
TALLINN UNIVERSITY OF TECHNOLOGY

Institute of Cybernetics

ITI70LT

Piret Lattikas 111557IVCMM

Test automation for web applications with authentication

Master thesis

Supervisor: Andres Ojamaa

 Supervisor’s degree: M.Sc.

 Supervisor’s position: Researcher

Tallinn 2014

2

Declaration

I hereby declare that I am the sole author of this thesis. The work is original and has not

been submitted for any degree or diploma at any other University. I further declare that

material obtained from other sources have been fully acknowledged in the thesis.

………………………… …………………………

 (Date) (Author’s signature)

3

TEST AUTOMATION FOR WEB APPLICATIONS WITH

AUTHENTICATION

Abstract

The aim of this thesis is to analyze the common authentication schemes used in web

applications and the possibility of automating the use of these methods in tests with

Selenium. Another goal of this thesis is to offer an overview to which extent test

automation for web applications with authentication can be achieved with Selenium and

how it can be implemented. In addition attention is drawn to the limitations of the

Selenium framework in this specific application area. This thesis concentrates on

analyzing HTTP Basic, user certificate, login form, Estonian ID-card and Estonian

mobile-ID based authentication methods.

As an outcome of this work a documentation is presented on how to implement test

automation for web applications with these authentication schemes. In addition code

examples have been added, which demonstrate how this can be achieved. An analysis of

advantages and disadvantages of the different authentication schemes and their usages is

provided. The thesis draws attention to the deficiency in the Selenium framework

regarding interaction with the browsers security popups. It is concluded that Estonian

mobile-ID based authentication with its two factor authentication offers good security

while supporting full test automation with Selenium.

4

AUTENTIMISEGA VEEBIRAKENDUSTE TESTIDE

AUTOMATISEERIMINE.

Annotatsioon

Käesoleva magistritöö eesmärk on analüüsida enamlevinud veebirakenduste

autentimisskeeme ja võimalust automatiseerida nende kasutamist Selenium testides.

Lisaks sellele on antud lõputöö eesmärk pakkuda ülevaadet sellest, mil määral on

võimalik autentimisega veebirakenduste teste Seleniumiga automatiseerida ning kuidas

seda realiseerida. Peale selle pööratakse tähelepanu Seleniumi raamistikus olevatele

puudujääkidele antud valdkonnas. Selles magistritöös keskendutakse HTTP Basic,

kasutaja sertifikaadi, sisenemise vormi, Eesti ID-kaardi ja Eesti mobiil-ID põhise

autentimise analüüsimisele.

Magistritöö tulemusena esitletakse dokumentatsiooni ja koodinäiteid sellest, kuidas

realiseerida käsitletud autentimismeetodeid kasutavate veebirakenduste testide

automatiseerimist. Peale selle on tehtud erinevate autentimisskeemide ja nende

kasutamise eeliste ja puuduste analüüs. Lõputöö juhib tähelepanu Seleniumi raamistikus

olevale puudujäägile, milleks on võimalus suhelda brauseri turva hüpikmenüüga. Töö

tulemusena on järeldatud, et Eesti mobiil-ID põhine autentimisskeem koos kahe osalise

autentimisega on turvaline ning toetab hästi testide täielikku automatiseerimist

Seleniumiga.

5

Table of Contents

Introduction ... 9

1. Test automation and cyber security .. 12

2. Overview of Tools .. 14

2.1 Introduction to JUnit ... 14

2.2 Introduction to Maven .. 14

2.3 Introduction to Selenium .. 14

2.3.1 Overview of different Selenium tools .. 15

2.3.2 An example Selenium test ... 17

2.3.3 When to use Selenium ... 18

2.4 Related work ... 20

3 Introduction to authentication schemes .. 22

3.1 HTTP Basic .. 22

3.2 Login form based authentication .. 24

3.3 User certificate based authentication ... 26

3.4 Estonian ID-card .. 28

3.5 Estonian Mobile-ID .. 30

4 Automating authentication schemes tests with Selenium 32

4.1 HTTP Basic .. 32

4.1.1 Overview of the application under test .. 32

4.1.2 Implementation and execution of the Selenium test 33

4.1.3 Summary of the authentication scheme test .. 35

4.1.4 Conclusion ... 36

4.2 Login form based authentication .. 37

4.2.1 Overview of the application under test .. 37

4.2.2 Implementation and execution of the Selenium test 38

4.2.3 Summary of the authentication scheme test .. 41

4.2.4 Conclusion ... 42

4.3 User certificate based authentication ... 43

4.3.1 Overview of the application under test .. 43

4.3.2 Preparations needed for the test implementation ... 44

4.3.3 Implementation and execution of the Selenium test 46

6

4.3.4 Summary of the authentication scheme test .. 48

4.3.5 Conclusion ... 48

4.4 Estonian ID-card .. 49

4.4.1 Overview of the application under test .. 49

4.4.2 Preparations needed for the test implementation ... 50

4.4.3 Implementation and execution of the Selenium test 51

4.4.4 Summary of the authentication scheme test .. 53

4.4.5 Conclusion ... 54

4.5 Estonian Mobile-ID .. 55

4.5.1 Overview of the application under test .. 55

4.5.2 Implementation and execution of the Selenium test 56

4.5.3 Summary of the authentication scheme test .. 58

4.5.4 Conclusion ... 59

Summary ... 60

References ... 61

Appendix 1. Maven configuration .. 65

Appendix 2. Abstract Selenium test class ... 66

Appendix 3. Example Selenium test class .. 68

Appendix 4. HTTP Basic Selenium test class .. 69

Appendix 5. Login form Selenium test class .. 70

Appendix 6. User certificate Selenium test class .. 71

Appendix 7. Estonian ID-card Selenium test class ... 72

Appendix 8. Mobile-ID Selenium test class ... 73

7

List of Figures

Figure 1. HTTP Basic authentication sequence diagram .. 22

Figure 2. Login form authentication sequence diagram ... 24

Figure 3. User certificate authentication sequence diagram ... 26

Figure 4. SSL handshake with two way authentication with certificates 26

Figure 5. Estonian ID-card authentication sequence diagram .. 28

Figure 6. Estonian Mobile-ID authentication sequence diagram 30

Figure 7. HTTP Basic Spring Security configuration ... 32

Figure 8. HTTP Basic authentication form ... 33

Figure 9. URL set for HTTP Basic automated test. .. 34

Figure 10. HTTP Basic logout link wait command .. 34

Figure 11. HTTP Basic AUT web page .. 34

Figure 12. HTTP Basic AUT page verifications after successful login 35

Figure 13. Eclipse IDE JUnit test execution results ... 35

Figure 14. Login form based authentication Spring Security configuration 37

Figure 15. URL used for login form based authentication test execution 38

Figure 16. Method to wait for page to load until specific heading is visible 38

Figure 17. Login Form AUT login page ... 39

Figure 18. Login form AUT login page error ... 40

Figure 19. Method to type specified value to the username field. 40

Figure 20. Login form AUT admin page .. 41

Figure 21. User certificate browser security popup .. 43

Figure 22. User certificate browser security popup .. 44

Figure 23. User certificate imported to Firefox profile .. 45

Figure 24. Method to initiate Firefox driver with user certificate specific profile 46

Figure 25. User certificate AUT page ... 47

Figure 26. User certificate AUT page verifications after successful login 47

Figure 27. Method to check if the specific element is present and visible on the page .. 47

Figure 28. ID-card credentials security popup .. 49

Figure 29. ID-card AUT web page ... 50

Figure 30. ID-card imported certificate .. 51

Figure 31. Method to initiate Firefox browser with Estonian ID-card specific profile .. 51

8

Figure 32. ID-card PIN popup .. 52

Figure 33. Method used to capture a screenshot ... 52

Figure 34. Mobile-ID AUT Login Page Buttons .. 55

Figure 35. Mobile-ID authentication progress bar .. 56

Figure 36. Method used to check if mobile-ID button is visible on the page. 56

Figure 37. Method used to type specified value to mobile number field 57

Figure 38. Mobile-ID authentication dialog box .. 57

Figure 39. Mobile-ID AUT main page links .. 58

9

Introduction

The society is increasingly depending on the Internet and different web applications when

handling everyday problems and situations. According to the Statistical Office of Estonia

the number of online shopping users in Estonia from the beginning of 2005 until July

2012 has increased almost three times [28]. Furthermore, almost 94 percent of domestic

Internet shopping payments were made directly from bank accounts using the Banklink

service. Increasing usage of web applications and growing risks, forces application

developers to put more effort and thought into web application security. Users of Internet

banking have the expectation that their data and transactions are securely processed and

unreachable to third parties.

In order to ensure that the web application user is able to see only the data he has the

rights to see, the system has to know which user is accessing the application. So to be

able to authorize the user, giving him corresponding rights to access the system, it is first

needed to identify and then authenticate him. User identity is usually found based on

username, personal identification code, user email address or some other similar

information. The information obtained during identification is, who the user claims to be

[49]. After it is known who the user acts as, it is necessary to verify that the user actually

is who he claims to be. Nowadays several authentication schemes can be used for user’s

identity verification.

Web application security and authentication has to be thought through and included

already in the process of writing the requirements for a new information system. These

requirements should then be followed in the phase of developing the system. While

testing the web application it is also important to test the authentication to ensure its

operating reliability. During the functional testing phase it is verified whether the

developed module or system behaves in a way that is expected from it [13]. Therefore, as

the authentication can be considered a functionality of the application it should be also

tested during the functional testing phase.

Many companies use agile methods for development, where short sprints are used, which

leaves little time for testing. But developers need to be able to verify their work after

10

changes and at the same time ensure everything else still works as intended. To enable

fast and easy testing for developers test automation should be used. Automated test can

be repeatedly run in the same environment and under same conditions to verify

information systems quality. Moreover, for web applications there is a need to create

automated tests also for graphical user interface. A popular tool for this is Selenium [40].

The main purpose of Selenium is automating web browsers for testing purposes. In the

scope of this thesis the Selenium WebDriver component with JUnit testing framework

will be used for composing the automated tests. A brief introduction to tools used in this

thesis will be given in Chapter 2.

The main goal of this thesis is to analyze the common authentication schemes used in

web applications and the possibility of automating the use of these in tests with Selenium.

Another goal is to offer a documentation regarding implementation of test automation for

applications with authentication with Selenium, because the existing documentation is

lacking in this area. This thesis will concentrate on the following authentication schemes:

HTTP Basic, login form based authentication, user certificate, Estonian ID-card and

Estonian Mobile-ID.

The main motivation of this work is the fact there was a lack of documentation concerning

test automation for web applications with different authentication schemes with

Selenium. In my work as a web application developer I had the actual need for this kind

of documentation and analysis. There was a need to write automated tests for a web

application graphical user interface that was running in development server, which was

protected with user certificate based authentication. Having problems finding a

comprehensive documentation about that I started to also think about automating tests for

other web applications with different authentication schemes and how can these be done.

In this thesis it is analyzed which authentication schemes testing can be automated with

Selenium and shown how exactly it can be achieved. In addition, a side goal is to draw

attention to the technical limitations of Selenium framework that hinder test automation

of web applications using various authentication methods. There seems to be a great

interest towards this subject among people engaged in web application test automation.

The thesis is an attempt to provide documentation for testers who come across the same

problem.

11

As a result of this thesis I will present example implementations of automated test classes

for web applications with all different authentication schemes focused on in the scope of

this thesis. In addition, documentation is provided with steps how to implement these

automated tests and what preparations are needed for each. This thesis gives an overview

of this topic and should be a good starting point for people who need to get started with

test automation for web applications with authentication.

The rest of the thesis is divided into four chapters. Firstly, in Chapter 1 the connection

between test automation and cyber security is pointed out and the importance of

automated tests to ensure web application security is presented. Secondly, Chapter 2 gives

an introduction to the tools used along with Selenium. Moreover, the question of which

tests Selenium is a perfect tool for and which tests should not be automated using it is

discussed in Chapter 2. Thirdly, in Chapter 3 a closer look is taken at the authentication

schemes discussed in this thesis. The advantages and disadvantages of these schemes is

pointed out. In Chapter 4, the focus is on test automation for web applications with

authentication schemes with Selenium. An answer is given whether automating a

particular method with Selenium is possible at all. In addition, code examples of

implementing authentication schemes test automation with Selenium is presented.

Aspects that need improvement in Selenium are highlighted.

12

1. Test automation and cyber security

Testing is a process of planning, preparation, and measuring aimed at establishing the

characteristics of an information system and demonstrating the difference between the

actual and the required status [24]. Sufficient testing of the web application allows the

system developers to improve the quality of the information system. Properties such as

reliability and security can be seen as parts of software quality and hence gain from the

testing process. However, no application can be fully tested and for this reason the critical

parts of the system should get more attention during the testing phase.

Automatic software testing can significantly increase the testing that can be done in

limited time, so that tests that would otherwise take hours to run manually, can after

automation be run in minutes [15]. In addition, a great advantage of automated testing is

that the same properties are always tested exactly the same way [26]. Testing in the same

environment and in the same state is important to ensure the accuracy and the

comparability of the test results.

Given the importance of web applications to their users, the systems have to ensure the

protection of confidential and valuable data. The developers of web applications share

the responsibility of securing their products. A good way to avoid many security pitfalls

is through test automation and verifying the test results after changes. That way it is

possible to check that no change presents a security hole in places, which are covered

with automated tests. The authentication is a critical part of web applications and test

automation for it is therefore important. If these steps are bypassed during testing phase

security holes and vulnerabilities may occur in the application later that could have been

discovered during the testing phase.

Sometimes it is necessary to add additional security related features after the initial

security audit. With this sort of patching some new vulnerabilities may be introduced.

Some of these mistakes can be discovered early on with test automation. Thinking

through different aspects and covering important places with automated tests can improve

web application security and good test result reports are helpful to ensure that to clients

and users. Furthermore, if the developer has positive test results he can be more confident

13

about the security of the development results. It should be emphasized that although

automated testing is a valuable approach for improving software quality, when it comes

to security, no amount of automated testing is a real substitute for critical thinking,

thorough analysis and following other software development best practices.

14

2. Overview of Tools

In order to manage a test project and handle composing and execution of tests, several

tools and frameworks are used in the scope of this thesis. This chapter gives an overview

of these tools. As Selenium is a primary part of this thesis it will described in more detail.

2.1 Introduction to JUnit

JUnit [21] is a framework to write unit tests on the Java platform. In case of JUnit

framework the test will be written in the Java programming language and it will be used

to declare and execute Selenium test methods. In addition, its methods will be used to

verify the expected results. JUnit provides assertion methods for all primitive types and

Objects and arrays [20]. For instance, a frequently used method in tests is assertTrue,

which may be used to verify that a required element is present on the web page. JUnit

library version 4.11 was used in this work. Tests and methods indicated in this thesis may

not work with older versions of JUnit.

2.2 Introduction to Maven

Apache Maven [3] is a compiling and managing tool for Java programming language

based projects. Maven configuration file for a project is written in XML format in a file

named pom.xml located in the root folder of the project. A sample Maven configuration

used in the scope of this thesis, to add JUnit framework and Selenium libraries is listed

in Appendix 1.

2.3 Introduction to Selenium

Selenium [38] is set of software tools for web application test automation across different

platforms, which is easy to use and flexible. One of Selenium’s main features is executing

tests on multiple browser platforms and each Selenium tool has its own approach to

support test automation. In addition to browser based test script drafting Selenium also

includes a specific test script language Selenese, which enables writing Selenium test

15

scripts in common programming languages and running those scripts against different

browsers [33].

As stated in Selenium documentation it first came to life in 2004, WebDriver (see Section

2.3.1) project was started in 2006 and in 2008 the two projects merged into one providing

the common set of features for all users [38]. There is an official user group, where people

can get help, when having problems with Selenium or to find out if someone else has

encountered the same issue. For people who are interested in contributing code to

Selenium or just wish to help out, then all the information is available on the Selenium

“Getting Involved” homepage [37]. In this work the Selenium library version 2.40.0 was

used.

2.3.1 Overview of different Selenium tools

As already pointed out previously, Selenium is a set of software tools for web application

test automation. The following will give a short overview of each of those tools

separately. Commonly at least two of them are used together. All tests developed in the

scope of this thesis have been written in Java programming language as repeatable

automated tests using WebDriver tool.

Firstly, Selenium IDE is a Firefox plugin with easy to use interface for developing

automated tests and is simply intended as a prototyping tool [38]. Selenium IDE [43] has

support for exporting tests formatted in defined programming language for easier

implementation in other tools. Selenium IDE can be launched in a separate window for

script editing. Furthermore, Selenium IDE allows recording of the interaction with the

web page and saves it into a test case. Recorded test case can then be edited, improved

and run again. Selenium IDE is a convenient and user friendly tool for prototyping

Selenium test cases and learning Selenium syntax.

Secondly, for a long time Selenium main project was Selenium RC, which consists of

Selenium server and client libraries [39]. Selenium server is responsible for launching

and killing browsers in addition to interpreting Selenium commands and running them on

browser, acting as an HTTP proxy. Selenium RC server reports back with the results of

16

running these commands. A client library provides the interface between each

programming language and the Selenium RC Server. The main focus of Selenium RC is

to translate Selenese commands to corresponding programming language. To run

Selenium RC its server and client libraries are needed.

Thirdly, Selenium Grid [42] allows one to run tests in different machines against different

browsers in parallel. This can reduce the time it takes to complete a test suite. It is useful

especially in agile development, where release cycles are short and developers need to

verify their code after small changes. As of version 2.0 Selenium Grid was merged with

the Selenium RC server. A grid consists of a single hub, and one or more nodes. When

the hub receives a test to be executed along with information with which configuration

the test should be run, it selects the corresponding available node. After that Selenium

commands initiated by the test are sent to the node through the hub and executed within

the browser against the application under test.

Lastly, Selenium WebDriver is the future direction of the project and the newest addition

to the Selenium toolkit [38]. Selenium WebDriver was developed to better support

dynamic web pages and its main goal is to supply a well-designed object-oriented API

[41]. Selenium WebDriver drives the browser directly using each browser’s native

support for automation and for that it uses a separate driver library for each browser.

WebDriver can be used in combination with Selenium server when there is a need to run

tests on browsers in different machines. An easy way to set up Selenium WebDriver

project is to use Maven.

When running tests WebDriver launches the browser, enabling the tester to follow the

web application behavior based on commands executed by the Selenium test script. The

Selenium WebDriver tool with Java programming language is used in this work. Java

based Selenium library specification in Maven pom.xml configuration file is listed in

Appendix 1.

17

2.3.2 An example Selenium test

Let us now see a simple example to understand how Selenium WebDriver tool can be

used together with JUnit framework. For code development and JUnit test execution

Eclipse IDE [12] will be used. In the scope of this thesis all the Selenium tests are run on

Firefox browser, version 29.0.

To keep WebDriver management in one place and to ensure that the driver is initialized

the same way for every test an abstract Java class was created. Having an abstract class

enables creating simple and readable JUnit tests for developers who are not familiar with

Selenium tests inner logic. In addition, having this class saves developers from writing a

lot of the same methods in different test classes causing code repetition. The mentioned

abstract class code is listed in Appendix 2.

The test class, used to demonstrate and explain Selenium code is listed in Appendix 3. To

avoid restarting the browser it is launched once before executing test methods in the class.

For this @BeforeClass annotation is added to method createFFDriver, which

will launch the Firefox browser by initiating a new Firefox driver object and assigning its

value to the global Selenium.WebDriver variable, which is used to interact with the

browser. To ensure that the browser will be closed after running all test methods

@AfterClass annotation is added to the method cleanup. This method will also use

the previously mentioned global variable to close the browser instance with Selenium

quit command.

The example test class contains only one test method exampleTest. Firstly, the URL,

which in this test is the homepage of the Tallinn University of Technology, is opened in

the browser by calling the Selenium command get. Then the title of the page is verified

against the expected result. For this Selenium method getTitle is used, which returns

the title of the current page, together with the JUnit framework assertEquals, which

in case of disparity between the actual and expected value will stop the test execution and

return a failure.

18

The test also checks that the search field is visible. Many functions interact with page

elements to either get the value of their inner text or to click on them. For this WebDriver

has method findElement, which returns a Selenium.WebElement object or

throws an exception if a matching element is not found. This method takes a locator By

as a parameter, based on what the object is searched. To ensure that the element is present

on the page abstract class function isElementPresent uses Selenium

findElement method and if it throws an exception then false is returned, otherwise

the function will return true. The returned value is verified with JUnit method

assertTrue.

As the next step the test types the string "cyber security" in the search field. Before that

it is ensured that the field is empty by calling Selenium method WebElement.clear

and then the text is typed to the search field using Selenium method

WebElement.sendKeys. After that the test assures that there is a search button, which

in case of Tallinn University of Technology homepage is a magnifier icon. For that

method isElementPresent is used again. The search button is then clicked on by

using the Selenium command WebElement.click.

After performing an action that requires a new page to be loaded a wait command is used

to make sure that the content is present before executing new commands. To accomplish

this WebDriverWait in combination with ExpectedConditions is used, which

ensures a specific element is present on the page before continuing [44]. Finally the

beginning of the title of the search page opened is verified against the expected value

“Otsing” as already described before.

2.3.3 When to use Selenium

Although, it would be convenient to use a single tool to fulfill all testing needs, it is not

usually possible. It is not reasonable or even feasible to manage all kinds of test

automations with Selenium. Next we will take a look at what kinds of tests can be

automated using Selenium and which tests should not be implemented with Selenium.

19

Selenium is an excellent tool for consistent testing of web applications user interface

functionality in different browsers and on different machines. Moreover, in the course of

functional testing with Selenium it is possible to confirm that each button or link on the

user interface acts on a click as it is ought to. Selenium makes checking texts and field

values displayed to the user straightforward. Selenium is not suitable for checking visual

properties of user interface design as it lacks the ability to assure that the layout of

graphical elements in different browsers will remain as required.

Selenium is also unsuitable for load testing. There are many reasons for that, but one of

the main reasons is that load testing with Selenium, as it is not designed for load testing,

is much slower than using some special tool for that. In addition, load testing with

Selenium is not that accurate as the results will depend also on the speed of Selenium

executing the test commands in the browser. Furthermore, Selenium should not be used

for tests where Selenium’s execution time can interfere with the results, like performance

testing, because these test results are unreliable and not comparable.

20

2.4 Related work

While this thesis focuses on using Selenium for test automation, it is not the only tool

available for web application test automation. Some of the other tools available for test

automation are looked at in this chapter.

Ranorex [35] is a commercial test automation tool with a graphical user interface. It

enables recording the tests and re-running them like Selenium. In addition, it has a

straightforward report generation functionality. Another tool for GUI test automation is

Squish [18]. Squish is a cross-platform/cross-technology test automation tool. Similar to

Ranorex it is not free of charge and requires commercial license.

Besides the commercial tools, there are also more free alternatives available. For

example, Watir [53] is an open-source family of Ruby libraries for automating web

browsers and drives browsers the same way people do. While it enables testing web

applications developed in Java, the tests need to be written in Ruby. Another tool similar

to Watir is WatiN. WatiN [52] development was inspired from Watir and it can be used

for test automation for web applications which are based on .Net languages. WatiN does

not support writing end executing tests in Java.

There are more tools to choose from and some are platform specific meant specifically

for Android platform, for example, Android GUITAR [48] or work only on Windows

operating systems, for example, Axe Test [31]. Then there are several commercial tools,

for example, QA Wizard [36] that work on different platforms and support a wide variety

of browsers, but require a commercial license. Selenium stands out because it is an open

source project that can be used free of charge and supports different platforms and

different browsers with different tools to choose from.

Studying and experimentally confirming the support of authentication methods provided

by all these tools would require a non-trivial amount of work probably sufficient for

another thesis. Therefore, as the focus of this thesis is on Selenium, these features will

not be discussed here.

21

This concludes the part of the thesis where the relevant tools are introduced. In the

following an overview of several authentication schemes used in web applications is

given while also pointing out their advantages and disadvantages, which are important to

consider when deciding which authentication scheme to implement. In addition, some

security aspects are discussed that need to be taken into account, when using the

authentication methods.

22

3 Introduction to authentication schemes

Authentication effectiveness depends on the effectiveness of the authentication protocol

and its fundamental proof of the authority [19]. Hence it is very important to choose and

implement secure and reliable authentication scheme appropriate for the application. In

the following we will take a look at HTTP Basic, login form based authentication, user

certificate, Estonian ID-card and Estonian Mobile-ID authentication schemes.

3.1 HTTP Basic

In the Figure 1 basic overview of how this authentication method works is shown.

To summarize an HTTP Gallery article [46], HTTP Basic authentication is a simple way

to regulate access to web pages. If the server receives an anonymous request to a protected

page, it forces an HTTP Basic authentication by rejecting the request with status code 401

and setting the WWW-Authenticate header values. WWW-Authenticate header

will contain the word Basic, which will determine the authentication mechanism that the

HTTP client must use to access the corresponding page. In addition a realm string value

will be set, which can contain any value to identify the secure area.

Figure 1. HTTP Basic authentication sequence diagram

23

Many browsers will display a login screen based on that reject and send the user provided

username and password in base64 encoding. The encoded string will represent the user’s

credentials in a form of username:password. The string will then be sent to the page

in an Authorization request header.

A weakness in HTTP Basic authentication is the fact that it sends the credentials over the

network in clear text, unless the connection is encrypted using other means such as TLS

or VPN. This makes it possible for third parties to obtain user credentials [16]. Therefore,

HTTP Basic authentication should never be used without secure or encrypted

communication channel.

24

3.2 Login form based authentication

In the Figure 2 basic overview of how this authentication method works is shown.

HTTP is a stateless protocol, meaning that user data is not persisted from one page to

another on the website and one way to manage user information is through the use of

cookies [27]. For session management cookies, which will be kept in the browsers

memory until the browser is closed or the session is ended, can be used. A separate session

with unique session cookie will be created for each user. To determine which rights the

user should have, the user needs to be identified. For this login form based authentication

can be used.

In the case of login form based authentication, when the user requests some protected

page he is first directed to a login page usually containing a simple form with two fields

and a submit button. These fields are for user ID and password. After the user enters these

values the system compares them with values previously saved on the server. If the

combination of these two matches the values known to the server the user is successfully

authenticated and authorized.

After a successful authentication the server will generate a new session to avoid session

fixation attacks [23] and send the session cookie to the browser. The browser will present

the cookie to the server with every following request enabling the user to interact with

Figure 2. Login form authentication sequence diagram

25

the application during the session without having to authenticate again before every

request [47]. Usually a specific and unique ID is assigned to one concrete session and this

is kept persistent throughout the entire session in the session cookie. On the server side

all required information about this session is kept, for example the logged in user’s

username and language preference. As a first thing, when a browser sends the cookie with

the request to the server, it is first determined if the user has already been authenticated

and that the session with the ID is still active [2].

When using this approach for authentication some security aspects should be taken into

consideration. Firstly, session cookies are prone to several attacks like brute force [14]

and XSS attacks [32]. When a third party is able to capture an active session cookie, the

attacker is able to act on behalf of the user and access all information available to the user

under attack. To prevent cookies from being observed by third parties due to the

transmission of the cookie in clear text it is mandatory to use an encrypted HTTPS

connection for the entire web session [45].

An advantage of using login form based authentication is that cookies are easy to create

and manage, making implementing this approach straightforward [34]. In addition

implementing a separate page with a form for the user to present his credentials and

comparing them with previously stored values is also rather easy to achieve. For users

this authentication measure is simple and understandable. This is a frequently used

authentication scheme in web applications.

26

3.3 User certificate based authentication

In the Figure 3 basic overview of how this authentication method works is shown.

The actual handshake performed is more complicated and shown in Figure 4 [17].

Figure 3. User certificate authentication sequence diagram

Figure 4. SSL handshake with two way authentication with certificates

27

User certificate based authentication as the name indicates is authenticating the user to

the server and establishing the authenticity of the user via public key cryptography and

user certificates. When accessing a protected page over HTTPS with configured user

certificate based authentication TLS Handshake protocol is used [11] and during the

handshake the client and server exchange their public key certificates to verify their

identity.

The certificates can be self-signed or signed by some Certificate Authority (CA). To make

development of web applications with user certificate based authentication easier HTML5

introduces a new markup element keygen [9], which represents a control for generating

a public-private key pair and for submitting the public key from that key pair to be signed

by the server. This approach helps to save time and money as there is no need to get the

certificate signed by some authorized CA.

The advantage of user certificate based authentication is that user does not need to

remember a password for the site. Instead a certificate is usually held on the computer's

hard drive and imported into the browsers memory. When the site requests user

authentication the browser accesses the certificate and manages the authentication on

behalf of the user. Usually the browser asks for the user to specify the correct certificate

that should be used with the corresponding website if not configured otherwise.

Furthermore, unlike with login form based authentication, where the server side also

keeps the user credentials, with certificate based authentication the server does not store

any secret information as the secret key is kept on the client side.

On the other hand, certificate based user authentication has its disadvantages and may not

be the first choice for some websites. When the web application should be accessible to

user from different machines it is not a good solution. This is because it will require

setting up the certificate on all machines or forces users to use the same computer each

time they access the website.

28

3.4 Estonian ID-card

In the Figure 5 basic overview of how this authentication method works is shown.

Estonian ID-card is a legal personal identity document, which can be used in the real

world as well as in the digital world. For example using an ID-card is a convenient and

safe way to access internet banks and using other sites holding highly confidential

information. Furthermore, ID-card is safer than simple user certificate because it uses a

two factor user identification system. In addition to owning a physical card containing the

certificates and corresponding private keys, the user has to know a four digit PIN code.

Without the PIN there is no way to use the certificates on the ID-card for authentication.

The authentication process works as follows [30]. Estonian ID-card chip contains two

keys, public and private key along with the user certificate. The public key and user

certificate are on the public part of the chip, where it can be accessed for example through

Public Key Infrastructure. The private key is stored on the secure side of the chip, where

it can only be accessed with PIN codes. These two keys are connected to each other

mathematically, but there is no way to derive private key from the public key. While, sent

messages encrypted with the public key can only be read by the receiver who has the

private key, messages encrypted with the private key can be validated with the public key.

Figure 5. Estonian ID-card authentication sequence diagram

29

During the authentication with ID-card the server sends the session key encrypted with

the ID-card public key. This session key is in return decrypted with the private key. After

that a secure connection with the server is enabled and encrypted packets will be sent over

the physical network. If the user certificate is invalid (for example, expired or revoked)

or the user inserts a wrong PIN code the session key exchange fails and the connection

with the server will also fail. In order to enable the use of Estonian ID-card based

authentication the user has to install special software to his computer and attach the ID-

card reader with physical card to the computer.

In order to develop Web applications with Estonian ID-card based authentication support

DigiDoc libraries can be used, which are available on the ID homepage [4]. At the

moment of writing this thesis there were five libraries available supporting programming

languages like Java and C. In addition to libraries, for electronic signing support, the

DigiDocService SOAP-based web service is available.

On the one hand, based on the ID homepage this authentication scheme has many

advantages [6]. It is a better and more secure measure than login form and user certificate

based authentication. Moreover it lowers the risk of somebody presenting the false

identity to the website as the user has to have personal ID-card and has to know the PIN

code assigned to it. Even if the physical card is stolen from the user it cannot be used in

fraud without the PIN. From the user’s side of view it is convenient as there is no need to

remember many different usernames and passwords as one card and one PIN can be used

for authentication on many websites.

On the other hand, in order to use ID-card for authentication the user has to have a special

ID-card reader attached to the computer, which requires specific device drivers to be

installed on the computer beforehand as covered previously. Therefore it may be

inconvenient from the user’s point of view compared to login form based authentication,

for example. Although many people carry their ID-card with them daily it is not

convenient when going abroad as there is also a need to carry the ID-card reader.

30

3.5 Estonian Mobile-ID

In the Figure 6 basic overview of how this authentication method works is shown.

Mobile-ID was first introduced in May 2007 by mobile operator EMT and it could only

be used in private sector applications in Estonia. In 2011 mobile-ID was recognized as a

national document for user identification [25]. Mobile-ID is a similar user identification

solution as ID-card with two certificates for identification and other one for digital

signing. In case of Mobile-ID these certificates and public-private key pairs are placed on

the mobile SIM-card [7]. One person will be associated with one set of certificates and a

SIM-card can only contain one set of certificates.

Data exchange between the mobile phone and the corresponding web service

environment is done over encrypted connection [7]. According to the DigiDocService

specification in order to raise security for Mobile-ID authentication web applications have

to clearly display a verification code to the user and ask the user to check the code before

entering the PIN code in the phone [5]. If the verification code on the website and in the

phone do not match, then the user is obligated to terminate the authentication process and

avoid entering the PIN code. Although, the authentication process with Mobile-ID is

similar to ID-card authentication process, for Mobile-ID authentication support SOAP-

based RPC-encoded DigiDocService web service has to be used.

Figure 6. Estonian Mobile-ID authentication sequence diagram

31

On the one hand, Mobile-ID has its advantages over ID-card based authentication.

Mobile-ID is easy to use and more convenient than ID-card, because it works everywhere

with mobile phone coverage. In addition there is no longer the need to worry about

installing necessary software on your computer or purchasing card readers as with

Mobile-ID the software will be in your mobile phone. Furthermore, all modern mobile

phones are suitable for Mobile-ID and its security level is considered equal to ID-card

security level, so it can be trusted for authentication [7].

On the other hand, one disadvantage or security risk for Mobile-ID is the vulnerability of

the mobile phone. In case of keystroke logging threat on the mobile phone the PIN value

for Mobile-ID authentication can easily be captured and forwarded on to a remote location

[10]. While this is a major threat to Mobile-ID authentication, the PIN code cannot be

used without owning the corresponding SIM-card.

32

4 Automating authentication schemes tests with Selenium

In this chapter the focus will be on automating previously introduced authentication

schemes with Selenium. An overview of how to implement these tests with code

examples are given. All code examples represented in this chapter are in Java

programming language written as JUnit tests using Selenium WebDriver tool for browser

management and executing commands in the browser.

4.1 HTTP Basic

4.1.1 Overview of the application under test

As already covered in Section 3.1 HTTP Basic is a simple way to regulate access to web

pages. For the application under test (AUT), against which the Selenium test will run, a

simple example web page with HTTP Basic Authentication is used. For authentication

implementation Spring Security [51] framework is used. Moreover, the version of Spring

Security used in the AUT is 3.0.5.RELEASE. Spring Security configuration is located in

the XML file named spring-security.xml and to configure HTTP Basic

authentication the lines shown in Figure 7 are added to the file.

<http>

<intercept-url pattern="/*" access="ROLE_USER" />

<http-basic />

</http>

Figure 7. HTTP Basic Spring Security configuration

This is the simplest and minimal configuration needed to restrict access on the request

URL that matches the pattern specified in the configuration. Requests matching the given

pattern must fulfill access requirements set in the access attribute [1]. Based on this

configuration every request made to specified path requires a user with given role

ROLE_USER to be authenticated using HTTP Basic authentication.

Firstly, the AUT will run in the same computer as the tests. The application and the

Selenium tests are run using Eclipse IDE. The project is run under Eclipse Java EE

perspective with pre-configured Apache Tomcat application server [50] instance. Tomcat

33

version 7.0.53 was used to execute applications under test. The application server is

started before executing any tests.

As described in the Section 3.1 many browsers display a login form to insert username

and password based on the WWW-Authenticate header sent by the server for HTTP

Basic authentication. The AUT site is accessible from the URL

http://localhost:8080/HTTPBasicTest/. When opening the AUT web page

in the Firefox browser we see the form and fill it with test username and password as

shown on the Figure 8.

After inserting the test users username and password values the corresponding role is

assigned to the user and he is redirected to the page requested. Based on AUT Spring

Security configuration for user with ID “test” this role is ROLE_USER. After successfully

being authenticated a simple web page is displayed with title “HTTP Basic Test Page”.

4.1.2 Implementation and execution of the Selenium test

The Selenium test supporting HTTP Basic authentication has a similar structure to the

example described in Subsection 2.3.2 – the test uses the same abstract base class for

common functionality. The Firefox browser instance is also started and stopped identical

to the example test. The source code of this test is listed in in the Appendix 4.

Firstly, the URL is specified for the test. As Selenium cannot see the security popups

displayed by the browser the test cannot enter the username and password through the

displayed form. For testing with Selenium there is an option to send the credentials in the

Figure 8. HTTP Basic authentication form

34

URL in a format http(s)://username:password@url. In the AUT the

username for a valid user is “test” and the password is “123456”. Keep in mind that this

is a test project for this thesis and the password should never be that trivial. While taking

all this into consideration the URL used for this Selenium test is shown on the Figure 9.

String url = "http://test:123456@localhost:8080/HTTPBasicTest/";

Figure 9. URL set for HTTP Basic automated test.

Secondly, the test code contains method createFFDriver annotated with

@BeforeClass annotation, which will setup the Firefox. Then starting JUnit test

execution this method is executed first. After this method has run an empty Firefox

window will be displayed in the browser started by the Selenium driver.

Thirdly, the test starts the same way example test started by opening the URL specified

previously. As the user credentials are sent in the URL to the server, no authentication

popup is displayed. The user requesting specific page is authenticated based on the

credentials described in the URL. Again the waitUntilLinkIsVisible command

is used to assure that the page has time to load before continuing with the test. Moreover,

as it is known that the page has to display a logout link the line demonstrated in Figure

10 is added to the test execution.

waitUntilLinkIsVisible("Logout");

Figure 10. HTTP Basic logout link wait command

The user is authenticated and given access to the site based on the URL. This means there

is no need to add additional steps to the test to enter username and password. For Selenium

test the page displayed is already the web page of the application. Page contains the

username of the authenticated user and a logout link as shown in Figure 11.

Figure 11. HTTP Basic AUT web page

35

In addition, to verify that the user is indeed successfully authenticated and a correct page

is displayed in the browser window some assertions are added. As a first thing it is ensured

that the page title has the value expected. After that it is verified that the text displayed

between <h3> HTML tags is also the one expected and contains the right username

value. This is achieved by adding the two lines shown in Figure 12 at the end of the HTTP

Basic authentication scheme Selenium test method httpBasicTest.

assertEquals("HTTP Basic Test Page", getPageTitle());

assertEquals("Username : test", getHeadingText("h3"));

 Figure 12. HTTP Basic AUT page verifications after successful login

Lastly, to clean up after the tests and close the opened browser the method cleanup

with annotation @AfterClass is added. Identically to the example test it calls the

abstract class method quitBrowser. After this method is executed the browser is

closed and the JUnit test execution exits with successful result. In Eclipse IDE “JUnit”

tab the output demonstrated in Figure 13 is displayed.

4.1.3 Summary of the authentication scheme test

On the one hand automating HTTP Basic authentication scheme tests with Selenium is

rather easy and does not require much code writing. One thing that differs testing

application with HTTP Basic authentication and regular application without

authentication is the format of the URL sent to the protected page. In addition this makes

testing the authentication with different user credentials also straightforward.

Figure 13. Eclipse IDE JUnit test execution results

36

On the other hand this test raises many issues and security concerns. Firstly, multiple

login attempts and login failures cannot be tested with this approach. If the first attempt

fails, meaning the URL contains false credentials, then the browsers security popup will

be displayed again for another login attempt. And as already covered before the main flaw

in test automation for the web applications with HTTP Basic authentication with

Selenium is that Selenium WebDriver does not see the browsers security popups and

cannot interact with them.

Moreover, as mentioned in the Section 3.1 HTTP Basic authentication scheme should not

be used to protect valuable and confidential pages because of its security issues. A major

security issue with testing it with Selenium is that the password and username are sent as

clear text. This makes it vulnerable to attacks, as it is relatively easy for third parties to

read the user credentials. Of course this test project for demonstrating HTTP Basic

authentication could be improved by setting up an encrypted network connection and

restricting the number of login attempts.

Furthermore, from the testing side this Selenium test is not as realistic as it should be.

Inserting the user credentials for authentication is bypassed by adding them to URL. This

makes testing HTTP Basic authentication based browser security popup displaying

impossible. In addition there is no way to verify the value of the realm displayed to the

user. Making it hard to test different browser reactions to the WWW-Authenticate

header and find possible errors in the realm value through automated testing.

4.1.4 Conclusion

To sum up, automating HTTP Basic authentication scheme testing with Selenium is

possible and quite easy to implement. This makes writing automated Selenium tests for

sites protected with HTTP Basic authentication simple. It would be helpful if the

Selenium WebDriver tool supported interaction with browser popup windows and this is

a limitation in Selenium that should be addressed in the future.

37

4.2 Login form based authentication

4.2.1 Overview of the application under test

Similar to the HTTP Basic authentication the application under test (AUT), against which

the Selenium test will run, is a simple example web page with login form based

authentication. In case of this application also Spring Security was used to implement

authentication on the pages with restricted access. Configuration added for login form

based authentication in the AUT is shown in Figure 14.

<http auto-config="true">

 <intercept-url pattern="/admin**" access="ROLE_USER" />

 <form-login

 login-page="/login"

 default-target-url="/welcome"

 authentication-failure-url="/login?error"

 username-parameter="username"

 password-parameter="password" />

 </http>

 Figure 14. Login form based authentication Spring Security configuration

From this configuration it can be seen that the access is restricted on the admin site and

only users with role ROLE_USER are allowed access to that page. Another thing to notice

is that in this AUT a page has been specified in case the authentication fails. In that case

the user is redirected back to the login page with a corresponding error message displayed.

An identical runtime environment to the previous example is used here.

After the tomcat is started the AUT is accessible from the URL

http://localhost:8080/LoginFormTest/, which is not a protected page and

opens a welcome page. The protected page is accessible from the URL

http://localhost:8080/LoginFormTest/admin, which in the case when

there is no valid session found redirects the user to the login page based on the Spring

Security configuration.

After inserting correct user credentials to the form and submitting it, the user is

authenticated by assigning him the role ROLE_USER. The same user credentials are used

for login form based authentication as in Section 4.1. After the user has been successfully

38

identified and authenticated he is redirected to a simple admin page containing a message

with text “This is protected page!” and a logout link. In the following the Selenium test

for this authentication scheme will be presented.

4.2.2 Implementation and execution of the Selenium test

Let us now focus on the implementation details of the test using form based

authentication. The general outline of the implementation of the test is similar to the

example discussed in Subsection 4.1.2. The full source code of the test class is listed in

Appendix 5.

As described above, the page that is protected in the AUT is the admin site. As the test is

intended to test login form based authentication specifically, then the URL will be set for

the admin site. Taking this into consideration the URL used for this test is demonstrated

in Figure 15.

String url = "http://localhost:8080/LoginFormTest/admin";

 Figure 15. URL used for login form based authentication test execution

Firstly, the test method for login form based authentication loginFormTest starts with

opening the URL pointed out before. Based on the Spring Security configuration for the

AUT the URL will redirect the user to the login page. Knowing that the login page

contains a heading with text “Login Form” a call for the abstract class function

waitUntilHeadingIsVisible is added to ensure that the page is loaded before

continuing with test execution. This method is realized with Selenium methods described

in Selenium example test (see Subsection 2.3.2), the code for it is shown in Figure 16.

protected void waitUntilHeadingIsVisible(final String heading) {

 (new WebDriverWait(driver, 30))

.until(ExpectedConditions

.textToBePresentInElementLocated(By

.cssSelector("h1"), heading));

}

Figure 16. Method to wait for page to load until specific heading is visible

39

Secondly, the login form contains a username and password field and a submit button to

forward the credentials to the server for authentication. Before filling the fields with

values there should be a check that the page loaded correctly and required fields are

visible. To accomplish this JUnit method assertTrue is used to verify the answers

from calls to abstract class methods isUsernameFieldVisible and

isPasswordFieldVisible. These methods call the method which uses Selenium

WebDriver.findElement function to find the elements by giving in the locator

By.name.

After it is verified that the required fields are present user credentials are typed to the

fields. Firstly the credentials of the non-existing user are entered, to demonstrate the page

displayed then the wrong username and password are entered. After adding the bogus

values to the fields the page displayed is brought out in Figure 17.

The submit button visible on the picture above is clicked. After that the expected action

is that the user is redirected back to the same page and a corresponding error message

with text “Invalid username and password!” is shown. For that we add lines to the test to

assert the expected value of the page title and verify the value of the error message

displayed between tags with assigned class containing name “error”. The error displayed

with the form is pointed out in the Figure 18.

Figure 17. Login Form AUT login page

40

Thirdly, after verifying that the correct data is displayed to the user, after inserting the

wrong credentials, it is verified that after fixing the username and password values the

user is still able to successfully access the restricted area. For that the test next fills in the

displayed form with valid credentials which in this AUT are “test” for username and

“123456” for password.

Some websites containing login forms do not clear the wrong values typed when

displaying an error message. That is why it is important to remove the old values before

entering correct values to the login form fields. For this Selenium method

WebElement.clear is used in the method to enter a new username value as shown in

Figure 19.

protected void typeValueInUsernameField(String username) {

 WebElement field = driver.findElement(By.name("username"));

 field.clear();

 field.sendKeys(username);

 }

 Figure 19. Method to type specified value to the username field.

After that submit button is clicked again. The expected result is that the user is

authenticated and given access to the admin page. Before asserting that the displayed page

is the correct one, the test waits until the logout link is visible. For this a similar method

waitUntilLinkIsVisible is used as already mentioned before. The page

displayed to the user is shown in Figure 20.

Figure 18. Login form AUT login page error

41

Lastly, the test ensures that the displayed page is the one expected. In addition to the

logout link the page should contain the heading “Message : This is protected page!”,

which is searched form between <h3> HTML tags. After asserting the title of the page

displayed and the heading mentioned before the JUnit test method exits with success and

the Firefox browser used for the test is closed.

4.2.3 Summary of the authentication scheme test

On the one hand testing login form based authentication is easy and does not require much

code writing. All that is needed is interaction with one form, by inserting two values to

specific fields and clicking one button. In addition the test does not require special setup

of the browser, the basic Firefox browser launched by the driver is enough.

Moreover, Selenium enables testing of the login form in a way it would be used by a user

accessing the page. There is no need to somehow mock the login or like in case of HTTP

Basic send the credentials with the URL. This enables testing the login form functionality

and behavior in different browsers and get actual feedback about it. This is especially

important then login is done using custom JavaScript or developers wish to test Ajax

based requests and responses in different environments.

Furthermore, the advantage of using Selenium to automate login form based

authentication testing is the ability to test error messages displayed as demonstrated. In

addition there is also the possibility to test the behavior of the application in case the user

exceeds the allowed number of login attempts. In this case, if the application locks the

user out for some minutes, the Selenium test can be programmed to wait for the required

time and verify that login is possible again after that time and not a minute before.

Figure 20. Login form AUT admin page

42

On the other hand this Selenium test should not be run with the actual user credentials,

because the username and the password are written into the test code. In case some

unauthorized person is able to access the test code it is rather easy to gain access with the

data included in the tests. These tests should always be run against some test or

development environment with values specific for testing.

Lastly, some companies may wish to keep actual data also in test environment to ensure

that, based on the test results in there, the reliability of the application in live environment

could be assessed. In that case, to avoid hard-coding passwords in test code, an external

method (e.g., loading from a configuration file or getting values from the execution

environment values) for storing and obtaining the usernames and passwords at test

runtime should be used.

4.2.4 Conclusion

To sum up, automating the login form based authentication with Selenium is rather simple

to accomplish. In addition it does not require additional setup for the browser or changes

in the URL used to access the website. This makes test results gained from these

automated tests comparable to application behavior in real situations and helps to avoid

mistakes in authentication scheme implementation early on.

Although, no shortcomings in Selenium framework for login form based authentication

testing were identified, additional measures should be used to secure the test environment.

Before setting up the environment, where to run Selenium automated tests, testers should

make sure that the confidential and valuable information is protected from unauthorized

persons. Overall Selenium WebDriver is a great tool to use for test automation for web

applications with login form based authentication.

43

4.3 User certificate based authentication

4.3.1 Overview of the application under test

For user certificate based authentication application under test (AUT) a company’s

Jenkins page was chosen. Jenkins is a continuous integration solution, which can be used

to manage projects builds, releases, testing and monitoring the run of these jobs [22]. The

AUT has restricted access on the page so that only company employees with certificates

have authorization to see the website.

Before the protected website can be accessed with Firefox the certificate has to be

imported to the browser. Then trying to access the page the server initiates the

authentication by requesting the user certificate. The AUT is accessible from the URL

https://office.zerotech.ee/. When the server requests for user certificate the

browser opens a security popup displaying information about available certificates. The

popup displayed in Firefox is presented in Figure 21.

After selecting the correct certificate and being successfully authenticated in the server

the user is directed to the protected page. The page in case of this AUT page is the Jenkins

dashboard. In the following additional steps needed to setup Firefox driver for automating

tests with Selenium for user certificate based authentication are demonstrated.

Figure 21. User certificate browser security popup

44

4.3.2 Preparations needed for the test implementation

As already mentioned in Section 4.1 Selenium driver cannot see and interact with

browsers security popups. Because of this before testing the website with user certificate

based authentication there is a need to import and enable a specific certificate for the

AUT. Selenium has support to specify specific driver profiles and following will show

exact steps needed to specify a Firefox profile for AUT.

Firstly, the custom Firefox profile needs to be saved to a folder where the test code can

access it. For this a new folder with name FFProfile is created under the test projects

src/test/ directory. In case of testing different certificates, different profiles have to

be created under different folders for each user certificate.

Secondly, a Firefox profile has to be created. Mozilla support page has a description on

how to open the Firefox Profile Manager and use Create Profile Manager to enter a new

profile [29]. For this test custom profile named user_certificate was created and

the folder specified for this profile is the one created previously. Now to add user

certificate to the profile the browser is launched choosing the custom profile.

Thirdly, Firefox options pane is opened and tab “Advanced” is chosen. From there tab

“Certificates” is opened. Now to make sure the browser would skip asking the certificate

while running the Selenium test the option “Select one automatically” as demonstrated in

Figure 22 is set.

Figure 22. User certificate browser security popup

45

The certificate has to be imported under that profile. For that on the same pane the “View

certificates” button is clicked and tab “Your certificates” is chosen. For a new profile the

list of certificates should be empty. The test certificate is imported by clicking on the

“Import” button and locating the .p12 certificate file and clicking “ok” button. This is a

manual process.

After that the certificate popup to set the master password is displayed. For automated

testing purposes the password needs to be left empty. Otherwise before sending the user

certificate to the server the browser will ask for a password through browser security

popup. So without making any changes “ok” is clicked. The browser prompts a message

that this is not secure, but for testing purposes it should be ignored. One last thing that

needs to be done before the certificate is successfully added to the list is to enter the

password assigned to the certificate so that Firefox could access it. Now the certificate

has successfully been imported and can be seen in the list of “Your certificates” as show

on the Figure 23.

Lastly, to ensure that Firefox browser is able to bypass the untrusted connection page it

has to be trusted under the profile. To do that the AUT restricted page should be opened

while still accessing Firefox browser with the custom profile. So URL

https://office.zerotech.ee/ is typed to the address field and as expected the

browser displays the “This Connection is Untrusted” page. From there the “I Understand

the Risks” should be chosen and button “Add Exception…” is clicked to confirm the

security exception. Now this page is trusted and automatically authenticated by the

browser. Following will demonstrate how to implement the Selenium test based on the

custom profile.

Figure 23. User certificate imported to Firefox profile

46

4.3.3 Implementation and execution of the Selenium test

To begin with test automation for web application with this authentication scheme with

Selenium the first thing as with other tests is to specify the URL to be used. The source

code of the test class used for this test is listed in the Appendix 6. As can be seen from

the test class code for this test a different method setUpFFDriverWithProfile is

used to setup and launch the Firefox browser. The major difference with driver setup is

that for this test custom profile is used to bypass certificate related browser security

popups. The Firefox driver is initiated with the lines of code shown in Figure 24.

@BeforeClass

 public static void createFFDriver() {

 // Launch the Firefox browser using Firefox driver.

FirefoxProfile profile = new FirefoxProfile(new

File("src/test/FFProfile"));

 setUpFFDriverWithProfile(profile);

 }

 Figure 24. Method to initiate Firefox driver with user certificate specific profile

Moreover from this code it can be seen that the Firefox profile is created based on the

setup created previously under the folder src/test/FFProfile. After initiating a

new profile it is passed as a parameter while creating a new instance of the Firefox driver.

When the driver is initiated a new Firefox browser instance has been launched showing a

new blank tab.

Firstly, as with previous test the URL specified before is opened. In case of this test, as

we set the Firefox browser to automatically select the certificate for the websites, no

security popup is displayed to select the certificate. Instead the browser selects the

certificate and sends it to the server for authentication. So the user is authenticated and

authorized on the background. The connection to the corresponding page is already

trusted and security confirmation of that has been saved into the custom profile.

Moreover, based on this the first page displayed should already be the expected Jenkins

dashboard page, which is partly demonstrated in the Figure 25.

47

Furthermore, as can be verified from the Figure 25 the test page contains a link with text

“Jenkins”. So before asserting if the website is the one expected the test waits first until

this link becomes visible on the page. After making sure the page has loaded it is verified

that the page title equals with the expected one and link to add new jobs to Jenkins is

available. This is realized with adding the lines displayed in Figure 26 at the end of the

test.

assertEquals("Dashboard [Jenkins]", getPageTitle());

 assertTrue(isLinkWithTextVisible("New Job"));

 Figure 26. User certificate AUT page verifications after successful login

Lastly, to verify the link is visible with the text “New Job” the abstract class method

isElementPresent is used with giving in the By locator as a parameter. The By

locator for link with text is set with using By.linkText(text) and setting the text

string as a parameter. When the element is found the method returns true, otherwise it

will return false. The elements presence on the page is checked with the code shown in

Figure 27.

private boolean isElementPresent(By by) {

 try {

 driver.findElement(by);

 return true;

 } catch (NoSuchElementException e) {

 return false;

 }

 }

Figure 27. Method to check if the specific element is present and visible on the page

Figure 25. User certificate AUT page

48

4.3.4 Summary of the authentication scheme test

On the one hand automating a web application with user certificate based authentication

testing with Selenium is manageable. There is no need to disable authentication for testing

phase and this enables running the application for testing also securely. Moreover, after

creating a custom Firefox profile once for testing the test code itself is rather simple and

the thing required for it is to initiate Firefox with that profile.

On the other hand this testing method forces creating multiple profiles to test different

user certificates. This may be necessary if various users have different rights and

authorization should be tested in miscellaneous situations. Although it is not especially

difficult to manage multiple profiles it requires extra time and work from testers. Similar

to HTTP Basic authentication testing some security measures in testing the user certificate

based authentication are bypassed. As Selenium is not able to see security popups or pages

displayed by the browser and this forces testers to find ways to bypass them. At least no

user credentials are written into the code in plain text.

Lastly, this approach is not a secure way to manage testing. As there is a need to bypass

many security restrictions, a lot of browsers inner security measures are turned off. For

example adding additional master password to protect the certificates and other user

information stored in the browser’s profile. While there are some security concerns then

implementing user certificate based authentication testing with Selenium, it is still

considered more secure than testing login form or HTTP Basic based authentication

schemes.

4.3.5 Conclusion

To sum up, test automation with Selenium for applications with user certificate based

authentication is manageable and through custom Firefox profiles also rather easy.

Although, it requires bypassing some important security measures in the browser

instance. As already mentioned in Section 4.1 one concern towards Selenium framework

in that part is being able to interact with the browsers security popups. It would make

testing authentication schemes and other browser security measures possible and enable

detecting vulnerabilities or faults in security implementations with automated tests.

49

4.4 Estonian ID-card

4.4.1 Overview of the application under test

First of all, in order to test ID-card the machine running the tests needs an ID-card reader

to be attached to it and special software to be installed. Without it the testing is impossible.

For application under test the official website to test the ID-card is used. It requires

authentication with ID-card and is accessible from the URL

http://www.sk.ee/tervitus/. In addition before using ID-card with Firefox

browser users have to ensure that EstEID Firefox plug-in has been installed and is

enabled and also that Estonian ID-card authentication module is installed and enabled

under Firefox Extensions.

Moreover, before the restricted page can be accessed the user must authenticate itself with

a valid ID-card. Before this can be done the ID-card has to be inserted into the reader that

in return has to be attached to the computer. When accessing the URL with Firefox the

browser will first prompt a security popup asking the user to choose the person credentials

trying to access the page. The popup displayed is shown in Figure 28.

After choosing the correct credentials the browser opens the second popup asking for the

PIN code. The PIN code for authentication is four digits long and given to the user with

the ID-card. After inserting the PIN code the authentication is successful and the user is

directed to the restricted web page displayed in the Figure 29.

Figure 28. ID-card credentials security popup

50

4.4.2 Preparations needed for the test implementation

Again the same problem occurs, there is no solution in Selenium to interact with browsers

security popups. This is why there is a need to setup another Firefox profile for ID-card

testing. As already mentioned previously the same Firefox profile cannot be used to test

two different certificates. Following will present exact steps needed to configure ID-card

certificate in the Firefox profile.

In addition as also covered previously Firefox Profile Manager is used to create a new

profile. For the Selenium test to be able to access the created profile additional folder

under the src/test/ directory is created named IDCardFFProfile. Now again to

add user certificate to the profile the browser is launched choosing the custom profile.

Similar to Subsection 4.3.2 it is needed to ensure that the browser will select the certificate

for authentication automatically. Moreover, as demonstrated in Figure 16 the option

“Select one automatically” has to be set on the “Certificates” tab on the Firefox browsers

“Options” pane. Also it should be verified that necessary extensions and plugins have

been enabled for the required profile.

Furthermore, ID-card certificate cannot be loaded like the user certificate from the tab

“Your certificates”. So to add ID-card authentication certificate to the browsers

certificates list the AUT website URL is opened first. While, the browser does not display

the certificate selection security popup anymore, what is asked is the PIN code for ID-

card authentication. After inserting the correct code the user is directed to the AUT page

Figure 29. ID-card AUT web page

51

displayed in Figure 29. Lastly, then checking again the user can see his certificate listed

under the “Your certificates” tab as noted in Figure 30.

4.4.3 Implementation and execution of the Selenium test

Firstly, the URL specified for this test has already been mentioned previously. The test

class used to automate the test for web application with ID-card based authentication is

presented in the Appendix 7. Similar to the test for application with user certificate based

authentication, the Firefox driver for this test is also initiated using the abstract class

method setUpFFDriverWithProfile and the custom profile for ID-card testing

created before is given in as the parameter. The code used for Firefox browser initiation

is listed in Figure 31.

@BeforeClass

 public static void createFFDriver() {

 // Launch the Firefox browser using Firefox driver.

FirefoxProfile profile = new FirefoxProfile(new

File("src/test/IDCardFFProfile"));

 setUpFFDriverWithProfile(profile);

 }

Figure 31. Method to initiate Firefox browser with Estonian ID-card specific profile

Secondly as can be seen from the test class the JUnit method EstonianIDCardTest

used for this test is not very long. As a first thing the URL for the application under test

website is opened. From Figure 29 it can be seen that the page contains a link with text

“www.id.ee”. So again a method call waitUntilLinkIsVisible is added to ensure

that the page is loaded before continuing with test execution. After the page has been

loaded it can be seen that the website still asks for a PIN as demonstrated in Figure 32.

Figure 30. ID-card imported certificate

52

Moreover, for the test to pass at the moment the correct PIN is entered from the keyboard

manually. After that the page is successfully loaded. But that test is not really fully

automated and needs a user to interact by inserting the necessary code.

In addition, what is also noticeable on the Figure 32 is that the page is still loading

meaning that even if the test would try to use Selenium commands to interact with the

browser it would not be able to do so as the browser is still waiting for the PIN to proceed.

To demonstrate that, a method in the abstract class named takeAScreenshot is added

right after the call to the method openUrl. When adding a break point to the screenshot

command and running the test in debug mode it is verified that the method is called, but

no file is saved. The method used to capture a screenshot is demonstrated in the Figure

33.

protected void takeAScreenshot(String filename) {

File srcFile = ((TakesScreenshot)driver)

.getScreenshotAs(OutputType.FILE);

File destFile = new File("src/test/Screenshots/" +

filename);

 try {

 FileUtils.copyFile(srcFile, destFile);

 } catch (IOException e) {

 Assert.fail();

 }

 }

Figure 33. Method used to capture a screenshot

Moreover, by adding breakpoint also to the first two lines of the takeAScreenshot

method it is verified that the test execution hangs at the first line. This is when the driver

is trying to interact with the browser to capture a screenshot from the page. Without

human interaction the test will just hang and the browser will wait for the PIN until it is

entered or some command terminates the execution of the test.

Figure 32. ID-card PIN popup

53

4.4.4 Summary of the authentication scheme test

While, test automation for applications with ID-card based authentication is possible, it

cannot be fully automated. There is a need for a person to enter the PIN code, when asked

for it. This in return means that there is no way to run these automated tests continuously

for example as a Jenkins job without somebody monitoring the test execution on every

run.

Furthermore, for these tests an ID-card reader with a specific inserted ID-card should be

attached to the computer. The ID-card has to belong to the person whose ID-card was

attached at the moment of saving the custom profile. Meaning that if different people

wish to run the semi-automated test with their ID-card, they would have to follow the

guidelines presented in Subsection 4.4.2 to set up their own custom Firefox profile.

This kind of testing raises security concerns. When testing is not possible through test

automation to enable fast repeatable tests it may cause the tests not being run at all or

being run rarely. Developers in a company that uses agile approach for programming are

usually not keen in running tests that may run a long time or need some special setup.

Therefore it may be that some vulnerability may occur due to lack of testing for

applications with ID-card based authentication, which could have been discovered during

testing phase.

Moreover, in the future Selenium framework developers should put more focus into

making testing ID-card based authentication possible. Again it would be helpful if the

Selenium WebDriver tool supported interaction with browser popup windows and this is

a limitation in Selenium that should be addressed in the future. Enabling testing or making

testing easier in different environments and with different users would also be helpful.

54

4.4.5 Conclusion

To sum up, test automation for applications with ID-card based authentication is not fully

possible. The PIN code needs to be entered through the browsers security popup

manually. This in return raises the security concerns as testing is probably not done as

often, because it requires more resources. The future direction should be to enable or

simplify test automation for the web applications with ID-card authentication.

55

4.5 Estonian Mobile-ID

4.5.1 Overview of the application under test

To demonstrate test automation for applications with Mobile-ID based authentication for

application under test (AUT) a project under development was chosen. The AUT will run

in a second machine, where it is developed and is accessible to the test from the URL

https://192.168.1.246:8080. The application actually supports both ID-card

based authentication and Mobile-ID based authentication. The login page displayed to the

user contains the two buttons with corresponding images as shown in Figure 34.

As explained in Section 3.5 for Mobile-ID authentication SOAP-based DigiDocService

has to be used. As declared in the ID page section “Testing the services” the test

DigidocService is available on the URL https://www.openxades.org:9443/

[8]. In the development environment of the project exactly this URL is used for testing

with Mobile-ID based authentication. The test site offers possibility to upload your own

Mobile-ID certificates for testing or use one of the test numbers that do not require the

presence of the actual physical mobile phone.

Secondly, the Mobile-ID button is pressed and a popup dialog opens asking for a phone

number. Not to use a physical mobile phone for PIN entering a test number “00007” is

typed to the field and the button named “Saada teade” is pressed on the form. After that

a process bar is shown to the user showing the control code, which the user, in case of

using real mobile phone, has to validate against the value displayed on his phone before

entering the PIN for authentication. The time given to the user before the authentication

process is cancelled by the system is two minutes. The progress bar displayed with the

control code is presented in Figure 35.

Figure 34. Mobile-ID AUT Login Page Buttons

56

Lastly, after that the test service for mobile-ID authentication sends a positive response

verifying that the user entered the correct PIN code and is successfully authenticated. The

system then authorizes the user giving him rights to access the application and directs the

user to the main page of the AUT. On the upper right corner of the page the user name

retrieved from the certificate and a logout link is displayed.

4.5.2 Implementation and execution of the Selenium test

The default Firefox profile will be used for this test and no additional preparations are

needed. The test class created for test automation for application with mobile-ID based

authentication is listed in Appendix 8. The URL shown in the previous subsection is used

for this test.

Firstly, as with every test covered in this thesis the AUT page is opened. The page

contains two buttons as shown in Figure 28 to choose the authentication method from.

Before choosing and clicking the button for mobile-ID based authentication the test

verifies that the button actually exists on the page. For this the abstract class method

isMobileIDButtonVisible is called and the value returned is checked with JUnit

method assertTrue. The method called is pointed out in the Figure 36.

protected boolean isMobileIDButtonVisible() {

 return isElementPresent(By

.xpath("//a[@title='Mobiil-ID']"));

 }

Figure 36. Method used to check if mobile-ID button is visible on the page.

Secondly, the Mobile-ID button is located using the same By locator used to verify that

the button is present on the page. After it has been located it is clicked using the Selenium

Figure 35. Mobile-ID authentication progress bar

57

method WebElement.click(). This in return opens the dialog box with the field to

enter the mobile number used for authentication. So the number used for testing with

value “00007” is entered to the field by calling the method

typeValueToNumberField, which is listed in the Figure 37.

protected void typeValueToNumberField(String number) {

 WebElement field = driver.findElement(By.id("mobilenr"));

 field.clear();

 field.sendKeys(number);

 }

Figure 37. Method used to type specified value to mobile number field

 After this code has been executed the dialog box displayed to the user is demonstrated in

Figure 38.

Thirdly, the button “Saaada teade” visible in the figure is clicked by calling the abstract

class method clickOnNumberSubmitButton, which will locate the button based

on the identifier assigned to the element with value btn. As mentioned earlier the main

page of the AUT contains a logout link. In the case of mobile-ID based authentication it

is important to add the call to the method waitUntilLinkIsVisible. Otherwise

the test execution will continue and the next assert will fail as the authentication has not

yet returned with successful result and the page title is wrong. For this reason the wait

command ensures the authentication process has finished before checking the main page

title.

Lastly, to ensure that the authentication was successful it is needed to check that the page

shown is the one expected, which in the case of this AUT is the main page. For this it is

asserted that the title of the page is equal to the value “Main page”. Moreover, it is known

that the page displays a link with the text containing the user name value returned from

the web service. Because of that it is verified that the page contains a link with the text

Figure 38. Mobile-ID authentication dialog box

58

value equal to “SEITSMES TESTNUMBER”. The main page upper right corner of the

AUT with the links displayed to the user is show in Figure 39.

4.5.3 Summary of the authentication scheme test

On the one hand this way it is not possible to fully automate the test by using the real

DigiDocService web service used for mobile-ID authentication. As testing the actual

service requires a physical mobile phone and interference of a person. The person has to

insert the PIN code on the phone for the authentication to be successful.

On the other hand with the use of DigiDocService test web service the test automation is

possible and can be quite easily achieved. This can be done by just inserting a test mobile

number on the mobile-ID authentication number field, which will return an expected

answer from the test DigiDocService web service for authentication. In addition there are

test numbers for different results. This enables test automation for situations where the

mobile-ID certificate has expired or the user does not even own a valid certificate for

authentication. So the developers are able to verify that in case of an error result the

application would terminate the authentication process and restrict the user from seeing

the protected pages.

Lastly, as already mentioned in Section 3.5 the mobile-ID has its advantages over the ID-

card based authentication. This is also the case with test automation as full test automation

for applications with ID-card based authentication is not possible. So it could be said that

in overall the mobile-ID based authentication seems as a more secure authentication

scheme than others discussed in this thesis.

Figure 39. Mobile-ID AUT main page links

59

4.5.4 Conclusion

To sum up, test automation for applications with mobile-ID based authentication is easily

achievable. Using the test numbers enables testing of mobile-ID based authentication in

different situations. Overall this authentication scheme has advantages in every aspect

over other authentication schemes looked at in this thesis. In addition it is possible to test

it and add automated tests to verify its reliability in different versions after changes have

been implemented.

60

Summary

Most web applications use some sort of authentication to verify the user accessing the

protected website. Running automated tests after making changes can help assure that

important functionalities covered with automated tests did not break during the

development. A popular tool for web application test automation is Selenium. In this

thesis Selenium WebDriver tool was used to automate tests for web applications with

authentication.

The goal of this thesis is to analyze the most common authentication schemes used in web

applications and the possibility of automating the use of these methods in automated tests

with Selenium. As a result of this thesis a documentation has been provided with steps how

to implement these automated tests and what preparations are needed for each. In addition

this thesis has drawn attention to the deficiencies in this field of Selenium framework.

Authentication methods considered in the scope of this thesis were HTTP Basic, user

certificate, login form, Estonian ID-card and Estonian Mobile-ID.

As a result of this thesis it has been concluded that test automation for web applications

with authentication is possible for most authentication schemes focused on. Although, in

some cases additional steps are needed to be able to manage test automation with

Selenium. Testing user certificate and Estonian ID-card based authentication needs

custom Firefox profile setup before tests can be executed. The use of Estonian ID-card

cannot be fully automated in Selenium tests. The reason for this is that Selenium is unable

to interact with browsers security popups, which are used to ask for the PIN code for

authentication. It has been concluded that Estonian Mobile-ID based authentication is

superior compared to the other methods when taking into account its security properties

and support for test automation.

To sum up, test automation is important from security point of view. Selenium WebDriver

is a good tool to use for test automation for web applications with authentication.

Although it lacks the ability to interact with the browsers security popups making testing

some authentication schemes and security measures difficult or even impossible. Future

research should be focused on improving that part of Selenium or to find other measures

to make it possible to test these parts of the application behavior.

61

References

[1] Alex, B., Taylor, L. A Minimal <http> Configuration – Spring Security Reference

Documentation. [WWW] http://docs.spring.io/spring-

security/site/docs/3.0.x/reference/ns-config.html#ns-minimal (01.05.2014)

[2] Alex, B., Taylor, L., Winch, R. Session Management – Spring Security Reference

Documentation. [Online] http://docs.spring.io/spring-

security/site/docs/3.2.3.RELEASE/reference/htmlsingle/#session-mgmt (29.04.2014)

[3] Apache Maven. What is Maven? – Maven homepage. [WWW]

http://maven.apache.org/what-is-maven.html (05.03.2014)

[4] AS Sertifitseerimiskeskus. DigiDoc teegid - üldinfo ja teekide reliisimise ajakava.

[WWW] http://www.id.ee/index.php?id=35779 (02.05.2014)

[5] AS Sertifitseerimiskeskus. DigiDocService spetsifikatsioon. [WWW]

http://www.sk.ee/upload/files/DigiDocService_spec_est.pdf (02.05.2014)

[6] AS Sertifitseerimiskeskus. Isikutuvastus ID-kaardi ja Mobiil-ID'ga. [WWW]

http://www.id.ee/index.php?id=31045 (02.05.2014)

[7] AS Sertifitseerimiskeskus. Mis on Mobiil-ID? [WWW] http://mobiil.id.ee/mis-on-mobiil-

id/ (02.05.2014)

[8] AS Sertifitseerimiskeskus. Teenuste testimine. [WWW] http://id.ee/index.php?id=30303

(10.05.2014)

[9] Berjon, R., Faulkner, S., Hickson, I., Leithead, T., Doyle Navara, E., O'Connor, E.,

Pfeiffer, S. The keygen element – W3C HTML5 specification, 2014. [WWW]

http://www.w3.org/TR/html5/forms.html#the-keygen-element (25.05.2014)

[10] Clooke, R. Keyloggers Come to Smartphones – Mobile Security News site, 2013.

[Online] http://www.mobilesecurity.com/articles/452-keyloggers-come-to-smartphones

(02.05.2014)

[11] Dierks, T., Rescorla, E. The Transport Layer Security (TLS) Protocol Version 1.2 – IETF

document, 2008. [WWW] http://tools.ietf.org/html/rfc5246 (25.05.2014)

[12] Eclipse Foundation. Eclipse homepage. [WWW] http://www.eclipse.org/ (25.05.2014)

[13] Editorial Team at Exforsys. Types and Levels of Testing in Programming, 2006. [WWW]

http://www.exforsys.com/tutorials/programming-concepts/types-and-levels-of-testing-in-

programming.html (04.03.2014)

[14] Endler, D. Brute-force Exploitation of Web Application Session IDs – iALERT White

Paper, 2001. [Online] http://www.cgisecurity.com/lib/sessionids.pdf (25.05.2014)

[15] Fewster, M., Graham, D. Software Test Automation : effective use of test execution tools.

London [etc.] : Addison-Wesley, 1999.

62

[16] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A.,

Stewart, L. HTTP Authentication: Basic and Digest Access Authentication – IETF

Documents, 1999. [WWW] http://tools.ietf.org/html/rfc2617 (28.04.2014)

[17] Friedrich, C. File:Ssl handshake with two way authentication with certificates.png –

Wikipedia. [WWW]

http://en.wikipedia.org/wiki/File:Ssl_handshake_with_two_way_authentication_with_cer

tificates.png (28.05.2014)

[18] Froglogic GmbH. Squish GUI Testing – Squish homepage. [WWW]

http://www.froglogic.com/squish/gui-testing/ (22.05.2014)

[19] Infosüsteemide turve: II Turbe tehnoloogia. / Vello Hanson, Ahto Buldas, Tarvi Martens

... [jt.] Tallinn : Küberneetika, 1998.

[20] JUnit team. Assertions – JUnit wiki. [WWW] https://github.com/junit-

team/junit/wiki/Assertions (04.03.2014)

[21] JUnit team. JUnit homepage. [WWW] http://junit.org/ (18.05.2014)

[22] Kawaguchi, K. Meet Jenkins – Jenkins wiki page. [WWW] https://wiki.jenkins-

ci.org/display/JENKINS/Meet+Jenkins (04.05.2014)

[23] Kolšek, M. Session Fixation Vulnerability in Web-based Applications – ACROS Security,

2002. [WWW] http://www.acrossecurity.com/papers/session_fixation.pdf (25.05.2014)

[24] Koomen, T., Pol, M. Test Process Improvement : a practical step-by-step guide to

structured testing. Harlow [etc.] : Addison-Wesley, 1999.

[25] Laasik, H. Ainulaadne mobiil-ID – Eesti infoühiskonna aastaraamat 2011/2012. [Online]

http://www.riso.ee/et/content/ainulaadne-mobiil-id (02.05.2014)

[26] Markvardt, M. Testimise automatiseerimine : mis see on (ja ei ole)? [WWW]

http://cs.ttu.ee/tiki-download_wiki_attachment.php?attId=501 (04.03.2014)

[27] Microsoft. Maintaining Session State with Cookies – MSDN Library. [WWW]

http://msdn.microsoft.com/en-us/library/ms526029(v=vs.90).aspx (29.04.2014)

[28] Mitt, I. Eestis on suurenenud internetikaubanduse kasutajate arv, 2012. [WWW]

http://www.eestipank.ee/press/eestis-suurenenud-internetikaubanduse-kasutajate-arv-

25072012 (04.03.2014)

[29] Mozilla organisation. Use the Profile Manager to create and remove Firefox profiles –

Mozilla Firefox support page. [WWW] https://support.mozilla.org/en-US/kb/profile-

manager-create-and-remove-firefox-profiles (04.05.2014)

[30] MTÜ Arvutikaitse. ID-kaart – Arvutikaitse koduleht. [WWW]

http://www.arvutikaitse.ee/arvutikaitse-algtoed/id-kaart/ (02.05.2014)

[31] Odin Technology Ltd. Axe Test Automation Platform – Products. [WWW]

http://www.axetest.com/products.html (28.05.2014)

63

[32] OWASP Foundation. Cross-site Scripting (XSS) – OWASP website. [WWW]

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS) (25.05.2014)

[33] Pällin, M. Automaattestimisvahendite kasutus ning praktiline ülevaade Seleniumi näitel :

bakalaureusetöö. Tartu, Tartu Ülikool, 2012.

[34] Raghuvanshi, L. What is cookie? Advantages and disadvantages of cookies –

Webcodeexpert.com Blog, 2013. http://www.webcodeexpert.com/2013/03/what-is-

cookie-advantages-and.html (29.04.2014)

[35] Ranorex GmbH. Automated GUI Testing Tools – Ranorex homepage. [WWW]

http://www.ranorex.com/automated-gui-testing-tools.html (22.05.2014)

[36] Seapine Software, Inc. QA Wizard Pro | Automated Testing – QA Wizard homepage.

[WWW] http://www.qawizard.com/software-testing-tools/automated-testing/

(28.05.2014)

[37] Selenium Project. Getting Involved – Selenium homepage. [WWW]

http://docs.seleniumhq.org/about/getting-involved.jsp (07.03.2014)

[38] Selenium Project. Introduction – Selenium documentation. [WWW]

http://docs.seleniumhq.org/docs/01_introducing_selenium.jsp (07.03.2014)

[39] Selenium Project. Selenium 1 (Selenium RC) – Selenium documentation. [WWW]

http://docs.seleniumhq.org/docs/05_selenium_rc.jsp (23.03.2014)

[40] Selenium Project. Selenium homepage. [WWW] http://docs.seleniumhq.org/

(04.03.2014)

[41] Selenium Project. Selenium WebDriver – Selenium documentation. [WWW]

http://docs.seleniumhq.org/docs/03_webdriver.jsp (04.04.2014)

[42] Selenium Project. Selenium-Grid – Selenium documentation. [WWW]

http://docs.seleniumhq.org/docs/07_selenium_grid.jsp (04.04.2014)

[43] Selenium Project. Selenium-IDE – Selenium documentation. [WWW]

http://docs.seleniumhq.org/docs/02_selenium_ide.jsp (07.03.2014)

[44] Selenium Project. WebDriver: Advanced Usage – Selenium documentation. [WWW]

http://docs.seleniumhq.org/docs/04_webdriver_advanced.jsp (27.04.2014)

[45] Siles, R. Session Management Cheat Sheet – OWASP website. [WWW]

https://www.owasp.org/index.php/Session_Management_Cheat_Sheet (29.04.2014)

[46] Simtec Limited. HTTP Authentication – HTTP Gallery. [WWW]

http://www.httpwatch.com/httpgallery/authentication/ (28.04.2014)

[47] Skoudis, E. How should application developers manage cookies? – TechTarget

SearchSecurity website, 2008. [WWW] http://searchsecurity.techtarget.com/answer/How-

should-application-developers-manage-cookies (29.04.2014)

64

[48] Sourceforge users. Android GUITAR – Sourceforge media wiki [WWW]

http://sourceforge.net/apps/mediawiki/guitar/index.php?title=Android_Guitar

(28.05.2014)

[49] Tähis, H. Autentimine ja identifitseerimine. [WWW]

http://heiki.tpt.edu.ee/opiobjektid/turvaohud/autentimine_ja_identifitseerimine.html

(04.03.2014)

[50] The Apache Software Foundation. Welcome to Apache Maven – Apache Maven Project

website. [WWW] http://maven.apache.org/ (29.05.2014)

[51] The Spring Team. Spring Security. [WWW] http://projects.spring.io/spring-security/

(01.05.2014)

[52] WatiN Team. WatiN homepage. [WWW] http://watin.org/ (25.05.2014)

[53] Watir Team. Watir homepage. [WWW] http://watir.com/ (25.05.2014)

65

Appendix 1. Maven configuration

<project xmlns=http://maven.apache.org/POM/4.0.0

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>ee.lattikas.piret</groupId>

 <artifactId>thesis</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <packaging>jar</packaging>

.......

 <dependencies>

 <dependency>

 <groupId>org.seleniumhq.selenium</groupId>

 <artifactId>selenium-java</artifactId>

 <version>2.40.0</version>

 </dependency>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.11</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

.......

</project>

http://maven.apache.org/POM/4.0.0

66

Appendix 2. Abstract Selenium test class

public abstract class AbstractSeleniumITest {

 private static WebDriver driver;

 protected static void setUpFFDriver() {

 driver = new FirefoxDriver();

driver.manage().timeouts().implicitlyWait(new Long("10"),

TimeUnit.SECONDS);

 }

protected static void setUpFFDriverWithProfile(FirefoxProfile

profile) {

 driver = new FirefoxDriver(profile);

 }

 protected static void quitBrowser() {

 driver.quit();

 }

 protected void openUrl(String url) {

 driver.get(url);

 }

 // Getting different values from the page

 protected String getPageTitle() {

 return driver.getTitle();

 }

 protected String getHeadingText(String heading) {

 return driver.findElement(By

.cssSelector(heading)).getText();

 }

 protected String getErrorMessage() {

 return driver.findElement(By.className("error")).getText();

 }

 // Checking if specific elements are present

 protected boolean isSearchFieldVisible() {

 return isElementPresent(By.id("search-text"));

 }

 protected boolean isSearchButtonVisible() {

 return isElementPresent(By.className("img-btn"));

 }

 protected boolean isLinkWithTextVisible(String text) {

 return isElementPresent(By.linkText(text));

 }

 protected boolean isUsernameFieldVisible() {

 return isElementPresent(By.name("username"));

 }

 protected boolean isPasswordFieldVisible() {

 return isElementPresent(By.name("password"));

 }

 protected boolean isMobileIDButtonVisible() {

 return isElementPresent(By

.xpath("//a[@title='Mobiil-ID']"));

 }

 private boolean isElementPresent(By by) {

 try {

 driver.findElement(by);

 return true;

 } catch (NoSuchElementException e) {

 return false;

 }

 }

67

 // Interact with page elements

 protected void clickOnSearchButton() {

 driver.findElement(By.className("img-btn")).click();

 }

 protected void clickOnSubmitButton() {

 driver.findElement(By.name("submit")).click();

 }

 protected void clickOnTheMobileIDButton() {

 driver.findElement(By

.xpath("//a[@title='Mobiil-ID']")).click();;

 }

 protected void clickOnNumberSubmitButton() {

 driver.findElement(By.id("btn")).click();

 }

 protected void typeValueInSearchField(String value) {

 WebElement field = driver.findElement(By

.id("search-text"));

 field.clear();

 field.sendKeys(value);

 }

 protected void typeValueInUsernameField(String username) {

 WebElement field = driver.findElement(By.name("username"));

 field.clear();

 field.sendKeys(username);

 }

 protected void typeValueInPasswordField(String password) {

 WebElement field = driver.findElement(By.name("password"));

 field.clear();

 field.sendKeys(password);

 }

 protected void typeValueToNumberField(String number) {

 WebElement field = driver.findElement(By.id("mobilenr"));

 field.clear();

 field.sendKeys(number);

 }

 // Wait commands

 protected void waitUntilLinkIsVisible(final String linkText) {

 (new WebDriverWait(driver, 30)).until(ExpectedConditions

.visibilityOfElementLocated(By.linkText(linkText)));

 }

 protected void waitUntilHeadingIsVisible(final String heading) {

 (new WebDriverWait(driver, 30)).until(ExpectedConditions

.textToBePresentInElementLocated(By

.cssSelector("h1"), heading));

 }

 // Take a screenshot of the page displayed

 protected void takeAScreenshot(String filename) {

 File srcFile = ((TakesScreenshot)driver)

.getScreenshotAs(OutputType.FILE);

File destFile = new File("src/test/Screenshots/" +

filename);

 try {

 FileUtils.copyFile(srcFile, destFile);

 } catch (IOException e) {

 Assert.fail();

 }

 }

}

68

Appendix 3. Example Selenium test class

public class InitialExampleSeleniumITest extends AbstractSeleniumITest

{

 private final String url = "http://www.ttu.ee/";

 @BeforeClass

 public static void createFFDriver() {

 // Launch the Firefox browser using Firefox driver.

 setUpFFDriver();

 }

 @Test

 public void exampleTest() {

 // Open URL and wait for it to load

 openUrl(url);

 waitUntilLinkIsVisible("Tudengile");

 // Verify that opened URL has correct title.

assertEquals("Tallinna Tehnikaülikool - Sinu elustiil!",

getPageTitle());

 // Before searching verify that the search box exists.

 // Then type to search field.

 assertTrue(isSearchFieldVisible());

 typeValueInSearchField("cyber security");

 // Verify that the search button is present and click it.

 // Then wait for search page to load.

 assertTrue(isSearchButtonVisible());

 clickOnSearchButton();

 waitUntilHeadingIsVisible("Otsing");

 // Verify that opened page has correct title start.

 assertTrue(getPageTitle().startsWith("Otsing"));

 }

 @AfterClass

 public static void cleanup() {

 // Close the firefox browser.

 quitBrowser();

 }

}

69

Appendix 4. HTTP Basic Selenium test class

public class HttpBasicSeleniumITest extends AbstractSeleniumITest {

private final String url =

"http://test:123456@localhost:8080/HTTPBasicTest/";

 @BeforeClass

 public static void createFFDriver() {

 // Launch the Firefox browser using Firefox driver.

 setUpFFDriver();

 }

 @Test

 public void httpBasicTest() {

 // Open URL and wait for it to load

 openUrl(url);

 // Wait until Logout link becomes visible

 waitUntilLinkIsVisible("Logout");

 // Make sure the page is the one expected

 assertEquals("HTTP Basic Test Page", getPageTitle());

 assertEquals("Username : test", getHeadingText("h3"));

 }

 @AfterClass

 public static void cleanup() {

 // Close the firefox browser.

 quitBrowser();

 }

}

70

Appendix 5. Login form Selenium test class

public class LoginFormSeleniumITest extends AbstractSeleniumITest {

private final static String url =

"http://localhost:8080/LoginFormTest/admin";

 @BeforeClass

 public static void createFFDriver() {

 // Launch the Firefox browser using Firefox driver.

 setUpFFDriver();

 }

 @Test

 public void loginFormTest() {

 // Open URL and wait for it to load

 openUrl(url);

 waitUntilHeadingIsVisible("Login Form");

 // Verify that opened base url has correct title.

 assertEquals("Login Page", getPageTitle());

 assertTrue(isUsernameFieldVisible());

 assertTrue(isPasswordFieldVisible());

//Fill in the login form with wrong data and click submit

 typeValueInUsernameField("piret");

 typeValueInPasswordField("password");

 clickOnSubmitButton();

 //Verify that you are on the same page

// and error message is displayed

 assertEquals("Login Page", getPageTitle());

assertEquals("Invalid username and password!",

getErrorMessage());

 //Fill in the login form with correct data

// and click submit button

 typeValueInUsernameField("test");

 typeValueInPasswordField("123456");

 clickOnSubmitButton();

 waitUntilLinkIsVisible("Logout");

 // Verify that the opened page is the one expected.

assertEquals("Login form based authentication!",

getPageTitle());

assertEquals("Message : This is protected page!",

getHeadingText("h3"));

 }

 @AfterClass

 public static void cleanup() {

 // Close the firefox browser.

 quitBrowser();

 }

}

71

Appendix 6. User certificate Selenium test class

public class UserCertificateSeleniumITest extends

AbstractSeleniumITest {

private final static String url = "https://office.zerotech.ee";

 @BeforeClass

 public static void createFFDriver() {

 // Launch the Firefox browser using Firefox driver.

FirefoxProfile profile = new FirefoxProfile(new

File("src/test/FFProfile"));

 setUpFFDriverWithProfile(profile);

 }

 @Test

 public void userCertificateTest() {

 // Open URL and wait for it to load

 openUrl(url);

 waitUntilLinkIsVisible("Jenkins");

 // Make sure the page is the one expected

 assertEquals("Dashboard [Jenkins]", getPageTitle());

 assertTrue(isLinkWithTextVisible("New Job"));

 }

 @AfterClass

 public static void cleanup() {

 // Close the firefox browser.

 quitBrowser();

 }

}

72

Appendix 7. Estonian ID-card Selenium test class

public class EstonianIDCardSeleniumITest extends AbstractSeleniumITest

{

 private final static String url = "http://www.sk.ee/tervitus/";

 @BeforeClass

 public static void createFFDriver() {

 // Launch the Firefox browser using Firefox driver.

FirefoxProfile profile = new FirefoxProfile(new

File("src/test/IDCardFFProfile"));

 setUpFFDriverWithProfile(profile);

 }

 @Test

 public void EstonianIDCardTest() {

 // Open URL and wait for it to load

 openUrl(url);

 waitUntilLinkIsVisible("www.id.ee");

 // Make sure the page is the one expected

assertEquals("AS Sertifitseerimiskeskuse tervitus",

getPageTitle());

 }

 @AfterClass

 public static void cleanup() {

 // Close the firefox browser.

 quitBrowser();

 }

}

73

Appendix 8. Mobile-ID Selenium test class

public class MobileIDSeleniumITest extends AbstractSeleniumITest {

 private final static String url = "https://192.168.1.246:8080";

 @BeforeClass

 public static void createFFDriver() {

 // Launch the Firefox browser using Firefox driver.

 setUpFFDriver();

 }

 @Test

 public void MobileIDTest() {

 // Open URL and wait for it to load

 openUrl(url);

 waitUntilLinkIsVisible("Kasutusjuhend");

 // Verify that the opened page is the one expected.

 assertTrue(isMobileIDButtonVisible());

 // Click button and enter phone number to field

 // Click the button to submit number

 clickOnTheMobileIDButton();

 typeValueToNumberField("00007");

 clickOnNumberSubmitButton();

 waitUntilLinkIsVisible("Log out");

 // Verify that the opened page is the one expected.

 assertEquals("Main page", getPageTitle());

 assertTrue(isLinkWithTextVisible("SEITSMES TESTNUMBER"));

 }

 @AfterClass

 public static void cleanup() {

 // Close the firefox browser.

 quitBrowser();

 }

}

