagliazzo and Rudich [8] to separate key agreement from
one-way permutations. They first use a PSPACE-complete oracle to break any key
agreement, then use a random permutation oracle to implement a one-way permutation.
They combine these two oracles into one single oracle. In other words, this separation
shows that there cannot exist a relativizing reduction from key agreement to one-way
permutation. Relativizing separations is a commonly used technique for black-box
separations [6, 8, 10, 6, 20].
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1.2.2 Two-Oracles Techniques

The second technique for black-box separations is the so-called two-oracle technique
which was first formalized by Hsiao and Reyzin [7]. The main difference between this
technique and previous one is that we move the breaking oracle into the adversary such
that the reduction can only access this oracle through the adversary. More formally, to
show that there are no black-box constructions of primitive P from primitive Q, it
suffices to show that there exists an oracle Ω which is used to implement the primitive Q

and an oracle Π which is used to break the primitive P. For any oracle machines G, if
GΩ implements P. then there exists some adversary A and for any algorithms R such
that AΠ breaks GΩ as P, but no RΠ,Ω can break Q. The two-oracles technique allows
easier separations, as there is no need to combine these two oracles into one oracle as
in [8]. The two-oracles technique has been applied successfully for many other
researches such as [5, 7, 21, 22, 20]. In this thesis, we mainly use this type of technique
to describe black-box reductions and separations.

1.2.3 Meta-reduction Techniques

The third technique for black-box separations is called meta-reductions. It was originally
introduced by Boneh and Venkatenesan [19] and has gained significant attention recently.
Roughly, a meta-reduction is a “reduction which can be used to prove the separation
result”, i.e., a meta-reduction (P → Q) to Q is a proof that a reduction from P to Q

exists only if there is no secure Q. In a little more detail, the idea of meta-reductions can
be described as follows. First, we assume that primitive Q exists and there also exists a
black-box security reduction S from P to Q. This means if Af can break Gf as P, then
Sf,A can break the f as Q. Now, for any such S, we construct a meta-reduction M that
“simulates” the adversary A to the real reduction S. M can run S as it can simulate any
answers that S queries to A. As long as S can not distinguish this simulated adversary
from the real one M yields a procedure for breaking the primitive Q directly which is
a contradiction. It turns out that meta-reductions can be classified according to black-
box reductions. In this thesis, we will analyze the relations of different meta-reductions
through the above notions for black-box reductions.
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1.3 Non-uniform Reductions

In the non-uniform model, a poly-time oracle machine can be considered as a pair (M,A)

where M is an ordinary poly-time oracle machine and A = {ak}k∈N is an infinite sequence
of (advice) bit-strings ak with length ploynomial in k. For any oracle O and any input x,
it is assumed that MO(x) has access to the advice string a{|x|}. Usually, the advice strings
are omitted for simplicity, but their presence must always be assumed when M is non-
uniform. One of the most important facts is that since non-uniform Turing machines are
infinite programs, there are uncountably many of them, whereas the set of ordinary Turing
machines with finite programs is countable.

1.4 Oracle Extraction

All these separation techniques described above use separation oracles. In classical
separation results of complexity theory, oracles are defined as fixed functions with a
specific behavior. In cryptographic separations, it is very difficult to define a specific
separation oracle. For example, it is hard to show that one-way functions exist relative to
an oracle, because we do not know whether one-way functions exist in the standard
computational model. So instead of defining a fixed oracle, we try to get the same result
in an indirect way by using the so-called oracle extraction. Roughly speaking, we first
need to define a certain probability distribution of oracles and then assume that the oracle
is chosen randomly from that probability distributions. After that, we prove that the
separation statements hold on average. Then we argue that there exists a particular
choice of the oracle for which the statements also hold.

1.5 Averaging-Based Separation

However, there is a great limitation to use oracle extraction because it requires that the
number of adversaries is countable. As we know, many practical primitives are required
to be secure in the non-uniform security model, in which adversaries have advice strings,
which means that the set of adversaries is not countable. Hence the oracle extraction
cannot be used in the non-uniform security model. To avoid the countability argument, a
different oracle separation approach, namely, averaging approach was suggested by
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Buldas and Niitsoo [2]. To put it simply, they assumed that there exists a black-box
reduction S which is universal for all f , then comparing the probabilistic separation
condition and the average version of the reduction condition to get a contradiction. They
proved that the averaging approach is capable of showing that there is no BNBa
reductions (Definition. 14), or strong semi black-box reductions between two primitives
in the non-uniform security model. In their paper, they also give an overview of four
different types of reductions in both the traditional oracle extraction based separation and
the averaging-based separation. In this paper, we try to extend their work in CAP
framework and get the other three types of reductions in both the traditional oracle
extraction-based separation and the averaging-based separation techniques

1.6 Outline and Contributions of this Thesis

The purpose of this thesis is two fold. First, we further consider the relations between
different types of reductions, we get some new results for efficient adversaries in the
CAP framework. Second, according to the work in [3] we complement all the notions of
reductions for efficient adversaries in both the traditional oracle-extraction based
separation and the averaging-based separation. We begin this thesis with some
preliminary definitions in Chapter 2. Then in Chapter 3 we review the RTV and CAP
framework for black-box reductions and define the notions of different reductions. In
Chapter 3 and Chapter 4 we present our results:

In Chapter 3, we further consider some important questions about relations between
different reductions such as whether black-box use of efficient adversaries is equivalent
to non-black-box use. We use a different approach to prove an available result in [16],
i.e., the equivalence of NNNa and NBNa reductions. Then we use this approach to prove
the same equivalence result for BNNa and BBNa reductions. But when we try to use the
same method to prove the equivalence of BBBa and BNBa reductions, we notice that
there are different f and f ′ from a distribution F that S can break f with the access to f ,
but for f ′ not true. There is no contradiction result as previous reductions, hence it is
probably not equivalent between BBBa and BNBa reductions.

In Chapter 4.2, We review the necessary fundamental about how to get a separation from
the oracle-extraction, then we complement all notions of black-box reductions for
efficient adversaries in the traditional oracle extraction-based separation. Finally, we
give the proofs for each new separation condition.
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In Chapter 4.3, We first study the necessary background about the averaging approach
provide by Buldas and Niitsoo [2], then we complement all notions of black-box
reductions for efficient adversaries in the averaging-based separation. Finally, we also
give the proofs for each new separation condition.
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2 Preliminaries

In this chapter, we set the basic notation used throughout the thesis.

In this paper, let R denote the set of all real numbers and R+ denote the set of all positive
real numbers. We use N to denote the set of all natural numbers. We write {0, 1}n to
denote the set of binary strings of length n and {0, 1}∗ to indicate the set of all finite binary
strings. We use |x| to denote the bit length of x ∈ {0, 1}∗, i.e., |x| = n if x ∈ {0, 1}n. For
a distribution X , we write x← X for sampling that x is chosen randomly according to a
distribution X . We write x← y for assigning value y to variable x. If X is a set, then by
x ← X we mean sampling from the uniform distribution on X . We use F to denote the
set of all functions {0, 1}∗ → {0, 1}∗. We write · for a placeholder for function argument.
For instance f = G(·, ·) means that f is a two argument function and f(x, y) = G(x, y).

A set S is countable, iff there is an injection ϕ : S → N. We use M to denote the set of all
ordinary Turing machines. The set of all ordinary Turing machines is countable, because
we know that ordinary Turing machines have finite programs: (a) there is an injection
ι : M → {0, 1}∗, and (b) there exists a bijection ϕ : {0, 1}∗ → N, and hence there is
an injection ϕ ◦ ι : M → N. According to the Cantor’s diagonal argument, the set of
non-uniform Turing machines Mn cannot be put into one-to-one correspondence with the
set of natural numbers, hence the set of non-uniform Turing machines is not countable.

We use the Landau notation for describing asymptotic properties of functions. For
functions f, g : N → R+ , we write f(k) = O(g(k)) if c ∈ N, and f(k) ≤ cg(k) for
sufficiently large k. In particular, f(k) = O(1) means that f is bounded. Efficient

computation is modeled by a poly-time Turing machine M. A Turing machine M is
poly-time, if for every x it runs in polynomial time |x|O(1). We use quantifiers ∀

pol
A to

vary A over the set of all poly-time Turing machines, and ∃
pol
A means there exists a

poly-time Turing machines A. We will often need to argue that an event occurs with very
low probability. We write f(k) = ω(g(k)) if lim

k→∞
g(k)
f(k)

= 0. In particular, f(k) = k−ω(1)

indicates that f(k) decreases faster than any polynomial, i.e., f is negligible.
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Oracle Turing Machines: In this paper we will often talk about oracle Turing machines.
An oracle Turing machine is an incompletely specified Turing machine M that is allowed
to make oracle access to a function O : {0, 1}∗ → {0, 1}∗. Whenever M makes a query x
to O, it receives the answer O(x) in a single computation step. In this case, we write MO

to indicate a machine M with oracle access to O. Here oracle access means that machine
M does not use any internals of the function O except the input and output behavior. In
particular, the Turing machine M does not learn how the computation of O is actually
performed. Note that the function y ← O(x) is not necessary to be computable, but it
still has a conditional running time t(|x|), which means that we do not care about actual
computations ”inside” the O. The running time of MO is determined by the conditional
running time of oracle calls—each call O(x) takes t(|x|) steps, where |x| denotes the
bit-length of x. We say that M is a poly-time oracle machine if MO runs in poly-time,
whenever O is poly-time. i.e., if t(|x|) = |x|O(1).

A non-uniform poly-time oracle machine is a pair (M,A) where M is an ordinary poly-
time oracle machine and A = {ak}k∈N is an infinite sequence of (advice) bit-strings ak
with length kO(1). For any oracle O and any input x, it is assumed that MO(x) has access
to the advice string a|x|. Usually, the advice strings are omitted for simplicity, but their
presence must always be assumed when M is non-uniform. One of the most important
facts is that since non-uniform Turing machines are with infinite families of advice strings,
the set of all non-uniform (oracle) Turing machines is uncountable, whereas the set of
ordinary Turing machines is countable.

By an oracle function we mean a family of functions ϕk with domain of the set S of
all oracles and codomain of all finite binary strings {0, 1}∗, i.e., it is ϕk : S → {0, 1}∗.
Note that oracle functions may give non-trivial information about oracles that cannot be
efficiently collected with oracle calls. For instance, there exists an oracle function ϕ such
that ϕk(O) = 1, if ∃x ∈ {0, 1}k,O(x) is odd, and otherwise ϕk(O) = 0. The quantifier

∀
of
ϕ means that the quantified ϕ varies over all oracle functions, and ∃

of
ϕ means that there

exists an oracle function ϕ.

A probability space is a triple (Ω,F ,Pr) consisting of : (1) The sample space Ω — an
arbitrary non-empty set. (2) The σ-algebra F ⊆ 2Ω — a set of subsets of Ω, called events,
such that: F contains the sample space: Ω ∈ F . F is closed under complements: if
A ∈ F , then also (Ω\A) ∈ F . F is closed under countable unions: if Ai ∈ F for
i = 1, 2, . . . , then also (

⋃∞
i=1Ai) ∈ F . (3) The probability measure Pr : F → [0, 1]

— a function on F such that: Pr is countably additive: if {Ai}∞i=1 ⊆ F is a countable
collection of pairwise disjoint sets, then Pr(

⋃∞
i=1 Ai) =

∑∞
i=1 Pr(Ai). The measure of
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entire sample space is equal to one: Pr(Ω) = 1.

A random variableX : Ω→ E is a measurable function from the set of possible outcomes
Ω to some set E. We usually require Ω to be a probability space and E to be the set of all
real numbers R. Let X be a random variable taking values x1, x2, · · · with probabilities
p1, p2, · · · respectively. The expected value of this random variable is the infinite sum
E[X] =

∑∞
i=1 xipi.

If D is a distribution and G(x) is a predicate, Pr
x←D

[G(x)] denotes the probability that
G(x) is true after the assignment of x from the distribution D. Similarly, if D is a
distribution and f(x) is a predicate, E

x←D
[f(x)] denotes the expected value of f(x) after

the assignment of x from the distribution D.

2.1 Basic Lemmas

Here we provide several lemmas which we will use in this thesis. The following
statements of lemmas are due to [3].

Lemma 1 (Borel-Cantelli) Suppose that {En : n ≥ 1} is a sequence of events in a

probability space. Let E∞ = [En occurs for infinitely many n] =
⋂∞
k=1

⋃∞
n=k En. If∑

n Pr [En]<∞ then Pr [E∞]=0, with probability zero only a finite number of the events

occur.

Proof. Indeed, let Bk =
⋃∞
n=k Ek. If x ∈ E∞ then x ∈ ∩kBk, because otherwise x only

belongs to a finite sequence E1, . . . ,Ek−1 of events. Hence, E∞ ⊆ ∩kBk and Pr [E∞] ≤
Pr [∩kBk] ≤ Pr [Bk]. From

∑
n Pr [En] <∞ it follows that for every ε > 0 there is k such

that
∑∞

n=k Pr [Ek] < ε. Thus, Pr [E∞] ≤ Pr [Bk] = Pr [∪∞n=kEk] ≤
∑∞

n=k Pr [Ek] < ε,
which implies Pr [E∞] = 0. �

Lemma 2 (Markov’s Inequality) For any h > 0, Pr [|X| ≥ h] ≤ E[|X|]
h

. When X only

takes non-negative values then for any h > 0 Pr [X ≥ h] ≤ E[X]
h

, where E[X] denotes the

expectation of X.

Lemma 3 (Jensen’s Inequality) if f(x) is a convex function and X ∈ {xi : 1, ..., N} is

a random variable with probabilities Pr [xi] where
∑N

i=1 Pr [xi] = 1, then f(E{X}) ≤
E{f(X)} or f(

∑N
i=1 xi Pr [xi]) ≤

∑N
i=1 xif(ix) Pr [xi].
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Lemma 4 (Probabilistic Argument) Let F be a probability space and G be a predicate

function. Then Pr
f←F

[G(f)] > 0 ⇒ ∃f : G(f).

Lemma 5 (Countability Argument) Let F be a probability space and G(f, A) be a

predicate function where A varies over all poly-time Turing machines, then

∀
pol
A : Pr

f←F
[G(f, A)] = 1 ⇒ Pr

f←F

[
∀
pol
A : G(f, A)

]
= 1 .

Proof. Countable intersection of measure one sets is a measure one set. �

Lemma 6 (Negligible Average Argument) Let F be a distribution so that for every f ←
F there is a real-valued function δf : N → [0, 1]. If E

f←F
[δf (k)] = ε(k) = k−ω(1), then

δf (k) = k−ω(1) for measure one of f ’s.

Proof. As Pr
f←F

[δf (k) > k2 · ε(k)] ≤ k−2 and Pr
f←F

[δf (k) ≤ k2 · ε(k)] ≥ 1 − k−2 by

Markov inequality, we define Ek as the event that δf (k) > k2 · ε(k). Now we use the
Borel-Cantelli lemma and

∑
k Pr [Ek] ≤

∑
k k
−2 <∞ to imply

Pr
f←F

[”δf (k) > k2 · ε(k) for infinitely many k-s”] = Pr [E∞] = 0 .

Thus, for measure one of f ’s: ∃k0∀k > k0 : δf (k) ≤ k2 · ε(k) = k−ω(1). �

Lemma 7 (Overwhelming Average Argument) Let F be a distribution so that for every

f ← F there is a function δf : N → [0, 1]. If E
f←F

[δf (k)] = 1 − k−ω(1), then δf (k) =

1− k−ω(1) for measure one of f ’s.

Proof. E
f←F

[1− δf (k)] = 1− E
f←F

[δf (k)] = 1−(1−k−ω(1)) = k−ω(1), which by Lemma 6

implies that 1− δf (k) = k−ω(1) for measure one of f ’s. �

Lemma 8 There exist quantities δi(k) = k−ω(1) for which E
i
[δi(k)] 6= k−ω(1).

Proof. Let I = {1, 2, . . .} and pi = 6
π2i2

for all i ∈ I . Then
∑

i∈I pi = 1. For all i ∈ I we
define the function δi by δi(k) = δik, where δik is the Kronecker delta. Now we define a
probability space on {δi}i∈I such that Pr[δi] = pi for all i ∈ I . Note that δi(k) = k−ω(1)

for all i ∈ I but the average of all δi-s is non-negligible, because E
i
[δi(k)] = 6

π2 · k−2 =

k−O(1) 6= k−ω(1). �
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2.2 Cryptographic Primitives and Security

Cryptographic primitives can be considered as the most basic building blocks when we
create complex cryptographic constructions. It is natural that an instance of a primitive
can be represented as a function f : {0, 1}∗ → {0, 1}∗. For example, in the case of some
common primitives such as one-way permutations or collision-resistant hash functions,
f is simply the one-way function or hash function itself. In some more complicated
cases such as encryption schemes, it may make more sense to define a primitive as three
different functions, including the key generation functions, the encryption functions, and
the decryption functions. However, we can usually concatenate these functions into one
single function – we just use the first few bits of the argument to divide the function
into the sub-functions. This means that we can still formalize the primitive as one single
function.

An instance f of a primitive P need to meet various structural and correctness

requirements. For example, we require that the decryption of an encryption of a plaintext
m will recover m for encryption schemes. Formally, we would define a correctness
check predicate function C, in which C(f) = 1, if f ∈ P, and C(f) = 0, if f /∈ P. The
function C just helps to check the syntax of the instance and does not say anything about
the security of f . For example, every permutation can be an instance of the one-way
permutation primitive, but not necessarily a secure instance.

Therefore, we also need to define the security of primitives. In this work, instead of using
the definition provided by Reingold et al., we use a more specific (but still sufficiently
general) definition of security given in [2], where the breakage advantage is a real-valued
function that also depends on the security parameter k which is usually tied to the actual
input(or output) lengths of the primitive. Formally, primitives have an advantage function

ADVP
k(·, ·), which given as input the security parameter k ∈ N, an instance f of P, and

an oracle Turing machine A (an adversary) returns a real number ADVP
k(A, f) ∈ [0, 1].

We say that A breaks an instance f of P if ADVP
k(A, f) 6= k−ω(1). If no poly-time Turing

machine A breaks f then f is said to be secure. The whole definition of primitives,
adversaries and advantage with oracles are as follows.

Definition 1 A cryptographic primitive is a pair (P,ADVP
k(·, ·)) where P ⊆ F and

ADVP
k(·, ·) : F × F → [0, 1].
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Definition 2 Let P be the set of all functions f ∈ F computable in poly-time. If O is an

oracle, then by PO we mean that the set of all functions f ∈ F computable by poly-time

oracle machines with the oracle O.

Definition 3 Let MO
ϕ(O) be a non-uniform oracle Turing Machine with a sequence of

advice bit-strings A = ϕ(O) = {ϕ0(O).ϕ1(O), · · ·ϕk(O)} with length kO(1). PO
ϕ(O) is the

set of the poly-time non-uniform oracle Turing Machine with advice string ϕ(O) that

have access to the oracle O.

Definition 4 We say that A ∈ F breaks f ∈ P, if ADVP
k(A, f) 6= k−ω(1). Let S ⊆ F,

f ∈ P is S-secure, if ∀A ∈ S,ADVP
k(A, f) = k−ω(1). Similarly, an instance f of P is

secure relative to an oracle O, if f is PO-secure. An instance f of P is secure relative to

a ϕ-leaky oracle O, if f is PO
ϕ(O)-secure.

Definition 5 We say that a primitive P exists if there is an efficient implementation f ∈ P

that is P-secure.

Here we want to argue about that our definitions do not say anything about the efficiency
of instance f . The function may even be non-computable, as long as the advantage that
can be gained by any adversary is negligible. In practice, one needs an instantiation of
a primitive that is both efficient and secure, and an efficient implementation of P is an
implementation of P which is computable by poly-time Turing machines.
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3 Notions of Cryptographic Reductions

In this chapter, we first briefly introduce the concept of reductions from a primitive P to
a primitive Q. Then in Section 3.1, we review the RTV framework [9] and give the
definitions of several different types of black-box reductions. Based on that we
summarize the basic relations between different reductions in RTV framework. In
Section 3.2, we compare the RTV and CAP framework [16] and give the whole picture
of the CAP framework. In Section 3.3, we consider the potential relations between the
reductions based on the existing results in [16] and prove a conjecture proposed by
Reingold et al.[9]. In Section 3.4, we briefly introduce the concept of parametrized
black-box reductions. Finally in Section 3.4, we briefly introduce the poly-preserving
reduction and make a comparison between the poly-preserving reductions and general
reduction.

In cryptography, a reduction from a primitive P to a primitive Q usually means that (1)
P can be efficiently implemented by Q. (2) If there is an adversary A that breaks P, then
there is an adversary A′ that breaks Q. In simple words, it means that either P exists or
Q does not exist. Most common cryptographic reductions are black-box reductions, i.e.,
the construction P and adversary A′ use Q and A as black boxes. To compare different
black-box reductions, we start to review the framework of black-box reductions.

3.1 The RTV Framework for Black-box Reductions

As we mentioned the first widely adopted framework to classify black-box reductions was
called RTV framework and provided by Reingold, Trevisan and Vadhan [9]. There are 7
different types of reductions in this framework which we define as Definition 6-12.

Definition 6 (Fully black-box reduction) There exists a fully-BB reduction from a

primitive P to a primitive Q, if there exist two poly-time oracle machines G and S such

that:
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(C)If f implements Q then Gf implements P.

(S) For every instance f ∈ Q, if A breaks Gf (as P) then SA,f breaks f (as Q).

As a consequence, the existence of a secure Q implies the existence of a secure P. For
this type of black-box reductions, we have the most strong restriction that the
construction G and the reduction algorithm S must treat f in a black-box way,
meanwhile, the reduction algorithm S also has to treat the adversary A in a black-box
way. The next, less restricted, notion is semi-black-box reduction where S may depend
on the adversary A and an instance f .

Definition 7 (Semi black-box reduction) There exists a semi-black-box reduction from

a primitive P to to a primitive Q, if there exists a poly-time oracle machine G such that:

(C)If f correctly implements Q then Gf correctly implements P.

(S) For every instance f ∈ Q and a poly-time oracle machine A, there exists a poly-time

oracle machine S such that if Af breaks Gf then Sf breaks f .

Based on semi black-box reductions we add additional restriction to adversary A that it
cannot get oracle access to f then we get the definition of a weakly-black-box reduction.

Definition 8 (Weakly black-box reduction) There exists a weakly black-box reduction

from a primitive P to to a primitive Q, if there exists a poly-time oracle machine G such

that:

(C)If f correctly implements Q then Gf correctly implements P.

(S) For every instance f ∈ Q and a poly-time machine A, there exists a poly-time oracle

machine S such that if A breaks Gf then Sf breaks f .

The difference between the two reduction types is very subtle. Essentially, weakly-bb
does not change the fact that reduction algorithm S treats the adversary A and instance
f in non-black-box way, so we consider they are different branches of the same type
of black-box reductions. The next reductions are relativizing reductions which can be
described as follows.

Definition 9 (Relativizing reduction) There exists a relativizing reduction from a

primitive P to a primitive Q, if for all oracles Π, the primitive P exists relative to Π

whenever Q exists relative to Π.
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In general, relativizing reduction and semi-BB reduction are equivalent, if it is possible to
“embed” an arbitrary oracle into Q as the proof in [9]. Finally, we consider two additional
notions of reductions that derive from semi-BB and weakly-BB. As we mentioned they
can be considered as different branches of the same type of black-box reductions where
the reduction algorithm S depends on A and f , simultaneously construction G must be
universal for all valid instances f ∈ Q and as such, specific properties of an instance f
cannot be used in the construction. Now we allow the construction G do depend on f , we
get the definition of ∀∃ semi-BB and ∀∃ weakly-BB reductions.

Definition 10 (∀∃ Semi BB-reduction) There is a ∀∃ semi-BB reduction from a

primitive P to a primitive Q, iff for any correct implementation f of Q:

(C)There exists a poly-time oracle machine Gf that correctly implements P;

(S) For every instance f ∈ Q and for any poly-time oracle machines A, there exists a

poly-time oracle machine S such that if Af breaks Gf , then Sf breaks f .

Definition 11 (∀∃Weakly BB-reduction) There is a ∀∃ weakly BB-reduction from a

primitive P to a primitive Q, iff for any correct implementation f of Q:

(C)There exists a poly-time oracle machine Gf that correctly implements P;

(S) For every instance f ∈ Q and for any poly-time machines A, there exists a poly-time

oracle machine S such that if A breaks Gf , then Sf breaks f .

Definition 12 (Free Reduction) There exists a free reduction from a primitive P to a

primitive Q, if P exists whenever Q exists.

Note that we do not give the reduction S with oracle access to the poly-time adversary A

for all cases where S depends on A in a non-black box way. In these cases, a poly-time
reduction S can completely simulate the efficient adversarial algorithm A.

The RTV framework is a partial order hierarchy with fully black-box reductions being the
strongest type of reductions and ∀∃ weakly BB-reductions being the weakest. Existence
of a reduction of a stronger type trivially implies the existence of reductions of all weaker
types. Figure 3.1 shows the relations between these classes. Note that Reingold et al. [9]
pointed out that weakly-BB are as powerful as free reductions and black-box separations
result are presumably impossible in the weakly level and for free reductions. Hence, in
this paper we only capture the reductions above the semi level.
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fully

semi
∀∃-semi

relativizing

weakly
∀∃-weakly

free reduction

Figure 3.1: Relations between notions of reductions in the original RTV framework.
Arrows go from more restricted forms of reductions to less restricted ones. Dashed arrows
indicate that the equivalence relation exists in some interesting cases.

3.2 The CAP Framework for Black-box Reductions

The CAP framework is the latest classification method on both black-box constructions
and separations. Here let us first make a brief comparison between the CAP and the RTV
frameworks. In the RTV framework we mainly consider three conditions when we give
the notions for reductions: (1) Whether the construction treats the primitive in a
black-box way or not. (2) Whether the reduction algorithm treat the primitive and the
adversary together in a black-box way or not. (3) Whether the adversary can get oracle
access to the primitive or not. As we mentioned the third condition actually does not
impact the fact of type for black-box reductions. So, from each combination of different
cases, we can theoretically get 4 notions of reductions except the relativizing and the free
reductions in the RTV framework. The CAP framework augments the basic notions of
original RTV framework in various directions. And most of all, they further subdivide
the second condition into two cases: (1) Whether the reduction algorithm treats the
adversary in a black-box or non-black-box way. (2) Whether the reduction algorithm
treats the primitive in a black-box or non-black-box way. Based on that they introduce a
more descriptive three-character “CAP” notation with words from the language {B,N}3

to indicate whether the construction (C), the adversary in the reduction (A), or the
primitive in the reduction (P) is treated in a black-box (B) or non-black-box (N) way. For
example, a BBB-reduction in CAP notation means the construction, adversary and
primitive are all treated in a black-box way which is equivalent to a fully black-box
reduction in the RTV framework. Similarly, a BNN-reduction in the CAP framework is
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equivalent to a semi-black-box reduction in the RTV framework, in which reduction can
depend on the description of the adversary and the primitive, and only the construction is
black box. A NNN-reduction in the CAP framework is equivalent to a ∀∃ semi black-box
reduction in the RTV framework, in which none of construction, adversary or primitive
are black-box. Finally a ∀∃ fully black-box reduction (This type of reduction actually
was not formally defined in [9], the order of the quantifiers can be found in Table 3.2) is
equivalent to a NBB reduction in the CAP framework in which adversary and primitive
are black-box, and only the construction can depend on the code of primitive. The
Table 3.1 show the relation between CAP framework and RTV framework.

CAP RTV

BBB Fully-BB
BNB
BBN
BNN Semi-BB
NBB ∀∃ Fully-BB
NBN
NNB No meaning
NNN ∀∃ Semi-BB

Table 3.1: Corresponding relation between CAP framework and RTV framework. Strictly,
in addition to BBB-reduction, the equivalence relations only exist in CAP for efficient
adversaries.

If we do not consider the weakly dimension of the RTV framework, it is easy to see that
the RTV framework only covers half of the all 8 possibilities for the CAP framework.
Note that in CAP there are only 7 reasonable notions of all 8. We need except the NNB
reduction, because from the restricted of the NNB reduction, we know that the
construction may depend on the primitive, the reduction algorithm may depend on the
adversary, and the reduction should be universal for the primitive. Thus, the order of the
quantifiers is (∀A∃S∀f∃G) in which the construction can now depend on the adversary.
In this sense, it has no meaning in cryptology.

Now let us fill in the missing types in RTV framework. We first start from the notions of
BBN-reduction in which the construction makes black-box calls to the primitive, the
reduction has to work for all adversaries, but may depend on the primitives. The second
one is BNB-reduction in which the construction also makes black-box calls to the
primitive, the reduction is universal for all primitives but may depend on adversary. The
last one is NBN-reduction in which the construction makes non-black-box use of the
primitive, the reduction has to work for all adversaries, but may depend on the primitive.
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Strict definitions of each are as follows.

Definition 13 (BBN-reduction) There exists a BBN-reduction from a primitive P to a

primitive Q, iff there exists a poly-time oracle machine G such that:

(C)If f correctly implements Q then Gf correctly implements P.

(S) For every instance f ∈ Q, there exists a poly-time oracle machine S for all

machines A such that if Af breaks Gf then Sf.A breaks f .

Definition 14 (BNB-reduction) There exists a BNB-reduction from a primitive P to a

primitive Q, iff there exists a poly-time oracle machine G such that:

(C)If f correctly implements Q then Gf correctly implements P.

(S) For all machines A there exists a poly-time oracle machine S such that for every

instance f ∈ Q if Af breaks Gf then Sf,A breaks f .

Definition 15 (NBN-reduction) There is a NBN-reduction from a primitive P to a

primitive Q, iff for any correct implementation f of Q:

(C)There exists a poly-time oracle machine Gf that correctly implements P;

(S) For every instance f ∈ Q, there exists a poly-time oracle machine S such for any

machines A, if Af breaks Gf , then Sf,A breaks f .

NNN

BBN

BNN NBN (NNB)

BNB NBB

BBB

Figure 3.2: Relations between the notions of reductions in the CAP framework. Arrows
go from more restricted forms of reductions to less restricted ones. The NNB reduction
can be ignored.
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We can view the complete picture of the CAP framework in Figure 3.2. Note that the CAP
framework is also a partial order hierarchy and the basic relations of the RTV framework
still apply to the CAP framework that existence of a strong reduction type can trivially
imply the existence of reductions of all weaker types.

NNNa

BBNa

BNNa NBNa (NNBa)

BNBa NBBa

BBBa

NNN

BBN

BNN NBN (NNB)

BNB NBB

BBB

1

3

2

Figure 3.3: The CAP framework for (in)efficient adversaries. Arrows go from more
restricted forms of reductions to less restricted ones. The dashed arrows designate
implications

The CAP framework also provides a further classification for black-box reduction based
on the (in)efficiency of the primitives and adversaries as show in Figure 3.3. These cases
are similar to the weakly level in the RTV framework, and can be considered as same type
of black-box reduction in different dimension. Not that previous corresponding relation
between the RTV and CAP framework only work for efficient adversaries. In the CAP
framework the suffix ‘a’ denote an efficiency requirement on the adversary, the suffix
‘p’ indicate that primitives are efficiently computable, hence a BBNa-reduction means
that the construction G is universal for all primitives, the reduction S is universal for all
poly-time oracle machines A, and may depend on primitive.

Definition 16 (BBNa-reduction) There exists a BBNa-reduction from a primitive P to a

primitive Q, if there exists a poly-time oracle machine G such that:

(C)If f correctly implements Q then Gf correctly implements P.

(S) For every instance f ∈ Q, there exists a poly-time oracle machine S for all poly-

time oracle machine A such that if Af breaks Gf then Sf,A breaks f .

We know that the differences between definitions with efficient adversaries and with
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inefficient adversaries are very small, and nearly half of the definitions for efficient
adversaries were already given in the RTV framework. Table 3.2 summarizes all the
notions. The complete definitions for the remaining types of reductions can be found as
follows.

CAP Quantification RTV

BBBa ∃
pol
G ∃

pol
S ∀f ∀

pol
A

BNBa ∃
pol
G ∀

pol
A ∃

pol
S ∀f

BBNa ∃
pol
G ∀f ∃

pol
S ∀

pol
A

BNNa ∃
pol
G ∀

pol
A ∀f ∃

pol
S Semi-BB

NBBa ∃
pol
S ∀f ∃

pol
G ∀

pol
A ∀∃ Fully-BB

NBNa ∀f ∃
pol
G ∃

pol
S ∀

pol
A

NNNa ∀f ∃
pol
G ∀

pol
A ∃

pol
S ∀∃ Semi-BB

Table 3.2: The CAP framework for efficient adversaries

Definition 17 (BBBa-reduction) There exists a BBBa-reduction from a primitive P to a

primitive Q, if there exist two poly-time oracle machines G and S such that:

(C)If f implements Q then Gf implements P.

(S) For every instance f ∈ Q and all poly-time oracle machines A, if Af breaks Gf ,

then Sf,A breaks f .

Definition 18 (BNBa-reduction) There exists a BNBa-reduction from a primitive P to a

primitive Q, iff there exists a poly-time oracle machine G such that:

(C)If f correctly implements Q then Gf correctly implements P.

(S) For all poly-time oracle machines A there exists a poly-time oracle machine S such

that for every instance f ∈ Q if Af breaks Gf then Sf breaks f .

Definition 19 (NBBa-reduction) There is a NBBa-reduction from a primitive P to a

primitive Q, iff there exists a poly-time oracle machine S such that:

(C)If f correctly implements Q then Gf correctly implements P.

(S) For any poly-time oracle machine A such that if Af breaks Gf , then Sf,A breaks f .

Definition 20 (NBNa-reduction) There is a NBNa-reduction from a primitive P to a

primitive Q, iff for any correct implementation f of Q:
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(C)There exists a poly-time oracle machine Gf that correctly implements P;

(S) For every instance f ∈ Q, there exists a poly-time oracle machine S such for any

poly-time machines A, if Af breaks Gf , then Sf,A breaks f .

3.3 Relations of Black-box Reductions in the CAP

After defining the notions of black-box reductions in the CAP framework, the next
question is how these definitions are related. As I mentioned, most of the results for this
question had already been done in [16]. The Figure 3.3 shows the existing relations
between reductions in the CAP framework. However, we notice that there still exists
some questions which have not been solved yet. For instance, the conjecture about
whether black-box use of efficient adversaries is equivalent to non-black-box use. This
conjecture was first proposed by Reingold et al. [9]. They guess that there is no inherent
restriction in treating the adversary as a black-box. From the Figure 3.3 it is easy to see
that if we want to confirm this conjecture, we need to prove arrows 1, 2, 3 are reversible.
Paul Baecher et al. [16] proved that the arrow 1 is reversible which means that NNNa
and NBNa are equivalent. Here we use a different approach to prove the same result.

Theorem 1 (Equivalence of NNNa and NBNa) For all primitives P and Q, there is a

NBNa-reduction for efficient adversaries A, if and only if there is a NNNa-reduction.

Proof. Existence of a reduction of a strong type trivially implies the existence of
reductions of all weaker types. Using straightforward logical deductions, it follows that
NBNa-reductions imply NNNa-reductions. Now we want to prove the converse. First we
assume that there is a NNNa-reduction (the order of the quantifiers is ∀f∃G∀A∃S)
between the primitives P and Q, but there is no NBNa-reduction. From the Table-3.2 we
know that it means that there exists an f ∈ Q such that for any poly-time oracle
machines G and for all poly-time oracle machines S, there exists an efficient adversary A

(the order of the quantifiers is ∃f∀G∀S∃A) such that [Af brGf ∧ SA,f 6 brf ]. From the
assumption we can pick a fixed f then pick a G which depends on f such that:

(I) ∀
pol
A ∃

pol
S : [Af brGf ⇒ Sf br f ] .

(II) ∀
pol
S ∃

pol
A : [Af brGf ∧ SA,f 6 brf ] .
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(1) (II)=⇒(II′) ∃
pol
A : [Af brGf ]. Because, if ∀

pol
A : [Af 6 brGf ], then by choosing any

poly-time oracle machines in (II), there exits at least one S0, for example the outputs of
S0 are always 0. Let A in (II′), apply (I) [Af brGf ], then there exists a S ′ which depends
on A satisfies:

∃
pol
S ′ : [S ′f br f ] . (3.1)

For case (II) we use the same S ′ which exists due to (I), then there exists an A′ depending
on S ′ so that:

A′f brGf ∧ S ′A′,f 6 brf . (3.2)

We notice that if now we add an oracle A′ to S ′ that can be ignored by S ′ in (3.1), we also
obtain that [S ′A

′,f br f ] which is a contradiction with (3.2). �

After we examine the result which was proved in [16], we start to use this approach to
prove other two arrows in Figure 3.3 as follows.

Theorem 2 (Equivalence of BNNa and BBNa) For all primitives P and Q, there is a

BBNa-reduction for efficient adversaries A if and only if there is a BNNa-reduction.

Proof. Using straightforward logical deductions, it follows that BBNa-reductions imply
BNNa-reductions. Now we want to prove converse direction. First we assume that there
is a BNNa-reduction (the order of the quantifiers is ∃G∀f∀A∃S) between the primitives
P and Q, but there is no BBNa-reduction. From the Table-3.2 we know that it means
for any poly-time oracle machines G, there exists an f ∈ Q such that for all poly-time
oracle machines S there exists an efficient adversary A(the order of the quantifiers is
∀G∃f∀S∃A) such that [Af brGf ∧SA,f 6 brf ]. From the assumption we can pick a fixed
G then pick an f which depends on G such that:

(I) ∀
pol
A ∃

pol
S : [Af brGf ⇒ Sf br f ] .

(II) ∀
pol
S ∃

pol
A : [Af brGf ∧ SA,f 6 brf ] .

Like in the previous situation, For (I) let A satisfy [Af brGf ], then there exists an S ′

which depends on A such that:

∃
pol
S ′ : [S ′f br f ] . (3.3)
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For case (II) we use the same S ′ which exists due to (I), then there exists an A′ depending
on S ′ so that:

A′f brGf ∧ S ′A′,f 6 brf . (3.4)

We notice that if now we add an oracle A′ to S ′ that can be ignored by S ′ in (3.3), we also
obtain that [S ′A

′,f br f ] which is a contradiction with (3.4). �

From the proof, we can understand that the condition for Arrow 1 and Arrow 2 are quite
similar, but when we try to use the same approach to prove Arrow 3 we are not successful.

Using straightforward logical deductions, it also follows that BBBa-reductions imply
BNBa-reductions. Now we want to prove converse direction. We use the same approach
first assume that there is a BNBa-reduction(the order of the quantifiers is ∃G∀A∃S∀f )
between the primitives P and Q, but there is no BBBa-reduction. From the Table-3.2 we
know that it means that for any poly-time oracle machines G and poly-time oracle
machines S, there exists an f ∈ Q, and an efficient adversary A(the order of the
quantifiers is ∀G∀S∃A∃f ) such that [Af brGf ∧ SA,f 6 brf ]. From the assumption we
pick a fixed G such that:

(I) ∀
pol
A ∃

pol
S ∀f : [Af brGf ⇒ Sf br f ] .

(II) ∀
pol
S ∃

pol
A ∃f : [Af brGf ∧ SA,f 6 brf ] .

Here we use the same idea in Theorem 1. For (I) let an adversary A and f satisfy
[Af brGf ] then there exists a S ′ which depends on A such that ∃

pol
S ′ : (S ′f br f)(*).

For case (II) we use the same S ′ which exists due to (I), then there exists an A′ and f ′

such that both of them depend on S ′ and satisfy [A′f
′
brGf ′ ∧ S ′A′,f ′ 6 brf ′](**). We

notice that if now we add an adversary oracle A′ to S ′ that can be ignored by S ′ in (*),
we obtain that [S ′A

′,f br f ](***). By comparing(**) and (***) we consider the f and f ′

from a distribution F that S can break f with the access to f , but for f ′ not true. There is
no contradiction result, hence it is probably not equivalent between Arrow 3.

To be sure the conjecture can only work for efficient adversaries in CAP framework. It
is necessary to prove that for inefficient adversaries, BNN-reductions do not imply-BBN
reductions, BNB-reductions do not imply BBB-reductions and NNN-reductions do not
imply-NBN-reductions. The proof has been already done by Paul Baecher et al. [16].
Here we just give a brief review on the related proof as follows.
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Theorem 3 For all primitives P and Q, if there is a BBB-reduction, there is a BNB-

reduction. but the reverse is not true. Similarly, there is a BNN reduction, but no BBN

reduction, as well as a NNN reduction, but no NBN reduction. [16]

Proof. Existence of a reduction of one strong type can trivially imply all weaker types,
hence if there is an BNB reduction, then there is also a BNN and a NNN reduction. To
prove the Theorem 3, we just need to prove there is no NBN reduction, then we can get
a simple deduction that neither a BBN, nor a BBB reduction exists. The most important
fact is that for previous notions the reduction has to depend on the adversary in a non-
black-box way, for later notions the reduction has to be universal for all adversaries in
a black-box way. Paul Baecher et al. [16] show that Goldreich–Levin reduction(a BNB
reduction) has to depend on the adversary’s success probability. Furthermore, they show
that there is no NBN reduction from P to Q. As the length of the paper is limited, we omit
the detail of the proof.

�

From all the things above, we notice the conjecture about there is no inherent restriction
in treating the adversary as a black-box may only work for some notions like XNNa
and XBNa, but probably not work for XBBa and XNBa, where X ∈{B,N}. In other
words, this means that in the reduction condition, the quantifier ∃S has to stand after
the quantifier ∀f . Based on all the result above, we can get a new view for the CAP
framework as Figure 3.4

NNNa(NBNa)

BNNa(BBNa) (NNBa)

BNBa NBBa

BBBa

NNN

BBN

BNN NBN (NNB)

BNB NBB

BBB

Figure 3.4: The new view for the CAP framework. An arrow goes from a more restricted
form of reduction to a less restricted one. The dashed arrows designate implications
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3.4 Parametrized Black-Box Reductions

If we consider a black-box reduction, we usually request the reduction algorithm cannot
use any internals information of the adversary A except the input and output behavior.
Strictly speaking, this information may include running time, number of queries, or the
actual success probability of a given adversary. In practice the reduction, more or less,
may depend on these information, we call this type of reduction as parametrized

black-box reductions. Not surprisingly, most reductions can be considered as this type in
real life. Paul Baecher et al. [16] also give two main notions of parametrized black-box
reductions, namely, parameter aware reductions and parameter dependent reductions.
Before we go into the details of each notion of parametrized black-box reductions, we
need first consider two typical examples.

First let us consider an example of the reduction from collision-resistant functions to one-
way functions described in [1]. Recall that the reduction algorithm S can choose random
input x to f and receives some f(x), then the reduction uses amplification techniques by
accessing to the adversary to call A(f(x)) many times in order to get a second pre-image
for f(x). The adversary A succeeds with probability δ(k), the chance of not having a
collision after using this method m times is about (1 − δ(k))m. As the amplification
step heavily depends on probability of this success probability δ(k), the reduction is not
universal for the adversary A anymore. Other than that, the reduction treats both the
adversary and the primitive as black boxes. Note that in this case the reduction needs (one
of) the parameters as explicit input, and we call this (black-box) reductions parameter
aware.

Second, let us consider an example of a reduction from the unforgeable of a MAC scheme
reduces to its own unforgeable described in [16]. We define a reduction algorithm S

depends on queries and answers between the unforgeability game and the adversary A,
whereas the code of the reduction algorithm itself is universal for all A. Specifically, the
running time of the reduction depends on the security parameter and the number of queries
placed by the adversary, although the reduction algorithm itself do not use any information
except the input and output behavior of the adversary. Thus this type of reductions usually
allow only an a priori limited number of interactions with the adversary. From this case,
we know that we sometimes want to allow the reduction, especially its running time, to
depend on adversarial parameters such as its number of queries, and we call this (black-
box) reductions parameter dependent.
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Here let us roughly compare the difference between the two notions of parametrized
black-box reductions, in the parameter-dependent case we know that the running time of
the reduction depends on adversarial parameters such as the number of queries by the
adversary. In order to have fixed bounds on the running time of the reduction, we usually
have restrictions for adversarial parameters. In the parameter aware case, the reduction
receives some auxiliary information about the adversary such as the success probability
of the adversary which may not be even known by the adversary itself, this is very
similar to case of non-uniform model advice.

3.4.1 Relations

Obviously, parametrized black-box reductions and separations rely critically on the
specific parameters of the adversary. And in this case we do not simply consider the
adversary in a black-box way or non-black-box way, in other words, some of our result
about the black-box use of efficient adversaries is equivalent to non-black-box use does
not carry over to the parametrized case anymore. In contrast, the fundamental relation
such as existence of a reduction of one strong type can trivially imply all weaker types
still apply.

3.5 Poly-Preserving Reductions

A crucial property of a reduction from P to Q is how much security is maintained by
the reduction. To measure this fairly, Buldas and Niitsoo [2] strengthened the guarantee
condition and the class of reductions restricted in the following reasonable way:

Definition 21 (Poly-preserving reductions [3]) A reduction of P to Q is poly-preserving
if the security guarantee (S) decreases the advantage by at most a polynomial amount, i.e.

there exists c ≥ 1 (independent of f , A and k) such that:

ADVQ
k (Sf , f) ≥

[
ADVP

k(Af , Gf ))
]c

. (3.5)

Note that black-box reductions that satisfy Def. 21 for any certain (unspecified) c were
first defined by Luby [27] and the condition (3.5) is a stronger form of the general
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reduction condition:

ADVP
k(Af , Gf ) 6= k−ω(1) ⇒ ADVQ

k (Sf , f) 6= k−ω(1) . (3.6)

Theorem 4 The poly-preserving reduction condition (3.5) implies the general reduction

condition (3.6), but the reverse is not true.

Proof. if Af breaks Gf , it means that ADVP
k(Af , Gf ) 6= k−ω(1), then we derive that

ADVQ
k (Sf , f) ≥

[
ADVP

k(Af , Gf ))
]c 6= (k−ω(1))c 6= k−ω(1). This proves that the condition

(3.5) implies the condition (3.6). Then we prove the reverse is not true, first we assume
that ADVP

k(Af , Gf ) = k−1 6= k−ω(1), and ADVQ
k (Sf , f) = k−cf 6= k−ω(1), here c depends

on f and increases progressively. If ∀c > 0 ∃k : ck � c, then we derive that[
ADVP

k(Af , Gf ))
]c

= [k−1]c = k−c > k−ck = ADVQ
k (Sf , f) which is a contradiction

with (3.5). �
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4 Oracle Separation Methods

As we mentioned earlier, constructing complex primitives from simpler ones is one of
the most fundamental questions in cryptography. However, some constructions, such as
the construction of public-key encryption from one-way functions, is still elusive.
Impagliazzo and Rudich [8] showed that constructions of key agreement (KA) based on
one-way functions (OWP) imply a proof that P 6= NP. They were the first to prove
arguments against the existence of black-box reductions. As the opposite of the
reductions, separations can save a lot of wasted effort by guiding researchers away from
hopeless approaches, they are also quite meaningful for cryptographers.

In this chapter we review the three main techniques for black-box separations. In Section
4.1, we briefly introduce the concept of meta-reductions, then we give a summary of
the relations between different meta-reductions. In Section 4.2, we review the oracle-
extraction based separation and give the separation conditions according to different types
of black-box reductions. In Section 4.3, we introduce a new oracle separation approach,
namely, averaging approach, then we give the separation conditions and the proofs for
each separation condition.

4.1 Meta-Reductions

A meta-reduction is a “reduction which can be use to prove the separation result” which
means if there exists a meta-reduction from a (P→ Q)-reduction to a primitive N (which
usually can be Q itself), then there is no reduction from P to Q, if N exists. It turns out
that meta-reductions may depend on the above notions for black-box reductions, so in this
section, we first review the definition of meta-reductions based on the CAP framework
in [16], then we try to briefly analyze the relations between them. We start from the BBB
meta-reduction, the definition is as follows.

Definition 22 (BBB-Meta-Reductions) We say that there is a [(P → Q-BBB)→ N ]
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meta reduction, if whenever there is a BBB-reduction from P to Q, then for every g ∈ N ,

there is a poly-time M such that M g breaks g.

The quantification of the security statement for the definition can be described as
follows.

∃
pol
G ∃

pol
S ∀f ∀A : [(Af brGf )⇒ (SA,f br f)]⇒ ∀g ∃

pol
M : (M g br g) .

Constructing a BBB-meta-reduction usually consist of following steps, First using an
instance g of N to instantiates a f of Q (note that if N is Q itself, we do not need this
step). Second design an all-powerful A which can breaks P and Q, formally, we need
find an (inefficient) adversary A that can break Gf as P. then the efficient reduction
algorithm S turn this A into a successful adversary to break the instance f = g. Third,
replace the (inefficient) adversary A by the efficient meta-reduction M . This is usually
done by carefully rewinding the reduction. As an example for BBB-meta-reductions, we
consider a separation result so-called one-more problems proposed by Bresson et al. [24].
It describes that an adversary may query an oracle for solutions on n instances, but in
order to be successful, the adversary has to provide eventually n+ 1 instance. Bresson et
al. find a meta-reduction through rewinding technique to show that solving such problems
on n instances cannot reduce to the case of solving the same problem on n− 1 instances.
As the reduction described in [24] treats the adversary and the primitive in a black-box
way, and the construction treat the primitive in black box way as well. There is a BBB-
meta-reduction according to our definition. We now turn to the definition of BNB-meta-
reductions.

Definition 23 (BNB-Meta-Reductions) We say that there is a [(P → Q-BNB)→ N ]

meta reduction, if whenever there is a BNB-reduction from P to Q, then for every g ∈ N ,

there is a poly-time M such that M g breaks g.

The quantification of the security statement for the definition can be described as
follows.

∃
pol
G ∀A ∃

pol
S ∀f : [(Af brGf )⇒ (SA,f br f)]⇒ ∀g ∃

pol
M : (M g br g) .

If we compare the definition of BBB-meta-reductions and BNB-meta-reductions, we note
that building a BNB-meta-reduction might be more difficult than building a BBB-meta-
reduction. The reason is that in BNB-meta-reduction, the adversary A has to be universal
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for all algorithm S, in other words, if we consider the meta-reduction as a separation
result from P to Q, the BNB-meta-reduction can trivially imply BBB-meta-reduction. We
now continue to give the definition of BBN-meta-reductions

Definition 24 (BBN-Meta-Reductions) We say that there is a [(P → Q-BBN)→ N ]

meta reduction, if whenever there is a BBN-reduction from P to Q, then for every g ∈ N ,

there is a poly-time M such that M g breaks g.

The quantification of the security statement for the definition can be described as
follows.

∃
pol
G ∀f ∃

pol
S ∀A : [(Af brGf )⇒ (SA,f br f)]⇒ ∀g ∃

pol
M : (M g br g) .

Definition 25 (NBB-Meta-Reductions) We say that there is a [(P → Q-NBB)→ N ]

meta reduction, if whenever there is a NBB-reduction from P to Q, then for every g ∈ N ,

there is a poly-time M such that M g breaks g.

The quantification of the security statement for the definition can be described as
follows.

∃
pol
S ∀f ∃

pol
G ∀A : [(Af brGf )⇒ (SA,f br f)]⇒ ∀g ∃

pol
M : (M g br g) .

Definition 26 (BNN-Meta-Reductions) We say that there is a [(P → Q-BNN)→ N ]

meta reduction, if whenever there is a BNN-reduction from P to Q, then for every g ∈ N ,

there is a poly-time M such that M g breaks g.

The quantification of the security statement for the definition can be described as
follows.

∃
pol
G ∀f ∀A ∃

pol
S : [(Af brGf )⇒ (SA,f br f)]⇒ ∀g ∃

pol
M : (M g br g) .

Definition 27 (NBN-Meta-Reductions) We say that there is a [(P → Q-NBN)→ N ]

meta reduction, if whenever there is a NBN-reduction from P to Q, then for every g ∈ N ,

there is a poly-time M such that M g breaks g.

The quantification of the security statement for the definition can be described as
follows.
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∀f ∃
pol
G ∃

pol
S ∀A : [(Af brGf )⇒ (SA,f br f)]⇒ ∀g ∃

pol
M : (M g br g) .

As an example for NBN-meta-reductions, we consider the separation result from blind
signatures to hard non-interactive problem proposed by Fischlin and Schröder [23]. We
define the primitive P as a (blind) signature scheme and the primitive Q as a hard non-
interactive problem. Note that the primitive N is equal to the primitive Q here, so we
do not need instantiates a f via g. We need find an adversary A which can compute a
secret key sk from pk to break Gf as P, then let it query the signature oracle to collect
signatures, finally let adversary A compute a forgery to break f as Q. After constructing
an all-powerful adversary A that is successful against the primitive f . We rewinding the
reduction at appropriate places in the query phase to find a meta-reduction M f which can
simulating the behavior SA,f efficiently. As a consequence, M f can break the primitive
f as Q. Here, the construction is non black box, the adversary is treated as a black box,
but the reduction is not restricted to black-box access to the primitive. So it classifies as a
NBN-meta-reduction.

Another example of NBN-meta-reductions is the work by Pass [25], which shows that a
certain type of argument system cannot reduction to certain standard assumptions.
Specifically they restating several constructions including the Schnorr identification
scheme, the adaptive selective decommitment problem and unique blind signatures as an
argument system, then they use meta reduction to show that these constructions cannot
be based on standard assumptions. Since these results hold when adversary was treated
as a black box by the reduction, but both of the construction and the reduction may
depend on the standard assumptions, this type of meta reduction is also considered as a
NBN-meta-reduction according to our definition.

Definition 28 (NNN-Meta-Reductions) We say that there is a [(P → Q-NNN)→ N ]

meta reduction, if whenever there is a NNN-reduction from P to Q, then for every g ∈ N ,

there is a poly-time M such that M g breaks g.

The quantification of the security statement for the definition can be described as
follows.

∀f ∃
pol
G ∀A ∃

pol
S : [(Af brGf )⇒ (SA,f br f)]⇒ ∀g ∃

pol
M : (M g br g) .

Note that all introduced notions for meta reductions easily translate into meta reductions
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for efficient adversaries by only quantifying over efficient A. So we avoid to give repetitive
definitions here.

4.1.1 Relations between Meta-Reductions

Meta-reduction can be considered as separation result from primitive P to primitive Q,
the whole picture of the meta-reduction in CAP is still a partial order hierarchy, whereas
NNN-meta-reductions become the strongest restricted and BBB–meta-reductions be the
weakest. In particular it is pictured as an inverted image of the original CAP framework
as show in Figure 4.1.

BBB-M

BNN-M

BBN-M BNB-M NBB-M

NBN-M (NNB-M)

NNN-M

Figure 4.1: Meta-reductions in CAP framework and the relation between notions of
reduction, M stand for meta-reduction

Theorem 5 If R1-type reduction implies R2-type reduction, then (R2 → M)-mata

reduction implies (R1 → M)-mata reduction, R1, R2 ∈ {BBB, BNB, BBN, NBB, BNN,

NBN, NNN}

Proof. if R1 ⇒ R2, then according to the logical deduction it follows that R2 ⇒ M

implies R1 ⇒M . �

Theorem 6 If primitive N exists and (R2 → M)-mata reduction implies (R1 → M)-

mata reduction, then R1-type reduction implies R2-type reduction, R1, R2 ∈ {BBB, BNB,

BBN, NBB, BNN, NBN, NNN}

Proof. if ¬M ∧ (R2 ⇒ M) ⇒ (R1 ⇒ M), then according to the logical deduction it
follows that ¬R2 ⇒ ¬R1 which implies R1 ⇒ R2. �
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Note that meta-reduction depend on the above CAP notions. They still somehow keep
the same property in relations such as existence of a reduction of one strong type can
trivially imply the existence of reductions of all weaker types. What we are particularly
interested in our previous result for equivalence of black-box use and non-black-box use
of efficient adversaries is still imply to meta-reduction or not. Here we also give a proof
of equivalence of BNNa-meta-reduction and BBNa-meta-reduction as example.

Theorem 7 (Equivalence of BNNa-meta-reduction and BBNa-meta-reduction) For

all primitives P and Q, there is a BNNa-meta-reduction for efficient adversaries A if and

only if there is a BBNa-meta-reduction.

Proof. From Theorem 2 we know that it is equivalence of BNNa-reduction and BBNa-
reduction, then according to Theorem 5 it follows that BBNa-meta-reduction and BNNa-
meta-reduction are also equivalent.

�

BBBa-M

BNNa-M(BBNa-M)

BNBa-M NBBa-M

(NNBa-M)

NNNa-M(NBNa-M)

BBB-M

BNN-M

BBN-M BNB-M NBB-M

NBN-M (NNB-M)

NNN-M

Figure 4.2: The relations between meta-reductions for (in)efficient adversaries. An arrow
goes from a more restricted form of reduction to a less restricted one. The dashed arrows
designate implications

The proof for NNNa-meta-reduction and NBNa-meta-reduction is quite similar to the
proof of equivalence of BNNa-meta-reduction and BBNa-meta-reduction, so we omit
the detail of the proof. From all the things above, we notice that meta-reductions are
the separation of the reductions, they do not change our results of previous proof. The
Figure 4.2 shows the image of the relations between meta-reductions.

41



4.2 Oracle-Extraction Based Separation

In this section of the the thesis, we use the CAP framework to extend the notions for
oracle-extraction based separation which were not covered in [3]. Specifically, first we
review the necessary fundamental about how to get a separation from the
oracle-extraction, then we propose an extended table based on the work by Buldas and
Niitsoo [3]. Finally, in Section 4.2.1 we give proofs for each new separation condition
according to the extended table.

In cryptography, a reduction from a primitive P to a primitive Q usually means that either
P exists or Q does not exist. As a negative result, to show there is no black-box reductions
from a primitive P to a primitive Q, we need prove that P does not exist, but at the same
time, Q exists. Further, if we want to show that there is no black-box reductions from a
primitive P to a primitive Q by using oracle separation, we need to define an oracle O and
show a breakage argument that there is no secure P relative to O, but at the same time,
there exists a security argument that a secure Q relative to O. In classical separation results
of complexity theory, oracles are defined as fixed functions and have specific behavior. In
cryptographic separations, it is very difficult to define a specific separation oracle. For
instance, it is hard to show that one-way functions exist relative to an oracle, because we
even do not know whether one-way functions exist in the standard computational model.
So instead of defining a fixed oracle we need define a certain probability distribution then
assume that oracles are chosen randomly from that probability distribution. Hence the
most important thing for an oracle separation is to define a probability distribution F,
then randomly choose a O from F to show that there is secure instance fO of Q, but no
instance GO of P is secure relative to O. According to the oracle embedding techniques
introduced by Simon [10], we know that the secure instance f of Q can be identified with
the oracle O, so we use the oracle distribution f ← F instead of O ← F. Here we use
a NNNa-redcution as an example to show how to get a separation by using the oracle-
extraction based separation techniques. First we need to prove the breakage argument in
the oracle-extraction based separation techniques. We have to show that:

b1: For every instance Gf of P, there is a poly-time machine A such that Af breaks Gf

with overwhelming probability,
i.e. ∀

pol
G ∃

pol
A : E

f←F

[
ADVk(A

f , Gf )
]

= 1− k−ω(1) .

b2: According to b1 and Lemma 7, we know that for measure one of f ’s and every
instance Gf of P, there is a poly-time A, so that Af breaks Gf ,
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i.e. ∀
pol
G ∃

pol
A : Pr

f←F

[
ADVk(A

f , Gf ) = 1− k−ω(1)
]

= 1 .

b3: According to b2 and Lemma 5, we know that for measure one of oracles f and every
Gf , there is a poly-time machine A such that Af breaks Gf ,

i.e. Pr
f←F

[
∀
pol
G ∃

pol
A : ADVk(A

f , Gf ) = 1− k−ω(1)

]
= 1 .

Note that according to Lemma 8, we cannot use the weaker statement
E
f←F

[
ADVk(A

f , Gf )
]

= k−O(1) to replace the statement (b1), because there exists a

counterexample for which ADVk(A
f , Gf ) = k−ω(1) for all f . Hence this weaker

statement cannot imply that there is an f for which ADVk(A
f , Gf ) = k−O(1).

Second we need to prove the security argument in the oracle-extraction based separation
techniques. We have to show that:

s1: An instance f of Q can be broken by every fixed poly-time adversary S that uses f
as an oracle only with negligible success, on average,
i.e. ∀

pol
S : E

f←F

[
ADVk(S

f , f)
]

= k−ω(1) .

s2: According to s1 and Lemma 6, for measure one of f ’s, no poly time S can break f ,
i.e. ∀

pol
S : Pr

f←F

[
ADVk(S

f , f) = k−ω(1)
]

= 1 .

s3: According to s2 and Lemma 5, for measure one of oracles f , no poly-time S can
break f better than with negligible success,

i.e. Pr
f←F

[
∀
pol
S : ADVk(S

f , f) = k−ω(1)

]
= 1 .

Finally, from all the statements above we can get that measure one of oracles satisfy both
the breakage and the security argument, then according to the Lemma 4 ( Probabilistic
Argument) there exists a fixed separation oracle for which the statements also hold. As
there is no need to have countability argument for our statements s1, s2, b1 and b2, they
can still apply to non-uniform reductions, but the steps s3 and b3 do not, because there are
uncountably many non-uniform machines S and G.

In Table 4.1, we extend the original table proposed by Buldas and Niitsoo [3] via listing
the separation conditions for other three types of reductions in the CAP framework. All
the proofs of new types are given in the next section. The important result we obtain
from Table 4.1 is that the non-existence of BBB and the BNBa reductions can be proven
without the countability argument. The main reason is that in the separation condition the
oracle distribution F may depend on G and S. Formally, this means that in the separation
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Table 4.1: Reduction types and separation conditions for oracle extraction based
separations. The notions with underline already been given by Buldas and Niitsoo [3]

Type Reduction Condition Separation Condition
BBB- ∃

pol
G ∃

pol
S∀f∀A : ∀

pol
G ∀

pol
S∃F : E

f,A←F

[
ADVk(A,G

f )
]

= 1− k−ω(1)

Reduction AbrGf ⇒ SA,f br f E
f,A←F

[
ADVk(S

f,A, f)
]

= k−ω(1)

BNBa- ∃
pol
G ∀

pol
A ∃

pol
S∀f : ∀

pol
G ∃

pol
A ∀

pol
S∃F : E

f←F

[
ADVk(A

f , Gf )
]

= 1− k−ω(1)

Reduction
(Strong Af brGf ⇒ Sf br f E

f←F

[
ADVk(S

f , f)
]

= k−ω(1)

Semi bb)
BBNa- ∃

pol
G∀f ∃

pol
S ∀

pol
A : ∀

pol
G∃F ∀

pol
S ∃

pol
A : E

f←F

[
ADVk(A

f , Gf )
]

= 1− k−ω(1)

Reduction Af brGf ⇒ SA,f br f E
f←F

[
ADVk(S

A,f , f)
]

= k−ω(1)

Countability argument for S
BNNa- ∃

pol
G ∀

pol
A∀f ∃

pol
S : ∀

pol
G ∃

pol
A∃F : E

f←F

[
ADVk(A

f , Gf )
]

= 1− k−ω(1)

Reduction
(Weak Af brGf ⇒ Sf br f ∀

pol
S E
f←F

[
ADVk(S

f , f)
]

= k−ω(1)

Semi bb) Countability argument for S
NBBa- ∃

pol
S∀f ∃

pol
G ∀

pol
A : ∀

pol
S∃F ∀

pol
G ∃

pol
A : E

f←F

[
ADVk(A

f , Gf )
]

= 1− k−ω(1)

Reduction Af brGf ⇒ SA,f br f E
f←F

[
ADVk(S

A,f , f)
]

= k−ω(1)

Countability arguments for G
NBNa- ∀f ∃

pol
G ∃

pol
S ∀

pol
A : ∃F ∀

pol
G ∀

pol
S ∃

pol
A : E

f←F

[
ADVk(A

f , Gf )
]

= 1− k−ω(1)

Reduction Af brGf ⇒ SA,f br f E
f←F

[
ADVk(S

A,f , f)
]

= k−ω(1)

Countability arguments for G and S
NNNa- ∀f ∃

pol
G ∀

pol
A ∃

pol
S : ∃F : ∀

pol
G ∃

pol
A E
f←F

[
ADVk(A

f , Gf )
]

= 1− k−ω(1)

Reduction
(Variable Af brGf ⇒ Sf br f ∀

pol
S E
f←F

[
ADVk(S

f , f)
]

= k−ω(1)

Semi bb) Countability arguments for G and S
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condition, the quantifier ∃F need stand after the quantifiers ∀
pol
G and ∀

pol
S.

In sum, the oracle extraction based separation techniques are applicable to the BNBa-

reductions and the BBB-reductions but not for other reductions, because most of them
need the countability argument.

4.2.1 Proofs for Additional Oracle Extraction-Based Separations

We begin with the proof for nonexistence of a BBNa-reductions, the idea of the proof
originates from Buldas and Niitsoo [3]. Note that in this proof we need the countability
argument for S, because the reduction S may depend on f , More formally, in the
separation condition, the quantifier ∃F now stands before the quantifiers ∀

pol
S.

Theorem 8 If ∀
pol
G∃F ∀

pol
S ∃

pol
A : so that (I) E

f←F

[
ADVk(A

f , Gf )
]

= 1− k−ω(1) and

(II) E
f←F

[
ADVk(S

f,A, f)
]

= k−ω(1), there exist no uniform BBNa-Reductions.

Proof. The overwhelming average argument for (I) and the negligible average argument
for (II) imply:

∀
pol
S ∃

pol
A : Pr

f←F

[
Af brGf

]
= 1 ∧ Pr

f←F

[
Sf,A 6 brf

]
= 1 .

Now by the countability argument for S and Lemma 5 we obtain that:

∀
pol
G∃F : Pr

f←F

[
∃
pol
S ∀

pol
A : Af brGf ∧ Sf,A 6 brf

]
= 1 .

By the Lemma 4 we have the negation of the BBNa-reduction:

∀
pol
G∃f ∀

pol
S ∃

pol
A :

[
Af brGf ∧ Sf,A 6 brf

]
.

�

Next, we give the proof for nonexistence of NBBa-reductions. As in the separation
condition, the quantifier ∃F now stand before the quantifiers ∀

pol
G. we need the

countability argument for G.

Theorem 9 If ∀
pol
S∃F ∀

pol
G ∃

pol
A : so that (I) E

f←F

[
ADVk(A

f , Gf )
]

= 1− k−ω(1) and

(II) E
f←F

[
ADVk(S

f,A, f)
]

= k−ω(1), there exist no uniform NBBa-Reductions.
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Proof. The overwhelming average argument for (I) and the negligible average argument
for (II) imply:

∀
pol
G ∃

pol
A : Pr

f←F

[
Af brGf

]
= 1 ∧ Pr

f←F

[
Sf,A 6 brf

]
= 1 .

Now by the countability argument for G and Lemma 5 , we can obtain the similar result
as:

∀
pol
S∃F : Pr

f←F

[
∀
pol
G ∃

pol
A : Af brGf∧ : Sf,A 6 brf

]
= 1 .

By the Lemma 4 we have the negation of the NBBa-reduction:

∀
pol
S∃f ∀

pol
G ∃

pol
A :

[
Af brGf ∧ Sf,A 6 brf

]
.

�

Finally, we give the proof for nonexistence of NBNa-Reductions, As in the separation
condition, the quantifier ∃F now stand before the quantifiers ∀

pol
G and ∀

pol
S. we need the

countability argument for both G and S.

Theorem 10 If ∃F ∀
pol
G ∀

pol
S ∃

pol
A : so that (I) E

f←F

[
ADVk(A

f , Gf )
]

= 1− k−ω(1) and

(II) E
f←F

[
ADVk(S

f,A, f)
]

= k−ω(1), there exist no uniform NBNa-Reductions.

Proof. The overwhelming average argument for (I) and the negligible average argument
for (II) imply that:

∀
pol
G ∀

pol
S ∃

pol
A : Pr

f←F

[
Af brGf

]
= 1 ∧ Pr

f←F

[
Sf,A 6 brf

]
= 1 .

Now by Lemma 5 and the countability argument for G and S, we obtain that:

∃F : Pr
f←F

[
∀
pol
G ∀

pol
S ∃

pol
A : Af brGf ∧ Sf,A 6 brf

]
= 1 .

By the Lemma 4 we have the negation of the NBNa-reduction:

∃f ∀
pol
G ∀

pol
S ∃

pol
A :

[
Af brGf ∧ Sf,A 6 brf

]
.

�
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4.3 Averaging-Based Separation

In this section of the the thesis, we study the oracle separation approach that is called
averaging approach first introduced by Buldas and Niitsoo [2]. We use the CAP
framework to extend the notions for averaging-based separation which were not covered
in their paper. Similar to the last chapter, first we review the necessary background about
how to get a separation through the averaging approach, then we propose an extended
table for averaging-based separation based on the work [3]. Finally, we give proofs for
each new separation condition according to the extended table in Section 4.3.2.

As we know many practical primitives are required to be secure in the non-uniform
security model. It is clear that oracle extraction cannot be used in the non-uniform
security model, because most of the reductions need the countability argument. In order
to solve this kind of problem, Buldas and Niitsoo [2] introduce the averaging approach
where the oracle extraction step is not necessary. They proved that the averaging
approach is capable of showing that there are no non-uniform reductions between two
primitives. Here we start to describe the idea of the averaging approach.

From the Table-4.1 we know that the reduction condition is deterministic and has the
specific form as follows:

ADVP
k(A,Gf ) 6= k−ω(1) ⇒ ADVQ

k (Sf,A, f) 6= k−ω(1) . (4.1)

Both the security assumption and the breakage assumption are probabilistic in practical
separations. i.e. involve an average success over the oracle. To show that there are no
BBB-reductions from primitive P to primitive Q, we have to derive a contradiction based
on the reduction condition (4.1) and the separation conditions:

(S) E
f,A←F

[
ADVP

k(A,Gf )
]

= 1− k−ω(1)

(B) ∀
pol
S : E

f,A←F

[
ADVQ

k (Sf,A, f)
]

= k−ω(1) .

If we consider the traditional approach such as oracle extraction, we need first focus on
conditions (S) and (B) and try to extract fixed oracles f and A from F so that (4.1) is not
satisfied. The average-based separation technique [2] uses another way. Formally, it first
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Table 4.2: Reduction types and separation conditions for averaging-based separation in
the case of poly-preserving black-box reductions. The notions with underline already
been given by Buldas and Niitsoo [3]

Type Reduction Condition Separation Condition
BBB ∃

pol
G ∃

pol
S∀f∀A : ∀

pol
G ∀

pol
S∃F : E

f,A←F

[
ADVk(A,G

f )
]
6=k−ω(1)

ADVk(S
f,A, f)≥

[
ADVk(A

f, Gf )
]c

E
f,A←F

[
ADVk(S

f,A, f)
]

= k−ω(1)

BNBa ∃
pol
G ∀

pol
A ∃

pol
S∀f : ∀

pol
G ∃

pol
A ∀

pol
S∃F : E

f←F

[
ADVk(A

f, Gf )
]
6=k−ω(1)

ADVk(S
f, f) ≥

[
ADVk(A

f, Gf )
]c

E
f←F

[
ADVk(S

f , f)
]

= k−ω(1)

BBNa ∃
pol
G∀f ∃

pol
Sf ∀

pol
A : ∀

pol
G∃F ∀

pol
S ∀

of
ϕ ∃

pol
A : E

f←F

[
ADVk(A

f , Gf )
]
6=k−ω(1)

ADVk(S
f,A
f ,f)≥

[
ADVk(A

f, Gf )
]c

E
f←F

[
ADVk(S

f,A
ϕ(f), f)

]
= k−ω(1)

BNNa ∃
pol
G∀f ∀

pol
A ∃

pol
Sf : ∀

pol
G∃F : ∃

pol
A E
f←F

[
ADVk(A

f , Gf )
]
6= k−ω(1)

ADVk(S
f
f ,f)≥

[
ADVk(A

f, Gf )
]c

∀
pol
S ∀

of
ϕ E
f←F

[
ADVk(S

f
ϕ(f), f)

]
= k−ω(1)

NBBa ∃
pol
S∀f ∃

pol
Gf ∀

pol
A : ∀

pol
S ∀

of
ψ∃F ∀

pol
G∃

pol
A :E
f←F

[
ADVk(A

f , Gf
ψ(f))

]
6=k−ω(1)

ADVk(S
f,A, f)≥

[
ADVk(A

f , Gf
f )
]c

E
f←F

[
ADVk(S

f,A, f)
]
=k−ω(1)

NBNa ∀f ∃
pol
Gf ∃

pol
Sf ∀

pol
A : ∀

of
ψ∃F ∀

pol
G ∀

pol
S∀

of
ϕ∃

pol
A: E

f←F

[
ADVk(A

f , Gf
ψ(f))

]
6=

k−ω(1)

ADVk(S
f,A
f , f)≥

[
ADVk(A

f , Gf
f )
]c

E
f←F

[
ADVk(S

f,A
ϕ(f), f)

]
=k−ω(1)

NNNa ∀f ∃
pol
Gf ∀

pol
A ∃

pol
Sf : ∀

of
ψ∃F :∀

pol
G ∃

pol
A E
f←F

[
ADVk(A

f , Gf
ψ(f))

]
6=k−ω(1)

ADVk(S
f
f , f)≥

[
ADVk(A

f , Gf
f )
]c

∀
pol
S ∀

of
ϕ E
f←F

[
ADVk(S

f
ϕ(f), f)

]
=k−ω(1)

focuses on (4.1) derives the following averaged version:

E
f,A←F

[
ADVP

k(A,Gf )
]
6= k−ω(1) ⇒ E

f,A←F

[
ADVQ

k (Sf,A, f)
]
6= k−ω(1) , (4.2)

and then derives a contradiction based on (S), (B) and (4.2). Indeed, from (S) it follows
that E

f,A←F

[
ADVP

k(A,Gf )
]

= 1 − k−ω(1) 6= k−ω(1). By (4.2) we imply that

E
f,A←F

[
ADVQ

k (Sf,A, f)
]
6= k−ω(1) which contradicts (B).
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4.3.1 Averaging-Based Separation for Poly-Preserving Reductions

The big limit of the averaging approach described above is that we cannot deduce the
averaged condition (4.2) from the general reduction condition (4.1), Specifically, We
would like to prove that if ADVQ

k (Sf,A, f) = k−ω(1) can imply

E
f

[ADVQ
k (Sf,A, f)] = k−ω(1)

According to Lemma 6 (Negligible Average Argument) we know that
ADVP

k(A,Gf ) = k−ω(1) for measure one of f ’s, but this does not mean that
E
f

[ADVP
k(A,Gf )] = k−ω(1) based on Lemma 8. As the guarantee condition is too weak

for average-based separation, we use the poly-preserving reductions instead of general
reduction condition for the averaging approach.

In the poly-preserving BBB-reductions (fully black-box reductions), the security
argument is of the form ADVQ

k (Sf,A, f) ≥
[
ADVP

k(A,Gf )
]c

. For poly-preserving
reductions, the averaged reduction condition (4.2) easily follows:

E
f,A←F

[
ADVQ

k (Sf,A, f)
]
≥ E
f,A←F

[(
ADVP

k(A,Gf )
)c]≥( E

f,A←F

[
ADVP

k(A,Gf )
])c

,

where the second inequality is an application of the Jensen inequality. This implies that
if E

f,A←F

[
ADVP

k(A,Gf )
]

is non-negligible, then so is E
f,A←F

[
ADVQ

k (Sf,A, f)
]
. If

E
f,A←F

[
ADVQ

k (Sf,A, f)
]

= k−ω(1), but at the same time E
f,A←F

[
ADVP

k(A,Gf )
]
6= k−ω(1),

we derive a contradiction.

Based on the original four different types reductions in the averaging-based separation [3],
we list another three types of reductions in Table 4.2, All proofs are given in the next
section. Note that here we use a stronger reduction condition based on the poly-preserving
reductions, hence the breakage condition for averaging-based separation can be somewhat
weaker than in the traditional extraction-based approach, we only need require that the
success of A is non-negligible.

4.3.2 Proofs for Additional Averaging-Based Separations

First, we give the proof for nonexistence of a BBNa-reductions in averaging-based
separation, the idea of the proof originates from [3], only difference is that we use the
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nonexistence of BBBa-reduction to show the separation result between two primitives in
the leaky-oracle model.

Lemma 9 The existence of poly-preserving BBNa black-box reductions is equivalent to:

∃
pol
G ∃

pol
S ∃

of
ϕ ∀

pol
A∀f : ADVk(S

A,f
ϕ(f), f) ≥

[
ADVk(A

f , Gf ))
]c

where c ≥ 1 . (4.3)

Proof. Assume first that ∃
pol
G∀f ∃

pol
Sf ∀

pol
A : ADVk(S

A,f
f , f) ≥

[
ADVk(A

f , Gf ))
]c, i.e.

there exists a poly-preserving BBNa black-box reduction and prove (4.3). Let ϕ be an
oracle function so that ϕ(f) is a bit-representation of Sf . Let S be the universal f -oracle
machine, which when given as input a bit-representation ϕ(f) behaves exactly like Sf .
This means that ADVk(S

A,f
ϕ(f), f) = ADVk(S

A,f
f , f). Moreover, as such simulation is

possible with logarithmic overhead, it follows that Sϕ(f) is poly-time. As S and ϕ are the
same for all instances of f , the statement (4.3) follows.

From (4.3) by defining Sf := Sϕ(f), there exists G such that for all f there is Sf such that
for poly-time A, so that ADVk(S

A,f
f , f) = ADVk(S

A,f
ϕ(f), f) ≥

[
ADVk(A

f , Gf )
]c, which

proves the existence of poly-preserving BBNa black-box reduction. �

Theorem 11 If ∀
pol
G∃F ∀

pol
S ∀

of
ϕ ∃

pol
A : so that (I) E

f←F

[
ADVk(A

f , Gf ))
]
6= k−ω(1) and (II)

E
f←F

[
ADVk(S

A,f
ϕ(f), f)

]
= k−ω(1), there exists no poly-preserving BBNa reductions.

Proof. By using (4.3), (I) and (II), we will derive a contradiction. Let G, S and ϕ be as
in (4.3). By applying the assumption of the theorem to this G, we conclude that there
exist a distribution F with the properties (I) and (II). By applying the assumption of the
theorem to the S and ϕ, we can get a poly-time oracle machine A with the properties
(I) E

f←F

[
ADVk(A

f , Gf )
]
6= k−ω(1)(*) and (II) E

f←F

[
ADVk(S

A,f
ϕ(f), f)

]
= k−ω(1) (**). Here

we use the same A in (4.3) such that ADVk(S
A,f
ϕ(f), f) ≥

[
ADVk(A

f , Gf )
]c(***) holds for

all f . Finally, by averaging (***) and using the Jensen’s inequality we have:

E
f←F

[
ADVk(S

A,f
ϕ(f), f)

]
≥ E
f←F

[
ADVk(A

f , Gf )c
]
≥
[
E
f←F

[
ADVk(A

f , Gf )
]]c

,

which is a contradiction between (*) and (**). �

Lemma 10 The existence of poly-preserving NBBa reductions is equivalent to:

∃
pol
S ∃

of
ψ ∃

pol
P ∀

pol
A∀f : ADVk(S

A,f , f) ≥
[
ADVk(A

f ,Pfψ(f))
]c

where c ≥ 1 . (4.4)
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Proof. Assume first that ∃
pol
S∀f ∃

pol
Gf ∀

pol
A : ADVk(S

A,f , f) ≥
[
ADVk(A

f , Gf
f )
]c

, i.e.

there exists a poly-preserving NBBa reduction, and prove (4.4). Let ψ be a mapping so
that ψ(f) is the bit-string representation of Gf . Let P be the universal f -oracle machine
so that Pψ(f) behaves identical to Gf . Hence, ADVk(A

f ,Pfψ(f)) = ADVk(A
f , Gf

f ), and
due to the efficiency of simulation, Pψ(f) is poly-time. As P and ψ are the same for all
instances of f , the statement (4.4) follows. �

Theorem 12 If ∀
pol
S ∀

of
ψ∃F ∀

pol
G ∃

pol
A : so that (I) E

f←F

[
ADVk(A

f , Gf
ψ(f))

]
6= k−ω(1) and

(II) E
f←F

[
ADVk(S

A,f , f)
]

= k−ω(1), there exists no poly-preserving NBBa reductions.

Proof. By using (4.4), (I) and (II), we derive a contradiction. Let ψ, P and S be as in
(4.4). By applying the assumption of the theorem to S and ψ, we conclude that a
distribution F with the properties (I) and (II). By applying the assumption of the theorem
to P, we conclude that there exists A such that E

f←F

[
ADVk(A

f ,Pfψ(f))
]
6= k−ω(1)(*) and

E
f←F

[
ADVk(S

A,f , f)
]

= k−ω(1)(**). Here we use the same A in (4.4) such that

ADVk(S
A,f , f) ≥

[
ADVk(A

f ,Pfψ(f))
]c

(***) holds for all f . Finally, by averaging (***)
and using the Jensen’s inequality, we have

E
f←F

[
ADVk(S

A,f , f)
]
≥ E
f←F

[
ADVk(A

f ,Pfψ(f))
c
]
≥
[
E
f←F

[
ADVk(A

f ,Pfψ(f))
]]c

.

A contradiction between (*) and (**). �

Finally, we give the proof for nonexistence of poly-preserving NBNa reductions, this
proof can consider as a combination of the result from previous two proofs.

Lemma 11 The existence of poly-preserving NBNa reductions is equivalent to:

∃
of
ψ ∃

pol
P ∃

pol
S ∃

of
ϕ ∀

pol
A∀f : ADVk(S

A,f
ϕ(f), f) ≥

[
ADVk(A

f ,Pfψ(f))
]c

where c ≥ 1 .

(4.5)

Proof. Assume first that ∀f ∃
pol
Gf ∃

pol
Sf ∀

pol
A : ADVk(S

A,f
f , f) ≥

[
ADVk(A

f , Gf
f )
]c

, i.e.

there exists a poly-preserving NBNa black-box reduction, and prove (4.5). Here we define
ψ and P like in Lemma 4.4, for S and ϕ like in Lemma 4.3, As S, ϕ, P and ψ are the same
for all instances of f . The statement (4.5) follows. �

Theorem 13 If ∀
of
ψ∃F ∀

pol
G ∀

pol
S ∀

of
ϕ ∃

pol
A : so that (I) E

f←F

[
ADVk(A

f , Gf
ψ(f))

]
6= k−ω(1)

and (II) E
f←F

[
ADVk(S

A,f
ϕ(f), f)

]
= k−ω(1), there exists no poly-preserving NBNa
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reductions.

Proof. By using (4.5), (I) and (II), we derive a contradiction. Let ψ, P, S and ϕ be as in
(4.5). By applying the assumption of the theorem to ψ, we conclude that a distribution
F with the properties (I) and (II). By applying the assumption of the theorem to P, S
and ϕ we conclude that there exists A such that E

f←F

[
ADVk(A

f ,Pfψ(f))
]
6= k−ω(1)(*)

and E
f←F

[
ADVk(S

A,f
ϕ(f), f)

]
= k−ω(1)(**). Here we use the same A in (4.5) such that

ADVk(S
A,f
ϕ(f), f) ≥

[
ADVk(A

f ,Pfψ(f))
]c

(***) holds for all f . Finally, by averaging (***)
and using the Jensen’s inequality, we have

E
f←F

[
ADVk(S

A,f
ϕ(f), f)

]
≥ E
f←F

[
ADVk(A

f ,Pfψ(f))
c
]
≥
[
E
f←F

[
ADVk(A

f ,Pfψ(f))
]]c

.

A contradiction between (*) and (**). �
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5 Future Research

In this thesis we mainly considered the reduction and separation results from semi level
above. Because Reingold et al [9] prove that if one-way functions imply key agreement
via a free reduction, then there is also a weakly-BB reduction from key agreement to
one-way functions.

Clearly, from the Definition 12 we know that black-box separations result are presumably
impossible in free reductions. The proof by Reingold et al. shows that free reductions and
weakly-reduction are basically equivalent, hence black-box separations results are also
impossible in weakly-reductions. However, Pass et al. [26] gave a new proof to show that
one-way functions do not imply one-way-permutations through a meta-reduction based
on a ∀∃-weakly-BB reduction. Obviously this is a contradiction from Reingold’s result,
and let us think following questions: does the proof for equivalence of weakly reduction
and free reduction hold for all cases. If we can get separations result in weakly-reductions,
what will be the relation between weakly-reductions and other reductions, here we give a
conjecture as follows.

XNNa and weakly-XNNa Reductions are equivalent, where X∈{B,N}. From the
definitions we know the only difference between XNNa and weakly-XNNa-reductions is
whether the adversary A can get access to an instance f or not. If we consider the same
approach used to prove the equivalence of BNNa and BBNa, we notice that we might
still fix the restrictions and derive a contradiction from the assumption, and it seems like
this approach still works for the proof of XNN and weakly-XNN reductions.

It would also be interesting to know the relations between different types of
poly-preserving reductions. In this thesis we mainly considered the relation between
different notions of ordinary reductions, but for poly-preserving reductions, we only use
them to prove the averaging-based separation. As a stronger version of reductions, our
result for relation between different notions of reductions maybe totally different for
poly-preserving reductions. Here we also give a conjecture about poly-preserving
reductions as follows.
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XBZa and XNZa Poly-Preserving Reductions are Inequivalent, where X,Z∈{B,N}.
We know that for poly-preserving reductions the guarantee condition was strengthened as
ADVQ

k (Sf , f) ≥
[
ADVP

k(Af , Gf )
]c

, here if we consider the same approach used to prove
the equivalence of BNNa and BBNa, we can find a fixed adversaries A that satisfy the
whole statement. But as this guarantee condition is an inequality, we need consider the
whole statement including a different A, and it seems like we cannot derive a contradiction
base on this inequality.
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6 Conclusions

In this thesis, we achieved two goals which are strongly related to cryptographic
reductions and separations. First, we further consider the relations between different
types of reductions, we get some new results for efficient adversaries in CAP framework
in Chapter 3. Second, based on the work in [3], we complement all notions of black-box
reductions for efficient adversaries in the traditional oracle extraction-based separation
and the averaging-based separation according to the CAP framework in Chapter 4.

We believe that the study of relationships among different notions of reductions and oracle
separation techniques are important. Since separation techniques critically depend on
the types of reductions, and separation results can help cryptographers to make clear
fundamental differences between primitives. They can also save a lot of wasted effort
by guiding researchers away from hopeless approaches. In this thesis, we reduce the
original CAP framework for efficient adversaries into a simpler and easier to understand
way. We also complement all notions of black-box reductions in both the traditional
oracle extraction-based separation and the averaging-based separation, which can help
researchers to get separation results more quickly. For these reasons, we believe that our
result is valuable in the study of cryptographic reductions and separations.

Many open questions remain for our following work, both in the relation between
different types of reductions and in averaging-based separation. Some such questions
include: the relations between weakly black-box-reduction and other types of
black-box-reductions, the relations between different types of reductions based on
poly-preserving reductions. Is it possible to get averaging-based separation below BNBa
reductions for poly-preserving reductions and how to confirm the result of the relation
between BBBa and BNBa reductions.
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