
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Software Science

Henri Vasserman, 040683 IAPB

DEEP LEARNING BASED ANALYSIS OF THE
SENTENCE WRITING TEST TO SUPPORT

DIAGNOSTICS OF PARKINSON’S DISEASE

Bachelor’s Thesis

Supervisor: Sven Nõmm, PhD

Tallinn 2019

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Tarkvarateaduse instituut

Henri Vasserman, 040683 IAPB

SÜGAVÕPPEPÕHINE ANALÜÜS PARKINSONI
TÕVE DIAGNOOSI LAUSE KIRJUTAMISE TESTI

TOEKS

Bakalaureusetöö

Juhendaja: Sven Nõmm, PhD

Tallinn 2019

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Henri Vasserman

01.05.2019

3

Abstract

This bachelor’s thesis is about trying to create a method for facilitating automatic dia-
gnosing of Parkinson’s disease from a handwriting test.

The first step is to create a handwriting recognizer that can detect individual letters from
previously collected handwriting samples. For this end I wrote a sample labeling tool in
JavaScript and a deep recurrent neural network recognition engine using TensorFlow and
Keras.

The resulting letter labels I use to extract several different motion mass features for each
detected letter. The features I use then to train several different classifiers to see if it
is possible to detect if a sample is part of the Parkinson’s disease group or the healthy
control group.

Using cross-validation, I show that it is possible to achieve an accuracy up to 75% with
using just a few features in a simple classifier such as a decision tree.

This thesis is written in English and is 37 pages long, including 7 chapters, 11 figures and
4 tables.

4

Annotatsioon

Sügavõppepõhine analüüs Parkinsoni tõve diagnoosi
lause kirjutamise testi toeks

Selle bakalaureusetöö teema on ehitada meetod, mis toetaks Parkinsoni tõve automaatset
diagnoosimist käekirjatestiga.

Esimene samm on luua käekirja tuvastaja, mis suudaks leida üksikuid tähti kogutud ek-
semplaridelt. Selle jaoks kirjutasin tähtede lahterdamistööriista JavaScripti abil ja sügava
rekurentse närvivõrgu peal töötava mudeli, mis on ehitatud Keras ja TensorFlow peal.

Tuvastatud tähtedele arvutan välja erinevad liikumismassi parameetrid, mida kasutan eri-
nevate klassifikaatorite treenimiseks, et näha, kas on võimalik tuvastada, kas antud käe-
kirjaeksemplar kuulub Parkinsoni tõve või tervesse kontrollgruppi.

Kasutades ristvalideerimist, saan ma näidata, et on võimalik saavutada isegi kuni 75%
täpsuse, kui kasutada vaid mõnda üksikut parameetrit sellises lihtsas klassifikaatoris nagu
otsustuspuu.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 37 leheküljel, 7 peatükki, 11
joonist ja 4 tabelit.

5

List of terms

PD Parkinson’s disease

HC healthy control

RNN recurrent neural network [1]

LSTM long-short term memory: an advanced form of RNN [2]

JSON JavaScript object notation: a standard data interchange format

Python Scripting language that is widely used in data science and machine learning

Numpy Multidimensional computation library for Python [3]

Pandas Data analysis library for Python [4]

Tensorflow Automatic differentiation framework by Google [5]

Keras Neural network and machine learning library that runs on Tensorflow [6]

C# C-like language by Microsoft

API Application programming interface

6

Contents

1 Introduction . 11
1.1 Parkinson’s disease . 11
1.2 Previous research . 11
1.3 Data source. 12
1.4 Problem statement . 12

2 Implementation . 13
2.1 Data description . 13
2.2 Workflow . 13
2.3 Directory structure . 14
2.4 Data format . 15

3 Handwriting recognition . 16
3.1 Data preprocessing. 16

3.1.1 Coordinates . 16
3.1.2 Vertical location . 16
3.1.3 Relative coordinates . 18
3.1.4 Training targets . 18

3.2 Neural network design . 18
3.2.1 Recurrent neural networks 19
3.2.2 LSTM. 19
3.2.3 Dense layer. 20
3.2.4 Softmax . 20
3.2.5 Categorical cross-entropy 21
3.2.6 Adam optimizer . 21
3.2.7 Training . 21

3.3 Label detection . 22
4 Data manager . 23

4.1 Letter classification . 23
4.2 Result view. 23
4.3 Confidence . 24

5 Extracting kinematic features . 26
6 Validation . 28

6.1 Scikit-learn classifiers . 29
6.1.1 Cross-validation . 29
6.1.2 Decision trees. 29
6.1.3 Multi layer perceptron . 30
6.1.4 Stochastic gradient descent 30
6.1.5 Nearest neighbor . 30

7

7 Conclusions . 31
7.1 Shortcomings and future improvements 31

References . 34
Appendix 1 – Readme file . 35

8

List of Figures

1 Previous studies . 12
2 Example of data . 13
3 Workflow of the data . 14
4 Example of similarities of motion whether the pen is lifted or not 17
5 Preprocessed letter example . 18
6 Recognition network design . 19
7 Hyperbolic tangent and the logistic sigmoid function 20
8 Label reading state machine . 22
9 Data manager web view . 25
10 Results view . 25
11 Decision tree with two features. 30

9

List of Tables

1 Model weights . 21
2 Classification labels . 23
3 Top 10 features . 28
4 Validation . 29

10

1 Introduction

The goal of this thesis work is to create a system that can isolate characters from hand-
writing samples and classify them into the healthy control group (HC) or Parkinson’s
disease (PD) group. The handwriting samples have been collected during research with
PD patients.

1.1 Parkinson’s disease

Parkinson’s disease affects 1% of the population over 60 years of age in industrialized
nations. Current diagnosis rely on several clinical symptoms yet there are no universally
accepted set of criteria for diagnosis. There is also no known cure or any one known
cause [7].

Patients exhibit symptoms such as bradykinesia (slow movement), tremor and rigidity in
motion. This affects manual dexterity, including handwriting; it becomes less legible and
smaller on the page, called micrographia [8].

1.2 Previous research

The main research methods that are relevant have been analyzing various kinematic fea-
tures from when the subject draws on a graphics tablet or smart device equipped with a
digitizer, dating back to the 1990-s by Marquardt [9] and Eichhorn [10].

Studies in 2016 by Kozhenkina [11] and Nõmm in [12], [13] showed results by analyzing
kinematic features in the Luria’s [14] alternating series which look like zigzags or waves.
Drotár [15], used similar kinematic analysis to analyze handwriting and spiral drawing.

Mašarov [16] in 2017 used a clock-drawing test collected using an iPad Pro with the
Apple pencil. He used MNIST database-trained [17] type of classifiers to detect numbers
of the clock and to extract features from different measurements of the drawing as well as
motion mass parameters.

Bardõš [18] with Nõmm [19] in 2018 analyzed Luria’s alternating series for anomaly

detection and of the same kind of kinematic features as before in the other studies. They
also used cross-validation for their results, up to even top 90 features combined.

Toodo [20] in the same year used the sentence writing test from the same iPad app as [16],
[18] to extract features of individual words using Google’s Inception v-3 [21] deep con-
volutional network, analyzing several kinematic motion mass and character measurement
features using several classifiers.

11

Drotár, 2016 [15]

Nõmm, 2016 [12], [13]

Nõmm, 2018 [19]Kozhenkina, 2016 [11]

Mašarov, 2017 [16]

Bardõš, 2018 [18]

Toodo, 2018 [20]

Figure 1: Previous studies. Master’s theses marked in corner.

1.3 Data source

The information system and app to collect the testing data from patients was started during
normal coursework and finished in the thesis of [16].

In addition to the alternating series and other geometric drawing tests there is a handwrit-
ing test. This test was used for [20], as well. The subjects are asked to write the sentence,
in Estonian: “Kui Arno isaga koolimajja jõudis, olid tunnid juba alanud.”

This sentence is the opening line from a classic Estonian novel and was chosen because
of its high cultural collective memory of the subjects in the study. It was hoped that this
would give the test a more common baseline.

1.4 Problem statement

To create a software system that uses machine learning to learn how to read letter labels
from handwriting samples and extracting individual kinematic features from the detected
letters to use them for classification of the subject into two groups: HC or PD; verifying
the accuracy of the classification using different subsets of data for training and testing.

12

2 Implementation

The software was written in various languages. Most of the machine learning and analysis
in Python, the small web service in C# using .NET Core, the user interface in JavaScript
using Vue.js.

2.1 Data description

The data input is in the format of JSON files [16] that record each stroke of the hand-
writing as a series of points (up to 240 per second). Each point contains six floating point
values {x, y, t, a, l, p}, where x, y are the Cartesian coordinates (x increases from right
to left and y from top to bottom), a, l are the azimuth and longitude of the pen, p is the
pressure applied to the pen, t is a timestamp in the iOS format that represents seconds
from the beginning of 2001 [22].

x y t a l p
595.2969 391.7930 572198502.634109 0.695058 0.934383 0.333333
594.5000 390.4688 572198502.684318 0.695058 0.934383 0.153108
594.0313 388.6055 572198502.721226 0.695058 0.934383 0.191631
593.4375 386.6836 572198502.721343 0.695058 0.934383 0.164456
592.5000 385.1602 572198502.721384 0.695058 0.934383 0.291993
590.7813 384.4336 572198502.738869 0.695058 0.934383 0.348021
588.9844 385.6289 572198502.756594 0.695058 0.934383 0.411446
588.0625 387.0234 572198502.756924 0.695058 0.934383 0.424279
587.3281 388.4063 572198502.756983 0.695058 0.934383 0.449387
586.3438 390.4688 572198502.772691 0.695058 0.934383 0.460670
585.6719 392.1914 572198502.772790 0.695058 0.934383 0.471061
585.0156 394.3125 572198502.772817 0.695058 0.934383 0.462629
584.3438 396.5742 572198502.772842 0.695058 0.934383 0.470390
583.8750 398.5664 572198502.789255 0.695058 0.934383 0.483450

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

609.6875 409.5117 572198503.019896 0.695058 0.934383 0.422518

Figure 2: Example of data. Left: a sample of the written test with the letter a highlighted. Right: the data
points of the highlighted a letter. Some rows have been omitted for brevity.

2.2 Workflow

The user interface (chapter 4) is used for defining character ranges in the handwriting
samples, which is required for the training, and also to configure if a sample is used for
the recognition ‘training’ or ‘testing’ phase. It also has options for defining the sample
group of HC or PD.

After the sentences have their letters marked using the UI, there point sequences are pre-
processed using Python and Numpy [3] before the training step.

The deep learning machine training for the character recognition is built using Tensorflow
[5] version 2 alpha. Even if it is in alpha, it is quite stable and also is much easier to use
and develop for.

The training script loads all the samples that are in the ‘training’ set. The model from the
training is saved to disk in a portable JSON format in the subdirectory model.

13

After the model is trained, there is a Python script that can load the model and run the
recognition step on all the sample files that are in the ‘test’ set.

The classification of the letters is done with scikit-learn [23], where the data is processed
with Pandas [4] and Numpy [3] for analysis.

The analysis first finds what are the best features and then uses several classifiers that
scikit-learn includes, using 2 .. 10 of the best features in a combination, selecting the ‘test-
ing’ samples using k-fold cross-validation, with k = 6.

samples

train.py test.pymodel

results

validate.py

features

Figure 3: Workflow of the data, from sentences to results to features

2.3 Directory structure

There are several files and directories in the root of the software project:

sentences – Input files in JSON format.
metadata – Metadata for each input file.
results – Output from the handwriting recognizer, contains letter labels for each input
file.
model – Saved recognition model.
DataMgr – The data manager web (see ch. 4).
train.py – Handwriting recognizer training script (ch. 3). results saved to model.
test.py – Handwriting inference, reads model and sentences and writes into results.
validate.py – Extracts kinematic features from results and checks the accuracy
of the classification.

14

Some of these scripts contain helper functions:

data.py – Preprocesses data for input to train.py and test.py.
features.py – Extracts feature data into pandas structures [4] for validate.py.
model.py – A Python class encapsulating the trained model loading from the model
directory.

For a more in-depth understanding of the software setup, see appendix 1.

2.4 Data format

For saving the data, a JSON-based format is used in the intermediate steps. I chose this
because of the the original incoming data was also in JSON format. The Tensorflow model
has support for saving and loading in JSON format but the weights file is usually not in
this format just because of the size overhead of saving thousands or millions of floating
point numbers in text format.

However, even with over 20,000 numbers for the weights, the saved model is less than a
megabyte in size and can be significantly reduced with compression.

15

3 Handwriting recognition

One possible recognition engine that I tried to use was Microsoft’s Tablet PC APIs. it did
give some results as a text string; however, it does not support Estonian and it was also
not very accurate, while also there seems to be no way to extract individual letter ranges.

Using recurrent neural networks (RNNs) was inspired by Karpathy [24] where he intro-
duces and analyzes their ability to generate sequences of text.

The handwriting recognition was inspired by Graves who analyzes using RNNs to gen-
erate various sequences such as text [25] and handwriting (recorded points as opposed to
static images). In [26] he also analyzes different RNNs’ abilities to classify sequences,
such as speech and handwriting.

3.1 Data preprocessing

The samples are highly variable in the amount of points pre time unit and also the the
difference of time units per point (writing speed). A simple processing step that I have
used in this work is just a distance filter from the last point.

This proves sufficient but a future improvement would be to represent the strokes as a
two-dimensional parametric curve [x, y] = f(t), this way the data can be re-sampled into
any number of data points. Recent work by Google [27] has used least-squares estimation
to reduce the points into Bézier curves.

3.1.1 Coordinates

If the input stroke S consists of points of pi = [pxi
pyi] coordinates, then the output set

of points S′ is a subset where each point has a distance from the last point that is greater
than the distance D:

∀pi ∈ S, where i ∈ [0, N)

S′ 3 pi, if dist(pi,pi−1) > D

Where the function dist gives the distance between two points in two dimensions, as
derived from the Pythagorean theorem:

dist(a,b) =
√

(ax − bx)2 + (ay − by)2 (1)

3.1.2 Vertical location

This processing gives a list of points of two dimensions, x, y, but not the z-axis, or rather
the information of the fact that the pen is touching the surface.

16

(a) (b)

Figure 4: Example of similarities of motion whether the pen is lifted or not: (a) the dot in i is written
connected to the main main body of the letter and also the next letter, (b) the dot is separated.

I had an insight after looking at the images of the samples where, for example the letter i,
the dot is drawn after the main body of the letter. However, in some cases, the writer does
not lift the pen before the dot, leaving them connected (figure 4).

Since the x, y-coordinate movement between them is almost the same, I thought that this
would make it easier for the RNN to learn that the letters are, in fact, the same. Doing this
would also maybe solve some difficulties with discontinuous sections, such as in [25].

I also added a third dimension d for ‘down’, as in, ‘is the pen down’.

Since the input data does not contain the pen movement while the pen is lifted off the
drawing surface, I have synthesized the points as a simple linear interpolation between
the ending of one stroke and the next.

If the stroke Si is the next stroke after Si−1, I get the points p1 and p2:

p1 = pSi−1[N−1]

p2 = pSi[0]

∆p = p2 − p1

Where ∆p is the difference of coordinates between the stroke end and the next’s begin-
ning. I calculate the count of points to generate c using (1):

c =

⌊
dist(p2,p1)

D

⌋
Gk =

[
∆px
c
,
∆py
c
, 0

]
Where G is the generated point set and k ∈ [0, c).

The filtered coordinates S′ and generated sequences G are then concatenated into a single
sequence A, where A = {S′0,G1, · · · ,GN ,S

′
N}. Each point p in A contains the x, y, d-

coordinates from above.

17

x y d
0.0000 0.0000 1.0
-0.6328 -1.5938 1.0
-0.2969 -0.9609 1.0
-1.3281 -1.1250 1.0
-0.8984 0.5976 1.0
-0.8282 1.3887 1.0
-0.4921 1.0312 1.0

.

.

.
.
.
.

.

.

.
1.9922 1.0606 1.0

� A K · · · ˜
0 0 1 · · · 0
0 0 1 · · · 0
0 0 1 · · · 0
0 0 1 · · · 0
0 0 1 · · · 0
0 0 1 · · · 0
0 0 1 · · · 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 1 · · · 0

Figure 5: Preprocessed letter example. This is the same letter as in figure 2 but the preprocessing has re-
moved some points. The middle table is the point data that is fed into the neural net. The right
table is the table that is used for training targets (3.1.4) that correspond to the labels in table 2

3.1.3 Relative coordinates

Because it is possible to write the sentence on anywhere on the surface, the absolute
coordinates in A are calculated into relative coordinates R. For any point a ∈ A =

[axi
, ayi , adi], where i ∈ [0, N] (N being the length of A) we can calculate the point

r ∈ R:

rj =

[
(axj
− axj−1

)

D
,

(ayj − ayj−1
)

D
, adj

]
j ∈ [1, N) (2)

Since all the points are scaled by D, they will all have values roughly in the interval
[−1,+1], which is the interval of the tanh-activation that the LSTM uses. [24]

3.1.4 Training targets

The label of the letter for every point is looked up and the targets are one-hot encoded
for the training. That is the have a 1 at the index of the matching label and 0 elsewhere.
While, also, the index 0 is special and it encodes empty spaces and non-mapped regions.

3.2 Neural network design

The network is built using a sequential Keras [6] model in Tensorflow 2.0 [5].

The input of the model is a matrix of size N × 3, that is, N is the count of points and 3 is
the size of R from 3.1.3. The output is a matrix of the size N ×K where K is the count
of labels in training targets (4.1).

The intermediate layers are three LSTM layers with an output size of 32. This number
of layers and their sizes was determined experimentally and seems to be sufficient. The
LSTM layers are followed by a dense fully-connected layer that transforms the 32 out-
puts to the amount of letter classes that are to be recognized. A softmax layer follows, it
normalizes the probabilities into a sum of 1.

18

This means that for every [x, y, d] vector that is fed into the model, it will output a vector
[l0, l1, · · · , lK−1]. Each element in the vector represents a probability in the interval [0, 1]

that the output label is detected at the input, also called a one-hot representation.

3.2.1 Recurrent neural networks

Recurrent neural networks are a type of neural network that contain an internal state vector
that keeps some about previous activations.

In the classic Elman RNN [1] there is only one state vector h. If the input vector at time-
step t is xt and the output yt, then the calculation can be summarized like:

ht = tanh(Wxh × xt + Whh × ht−1 + bh) (3)

yt = tanh(Why × ht + by) (4)

Where Wxh, Whh, Why are the weight matrices between x, h, and y respectively. The
operator × is matrix multiplication. The vectors bh and by are bias vectors that have a
linear effect.

The weights an biases are all trainable by a gradient descent algorithm because tanh

(figure 7) is a differentiable function [28]:

3.2.2 LSTM

Long short-term memory is a special type of recurrent that adds more weights to calculate
‘input’, ‘output’ and ‘forget’ gate vectors [2]. The input being x and output h; there is also

x, y, d
0

LSTM
3

LSTM LSTM dense softmax

2

1

N−1

32 32 32 K K
0

l�, lA, , l∼

1

2

N−1

K

Figure 6: Recognition network design. The LSTM layers all have output sizes of 32, the dense layer resizes
it to the number of classes K. The number of time-steps is N . Before the output a softmax layer
is used to normalize the probabilities.

19

tanhx =
ex − e−x

ex + e−x

sigmx =
1

1 + e−x

Figure 7: Hyperbolic tangent and the logistic sigmoid function

a stateful ‘cell’ vector c:

ft = sigm(Wxf × xt + Whf × ht−1 + bf) (5)

it = sigm(Wxi × xt + Whi × ht−1 + bi) (6)

ot = sigm(Wxo × xt + Who × ht−1 + bo) (7)

ct = ft ◦ ct−1 + it ◦ tanh(Wxc × xt + Whc × ht−1 + bc) (8)

ht = ot ◦ tanh(ct) (9)

Where the Wvg matrices are weight matrices of the gate g for the input vector v, the
vectors bg are biases for the gate g and the operator ◦ is element-wise multiplication.

3.2.3 Dense layer

The dense layer is a simple matrix multiplication with a weight W and a linear bias
vector b where x is the input to the layer and y is the output:

y = W × x + b (10)

3.2.4 Softmax

The softmax function is used on the output as it is useful for classification problems. It
takes a vector of size N and returns another vector of the same size:

softmax(a)i =
eai∑N−1

j=0 e
aj
, a = {ai|i ∈ [0, N)} (11)

20

Table 1: Model weights

Size Weight description
3× 128 LSTM1 input to Wxf ,Wxi,Wxo,Wxc combined

32× 128 LSTM1 hidden to Whf ,Whi,Who,Whc combined
1× 128 LSTM1 biases bf ,bi,bo,bc combined

32× 128 LSTM2 input from LSTM1
32× 128 LSTM2 hidden
1× 128 LSTM2 biases

32× 128 LSTM3 input from LSTM2
32× 128 LSTM3 hidden
1× 128 LSTM3 biases
32× 18 Dense layer to K = 18 labels
1× 18 Dense layer biases
21, 842 Total weight count

3.2.5 Categorical cross-entropy

Categorical cross-entropy [29] is used as the loss function for the training step. This is a
loss function that takes in the predicted labels l of size N and training target labels that
should be the actual results t:

crossentropy(l, t) = −
N−1∑
i=0

ti ln(li) (12)

Since it takes a logarithm of the predicted label it goes naturally with the output of the
softmax function (11), which uses an exponent, as also shown by Facebook [30].

3.2.6 Adam optimizer

Adam is a stochastic optimizer [31] that is particularly good at deep learning tasks. It
is easy to use and only requires getting the gradient of the loss function (12) over the
trainable variables, which can easily be obtained from the TensorFlow automatic differ-
entiation engine [5].

3.2.7 Training

For performance purposes the sequence is split into 64 point long batches and the recur-
rent layers are unrolled. This number was chosen during experimentation and seems to
work best across most platforms.

All the training samples are used to train for 200 epochs, where the order is shuffled on
each epoch. In the end of every epoch, the model weights are saved if the average loss of
the epoch is less than the previous loss.

The model weights and their sizes are in table 1.

21

3.3 Label detection

After the model outputs a one-hot encoded vector of probabilities l, the label decoder
finds ranges of letters that correlate to the input.

The decoder works as a simple state machine (see figure 8), it reads the output labels li

until it finds a class that has argmax(li) > 0.9, where i is the point index of r (2).

The state machine then reads backward from that point to find a starting point where the
class probablility was < 0.2.

It then reads until argmax(li) ≤ 0.2, this i is then the ending index of the letter and the
detected label is written to the output.

1: procedure GET_LABELS(l)
2: r← []
3: c← � . indeterminate class or None
4: for i ∈ [0, len(l)) do
5: v← li
6: cmax ← argmax(v) . get the maximum class index for v
7: if c = � then . No class found so far?
8: if vcmax > 0.9 then . Start reading
9: c← cmax

10: istart ← i
11: for j ∈ (istart, istart − 10] do . Read backwards to find class start
12: if prjc > 0.2 then
13: istart ← j
14: end if
15: end for
16: end if
17: else . We have already found class c
18: if vc < 0.2 and c 6= 0 and i− istart > 10 then
19: iend ← i
20: r⇐ {istart, iend, c} . Append to results r
21: end if
22: end if
23: end for
24: return r
25: end procedure

Figure 8: Label reading state machine

This algorithm is quite simplistic and it sometimes fails such as when the start of the letter
looks like another letter. One such exapmle is the letter g which in the beginning can look
like the letter a. I have not added a way to detect these overlapping charaters like that.

22

4 Data manager

The data manager is a simple website that allows categorization of the samples and defin-
ing letter regions for training.

4.1 Letter classification

The user can select with a mouse a rectangle around a letter and then type the Unicode
text that it corresponds to. If the selection contains some parts of unwanted letters, it is
possible to fine tune the selection with sliders (figure 9).

The classified letters are just the same letters that exist in the sentence, with some excep-
tions (table 2). The first letter class (class 0) is the empty set class. This class is ignored
by the label reading state machine (3.3).

One difference is the capital letters A and K are very different from the lower case. The
letter õ is split into ˜ and o.

4.2 Result view

Results show the detected labels on the sample and the class probabilities as a graph. Each
detected label is outlined with a box of a certain color and a small text label of the letter
is shown.

The bounds of the box is a simple minimum-maximum of all the coordinate points that
are between the detected start and end of the label.

Table 2: Classification labels

index letter index letter
0 � 10 l
1 A 11 m
2 K 12 n
3 a 13 o
4 b 14 r
5 d 15 s
6 g 16 t
7 i 17 u
8 j 18 ˜
9 k

23

4.3 Confidence

The detector in test.py also calculates a ‘confidence’ level where it averages the max-
imum of each row of the neural net output. For a perfect result each row would contain a 1
in a single output class, so the average would be 1, or 100%. Since the softmax layer (11)
assures that the maximum value in each row is ≤ 1, any lower average would indicate
that the model is having difficulties in ‘choosing’ the right class (as can be seen on figure
10).

The confidence calculation for the result labels l is:

confidence(l) =

∑N−1
i=0 maxpi

N
(13)

Where l is a two-dimensional array of r = {pi|i ∈ [0, N)}, N being the length of the
results. pi = [pk|k ∈ [0, K)]i is the probability of the output at time step i of the class k
in the interval [0, 1]. The max function gives the maximum value of all the input.

24

(a)
(b)

(c)

(d)

(e)

Figure 9: Data manager web view. The currently selected letter is u in the (a) handwriting, (b) shows a
closeup of the selection, (c) is the Unicode text equivalent of the letter, (d) is the sample’s categor-
ization (‘train’ – handwriting training, ‘test’ – feature extraction; possible to mix but isn’t done),
(e) fine-tuning of the letter start and end point.

(d)

(c)

(b)

(a)

Figure 10: Results view. (a) shows the detected letter labels with surrounding boxes and text labels, (b)
is the probability graph of all letters over time, (c) gives the accuracy rating compared to the
definitions in figure 9, (d) the confidence (4.3) of the result.

25

5 Extracting kinematic features

From the recognized letter labels I extract a number of kinematic features for each letter.
Using these features I hope to classify the samples into two groups: PD and HC.

The kinematic parameters I am using are mostly the same as the motion mass parameters
in [12], where they are used for analyzing Luria’s alternating series, but also for handwrit-
ing in [15].

The definitions of which are velocity mass V , acceleration mass A, jerk mass J and
pressure mass P . They are calculated from all the points of recorded input per letter (that
is not the preprocessed data in 3.1).

From the pk = [x, y, p, t] vectors, where k ∈ [0, N) to the length N of the letter’s points
and x, y being the coordinates of the point, p the pen pressure and t the timestamp, I
calculate the vectors θ̂,d (angle change and distance):

∆xi, ∆yi = (p(i−1)x − pix), (p(i−1)y − piy) (14)

θi = arctan2(∆yi,∆xi) (15)

di =
√

∆x2i + ∆y2i (16)

∆ti = ti−1 − ti (17)

Where i ∈ [1, N) and the function arctan2 is from the Numpy library [3] (the same as
the C language function atan2) that calculates the angle between (x, y) and the x-axis.
To keep the arrays all the same length N , I define ∆x0,∆y0, θ0, l0,∆t0 = 0.

Calculating the angles:

∆θi = θi−1 − θi (18)

∆̂θi =
(
(∆θi + π) mod 2π

)
− π (19)

Where ∆θi is the angle change between two points and ∆̂θi is the angle change nor-
malized between [−π,+π]. The operator mod is the modulo or remainder operator and
defining ∆̂θ0 = 0.

For the vectors v, a, j (velocity, acceleration, jerk):

vi = di/ti (20)

ai = vi/ti (21)

ji = ai/ti (22)

26

Once again i ∈ [1, N) and v0, a0, j0 = 0 to normalize the length of the vectors.

From these definitions I calculate the scalar motion mass sums ΘS – angle, VS – velocity,
AS – acceleration, JS – jerk, and PS – pressure:

ΘS =
N−1∑
i=0

|θ̂i| (23)

VS =
N−1∑
i=0

|vi| (24)

AS =
N−1∑
i=0

|ai| (25)

JS =
N−1∑
i=0

|ji| (26)

PS =
N−1∑
i=0

pi (27)

Since the writing of each letter is variable in length and time, similarly to [12], I normalize
the motion masses in regard to the LS – total length – using d from (16):

LS =
N−1∑
i=0

di (28)

The scalar values Θ, V, A, J, P are a simple ratio with the length LS:

Θ = ΘS/LS (29)

V = VS/LS (30)

A = AS/LS (31)

J = JS/LS (32)

P = PS/LS (33)

It is possible to also look at the ratio with regard to time but the results were quite similar.

27

6 Validation

To validate the motion mass features, I use cross-validation over all the letters that are
detected.

To choose which features/letters to use, I calculate the Fisher score for each letter-feature
pair:

F =

∑k
j pj(µj − µ)2∑k

j pjσ
2
j

(34)

Where k is the count of classes and pj is the proportion of the class to the number of
samples, µj is the mean of the feature across class j, µ is the mean of all classes, σ2

j is the
variance of the class j.

Since there are only two classes, HC and PD, the calculation simplifies to:

F =
phc(µhc − µ)2 + ppd(µpd − µ)2

phcσ2
hc + ppdσ2

pd

(35)

The ten best features ordered by the Fisher score are in table 3.

With a combination of these features I trained several scikit-learn classifiers and used k-
fold cross-validation to check the accuracy of the features to classify between the HC and
PD groups. The results are in table 4.

Table 3: Top 10 features

n feature letter F p N
1. Θ n 0.18 7.03× 10−1 128
2. P k 0.15 7.12× 10−1 66
3. P n 0.13 7.03× 10−1 128
4. Θ k 0.12 7.12× 10−1 66
5. Θ o 0.09 7.13× 10−1 122
6. P d 0.09 7.18× 10−1 117
7. P u 0.07 7.37× 10−1 156
8. Θ d 0.07 7.18× 10−1 117
9. Θ u 0.07 7.37× 10−1 156

10. P o 0.06 7.13× 10−1 122

28

6.1 Scikit-learn classifiers

Scikit-learn [23] is an easy to use library for Python that comes with many built in clas-
sifiers. The basic API is the same for all of them, which means I can declare them in an
array and invoke them in a loop.

I chose to use the following classifiers for this task:

SGD Support vector machine [32] trained using stochastic gradient descent

DT Decision tree

3NN Nearest neighbor, n = 3

5NN Nearest neighbor, n = 5

MLP Multi layer perceptron, hidden layers 5× 2

For each classifier I also use a varying number of the top features (table 3). The numbers
range from 2 to 10, giving a total of 40 combinations.

6.1.1 Cross-validation

Cross-validation is a method to validate classifiers by taking dividing the data into ‘folds’.
Then there are multiple train-test cycles, typically equal to the amount of folds. In each
cycle, a fold is excluded from training the classifier and is used for testing only.

I decided to choose the number of folds to be 6 because of the number of samples avail-
able.

6.1.2 Decision trees

Decision trees are binary trees that compare a feature in every node and reach a decision
in the end. They may not give the best accuracy but they are easy to interpret using a graph
such as in figure 11.

Table 4: Validation

n-features classifier accuracy
6 MLP 75.8%
5 MLP 73.3%
8 MLP 73.3%
4 SGD 73.3%
5 DT 72.5%
9 MLP 70.0%
4 MLP 70.0%
3 MLP 70.0%
7 MLP 70.0%
9 DT 70.0%

29

Θn ≤ 0.155
gini = 0.478
samples = 33
value = [13, 20]
class = pd

Θn ≤ 0.088

gini = 0.26
samples = 13
value = [11, 2]
class = hc

True

Pk ≤ 0.384
gini = 0.18
samples = 20
value = [2, 18]
class = pd

False

gini = 0.5
samples = 2
value = [1, 1]
class = hc

gini = 0.165
samples = 11
value = [10, 1]
class = hc

gini = 0.5
samples = 4
value = [2, 2]
class = hc

gini = 0.0
samples = 16
value = [0, 16]
class = pd

Figure 11: Decision tree with two features. Θn is the angle mass sum over the letter n. Pk is the pressure
mass sum over the letter k. This graph is generated automatically by Graphviz [33].

6.1.3 Multi layer perceptron

Is a multi-layer neural net using the quasi-Newton Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm for its optimizer. The results are promising, however, with large num-
ber of features required.

6.1.4 Stochastic gradient descent

Is actually using a support vector machine as its model. Overall it gives a pretty good
accuracy with only two features.

6.1.5 Nearest neighbor

The nearest neighbor classifiers perform very poorly, so they are not considered.

30

7 Conclusions

I started this task trying to create a handwriting recognizer that could find just some letters.
But the end result was surprisingly even more effective than I hoped for.

The handwriting recognizer is functional enough to be able to use its output for diagnosis
purposes.

7.1 Shortcomings and future improvements

It should be possible to improve the training performance significantly if there were more
samples being processed in parallel. This would probably allow better acceleration by
with GPU based training.

The recurrent model is currently linear and forward only, it could be augmented by a
reverse model which can ‘see’ letters ahead. I tried using a bidirectional LSTM, however
it did not give good results. Experiments with adding a delay to network output were not
fruitful.

Adding a way to automatically detect and normalize the writing scale and skew before
training and inference should improve accuracy considerably.

Having a separate model for block letters (all caps) would help recognition because cur-
rently the model is not very good at it. Choosing appropriate letter labels would be too.

It should be possible to create an acquisition page into the management web, which would
allow collecting new samples easily. The letter categorization interface could use a func-
tion to use the current model to pre-generate labels for human checking.

There is no way handle disjointed strokes. Some writers may – for instance – only cross
the t’s and dot the i’s at the end of a word. It is also hard to make sense of corrections if
the writer goes back to fix a mistake.

The max-length input filter works well for input that has a high sampling rate, but for
lower quality input it will fail. Better would be a way to resample the input using some
kind of interpolation, such as linear or Bézier splines [27].

The model does not currently detect white-space and there is no way to add labels for
whitespace in the labeling tool (4). There is every reason to expect it would be very accur-
ate, since it does seem to avoid the spaces between words and also the ‘carriage’ return to
the beginning of the next line.

31

References

[1] Elman, J. L.: Finding Structure in Time. Cognitive Science 14, 179–211 (1990)

[2] Hochreiter, S. and Schmidhuber, J.: Long Short-Term Memory. Neural Computation

9, 1735–1780 (1997)

[3] Oliphant, T.: NumPy: A guide to NumPy. USA: Trelgol Publishing (2006–). [On-
line; accessed 2019-05-16]

[4] McKinney, W.: Data Structures for Statistical Computing in Python. In van der
Walt, S. and Millman, J., eds., Proceedings of the 9th Python in Science Conference,
51–56 (2010)

[5] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,
G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané,
D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,
B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F.,
Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: Tensor-
Flow: Large-Scale Machine Learning on Heterogeneous Systems (2015). Software
available from https://tensorflow.org

[6] Chollet, F. et al.: Keras. https://keras.io (2015)

[7] de Lau, L. M. and Breteler, M. M.: Epidemiology of Parkinson’s disease. The Lancet

Neurology 5, 525–535 (2006)

[8] Yarnall, A., Archibald, N., and Burn, D.: Parkinson’s disease. Medicine 40, 529–535
(2012). Neurology: Part 3 of 3

[9] Marquardt, C. and Mai, N.: A computational procedure for movement analysis in
handwriting. Journal of Neuroscience Methods 52, 39–45 (1994)

[10] Eichhorn, T. E., Gasser, T., Mai, N., Marquardt, C., Arnold, G., Schwarz, J., and Oer-
tel, W. H.: Computational analysis of open loop handwriting movements in Parkin-
son’s disease: A rapid method to detect dopamimetic effects. Movement Disorders

11, 289–297 (1996)

[11] Kozhenkina, J.: Quantitative Analysis of the Kinematic Features for the Luria’s Al-

ternating Series Test. Master’s thesis, Tallinn University of Technology, Tallinn
(2016)

[12] Nõmm, S., Toomela, A., Kozhenkina, J., and Toomsoo, T.: Quantitative analysis in
the digital Luria’s alternating series tests. In 2016 14th International Conference

32

https://tensorflow.org
https://keras.io

on Control, Automation, Robotics and Vision (ICARCV), 1–6. IEEE (2016). ISBN
9781509035496

[13] Nõmm, S., Bardõš, K., Mašarov, I., Kozhenkina, J., Toomela, A., and Toomsoo, T.:
Recognition and Analysis of the Contours Drawn during the Poppelreuter’s Test. In
2016 15th IEEE International Conference on Machine Learning and Applications

(ICMLA), 170–175. IEEE (2016). ISBN 9781509061679

[14] Luria, A. R.: The Higher Cortical Functions in Man (1962)

[15] Drotár, P., Mekyska, J., Rektorová, I., Masarová, L., Smékal, Z., and Faundez-
Zanuy, M.: Evaluation of handwriting kinematics and pressure for differential dia-
gnosis of Parkinson’s disease. Artificial Intelligence in Medicine 67, 39–46 (2016)

[16] Mašarov, I.: Digital Clock Drawing Test Implementation and Analysis. Master’s
thesis, Tallinn University of Technology, Tallinn (2017)

[17] LeCun, Y., Cortes, C., and Burges, C. J.: The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/ (1998–)

[18] Bardõš, K.: Analysis of Interpretable Anomalies and Kinematic Parameters in

Luria’s Alternating Series Tests for Parkinson’s Disease Modeling. Master’s thesis,
Tallinn University of Technology, Tallinn (2018)

[19] Nõmm, S., Bardõš, K., Toomela, A., Medijainen, K., and Taba, P.: Detailed Ana-
lysis of the Luria’s Alternating SeriesTests for Parkinson’s Disease Diagnostics. In
2018 17th IEEE International Conference on Machine Learning and Applications

(ICMLA), 1347–1352 (2018)

[20] Toodo, T.-B.: Assessment of parameters from the handwritten sentence test used to

diagnose Parkinson’s disease. Master’s thesis, Tallinn University of Technology,
Tallinn (2018)

[21] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z.: Rethinking the In-
ception Architecture for Computer Vision. arXiv e-prints arXiv:1512.00567 (2015)

[22] Apple: Apple Developer Documentation: NSDate. https://developer.

apple.com/documentation/foundation/nsdate

[23] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

33

http://yann.lecun.com/exdb/mnist/
https://developer.apple.com/documentation/foundation/nsdate
https://developer.apple.com/documentation/foundation/nsdate

[24] Karpathy, A.: The Unreasonable Effectiveness of Recurrent Neural Networks.
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

(2015)

[25] Graves, A.: Generating Sequences With Recurrent Neural Networks. arXiv e-prints

arXiv:1308.0850 (2013)

[26] Graves, A.: Supervised Sequence Labelling with Recurrent Neural Networks.
Studies in Computational Intelligence. Springer Berlin Heidelberg, University of
Toronto, Toronto, Canada (2012). ISBN 9783642247972

[27] Carbune, V., Gonnet, P., Deselaers, T., Rowley, H. A., Daryin, A., Calvo, M., Wang,
L.-L., Keysers, D., Feuz, S., and Gervais, P.: Fast Multi-language LSTM-based On-
line Handwriting Recognition. arXiv e-prints arXiv:1902.10525 (2019)

[28] Karpathy, A., Johnson, J., and Fei-Fei, L.: Visualizing and Understanding Recurrent
Networks. arXiv e-prints arXiv:1506.02078 (2015)

[29] de Boer, P.-T., Kroese, D. P., Mannor, S., and Rubinstein, R. Y.: A Tutorial on the
Cross-Entropy Method. Annals of Operations Research 134, 19–67 (2005)

[30] Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe,
A., and van der Maaten, L.: Exploring the Limits of Weakly Supervised Pretraining.
arXiv e-prints arXiv:1805.00932 (2018)

[31] Kingma, D. P. and Ba, J.: Adam: A Method for Stochastic Optimization. arXiv

e-prints arXiv:1412.6980 (2014)

[32] Cortes, C. and Vapnik, V.: Support-vector networks. Machine Learning 20, 273–297
(1995)

[33] Gansner, E. R. and North, S. C.: An open graph visualization system and its applic-
ations to software engineering. Software—Practice and Experience 30, 1203–1233
(2000)

34

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Appendix 1 – Readme file

Handwriting recognition and by recurrent NN and analysis

This is the software part of my thesis.

Requirements

The software should run on all modern Windows and Linux 64-bit machines. However,
the Tensorflow library requires that the processor support AVX instructions. GPU support
is limited to NVIDIA graphics cards with CUDA, currently.

Installation

The scripts run on Python version 3.6 or 3.7.

To run the Python scripts you should first create a virtual environment venv:

$ python3 -m venv venv # in Linux

PS> python -m venv venv # in Windows

After that you need to activate the virtual environment:

$. venv/bin/activate # in Linux

PS> . venv/Scripts/Activate.ps1 # in Windows Powershell

You can see if the virtual environment is active when there is (venv) prefixed on the
prompt. Then you can run pip to install the required packages:

(venv) $ pip install -r requirements.txt

Scripts

Make sure to activate the Python virtual environment for each new shell/terminal session
before trying to run any script.

These are the scripts:

train.py Trains the model using the input data in sentences/ and metadata/ sav-
ing the output model to JSON files in model/.

The training is done by default on the CPU, if you want to try using GPU then you can
install tensorflow-gpu:

(venv) $ pip install tensorflow-gpu==2.0.0-alpha0

35

https://www.python.org/

Training the model can take some time, so that’s why I have included a pre-trained model
in the repository already.

test.py Runs inference using the saved model in model/ and saves the results into
results/

data.py Contains functions that load and process data from JSON files.

model.py Contains the handwriting recognizer as a reusable class.

features.py Contains functions that read data from results/ and convert them to
pandas DataFrame objects.

validate.py Contains code that reads the results from test.py and calculates F-test
scores for the features it finds. Then runs cross-validation on the extracted features.

Data manager website

The website runs on ASP.NET core. To install that you need the .NET Core 2.2 SDK.

Then you can build and run the web, it is recommended to have the python venv active so
the python scripts can run properly.

(venv) DataMgr$ dotnet run

By default the site opens on the URL http://localhost:50695/.

Assets If you change any of the Tailwind CSS options or otherwise add custom CSS,
then you need to run gulp to rebuild the assets. The built assets are included in the source
already.

Node.js is required to build the assets. Run npm and gulp to build the assets:

$ cd DataMgr

DataMgr$ npm install

DataMgr$ node_modules/.bin/gulp

All JavaScript files are included as ES6 modules, they don’t need any sort of build step.

Using DataMgr The Categorize page is used to select sentences for training or testing.
You can select rectangles around letters and categorize them, also to fine tune the start
and end of a letter.

The Run page is just to run scripts remotely and display output.

36

https://dotnet.microsoft.com/download/dotnet-core/2.2
http://localhost:50695/
https://tailwindcss.com/
https://nodejs.org/en/

The Results page is to show the output from test.py. It overlays recognized letters over
the original input sentence and shows the probability graph of each output class from the
neural network outputs.

Thesis draft

The thesis is in the draft subdirectory. It is built with the 2018 version of TeX Live. To
build run these commands:

$ cd draft

draft$ latexmk -pdf

The output is in main.pdf. I recommend using Visual Studio Code, there is an excellent
extension called LaTeX Workshop that can generate the .pdf output automatically on save
and then refresh the preview window.

37

https://www.tug.org/texlive/
https://code.visualstudio.com/
https://github.com/James-Yu/LaTeX-Workshop

	Introduction
	Parkinson's disease
	Previous research
	Data source
	Problem statement

	Implementation
	Data description
	Workflow
	Directory structure
	Data format

	Handwriting recognition
	Data preprocessing
	Coordinates
	Vertical location
	Relative coordinates
	Training targets

	Neural network design
	Recurrent neural networks
	LSTM
	Dense layer
	Softmax
	Categorical cross-entropy
	Adam optimizer
	Training

	Label detection

	Data manager
	Letter classification
	Result view
	Confidence

	Extracting kinematic features
	Validation
	Scikit-learn classifiers
	Cross-validation
	Decision trees
	Multi layer perceptron
	Stochastic gradient descent
	Nearest neighbor

	Conclusions
	Shortcomings and future improvements

	References
	Appendix 1 – Readme file

