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Abstract

In spite of the recent advances in the areas of motion capture and motion analysis,
medical community remains sceptical about applying computer aided systems to support
modelling and diagnostics of Parkinson’s disease. The main goal of this work is to analyse
the dataset collected during previous studies and propose an extended set of parameters
that will have a higher discriminative power in Parkinson’s disease classification than
conventional methods. The dataset initially collected for this work [1] includes recordings
of a Up-and-Go gait mobility tests in a form of Comma Separated Values (CSV) files.
The data was collected using the Kinect sensor that is able to track three dimensional
coordinates of joints of a human skeleton.

In this thesis, motion mass based approach is adopted to describe gait movements
of the patients. In a clinical setting, the set of measurable parameters is limited by the
time, step lengths and in some cases angles between the limbs. This study compliments
this set of parameters with motion mass parameters. These parameters describe amount
and smoothness of the motion and are computed for each step. The feature selection
process turns a lot of attention to interpretability of the features and their combination.
Then classifiers are trained, treating the values of motion mass parameters as features.
The baseline to which the classifiers are compared is a classifier that has duration of the
test as an only feature - the only measurable parameter commonly used with Up-and-Go
test.

In particular, in scope of this thesis is analysis of the existing dataset, implementation
of step extraction and calculation of parameters. After the feature extraction is performed,
another step is feature selection with stress on medical interpretability of the parameters
used. The implementation also includes the model training and reporting layer.

It is demonstrated that the time durations related to the tests does not possess highest
discrimination power. Using Motion Mass parameters it was possible to outperform the
time-only classifier. In addition, the study showed the importance of the upper-body



features on diagnosing Parkinson’s disease.

The thesis is in English and contains 65 pages of text, 6 chapters, 13 figures, 9 tables.
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Annotatsioon

Liikumise jäädvustamise ja analüüsi valdkond on hiljuti näinud mitmeid edusamme.
Sellele vaatamata on meditsiiniline kogukond jäänud skeptiliseks arvutipõhiste süs-
teemide rakendamisel Parkinsoni tõve modelleerimise ja diagnostika toetamiseks. Antud
töö põhieesmärk on analüüsida eelmiste uuringute käigus kogutud andmed ja pakkuda
välja laiendatud parameetrite kogum, millel on kõrgem diskrimineeriv võimsus Parkin-
soni tõve klassifitseerimisel kui tavapärastel meetoditel. [1] käigus jäädvustatud and-
mekogu sisaldab Up-and-Go kõnnaku liikuvuse testide salvestusi CSV failides. Andmed
jäädvustati Kinecti sensorite abil, mis on võimeline jälgima inimese skeleti liigeste
kolmemõõtmelisi koordinaate.

Patsientide kõnnak kirjeldatakse kasutades liikumismassi parameetreid (ing. mo-
tion mass parameters), mis kirjeldavad liikumise suurust ja sujuvust. Kliinilises keskkon-
nas mõõdetakse testile kuluv aeg, sammude pikkust ja mõnel juhul ka jäsemetevaheliste
nurkade suuruseid. Antud uurimistöö käigus täiendati eelnevate tööde andmeid lisades
iga sammu kohta liikumismassi parameetrid.

Parimate parameetrite ja nende kombinatsioonide valimisel pöörati tähelepanu sel-
lele, et need oleksid ka meditsiiniliselt tõlgendatavad. Seejärel ehitatakse masinõppega
klassifikaatorid, kasutades sisendina liikumismassi parameetrite väärtusi. Saadud klas-
sifikaatorid võrreldakse baasklassifikaatoriga, mille ainsaks sisendparameetriks oli katse
kestus - seda kasutatakse tavaliselt Up-and-Go testiga.

Käesolevas töö raames teostati olemasoleva andmestiku analüüs, salvestusest sam-
mude eraldamine ja parameetrite arvutamine. Parameetrite arvutamisele järgnes parimate
parameetrite valik, rõhutades kasutatud parameetrite meditsiinilist tõlgendatavust. Töö
hõlmab ka mudelite väljaõpet ja aruandluse generereerimist.

Tulemused näitavad, et Up-and-Go katse ajaline kestus ei ole kõrgeima diskrimi-
neerimisvõimega. Liikumismassi parameetrite kasutamisel oli võimalik ületada ainult
kestusel põhineva klassifikaatori tootlust. Lisaks näitas uurimus ülakeha omaduste täht-



sust Parkinsoni tõve diagnoosimisel.

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 65 leheküljel, 6 peatükki,
13 joonist, 9 tabelit.
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1. Introduction

1-2 % of the population older that 65 years suffer from Parkinson’s Disease (PD)
[2]. It is a neurodegenerative disease, which affects human motor functions, resulting
in unintentional movements and joints rigidity [3]. Characteristic symptoms include a
consistent decline in the gait stability, increasing tremor and muscle rigidity [2]. There are
also some non-motor symptoms that often occur such as sleep abnormalities, depression
and others [2, 4, 5]. The disease is thought to be caused by dopamine deficiency due to
death of dopaminergic neurons [6].

Those symptoms vary from person to person depending on lifestyle and severity of
the PD. The wide variety of combinations and the similarity of Parkinsonian diseases [4]
make the diagnosis of this disease extremely challenging, especially on the early stages,
and requires a skilled and an experienced therapist. Although imaging technologies such
as Magnetic Resonance Imaging (MRI) cannot capture dopamine deficiency [2], MRI
scans are often used to exclude other possible diseases with similar symptoms. There
are a number of tests used in medicine to support the medical staff, but without the right
supporting tools, the results are biased and depend heavily on the level of the expertise of
the therapist.

Despite recent advances in understanding of Parkinson’s disease, underlying mech-
anisms of neurodegeneration in PD are unknown [7]. At the present moment, there is no
known cure against PD [7]. However, early diagnosis and monitoring of PD is crucial to
prolong the normal way of life of the patients. The dopamine replacement therapy is able
to control the symptoms for a number of years and is associated with near-normal life
expectancy [2].

The current thesis is organized as follows. Introduction gives an overview of research
done in area of classification of PD and describes the motivation for this work stating
the main research questions and baselines. It describes experimental setting and presents
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formal problem statements. Chapter 2 gives an implementation details of the approach.
It brings the description of the dataset and goes over the main parts of the classification
flow describing reasoning behind each decision. Analysis and the interpretation of the
outcomes of the second part are presented in Section 3. Some immediate conclusions
are drawn in this section. Section 4 discusses the outcomes of the thesis, problems and
possibilities for practical applications. It also describes ideas for future work. Last chapter
sums up the work and points out main deductions.

1.1 Background

PD severely affects human motion causing body tremor, muscle rigidity and gait
instability. This result in variability in movement performance efficiency, amount and
smoothness of the movements. These abnormalities can be detected using gait analysis.

Gait analysis is a study of human motion focusing on measuring body movement
and muscle activities. Usually some parameters are measured in order to quantify the
results and better detect motor abnormalities or wrong technique in case it is used for
sport evaluation.

There are numerous gait mobility tests that can be used to asses the balance of older
or injured people and detect gait abnormalities that can occur due to different physical
disorders. They can provide a useful insight into the state of an individual and help plan
the necessary rehabilitation or choose the right strategy for care. Some of the examples
are Sit-to-Stand test, Go test, 4-Meter-Walk test, Up-and-Go test [8].

Up-and-Go test is one of the gait mobility tests. It starts with a person sitting on
a chair, then, after the command is given by a therapist, the person stands up from a
chair, walks three meters, turns back, walks back to the chair, turns back around and sits
back to the chair (Figure 1.1). The timed version of the test is also referred to as Timed
Up-and-Go test.

[9] showed that it is possible to distinguish between elderly people without PD and
with PD by the results of Timed Up-and-Go test (TUG) test. It was also shown in this
study that the measurements reflected the change in performance for patients before and
after levodopa usage (a drug used to treat symptoms of PD). That makes TUG a suitable
tool for tracking the progression of the illness and estimate the effectiveness of therapy.
[10] also showed that the results differ for healthy individuals and patients. Time of per-
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Figure 1.1: TUG test consists of six phases. Firstly, a person stands up from a chair (phase
1). Then, they walk three meters (phase 2), turn around (phase 3), walk back to the chair
(phase 4). When reaching the chair, the person turns back around (phase 5) and sits back
to the chair (phase 6).

forming the test was proved to be a reliable measure for determining H & Y score (the
severity level of the disease) [10]. In current medical practice, the only measurable pa-
rameter used to distinguish between healthy individuals and Parkinson’s disease patients
is the duration of the experiment.

A novel approach to detect PD uses Kinect, a motion sensing device that consists
of a color camera and an infrared depth camera. To generate the dataset used in this
thesis, Kinect 2012 was used. It was able to track skeletons of two people, detecting
20 points in a human body [11] (Figure 1.2). The newer version of Kinect released in
2013 was improved to be able to track up to six skeletons simultaneously. The number
of joints detected by the sensor increased from 20 to 25 and the skeleton became more
anatomically correct [12]. A newer version of Kinect sensor could be used instead of the
older one in the same set-up. Kinect was proven to be sensitive enough to capture the
differences between the PD patients and healthy elderly people [13].
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Figure 1.2: 1 - Head, 2 - Spine Shoulder, 3 - Right Shoulder, 4 - Right Elbow, 5 - Right
Wrist, 6 - Right Hand, 7 - Spine Mid, 8 - Spine Base, 9 - Right Hip, 10 - Right Knee, 11
- Right Ankle, 12 - Right Foot, 13 - Left Shoulder, 14 - Left Elbow, 15 - Left Wrist, 16 -
Left Hand, 17 - Left Hip, 18 - Left Knee, 19 - Left Ankle, 20 - Left Foot

1.2 Problem statement and contribution of the thesis

Formally, research problem may be stated as follows. Design a method to distinguish
between PD patients and controls based on the data that can be extracted from Up-and-Go
test. This problem naturally splits into three following sub problems.

1. Precise the setting and capture the gait during the Up-and-Go test.

2. Choose the set of features possessing the highest discriminative power.

3. Choose and train machine learning technique(s) able to differentiate between
healthy elderly people and PD patients.

In this work, the data previously recorded with Kinect were used [1]. The signifi-
cance of this setting in combination with Motion Mass parameters (MM) to differentiating
healthy individuals from PD patients was also proved by [1]. Compared to the approach
described in their publication, the main novelty of the current thesis is calculating the
same parameters on steps extracted from moving forward motion (phase 2, Figure 1.1)
of the experiment as opposed to calculating the parameters for the whole phase without
splitting it down to smaller periods. Furthermore, other phases of the experiment are also
analysed in the framework of this work. The main focus lays in feature selection, selec-
tion of appropriate machine learning techniques and developing a framework for training
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classifiers. All the methods used should be acceptable from medical point of view. Com-
bination of features and classifiers should have a clear meaning and interpretation from
therapists’ perspective. Analysis relies on extraction of MM parameters for all of the
phases of the experiment and step extraction algorithm developed during the Bachelor’s
thesis[14].

The expected outcome of this thesis is...

• extended set of parameters to use with Up-and-Go test;

• PD classification models;

• a framework for automated reporting and model training.

1.3 Motivation

Healthcare is one of the numerous areas where application of Machine learning (ML)
techniques is rapidly evolving to complement the work of the professionals. These appli-
cations have definitely not reached their limit. There are still many unexplored ways in
which we can benefit from them. Naturally, machine learning or any other current tech-
nology will not be able to replace a human doctor in the foreseeable future. However, they
can become useful tools to support medical specialists, to provide a way of minimizing
the influence of human biases to the outcome of their work and to drive their attention to
the deviations from the norm that can be an indicator of a disease.

However, there is a certain barrier that needs to be overcome to make such techniques
an integral part of the medical evaluation. There are several reasons to that. Firstly,
while people are more open to changes and new technologies in less substantial parts
of their lives, they are more conservative in questions that relate to their health. Any
new technology has to prove its efficiency and usefulness to the public to become widely
acceptable. Another issue mentioned frequently in the last decade is interpretability of
the results with respect to medical knowledge. More and more attention is drawn towards
explaining the decision making process of Machine Learning models. So called "black-
box" models such as neural networks usually provide a better accuracy but cannot be used
in medicine because of the lack of traceability of the decision.

As a result, up to a very recent time medical community has remained sceptical
about applicability of the computer assisted systems for diagnostics and modelling of
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neurological disorders. Simple systems are considered too imprecise to capture the minor
changes in movements and, therefore, unsuitable for medical environment. For the more
advanced systems the main obstacle is lengthy and complicated set-up procedure which
makes their practical application nearly impossible.

To make the transition to a computer-supported PD diagnostics procedure smoother
and to only introduce the minimal necessary changes to a widely used routine, this the-
sis focuses on analysis of the Up-and-Go test with the essential expansion of the set of
parameters used for estimating the condition of a patient. This work analyses the per-
formance of the setting and the parameters applied to Parkinson’s disease. In addition,
the fact that this test is used for detecting other diseases such as Alzheimer’s disease or
multiple sclerosis [15] makes it potentially extendable to capturing other disorders.

1.4 Methodology and validation

In this thesis, the dataset acquired in [1] is analysed as a proof-of-concept for applica-
bility of ML methods to PD diagnostics. This work solves the feature extraction problem
from the Kinect recordings, followed by feature selection, engineering and choosing suit-
able machine learning techniques.

The dataset consists of recordings for 23 Parkinson’s disease patients and 20 healthy
controls of matching sex and age. It was captured using Kinect v1, which provided co-
ordinates of a set of points in the subjects’ bodies changing in time. The experiments
were performed within a week before and after the medical intervention, with up to two
recordings per week. The data from before and after the treatment are used separately
in all of the following steps except where noted otherwise. Each recording contains data
from several test trials (usually three).

First of all, the recordings are split into TUG test trials (experiments). Each exper-
iment is then divided into phases as marked in the recording’s file. Next, the forward
walk (phase 2, Figure 1.1) is split further into steps. MM parameters are calculated for
each step and for the whole phases. Those features are then averaged across the week
for corresponding periods (step or the whole phase). Statistical hypothesis test is used to
evaluate the applicability of the setting to differentiate PDs and controls. Student’s t-test
or Welch’s t-test is performed depending on whether sample sizes are equal or not in order
to determine p-values.
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Feature selection process starts with calculating Fisher scores. This is a supervised
feature selection method that allows to estimate the goodness of a given feature to differ-
entiate between the result classes. This is done independently for first and second week.
Features with the higher Fisher scores are chosen as candidates to build the classifiers. A
lot of attention is drawn towards the medical interpretation of the results, meaning that
symmetry of the joints used for classification is also a major factor in the feature selection
process. It is important to include both sides of the body because it is then possible to take
into account the differences between right and left side. Asymmetry in motor features are
a major factor in PD diagnostics and sometimes the lack of it can indicate an alternative
disability [4]. In order to avoid the dependence of the results from the way the dataset
is split, evaluation of the outcome is performed with k-fold cross validation technique.
The data points are split into k independent sets. At each iteration one set is left out as a
testing data and the model is trained using all other sets. Accuracy is then calculated on
the left-out set.

Average accuracy across the folds is calculated. And it is used as a main measure
for goodness of a classifier. Apart from the accuracy, precision, recall and F1 score are
investigated in the same way across different folds. The goodness of the outcome was
determined in comparison with a corresponding metric of time only classifier.

To see how the classifiers would generalise and perform on the previously unseen
and potentially different data, the following procedure was followed for best classifiers
reported for first and second week. The classifier is trained with the most promising set
of features on the data from the whole week and then tested on the other week.

1.5 Related Work

The presence of the motor symptoms of PD is considered cardinal for making PD di-
agnosis [5]. The changes in gross motor functioning influence the gait and can, therefore,
be detected with gait analysis approach. The method that is commonly used to gather the
data necessary for the assessment is marker based [16]. Special light-reflecting markers
are places onto the body of a patient to track the movements of body segments. The num-
ber of markers used can vary. It is fifteen to sixteen to capture the lower-body movement
and more than 30 to capture the kinematics of the whole body [16]. The drawback of
such system is that it is intrusive, hard-to-use and the placement of the markers greatly
influences the results. It is also time-consuming to place all the markers onto a body of
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each patient.

There are also a lot of systems that use wearable sensors to collect the data for diag-
nosing Parkinson’s disease. For example, [17] used a setting consisting of 8 Inertial Mea-
surement Unit (IMU) sensors. They tried different combinations of range-of-motion and
spatio-temporal parameters with different ML techniques. Using data from all 8 sensors
and weighted Majority of votes classifier combining 6 simpler methods they achieved ac-
curacy of 96%. Reducing the amount of sensors also reduced the accuracy. In this setting
the knee-range of motion were shown to perform the best among the groups of features
they investigated. This approach is hard-to-use for Parkinson’s disease patients because
of its lengthy setup and wearable placement process.

An alternative approach uses force sensitive resistors placed in the shoes. For exam-
ple, [18], [19] and [20] used sets from the Physionet database, obtained with this tech-
nique, to extract parameters for the PD classification problem. Their findings suggest
the importance of stride and stance length in gait analysis. The accuracies achieved are
generally around 90 %.

A lot of effort has been made to simplify the data gathering process. Kinect and
similar motion capture devices have a number of advantages compared to motion sensors
used in the studies below: they are non-intrusive, easy to set-up and they eliminate the risk
of inconsistent sensor placement. As a result, they have been extensively used not only in
entertainment but also in different areas of medicine [21], [22]. For example work of [23]
propose a non-intrusive gait analysis system based on Kinect sensor. Lack of precision
for capturing lower limbs motion is claimed to be one of the major drawbacks in such
systems.

However, [24] have shown that Kinect v2 sensors are sensitive enough and the data
recorded with the device is sufficient to distinguish between Parkinson’s disease patients
and healthy individuals. In addition, [13] has compared the two versions of Kinect and ex-
plored the applicability of the technology in clinical setup. Naturally, the second version
was shown to have higher percentage of gait parameters suitable to distinguish healthy
people and PD patients.

[25] have also investigated the performance of Kinect sensors and their applicability
to medical assessment. As Kinect sensor is discontinued, they also give an overview of
the alternative hardware and software that can be used instead. There are several similar
devices that can be used such as ASUS Xtion and LIPSedge DL. Furthermore, [25] elab-
orate the software alternatives that can be used instead of Kinect Software Development
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Kit (SDK). For example, OpenPose project is able to identify and track anatomical points
using just a 2D camera images. Using several 2D cameras the system is capable of 3D
tracking as well.

In May 2018 Microsoft announced the development of Azure Kinect that will be
combining the new improved depth sensor with the Azure AI services. The company also
promises the continuation of support for Kinect SDK through forums and suggests Intel’s
RealSense depth cameras as an alternative for the hardware [26].

PD also affects fine motor skills and therefore usage of fine motor test for patients
is under active research. For instance, [27] digitalised and proposed a set of parameters
to support visual analysis of the clock drawing test used in diagnosing PD. Another
test suitable for detecting changes in fine motor skills specific to PD patients called the
Poppelreuter’s Test is converted to a digital representation and described by [28].

Some people suffering from PD may experience voice and speech disturbances. Sev-
eral studies [29–39] have made attempts to detect dysphonia (a weakness in voice pro-
duction) and distinguish the voice data of PD patients and healthy people. The number
of research papers devoted to this approach can be partly explained by the availability
of publicly available datasets containing voice data [40]. Although, the accuracy usually
exceed the 90 % threshold of classification accuracy, changes in vocal cords are exhibited
in only some of the cases making this features not generally applicable.

Unlike the voice-oriented approaches [29–39] where ML models are used to esti-
mate the probability of PD, the features used in the present research have clear medical
meaning and therefore provide an easy way to interpret achieved results. In contrast to the
system proposed by [17], the data gathering system used to collect the data for this work
is non-intrusive, simple and is an extension to the widely used TUG test. Kinect-based
approach used in this thesis gives a bigger range of possible features to use for classifica-
tion enabling to analyse how different joints contribute to the outcome of the assessment.
This data is missing in the research that concentrate their attention on legs and feet [18–
20]. The problem of discontinuation of Kinect sensors can be solved with other similar
devices and the software can also be replaced by open-source solutions.
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2. Implementation

This chapter presents the tools and algorithms used for this work. It describes the
dataset and the data collection setting. The calculation of MM parameters is explained
and choice of classifiers is justified.

2.1 Tools

The feature extraction scripts were developed in Python language in PyCharm IDE
environment. Data were processed and transformed using numpy, pandas and scipy li-
braries. Statistical tests were performed using scipy library stats module. For calculation
of Fisher scores an open-source library scikit-feature was used [41]. Machine learning
models were trained using scikit learn library. Visualisations were created with matplotlib
and graphviz.

2.2 Dataset

For the purpose of this experiment the recordings of 20 Controls (C) and 23 PD
patients of matching age and sex were used. The number of observations may vary for
different weeks due to filtering out the inconsistent phase marking. So the second week’s
data uses data from 20 controls and 20 PD patients, while for the first week is 18 and 20
correspondingly.

For the purpose of data collection the classical setting of TUG test was extended
with Kinect camera and a laptop. The position of the Kinect camera was dictated by the
limitations of the sensor - Kinect is able to provide skeletal tracking of people that are
at distance from 0.5 to 4 meters from the sensor, whereas the tracking is most accurate
in range of 1.5 to 3.5 meters [42, 43]. The experimental set-up and camera placement is
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depicted in Figure 2.1.

Figure 2.1: Experimental setting. The distances in TUG are chosen according to the
limitations of the Kinect sensor. The sensor is located 3.5 meters away from chair and 1.5
meters away from marker where the patients should turn around. Marker is depicted by a
triangle.

The data are stored in CSV format. Each recording contains up to three repetitions
of the experiment. Each trial of the experiment contains all the phases: stand up, walk
forward, turn around, walk back, turn back around, sit down. Each row of the recording
contains a timestamp, and three coordinates for each joint detected by Kinect. If a joint
is not recognised by the sensor or is occluded, there is an indication that the joint is
untracked.

During the collection of this dataset the phases were detected manually by therapists
who also gave the appropriate commands to the patients. However, since the collection
of the dataset, the data acquisition process was simplified by Bernstein in his Bachelor’s
thesis [44]. That system is able to detect phases autonomously as well as give commands
for action (such as "GO" for example).

2.3 Motion Mass parameters

The notion of Motion Mass (MM) parameters was firstly introduced by [22] to mea-
sure the smoothness and amount of motion. It was then proved in [1] that using the setting
employed in this work in combination with MM parameters is promising approach for
distinguishing PD patients from healthy people.

Splitting the walking forward phase into smaller intervals - steps - were shown to give
better results for PD classification problem [45]. It was proven to improve the separability
of the data for the two classes [14, 45]. This approach is also adopted in this work.
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Figure 2.2: Depiction of the movement of a hand performed in time t. The pstart indicates
the starting position of a joint. The pend shows the position of a joint after the movement.
The distance between those two points is E (illustrated by a dotted line). p1 and p2
represent intermediate points captured by a system. Tm is sum of the distances between
the points pstart, p1, p2, pend.

MM features can be computed for any point (in our case joint) and for any time
interval. In this work, the main focus is drawn towards steps, so the starting time is the
beginning of each step and the end is the time when the step ends. Intermediate points are
snapshots of coordinates at each point in time that Kinect was able to capture.

For the set of joints J = {j1, . . . jn} Motion Mass is defined as a vector M =
{Ej, Tmj, V mj, Amj, Jmj, Ej/Amj, Ej/Tmj, t}, j ∈ J . Trajectory mass Tmj , veloc-
ity mass V mj , acceleration mass Amj , jerk mass Jmj , and Euclidian distance Ej are
defined as follows:

V mj =
n∑

t=1
vjt (2.1a)

Amj =
n∑

t=1
ajt (2.1b)

Jmj =
n∑

t=1
jjt (2.1c)

Tmj =
n∑

t=1
djt (2.1d)

Ej = d (2.1e)

where vjt , ajt and jjt are correspondingly velocity, acceleration and jerk calculated in
each point. d stands for the distance between the staring and ending position of a joint
and djt distance between the intermediate points.
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Figure 2.3: MM enable the analysis of upper-body joints as well as lower body joints. It
is also possible to measure the movements of a combination of joints, for example right
knee and left shoulder.

Other two features are computed as Euclidean distance divided by corresponding
parameter.

Ej is a distance between starting and ending positions of a joint. Tmj is the length of
a trajectory the joint travelled in time t, that is sum of distances between all intermediate
points (Figure 2.2). V mj , Amj and Jmj are the sum of corresponding parameters calcu-
lated in each point detected by the Kinect. The features are calculated for all joints that
Kinect sensor is able to detect. In addition, it is possible to sum the features to investigate
the movement of several joints together (Figure 2.3).

2.4 Classification

The main goal of this work is to distinguish between healthy people and those who
suffer from PD. This is a two-class classification problem so the output is 0 for controls
and 1 for PD patients. In this work several different ML techniques were investigated:
Decision Tree (DT), Logistic Regression (LogR), kNN (k=5). The choice of those algo-
rithms is justified by the simplicity and high interpretability of the models and the ability
to give reasonable results considering the amount of data and the amount of features that
we have. Moreover, the Support Vector Machines (SVM) model is used for comparison
as well, but no hyperparameter tuning is performed.
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To estimate the goodness of a classifier the cross validation technique was used.
Dataset is split into 4 equal parts and in each iteration a classifier is trained on three parts
and tested on the one that is left out. Average accuracy, precision, recall and F1 score
are then reported and compared to the baseline. The baseline of the performance of a
classifier is average accuracy of the classifier that uses the time taken by the subject to
complete the experiment as an only feature. This was chosen as a baseline because it is
the only parameter used by therapists for the evaluation. In addition, to see if the models
generalize well to different data, the best models for each week are trained on data from
one week and then tested on the other week’s data producing an accuracy and confusion
matrix.

2.5 Reporting

As a side result of the thesis, an automatic model training and reporting system was
developed. It trains a set of different classifiers and creates a Hypertext Markup Language
(HTML) and pdf reports. Each report contains a detailed information about each of the
folds of k-fold cross validation such as testing accuracy, precision, recall, F1 score. In
addition, it shows the averaged statistics for all of the four classifiers. It also contains
pictures of the data, visualisations of decision tree classifiers and depiction of which joints
are investigated for each particular case. An example report can be found in Appendix
A.5.
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3. Analysis

Figure 3.1: General workflow

The main workflow can be divided into three major parts: feature extraction, feature
selection and models’ training as shown in Figure 3.1 (full diagram in Appendix A.4).
This chapter goes through the flow of the work step by step, presenting the results of each
phase and stating the implications those results have on the next step.

3.1 Feature Extraction

Figure 3.2: Feature extraction workflow

The main procedure of feature extraction produces 180 parameters (9 MM parame-
ters for each of 20 joints, see Figure 1.2). It can be performed for arbitrary time intervals
and then aggregated by taking average. The process adapted in this work is depicted in
Figure 3.2.

This work mostly focuses on analysis of steps, thus, the main set of features contains
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MM parameters that are calculated for each step and then averaged across the steps for
each week. The results are one set of features per week and per person.

However, to investigate the possibility of combining the step-based features with
features of other phases, the same set of parameters is also calculated for each phase
of Up-and-Go test without splitting down to smaller periods. The walking back motion
as well as turning back around were excluded because Kinect cannot reliably detect the
human skeleton from the back.

3.2 Statistical Analysis

To prove the applicability of the set-up for classification task statistical hypothesis
test is performed. The null-hypothesis is that the data is normally distributed and there are
no significant difference between the two groups. The alternative hypothesis states that
the groups are different. The results of the t-test are presented in Tables 3.1, 3.2. Welch’s
t-test was performed instead of the classical Student’s t-test for the first week because it
tends to give more reliable results with samples of unequal sizes. The second week’s p-
values were calculated with Student’s t-test. The results show that the setting is sensitive
to capture the differences between the PD and controls with significance level 0.01. Full
results can be found in Appendix A.1.
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Table 3.1: p-values characterizing abil-
ity of MM parameters to distinguish the
two groups for the first week.

Joint parameter p-value t-statistic

HipRight Vm 0.000114 4.331885
HipLeft Vm 0.000118 4.317425
HipRight Tm 0.000591 3.768417
ShoulderLeft Vm 0.000649 3.734449
HipLeft Tm 0.000704 3.706690
ShoulderLeft Am 0.001359 3.514941
KneeRight Vm 0.001364 3.519113
ShoulderRight Vm 0.001912 3.366591
KneeLeft Vm 0.002594 3.242248
KneeRight Tm 0.003656 3.141354
ShoulderLeft Tm 0.004071 3.068720
HipRight E 0.004306 3.047474
ShoulderRight E 0.004533 3.028032
KneeLeft E 0.004563 3.025357
KneeLeft Tm 0.006445 2.897070
ShoulderRight Tm 0.007292 2.855015
KneeRight E 0.007616 2.827512
HipLeft E 0.007685 2.824928
ShoulderLeft E 0.010102 2.716117

Table 3.2: p-values characterizing abil-
ity of MM parameters to distinguish the
two groups for the second week.

Parameter Joint p-value t-statistic

ShoulderRight Tm 0.000009 5.122567
ElbowRight Tm 0.000011 5.066750
ShoulderRight Vm 0.000011 5.051259
ElbowRight Vm 0.000011 5.049883
KneeRight E 0.000014 4.986571
ShoulderRight E 0.000016 4.944651
SpineShoulder Tm 0.000016 4.936453
HipRight Tm 0.000017 4.917614
HipRight Vm 0.000018 4.904116
HipRight E 0.000021 4.858270
HipLeft Tm 0.000049 4.577930
HipLeft Vm 0.000053 4.551003
HipLeft E 0.000062 4.502647
ShoulderLeft Tm 0.000117 4.292722
ShoulderLeft Vm 0.000120 4.284801
KneeRight Tm 0.000134 4.248813
KneeLeft E 0.000148 4.216791
KneeRight Vm 0.000174 4.162549
ShoulderLeft E 0.000187 4.138537

3.3 Feature Selection

Figure 3.3: Feature selection workflow

Because the number of features extracted exceed the number of observation it is
necessary to perform feature selection in addition to significance testing to choose only a
few features that would be able to capture the differences between the classes. What is
more, keeping a lower amount of features would allow to make models interpretable. The
feature selection process is visualised in Figure 3.3. Statistical testing was described in
Section 3.2 and provided the knowledge of which features are significantly different for
controls and PD patients. This section focuses on the second stage of the feature selection.
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One of the methods that provide a good insight and ranking of the features for nu-
merical data is Fisher score [46]. The Fisher score values range from 0 to 1, where higher
number usually indicates features with more distinguishable power. The formula is pro-
vided below. k is the number of classes. pj is the fraction of points of class j. µj and σj

are mean and standard deviation of class j correspondingly. µ is the mean of the whole
dataset for a given features [46]. In our case k is two for C and PD.

F =
∑k

j=1 pj(µj − µ)2∑k
j=1 pjσ2

j

(3.1)

Firstly, only the duration of individual steps, walking forward time and the entire
task duration was examined. This represents the methodology currently used in the clin-
ical environment, whereby the total time taken by the subject to perform the test is used
for PD diagnosis. Figure 3.4 shows the separability of the data for different time intervals.
The discriminative power decreases with splitting the time into smaller chunks. And in
opposite, the differences in time between the two groups accumulate for longer time in-
terval. Fisher scores for the test duration, walking forward phase duration and for average
step duration are presented in Table 3.3.

(a) First week (b) Second week

Figure 3.4: Visualisation of the data for different time intervals: duration of TUG test,
duration of a walking forward phase and duration of a step. Each dot represents a PD
patient (top row, red) or a healthy control (bottom row, blue), placed on a horizontal
axis according to the total time taken to perform the task (top panels), the duration of
the walking forward phase (middle panels) or the average duration of their steps (bottom
panels)

Next, the predictive power of the MM parameters described in Chapter 2 Equations
2.1 was ranked in an attempt to find additional features that would aid in PD diagnostics.
The top-scoring features for the first and second weeks, which were later used for classi-
fier training, are presented in Tables 3.4 and 3.5, respectively (see full results in Appendix
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Table 3.3: Fisher scores for different time intervals for 1st and 2nd weeks

Time period 1W Fisher Score 2W Fisher Score

TUG Test 0.112040 0.329513
Walk Forward Phase 0.176002 0.253020
Step 0.048310 0.015126

A.2).

(a) Sides features. One feature com-
bines left shoulder and left knee, the
other - right shoulder and right knee.

(b) Cross features. One feature com-
bines left shoulder and right knee, the
other - right shoulder and left knee.

Figure 3.5: Combination of joints. Different colors than black indicate that feature for this
joint was used in the classifier. Joints coloured in the same color are combined together.

The Fisher score results are different for the two weeks under observation. For the
first week, the best of the MM parameters were V m followed by Tm. And the distribution
of the good parameters between left and right side is almost equal. For the second week,
however, there is no clear leader among the MM parameters. Tm, V m and E have the
highest discriminative power. The interesting observation from the results of the second
week’s data is than the right side joints perform significantly better that left side features.

Apart from Fisher score, a lot of attention is drawn towards medical interpretation
of the results. For diagnosing PD symmetry of motor symptoms is an important feature,
where the lack of it can sometimes indicate alternative diagnosis. The changes in motor
functions and, therefore, the abnormalities can start from either of the sides - left or right.
Even if analysis of one side gives better results on the given dataset, the method will not
generalise. That is the reason why symmetrical points are always used together in the
classifier despite some other candidates’ better Fisher score. In addition, the combina-
tion of several joints are analysed. The main idea behind combining the joints is to see
how upper-body joints and lower-body joints contribute to the final outcome. Also the
same principle is used in left or right side joints. One of the combinations included the
opposite side upper and lower-body joints (so called cross) 3.5b. That means features of
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Table 3.4: Fisher scores of MM param-
eters for first week. The best MM pa-
rameter is V m and there are equal num-
ber or similarly performing left and right
side features.

Joint Parameter Fisher Score

HipRight Vm 0.512484
HipLeft Vm 0.510796
SpineMid Vm 0.503264
Head Vm 0.500898
SpineBase Vm 0.492910
SpineShoulder Vm 0.442011
ElbowRight Vm 0.426837
HipRight Tm 0.387325
ShoulderLeft Vm 0.383611
HipLeft Tm 0.375525
SpineMid Tm 0.367021
SpineBase Tm 0.362869
KneeRight Vm 0.355398
ShoulderLeft Am 0.353612
Head Tm 0.346816
ElbowRight Tm 0.327350
SpineShoulder Tm 0.310331
ShoulderRight Vm 0.302826
KneeLeft Vm 0.293221
KneeRight Tm 0.282561
ShoulderLeft Tm 0.258273
HipRight E 0.255310
KneeLeft E 0.251511
ShoulderRight E 0.251134
KneeLeft Tm 0.234392
HipLeft E 0.220955
KneeRight E 0.219018
ShoulderRight Tm 0.217997
ShoulderLeft E 0.204045

Table 3.5: Fisher scores of MM param-
eters for second week. E, V m and Tm
perform equally well. However, right
side features seem to have higher dis-
criminative power.

Joint Parameter Fisher Score

ShoulderRight Tm 0.690544
ElbowRight Tm 0.675578
ShoulderRight Vm 0.671453
ElbowRight Vm 0.671087
KneeRight E 0.654366
ShoulderRight E 0.643410
SpineShoulder Tm 0.641278
HipRight Tm 0.636393
HipRight Vm 0.632904
ElbowRight E 0.629742
HipRight E 0.621126
SpineShoulder Vm 0.617846
SpineBase Tm 0.597560
SpineMid Tm 0.597017
SpineBase Vm 0.593224
SpineMid Vm 0.591947
SpineMid E 0.579561
HipLeft Tm 0.551512
HipLeft Vm 0.545043
HipLeft E 0.533522
ShoulderLeft Tm 0.484933
ShoulderLeft Vm 0.483145
KneeRight Tm 0.475064
KneeLeft E 0.467930
KneeRight Vm 0.455969
ShoulderLeft E 0.450723
ShoulderLeft Am 0.351921
KneeLeft Tm 0.348323
KneeLeft Vm 0.332309

right shoulder were combined with left knee and left shoulder was summed with right
knee. Another option combined the features of left side together and features of right side
together 3.5a.

3.4 Model Training and Analysis

The high-level description of model training and evaluation process is presented in
Figure 3.6.

After the feature selection process, the reasonable amount of parameters is available
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Figure 3.6: Model training and validation workflow

for classification. Because of need of interpretability, the following well-interpretable
models are taken into account: DT, SVM, LogR and kNN. The SVC model is also used
for comparison. The accuracy is computed for each fold of k-fold validation (k=4) and
average value across the folds is reported.

Table 3.6 shows the accuracies achieved on classifiers with experiment duration. The
baseline for the goodness of a classifier is a classifier using duration of TUG experiment as
an only feature (also presented in Table 3.6, first row). The visualisation of the separability
of the data based on experiment duration is presented in Figure 3.4. The controls and PD
patients have a large overlap in the results. Therefore, it is unlikely that the experiment
duration alone will have a good predictive power. Visual comparison in the charts makes it
clear that the data from the first week should have a lower classification accuracy because
the two groups have a larger overlap and are hard to distinguish.

For the second week baseline kNN performed best, achieving accuracy of 82.5%.
The baseline result for the first week is significantly lower: only 58.89% for Decision
Tree classifier. For the data from second week, using the time in combination with other
parameters does not perform much better than the baseline improving the result by 2.5
% only with V m of hips. Most of the time, however, it improves accuracy of Logistic
Regression making it as good as the baseline. For the first week, most of the classifiers
are able to perform better than the baseline. For example, adding V m of sides to time
gives an increase of more than 19%.

The average accuracies for the classifiers that use only MM parameters are presented
in Table 3.7. In this table, the best-performing classifiers are presented, alongside their
counterparts which use the same features but a different algorithm. The accuracies not
exceeding the baseline are written in grey font. The highest accuracies are highlighted
in bold. Those are classifiers trained without duration of the experiment, only MM fea-
tures. As a rule, k-nearest neighbours classifier performs the best on combined MM
features. The first week’s classifiers, having a considerably lower baseline to compare to,
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are able to outperform time-only classifier with every combination of features presented
in this work. The best achieved accuracy is 76.67% for SVM using combination of Tm
of shoulder features. It is closely followed by kNN with two features: V m of shoulders
and E of knees having 76.39%. That is total increase in 17% compared to baseline. The
best classifier for the second week was able to increase the accuracy by 5% compared to
baseline. The best classifier is kNN using two features: Shoulder R E+Knee L E, Shoul-
der L E+Knee R E (accuracy 87.5%). There are also several classifiers that were able to
achieve accuracy of 85%. It is also possible to compare the outcomes to the corresponding
classifier with time as presented in Table 3.6. As a rule, classifier without time perform
slightly better than the ones with time.

(a) kNN (features: Shoulder R
Vm+Shoulder L Vm, Knee R E+Knee
L E) Trained on first week, tested on
second week.

(b) kNN (features: Shoulder R E+Knee
L E, Shoulder L E+Knee R E) Trained
on second week, tested on first week.

Figure 3.7: Decision boundary visualisation for test data. Right, lighter area indicates the
healthy people. Left, darker color shows PD patients. PD patients are depicted with red
cross and the symbol for controls is blue circle. Despite the fact the decision boundary
divides the whole space into two classes, if the new observations would fall far away from
the representatives depicted on the figure, they should be investigated further.

To test how the classifiers generalise to previously unseen data, best classifiers are
trained on one week’s worth of data and tested on the other week. The same evaluation
process was repeated using the duration of the experiment as the only feature to get a
baseline performance. For this, kNN classifier was chosen because it is generally per-
forming better. The best classifier for the second week (features: Shoulder R E+Knee
L E, Shoulder L E+Knee R E) was trained on data from second week and tested on the
data from first week. The resulting accuracy is 73.6%. Decision boundary is depicted in
Figure 3.7b and confusion matrix is presented in Table 3.8. The corresponding result of
the duration-only classifier was 60.5%, which is notably lower.

The best classifier for the first week (features: Shoulder R Vm+Shoulder L Vm,Knee
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R E+Knee L E) was trained on data from first week and tested on the data from second
week. The resulting accuracy was 82.5%. Visual representation of the classification is
shown in Figure 3.7a. Confusion matrix for the test data can be found in Table 3.9. Time-
only classifier performed 17.5% worse (65%).

All in all, the results presented in this Chapter showed that test duration does not have
enough discriminative power do distinguish between healthy individuals and people with
PD. The baselines established by the test duration are 58.89 % and 82.5 % for the first
and second week correspondingly. It is worth noting that the results from the first week
are worse than those from the second. However, classifiers using features with MM pa-
rameters are able to outperform the baseline on both weeks. The best achieved accuracies
not containing duration of an experiment with k-fold validation technique are 76.67 % for
the first week and 87.5 % for the second. In addition, it is shown that adding time of an
experiment to MM-based features does not improve the accuracy of a classifier. However,
adding time significantly improves the accuracy of Logistic Regression Classifier.
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Table 3.6: Accuracy for classifiers with time feature and MM parameters for 1st and 2nd
weeks. The best or near best classifiers are marked in bold. The accuracies not exceeding
the baseline are written in grey font.

Features Classifier 1W accuracy 2W accuracy

t DT 58.89 80
kNN 53.06 82.5
LogR 47.78 67.5
SVM 55.84 77.5

Shoulder R E+Knee L E DT 44.16 77.5
Shoulder L E+Knee R E kNN 55.56 82.5
t LogR 63.34 82.5

SVM 58.61 80

Shoulder R Vm+Knee L Vm DT 50 77.5
Shoulder L Vm+Knee R Vm kNN 68.61 82.5
t LogR 66.11 77.5

SVM 50 67.5

Shoulder R E+Knee R E DT 39.44 77.5
Shoulder L E+Knee L E kNN 55.56 82.5
t LogR 63.34 82.5

SVM 58.61 80

Shoulder R Vm+Knee R Vm DT 55.56 75.0
Shoulder L Vm+Knee L Vm kNN 68.84 82.5
t LogR 78.61 80

SVM 47.50 62.5

Hip R Vm+Hip L Vm DT 55.28 77.5
t kNN 63.06 82.5

LogR 73.89 85
SVM 55.56 75

Knee R E+Knee L E DT 45 77.5
t kNN 53.06 82.5

LogR 58.06 82.5
SVM 58.61 80

Shoulder R Vm+Shoulder L Vm DT 55.56 77.5
Knee R E+Knee L E kNN 60.56 82.5
t LogR 76.39 82.5

SVM 60.28 80

Shoulder R Tm+Shoulder L Tm DT 57.22 65
t kNN 53.06 82.5

LogR 60.56 82.5
SVM 58.61 80
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Table 3.7: Accuracy for best classifiers for 1st and 2nd weeks. The best or near best
classifiers are marked in bold. The accuracies not exceeding the baseline are written in
grey font.

Features Classifier 1W accuracy 2W accuracy

Shoulder R E+Knee L E DT 58.06 70
Shoulder L E+Knee R E kNN 66.11 87.5

LogR 50.56 70
SVM 53.06 80

Shoulder R Vm+Knee L Vm DT 58.34 67.5
Shoulder L Vm+Knee R Vm kNN 64.17 85

LogR 50.28 67.5
SVM 55.28 72.5

Shoulder R E+Knee R E DT 50.28 80
Shoulder L E+Knee L E kNN 66.11 85

LogR 50.56 70
SVM 53.06 77.5

Shoulder R Vm+Knee R Vm DT 61.11 72.5
Shoulder L Vm+Knee L Vm kNN 63.89 85

LogR 52.78 57.5
SVM 53.06 65

Hip R Vm+Hip L Vm DT 57.78 77.5
kNN 74.17 80
LogR 58.33 70
SVM 66.39 82.5

Knee R E+Knee L E DT 50.28 85
kNN 74.17 82.5
LogR 47.78 70
SVM 58.61 80

Shoulder R Vm+Shoulder L Vm DT 60.28 77.5
Knee R E+Knee L E kNN 71.11 82.5

LogR 50.83 67.5
SVM 76.39 82.5

Shoulder R Tm+Shoulder L Tm DT 68.61 75
kNN 76.67 85
LogR 47.78 65
SVM 55.56 85

Table 3.8: Confusion matrix for kNN with Shoulder R E+Knee L E, Shoulder L E+Knee
R E for test data (first week).

XXXXXXXXXXActual
Predicted

C PD

C 12 6
PD 4 16
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Table 3.9: Confusion matrix for kNN with Shoulder R Vm+Shoulder L Vm,Knee R
E+Knee L E for test data (second week).

XXXXXXXXXXActual
Predicted

C PD

C 16 4
PD 3 17
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4. Discussion

The amount of data available for this study makes it hard to give definitive answers
about how well this system will perform in a clinical setting. However, this preliminary
study already revealed a number of important aspects of PD diagnosis, both using ML
methods and in general. Strikingly, it turned out that the duration of the experiment,
widely used for diagnosis in the clinic, is not the best feature to distinguish between the
PD patients and healthy people. This was proven by the comparatively low Fisher scores
and classification accuracies especially for the first week’s data.

This work proposed an extended set of parameters that can be calculated for the clas-
sical setting of the Up-and-Go test. Using some of those features, it is possible to detect
the PD patients with higher accuracy than with the test duration alone. Furthermore, un-
like other approaches utilizing gait analysis tests [18–20], this set of parameters provides
a deeper insight into the movement abnormalities by allowing to analyse the upper body
joints. It was demonstrated that the shoulders possess a high discriminative power and
contribute significantly to distinguishing movements of healthy elderly people and those
suffering from Parkinson’s disease. Interestingly, different classifiers - differing in both
the ML algorithm and the parameters used - performed best on the data from the first and
the second week. However, taking into account several top-performing classifiers, it is
evident that the kNN algorithm worked best in general (Table 3.7).

A preference for the features of the knees, shoulders and hips can be observed (Tables
3.1, 3.2, 3.5, 3.5). This preference might have a physical explanation: perhaps a change
in their movement is easiest to spot in PD patients. A number of reasons may lead to
this, e.g. those joints being the most affected by a change in the patients’ gait, or even
the disease directly influencing their movement the most. Although obviously further
investigations are needed to back up any of those speculations, they illustrate well how
ML can be used as a tool in medical research. Interestingly, when analysing the data
from the second week, the features describing the right-side joints had a notably higher
discriminative power than the left-side ones. Since this was only observed for one of
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the datasets, it could reflect some technical issue with that particular experiment, which
lead to better detection of the right-side features. Therefore, it is always important to do
"sanity checks" on the data sets and keep in mind that the results need to be medically
interpretable.

It was shown that splitting the walking forward phase down to steps and analysing
those smaller periods improves discriminative power of MM parameters. It can be de-
duced from the Fisher scores presented in this work (Tables 3.4 and 3.5) and those en-
closed in Appendix A.3 that show the results for the whole walking forward phase. The
features that had the highest predictive power among the MM parameters were E, V m
and Tm, i.e. the distance between the start and the end positions a joint, the sum of the
velocities at each intermediate point, and the length of its trajectory within a step (Tables
3.1, 3.2, 3.5, 3.5; Figure 2.2; Equations 2.1). In a sense, those are the easiest parameters to
measure, and therefore this preference may mean that their values are detected/computed
by Kinect more accurately.

The difference between the two weeks - before and after therapy - might indicate that
at different stages different set of parameters may be used to better differentiate between
healthy and diseased people. However, these discrepancies might also be the result of the
sample size of each of the datasets not being large enough. Therefore, this statement, as
well as other conclusions of this study, need to be investigated on a larger dataset and a
greater number of repeats to be able to draw reliable conclusions.

An important advantage of this approach is that it uses the setting widely used for
diagnosing PD. The procedure of the test is not changed and the equipment needed is only
extended by one Kinect sensor and a computer to perform the calculations. Therefore, the
cost of learning this new technology by therapists is low, making it a plausible method to
be adopted in the clinic in the near future. What is more, timed Up-and-Go test is used to
detect numerous other conditions characterized by gait abnormalities. Therefore, it may
be possible to use the same setup to diagnose other neurological diseases. This would also
improve the reliability of the diagnostics for Parkinson’s disease by increasing the ability
to distinguish the different Parkinsonian diseases with similar symptoms.
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5. Conclusion

This work is devoted to Parkinson’s disease diagnostics problem. Diagnosing the
disease is challenging because of the variability of the symptoms depending on the stage
of PD and on the lifestyle of a patient. In addition, symptoms of Parkinsonian diseases
are similar which makes it even harder to give a conclusive diagnosis on early stages.
However, early diagnosis is crucial and can significantly improve the way of life of a
patient. It is important to start the consulting and therapy as early as possible to be able
to control the progression of the symptoms for a number of years.

One of the most commonly used tests in clinical setting is gait mobility test - Up-
and-Go test. The only measurable parameter considered is usually duration of a test. It
was proven that it is possible to distinguish between the healthy elderly people and those
suffering of PD using only time of the test. Current work utilises the commonly used
Up-and-Go test with only minor changes that enable data collection.

Motion Mass parameter notion was adapted in this work to extend the set of param-
eters calculated from the data. The main difference from works using the same notion is
extraction of the features from steps. This showed better results comparing to using the
duration of a phase as a main time interval for the calculation of MM.

The main distinction from other gait analysis approaches is the fact that despite us-
ing gait analysis as a base to diagnose the disease, current approach enables analysis of
upper-body joints. The results showed that abnormalities in upper-body movements con-
tribute significantly to understanding and diagnosing the disease. It is also possible to
study the movement of groups of joints and compare the sides. The results showed that
using Motion Mass parameters calculated on steps can be used to support the therapists
in evaluation. The models outperformed the test duration based classifier - the baseline
- proving to provide a better quantifiable outcomes for the TUG. The highest accuracy
87.5% was achieved on data from the second week using k-nearest neighbours classifier
with cross joints’ features.
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This work can be considered a pilot study to justify the need to collect a larger
dataset. Testing this approach using more data will give an opportunity to make more
definitive conclusions about the goodness of the classifiers and establish a reasonable ex-
pectation to utilising the system in medical environment.

TUG test is also used for diagnosing other neurological diseases and detecting move-
ment abnormalities. It can be possible to use the same setting for those purposes as well.
However, it is necessary to conduct more experiments and collect data for people with
different diagnosis to be able to distinguish between different illnesses. It is possible that
by studying the differences in features across other diseases the reliability of this set up
for detecting Parkinson’s disease can improve due to a better classification of symptoms.
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A. Appendices

A.1 Statistical test

Below are presented all p-values for all the step-based features for both weeks one
and two.
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t-test Results

Page 1

Joint Param p-value t-statistic Joint Param p-value t-statistic
HipRight Vm 0.000114 4.331885 ShoulderRight Tm 9E-06 5.122567
HipLeft Vm 0.000118 4.317425 ElbowRight Tm 1.1E-05 5.06675
SpineMid Vm 0.000127 4.295227 ShoulderRight Vm 1.1E-05 5.051259
Head Vm 0.000138 4.265985 ElbowRight Vm 1.1E-05 5.049883
SpineBase Vm 0.000146 4.248369 KneeRight E 1.4E-05 4.986571
SpineShoulder Vm 0.000302 4.000785 ShoulderRight E 1.6E-05 4.944651
ElbowRight Vm 0.000386 3.919672 SpineShoulder Tm 1.6E-05 4.936453
HipRight Tm 0.000591 3.768417 HipRight Tm 1.7E-05 4.917614
ShoulderLeft Vm 0.000649 3.734449 HipRight Vm 1.8E-05 4.904116
HipLeft Tm 0.000704 3.70669 ElbowRight E 1.9E-05 4.89185
SpineMid Tm 0.00078 3.672206 HipRight E 2.1E-05 4.85827
SpineBase Tm 0.000832 3.648851 SpineShoulder Vm 2.1E-05 4.845427
Head Tm 0.001056 3.563405 SpineBase Tm 2.8E-05 4.765217
ShoulderLeft Am 0.001359 3.514941 SpineMid Tm 2.8E-05 4.76305
KneeRight Vm 0.001364 3.519113 SpineBase Vm 2.9E-05 4.747894
ElbowRight Tm 0.001543 3.430895 SpineMid Vm 3E-05 4.742782
SpineShoulder Tm 0.001834 3.36415 SpineMid E 3.4E-05 4.692902
ShoulderRight Vm 0.001912 3.366591 SpineBase E 3.5E-05 4.686157
KneeLeft Vm 0.002594 3.242248 SpineShoulder E 4E-05 4.645735
ElbowRight E 0.003003 3.183453 HipLeft Tm 4.9E-05 4.57793
SpineShoulder E 0.003045 3.178296 HipLeft Vm 5.3E-05 4.551003
ElbowLeft Vm 0.003408 3.138019 HipLeft E 6.2E-05 4.502647
KneeRight Tm 0.003656 3.141354 FootRight E 6.5E-05 4.485094
ShoulderLeft Tm 0.004071 3.06872 WristRight E 6.7E-05 4.478054
SpineMid E 0.004285 3.049255 AnkleRight E 7E-05 4.460577
HipRight E 0.004306 3.047474 HandRight E 8.9E-05 4.385519
ShoulderRight E 0.004533 3.028032 AnkleLeft E 9E-05 4.380694
KneeLeft E 0.004563 3.025357 Head E 9.2E-05 4.374511
WristRight E 0.004668 3.024271 Head Tm 9.6E-05 4.358204
HandRight E 0.005008 3.000951 FootLeft E 9.7E-05 4.354813
SpineBase E 0.005283 2.969566 Head Vm 0.000108 4.318978
Head E 0.006232 2.905912 ShoulderLeft Tm 0.000117 4.292722
WristRight Vm 0.006328 2.900048 ShoulderLeft Vm 0.00012 4.284801
KneeLeft Tm 0.006445 2.89707 KneeRight Tm 0.000134 4.248813
AnkleLeft E 0.007186 2.850232 KneeLeft E 0.000148 4.216791
ShoulderRight Tm 0.007292 2.855015 KneeRight Vm 0.000174 4.162549
KneeRight E 0.007616 2.827512 ShoulderLeft E 0.000187 4.138537
AnkleRight E 0.007626 2.82723 WristRight Tm 0.000195 4.125027
HipLeft E 0.007685 2.824928 HipLeft Am 0.000206 4.106511
ShoulderLeft E 0.010102 2.716117 WristRight Vm 0.000266 4.020375
ShoulderLeft Jm 0.011202 2.685289 ShoulderLeft Am 0.00077 3.656913
HandRight Vm 0.011893 2.649771 KneeLeft Tm 0.000813 3.638171
SpineMid Am 0.012128 2.687136 ElbowLeft E 0.000815 3.637056
FootLeft E 0.012544 2.628262 KneeLeft Vm 0.001035 3.553553
HipRight Am 0.012579 2.635399 ElbowLeft Tm 0.001045 3.550092
Head Am 0.012984 2.664981 SpineBase Am 0.001207 3.499416
HipLeft Am 0.014558 2.626781 HandRight Tm 0.001288 3.476575
SpineBase Am 0.015099 2.588378 SpineMid Am 0.001343 3.461516
SpineMid Jm 0.015613 2.585066 ElbowLeft Vm 0.001354 3.458707
SpineBase Jm 0.016906 2.547432 SpineMid Jm 0.001531 3.414885
FootRight E 0.017556 2.492583 SpineBase Jm 0.00163 3.392641

1st week 2nd week
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ShoulderRight Am 0.018792 2.474641 HandRight Vm 0.001796 3.35781
WristRight Tm 0.019538 2.444425 HipRight Am 0.00189 3.339467
HipRight Jm 0.02069 2.433611 HipLeft Jm 0.002908 3.182649
ElbowLeft Tm 0.021504 2.404268 ShoulderLeft Jm 0.003383 3.126716
AnkleLeft Vm 0.021872 2.406202 HipRight Jm 0.00546 2.946832
ElbowRight Am 0.022224 2.410724 WristRight E/Am 0.006231 2.896306
AnkleRight Vm 0.022943 2.42275 WristLeft E 0.007538 2.82265
Head Jm 0.023331 2.40635 WristLeft Tm 0.007755 2.811581
ElbowRight Jm 0.027606 2.334201 ShoulderRight Am 0.009084 2.74959
ElbowLeft E 0.032874 2.219143 Head Am 0.010072 2.708706
HandRight Tm 0.033269 2.213777 WristLeft Vm 0.011953 2.640238
HipLeft Jm 0.03926 2.184565 SpineShoulder Am 0.013745 2.583711
ElbowLeft Am 0.041341 2.116017 HandLeft E 0.014213 2.570053
AnkleRight Tm 0.042221 2.144033 AnkleRight Tm 0.018506 2.461095
HandRight Am 0.047712 2.086336 FootRight Tm 0.021987 2.38855
AnkleLeft Tm 0.05123 2.023598 ShoulderRight Jm 0.026635 2.306416
FootRight Vm 0.057113 2.000226 AnkleLeft Tm 0.026877 2.302494
FootLeft Vm 0.057549 1.971436 FootLeft Tm 0.027347 2.294991
HipRight E/Am 0.070281 -1.869171 HandLeft Tm 0.030595 2.246034
SpineMid E/Am 0.070366 -1.865617 Head Jm 0.031171 2.23785
ShoulderRight E/Am 0.07183 -1.855096 ElbowRight Jm 0.032118 2.224676
ElbowLeft Jm 0.08465 1.773257 KneeRight Am 0.034043 2.19892
WristRight Am 0.085544 1.78572 AnkleRight Vm 0.035042 2.186058
HandRight Jm 0.090149 1.756024 AnkleLeft Vm 0.042242 2.101932
KneeRight Am 0.090238 1.769731 FootLeft Vm 0.045292 2.070065
WristLeft Vm 0.105019 1.662933 HandLeft Vm 0.045549 2.067475
KneeLeft Jm 0.108916 1.643922 HandRight E/Am 0.046662 2.056368
FootRight Tm 0.110144 1.660859 FootRight Vm 0.047082 2.052234
KneeLeft Am 0.126355 1.567452 AnkleRight E/Am 0.048995 2.033818
FootLeft Tm 0.126553 1.569565 AnkleLeft E/Am 0.05743 1.959414
SpineBase E/Am 0.143375 -1.498453 ElbowLeft Am 0.058239 1.952787
KneeRight Jm 0.143954 1.511049 ElbowRight Am 0.077479 1.814642
ShoulderLeft E/Am 0.146002 -1.498101 FootRight E/Tm 0.078048 1.811028
WristLeft E 0.149661 1.472191 FootRight E/Am 0.084001 1.774451
SpineShoulder Am 0.157841 1.453684 SpineBase E/Am 0.120831 -1.586864
HandLeft Vm 0.158568 1.440154 ShoulderLeft E/Am 0.121981 -1.581815
ShoulderRight Jm 0.171687 1.398635 KneeRight Jm 0.122846 1.578042
WristRight Jm 0.171844 1.39983 ElbowLeft Jm 0.124872 1.569286
ElbowLeft E/Am 0.173151 -1.390532 KneeLeft E/Am 0.125439 1.566858
ShoulderLeft t 0.187238 -1.346475 SpineShoulder Jm 0.128557 1.553654
SpineBase t 0.187238 -1.346475 ShoulderLeft E/Tm 0.138052 -1.514982
SpineShoulder t 0.187238 -1.346475 FootLeft E/Am 0.138738 1.512268
ShoulderRight t 0.187238 -1.346475 ElbowRight E/Am 0.157755 1.441072
WristRight t 0.187238 -1.346475 WristLeft Jm 0.158951 1.436824
WristLeft t 0.187238 -1.346475 WristRight Jm 0.168595 1.403474
SpineMid t 0.187238 -1.346475 FootLeft E/Tm 0.172724 1.389649
AnkleLeft t 0.187238 -1.346475 KneeLeft Am 0.182772 1.35705
ElbowRight t 0.187238 -1.346475 SpineMid E/Am 0.191547 -1.329693
KneeRight t 0.187238 -1.346475 WristLeft Am 0.217485 1.254048
ElbowLeft t 0.187238 -1.346475 HandRight E/Tm 0.224412 1.235001
HandRight t 0.187238 -1.346475 SpineBase E/Tm 0.232598 -1.21305
HipLeft t 0.187238 -1.346475 SpineMid E/Tm 0.243377 -1.184997
HandLeft t 0.187238 -1.346475 HipLeft E/Am 0.250104 -1.167947
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AnkleRight t 0.187238 -1.346475 HipLeft E/Tm 0.259712 -1.144164
Head t 0.187238 -1.346475 KneeLeft Jm 0.269915 1.11959
HipRight t 0.187238 -1.346475 HandLeft E/Am 0.274947 1.107715
KneeLeft t 0.187238 -1.346475 AnkleLeft E/Tm 0.302088 1.046178
FootRight t 0.187238 -1.346475 AnkleRight E/Tm 0.315865 1.016404
FootLeft t 0.187238 -1.346475 ShoulderRight E/Tm 0.338406 -0.969542
Head E/Tm 0.188086 -1.362529 HandRight Jm 0.349356 0.947529
HandLeft Am 0.203669 1.296146 WristRight E/Tm 0.351622 0.943032
HandLeft E 0.228989 1.223789 HandLeft Jm 0.412858 0.827968
HipLeft E/Tm 0.229075 -1.245365 SpineShoulder t 0.453046 -0.758136
AnkleLeft Jm 0.233945 1.211517 WristLeft t 0.453046 -0.758136
HipRight E/Tm 0.25172 -1.183503 SpineMid t 0.453046 -0.758136
SpineBase E/Tm 0.272205 -1.132138 WristRight t 0.453046 -0.758136
AnkleRight Jm 0.277905 1.109927 SpineBase t 0.453046 -0.758136
SpineMid E/Tm 0.279637 -1.114109 AnkleLeft t 0.453046 -0.758136
FootRight E/Tm 0.279779 1.10193 KneeRight t 0.453046 -0.758136
AnkleRight Am 0.282854 1.099225 ShoulderRight t 0.453046 -0.758136
AnkleLeft Am 0.293343 1.06961 ElbowRight t 0.453046 -0.758136
WristLeft Tm 0.296088 1.060265 HipRight t 0.453046 -0.758136
HipLeft E/Am 0.312884 -1.027432 FootLeft t 0.453046 -0.758136
HandLeft Jm 0.31972 1.009003 HipLeft t 0.453046 -0.758136
ShoulderLeft E/Tm 0.331162 -0.993744 Head t 0.453046 -0.758136
AnkleRight E/Am 0.347433 0.952737 KneeLeft t 0.453046 -0.758136
FootRight E/Am 0.355316 0.938118 ShoulderLeft t 0.453046 -0.758136
ElbowRight E/Tm 0.358772 -0.935797 HandRight t 0.453046 -0.758136
HandLeft Tm 0.381507 0.886045 HandLeft t 0.453046 -0.758136
FootLeft E/Tm 0.409137 0.836167 FootRight t 0.453046 -0.758136
Head E/Am 0.410358 -0.833337 ElbowLeft t 0.453046 -0.758136
WristLeft Am 0.424207 0.808498 AnkleRight t 0.453046 -0.758136
FootLeft E/Am 0.442147 0.777153 WristLeft E/Am 0.480343 0.71277
FootLeft Jm 0.467152 0.734988 FootLeft Jm 0.483525 0.707578
KneeRight E/Tm 0.498842 -0.685899 HandRight Am 0.495695 0.687898
ElbowRight E/Am 0.502935 -0.676694 KneeRight E/Tm 0.508678 0.667197
FootRight Jm 0.525961 0.642391 HipRight E/Tm 0.539638 -0.618957
HandLeft E/Am 0.542075 -0.615587 KneeLeft E/Tm 0.54642 0.608586
ElbowLeft E/Tm 0.555175 -0.596495 FootLeft Am 0.554502 0.596314
FootRight Am 0.557057 0.595215 HipRight E/Am 0.556963 -0.592594
FootLeft Am 0.579335 0.559853 ElbowLeft E/Am 0.563295 0.583064
AnkleRight E/Tm 0.604001 0.524623 Head E/Tm 0.570521 0.572253
WristLeft E/Tm 0.623551 0.495478 HandLeft Am 0.574414 0.566457
WristLeft Jm 0.634058 0.480108 AnkleLeft Jm 0.586572 0.548477
WristRight E/Tm 0.644812 0.465 KneeRight E/Am 0.631551 0.483449
HandLeft E/Tm 0.686888 0.406392 AnkleLeft Am 0.665615 0.435568
HandRight E/Tm 0.687657 0.405367 ElbowRight E/Tm 0.668696 -0.431288
KneeLeft E/Tm 0.737817 0.337664 ElbowLeft E/Tm 0.684983 0.408798
KneeLeft E/Am 0.764118 -0.30236 Head E/Am 0.6981 0.390838
ShoulderRight E/Tm 0.778705 -0.283167 AnkleRight Am 0.71017 0.374424
HandRight E/Am 0.79978 -0.255555 SpineShoulder E/Am 0.729482 0.348374
WristLeft E/Am 0.824802 0.223006 HandLeft E/Tm 0.734192 0.342059
WristRight E/Am 0.824946 -0.222881 WristRight Am 0.75088 0.319789
SpineShoulder Jm 0.836152 0.208472 FootRight Am 0.786738 0.272467
AnkleLeft E/Tm 0.846966 0.19463 SpineShoulder E/Tm 0.834005 -0.211013
SpineShoulder E/Tm 0.858143 -0.18048 ShoulderRight E/Am 0.83621 0.208168
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AnkleLeft E/Am 0.872929 0.161144 AnkleRight Jm 0.897591 0.129569
KneeRight E/Am 0.873907 -0.159836 FootRight Jm 0.988474 0.014542
SpineShoulder E/Am 0.919323 -0.102022 WristLeft E/Tm 0.99777 0.002813



A.2 Fisher Scores for Step-based MM

Below are presented the full results for Fisher scoring algorithm for both weeks one
and two.
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Joint Parameter Fisher Score Joint Parameter Fisher Score
HipRight Vm 0.512484 ShoulderRight Tm 0.690544
HipLeft Vm 0.510796 ElbowRight Tm 0.675578
SpineMid Vm 0.503264 ShoulderRight Vm 0.671453
Head Vm 0.500898 ElbowRight Vm 0.671087
SpineBase Vm 0.49291 KneeRight E 0.654366
SpineShoulder Vm 0.442011 ShoulderRight E 0.64341
ElbowRight Vm 0.426837 SpineShoulder Tm 0.641278
HipRight Tm 0.387325 HipRight Tm 0.636393
ShoulderLeft Vm 0.383611 HipRight Vm 0.632904
HipLeft Tm 0.375525 ElbowRight E 0.629742
SpineMid Tm 0.367021 HipRight E 0.621126
SpineBase Tm 0.362869 SpineShoulder Vm 0.617846
KneeRight Vm 0.355398 SpineBase Tm 0.59756
ShoulderLeft Am 0.353612 SpineMid Tm 0.597017
Head Tm 0.346816 SpineBase Vm 0.593224
ElbowRight Tm 0.32735 SpineMid Vm 0.591947
SpineShoulder Tm 0.310331 SpineMid E 0.579561
ShoulderRight Vm 0.302826 SpineBase E 0.577896
KneeLeft Vm 0.293221 SpineShoulder E 0.56797
KneeRight Tm 0.282561 HipLeft Tm 0.551512
ElbowRight E 0.279876 HipLeft Vm 0.545043
SpineShoulder E 0.27582 HipLeft E 0.533522
ElbowLeft Vm 0.273426 FootRight E 0.52937
ShoulderLeft Tm 0.258273 WristRight E 0.52771
WristRight E 0.25647 AnkleRight E 0.523599
SpineMid E 0.255603 HandRight E 0.506126
HipRight E 0.25531 AnkleLeft E 0.505013
HandRight E 0.253739 Head E 0.503588
KneeLeft E 0.251511 Head Tm 0.499841
ShoulderRight E 0.251134 FootLeft E 0.499063
SpineBase E 0.242906 Head Vm 0.490883
KneeLeft Tm 0.234392 ShoulderLeft Tm 0.484933
WristRight Vm 0.23194 ShoulderLeft Vm 0.483145
Head E 0.230981 KneeRight Tm 0.475064
AnkleLeft E 0.222815 KneeLeft E 0.46793
HipLeft E 0.220955 KneeRight Vm 0.455969
KneeRight E 0.219018 ShoulderLeft E 0.450723
AnkleRight E 0.218412 WristRight Tm 0.447785
ShoulderRight Tm 0.217997 HipLeft Am 0.443774
SpineMid Am 0.21102 WristRight Vm 0.425353
Head Am 0.208543 ShoulderLeft Am 0.351921
HipLeft Am 0.204114 KneeLeft Tm 0.348323
ShoulderLeft Jm 0.204105 ElbowLeft E 0.34811
ShoulderLeft E 0.204045 KneeLeft Vm 0.332309
SpineMid Jm 0.196187 ElbowLeft Tm 0.331662
HipRight Am 0.195892 SpineBase Am 0.322261
SpineBase Am 0.195011 HandRight Tm 0.318068
HandRight Vm 0.193333 SpineMid Am 0.315318
SpineBase Jm 0.190083 ElbowLeft Vm 0.314807
FootLeft E 0.188836 SpineMid Jm 0.30688
AnkleRight Vm 0.173375 SpineBase Jm 0.302895

1st week 2nd week
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Head Jm 0.169763 HandRight Vm 0.296708
HipRight Jm 0.16889 HipRight Am 0.293475
FootRight E 0.167625 HipLeft Jm 0.266559
ElbowRight Am 0.167466 ShoulderLeft Jm 0.257272
WristRight Tm 0.164382 HipRight Jm 0.228522
AnkleLeft Vm 0.164223 WristRight E/Am 0.220752
ShoulderRight Am 0.16215 WristLeft E 0.209667
ElbowRight Jm 0.160287 WristLeft Tm 0.208026
ElbowLeft Tm 0.159944 ShoulderRight Am 0.198954
HipLeft Jm 0.142319 Head Am 0.193081
AnkleRight Tm 0.136313 WristLeft Vm 0.183444
ElbowLeft E 0.134743 SpineShoulder Am 0.175673
HandRight Tm 0.13425 HandLeft E 0.17382
HandRight Am 0.129244 AnkleRight Tm 0.159394
ElbowLeft Am 0.123539 FootRight Tm 0.150136
FootRight Vm 0.119091 ShoulderRight Jm 0.139988
AnkleLeft Tm 0.116342 AnkleLeft Tm 0.139513
FootLeft Vm 0.111286 FootLeft Tm 0.138605
HipRight E/Am 0.09861 HandLeft Tm 0.132754
SpineMid E/Am 0.096736 Head Jm 0.131789
ShoulderRight E/Am 0.093753 ElbowRight Jm 0.130242
KneeRight Am 0.093693 KneeRight Am 0.127243
WristRight Am 0.093493 AnkleRight Vm 0.125759
HandRight Jm 0.089946 AnkleLeft Vm 0.116266
ElbowLeft Jm 0.08615 FootLeft Vm 0.112768
FootRight Tm 0.082237 HandLeft Vm 0.112486
WristLeft Vm 0.076193 HandRight E/Am 0.11128
KneeLeft Jm 0.074551 FootRight Vm 0.110833
FootLeft Tm 0.070543 AnkleRight E/Am 0.108853
KneeLeft Am 0.069401 AnkleLeft E/Am 0.101034
KneeRight Jm 0.067901 ElbowLeft Am 0.100352
ShoulderLeft E/Am 0.065895 ElbowRight Am 0.086656
SpineBase E/Am 0.063497 FootRight E/Tm 0.086311
SpineShoulder Am 0.062038 FootRight E/Am 0.08286
WristLeft E 0.059393 SpineBase E/Am 0.066267
HandLeft Vm 0.057621 ShoulderLeft E/Am 0.065846
WristRight Jm 0.056525 KneeRight Jm 0.065532
Head E/Tm 0.056327 ElbowLeft Jm 0.064807
ElbowLeft E/Am 0.052136 KneeLeft E/Am 0.064606
ShoulderRight Jm 0.051623 SpineShoulder Jm 0.063522
WristLeft t 0.04831 ShoulderLeft E/Tm 0.060399
ShoulderLeft t 0.04831 FootLeft E/Am 0.060183
KneeRight t 0.04831 ElbowRight E/Am 0.05465
SpineMid t 0.04831 WristLeft Jm 0.054328
ShoulderRight t 0.04831 WristRight Jm 0.051835
SpineShoulder t 0.04831 FootLeft E/Tm 0.050819
SpineBase t 0.04831 KneeLeft Am 0.048463
WristRight t 0.04831 SpineMid E/Am 0.046529
FootLeft t 0.04831 WristLeft Am 0.041385
AnkleRight t 0.04831 HandRight E/Tm 0.040138
FootRight t 0.04831 SpineBase E/Tm 0.038723
HandLeft t 0.04831 SpineMid E/Tm 0.036953
ElbowRight t 0.04831 HipLeft E/Am 0.035897
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ElbowLeft t 0.04831 HipLeft E/Tm 0.03445
HandRight t 0.04831 KneeLeft Jm 0.032986
Head t 0.04831 HandLeft E/Am 0.03229
HipLeft t 0.04831 AnkleLeft E/Tm 0.028802
HipRight t 0.04831 AnkleRight E/Tm 0.027186
AnkleLeft t 0.04831 ShoulderRight E/Tm 0.024737
KneeLeft t 0.04831 HandRight Jm 0.023627
HipLeft E/Tm 0.047727 WristRight E/Tm 0.023403
HandLeft Am 0.047374 HandLeft Jm 0.01804
HipRight E/Tm 0.042969 SpineBase t 0.015126
HandLeft E 0.041256 ShoulderRight t 0.015126
AnkleLeft Jm 0.041239 WristLeft t 0.015126
SpineBase E/Tm 0.039336 SpineMid t 0.015126
SpineMid E/Tm 0.038085 SpineShoulder t 0.015126
AnkleRight Jm 0.036543 WristRight t 0.015126
AnkleRight Am 0.036004 AnkleRight t 0.015126
FootRight E/Tm 0.035311 HandLeft t 0.015126
AnkleLeft Am 0.033001 KneeRight t 0.015126
WristLeft Tm 0.030921 FootRight t 0.015126
HipLeft E/Am 0.030679 ShoulderLeft t 0.015126
ShoulderLeft E/Tm 0.029648 KneeLeft t 0.015126
HandLeft Jm 0.028082 HipRight t 0.015126
ElbowRight E/Tm 0.026038 AnkleLeft t 0.015126
AnkleRight E/Am 0.025572 ElbowRight t 0.015126
FootRight E/Am 0.025178 HipLeft t 0.015126
HandLeft Tm 0.021728 Head t 0.015126
FootLeft E/Tm 0.019877 FootLeft t 0.015126
Head E/Am 0.019474 ElbowLeft t 0.015126
WristLeft Am 0.018205 HandRight t 0.015126
FootLeft E/Am 0.016615 WristLeft E/Am 0.013369
FootLeft Jm 0.014985 FootLeft Jm 0.013175
KneeRight E/Tm 0.013834 HandRight Am 0.012453
ElbowRight E/Am 0.012509 KneeRight E/Tm 0.011715
FootRight Jm 0.012054 HipRight E/Tm 0.010082
HandLeft E/Am 0.010512 KneeLeft E/Tm 0.009747
FootRight Am 0.010472 FootLeft Am 0.009358
ElbowLeft E/Tm 0.010208 HipRight E/Am 0.009241
FootLeft Am 0.00888 ElbowLeft E/Am 0.008946
AnkleRight E/Tm 0.008022 Head E/Tm 0.008618
WristLeft E/Tm 0.006528 HandLeft Am 0.008444
WristLeft Jm 0.006305 AnkleLeft Jm 0.007917
WristRight E/Tm 0.005831 KneeRight E/Am 0.006151
HandLeft E/Tm 0.004483 AnkleLeft Am 0.004993
HandRight E/Tm 0.004443 ElbowRight E/Tm 0.004895
KneeLeft E/Tm 0.003252 ElbowLeft E/Tm 0.004398
KneeLeft E/Am 0.002506 Head E/Am 0.00402
ShoulderRight E/Tm 0.002236 AnkleRight Am 0.003689
HandRight E/Am 0.001821 SpineShoulder E/Am 0.003194
WristRight E/Am 0.001396 HandLeft E/Tm 0.003079
WristLeft E/Am 0.001379 WristRight Am 0.002691
SpineShoulder Jm 0.001235 FootRight Am 0.001954
AnkleLeft E/Tm 0.001089 SpineShoulder E/Tm 0.001172
SpineShoulder E/Tm 0.000955 ShoulderRight E/Am 0.00114
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AnkleLeft E/Am 0.000731 AnkleRight Jm 0.000442
KneeRight E/Am 0.000706 FootRight Jm 6E-06
SpineShoulder E/Am 0.000291 WristLeft E/Tm 0



A.3 Fisher Scores for Walking Forward Phase MM
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Joint Parameter Fisher Score Joint Parameter Fisher Score
WristRight t 0.176002 WristRight E/Am 0.282255
SpineShoulder t 0.176002 WristRight t 0.25302
HipLeft t 0.176002 AnkleRight t 0.25302
HipRight t 0.176002 FootLeft t 0.25302
HandRight t 0.176002 HandLeft t 0.25302
KneeLeft t 0.176002 ElbowRight t 0.25302
KneeRight t 0.176002 HandRight t 0.25302
HandLeft t 0.176002 Head t 0.25302
FootRight t 0.176002 HipLeft t 0.25302
FootLeft t 0.176002 FootRight t 0.25302
ShoulderLeft t 0.176002 HipRight t 0.25302
ElbowRight t 0.176002 KneeLeft t 0.25302
ShoulderRight t 0.176002 KneeRight t 0.25302
SpineBase t 0.176002 ShoulderLeft t 0.25302
SpineMid t 0.176002 ShoulderRight t 0.25302
ElbowLeft t 0.176002 ElbowLeft t 0.25302
Head t 0.176002 AnkleLeft t 0.25302
WristLeft t 0.176002 SpineBase t 0.25302
AnkleRight t 0.176002 SpineMid t 0.25302
AnkleLeft t 0.176002 SpineShoulder t 0.25302
HipRight E/Am 0.106269 WristLeft t 0.25302
ShoulderLeft E/Am 0.072126 AnkleLeft E/Am 0.242143
FootRight Tm 0.070023 FootLeft E/Am 0.234233
FootRight Am 0.064041 WristRight Am 0.184063
SpineMid E/Am 0.063669 HandRight E/Am 0.170394
FootRight Jm 0.063495 FootRight E/Am 0.168738
HandLeft Tm 0.061694 HandLeft Am 0.158427
SpineBase E/Am 0.060947 FootLeft E/Tm 0.154286
FootLeft E/Tm 0.056698 HandLeft E/Am 0.151061
WristLeft Tm 0.054267 HipLeft E/Am 0.147527
FootRight E/Am 0.051565 HandRight Am 0.145014
FootRight E 0.050686 SpineBase E/Am 0.140421
ShoulderRight E/Am 0.050152 WristLeft E/Am 0.137421
HipLeft E/Am 0.049479 AnkleRight E/Am 0.134943
FootLeft E/Am 0.045714 SpineMid E/Am 0.131786
SpineShoulder Jm 0.043878 FootLeft Jm 0.13156
AnkleRight E 0.043717 HandLeft Jm 0.13043
FootRight Vm 0.043613 FootLeft Am 0.128749
AnkleRight E/Am 0.040869 WristLeft Am 0.126922
WristLeft Jm 0.04059 HandRight Jm 0.126693
FootLeft Am 0.039875 FootRight E/Tm 0.122912
HandLeft Vm 0.03978 FootRight Jm 0.122245
FootRight E/Tm 0.039031 HipLeft Am 0.118269
Head E 0.037359 FootRight Am 0.116859
WristLeft E 0.032595 SpineBase Am 0.109431
WristRight Tm 0.032107 WristRight Jm 0.105353
HandRight Tm 0.031965 HipRight Am 0.103284
AnkleLeft E/Am 0.03153 FootLeft Vm 0.103268
FootLeft Jm 0.031461 WristLeft Jm 0.102212
WristLeft Am 0.031228 HipRight E/Am 0.100049
FootLeft Tm 0.030227 FootLeft Tm 0.096472

1st week 2nd week
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ElbowLeft E 0.029948 SpineMid Am 0.095395
Head E/Am 0.029864 HandLeft Vm 0.092808
WristLeft Vm 0.029522 FootRight Vm 0.089057
HandLeft E 0.0287 AnkleLeft Am 0.087028
HandLeft Jm 0.02781 FootRight Tm 0.083107
SpineShoulder Am 0.025004 HandLeft Tm 0.081472
ShoulderLeft E 0.024598 KneeRight E/Am 0.071147
SpineShoulder E 0.023329 AnkleLeft Jm 0.069848
HandLeft Am 0.022538 ElbowLeft Vm 0.069521
SpineShoulder Tm 0.020993 AnkleLeft E/Tm 0.069439
WristRight E/Am 0.019475 WristLeft Vm 0.067017
ShoulderRight Tm 0.019389 Head Vm 0.061607
ShoulderRight E 0.018518 WristLeft Tm 0.057977
ShoulderLeft Am 0.017617 ShoulderLeft E/Am 0.057897
ElbowLeft Tm 0.017231 AnkleLeft Vm 0.055887
ShoulderLeft Tm 0.016679 KneeLeft E/Am 0.055527
Head Tm 0.016429 Head Jm 0.054389
HandLeft E/Tm 0.014994 AnkleRight Am 0.053487
AnkleLeft E/Tm 0.014472 ElbowLeft Tm 0.053356
KneeLeft E/Am 0.014168 SpineShoulder Jm 0.051049
Head E/Tm 0.013963 ElbowLeft Jm 0.048864
HipRight Am 0.013792 AnkleLeft Tm 0.047841
WristRight Jm 0.013374 ShoulderLeft Vm 0.047328
ElbowRight E 0.013004 AnkleRight Jm 0.047006
SpineMid Tm 0.012983 KneeRight Jm 0.045632
FootLeft Vm 0.01294 ElbowLeft E 0.043991
AnkleRight Tm 0.012774 HandRight Vm 0.043925
AnkleRight Am 0.011881 Head Tm 0.043594
SpineMid E 0.011505 ShoulderLeft E 0.041716
WristRight E 0.011424 Head E 0.039082
WristRight Am 0.011267 KneeRight Am 0.039021
AnkleRight Jm 0.011219 KneeRight E/Tm 0.038337
WristLeft E/Am 0.010964 WristLeft E 0.037602
HipLeft E/Tm 0.010862 SpineBase Jm 0.036801
HandRight Vm 0.01067 AnkleRight E/Tm 0.036366
SpineBase Tm 0.010449 SpineShoulder Vm 0.034695
KneeLeft Tm 0.010159 ElbowRight Jm 0.034079
SpineBase E 0.010132 ElbowLeft Am 0.033769
KneeRight E 0.009855 ElbowRight E/Am 0.033209
WristLeft E/Tm 0.009715 HipRight Jm 0.032578
WristRight E/Tm 0.00948 HandLeft E 0.031836
ElbowLeft E/Am 0.009354 ShoulderLeft Tm 0.031113
WristRight Vm 0.009299 AnkleRight Vm 0.031078
HipLeft E 0.009089 AnkleRight Tm 0.027194
HipRight E/Tm 0.00891 Head E/Tm 0.026555
AnkleLeft Am 0.008659 ElbowRight Am 0.026263
HandRight E 0.008193 HandRight Tm 0.025925
KneeRight E/Tm 0.008 HandRight E/Tm 0.025348
HipRight E 0.007719 KneeRight Vm 0.024627
SpineShoulder E/Am 0.00732 WristRight Vm 0.024561
ElbowRight E/Am 0.007181 HandLeft E/Tm 0.024029
SpineBase E/Tm 0.007065 SpineMid Vm 0.023276
HipRight Tm 0.006976 SpineShoulder Tm 0.023117
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HandRight E/Tm 0.006943 SpineShoulder E 0.022302
AnkleLeft Tm 0.006892 HipLeft Jm 0.021175
HipLeft Tm 0.00657 ShoulderLeft Am 0.020906
SpineMid Jm 0.006275 SpineMid Jm 0.019812
ShoulderLeft E/Tm 0.006172 KneeLeft Am 0.018627
ElbowRight E/Tm 0.005692 HipLeft Vm 0.01805
HandRight Jm 0.005628 KneeLeft Jm 0.017881
HandLeft E/Am 0.005607 ElbowLeft E/Tm 0.016322
AnkleLeft Jm 0.005472 SpineBase Vm 0.015856
AnkleRight E/Tm 0.005225 KneeRight Tm 0.015652
SpineMid E/Tm 0.005196 KneeLeft Vm 0.014426
ElbowLeft E/Tm 0.005185 ElbowRight Vm 0.013589
HipLeft Am 0.005108 SpineMid E 0.013455
SpineBase Am 0.004953 KneeLeft E/Tm 0.013136
ShoulderRight Jm 0.00477 SpineMid Tm 0.011331
ElbowRight Jm 0.00474 WristRight Tm 0.010875
ElbowRight Am 0.004644 SpineShoulder Am 0.010687
HandRight Am 0.004284 HipLeft E 0.010397
ElbowRight Vm 0.003844 HipRight Vm 0.009354
ElbowLeft Jm 0.003691 SpineBase E 0.00856
AnkleRight Vm 0.003623 KneeLeft Tm 0.008324
KneeLeft E 0.003435 ShoulderRight E/Tm 0.008228
ElbowRight Tm 0.003424 WristRight E/Tm 0.008021
SpineBase Jm 0.003423 WristLeft E/Tm 0.007975
ShoulderRight Am 0.002753 SpineBase E/Tm 0.007581
KneeRight Vm 0.002681 ElbowRight E 0.007516
KneeRight Am 0.00245 Head Am 0.007381
SpineMid Am 0.002295 HipLeft Tm 0.007307
HipRight Jm 0.002248 ShoulderLeft E/Tm 0.006645
SpineShoulder Vm 0.001568 SpineShoulder E/Tm 0.006491
KneeRight E/Am 0.001385 HipLeft E/Tm 0.006185
ShoulderLeft Jm 0.001302 SpineBase Tm 0.005991
HipLeft Jm 0.001287 ShoulderRight Vm 0.00578
KneeRight Tm 0.001193 ElbowLeft E/Am 0.005696
HipLeft Vm 0.001111 ShoulderRight E 0.005429
FootLeft E 0.000965 HandRight E 0.004985
ShoulderRight E/Tm 0.000857 ElbowRight Tm 0.004869
AnkleLeft E 0.000841 WristRight E 0.004836
KneeLeft E/Tm 0.000822 ShoulderRight Jm 0.004447
HipRight Vm 0.000821 HipRight E/Tm 0.00438
SpineShoulder E/Tm 0.000797 Head E/Am 0.003743
KneeLeft Am 0.000736 HipRight E 0.003423
AnkleLeft Vm 0.00051 KneeLeft E 0.003274
KneeLeft Jm 0.000477 ElbowRight E/Tm 0.003205
ElbowLeft Vm 0.000353 FootLeft E 0.002214
HandRight E/Am 0.000348 HipRight Tm 0.002123
ElbowLeft Am 0.000339 SpineMid E/Tm 0.001473
KneeLeft Vm 0.000306 AnkleLeft E 0.001338
Head Vm 0.000193 ShoulderRight Tm 0.001074
KneeRight Jm 0.000183 ShoulderRight E/Am 0.001054
ShoulderRight Vm 0.000118 ShoulderRight Am 0.001033
SpineBase Vm 0.000105 AnkleRight E 0.000848
ShoulderLeft Vm 4.4E-05 SpineShoulder E/Am 0.00049
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Head Am 1.5E-05 FootRight E 0.000427
Head Jm 2E-06 KneeRight E 3.3E-05
SpineMid Vm 0 ShoulderLeft Jm 1.2E-05



A.4 Main Workflow

Figure A.1: Full schema of the main workflow of the current work.
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A.5 Report

Below is given an example of how a report looks like.
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Features:
Shoulder	R	E+Knee	L	E
Shoulder	L	E+Knee	R	E

KT_12,	KT_18,	KT_11,	KT_20,	KT_06,	KT_02,	KT_10,	KT_15,	KT_16,	KT_05,	KT_09,	KT_24,	KT_03,	KT_01,	KT_07,	KT_23,	KT_13,	KT_04,	KT_19,	KT_08,	SG03,	SG07,	SG04,
SG15,	SG24,	SG16,	SG08,	SG01,	SG02,	SG11,	SG09,	SG21,	SG17,	SG13,	SG23,	SG14,	SG19,	SG22,	SG05,	SG18

Average	Accuracy
Average	Accuracy

DecisionTreeClassifier 70.0
KNeighborsClassifier 87.5
LogisticRegression 70.0
SVC 80.0

Average	Confusion	Matrices
tn fp fn tp Precision Recall F1

DecisionTreeClassifier 3.00 2.00 1.00 4.00 0.67 0.80 0.73
KNeighborsClassifier 4.50 0.50 0.75 4.25 0.89 0.85 0.87
LogisticRegression 4.75 0.25 2.75 2.25 0.90 0.45 0.60
SVC 4.50 0.50 1.50 3.50 0.88 0.70 0.78

Average	Report	for	LogisticRegression
precision recall f1-score support

C 0.64 0.96 0.76 5.0
PD 0.94 0.47 0.60 5.0
macro_avg 0.79 0.72 0.68 10.0
micro_avg 0.70 0.70 0.70 10.0
weighted_avg 0.80 0.70 0.68 10.0

Average	Report	for	KNeighborsClassifier
precision recall f1-score support

C 0.85 0.90 0.87 5.0
PD 0.90 0.84 0.87 5.0
macro_avg 0.88 0.87 0.87 10.0

micro_avg 0.88 0.88 0.88 10.0



weighted_avg 0.88 0.88 0.88 10.0

Average	Report	for	SVC
precision recall f1-score support

C 0.74 0.9 0.81 5.0
PD 0.89 0.7 0.78 5.0
macro_avg 0.82 0.8 0.80 10.0
micro_avg 0.80 0.8 0.80 10.0
weighted_avg 0.82 0.8 0.80 10.0

Average	Report	for	DecisionTreeClassifier
precision recall f1-score support

C 0.73 0.58 0.64 5.0
PD 0.68 0.80 0.73 5.0
macro_avg 0.70 0.69 0.68 10.0
micro_avg 0.70 0.70 0.70 10.0
weighted_avg 0.71 0.70 0.69 10.0

Accuracy	for	all	of	the	folds
0 1 2 3

LogisticRegression 80.0 70.0 70.0 60.0
KNeighborsClassifier 80.0 90.0 100.0 80.0
SVC 80.0 80.0 90.0 70.0
DecisionTreeClassifier 80.0 60.0 70.0 70.0

0	fold
tn fp fn tp Precision Recall F1

DecisionTreeClassifier 2 2 1 5 0.71 0.83 0.77
KNeighborsClassifier 3 1 1 5 0.83 0.83 0.83
LogisticRegression 4 0 4 2 1.00 0.33 0.50
SVC 3 1 2 4 0.80 0.67 0.73

Report	for	LogisticRegression



precision recall f1-score support

C 0.83 0.83 0.83 6.0
PD 0.75 0.75 0.75 4.0
macro_avg 0.79 0.79 0.79 10.0
micro_avg 0.80 0.80 0.80 10.0
weighted_avg 0.80 0.80 0.80 10.0

Report	for	KNeighborsClassifier
precision recall f1-score support

C 0.83 0.83 0.83 6.0
PD 0.75 0.75 0.75 4.0
macro_avg 0.79 0.79 0.79 10.0
micro_avg 0.80 0.80 0.80 10.0
weighted_avg 0.80 0.80 0.80 10.0

Report	for	SVC
precision recall f1-score support

C 0.83 0.83 0.83 6.0
PD 0.75 0.75 0.75 4.0
macro_avg 0.79 0.79 0.79 10.0
micro_avg 0.80 0.80 0.80 10.0
weighted_avg 0.80 0.80 0.80 10.0

Report	for	DecisionTreeClassifier
precision recall f1-score support

C 0.83 0.83 0.83 6.0
PD 0.75 0.75 0.75 4.0
macro_avg 0.79 0.79 0.79 10.0
micro_avg 0.80 0.80 0.80 10.0
weighted_avg 0.80 0.80 0.80 10.0

1	fold
tn fp fn tp Precision Recall F1

DecisionTreeClassifier 2 2 1 5 0.71 0.83 0.77
KNeighborsClassifier 3 1 1 5 0.83 0.83 0.83
LogisticRegression 4 0 4 2 1.00 0.33 0.50
SVC 3 1 2 4 0.80 0.67 0.73



Report	for	LogisticRegression
precision recall f1-score support

C 0.62 1.0 0.77 5.0
PD 1.00 0.4 0.57 5.0
macro_avg 0.81 0.7 0.67 10.0
micro_avg 0.70 0.7 0.70 10.0
weighted_avg 0.81 0.7 0.67 10.0

Report	for	KNeighborsClassifier
precision recall f1-score support

C 0.83 1.0 0.91 5.0
PD 1.00 0.8 0.89 5.0
macro_avg 0.92 0.9 0.90 10.0
micro_avg 0.90 0.9 0.90 10.0
weighted_avg 0.92 0.9 0.90 10.0

Report	for	SVC
precision recall f1-score support

C 0.71 1.0 0.83 5.0
PD 1.00 0.6 0.75 5.0
macro_avg 0.86 0.8 0.79 10.0
micro_avg 0.80 0.8 0.80 10.0
weighted_avg 0.86 0.8 0.79 10.0

Report	for	DecisionTreeClassifier
precision recall f1-score support

C 0.67 0.4 0.50 5.0
PD 0.57 0.8 0.67 5.0
macro_avg 0.62 0.6 0.58 10.0
micro_avg 0.60 0.6 0.60 10.0
weighted_avg 0.62 0.6 0.58 10.0

2	fold
tn fp fn tp Precision Recall F1

DecisionTreeClassifier 2 2 1 5 0.71 0.83 0.77
KNeighborsClassifier 3 1 1 5 0.83 0.83 0.83
LogisticRegression 4 0 4 2 1.00 0.33 0.50
SVC 3 1 2 4 0.80 0.67 0.73



Report	for	LogisticRegression
precision recall f1-score support

C 0.62 1.0 0.77 5.0
PD 1.00 0.4 0.57 5.0
macro_avg 0.81 0.7 0.67 10.0
micro_avg 0.70 0.7 0.70 10.0
weighted_avg 0.81 0.7 0.67 10.0

Report	for	KNeighborsClassifier
precision recall f1-score support

C 1.0 1.0 1.0 5.0
PD 1.0 1.0 1.0 5.0
macro_avg 1.0 1.0 1.0 10.0
micro_avg 1.0 1.0 1.0 10.0
weighted_avg 1.0 1.0 1.0 10.0

Report	for	SVC
precision recall f1-score support

C 0.83 1.0 0.91 5.0
PD 1.00 0.8 0.89 5.0
macro_avg 0.92 0.9 0.90 10.0
micro_avg 0.90 0.9 0.90 10.0
weighted_avg 0.92 0.9 0.90 10.0

Report	for	DecisionTreeClassifier
precision recall f1-score support

C 0.75 0.6 0.67 5.0
PD 0.67 0.8 0.73 5.0
macro_avg 0.71 0.7 0.70 10.0
micro_avg 0.70 0.7 0.70 10.0
weighted_avg 0.71 0.7 0.70 10.0



weighted_avg 0.71 0.7 0.70 10.0

3	fold
tn fp fn tp Precision Recall F1

DecisionTreeClassifier 2 2 1 5 0.71 0.83 0.77
KNeighborsClassifier 3 1 1 5 0.83 0.83 0.83
LogisticRegression 4 0 4 2 1.00 0.33 0.50
SVC 3 1 2 4 0.80 0.67 0.73

Report	for	LogisticRegression
precision recall f1-score support

C 0.50 1.00 0.67 4.0
PD 1.00 0.33 0.50 6.0
macro_avg 0.75 0.67 0.58 10.0
micro_avg 0.60 0.60 0.60 10.0
weighted_avg 0.80 0.60 0.57 10.0

Report	for	KNeighborsClassifier
precision recall f1-score support

C 0.75 0.75 0.75 4.0
PD 0.83 0.83 0.83 6.0
macro_avg 0.79 0.79 0.79 10.0
micro_avg 0.80 0.80 0.80 10.0
weighted_avg 0.80 0.80 0.80 10.0

Report	for	SVC
precision recall f1-score support

C 0.60 0.75 0.67 4.0
PD 0.80 0.67 0.73 6.0
macro_avg 0.70 0.71 0.70 10.0
micro_avg 0.70 0.70 0.70 10.0
weighted_avg 0.72 0.70 0.70 10.0

Report	for	DecisionTreeClassifier



precision recall f1-score support

C 0.67 0.50 0.57 4.0
PD 0.71 0.83 0.77 6.0
macro_avg 0.69 0.67 0.67 10.0
micro_avg 0.70 0.70 0.70 10.0
weighted_avg 0.70 0.70 0.69 10.0
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