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1 Introduction
The general subject area of this dissertation is automated creation of recommendationsfor tourism, with the focus on sights and visit-worthy locations. This stands in contrast tothe recommendations providedbymainstream travel systems, which focus on commercialservices like hotels, restaurants and travel tickets. Creating tourism recommendations isa widely studied and a heavily commercialised area: there are numerous publicationsconsidering different aspects of creating such recommendations and a large number ofwidely used software systems available.Nevertheless, from the practical standpoint the problemof creating recommendationsfor sights is largely unsolved: from personal and widely recognized anecdotal experiencewe claim that in most cases the tourists are not following the recommendations of auto-mated systems, for various reasons. Regardless of the concrete reasons for each particulartourist we also claim - from similar grounds - that the majority of automated recommen-dation systems are not intelligent enough and do not have enough information about thepotential locations and actual preferences and limitations of concrete tourists, thus lead-ing to a general distrust of such systems on several levels.This distrust oftenmanifests itself in little interest in actually deploying fully automatedsystems onwidely used tourism sites: instead, the large public tourism systemsmostly relyon human-curated lists of top sights, often split into several main categories. The relianceon human-curated lists stems from various reasons: the perceived inadequacy of fullyautomated systems, the wish to augment and tune the descriptions of sites according tothe perceived users of tourism sites, the commercial and organizational interests of themaintainers of the tourism sites.Despite the overwhelming reliance on human-curated recommendations, these rec-ommendations are oftenmissing important sites or showheavy bias towards certain kindsof sites, mainly the ones which provide paid services, in contrast to visually interestingsites without such services.The goal of the research presented in the thesis is to investigate ways to improve sev-eral critical weaknesses of fully automated systems, thus laying the groundwork for devel-oping better automated systems. Our approach is a combination of engineering-orientedresearch demonstrating the feasibility of certain methods and algorithms and empiricalresearch showing the measurable improvements gained by the algorithms we have de-veloped. Conducting social experiments for demonstrating the actual usefulness of thisor that method to real tourists is outside the scope of our research.It is also important to note that there are two main approaches to recommendationsystems: the collaborative filtering approach and the content-based approach. The col-laborative filtering approach is based on finding other users which have stated similarexplicit preferences to a current user. The other preferences of these similar users arethen suggested as likely preferences for the current user. This approach works well incase a large database of actual user preferences is available along with the record of thepreferences of the current user, as is common in various web-based sales systems. In casewhen such a database and/or previous preferences are not available - the so called "coldstart problem" - collaborative filtering is impossible and we have to base our recommen-dations on analysing the generic contents and/or popularity of the recommended object.This content-based approach is the main context of our research.The first hard question for the tourism recommenders we have worked on appearsto be collecting comprehensive and high-quality information about interesting places tovisit, including information like popularity, different categories of places and their weights(categories of places tend to be fuzzy), human-readable content, suitable names, etc. Our
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experience in different projects indicates that the most promising way to collect qual-ity data is to harvest and consolidate different databases, including curated information,wikipedia content, wikipedia usage statistics, large crowd-sourced photo databases likePanoramio, Flickr, Instagram, check-in statistics for crowd-sourced places like Foursquareand Swarm etc. Notice that the specifics of these crowd-sourced systems provide us withdifferent aspects of places. For example, the density of photos taken in some area indi-cates its visual attractiveness, the log count of visits to corresponding Wikipedia placesindicates how well the places are known, the checkins in systems like Foursquare/Swarmindicate the actual number of visits.Thus themain focus onour research became consolidation of information fromvarioussources: names, locations, descriptions, photo titles, different types of popularities, etc.One questionwith particular interest to us is the problem of detecting duplicate objects indatabases: the process which is sometimes called deduplication. We develop a learningmethod for optimizing the parameters of a deduplication algorithm and show that it leadsto significant improvement over hand-crafted methods.The current thesis is structured as a collection of publications, hence the introductionis kept short. The reader is advised to look into the included research papers for the actualgoals, details and results of the research.
1.1 Problem statement and research contribution
Place recommendation in tourism recommender systems relies on a model built froma number of varied sources. Before any recommendations can be calculated, a recom-mender system needs to know interesting points of interest (POIs) along with the mostsuitable name and membership in POI categories. This is a surprisingly hard problem notsolved well enough by existing databases and recommender systems.Why are these questions hard? First, no authoritative anduniversally suitable databasesof touristically interesting POIs exist. Data has to be gleaned and integrated from widelydifferent databases, whichmay, for example, provide a number of widely different names,categories and other specifics for a seemingly single POI or an area. An important specificquestion is determining whether POIs obtained from different sources are actually thesame object or two different objects. Second, POIs range from very small (a single statue)to very large (a whole city), which makes both the comparison of POIs and feature selec-tion complicated: different POIs with different names and categories should be shown fordifferent zoom levels of a map.The main contributions of the thesis focus on developing algorithms and machinelearning methods for automatic disambiguation of points of interest (POIs) and findingthe most suitable names and categories of POIs for tourism recommender systems, usingboth very large databases of crowd-sourced photo titles (Panoramio and Flickr) and semi-structured crowd-sourceddescriptions of knownPOIs (Wikipedia, Foursquare, GeoNames)for input data:

• Developed a frequency based methodology and algorithms to find tags/categoriesfor tourist places on the example of Panoramio picture titles. The developed al-gorithm does not require any pre-trained model in order to find suitable tags andcategory candidates. The methodology and algorithm is described in I.
• Comparison of the accuracy of different tag recommendation methods referred toin the literature. Demonstrating that the algorithm developed is a top performer.Our algorithm does not require external knowledge base which makes it fast andconvenient to use. The comparison is presented in I.
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• Developed a taxonomy of POI categories suitable for worldwide tourism use, basedon the frequency of tags in the whole set of Panoramio photos. Using pictures allaround the world, we were able to collect a convenient set of categories. We haveorganised found categories anddeveloped the taxonomywhich is used to categoriseobjects in Sightsmap application. The developed taxonomy is presented in I.
• Developed an algorithm for finding most suitable names for POIs from the large setof photo titles. The names were used by a tourism recommender system. The samePanoramio dataset was used as with the categories. The work about finding namesis presented in II.
• Determining and comparing the importance of different POI features for disam-biguating non-frequent geo-objects scraped from different web portals. Differentfeatures were measured separately and in combination with other features. Theoverview can be seen in III.
• Evaluation of the training set selection heuristics, clustering and optimization of dis-tance functions for machine learning of POI disambiguation. Using machine learn-ing improved our manual deduplication accuracy from 85% to 98%. The process isdescribed in more detail in III.
• Developed a rule-based calculation algorithmwith confidence scores for evaluatingthe suitability of POIs for personal topic-based recommendation and membershipof POIs in fuzzy categories. We have shown how to represent user interests withconfidence scores which can be matched against tourism object categories. Thecalculation mechanism is presented in VII, the algorithm is presented in VI.
The results of this work have been directly applied in three different recommendersystems: http://sightsmap.com, which is currently unmaintained due to the removal ofthe Panoramio photo database from the public web by Google, http://sightsplanner.com,which is not available any more, and http://visitestonia.com, which used a topic-basedrecommender system for some time.

1.2 Structure of the dissertation
Chapter 3 gives an overview of different projects which has motivated the given thesis.This chapter describes how the projects are evolved into more general system and howthose are related to presented publications. The chapter also gives a broader sense howthe different parts are combined into a larger system of tourism related tools.The thesis covers different topics in the process of providing recommendations fortourists. The rest of the document is divided into chapters for all the covered topics. Eachof the chapters provides an introduction and describes the work covered in the relatedpublications. The related work is presented in the chapter 2 which is divided into subsec-tions by the different topics.Chapter 4 gives an overview of data acquisition and how the information is extracted.Different data sources are described along with the process of gathering data semi-auto-matically from different sources.Chapter 5 presents the work on data deduplication. Gathering data from differentsources yields in duplicate information about the same objects. The chapter exploresthe problems and presents different stages of deduplication: manually configured andanother which improves the results of manual setup with machine learning.
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Chapter 6 introduces automatic tagging and naming of the objects based on the imagetitles. The chapter describes the process of clustering geo-tagged images by their locationand then finding categories and names for those clusters. Combined clusters are mergedtogether with objects from other data sources. The chapter also compares different tagrecommendation methods with our proposed one.Chapter 7 presents how the data is used to make recommendations for tourists. Thechapter introduces object score calculation based on the user profile and the object cat-egory information. The users specify their interests about different topics or categories.The interest is measured as a value in the range [0,1]. The same range is used to indicatethe confidence of the object having the given property. Those scores are then used tocalculate a total score for a tourist for an object which indicates the interestingness of thegiven object for the given tourist. The chapter describes how this interestingness score isused to recommend the itinerary based on the location and scores.
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2 Related work

2.1 Data retrieval

A lot of work has been done in describing the benefits of Semantic Web and how it couldbe used to improve the quality of information retrieval. Kiryakov et al. in [14] describehow specific knowledge is required in order to make sense of data and its structure. Theydiscuss the possibility to use language processing to structure data and find named enti-ties.
In [29] they describe a recommender system which regularly updates informationabout events from regular non-structured web pages. For each source there is a sepa-rate configuration, and a script which identifies different segments from HTML page anddownloads the contents. They apply different NLP methods (named entity recognition,shallow parsing etc.) to the texts to find the title, location, price and the time of the event.After processing they fill the required fields, for example resolve address into geographicallocation.
Kara et al.[11] describe ontology-based information retrieval system in the soccer do-main. They use web portals to gather textual information about soccer matches. Theyhave designed their own soccer ontology which describes all the required concepts of thegame play. The ontology is used in information extraction and also inference steps. Theymake use of a reasoner to deduct new facts about the game play. For example, they can in-fer an assist for the goal taken into account the pass to the goal scorer in the sameminuteas the goal was shot. In [49] they show how they extract named entities from Turkish text.They usemanually formed patterns to extract information from unstructured documents.They point out that their approach can be applied to any language, as they are not usingPOS (part-of-speech) tagging, phrase chunker etc.
Salas-Olmendo et al.[41] use data fromPanoramio, Foursquare and Twitter to comparetourist activity in one city (Madrid, Spain). Each data source has crowd-source contentprovided with the geo-location. The location is used to indicate popular places inside thecity. Based on the data source, they differentiate between popular areas of sightseeing(Panoramio), tourist consumption (Foursquare) and Internet consumption (Twitter). Theyhave also used the data to draw density maps for each data source.
Soualah-Alila et al.[43] describe how it is important to have a standard for data repre-sentation in order to achieve interoperability. They propose their own ontology TIFSem todescribe tourism objects. The proposed ontology [44] is mapped to Schema.org [1] whichmakes it more close to the standard. They process the text using Gramlab Unitex [34]corpus processor which analyses natural language texts. After the text is cleaned, eventsare annotated using TimeML language [36] to indicate temporal information along withrelational propositions like "before", "after" etc.
Patroumpas et al.[33] propose an OWL-ontology to represent POI information in RDF.They use a tool TripleGeo [32] which can turn geospatial data into RDF. The tool has beenupdated to support the proposed ontology. TripleGeo can be used to transform differenttypes of sources into the ontology, but also supports reverse transformation from ontol-ogy to conventional POI formats. The tool supports a wide variety of input types fromstructured and geospatially-enabled database systems. For reverse transformation theyadmit that their proposed ontology is semanticallymore expressive than conventional POIschemata. Therefore, reverse transformation currently does not support the full range ofthe proposed ontology.
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2.2 Deduplication
In [29] they scrape web pages regularly in order to get events for recommender system.One step of the process is deduplication. They apply Vector Space Model for text contentand use the cosine similarity to calculate similarity between two events. If the calculatedsimilarity is above certain threshold, the new event will be discarded. Another thresholdis set to indicate that the event has to be validated by an administrator.

In [52] authors detect duplicate records in geographical objects from yellow pages.They have introduced 4 similarity functions or features: two title comparisons, addresssimilarity and category similarity. Authors apply machine learning to find duplicate pairs.In the paper they have compared each feature separately and also compared differentcombinations of the features.
Kim et al.[13] describe the methodology to use the description of a place to find itsrelative location compared to surrounding other places. Parsing the textual data usingnatural language processing they construct graphs which describe the relation of objects.The graphs are used to indicate similarity of objects. In the case where two objects havesimilar names and their neighbours are similar, then the places are considered as dupli-cates and could be combined into one.
Koumarelas et al.[15] are dealing with deduplication of addresses. They apply geocod-ing and other services to enrich the data. For example, from the given address string, theyapply geocoding to get the corresponding latitude and longitude. Then they use reversegeocoding to get the address information which already has more detailed information.After enriching the addresses, they calculate similarity between two addresses.

2.3 Tagging
The tagging / naming method we propose and employ uses a large number of photos toautomatically tag popular touristic places. We do not use the actual visual contents ofthe pictures: instead we use the user-defined titles along with the location. A significantamount of work has been done in the area of image recognition in order to detect theobjects in the pictures. A similarly popular area of research is to tag text (news, researchpapers etc.). Our case is more specific: we do not use picture contents and we do nothave long texts to work with. We will give an overview of related work which covers ideassimilar to ours.

Authors in [7] have described photo annotation based on the different goals. One goalis to detect "where?" the picture has been taken. They describe it as location of the photo.The annotation can have different senses. Themost common sense is the definition of theconcrete object or geographical position. For example a postal address or the name ofthe object/place ("Eiffel Tower", "Paris"). Another sense can relate to a concrete person("My home", "My work") - those mean different things for different users. Also, a spatialreference of a point of interest is often used ("near Eiffel Tower"). As pointed out, allthose describe the location in a different way. With the personal reference ("My home"),there is no way to determine the actual object in the picture. Also, we do not use addressinformation in our case. We are mainly interested in the descriptive words in the titlewhich point out the type of the object in the picture.
Another point which is made by de Andrade et al. is that often the geocoordinates ofthe picture (the point where the camera is) does not match with the location of the objectitself. For example, it is common to take pictures of Eiffel Tower few hundreds of metersaway in order to fit thewhole tower alongwith the surroundings. If we annotate the pointwhere the pictures are taken as "Eiffel Tower" it does not indicate the actual object itself,
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but rather a place where you can enjoy (take pictures) the view of the object. As in ourcase, we use a visual representation of different objects, we can say that each location isannotated with the tags which are visible at that point.
Authors in [45] use images from Flickr social network to indicate spatial areas of inter-est and events. They divide an area of predefined bounding box (a city center for example)into smaller groups of fixed size called geo clusters. Flickr photos have user defined tagswhich they use to identify the places of interests. By analyzing the textual data, they canrank the tags and select the most popular to describe the places and events. They analyzethe time when the photos are taken. If a lot of images are within a short range of time,those probably describe an event. Landmarks generally are of interest the whole year, sothey expect that photos should distribute uniformly through time.
Spyrou et al. define a model to describe the rank of the tag. They divide images intoclusters and they use the images inside the cluster to find the best tags to describe thewhole cluster. Tags which appear in more images in the cluster rank higher. Tags whichappear in in several clusters have lower importance than those which are unique to acertain cluster. In addition to a previously mentioned measures, they take into accountthe authors of the images. Tags which appear with the images taken by a large number ofusers rank higher than those which are ralted to small number of users. They argue that atypical user could upload a lot of images of the same object and use the same title/tag forthose. If the number of the uploaded images is high enough, it can bias the tag to havea higher ranking. They also try to use the spatial neighbors of images to tag untaggedimages. In the end they combine all the mentioned rankings into one ranking measure fora tag inside a cluster.
When dealing with a set of tags, they combine the tags which are similar. They useLevenshtein distance [19] and cosine similarity to group similar tags. If the similarity isabove a predefined threshold, tags are grouped into one and the most frequent one is arepresentative of this group which will be used in ranking.
A very detailed and thorough automatic picture analysis is presented in [37]. Theyhave described the whole pipeline on how to cluster geotagged pictures, classify thoseand how to link clusters with Wikipedia. They use a subset of European cities and ex-tract about 220,000 pictures for those places. For clustering they use both the visual andtext-based similarity. They point out that if they used only text for clustering, the resultprecision would be about 60% compared to 98% in case of visual clustering. After cluster-ing, they label the clusters. For labeling, they use the frequent itemset mining algorithmwhich gives speed and scalability. In our case, we use statistical approach to find labelcandidates.
After they have found the label candidates for their clusters, web search is ran to de-tect Wikipedia articles. From every result they match the pictures of the article with thepictures of the cluster. If the pictures match, they connect the Wikipedia article with thecluster. Having a link to Wikipedia, they will have an annotation to the clusters which canbe used in different ways, for example to get the name of the object.
The article is dealing with the very same topics we are interested in. They have de-scribed all the steps in the pipeline of labeling the picture clusters. We are not usingvisual comparison of pictures as proposed in their article, nevertheless the methodologymentioned is very interesting and as can be seen, there are similarities in our approaches.Some points which are worth looking into to improve our results: distinguishing betweenobjects and events, looking into different textual similarity measures. In addition, we donot have clusters of pictures in the same sense they propose. In our case, the same picturecould be used for several objects.
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Assigning geographic coordinates to objects (e.g. pictures) is a popular topic. In [50]the authors present different ways to select terms which help to assign coordinates toFlickr photos and Wikipedia articles. One of the methods they mention is geographicalspread (originally presented in [9]), which is used to find location-relevant terms. Theidea is very similar to what we use in our method to find phrases which are candidates fortags. They look whether a term refers to a precise area (landmarks such as Eiffel Tower)or to a broader region (country of France). We use the similar idea, but do it country wiseand aggregate the results over all the countries.
In [50] the goal of using the mentioned geographical spread is different. They want tolocate tags which are location-specific. A picture with a tag which gives as much informa-tion about the location as possible helps to assign coordinates to the picture. Consider"Eiffel Tower": if the given tag is on the picture, it is relatively easy to assign coordinatesto the picture. In contrast, if a picture has a tag "beach", assigning the exact location tothe picture based on that tag is prone to errors.
Authors of [42] tackle a similar task - they want to assign tags to geotagged photos.Their approach is different: using existing tags from nearby pictures. For each photo theywill look at other photos which are located close to the given photo and use the tags fromthose nearby photos. In addition they apply methods like visual similarity, different usersemploying the tag etc. to filter out suitable tags. In our methodology we take the near-byphotos and use titles to extract tags. The idea to filter out some of the photos which mayadd noise is promising. In the work presented in our paper we have not applied filtering,but use a threshold to accept only phrases with a high enough appearance rate.
In [35] the authors automatically build a database of geographic landmarks. They useWikipedia and Panoramio as the data sources and employ web search to identify thenames, categories, coordinates and ranks for geographical objects. For names they useWikipedia articles and links to other pages. In addition toWikipedia, they extract informa-tion from the Panoramio titles. Given a coordinate, they find pictures within the specifieddistance. Then they extract capitalized words which are adjacent to the geographical con-cept (e.g. Museum).
Similarly to our approach, they use the first sentence of Wikipedia to extract the typefor the object. For the objects which do not have a Wikipedia article, they extract thetype from the candidate name which matches with a geographical concept: this will bethe first candidate for the object type. A web search for the object name is executed andthe geographical terms are collected from the top results’ web pages. Extracted termswillbe type candidates for the given object. Given type candidates are compared with searchqueries combined with the object name. The candidate which gets themost of the searchresults is assigned as the type for the object.
In our approach we do not use a fixed list of geographical terms as type candidates.Instead we learn the possible candidates from the picture titles and use additional crowd-sourced portals to extract possible types for the objects. Usually there are several differentcategories which apply for an object, therefore our approach finds a set of tags.
There is a lot of work done in the field of visual categorisation to detect type or theobject in the picture or assign geographical location based on the contents of the picture.In [21] the authors use visual folksonomy to obtain tags for visually similar pictures. Pic-tures with user generated tags are extracted for image features. For non-tagged picturesthe tags from similar images are used. In [20] the authors classify landmarks for large-scale image collection using visual, textual and temporal information. They show that ifcombined together, textual tag analysis improves the quality of other approaches. Theyuse tags from Flickr to extend the feature vector for a picture. The authors show that tag-
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based textual models outperform models which use only image features. In our case wedo not use photo tags: instead we make use of the photo titles, which add noise to thedata.
2.4 Recommendation system
Recommender systems have grown out from filtering. The goal of filtering is to be ableto find relevant information in large databases. A recommender system should take intoaccount the user preferences along with other criteria, like opening times, distance fromother objects etc. in tourism domain [39].Recommender systems can be divided into two groups. One uses tourists’ histori-cal travel behaviour (content-based approach). The other is based on the history of thetourists who are similar to the current user (collaborative filtering approach). For travelrecommendation using only content-based or collaborative filtering approach limits thecapabilities [39]. Using content-based approach allows recommender system to suggestobjects which the user has liked earlier. But it is very common that trip purpose and timeand location can be different which makes it very hard to suggest objects in another city(business trip vs family trip). In order to do that, a very large amount of the user’s historyhas to be available. The collaborative filtering can provide good results if there are userswith similar preferred activities. As a trip is more complex than a book, using only otherusers’ historic preferences does not always provide satisfiable results.Research on recommendation systems is a very popular topic. A survey about recom-mendation system applications in tourism is provided in [4]. They provide suggestions ondesigning and developing a tourism recommender system like how to getmore data aboutthe user and her interests and how to use ontologies to structure the knowledge. Anothersurvey of tourism related recommender system is provided in [6]. They have divided theirwork into sections based on the different subdomains within the tourism sector. A sepa-rate overview of hotel, restaurants, trip planning etc. is provided in the survey.In [10] the authors propose a Bayesian network to estimate user’s preferred activities.In their proposal the age, occupation and personality influence the user type. The usertype along with the motivation affects the preferred activities’ probabilities. For attrac-tion ranking they use the persons’ past travel behaviour. The user will be presented amap with proposed objects. The user can add/remove objects to give feedback about therecommended objects. The system also provides an itinerary along with distances, traveltimes and visit durations.In [29] they introduce a recommender system which calculates a ranking function forevery event in the database. The function takes into account the following restrictions:

• Proximity - the distance from the last activity location;
• Price - item must fit into user’s budget;
• Time - item gets penalized if its time slot is outside user’s preferred available time;
• Profile - similar items in user’s previous trips or in current trip plan are found;
• Diversity - the plan has to be diverse, e.g. no point to send the user to the cinematwice.

The user can interact with the recommender in order to add, change or delete activities.In [30] they allow users to specify the interest in specific topics in the scale 0−100%.The same concepts are used in their ontologywhich describes the objects in their database.
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The next step is to specify demographic information like the origin of the user, with whomthe user travels with, location of the accommodation, budget and the travel dates. Thevalues for the questions are used to filter the results (by budget, by location). The selec-tion of questions is based on a previous study with 30,000 filled questionnaires. After thevisit, the user can rate the objects in her plan. This feedback about different objects istaken into account in the next planning phase. After all the explicit information about theuser is gathered, a list of activities (objects) are proposed to the user. The user can interactwith the system in order to add the object into her plan, remove objects, see other similarobjects etc. All those interactions are taken into account in order to propose additionalobjects.
The SigTur/E-Destination recommender system uses user specified interest scores indifferent topics and uses those for the corresponding ontology concept with the confi-dence value 100%. Based on the user actions, scores for the concepts can be change. Therange for each concept score is between −1 and 1. If the user removes a certain object,the score for the given concept is lowered, and vice a versa. All the actions modify boththe score and the confidence level for each concept. In addition to content-based rec-ommendation, they use collaborative filtering to find similar users to recommend objectsthey have liked. They take into account user provided answers to about the interests anddemographic questions to compare the users. In order to tackle the problem of low num-ber of users, they have used 30,000 questionnaires to find out how demographic valuesrelate to interest scores. For example, elderly people usually like Relaxation concept. Theyalso take into account user activities during the planning phase in order to find other userswith similar actions.
The SigTur/E-Destination takes all the different aspects into account to calculate a pref-erence value for each concept in the ontology, with a certain confidence level. As theontology is hierarchical, the scores are propagates with specific rules between differentlevels. The concepts with a very low confidence score are discarded. Every activity willreceive a preference score and a confidence score based on the concepts it has, averagingthe values of the concepts associated to it. Activities which are outside of the preferredbudget range are removed from recommendation. Both the score and the confidencelevel is used to order the proposed objects.
In [16] they use a genetic algorithm to find the best travel plan for the user. They startwith random plans and then combine two plans into a better offspring. After a plan isgenerated, it is evaluated. During evaluation process, different properties give penalties.For example if the object is closed at the time of visit, the score for this object is 0. POIsare matched against user profile from the nine criteria corresponding to the parameterof focus and taste. Focus indicates functional features requested by the user for the trip.Taste refers to emotional characteristics of the trip. They evaluated their planner on realpeople and found that compared to manual planning, the saved time by the CT-Planner4was evaluated as the highest benefit of the system. On the other hand, the quality of theplan was not highly evaluated, and 30% of the users said they value their manual planbetter than CT-Planner4 provided plan.
The next version of the same project is described in [17]. In previous version theycalculated score in different categories. If the POI had different categories, it ended upwith a high score. Instead, if a POI has an high score in one category, this will have a highscore for the matching user preference. The information about POIs is kept in Excel whichhas to be filled manually, which makes it a challenge to keep the data updated.
In [2] they use the previously mentioned CT-Planner recommender system, but thistime add congestion information for POIs. They use Google’s popular times data source
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to get the crowd estimation for an object. This helps to provide POIs with possible andpreferred opening times. For example, if the object is too crowded, it is not planned forthe user.Farokhi et al.[8] propose a system that employs multi criteria user-based and item-based collaborative filtering (CF) approaches. They use TripAdvisor dataset to experimentwith their proposed methods. Fuzzy C-means algorithms along with k-means algorithmshave been used to improve the accuracy of recommendation for user-based and item-based CF approaches. They acknowledge that the use of multi-criteria rating improvesthe recommender accuracy and provide more realistic recommendation that are close tousers’ interests.In [5] the authors use data from Wikipedia to find POIs in the region. For each geo-referenced Wikipedia object they match nearby Flickr images. The count of images canbe used to get the popularity of the object. They also use images from the same user todetect possible visit time of the object - taken into account the times of the first and thelast image. In the experiments they showed how using information about a visit to onecity can be used to recommend objects in another city.Similarly to Brilhante et al., Lim et al.lim2015personalized use Wikipedia and Flickrto recommend personalised tours. In their work, they use a concept of time-based userinterest which indicates the interest in a category based on the time she has spent at sucha POI with the given category.In [12] the authors describe a recommender system which takes into account user’scheck-in data, profile changes and information about friends from Facebook. In the caseof the user "cold-start" problem where the system does not know enough informationabout the new user, relationships with friends can represent the user’s interests.Author in [38] give a comprehensive overview of how to design a recommender sys-tem. They propose a methodology for recommending objects for groups. They describethe creation of a group profile based on the profiles of each member. The experimentsshow that groups with the tourist of similar interests perform better than random or dis-similar groups.Su et al.[46] propose a big data architecture to support recommendation of culturalcontent. They collect data from social networks to calculate popularity, mood and interestfor each object. The system relies on a context-aware hybrid recommendation strategythat is deployed on a multi-layer architecture based on big data technologies.Neidhardt et al.[31] propose a picture-based approach to deal with the recommen-dation. The pictures are used collect information for the user profile. In the evaluationphase they show that the feedback about the experience was really good - about 90% ofthe participants agreed that the experience was inspiring.As travel recommendation is often personal and emotional, having an accurate recom-mendation algorithm can still yield in an unpleasant experience. There are several reasonsto it. For example, Neidhardt et al.[31] show that users often do not trust the informationprovided by the system. Ricci et tal.[40] point out how recommender systems’ goals ex-tend beyond the accuracy of the algorithms used. For example, how the data is presentedto the user, how the recommended items are explained. One of the key point is to have aquality source data to build the recommender system upon. As the data itself is changingrapidly (restaurants closed, new concerts happening etc.), acquiring the data often andautomatically is a crucial element of the whole system.
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3 Involvement in recommender projects
The research covered in the thesis took place during collaborative projects in ELIKO1 withthe participation of people from ELIKO, Tallinn University of Technology, several compa-nies and organizations.A distant, yet related starting point for our research was the EU project Smart Mu-seum2 which strived towards creating a recommender system / tour guide for museums,employing RFID tags attached to the seeworthy objects.The SmartMuseum project launched a research project at ELIKOwith the aim of creat-ing a more general content-based recommender system for tourism. This project resultedin the creation of three separate publicly available automated recommender systems wewill briefly cover.
Sightsplanner

.
Figure 1: Preferences selection of the Sightsplanner system

The Sightsplanner system3 (Figure 1) was an experiment in building an automatedtourism recommender system for Tallinn, based on
• harvesting and merging available location data and content from various sources,
• providing a slider-based user interface for selecting personal interests,
1http://www.eliko.ee2http://www.smartmuseum.eu/3http://tallinn.sightsplanner.com, currently not deployed
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• calculating best matches with the personal interests, using a probability-based on-tology and a reasoning system.
Visit Estonia

.
Figure 2: The main preferences selection of the Visit Estonia recommender

The automated recommender component of the main Estonian tourism system4 (Fig-ure 2) generalized the previous approach for thewhole Estonia. Themain differences fromthe previously mentioned Sightsplanner project are as follows:
• official location information from the Visit Estonia database was used as the mainsource of content,
• a slider-based user interface for selecting personal interests was reworked accord-ing to the specifics of the database,
• importance/popularity of locations was estimated and combined from both thecontent and usage statistics.
After the recent major update to the Visit Estonia portal the automated recommendercomponent was not deployed.
4http://www.visitestonia.com
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Sightsmap
Sightsmap5 (Figures 3, 4, 5, 6, 7, 8) is a whole-earth recommendation system started atELIKO and continued at the Tallinn University of Technology as a testbed for research intourism recommenders. The system is deployed and regularly updated. It has a signfi-cant number of users: Google Analytics counts the site having caȯne and a half milliondistinct users over its whole lifetime. The project has been featured in numerous largeinternational publications.

Sightsmap takes a very different approach than the previous two systems. First andforemost, all the content along with the information about popularities of places of inter-est is crowd-sourced, i.e. stems from contributions of millions of individual people takingphotos, writing or looking at Wikipedia pages and checking into Foursquare places. Nomanual curation has been applied to place selection.
• The focus is on generating a zoomable worldwide heatmap of (visually) interestingplaces to visit.
• The main data source is Panoramio6 with ca 40 million user-taken photos with fo-cus on tourism and interesting/beautiful places; we harvest the locations and tagsof photos and use these as a basis for location popularity heatmap and locationtagging.
• The concrete POIs (places of interest) and their names are selected for popularareas, based on additionally harvesting and merging Wikipedia7, Wikitravel8 andFoursquare9 along with mining and combining the popularities according to thesesites.
• POIs are enriched with names and tags created by merging the names from thebeforementioned sources and the multilingual photo titles/descriptions harvestedfrom Panoramio.
The goal of the sightsmap.com project (see [48] for the initial report) is to build aworld-wide tourism recommender along with a database of the sightseeing popularityand types of concrete places (POIs) and wider areas in the world, using purely crowd-sourced data. By sightseeing popularity we mean the estimate of a number of peoplevisiting the place and considering it as an interesting place for sightseeing, as opposed topopular places with no or very little potential for sightseeing, like hospitals, schools, gasstations, bus stops and airports.
Obviously, some of the abovementioned popular non-sightseeing places like schoolsand railroad stations may in some exceptional cases be sightseeing places as well: famousold colleges, Grand Central Terminal of New York, etc. Two separate important categoriesof objects in tourism industry - hotels and restaurants - are similarly ambivalent: on onehand, utilitarian and not necessarily a target or cause for travelling, on the other hand, asource of emotions and sometimes also an important motivation for travel.
5http://sightsmap.com6http://panoramio.com of Google (discontinued by Google)7http://wikipedia.org8http://wikitravel.org9http://foursquare.com
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Figure 3: A screenshot of the heat map for most of the world on a single picture, with 10 top spots
(1. New York, 2. Rome, 3. Barcelona, 4. Paris, 5. Istanbul) marked. Europe, especially the belt from
Netherlands to Italy as well as the mountainous areas and the Spanish coastal areas dominate. In
U.S. the mountainous areas in Utah and Colorado are well marked, in addition to coastal cities.

Our work is focused on popular sightseeing places regardless of their category. Hencewe are not using data sources like TripAdvisor10, Expedia11, UrbanSpoon12 or Zagat13 whichare primarily focused on specific categories, typically hotels and/or restaurants. Clearly,the hotels and restaurants are among the best crowd-described, -mapped, -reviewed and-rated tourism objects already.
The sightseeing popularity database we build is used by the sightsmap.com site forshowing a zoomable and pannable touristic popularity heat map for any area in the worldas an overlay on the standard Googlemaps. Popular areas on themap are labelledwith anappropriate crowd-sourced name and colour-coded markers in the order of the relativepopularity in the currently visible map area.
There are several advantages to using crowd sources is contrast to POI databases andguides created by experts in the tourism business. The crowd-sourced approach guaran-tees that there are no significant holes, i.e. interesting places and areas unmarked, andthat the popularity estimates are relatively objective, which is hard to achieve by a smallnumber of experts. Last not least, the popularity measurements can be done uniformlyand comparably all over the world.

10TripAdvisor, see http://www.tripadvisor.com/11Expedia, see http://www.expedia.com/12UrbanSpoon, see http://www.urbanspoon.com13Zagat, see http://www.zagat.com
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Figure 4: A screenshot of the heat map for Rome: the leading areas are Spanish steps / Trinita dei
Monti, Trevi fountain, Piazza del Popolo, Pantheon, Trajan’s column / Roman forum, Piazza Navona,
St. Peter’s Basilica, Palazzo Barberini, Piazza della Republica.

.
Figure 5: The whole earth heatmap along with topmost cities for tourism.

3.1 Recommender system toolset
Working with the different projects related to tourism recommender systems we havebeen able to formalize a toolset for building a recommender system. The document alongwith the attached publications describe the main parts in more details. Every step is im-portant in order to be able to recommend objects to tourists. In this section we describe
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.
Figure 6: Western United States with the info window of one topmost area.

.
Figure 7: Zoomed in view of the main Grand Canyon walking trail.

how different parts fit into the whole system.
We start with gathering data about the tourism objects. We have implemented semi-automatic scraper tools which work with certain portals in order to gather information.For a new data source, some configuration has to be done in order to find the requireddata from the source. Gathering data from a database-like system usually means that thedata has to be downloaded and then can be processed. Using regular web pages means
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.
Figure 8: Heatmap of Paris with the most popular sites for photography.

there are a lot more issues which have to be solved first. For example: some pages aremissing, data format is not strict to one structure etc. We have implemented a systemwhich takes all this into consideration and is able to download data from different sourcesregularly.
Rawdata fromdifferent sources has to be processed. There are several reasons to that.First is that the data can be structured incorrectly. Another is that some required partsof data can be missing. In addition, reliability issues may rise with certain data sources.We have introduced a system where missing information is automatically translated fromanother language. Also, data from different sources is merged and combined into cleanedup objects. A separate chapter describes the deduplication process which deals with du-plicate objects from different data sources - how those are merged into one.
One of the data sources we use is a set of Panoramio pictures for the whole world. Wehave implemented a system which groups close-by images together and using only thetitles of the images tries to suggest what is located at the given area. We have divided thework into two separate outcomes. The first is to find the categories for the given location.We have approached the problem with a more general goal: find appropriate tags basedon the group of short texts (image titles in our case). Another problem is to find a titlefor this group. For those two tasks, we have used the same data (picture titles), but useddifferent approaches. For tagging, we try to find more general tags which appear in a lotof countries. For naming, in the other hand, we try to find very specific tags which are nottoo general. We have taken different tagging frameworks and compared those with ourproposed frequency based algorithm.
As the data itself is very important, it is equally important how to store the data. Wehave introduced an extended triple-store format which in addition to subject, predicateand object holds information about fact’s reliability or strength, time the fact added etc.Storing data in the described format gives an opportunity to use it with a reasoner. Wehave described how the facts with the confidence score can be used to present tourism
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object’s types andhow those canbe combinedwith the user’s profile. Score calculation fortourism objects is a totally different approach compared to widely popular collaborativefiltering. In our case, we can provide interesting travel planswithout any knowledge aboutthe history of the user or tourism objects. Also, profile can be changed for each trip, whichmakes it a flexible option to use in recommender system.
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4 Data acquisition and information extraction
In order to provide accurate and up to date recommendations, the information aboutthe tourism objects have to be updated regularly. We have implemented a web scrapingsystem which gathers data from six different web portals all with different data structure.For each data source we have manually described the structure of the page. The scrapergathers the data and transforms it into our own ontology. We have divided data intomorestatic and more dynamic objects. One-time happenings (events, concerts etc.) are morerapidly changing and need to be updated regularly (once a day). Other objects (places ofinterest, monuments, parks etc.) have more static information which does not change formonths or even for years. Based on the category, we scrape certain data sources with adifferent regularity. Usually a data source has information of either about events or placesof interest, so each data source has its own update schedule.A brief overview of the architecture of data importer is presented in Figure 9. Thesystem can connect to several data sources using manually created scraper algorithms.Each scraper downloads the data from the source using predefined structure configura-tion. The data is then transformed into our structure and sent to the Merger. The Mergerfunctionality is described in Chapter 5.Each object in our database has several facts which are described with the followingfields: property, value, language, datatype, score, source, timestamp.

Web page 1 Web page 2 Web page N

Scraper  1 Scraper  2 Scraper  N...

...

Merger DatabaseMatch found?
Match found: update

No match: insert

.
Figure 9: Architecture of data scraping system.

Although our methods focus on detecting sightseeing popularity, the notion itself isambiguous and contains several different subcomponents: visual attractiveness, generalpublic awareness about the place, the number of actual physical visitors etc. Each of thedata sources used covers some components better than the others, effectively comple-menting each other. The data sources have been harvested using the public web API-s forPanoramio (www.panoramio.com/) and Foursquare (https://foursquare.com/) or down-loaded in the already converted semantic format: Wikipedia (http://en.wikipedia.org) is
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downloaded in the form of the DBpedia RDF database, later complemented with the pub-lic Wikipedia logfiles. Harvesting and downloading has been performed during 2012 and2013.
• Ourmain data source Panoramio.com represents the visual component of sightsee-ing: something beautiful or interesting to see. Panoramio contains ca 44 milliongeotagged photos uploaded by users. For several reasons, the Panoramio pho-tos are dominated by the touristic and sightseeing interest, in contrast to moreprivate photos on Flickr (http://www.flickr.com/). Google maps and Google earth(http://www.google.com/earth/) use the Panoramio photos as their photo layer.We have downloaded only the metadata - location, photographer, title - not theactual photo files.
• The second data source Wikipedia represents the general public awareness aboutthe place. We could safely say that all the interesting places, historic events, peo-ple etc. with public interest above a certain threshold do have a Wikipedia article.Places and historic events are normally geotagged in Wikipedia. The popularity -the exact number of readings in a selected time period - of each Wikipedia articlecan be obtained from the publicly available logfiles. We are using ca 700,000 geo-tagged Wikipedia articles with types which do not indicate noninterestingness fortouristic purposes (like articles about plants, animals, people). We use full logfilesfor two days, one selected from summer, the other from winter.
• The third data source Wikitravel (http://wikitravel.org/) essentially complementsWikipedia. Places above a certain touristic interestingness threshold normally haveaWikitravel article corresponding to someWikipedia article. We are using the list ofexisting Wikitravel article names to detect whether a Wikipedia article has a com-plementing Wikitravel article as well.
• The fourth data source Foursquare gives an estimate of the number of people ac-tually visiting the place. A large percentage of visits and a large percentage ofFoursquare places are used and created by the local people visiting offices and eat-ing lunch. Foursquare, differently from all the above sources, has a fairly detailedandwell-used system for the crowd-sourced typing of places. We have downloadednot the whole Foursquare places database, but only ca two million places, prefer-ring the places Foursquare presents when asked for a circle around some of the tophotspots we have previously found out from the analysis of the Sightsmap photos.We harvest several concentric circles around each place previously determined tobe visually popular enough: small circles for objects in the cities and large circlesoutside or around the cities. In the other words, we have only downloaded themore popular Foursquare places in the neighbourhood of the more visually popu-lar (world-wide) places.

4.1 Heat map generation, labelling and data merging
The heat map generation has two separate outcomes. First, it generates the visual heatmap overlays for the map. We use the browser-based Google maps as the underlyingmap. Second, it generates a detailed popularity data for each small rectangular area (apixel on the heat map) for each zoom level, which is later used for labelling, harvestingadditional information etc. The heat map generation is done separately for six differentzoom levels of theworld, eachwith each own granularity. Additionally, the seventh layer is
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a set of high-resolution heat maps, each typically covering one city, created for ca 15,000top spots in the world. The resolution of these high-resolution heat maps depends on thepopularity rank of the hotspots: the more photos, the higher the resolution, up to thestreet level for the top 500.Our algorithm takes into account both the number of photos and the number of sepa-rate photographers in the Panoramio database for each area. The colour of each pixel onthe heat map is calculated by a logarithm-like root function, different for each zoom layer.We use one byte for the colour information, with the the top popular places being brightyellow, followed by orange, red, purple and blue hues.
4.1.1 Wikipedia labelsThe pure visual popularity heat map lacks a clear indication of what exactly is there in ahot area. In short, the top spots in each view have to be marked and the markers shouldideally contain the name and the pointers to the most relevant information about theplaces.Our basic solution for creating these markers, finding the titles and providing pointersis to look for a most popular geotagged Wikipedia article at or very close to each tophotspot at each heat map grid. Articles with an obviously unsuitable type (like plants,animals, and people) are excluded. This method guarantees that, for example, on thewhole-world view where each hot spot pixel corresponds to a relatively large area, weautomatically get the Wikipedia city articles as the most popular, but as we zoom in, thearea for each pixel becomes smaller and we will start getting markers and articles aboutvillages, beaches, castles etc.The actual algorithm is the following. First we cluster the heatmap dots to avoid show-ing lots of markers very close to each other. Then we look for the most popular Wikipediaarticles near the hotspots: the higher-ranked a heat map spot is, the larger the area tosearch. If nothing is found or the found article has a much lower popularity than the heatmap spot, we do not attach anything to the hotspot. Otherwise we connect a hot spot tothe Wikipedia article plus the corresponding Wikitravel article, if available.In order to generate the popularity data and a popularity-sorted list of Wikipedia arti-cles we use the Wikipedia logfiles plus an additional coefficient giving a significant bonustoWikipedia articleswith a type suitable for sightseeing, for example, world heritage sites.It is worth noting that knowing a highest-ranked Wikipedia article for an area helpsusers to google for more, since the article always gives us a title of the place to look for.
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5 Data deduplication (using machine learning)
Gathering data from different sources yields in duplicate objects in the database. Thesame object is present in different sources and therefore ends up several times in ourdatabase. Having duplicate POIs on themapor in the recommended trip plan is somethingthe system should avoid. One possibility would be to remove duplicate entries and leaveonly the unique ones. Instead, we merge information from different sources into oneprominent object. We also have introduced a source quality score. Certain data sourcesare more reliable than others. Each fact about the object (name, description, addressetc.) is stored as a separate fact in our database. Along with the record a reliability scoreis stored. The score is in the range 0 - 1. 1 indicates a certain fact whereas 0 indicates acertain false fact (those are not stored).When duplicate objects are found, the data is merged into one representative object.To minimize the complexity, we do not keep duplicate facts about the objects. So, eachfinal object has one name, one address etc. In order to do that, all the facts from theoriginal objects are scanned through. For each distinct field, only the most prominentfact (the fact with the highest score) is kept.The goal is to have all the information available in English. Most of the data sourceswe used in our work were available only in Estonian. We have introduced an automatictranslation for certain fields. The translated texts have usually a lower confidence score.In cases where there is a text in English available, this is used. In cases where the text ismissing, the translated text is used.We gathered data from Estonian tourism sites about restaurants and events. We havepresented a general algorithm to calculate object similarity in publication V. The systemhas different comparator functions which take two values and return the similarity be-tween the values. The values can be texts (names or descriptions), addresses (latitude,longitude), addresses (textual representation of street, building, city), starting time etc.For two tourism objects, several such comparator functions are applied and combinedinto overall similarity of the objects.As events in the database have starting time whereas restaurants do not (we do notcount opening times here), we do not compare events to restaurants. In order to have amore general approach, we have introduced a so called "check function". Each compara-tor can have a check function which goal is to indicate whether the given two objects arecomparable at all. In our case, start time comparator check function does not allow com-paring restaurant with an event. Those helper functions can eliminate possible duplicatecandidates and limit the search space.Different comparators used are: location, event start time and text comparators. Thelatter is used for textual fields, title and description for example. The text is divided intokeywords and keywords are compared. Text comparator usually has a lower importancecompared to other comparators. The location comparator takes into account both ge-ographical coordinates (latitude and longitude) and address information. Some objectsonly have address, some only have geocoordinates. With coordinates we calculate dis-tance between two points. For some large objects, the same shopping centre can be 200meters off compared to different sources. In addition to the coordinates we use textualaddress when comparing location. We split street address and building number and com-pare those separately. We also remove certain common keywords like "st", "street", "rd","road" etc.Location comparator has the highest importance. The same title (for exampleMcDon-ald’s) can exist in different places, therefore the address or the geocoordinates indicatethe actual difference (or sameness). In case the location matches, totally different title
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should indicate a different object. For example restaurants in the same shopping centre -although the address is the same, the title should indicate the difference. Taking all thisinto account, we have started with importance 0.15 for the title. The threshold for theduplicate objects is 0.9 - if the total similarity score is 0.9 or higher, the two objects aremarked as one. The location and other comparators can yield to 0.85 score (if the addressand typematch), then if the title is different, the objects end up with the score 0.85whichis below the threshold 0.9.To illustrate the comparison process and results of the calculations, we provide twoexamples.1) We have two objects:
Table 1: An example 1 of comparing objects

Property Object A Object B#title McDonald‘s Rocca McDonald’s Rocca#latitude 59.4258329 59.4258492#longitude 24.65024 24.65464#address Paldiski mnt 102 Paldiski mnt. 102
When we compare locations by coordinates, we get 248 meters as the distance be-tween the objects. Comparing addresses says it is the same building, which means thatthe location similarity is 1.0. If we had just used the coordinates-based calculation, thesimilarity would have been 0.0. The similarity between titles is also 1.0. Therefore, thetotal similarity is 1.0, which means the objects represent the same physical object.2) We have two objects:

Table 2: An example 2 of comparing objects

Property Object A Object B#title The Little Prince Carmen#latitude 59.4346093673 59.4341302#longitude 24.7507912449 24.7506081#address Estonia pst. 4 Estonia pst 4#start_time 19:00 19:00
In this example there are two events at the same place. Both events take place inEstonian National Opera at the same time, but in different rooms. First, if we compare thecoordinates, we get the distance 54meters. Thiswould give the location similarity 0.5 (100meters would be 0.0, 0-10 meters would be 1.0). Again, we need to compare addresses(which are the same) and get the actual similarity 1.0. When comparing start times, wealso get the similarity 1.0. The only comparable difference presented in our example isthe title. As there are nomatching words, the title similarity will be 0.0. We have selectedthe title comparator importance so that in the current situation it would affect the totalsimilarity enough to fall below the threshold. The real numbers in our implementation are:threshold 0.9, title comparator importance 0.15 (with 0.0 title similarity, the maximumtotal similarity can be 0.85, which would be lower than the threshold). In addition tomentioned comparators, we compare event types (ballet versus opera), event homepageetc. The total similarity between those two objects is actually 0.7.
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In order to improve the deduplication, we have set up a machine learning process totrain a model for detecting duplicate objects. The next section provides a more formalrepresentation of our problem.
5.1 Deduplication formulation
We define some notations which we will be using later.Object Ai is a duplicate of object A j if they represent the same physical object. Let dbe a symmetric function which returns 1 if all its arguments are duplicates, 0 otherwise:

d(A1, . . . ,An) =

{
1 if all Ai are duplicates
0 otherwise

In addition to comparing different objects, in our notation an object is a duplicate ofitself: d(A,A) = 1 or d(A) = 1.A group of duplicates, called a cluster, is a set C which consists of at least one objectfrom all the objects O so that all the included objects are duplicates:
C = {A1, . . . ,An|d(A1, . . . ,An) = 1}

A cluster could also consist of only one objectC = {A}, as d(A) = 1.A maximal group of duplicates, called a maximal cluster, is a cluster which cannotaccept any new objects so that the completeness is not broken (there is no additionalobject which is a duplicate of the objects in the cluster).In this paper, we are interested inmaximal clusters. Therefore, we use term cluster todenotemaximal clusters if not noted differently.A similarity between twoobjectsA andB is defined by the function Swhich isweightedaverage over similarity values:
S(A,B) =

∑i wi ∗ simi(A,B)
∑i wi

simi is a function which compares certain property or properties of two objects and re-turns a similarity score in range [0; 1]
wi is a weight value for the similarity function simi.The value of S will be in range [0; 1].Two objects are duplicates by similarity function if the similarity function S betweenthe objects A and B exceeds a threshold T :

S(A,B)≥ T ⇒ d(A,B) = 1

5.2 Experiments
Instead of manually trying to adjust the weight parameters of similarity function in defi-nition 5.1, we have used machine learning to find the best settings. The section is dividedinto subsections about learning problem, data used for experiments, feature selection,sample selection, learning setup and results.
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5.2.1 Learning problem definitionIn our approach we compare two objects and find a similarity score based on the prop-erty similarity functions. Objects are compared pair-wise, and we have presented paircounts in Table 3. Our learning task is to separate positive (duplicate) and negative (non-duplicate) pairs.Given the similarity function S(A,B) (definition 5.1) we define fA,B as a feature vectorwith fi being the evaluation of simi on objects A,B.
fA,B = 〈 f1, f2, . . . , fn〉

where
fi = simi(A,B)

simi may be chosen from a set of similarity functions Sim.A sample is given by xA,B = fA,BA sample set
X = {xAi,Aj |Ai,A j ∈O}A classification label is given by

yA,B =

{
1 if d(A,B) = 1
0 if d(A,B) = 0

A label set
Y = {yAi,A j |(Ai,A j ∈O),(xAi,Aj ∈ X)}Label set Y has labels for the same object pairs which are present in the sample set Xin the same order.

A sample xA,B is called a positive sample if yA,B = 1, e.g. object A and B are duplicates.If yA,B = 0, then the sample xA,B is called a negative sample.The goal is to find a function which predicts whether two objects are duplicates andwould yield in the highest prediction accuracy.A sample in our learning setup is a set of similarity values between two objects. Everyvalue in that set indicates a similarity of a certain property or properties between twoobjects. For example, if there are objects A and B, which are very similar, then the samplecan have values xA,B = 1.0,0.9. Another pairA andC might not be similar and have values
xA,C = 0.3,0.1. As every pair can have two possible outcomes, our learning problem isa classification problem: a pair which represents a duplicate has a label 1, a pair whichrepresents a non-duplicate objects has a label 0.
5.2.2 Data for learningOur training data consists of mostly eating places in Tallinn from 5 (five) different sources.For testing we have used a dataset from Riga which is not limited to eating places, butcontains also museums, galleries etc. Testing our trained model on a different datasetfrom a different city gives us information whether our solution of duplicate detection canbe applied for cross-city and cross-category datasets.In order to have labelled samples, we have created a simple application where pairscan bemarked as duplicates. Tallinn data contains about 1800 scraped objects, comparingevery object to every other object would yield int 1.6M comparisons. In order to limit thenumber of comparisons, we only mark duplicates pairs (everything else is non-duplicate).For each object, we find top candidates for possible duplicates andmanually mark the du-plicate candidate(s). The candidates are offered based on the distance and type and also
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Table 3: Statistics about the dataset for Tallinn and Riga

Property Tallinn RigaObject count 1808 3839Different sources 5 2Non duplicates 478 37622-object groups (object count) 203 (406) 75 (150)3-object groups (object count) 133 (399) 1 (3)4-object groups (object count) 68 (272) -5-object groups (object count) 43 (215) -6-object groups (object count) 5 (30) -8-object groups (object count) 1 (8) -Positive (duplicate) pairs 1543 78Negative (non-duplicate) pairs 1.6M 7MPositive pair % 0.1 % 0.001 %

source is considered - there is no point to show candidates from the same data source. Ifall the pairs are marked, duplicate objects can form groups. If objects A and B are dupli-cates and objects B andC are duplicates, then objects A, B andC form one group.Manual annotation still raised many questions amongst users who had to find dupli-cate pairs. Even if you are local and knowmost of the tourism objects, there are still cases,which cannot be solvedwith 100% confidence. Also, as wementioned, we used candidateselection, which might have left some actual duplicates out. Objects, which were not inthe candidate list, were not checked by the annotator. Altogetherwebelieve that the errorof manual deduplication can be about 3–5 % based on the feedback of the annotators.We have presented an overview of the dataset in Table 3. For Tallinn dataset, we havetotal of 1808 scraped objects from 5 data sources. 478 objects did not have any duplicateobjects (or we could say they form up 478 clusters each consisting of only one object), 406objects formed 203 groups with 2 duplicates in each cluster, etc. As can be seen, someobjects have duplicate entries in the same data source. For example, in Tallinn datasetthere is one cluster which is merged from 8 initial objects (duplicate object was presentonce in 2 data sources and twice in 3 data sources). Total number of unique duplicatepairs is 1543. If object A is a duplicate of object B, then it is counted only once. All otherpossible unique pairs (about 1.6M) between the objects are non-duplicate pairs.
5.2.3 Feature selection
Wehave implemented about 20 different functions for features. Themost important onesare:

• Title comparison using Levenshtein distance14;
• Custom title comparisonwithweightedwords (commonwordsweigh less and there-fore do not change the outcome too much);
• Custom title comparison, which we will describe below;
• Euclidean distance using originally scraped coordinates;
• Address string comparison;

14Levenshtein distance, edit distance, see http://en.wikipedia.org/wiki/Levenshtein_distance
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• Euclidean distance using coordinates which were calculated from address strings.
For our custom comparison wematch words from the titles of the objects under com-parison. Every matching word gives a positive score, whereas non-matching word givesa negative score. Scores are added and normalized into range [0,1]. Small difference isallowedwhenmatching words. Titles are compared in every language and the best matchis used as the outcome.In addition to mentioned custom title comparison, we also have so-called custom titlecomparison with a join. Title is split and then consecutive words are joined into one andthen the matches and non-matches are found as with previously described procedure.For example, if we have titles "McDonalds" and "Mc Donalds", then the regular customtitle comparison would return 0 as there is no matching words, whereas after joining twowords in the second name we would compare the same titles, and the result will be highscore.

5.2.4 Sample selectionAs we presented in Table 3, the possible number of object pairs for Tallinn data is about1.6M. The table also shows that only 0.1% of those are positive samples (duplicate pairs).If we would take all the samples, then we would have several problems:
• Generating a feature value set for 1.6M pairs takes time;
• Learning with a large number of data takes a lot of time;
• The balance between positive and negative samples is heavily skewed.
One of our goal is to reduce the number of samples. If we take randomly 10,000samples for Tallinn data, we would only have about 15 positive training samples, which isobviously too few. Instead, we take all the positive samples and negative samples whichhave high similarity values (near-duplicate objects). Of course, we cannot leave out thelow negative samples (all feature values near to zero), otherwise we might end up withclassification which only recognizes mid-values as non-duplicates. About 1,000 sampleshave close to zero feature values. For Riga dataset, we have taken more samples. Rigadata is used only for testing and it has about 100,000 samples: 78 positive ones, about10,000 low negative ones, the rest is mid-valued or near-duplicate negative samples.

5.2.5 Learning setupWe have used Python software scikit-learn15 to assist our learning process. The softwaresupports various number of different learning algorithms. For our problem, we have usedSVM (Support Vectore Machine) classification and decision trees. For SVM, we used gridsearch, which tries several different parameters and returns the one with the best results.The grid search tries both linear and radial basis function (RBF) as a kernel. For decisiontrees, we are using extra trees which train several (30 in our case) independent modelsrandomly and uses average over the models to predict. The both learning algorithmsare run with all the combination of all the features. This way we can find out the mostimportant features. We also would like to minimize the calculation costs for prediction,therefore we try to minimize the number of features necessary for a model.As mentioned earlier, we use Tallinn data for training and testing, Riga data is usedonly for evaluation. Tallinn dataset is divided into two equal sized parts where the ratio ofpositive and negative samples also remains the same. One part is for development and the
15scikit-learn: machine learning in Python, see http://scikit-learn.sourceforge.net/stable/
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Table 4: Learning results using one feature

Feature (code) Algorithm Tallinn Rigaprecision recall f-score precision recall f-score
Address string comparison (ADD) rbf 0.92 0.94 0.93 0.52 0.91 0.66extree 0.96 0.92 0.94 0.59 0.88 0.71Title comparison withoutjoining words (T1) rbf 0.99 0.85 0.91 0.76 0.91 0.83extree 0.99 0.85 0.91 0.65 0.91 0.76Title comparison withjoining words (T2) rbf 0.98 0.89 0.94 0.69 0.96 0.80extree 0.98 0.92 0.95 0.52 0.97 0.68Title comparison withedit distance (ED) rbf 0.96 0.85 0.90 0.09 0.94 0.16extree 0.97 0.86 0.91 0.14 0.91 0.24Distance with originalsource coordinates (OD) rbf 0.76 0.67 0.71 0.65 0.67 0.66extree 0.84 0.82 0.83 0.36 0.90 0.51Distance with re-calculatedcoordinates (RD) linear 0.93 0.95 0.94 0.55 0.96 0.70extree 0.96 0.95 0.95 0.71 0.88 0.79Title comparison without joiningwords, with word weights (TW1) linear 0.97 0.90 0.94 0.36 0.99 0.53extree 0.97 0.96 0.96 0.27 0.99 0.43Title comparison with joiningwords, with word weights (TW2) linear 0.97 0.94 0.95 0.28 1.00 0.43extree 0.98 0.97 0.98 0.28 0.99 0.44

Table 5: Learning results using two features

Feature codes Algorithm Tallinn Rigaprecision recall f-score precision recall f-score
ADD + T1 rbf 0.99 0.95 0.97 0.93 0.99 0.96extree 0.99 0.97 0.98 0.73 0.99 0.84
T1 + RD linear 0.98 0.97 0.98 0.93 1.00 0.96extree 1.00 0.97 0.98 0.93 0.99 0.96
RD + TW1 linear 0.97 0.99 0.98 0.71 1.00 0.83extree 1.00 0.98 0.99 0.88 1.00 0.93
RD + TW2 linear 0.99 0.97 0.98 0.80 1.00 0.89extree 1.00 0.99 0.99 0.89 1.00 0.94
T2 + RD rbf 0.98 0.99 0.98 0.86 1.00 0.92extree 1.00 0.98 0.99 0.94 0.99 0.96

Table 6: Learning results using two features

Feature codes Algorithm Tallinn Rigaprecision recall f-score precision recall f-score
ADD + T1 + RD rbf 0.99 0.97 0.98 0.97 0.99 0.98extree 1.00 0.97 0.99 0.93 0.99 0.96
ADD + T2 + RD linear 0.99 0.98 0.99 0.94 1.00 0.97extree 1.00 0.99 0.99 0.93 1.00 0.96
T1 + RD + TW1 linear 0.99 0.97 0.98 0.91 1.00 0.95extree 1.00 0.98 0.99 0.91 1.00 0.95
T1 + RD + TW2 linear 0.99 0.99 0.99 0.89 1.00 0.94extree 1.00 0.99 0.99 0.94 1.00 0.97
T1 + RD + T2 rbf 0.98 0.99 0.98 0.87 1.00 0.93extree 1.00 0.98 0.99 0.96 0.99 0.97
ED + RD + T2 linear 0.98 0.99 0.98 0.91 1.00 0.95extree 1.00 0.99 0.99 0.92 0.99 0.95
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Figure 10: Learning curves for training, Tallinn test and Riga test data using grid search (SVM pa-
rameter optimization) and features ADD + T1 + RD

other is for evaluation. On development part, we do training with 10-fold cross-validation.Themodel which yields in best results on cross-validation, will be used for evaluation bothwith remaining Tallinn data and with Riga data.
5.2.6 Learning results
We have constructed several different datasets (different number of samples and differ-ent selection of samples) which were trained with different learning algorithms. The totalnumber of test runs is over 400. Here we present the results for some of those tests. Thetables described in this section all have the same structure. Each table has different num-ber of features used for the learning problem. The first column indicates, which featuresare used for training and testing. Every feature set is evaluated with 2 different learningalgorithms. The first one is Support VectorMachine (SVM) and the other is extra trees (ex-tended version of decision trees). For SVM, we have shown the used kernel (linear or rbf- radial basis function). All this data is trained with the same amount of randomly chosensamples from Tallinn data. The ratio of positive and negative samples remains the samefor training and testing data. All the tables present results which are trained with 50% ofTallinn data (5,771 samples, 771 of those are positive). The other part of Tallinn data willbe used for evaluation. In addition, we have evaluated every trainedmodel with Riga data(33,750 samples, 78 of those are positives).

Metrics used for evaluation are:

precision =
t p

t p+ f p
(1)
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Figure 11: Precision-recall curve for features ADD + T1 + RD trained with SVM

recall =
t p

t p+ f n
(2)

F = 2 · precision · recall
precision+ recall

(3)
where t p is the number of true positive predictions (howmany predicted positive sam-ples are actually positives), f n is the number of false negative predictions (predicted neg-ative, but actually are positive), f p is the number of false positive predictions (predictedpositive, actually are negative). In our problem, we concider both precision and recallequally important, therefore we use F1 score16 as the main evaluation of our model.The Table 4 shows the results for 8 best features used alone. For training and testing,only values of one feature (for example title similarity) was used. The codes after thenames are used in other tables to point to concrete feature. From the results we cansee that using only one feature, we can have F-score near 0.8. We can also see that editdistance or Levenshtein distance (feature ED) alone does not separate duplicates fromnon-duplicates very well.The Table 5 present results for some combination of two features. The F-score here isalready very promising. We can seehere that title similarity combinedwith location/addresssimilarity gives good results. For example ADD + T1 (address string similarity and customtitle similarity) and T1 + RD (custom title similarity and re-calculated distance similarity)both give F-scores about 0.95. We did test also with the combinations of three featureswhich are presented in Table 6. All presented results have F-score near or over 0.95.

16F1 score treats both precision and recall equally important
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The first feature set ADD + T1 + RD (address string similarity, title custom similarity andrecalculated distance similarity) has the highest Riga test result. Also, as we stated earlier,we believe that the manual annotation of duplicate objects has also an error of 3–5 %,then 0.98 F-score is a very good result. We have completed tests also for 4 and 5 featurecombinations, none of those performed better than 3 feature combination ADD + T1 + RD.In addition, we evaluated the learning capability of our best model. In the Figure 10we have drawn learning curves (which indicate F-scores) for training and testing datasetsfor different training dataset size using grid search (SVM). To give a better overview of thechanges to the curves, we have used logarithmic scale. X-axis shows the training datasetsize. Our results in the tableswere trainedwith about 5,000 samples. As can be seen fromthe learning curve, we get good predictions already starting from64 training samples. Thelearning curve also shows that our learning problem does not suffer from overfitting (ourtraining accuracy is not too high compared to testing accuracy, the gap is close to 0 startingfrom 1,000 training samples).If we compare the grid search learning curve to the decision trees’ curve in Figure 12,we can see, that decision tree takes more training samples to get better result on Riga(additional test) data. In addition to learning curve, we have plotted precision and recallcurve in Figure 11 for SVM model with features ADD + T1 + RD.In the end, wewill give an example plot of our samples with 2 features in Figure 13. Wehave used SVM to plot features T1 + RD (custom title similarity and recalculated distancesimilarity) which gives an idea, how the features are located. The black line is the trainedclass separator: right upper corner is for the positive (duplicates) predictions, lower leftcorner is for the negative (non-duplicates) predictions.
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Figure 14: A screenshot of the selection by the "beach" tag in the English Channel area with a tag
cloud for the Mulberry harbour area.

6 Location category and name detection
In order to enable searching objects and areas by type, we attach descriptive tags to sev-eral hundred thousand most popular objects. Tags are calculated from photo titles and insome cases augmented with a Foursquare type of a place.The actual usage of tags in the sightsmap.com web application is twofold. First, a usercan click and see a visual tagcloud of any important marker, giving an immediate roughidea of what are the interesting aspects of this particular place (Figure 14). Second, auser can start typing a word into the filter-by-type box, with autocompletion built in todynamically present a list of all the matching tags, categories and their generalizations.Selecting a tag or a general category filters out all the locations where this tag or tagsunder the selected category have an importance over a certain threshold. We are satisfiedwith the usability of the described setup.
6.1 Multi-language titles
Before analysing a picture title, we attach a country code to every picture, using shape filesfrom Thematic Mapping API17. This dataset has only the main borders of the countries,plus bigger islands. For some pictures, the surrounding country cannot be determined: inthose cases we have found the closest border and assigned the picture to that country.Knowing the country code for a picture gives an opportunity to distinguish languages.Although a lot of titles are in English, there are local tourists who use their own languageto describe the picture. Due to a large size of the data set we have not used languagedetection as this is expensive. Knowing a country code also helps to process the picturetitles in order to use country-based filters or properties. For example, consider a popularphrase present in a certain percentage of picture titles inside one country. This popularphrase might be something general (beach, museum) or the name of one specific object(Eiffel Tower). If the pictures with the given phrase are drawn on the map, we can see thecoverage area for the given phrase in a country. In case the pictures with a certain phrasecover a relatively large area - compared to the whole country area - then the particular

17http://thematicmapping.org/downloads/world_borders.php, provided by Bjorn Sandvik
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phrase is probably a general tag and could be considered as a type of the object. If thecoverage area is rather small - for example, in case of Eiffel Tower only certain region ofParis is covered - we could say that this phrase matches a specific object: typically it is thename of the object in the pictures.
Phrases which appear in different countries all over the world indicate a general tagfor an object (museum, beach, church). For example, a word "church" is present in titlesin at least 150 countries. Eiffel Tower appears a lot in France, but is not usedmuch in othercountries.
We use automatic translation for popular phrases for every language. Since the trans-lation process for large quantities is expensive, we select about 500 to 1,000most popularphrases for a country. All of those phrases are then translated into English using GoogleTranslate. After the translation process we merge phrases from different countries andfrom different languages. There are about one thousand different phrases which are pop-ular in the photo titles all over the world.

6.2 Missing titles and types
For approximately seventy percent of the most popular areas we are able to find a localWikipedia article or a Foursquare location providing both a likely name for the area anda likely type. In the Wikipedia case we use the first sentence from Wikipedia to extracttype information. For example, the Wikipedia article about Stonehange has the followingfirst sentence: "Stonehenge is a prehistoric monument in Wiltshire, England ...". The firstsentence is often in a form "object is/was/are/were type"wherewe try to extract the typepart. Another example for Tallinn Town Hall: "The Tallinn Town Hall (...) is a building in theTallinn Old Town, Estonia ...". As can be seen from the last example, the indicated typecan be very general.

Since about one third of our top spots are not connected to Wikipedia or Foursquare,extracting type or the title from concrete article is not available. In the next sections wewill look into differentmethodologies we apply to our data to enrich it and present a novelidea which directs us towards getting the types and the title of a top spot.
6.3 Phrase extraction
Our approach is to use photo titles to understand what does the photo represent. Typi-cally the title contains a name of the object or provides a hint about the object type, like"mountain" or "big church" etc. There are certainly titles with non-informative names like"me in 2010", "this was so cool" etc. However, the majority of the pictures have meaning-ful titles.

For every top spot we select an area around it, with the size depending on the popular-ity of the spot. Every picture in this area is processed. The title of the picture is tokenisedinto lower case words. We ignore commas, full-stops etc. For every tokenised title we willfind the n-grams for n from 1 to 4. An n-gram is combined by taking n consecutive wordsfrom the title. A simple example: given a title "A picture of Big Ben", we will end up withtokens: "a", "picture", "of", "big", "ben". All 1-grams are: "a", "picture", "of", "big", "ben".Followed by 2 and 3-grams: "a picture", "picture of", "of big", "big ben", "a picture of","picture of big", "of big ben". And 4-grams are: "a picture of big", "picture of big ben".
All the pictures around the top spots are processed for n-grams. We then select themost frequent n-grams. If the phrase is present in at least 10 percent of the titles from allthe pictures in the area, the phrase will be stored as a candidate. The candidates are thenused to deduct titles and types for the objects.
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6.4 Names versus descriptive tags
A photo about a concrete object will probably have a title with the object’s name. Peopletaking pictures of Eiffel Tower will usually mention it in their picture titles. Obviously,pictures which mention the Eiffel Tower are located mainly around the object itself. Aphrase which occurs only on the pictures from a small area is assumed to indicate a nameof the object.

A lot of pictures do not mention a name of the object, but indicate a general type ordescription of the object. If the user does not know the name of the object in the picture,she can still write a general description or a type. A phrase which occurs in different lo-cations is likely to be a general descriptive tag. In order to find such tags, we look at howoften is a certain phrase used and how wide an area does it cover - the wider the area,the more general / common the tag is.
Finding a phrase coverage for every country separately gives us more options to anal-yse the results and draw conclusions. Asmentioned earlier, we have to tackle the languageproblem. For each countrywe can assume the language of origin and translate the phrasesinto English. There is no need to translate every phrase we find: instead, we translate justthe top 1,000 phrases by occurrence. In addition to the occurrence we also check thecoverage, i.e. how large a percentage of the country is covered by photos containing aconcrete phrase.
After we have found the top phrases for every country, the results are combined toform the worldwide set of tag words. Only phrases which are present in several countriesare used as descriptive tags. The descriptive tags will be then propagated back to the topspots. Every top spot has a number of tag candidates: however, only those which endedup being tags in the whole world context will be considered.

6.5 Experimental results for photo title analysis
In this section we will present some results obtained using the process described earlier.We note that for our experimentswe have only taken into account one-word tags. Phraseswith two or more words are not considered.

We have about 45million geo–tagged pictures from Panoramio. In addition to latitudeand longitude, ca half of the pictures have a title - for us, those three fields are the mainsource of data. Additionally we have the owner identifier and more metadata along withthe main fields.
As already mentioned, we have grouped pictures together by the location. Based onthe amount of pictures in the group, we have selected 175,000 of the largest groups asour top spots. One top spot should point to a concrete tourism object: to be more exact,a visually attractive object based on the pictures taken. We use Wikipedia, Foursquareand also Geonames to match the top spots in order to get additional information aboutthe location. The main goals are to get the name (what is shown on the pictures) and thetypes of objects on the pictures.
We will focus on the steps towards finding types for the objects. More concretely, weextract descriptive tags for every top spot: these are later used to filter out types. From175,000 top spots we end up generating 28 million word n-grams or phrases. As we focuson one-word phrases, most of those generated n-grams are single words. On average,every top spot gets about 150 phrases attached.
For every country we find the area which a phrase covers. We use simple boundingbox for all the phrase locations. If the bounding box coversmore than 30%of the country’sarea and the phrase is present in at least 0.05% of the pictures of the given country, the
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phrase will be used as a country phrase. In total we have 90,000 country phrases. In ourdatabase we distinguish between 235 countries, which gives 380 phrases for a country onaverage.A more indepth view of the process is described in Algorithm 1. The algorithm usesthe following thresholds:
• Tf req = 0.0005 (0.05%) - a tag has to be present in that ratio of pictures in a countryto be considered as a candidate;
• Tbbox = 0.3 (30%)- a bounding box of the pictures with the given tag has to coverthe given ratio of the country’s land area;
• Tcountry_ f req = 0.3 (30%) - the ratio in howmany countries the tag has to be present(as a candidate, e.g. covers the previous requirements) to be counted as a globaltag.

6.6 Comparison of tag recommendation methods
To evaluate our tagging accuracy we have taken UK photos and compared the results withother phrase extraction methods. As our initial data is a set of titles or text in general, weuse different language / text analytics tools. We have used UK as the most of the titles arein English and we will not use translation.The detailed information about the comparison can be seen in the publication I.We have manually annotated 200 objects with different types and locations all overUK. We will use those to validate our results. In addition, we will be using 100 of those totrain our own models to compare with pretrained models.We have taken 100 globally most popular phrases (stopwords and only small areaphrases are filtered out) and use those as our set of available tags (or categories).We used two evaluation methods to compare the results. The first is using f-score Fig-ure (15) and the other is using a visual representation of the classification (Figure 16)18). Weuse scikit-learn provided f-score calculation functionality. Aswe allowmultiple tags (three)for one cluster, we are using f-score with a built-in micro-average calculation. Micro-average depends on true positive, false positive and false negative results. In addition,we have to define what happens if one of the comparable objects has fewer classes thanthe other. For example, the case where the tag recommender method only provides oneor two, but our manually annotated object has three classes. The missing classes will setto empty. When comparing the results, the f-score will be low as empty does not matchthe annotated class. This could be changed depending on the goal of the classification.For example, if the classifier finds fewer tags, there could be no penalty.The results are shown in Figure 17. Detailed discussion on the results are provided inthe publication I.
6.7 Manual selection and categorization
Despite the large amount of processed titles, the number of repeatedly used distinct tagwords is not high at all. There are just approximately nine hundred tag words which areused more than twice. The top 10 of the list with the occurrence count is shown in theTable 8. Notice that some of the words like "saint" are likely to stem from place nameswhich the algorithms failed to identify as names, while some words like "near" are clearlynot suitable for use as tags.

18See https://cs.ttu.ee/research/projects/sightsmap/
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Data: CountriesC, pictures P
Result: Popular global tags tags
tags = new list for popular tags
tag_countries = new hash map (tag→ country objects)
for c ∈ countriesC do

tag_pic = new hash map (tag→ picture objects)
for p ∈pictures for country c Pc do

for t ∈ get_words(ptitle) do
if t /∈ tag_pic then

tag_pic[t] = new list
end
// add picture into the list by tag
tag_pic[t].add(p)

end
end
popular_tag_pic = new hash map (tag→ picture objects)
for t ∈ keys(tag_pic) do

// on how many pictures does the tag exist
tag_ f req = |tag_pic[t]|/|Pc|
if tag_ f req > Tf req then

/* translate tag depending on the country’s language
to English */

tag_tr = translate(t,c)
popular_tag_pic[tag_tr].addall(tag_pic[t])

end
end
sorted_tag_pic =sort popular_tag_pic by picture count
for t ∈ keys(sorted_tag_pic) do

// calculate bounding box
bbox_area = get_bbox_area(sorted_tag_pic[t])
if bbox_area/Carea > Tbbox then

/* this tag is frequent and covers wider area, will
use this for the given country */

tag_countries[t].add(c)
end

end
end
for t ∈ keys(tag_countries) do

/* in how many countries the tag was found popular enough
*/

if |tag_countries[t]|/|C|> Tcountry_ f req then
tags.add(t)

end
end

Algorithm 1: Finding relevant tags
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Table 7: The size of data we work with.

Panoramio pictures 45MTop spots 175kTop spots phrases 28MCountry phrases 90kCountries 235Top spots tags 2.8MDifferent tags 944

In Figure 18 we have shown all the objects which have a "beach" tag based on theimage titles. Each red dot represents a cluster of images, where the tag "beach" is in top3 tags. Each such cluster is potentially a POI which is related to beach. The eastern coastis missing dots as the data we used to plot the map were cut of at the concrete longitude.In comparison, the very bottom of the list of words used more than twice is: baobab124, hippo 106, pirogue 87, beaches 81, camels 80, ace 71, impala 66, jebel 63, indies 41,monasteries 17, hippos 14, coated 12, stillwater 11, recumbent 9, behold 8. Notice that thelist stems from photo titles and hence there are just a fewwords for visually uninterestinginformation like a shop, pub or a bar.For practical use it makes sense to generalize the tag words under large categories.Obviously, some of the words like "near" or "sunset" are not really useful for categoriza-tion. All in all, we selected 179 suitable tag words from the top 900 of the full list. Clearlythere is no sense in generating categories for which there are almost no instances. Sincewe used the word list without changes, it contains a few words with both a singular andplural version aswell as somewords like reka and kerk, forwhich the automatic translationdid not find a proper English correspondence.Analysing the statistics of the tag words led us to create the following small list ofactually useful categories, organized as a shallow taxonomy. The category names in thefollowing tree start with the capital letters: all the other are tag words. We give a numberof occurrences in the tagword and the number of summarized occurrences in the categoryafter the word/category name. The number of tags shown in the tree are collected notfrom the whole Panoramio dataset, but from the 15,000 top spots: hence the numbersare ca ten times lower than in the Table 8. The dataset of these top spots along withthe extracted tag candidates are available at https://github.com/tammet/sightsmap. Thewhole tree and its subtrees are sorted by the number of word occurrences.
• Landmark (103622) :

– Historic (23626) :
* Castle (5806): castle (4138), rampart (708), fortress (696), walls (264)
* Monument/Memorial (5107) : monument (2266), cemetery (1215),memo-rial (1119), statue (221), grave (193), mausoleum (93)
* old (7540), museum (2830), royal (553), ancient (440), historical (391),ruin (370), historic (329), abandoned (260)

– Church (20125): church (9152), chapel (2337), cathedral (1814), temple (1614),holy (1170), monastery (1131), mosque (702), basilica (446), shrine (359), tem-plom (351), cami (296), catholic (285), kerk (282), pagoda (186)
– Harbour (9741) : port (3799), boat (2074), harbor (1776), ferry (861), ship (649),jetty (299), wharf (283)
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Figure 15: A screenshot of unit tests. Each row represents a test for one manually annotated cluster.

– Education (5001) : school (2853), university (1110), college (548), library (490)
– Palace/Villa (3528) : villa (2030), palace (764), ranch (434), manor (224), villas(76)
– house (7324), bridge (6730), station (4845), tower (4814), plaza (2087), market(1989), hall (1555), dam (1522), fountain (1500), farm (1457), lighthouse (1385),mill (1321), airport (1283), palace (764), quarries (723), tunnel (671), stadium(585), residence (321), windmill (240), hut (215), chalet (213), bazaar (57)

• Nature (78943) :
– Sea (18636) : beach (4858), island (2906), sea (2233), bay (2186), coast (2097),marine (1460), lagoon (990), ocean (638), surf (366), sailing (223), reef (218),coastline (180), yacht (156), fjord (123), beaches (2)
– Mountain (13186) : hill (3886), high (2347), mountain (2200), mount (1351),peak (1070), mountains (666), cliff (459), cliffs (323), volcano (310), hills (302),glacier (272)
– Garden (6254) : garden (3350), gazebo (881), flower (780), flowers (778), patio(465)
– Lake (4711) : lake (2240), pond (1407), reservoir (665), lakes (399)
– River (4194) : river (2307), creek (1358), stream (393), reka (115), fleuve (21)
– Valley (3444) : valley (2818), canyon (562), wadi (64)
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Figure 16: A screenshot of visual evaluation. The map can show each picture title individually, or the
clusters and recommended tags. This way a larger set of clusters can be evaluated visually.

Figure 17: Results of all the different tagging methods.

Figure 18: A screenshot of all the "beach" tags in UK based only on the image titles.
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Table 8: Most popular tags all over the world.

Tag # of pictures # of countriesview 1122018 197beach 560349 138church 545210 147park 437798 135bridge 377299 126river 368806 135lake 348466 117road 339388 175castle 330983 66sunset 306240 176street 292761 139hotel 283653 166old 281107 158port 274308 93saint 269436 52tower 255302 94station 250416 129house 238989 171island 218904 126city 199808 120near 198220 187home 188525 104

– Waterfall (2579) : waterfall (1321), fall (811), falls (447)
– Wildlife (912) : elephant (201), pelican (147), wildlife (135), crocodile (85), buf-falo (75), camel (73), iguana (69), lizard (53), leopard (25), hippo (18), impala(14), camels (12), elephants (4), hippos (1)
– park (8246), tree (2524), rock (2306), trail (1916), forest (1888), green (1641),trees (842), nature (738), shore (677), grove (610), rocks (519), dunes (453),caves (422), desert (413), cave (383), waterfront (352), palms (226), jungle(222), dune (202), cactus (181), safari (117), mangrove (85), baobab (33), paddy(31)

• View (19291) : view (13886), panoramic (1937), landscape (1579), beautiful (1394),skyline (299), panorama (196)
• Accommodation (7090) : hotel (6950), guesthouse (89), housing (51)
• Relaxation (6067) : club (1905), pool (1721), resort (1359), spa (788), casino (294)
• Food and drink (5378) : restaurant (1993), inn (1334), bar (1214), cafe (563), pub (274)
• Art (3059) : statues (1029), sculpture (563), theater (556), gallery (298), theatre(226), art (200), culture (187)
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Table 9: The main table structure

Data type in
PostgreSQL

Data type in
memory DB

Description

integer int Unique row id
integer uri Object URI (reference to string table id)
integer uri Property URI (reference to string table id)
integer depending on thedata type Value URI (reference to string table id)
real double Score/strength of given connection/association
integer uri Source URI of given fact (reference to string tableid)
timestamp int Timestamp when this fact was created
datetime int Fact is valid starting from this datetime
datetime int Fact is valid until this datetime
integer int Whether this row is private (not visible) info

7 Data storage and object score calculation
7.1 Data storage
We have used two databases in our recommender systems: a relational database and anin-memory database. All the data manipulation takes place in PostgreSQL. All the deduc-tion algorithms and scheduling for the recommender system takes place in the memorydatabase. We have set up an automated synchronization for two databases. The informa-tion from PostgreSQL is imported into thememory database every night, since data aboutevents are also scraped every night.

The database structure is based on the extended RDF model - the traditional tripletfields (object, property, value) are extended with meta-information about the triplet. Thesystemhas onemain data table for records, all the values andURIs are stored in the second
string table. The description of the main table can be seen in Table 9.

The score field shows the confidence or probability of the fact within range [0; 1]. Forexample, a fact can say that "church X has a name Oleviste" with the score 0.9. Anotherfact about the same object X may say "object X has a name Niguliste" with a lower score0.5, intuitively meaning that the church X probably has a name "Oleviste".
The source field indicates the name of the source for the given fact. Facts come fromdifferent sources. Some are scraped from the web, some are manually inserted, othersare reasoned from other facts etc. Different methods result in a different source name.For example, we often get different names for the same object from different web portals.Using source fields, we can make difference between the facts and favour one over theother.
The timestamp field shows the date and the time of the creation of the fact. The valid-

ity start and validity end fields indicate the period during which the fact is valid. Omittedvalues indicate the fact is always valid. The privacy indicates the visibility of the fact. Thedefault value NULL means the fact is visible or public. Higher value means the fact is hid-den (not visible) and cannot be used in certain situations.
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The object, property, value and source fields all point to string table. The value in stringtable is kept as a string, therefore we need datatype field which indicates how the valuein string table has to be treated. Object, property and source values are URIs. The stringtable only keeps one record for each URI - all the same URIs in the main table point to thesame record in string table. The value of the value field depends on the datatype.The in-memory database uses a similar structure. Most of the values are stored in themain table. Only long strings and URIs are stored separately and the pointer is stored inthe main table.The shared memory database has a built in reasoner to deduct new facts about theobjects. We use RIF[3] style rules with an additional confidence score for each rule. Thereasoner is mainly used to derive new types for objects.An example of rules:0.9: fact(?X type architecture) :- fact(?X type church).0.9: fact(?X type drinking_place) :- fact(?X type bar).0.7: fact(?X type eating_place) :- fact(?X type bar).
The first rule indicates that if the object has a type church with confidence score Nthen the object will have a new type architecture with score 0.9∗N. Other rules indicatethat a bar is also a drinking place (with a higher confidence) and an eating place (with alower confidence).Another use case for the reasoner is to set opening times for the objects which do nothave those. The recommender system uses opening times to plan the timetable, there-fore each object has to have opening times. Certain outdoor objects like monuments andstatues are open all the time, while some are usually open during the day (10 am to 5 pm).Opening times are described either by weekday (for tourism objects) or concrete date (forevents). The reasoner could also set opening times only for weekdays.

7.2 Score calculation
In order to recommend objects to a tourist a profile for the tourist is needed. One optionis to use a long term profile with preferences over time. The tourist registers an accountand sets her preferences about different interests. In our case, we have used single timepreferences for the given planned trip. Depending on the purpose of the trip and thedestination and other parameters, the preferences about the sights can vary. For example,a tourist could be interested in popular places in Paris. The second time she visits Paris,she would like to go hiking or see less popular objects.The profile should indicate the interests of the tourist. In order to match the userpreferences and object categories, we use the same ontology for both points of interestsand user profile. That allows the system to match the same categories to calculate thescores for different objects.Here is an example of a user profile:
user1 profile:

music 70
architecture 40
museums 40
sports 40
food 50

The profile indicates preferences or interest for the given topics with the given scores.The score here is a value in range [0,100]. Let’s consider the following objects:
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object1:
music 50
architecture 30
museums 20
food 10

object2:
music 90
sports 60

Objects have properties (topics) with confidence score. The scores are taken fromthe database where the property is type. The scores of the profile and the object aremultiplied for each topic:
object1 for user1

music 0.7 * 0.5 = 0.35
architecture 0.4 * 0.3 = 0.12
museums 0.4 * 0.2 = 0.08
food 0.5 * 0.1 = 0.05

object2 for user1
music 0.7 * 0.9 = 0.63
sports 0.4 * 0.6 = 0.24

To get the whole score for the object, each topic score is multiplied by a weight andthe results are summed up. The weight is 1/2i, where i indicates the index (order) of thegiven topic based on the multiplication value. The highest value is the first and has theindex 0. So, the first weight will be 1, followed by: 0.5, 0.25, 0.125 etc. The idea of thoseweights is to not boost the score in cases where the object has a lot of types (comparedto objects which have less types, but which match better). First few highest matches areimportant, the rest do not affect the score that much. The algorithm for score calculationis presented in publication VI.After all the scores for the objects are found, a planning algorithm arranges object intoan itinerary while trying tomaximise the individual object ranking. The planning takes intoaccount available opening times and tries to find diverse set of objects in different topics.
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8 Conclusions
In the world containing a growing amount of data, providing the tourist with the right rec-ommendations for her trip is important. This thesis develops both amethodology and sev-eral algorithms for extracting, integrating and selecting relevant information for buildinga structured database of POIs from a number of crowd-sourced databases like Panoramioand Flickr photobanks and Foursquare, Wikipedia and Geonames semi-structured placedatabases.We compare our frequency based algorithm with the other tag extraction tools re-ferred in the literature and show that the algorithm is significantly faster, yet gives theresults with the same quality as the best pretrained models.Wehavedeveloped a tourism taxonomybasedon the frequency of tags in the Panoramiopictures of the whole world. In addition to categories, we have developed an algorithmto find names for tourism objects around the world using Panoramio photo titles.We develop amethodology for deduplication of POIs usingmachine learning and showthat our algorithm improves the deduplication performance compared to amanually con-figured algorithm from 85% accuracy to 98%.We have also developed a rule-based calculation algorithm using confidence scores tofind the best match between a user profile and a tourism object. This match is used toindicate the interestingness of the object for the tourist.Thework has been carried out during the development of three different recommendersystems: Sightsplanner for Tallinn, Visit Estonia for the whole Estonia and Sightsmap forthe whole world. Sightsmap is still active, although unmaintained due to the closing ofthe Panoramio database by Google: the names, tags and categories shown on the mapare a direct result of the work carried out in this thesis.
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9 Future work
In our recent paper we showed promising results for a new algorithm of finding categoriesfrom crowdsourced Panoramio picture titles. For evaluation we have used only the pic-tures of UK. We are working on moving from UK to the whole world. As was pointed outin the publication, we have currently manually annotated 200 tourism objects in UK withtags. Manual annotation does give some indications on how the algorithms perform, butthe size of our dataset is quite small. As we are broadening our area of focus, we have tofind better means to get comparison data. In order to do that, we have started working onusing Flickr tagged images. Images in Flickr have a title and geo-coordinates. This allowsus to compare our tagging algorithm to be compared against user applied tags.In addition to pictures, short texts like tweets fromTwitter could be categorised. Tweetsalso have get-coordinates which potentially provides an opportunity to even find tourismrelated categories from tweets. People visit different places and tweet about those, infor-mation from the short text could be turned into tag clouds on the map. But in addition totourism field, short text could be analysed for other type of tags or categorisation.
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Abstract
Consolidation of Crowd-Sourced Geo-Tagged Data for Parame-
terized Travel Recommendations
The research covered in this thesis is focused on different aspects of the task of creat-ing automated recommendations for tourism, focusing mostly on places of interest likebeautiful views, architectural landmarks, charming areas etc.A significant amount of work has been spent on designing and developing actual rec-ommender systems - Sightsplanner, Sightsmap and the automated recommender of VisitEstonia - and their data harvesting methods in order to create a platform for showing thefeasibility of the new methods designed and experimented with.The main results of our research are split between three subfields:

• Knowledge engineering: we have shown how to formalize fuzzy and uncertain POIcategories along with suitable ontologies and reasoner-based algorithms for objectmatching and score calculation in a real-life context of actual POI-s, available dataand easily expressable user preferences.
• Machine learning: we have designed a learnable detection system for detectingduplicate POIs from different databases, usable for cross- category, cross-languageand cross-city datasets.
• We show that learning on Tallinn eateries improved the algorithm parameters tosuch a degree that on Riga data containing also museums and galleries it gave us98% accuracy versus 85% accuracy achieved by tuning the algorithm parametersmanually.
• Knowledge extraction: we have designed an algorithm for high-quality keyword ex-traction from short crowd-sourced POI descriptions in different languages, able tofind a suitable name and to add suitable types to the POI. Our clusterization algo-rithm is able to merge the POIs based on the extracted data: on the Panoramio andWikipedia data about U.K. and French locations it was able to find 56% ofWikipediaobjects from the textual titles/annotations of Panoramio pictures in the area.
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Kokkuvõte
Kasutajatelt kogutud andmete integreerimine parametriseeri-
tud reisisoovituste loomiseks
Käesolev doktoritöö käsitleb automaatse turismisoovitaja loomise erinevaid aspekte, foo-kusega visuaalselt atraktiivsetele ja huvitavatele kohtadele. Peamine rõhk töös on turis-miobjektide andmete kogumisel ja töötlemisel.Töö käigus on tegeletud erinevate soovitussüsteemide - Sightsplanner, Sightsmap jasoovitaja Visit Estonia veebilehel - disainimise ja arendamisega ning andmete kogumise,töötlemise ja integratsiooniga nende süsteemide jaoks.Peamised teadustöö tulemused on järgmised:

• Töös on näidatud, kuidas rakendada tõenäosuslikku ja hägusloogikat turismiobjek-tidele sobivushinde arvutamisel, kasutades ebakindlaid kategooriaid, ontoloogiaidning tõestajapõhiseid algoritme. Aluseks võetakse olemasolev turismiobjektide and-mestik ning lihtsasti esitatavad kasutaja-eelistused.
• Rakendades masinõppemeetodeid töötatakse välja süsteem, mille abil tuvastatak-se samu reaalseid objekte kirjeldavad kirjed erinevatest andmeallikatest. Loodudalgoritmiga tuvastati Tallinna söögikohtade andmestiku pealt õppides Riia turismi-objektide, sh muuseumid ja kunstigaleriid jms, kattuvus täpsusega 98%. Eelnevaltoli see täpsus käsitsi seadistatud parameetritega 85%.
• Töös on loodud algoritm, millega tuvastatakse turismiobjektide nimi ja kategooria,tarvitades selleks kasutajate sisestatud kirjeldusi objektide kohta. Saadud andme-te põhjal on võimalik integreeerida andmed erinevatest andmeallikatest. KasutadesPanoramio piltide allkirju suutis algoritm leida umbes 56% Suurbritannia ja Prant-susmaa Wikipedias esinenud turismiobjektidest.
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ABSTRACT
The paper focuses on calculating suitable place names and descrip-
tive tags for large photo collections of visually interesting sights.
The core dataset analyzed contains 45 million crowd-sourced geo-
tagged pictures of the Panoramio database. We present several
methods for analysis along with machine learning experiments
for tag recommendation and suggest a manually built taxonomy
of tag categories, based on the analysis of most widely used tag-
like words in the photo titles, along with their popularities. The
methods, selected tags and the taxonomy can be used for building
different tourism applications for visually interesting sights.
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1 INTRODUCTION
Sightsmap1, see [11] for the initial report, is a world-wide tourism
recommenderwith a focus on finding beautiful places from a heatmap
of crowd-sourced touristic photos in the Panoramio system. The
visual popularity data is augmented by extracting categories from
multilingual photo titles and by merging and processing other
crowd-sourced geotagged datasets, most importantly Wikipedia
and Foursquare.

1http://sightsmap.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WIMS 2020, June 30th - July 3rd, 2020, Casino Barrière, Biarritz - France
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7542-9/20/06. . . $15.00
https://doi.org/10.1145/3405962.3405987

In the current paperwe focus on the issues of using the Panoramio
photo titles for constructing suitable place names, selecting repre-
sentative tags and building a practically useful taxonomy of tag
categories.

The paper is organized as follows. After an overview of the
related work we give a description of the Sightsmap system, which
forms the basis for the current work on analysing and using the
photo titles. In the next section we describe the algorithms and
methods for title analysis, place name and tag calculation. We then
present the results of our experiments of machine learning for
tag selection and identify the methods which perform best on a
relatively small set of labelled data. In the final section we present
a suggested taxonomy of tag categories for practical use.

Some of the relevant calculated datasets are available at
https://github.com/tammet/sightsmap.

2 RELATEDWORK
The tagging / naming method we propose and employ uses a large
number of photos to automatically tag popular touristic places. We
do not use the actual contents of the pictures: instead we use the
user-defined titles along with the location. A significant amount
of work has been done in the area of image recognition in order
to detect the objects in the pictures. A similarly popular area of
research is to tag text (news, research papers etc.). Our case is more
specific: we do not use picture contents and we do not have long
texts to work with. We will give an overview of related work which
covers ideas similar to ours.

In literature the task of finding tags is also called tag recommen-
dation. In [3] the authors give a survey of different tag recommenda-
tion methods. Tagging is described as describing and organizing the
content of the objects. In the survey they propose a taxonomy for
tag recommendation. In our research, we are dealing with object-
centered tagging. We are using context (photo titles) to provide
tags to clusters of images (or to points of interests).

Authors in [19] and [20] use images from Flickr social network
to indicate spatial areas of interest and events. They divide an area
of predefined bounding box (a city center for example) into smaller
groups of fixed size called geo clusters. Flickr photos have user
defined tags which they use to identify the places of interests. By
analyzing the textual data over time, they defined the importance
of the tags and selected the most important ones to represent places
and events.

A very detailed and thorough automatic picture analysis is pre-
sented in [16]. They have described the whole pipeline on how to
cluster geotagged pictures, classify those and how to link clusters
with Wikipedia. They use a subset of European cities and extract
about 220 000 pictures for those places. For clustering they use both
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the visual and text-based similarity. They point out that if they
used only text for clustering, the result precision would be about
60% compared to 98% in case of visual clustering. After clustering,
they label the clusters. For labelling, they use the frequent itemset
mining algorithm which gives speed and scalability. In our case, we
use statistical approach to find label candidates.

After they have found the label candidates for their clusters, web
search is ran to detect Wikipedia articles. From every result they
match the pictures of the article with the pictures of the cluster.
If the pictures match, they connect the Wikipedia article with the
cluster. Having a link to Wikipedia, they will have an annotation
to the clusters which can be used in different ways, for example to
get the name of the object.

The article is dealing with the very same topics we are interested
in. They have described all the steps in the pipeline of labelling the
picture clusters. We are not using visual comparison of pictures as
proposed in their article, nevertheless the methodology mentioned
is very interesting and as can be seen, there are similarities in our
approaches. Some points which are worth looking into to improve
our results: distinguishing between objects and events, looking into
different textual similarity measures. In addition, we do not have
clusters of pictures in the same sense they propose. In our case, the
same picture could be used for several objects.

Assigning geographic coordinates to objects (e.g. pictures) is
a popular topic. In [21] the authors present different ways to se-
lect terms which help assigning coordinates to Flickr photos and
Wikipedia articles. One of themethods theymention is geographical
spread (originally presented in [6]), which is used to find location-
relevant terms. The idea is very similar to what we use in our
method to find phrases which are candidates for tags. They look
whether a term refers to a precise area (landmarks such as Eiffel
Tower) or to a broader region (country of France). We use the simi-
lar idea, but do it country wise and aggregate the results over all
the countries.

In [21] the goal of using the mentioned geographical spread is
different. They want to locate tags which are location-specific. A
picture with a tag which gives as much information about the loca-
tion as possible helps to assign coordinates to the picture. Consider
"Eiffel Tower": if the given tag is on the picture, it is relatively easy
to assign coordinates to the picture. In contrast, if a picture has a
tag "beach", assigning the exact location to the picture based on
that tag is prone to errors.

Authors of [18] tackle a similar task - they want to assign tags to
geotagged photos. Their approach is different: using existing tags
from nearby pictures. For each photo they will look at other photos
which are located close to the given photo and use the tags from
those nearby photos. In addition they apply methods like visual
similarity, different users employing the tag etc. to filter out suitable
tags. In our methodology we take the near-by photos and use titles
to extract tags. The idea to filter out some of the photos which may
add noise is promising. In the work presented in our paper we have
not applied filtering, but use a threshold to accept only phrases
with a high enough appearance rate.

In [2] they propose a methodology to predict tags for images in
Flickr. They use both visual and language components of images.
The language part is user defined tags for the image. They suggest
that as the user can tag images freely, the set of tags will be noisy.

The paper proposes a mechanism how to normalize tag usage by
providing related tags for an image. In their evaluation they find
that language component method outperformed the visual and
combined components.

In [14] the authors automatically build a database of geographic
landmarks. They use Wikipedia and Panoramio as the data sources
and employ web search to identify the names, categories, coor-
dinates and ranks for geographical objects. For names they use
Wikipedia articles and links to other pages. In addition toWikipedia,
they extract information from the Panoramio titles. Given a coor-
dinate, they find pictures within the specified distance. Then they
extract capitalized words which are adjacent to the geographical
concept (e.g. Museum).

Similarly to our approach, they use the first sentence ofWikipedia
to extract the type for the object. For the objects which do not have
a Wikipedia article, they extract the type from the candidate name
which matches with a geographical concept: this will be the first
candidate for the object type. A web search for the object name
is executed and the geographical terms are collected from the top
results’ web pages. Extracted terms will be type candidates for
the given object. Given type candidates are compared with search
queries combined with the object name. The candidate which gets
the most of the search results is assigned as the type for the object.

In our approach we do not use a fixed list of geographical terms
as type candidates. Instead we learn the possible candidates from
the picture titles and use additional crowdsourced portals to extract
possible types for the objects. Usually there are several different
categories which apply for an object, therefore our approach finds
a set of tags.

There is a lot of work done in the field of visual categorisation
to detect type or the object in the picture or assign geographical
location based on the contents of the picture. In [10] the authors
use visual folksonomy to obtain tags for visually similar pictures.
Pictures with user generated tags are extracted for image features.
For non-tagged pictures the tags from similar images are used. In
[9] the authors classify landmarks for large-scale image collection
using visual, textual and temporal information. They show that
if combined together, textual tag analysis improves the quality of
other approaches. They use tags from Flickr to extend the feature
vector for a picture. The authors show that tag-based textual models
outperform models which use only image features. In our case we
do not use photo tags: instead we make use of the photo titles,
which add noise to the data.

3 OVERVIEW OF THE SIGHTSMAP SYSTEM
The goal of the sightsmap.com project is to build a world-wide
tourism recommender along with a database of the sightseeing
popularity and types of concrete places (POI-s) and wider areas in
the world, using purely crowd-sourced data. The system has been
viewed by over 1.5 million distinct users since its launch.

The main feature of the Sightsmap system is showing a zoomable
and pannable touristic popularity heat map for any area in the world
as an overlay on the standardGooglemaps (http://maps.google.com/).
Popular areas on the map are labelled with an appropriate crowd-
sourced name. Concrete popular places are also shown on the map
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with colour-coded markers in the order of the relative popularity
in the currently visible map area.

Due to the changes in the policy and technology of Google Maps
API-s and the discontinuation of the Panoramio photo database,
several of the important features of Sightsmap, like showing pho-
tos, are not available anymore. However, the main features are
unchanged:

• The focus is on generating a zoomable worldwide heatmap
of (visually) interesting places to visit.

• The main data source is Panoramio2 with ca 40 million user-
taken photos with focus on tourism and interesting/beautiful
places; we harvest the locations and tags of photos and use
these as a basis for location popularity heatmap and location
tagging.

• The concrete POIs (places of interest) and their names are
selected for popular areas, based on additionally harvesting
andmergingWikipedia3, Wikitravel4 and Foursquare5 along
with mining and combining the popularities according to
these sites.

• The popularity of places is calculated and used both for the
selection of POIs to be displayed and for building a heatmap.
By sightseeing popularity we mean the estimate of a number
of people visiting the place and considering it as an inter-
esting place for sightseeing, as opposed to popular places
with no or very little potential for sightseeing, like hospitals,
schools, gas stations, bus stops and airports.

• POIs are enriched with names and tags created by merging
the names from the beforementioned sources and the multi-
lingual photo titles/descriptions harvested from Panoramio.

Obviously, some of the abovementioned popular non- sightsee-
ing places like schools and railroad stationsmay in some exceptional
cases be sightseeing places as well: famous old colleges, Grand Cen-
tral Terminal of New York, etc. Two separate important categories
of objects in tourism industry - hotels and restaurants - are similarly
ambivalent: on one hand, utilitarian and not necessarily a target or
cause for travelling, on the other hand, a source of emotions and
sometimes also an important motivation for travel.

Hence the project did not use data sources like TripAdvisor6,
Expedia7, UrbanSpoon8 or Zagat9 which are primarily focused
on specific categories, typically hotels and/or restaurants. Clearly,
the hotels and restaurants are among the best crowd-described,
-mapped, -reviewed and -rated tourism objects already.

The sightseeing popularity database we build is used by the
sightsmap.com site for showing a zoomable and pannable touristic
popularity heat map for any area in the world as an overlay on the
standard Google maps. Popular areas on the map are labelled with
an appropriate crowd-sourced name and colour-coded markers in
the order of the relative popularity in the currently visible map
area.

2http://panoramio.com of Google (discontinued by Google)
3http://wikipedia.org
4http://wikitravel.org
5http://foursquare.com
6TripAdvisor, see http://www.tripadvisor.com/
7Expedia, see http://www.expedia.com/
8UrbanSpoon, see http://www.urbanspoon.com
9Zagat, see http://www.zagat.com

Figure 1: A screenshot of the heat map for most of the world
on a single picture, with 10 top spots (1. New York, 2. Rome,
3. Barcelona, 4. Paris, 5. Istanbul) marked.

There are several advantages to using crowd sources is contrast
to POI databases and guides created by experts in the tourism
business. The crowd-sourced approach guarantees that there are
no significant holes, i.e. interesting places and areas unmarked,
and that the popularity estimates are relatively objective, which is
hard to achieve by a small number of experts. Last not least, the
popularity measurements can be done uniformly and comparably
all over the world.

3.1 Different kinds of popularity and data
sources

Although our methods focus on detecting sightseeing popularity,
the notion itself is ambiguous and contains several different sub-
components: visual attractiveness, general public awareness about
the place, the number of actual physical visitors etc. Each of the
data sources used covers some components better than the oth-
ers, effectively complementing each other. The data sources have
been harvested using the public web API-s for Panoramio10 and
Foursquare11 or downloaded in the already converted semantic
format: Wikipedia12 is downloaded in the form of the DBpedia RDF
database, later complemented with the public Wikipedia logfiles.
Harvesting and downloading has been performed during 2012 and
2013.

• Our main data source Panoramio.com represents the visual
component of sightseeing: something beautiful or interesting
to see. Panoramio contains ca 44 million geotagged photos
uploaded by users. For several reasons, the Panoramio photos
are dominated by the touristic and sightseeing interest, in
contrast to more private photos on Flickr13. Google maps
and Google earth14 use the Panoramio photos as their photo

10https://www.panoramio.com/
11https://foursquare.com/
12http://en.wikipedia.org
13http://www.flickr.com/
14http://www.google.com/earth/
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layer. We have downloaded only the metadata - location,
photographer, title - not the actual photo files.

• The second data source Wikipedia represents the general
public awareness about the place. We could safely say that
all the interesting places, historic events, people etc. with
public interest above a certain threshold do have aWikipedia
article. Places and historic events are normally geotagged in
Wikipedia. The popularity - the exact number of readings
in a selected time period - of each Wikipedia article can be
obtained from the publicly available logfiles. We are using ca
700 000 geotagged Wikipedia articles with types which do
not indicate noninterestingness for touristic purposes (like
articles about plants, animals, people). We use full logfiles for
two days, one selected from summer, the other from winter.

• The third data source Wikitravel (http://wikitravel.org/) es-
sentially complements Wikipedia. Places above a certain
touristic interestingness threshold normally have a Wiki-
travel article corresponding to some Wikipedia article. We
are using the list of existing Wikitravel article names to
detect whether a Wikipedia article has a complementing
Wikitravel article as well.

• The fourth data source Foursquare gives an estimate of the
number of people actually visiting the place. A large percent-
age of visits and a large percentage of Foursquare places are
used and created by the local people visiting offices and eat-
ing lunch. Foursquare, differently from all the above sources,
has a fairly detailed and well-used system for the crowd-
sourced typing of places. We have downloaded not the whole
Foursquare places database, but only ca two million places,
preferring the places Foursquare presents when asked for a
circle around some of the top hotspots we have previously
found out from the analysis of the Sightsmap photos. We har-
vest several concentric circles around each place previously
determined to be visually popular enough: small circles for
objects in the cities and large circles outside or around the
cities. In the other words, we have only downloaded the
more popular Foursquare places in the neighbourhood of
the more visually popular (world-wide) places.

3.2 Heat map generation, labelling and data
merging

The heat map generation has two separate outcomes. First, it gener-
ates the visual heat map overlays for the map. We use the browser-
based Google maps as the underlying map. Second, it generates a
detailed popularity data for each small rectangular area (a pixel on
the heat map) for each zoom level, which is later used for labelling,
harvesting additional information etc. The heat map generation
is done separately for six different zoom levels of the world, each
with each own granularity. Additionally, the seventh layer is a set
of high-resolution heat maps, each typically covering one city, cre-
ated for ca 15000 top spots in the world. The resolution of these
high-resolution heat maps depends on the popularity rank of the
hotspots: the more photos, the higher the resolution, up to the street
level for the top 500.

Our algorithm takes into account both the number of photos and
the number of separate photographers in the Panoramio database

for each area. The colour of each pixel on the heat map is calculated
by a logarithm-like root function, different for each zoom layer. We
use one byte for the colour information, with the the top popular
places being bright yellow, followed by orange, red, purple and blue
hues.

3.3 Wikipedia labels
The pure visual popularity heat map lacks a clear indication of what
exactly is there in a hot area. In short, the top spots in each view
have to be marked and the markers should ideally contain the name
and the pointers to the most relevant information about the places.

Our basic solution for creating these markers, finding the titles
and providing pointers is to look for a most popular geotagged
Wikipedia article at or very close to each top hotspot at each heat
map grid. Articles with an obviously unsuitable type (like plants,
animals, and people) are excluded. This method guarantees that,
for example, on the whole-world view where each hot spot pixel
corresponds to a relatively large area, we automatically get the
Wikipedia city articles as the most popular, but as we zoom in,
the area for each pixel becomes smaller and we will start getting
markers and articles about villages, beaches, castles etc.

The actual algorithm is the following. First we cluster the heat
map dots to avoid showing lots of markers very close to each other.
Then we look for the most popular Wikipedia articles near the
hotspots: the higher-ranked a heat map spot is, the larger the area
to search. If nothing is found or the found article has a much lower
popularity than the heat map spot, we do not attach anything to the
hotspot. Otherwise we connect a hot spot to the Wikipedia article
plus the corresponding Wikitravel article, if available.

In order to generate the popularity data and a popularity-sorted
list of Wikipedia articles we use the Wikipedia logfiles plus an ad-
ditional coefficient giving a significant bonus to Wikipedia articles
with a type suitable for sightseeing, for example, world heritage
sites.

It is worth noting that knowing a highest-ranked Wikipedia
article for an area helps users to google for more, since the article
always gives us a title of the place to look for.

3.4 Merging with Foursquare
The ultra-high-res heat maps for which we load Foursquare data is
populated with the combined Wikipedia and Foursquare markers
for top spots in the heat map, using an algorithm which - similarly
to the Wikipedia labelling algorithm from the previous chapter -
first tries to associate Wikipedia and Foursquare objects to the most
popular places on the map and finally interleaves the remaining,
unmatched top Wikipedia and Foursquare articles to the mix, even
if they are not located near a visually attractive spot.

Foursquare places are merged with Wikipedia articles using an
algorithm which takes into account both the geographical distance
and a similarity of the name of the place with the name of the
article. In order to be merged, both of these parameters must be
sufficiently similar.

Foursquare locations are ordered based on the combination of
different users ever checked in and the type of the place. First, we
exclude both geotaggedWikipedia articles and Foursquare locations
with obviously non-geographic or non-sightseeing type (homes,
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Figure 2: A screenshot of the selection by the "beach" tag in
the English Channel area with a tag cloud for the Mulberry
harbour area.

offices, bus stops etc.). Second, we add bonuses to articles and
locations based on the suitability of their type: for example, castles,
churches and public squares get different bonuses.

In most cases the geographical coordinates of the underlying
visually popular spot, the closest popular Wikipedia article and the
corresponding Foursquare location (close both by coordinates and
the name), as well as the name of the article and the location are
noticeably different.We use a relatively complex heuristic algorithm
to determine the most suitable name and coordinate to present for
the user as a marker. The percentage of errors our algorithm makes
varies a lot for different zoom levels and regions and has not been
measured with a sufficient quality to present it in the paper.

4 TAGGING OBJECTS
In order to enable searching objects and areas by type, we attach
descriptive tags to several hundred thousand most popular objects.
Tags are calculated from photo titles and in some cases augmented
with a Foursquare type of a place.

The actual usage of tags in the sightsmap.com web application
is twofold. First, a user can click and see a visual tagcloud of any
important marker, giving an immediate rough idea of what are
the interesting aspects of this particular place. Second, a user can
start typing a word into the filter-by-type box, with autocomple-
tion built in to dynamically present a list of all the matching tags,
categories and their generalizations. Selecting a tag or a general
category filters out all the locations where this tag or tags under
the selected category have an importance over a certain threshold.
We are satisfied with the usability of the described setup.

The following work is performed on the photo titles of ca 175
thousand most popular small areas (top spots) worldwide, as iden-
tified by the popularity analysis described in the previous section.
Clearly, some of the top spots contain just one visually interesting
sight, while some contain several close-by sights.

4.1 Multi-language titles
Before analyzing a picture title, we attach a country code to every
picture, using shape files from
http://thematicmapping.org/downloads/world_borders.php.

This dataset has only the main borders of the countries, plus big-
ger islands. For some pictures the surrounding country cannot be
determined: in those cases we have found the closest border and
assigned the picture to that country.

Knowing a country code for a picture gives an opportunity to
distinguish languages. It also helps to process the picture titles
in order to use country-based filters or properties. For example,
consider a popular phrase present in a certain percentage of picture
titles inside one country. This popular phrase might be something
general (beach, museum) or the name of one specific object (Eiffel
Tower). If the pictures with the given phrase are drawn on the map,
we can see the coverage area for the given phrase in a country. In
case the coverage area is relatively large - compared to the whole
country area - then the particular phrase is probably a general tag
and could be considered a type of the object. If the coverage area
is rather small - for example, in case of Eiffel Tower only Paris is
covered - we could say that this phrase matches a specific object:
typically it is the name of the object.

Phrases which appear in different countries all over the world
indicate a general tag for an object (museum, beach, church). For
example, a word church is present in titles in at least 150 countries.
Eiffel Tower appears a lot in France, but is not used much in other
countries.

We use automatic translation for popular phrases for every lan-
guage. Since the translation process for large quantities is expensive,
we select about 500 to 1000 most popular phrases for a country.
All of those phrases are then translated into English using Google
Translate. After the translation process we merge phrases from
different countries and from different languages. There are about
one thousand different phrases which are popular in the photo titles
all over the world.

4.2 Missing titles and types
For approximately seventy percent of the most popular areas we
are able to find a local Wikipedia article or a Foursquare location
providing both a likely name for the area and a likely type. In the
Wikipedia case we use the first sentence from Wikipedia to extract
type information. For example, the Wikipedia article about Stone-
hange has the following first sentence: "Stonehenge is a prehistoric
monument in Wiltshire, England ...". The first sentence is often in a
form "object is/was/are/were type" where we try to extract the type
part. Another example for Tallinn Town Hall: "The Tallinn Town
Hall (...) is a building in the Tallinn Old Town, Estonia ...". As can be
seen from the last example, the indicated type can be very general.

Since about one third of our top spots is not connected to Wiki-
pedia or Foursquare, extracting type or the title from concrete article
is not available. In the next sections we will look into different
methodologies we apply to our data to enrich it and present a novel
idea which directs us towards getting the types and the title of a
top spot.

4.3 Phrase extraction
Our approach is to use photo titles to understand what does the
photo represent. Typically the title contains a name of the object
or provides a hint about the object type, like "mountain" or "big
church" etc. There are certainly titles with non-informative names
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like "me in 2010", "this was so cool" etc. As the aim of Panoramio
was to enrich Google Earth and Google Maps with a layer of visual
aid for different areas of the world, the ratio of cat pictures are low.
Therefore the majority of the pictures have meaningful titles.

For every top spot we select an area around it, with the size
depending on the popularity of the spot. Every picture in this area
is processed. The title of the picture is tokenised into lower case
words. We ignore commas, full-stops etc. For every tokenised title
we will find the n-grams for n from 1 to 4. An n-gram is combined
by taking n consecutive words from the title. A simple example:
given a title "A picture of Big Ben", we will end up with tokens: "a",
"picture", "of", "big", "ben". All 1-grams are: "a", "picture", "of", "big",
"ben". Followed by 2 and 3-grams: "a picture", "picture of", "of big",
"big ben", "a picture of", "picture of big", "of big ben". And 4-grams
are: "a picture of big", "picture of big ben".

All the pictures around the top spots are processed for n-grams.
We then select the most frequent n-grams. If the phrase is present
in at least 10 percent of the titles from all the pictures in the area,
the phrase will be stored as a candidate. The candidates are then
used to deduct titles and types for the objects.

4.4 Names versus descriptive tags
A photo about a concrete object will probably have a title with the
object’s name. People taking pictures of Eiffel Tower will usually
mention it in their picture titles. Obviously, pictures which mention
the Eiffel Tower are locatedmainly around the object itself. A phrase
which occurs only on the pictures from a small area is assumed to
indicate a name of the object.

A lot of pictures do not mention a name of the object, but indicate
a general type or description of the object. If the user does not know
the name of the object in the picture, she can still write a general
description or type. A phrase (which could also be a part of the title,
like "tower") which occurs in different locations around the country
or world is likely to be a general descriptive tag. In order to find
such tags, we look at how often is a certain phrase used and how
wide an area does it cover - the wider the area, the more general /
common the tag is. For example "beach" is used in very different
places, so we can assume this is a general term which is used for
several objects, therefore it is a descriptive tag.

Finding a phrase coverage for every country separately gives
us more options to analyse the results and draw conclusions. As
mentioned earlier, we have to tackle the language problem. For
each country we can assume the language of origin of the title and
translate the phrases into English. There is no need to translate
every phrase we find: instead, we translate just the top 1000 phrases
by occurrence. In addition to the occurrence we also check the
coverage, i.e. how large a percentage of the country is covered by
photos containing a concrete phrase. For example French word
"plage" which translates to "beach" covers both western-northern
and southern side of France. As the word is popular and covers
wide area (compared to some local sightseeing), the word will be
translated into English.

After we have found the top phrases for every country, the results
are combined to form the worldwide set of tag words. Only phrases
which are present in half of the countries are used as descriptive
tags. The descriptive tags will be then propagated back to the top

spots. Every top spot has a number of tag candidates: however, only
those which ended up being tags in the whole world context will
be considered.

5 EXPERIMENTAL RESULTS FOR PHOTO
TITLE ANALYSIS

In this section we will present some results obtained using the
process described earlier. We note that for our experiments we have
only taken into account one-word tags. Phrases with two or more
words are not considered.

We have about 45 million geo–tagged pictures from Panoramio.
In addition to latitude and longitude, ca half of the pictures have
a title - for us, those three fields are the main source of data. Ad-
ditionally we have the owner identifier and more metadata along
with the main fields.

As already mentioned, we have grouped pictures together by the
location. Based on the amount of pictures in the group, we have
selected 175.000 of the largest groups as our top spots. One top
spot should point to a concrete tourism object: to be more exact,
a visually attractive object based on the pictures taken. We use
Wikipedia, Foursquare and also Geonames to match the top spots
in order to get additional information about the location. The main
goals are to get the name (what is shown on the pictures) and the
types of objects on the pictures.

We will focus on the steps towards finding types for the objects.
More concretely, we extract descriptive tags for every top spot:
these are later used to filter out types. From 175.000 top spots we
end up generating 28 million word n-grams or phrases. As we focus
on one-word phrases, most of those generated n-grams are single
words. On average, every top spot gets about 150 phrases attached.

For every country we find the area which a phrase covers. We use
simple bounding box for all the phrase locations. If the bounding box
covers more than 30% of the country’s area and the phrase is present
in at least 0.05% of the pictures of the given country, the phrase
will be used as a country phrase. In total we have 90.000 country
phrases. In our database we distinguish between 235 countries,
which gives 380 phrases for a country on average.

A more indepth view of the process is described in Algorithm 1.
The algorithm uses the following thresholds:

• Tf r eq = 0.0005 (0.05%) - a tag has to be present in that ratio
of pictures in a country to be considered as a candidate;

• Tbbox = 0.3 (30%)- a bounding box of the pictures with the
given tag has to cover the given ratio of the country’s land
area;

• Tcountry_f r eq = 0.3 (30%) - the ratio in how many countries
the tag has to be present (as a candidate, e.g. covers the
prvious requirements) to be counted as a global tag.

5.1 Comparison of tag recommendation
methods

To evaluate our tagging accuracy we have taken UK photos and
compared the results with other phrase extraction methods. As
our initial data is a set of titles or text in general, we use different
language / text analytics tools. We have used UK as the most of the
titles are in English and we will not use translation.
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Data: Countries C , pictures P
Result: Popular global tags taдs
taдs = new list for popular tags
taд_countries = new hash map (tag→ country objects)
for c ∈ countries C do

taд_pic = new hash map (tag→ picture objects)
for p ∈pictures for country c Pc do

for t ∈ дet_words(pt it le ) do
if t < taд_pic then

taд_pic[t] = new list
end
// add picture into the list by tag

taд_pic[t].add(p)
end

end
popular_taд_pic = new hash map (tag → picture objects)
for t ∈ keys(taд_pic) do

// on how many pictures does the tag exist

taд_f req = |taд_pic[t]|/|Pc |
if taд_f req > Tf r eq then

/* translate tag depending on the

country’s language to English */

taд_tr = translate(t , c)
popular_taд_pic[taд_tr ].addall(taд_pic[t])

end
end
sorted_taд_pic =sort popular_taд_pic by picture count
for t ∈ keys(sorted_taд_pic) do

// calculate bounding box

bbox_area = дet_bbox_area(sorted_taд_pic[t])
if bbox_area/Carea > Tbbox then

/* this tag is frequent and covers wider
area, will use this for the given
country */

taд_countries[t].add(c)
end

end
end
for t ∈ keys(taд_countries) do

/* in how many countries the tag was found

popular enough */

if |taд_countries[t]|/|C | > Tcountry_f r eq then
taдs .add(t)

end
end

Algorithm 1: Finding relevant tags

We have manually annotated 200 objects with different types
and locations all over UK. We will use those to validate our results.
In addition, we will be using 100 of those to train our own models
to compare with pretrained models.

Table 1: The size of data we work with.

Panoramio pictures 45M
Top spots 175k

Top spots phrases 28M
Country phrases 90k

Countries 235
Top spots tags 2.8M
Different tags 944

We have taken 100 globally most popular phrases (stopwords
and only small area phrases are filtered out) and use those as our
set of available tags (or categories).

• The first is our n-gram phrase extraction which uses most
frequent phrases in one picture cluster. Only the phrases
which are in our available tags set are used.

• scikit-learn TF-IDF ([15], [5]) model. We have used scikit-
learn framework [12] and provided Count Vectorizer and
TfidfTransformer modules. We use a built-in model with the
vector created from all the pictures and find top 10 phrases
with the highest TF-IDF score from the titles of the cluster
of pictures. For example, Big Ben as a point of interest with
nearby pictures. Only the highest 3 which match the global
popular phrases will be used-

• Wikipedia supported TF-IDF [17]. In comparison with the
previous one, this model is trained on Wikipedia Summary
Dataset.

• Trained scikit-learn TF-IDF model. We use 100 manually
annotated objects for training and two different classification
algorithms: decision tree (DecisionTreeClassifier) and neural
network (MLPClassified - Multi-layer Perceptron classifier).

• TensorFlow Universal Sentence Encoder model [4]. We use
TensorFlow [1] pretrained Universal Sentence Encoder ver-
sion 4. All the cluster titles (concatenated titles of all the
titles of pictures in the cluster) are transformed into 512 di-
mensional vectors. The available tags are transformed into
vectors. A cosine similarity function is used to find the top 3
most similar categories.

• Explosion AI spaCy pretrained model [7]. We use a medium
sized web codemodel. Themodel is based on Common Crawl
and OntoNotes 5 [22] sources. The vectors are 300 dimen-
sional. A cosine similarity function is used for similarity
measure. As the category is one word and the title of the
cluster is usually several words, spaCy will use average sim-
liarity between the category and title words.

• Facebook fastText pretrained model [8]. The model is pre-
trained on Common Crawl and Wikipedia data. Vectors are
300 dimensional, a cosine similarity function is used to com-
pare titles.

• Stanford GloVe pretrained model [13]. The sources for the
model are Wikpiedia from 2014 and Gigaword 5. Vectors are
50 dimensional. The model contains 6 billion words and 400
000 unique words. In addition, a larger model with Common
Crawl data was tried. The larger model contains 42 billion
words and 1.9 billion unique words. The larger model did
not give any improvements over the smaller dataset. As the
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smaller dataset performed better, we used it in our experi-
ments.

We used two evaluationmethods to compare the results. The first
is using f-score Figure (3) and the other is using a visual represen-
tation of the classification Figure (4). We use scikit-learn provided
f-score calculation functionality. As we allow multiple tags (three)
for one cluster, we are using f-score with a built-in micro-average
calculation. Micro-average depends on true positive, false positive
and false negative results. In addition, we have to define what hap-
pens if one of the comparable objects has fewer classes than the
other. For example, the case where the tag recommender method
only provides one or two, but our manually annotated object has
three classes. The missing classes will set to empty. When compar-
ing the results, the f-score will be low as empty does not match
the annotated class. This could be changed depending on the goal
of the classification. For example, if the classifier finds fewer tags,
there could be no penalty.

Figure 3: A screenshot of unit tests. Each row represents a
test for one manually annotated cluster.

The results are shown in Figure 5. As can be seen, our trained
models for TF-IDF did not perform well. The problem is the training
data size: we only used 100 objects to train. Taken into account
the small size, the result is not too far from other models. This
is something we will look into in the future. Universal sentence
encoder’s low score can be explained with the lack of context in
our input data. A picture title is usually not a whole sentence, but
rather a fragment or a phrase. FastText is the highest pretrained
model in our results. In the top three there are 2 TF-IDF based

Figure 4: A screenshot of visual evaluation. The
map can show each picture title individually, or
the clusters and recommended tags. This way a
larger set of clusters can be evaluated visually. See
https://cs.ttu.ee/research/projects/sightsmap/.

Figure 5: Results of all the different tagging methods.

models and our frequency based algorithm. We tried Wikipedia TF-
IDF model with different configurations. Using more than 100,000
introduction articles, the results did not improve. We also tried to
use only articles which contained phrases like: uk, United Kingdom,
British isles, Britain. This did not improve the results either.

From the point of memory usage, fastText is the largest. GloVe,
spaCy and Universal Sentence Encoder are average memory users,
the rest use a rather small amount of memory. The fastest methods
are frequency based and TF-IDF based methods. For pretrained
models, it took some time to load the model into memory. It took
about two hours to run the whole process of clustering and tagging
for UK data of 1.4M pictures and one hour for merging pictures
into clusters. SpaCy model took additional thirty minutes while the
rest were faster.
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Figure 6: A screenshot of all the "beach" tags in UK based
only on the image titles.

6 MANUAL SELECTION AND
CATEGORIZATION

Despite the large amount of processed titles, the number of re-
peatedly used distinct tag words is not high at all. There are just
approximately nine hundred tag words which are used more than
twice. The top 10 of the list with the occurrence count is shown
in the Table 2. Notice that some of the words like "saint" are likely
to stem from place names which the algorithms failed to identify
as names, while some words like "near" are clearly not suitable for
use as tags.

Table 2: Most popular tags all over the world.

Tag # of pictures # of countries
view 1122018 197
beach 560349 138
church 545210 147
park 437798 135
bridge 377299 126
river 368806 135
lake 348466 117
road 339388 175
castle 330983 66
sunset 306240 176
street 292761 139
hotel 283653 166
old 281107 158
port 274308 93
saint 269436 52
tower 255302 94
station 250416 129

In figure 6 we have shown all the objects which have a "beach"
tag based on the image titles. Each red dot represents a cluster of
images, where the tag "beach" is in top 3 tags. Each such cluster

is potentially a POI which is related to beach. The eastern coast is
missing dots as the data we used to plot the map were cut of at the
concrete longitude.

For practical use it makes sense to generalize the tag words under
large categories. Obviously, some of thewords like "near" or "sunset"
are not really useful for categorization. All in all, we selected 179
suitable tag words from the top 900 of the full list. Clearly there
is no sense in generating categories for which there are almost no
instances. Since we used the word list without changes, it contains
a few words with both a singular and plural version as well as some
words like reka and kerk, for which the automatic translation did
not find a proper English correspondence.

Analyzing the statistics of the tag words led us to create the
following small list of actually useful categories, organized as a
shallow taxonomy. The category names in the following tree start
with the capital letters: all the other are tag words. We give a num-
ber of occurrences in the tag word and the number of summarized
occurrences in the category after the word/category name. The
number of tags shown in the tree are collected not from the whole
Panoramio dataset, but from the 15.000 top spots: hence the num-
bers are ca ten times lower than in the table above. The dataset of
these top spots along with the extracted tag candidates are available
at https://github.com/tammet/sightsmap. The whole tree and its
subtrees are sorted by the number of word occurrences.

• Landmark (103622) :
– Historic (23626) :

∗ Castle (5806): castle (4138), rampart (708), fortress (696),
walls (264)

∗ Monument/Memorial (5107) : monument (2266), ceme-
tery (1215), memorial (1119), statue (221), grave (193),
mausoleum (93)

∗ old (7540), museum (2830), royal (553), ancient (440),
historical (391), ruin (370), historic (329), abandoned
(260)

– Church (20125): church (9152), chapel (2337), cathedral
(1814), temple (1614), holy (1170), monastery (1131), mosque
(702), basilica (446), shrine (359), templom (351), cami (296),
catholic (285), kerk (282), pagoda (186)

– Harbour (9741) : port (3799), boat (2074), harbor (1776),
ferry (861), ship (649), jetty (299), wharf (283)

– Education (5001) : school (2853), university (1110), college
(548), library (490)

– Palace/Villa (3528) : villa (2030), palace (764), ranch (434),
manor (224), villas (76)

– house (7324), bridge (6730), station (4845), tower (4814),
plaza (2087), market (1989), hall (1555), dam (1522), foun-
tain (1500), farm (1457), lighthouse (1385), mill (1321),
airport (1283), palace (764), quarries (723), tunnel (671),
stadium (585), residence (321), windmill (240), hut (215),
chalet (213), bazaar (57)

• Nature (78943) :
– Sea (18636) : beach (4858), island (2906), sea (2233), bay
(2186), coast (2097), marine (1460), lagoon (990), ocean
(638), surf (366), sailing (223), reef (218), coastline (180),
yacht (156), fjord (123), beaches (2)
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– Mountain (13186) : hill (3886), high (2347), mountain (2200),
mount (1351), peak (1070), mountains (666), cliff (459), cliffs
(323), volcano (310), hills (302), glacier (272)

– Garden (6254) : garden (3350), gazebo (881), flower (780),
flowers (778), patio (465)

– Lake (4711) : lake (2240), pond (1407), reservoir (665), lakes
(399)

– River (4194) : river (2307), creek (1358), stream (393), reka
(115), fleuve (21)

– Valley (3444) : valley (2818), canyon (562), wadi (64)
– Waterfall (2579) : waterfall (1321), fall (811), falls (447)
– Wildlife (912) : elephant (201), pelican (147), wildlife (135),
crocodile (85), buffalo (75), camel (73), iguana (69), lizard
(53), leopard (25), hippo (18), impala (14), camels (12), ele-
phants (4), hippos (1)

– park (8246), tree (2524), rock (2306), trail (1916), forest
(1888), green (1641), trees (842), nature (738), shore (677),
grove (610), rocks (519), dunes (453), caves (422), desert
(413), cave (383), waterfront (352), palms (226), jungle (222),
dune (202), cactus (181), safari (117), mangrove (85), baobab
(33), paddy (31)

• View (19291) : view (13886), panoramic (1937), landscape
(1579), beautiful (1394), skyline (299), panorama (196)

• Accommodation (7090) : hotel (6950), guesthouse (89), hous-
ing (51)

• Relaxation (6067) : club (1905), pool (1721), resort (1359), spa
(788), casino (294)

• Food and drink (5378) : restaurant (1993), inn (1334), bar
(1214), cafe (563), pub (274)

• Art (3059) : statues (1029), sculpture (563), theater (556),
gallery (298), theatre (226), art (200), culture (187)

7 SUMMARY
We have proposed several methods and algorithms for analysing
photo titles of worldwide popular places, with the goal of finding
both suitable place names and tags. We observe that our experi-
ments with fully automated tag recommendation using machine
learning did not give high quality results, likely due to a relatively
small number of annotated top spots used in these experiments.
Nevertheless, we identify machine learning methods which per-
formed clearly better than others, thus giving a direction for future
experiments. Finally we present a suggested manual taxonomy of
selected tag categories, based on the analysis of most widely used
tag-like words in the photo titles, along with their popularities. The
methods, selected tags and the taxonomy can be used as a statis-
tically grounded basis for building different tourism applications
focusing on visually interesting sights.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
(2015). https://www.tensorflow.org/ Software available from tensorflow.org.

[2] Ashton Anderson, K Ranghunathan, and Adam Vogel. 2008. Tagez: Flickr tag
recommendation. Association for the Advancement of Artificial Intelligence 3
(2008).

[3] Fabiano M Belém, Jussara M Almeida, and Marcos A Gonçalves. 2017. A survey
on tag recommendation methods. Journal of the Association for Information
Science and Technology 68, 4 (2017), 830–844.

[4] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St
John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, and
others. 2018. Universal sentence encoder. arXiv preprint arXiv:1803.11175 (2018).

[5] Hans Christian, Mikhael Pramodana Agus, and Derwin Suhartono. 2016. Single
Document Automatic Text Summarization using Term Frequency-Inverse Doc-
ument Frequency (TF-IDF). ComTech: Computer, Mathematics and Engineering
Applications 7, 4 (2016), 285–294.

[6] Claudia Hauff and Geert-Jan Houben. 2011. WISTUD at MediaEval 2011: Placing
Task.. In MediaEval.

[7] Matthew Honnibal and Ines Montani. 2017. spaCy 2: Natural language under-
standing with Bloom embeddings, convolutional neural networks and incremen-
tal parsing. (2017). To appear.

[8] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2016. Bag
of Tricks for Efficient Text Classification. arXiv preprint arXiv:1607.01759 (2016).

[9] Yunpeng Li, David J Crandall, and Daniel P Huttenlocher. 2009. Landmark
classification in large-scale image collections. In Computer Vision, 2009 IEEE 12th
International Conference on. IEEE, 1957–1964.

[10] Stefanie Lindstaedt, Roland Mörzinger, Robert Sorschag, Viktoria Pammer, and
Georg Thallinger. 2009. Automatic image annotation using visual content and
folksonomies. Multimedia Tools and Applications 42, 1 (2009), 97–113.

[11] Ago Luberg, Priit Järv, and Tanel Tammet. 2013. Sightsmap: crowd-sourced
popularity of the world places. In Information and Communication Technologies
in Tourism 2013. Springer.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[13] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP). 1532–1543. http://www.aclweb.org/anthology/D14-
1162

[14] Adrian Popescu, Gregory Grefenstette, and Pierre Alain Moëllic. 2008. Gazetiki:
automatic creation of a geographical gazetteer. In Proceedings of the 8th ACM/IEEE-
CS joint conference on Digital libraries. ACM, 85–93.

[15] Shahzad Qaiser and Ramsha Ali. 2018. Text Mining: Use of TF-IDF to Examine the
Relevance ofWords to Documents. International Journal of Computer Applications
181 (2018), 25–29.

[16] Till Quack, Bastian Leibe, and Luc Van Gool. 2008. World-scale mining of ob-
jects and events from community photo collections. In Proceedings of the 2008
international conference on Content-based image and video retrieval. ACM, 47–56.

[17] Thijs Scheepers. 2017. Improving the Compositionality of Word Embeddings.
Master’s thesis. Universiteit van Amsterdam, Science Park 904, Amsterdam,
Netherlands.

[18] Ana Silva and Bruno Martins. 2011. Tag Recommendation for Georeferenced
Photos. In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on
Location-Based Social Networks (LBSN ’11). ACM, New York, NY, USA, 57–64.
DOI:http://dx.doi.org/10.1145/2063212.2063229

[19] E. Spyrou and P. Mylonas. 2011. Placing User-Generated Photo Metadata on a
Map. In 2011 Sixth International Workshop on Semantic Media Adaptation and
Personalization. 79–84.

[20] Evaggelos Spyrou and Phivos Mylonas. 2016. Analyzing Flickr metadata to
extract location-based information and semantically organize its photo content.
Neurocomputing 172 (2016), 114 – 133. DOI:http://dx.doi.org/https://doi.org/10.
1016/j.neucom.2014.12.104

[21] Olivier Van Laere, Jonathan Quinn, Steven Schockaert, and Bart Dhoedt. 2014.
Spatially Aware Term Selection for Geotagging. IEEE Transactions on Knowledge
and Data Engineering 26, 1 (Jan. 2014), 221–234. DOI:http://dx.doi.org/10.1109/
TKDE.2013.42

[22] Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Prad-
han, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Fran-
chini, Mohammed El-Bachouti, Robert Belvin, and AnnHouston. 2013. OntoNotes
Release 5.0. LDC2013T19, Philadelphia, Penn.: Linguistic Data Consortium (2013).

- 158 -



Appendix 2

II

T. Tammet, A. Luberg, and P. Järv. Sightsmap: Crowd-sourced popularity of the world places. In L. Cantoni and Z. P. Xiang, editors, Information and 
Communication Technologies in Tourism 2013, pages 314–325, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg

81





 

Sightsmap: crowd-sourced popularity  

of the world places 

Tanel Tammet
a,b

, Ago Luberg
a,b

, Priit Järv
a,b

 
 

a 
Eliko Competence Centre 

Tallinn, Estonia 

ago.luberg@eliko.ee
 

b 
Tallinn University of Technology 

Tallinn, Estonia 

tanel.tammet@ttu.ee 

priit@cc.ttu.ee 

Abstract 

We analyse and combine a number of world-wide crowd-sourced geotagged databases with the 
goal to locate, describe and rate potential tourism targets in any area in the world. In particular, 
we address the problem of finding representative names and top POIs for popular areas, with 
the main focus on sightseeing. The results are demonstrated on the sightsmap.com site 
presenting a zoomable and pannable tourism popularity heat map along with popularity-sorted 
POI markers for concrete objects. 

Keywords: crowd-sourced mapping; popularity analysis; heat map; entity disambiguation  

1 Introduction 

The goal of this work is to build a world-wide database of the sightseeing popularity 

of concrete places (POI-s) and wider areas in the world, using purely crowd-sourced 

data. By sightseeing popularity we mean the estimate of number of people visiting the 

place and considering it as an interesting place for sightseeing, as opposed to very 

popular places with no or very little potential for sightseeing, like hospitals, schools, 

gas stations, bus stops and airports.  

Obviously, some of the abovementioned popular non-sightseeing places like schools 

and railroad stations may in some exceptional cases be sightseeing places as well: 

famous old colleges, Grand Central Terminal of New York, etc. Two separate 

extremely important categories of objects in tourism industry – hotels and restaurants 

– are ambivalent as well: on one hand, utilitarian and not necessarily a target or cause 

for travelling, on the other hand, an important source of emotions and sometimes also 

an important partial motivation for travel. 

As said, our work is focused on popular sightseeing places regardless of their 

category. Hence we are not using any data sources like TripAdvisor 

(http://www.tripadvisor.com/), Expedia (http://www.expedia.com/), UrbanSpoon 



 

(http://www.urbanspoon.com) or Zagat (http://www.zagat.com) which are primarily 

focused on specific categories, typically hotels and/or restaurants. Clearly, the hotels 

and restaurants are among the best crowd-described, -mapped, -reviewed and -rated 

tourism objects already. 

 

 

 

 

 

 

Fig 1. A screenshot of the heat map for most of the world on a single picture, with 10 

top spots (1. New York, 2. Rome, 3. Barcelona, 4. Paris, 5. Istanbul) marked. Europe, 

especially the belt from Netherlands to Italy as well as the mountainous areas and the 

Spanish coastal areas dominate. In U.S. the mountainous areas in Utah and Colorado 

are well marked, in addition to coastal cities. The original picture is colour-coded as a 

proper heat map. 

The sightseeing popularity database we build is used in the sightsmap.com site for 

showing a zoomable and pannable touristic popularity heat map for any area in the 

world as an overlay on the standard Google maps (http://maps.google.com/). Popular 

areas on the map will be labelled with an appropriate crowd-sourced name. Concrete 

popular places will be also shown on the map with colour-coded markers in the order 

of the relative popularity in the currently visible map area. 

There are numerous application possibilities for such a database. First, it is already 

used for showing map overlays geared towards finding interesting POI-s to visit in 

any region, large or small, in a uniform manner anywhere in the world. Second, the 

database can be used as an input for a tourism recommender like Sightsplanner 

(Luberg et al., 2011; Luberg et al., 2012). Third, the database can be used for doing 

popularity analyses for the tourism industry. 

There are also several advantages to using crowd sources as contrasted to POI 

databases and guides already created by experts in the tourism business. The crowd-

sourced approach guarantees that there are no significant holes, i.e. interesting places 

and areas unmarked, and that the popularity estimates are, despite inevitable  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. A screenshot of the heat map for the north-western France, with 10 top spots (1. 

Paris. 2. Versailles, 3. Euro Disneyland, 4. Mont Saint Michel, 5. Honfleur) marked. 

The castles of the Loire Valley form the central belt. The original picture is color-

coded as a proper heat map. 

 

Fig 3. A screenshot of the heat map for Manhattan, with 10 top spots marked. The 

open marker popup window links to the Wikipedia and Foursquare pages of the 

Metropolitan Museum of Art. The original picture is color-coded as a proper heat 

map. 



 

fluctuations, relatively objective, which is very hard to achieve by a small number of 

experts. Last not least, the popularity measurements can be done uniformly and 

comparably all over the world. 

In the next section we will provide a brief overview of the data sources and the main 

algorithms employed in our system. In the section 3 we will describe the relations 

between the data sources and the aspects of merging and enriching data in more 

detail. Section 4 will present experimental results and we will end our paper with 

related work and conclusion. 

2 Different kinds of popularity and data sources 

Although our methods focus on detecting sightseeing popularity, the notion is 

ambiguous and contains several different subcomponents (visual 

beauty/interestingness, general public awareness about the place, the number of actual 

physical visitors etc.). Each of the data sources used covers some components much 

better than the others; hence they complement each other well. The data sources have 

been harvested using their public web API-s (Panoramio (www.panoramio.com/) and 

Foursquare (https://foursquare.com/)) or downloaded in the already converted 

semantic format (Wikipedia (http://en.wikipedia.org) downloaded in the form of 

DBpedia RDF database, later complemented with the public Wikipedia logfiles). 

Harvesting and downloading has been performed during 2012. 

 Our main data source Panoramio.com represents the visual component of 

sightseeing: something beautiful or interesting to see. Panoramio contains ca 

44 million geotagged photos uploaded by users. For several reasons, the 

Panoramio photos are dominated by these with touristic and sightseeing 

interest (in contrast to more private photos on Flickr 

(http://www.flickr.com/)). Google maps and Google earth 

(http://www.google.com/earth/) use the Panoramio photos as their photo 

layer. We have downloaded only the metadata (location, photographer, title), 

not the actual photo files. 

 The second data source Wikipedia represents the general public awareness 

about the place. We could safely say that all the interesting places, historic 

events, people etc. with public interest above a certain threshold do have a 

Wikipedia article. Places and historic events are normally geotagged in 

Wikipedia. The popularity – the exact number of readings in a selected time 

period – of each Wikipedia article can be obtained from the publicly 

available logfiles. We are using ca 700 000 geotagged Wikipedia articles 

with types which do not indicate noninterestingness for touristic purposes 

(like articles about plants, animals, people). We use full logfiles for two days, 

one selected from summer, the other from winter. 

 The third data source Wikitravel (http://wikitravel.org/) essentially 

complements Wikipedia: places: above a certain touristic interestingness 



 

threshold normally have a Wikitravel article corresponding to some 

Wikipedia article. We are using the list of existing Wikitravel article names 

to detect whether a Wikipedia article has a complementing Wikitravel article 

as well. 

 The fourth data source Foursquare gives an estimate of the number of people 

actually visiting the place. A large percentage of visits (and a large 

percentage of Foursquare places) are done and created by local people 

visiting offices and eating lunch. Foursquare, differently from all the above 

sources, has a fairly detailed and well-used system for the crowd-sourced 

typing of places. We have downloaded not the whole Foursquare places 

database, but only ca 2 000 000  places, taking the places Foursquare 

presents when asked for a circle around some of the top hotspots we have 

previously found out from the analysis of the Sightsmap photos. We harvest 

several concentric circles around each place previously determined to be 

visually popular enough: small circles for objects in the cities and large 

circles outside or around the cities. In the other words, we have only 

downloaded the more popular Foursquare places in the neighbourhood of the 

more visually popular (world-wide) places.  

3 Heat map generation, basic labelling and data merging 

The heat map generation has two separate outcomes. First, it generates the visual heat 

map overlays for the map. We use the browser-based Google maps as the underlying 

map. Second, it generates a detailed popularity data for each small rectangular area (a 

pixel on the heat map) for each zoom level, which is later used for labelling, 

harvesting additional information etc. 

The heat map generation is done separately for six different zoom levels of the world, 

each with each own granularity. Additionally, the seventh layer is a set of high-

resolution heat maps, each typically covering one city, created for ca 15000 top spots 

in the world. The resolution of these high-resolution heat maps depends on the 

popularity rank of the hotspots: the more photos, the higher the resolution, up to the 

street level for the top 500. 

Our algorithm takes into account both the number of photos and the number of 

separate photographers in the Panoramio database for each area. The colour of each 

pixel on the heat map is calculated by a logarithm-like root function, different for 

each zoom layer. We use one byte for the colour information, with the the top popular 

places being bright yellow, followed by orange, red, purple and blue hues. 

3.1 Basic labelling with Wikipedia 

The pure visual popularity heat map lacks a clear indication of what exactly is there in 

a hot area. In short, the top spots in each view have to be marked and the markers 



 

should ideally contain the name and the pointers to the most relevant information 

about the places.  

Our basic solution for creating these markers, finding the titles and providing pointers 

is to look for a most popular geotagged Wikipedia article at or very close to each top 

hotspot at each heat map grid. Articles with an obviously unsuitable type (like plants, 

animals, and people) are excluded. This method guarantees that, for example, on the 

whole-world view where each hotspot pixel corresponds to a relatively large area, we 

automatically get the Wikipedia city articles as the most popular, but as we zoom in, 

the area for each pixel becomes smaller and we will start getting markers and articles 

about villages, beaches, castles etc.  

The actual algorithm is the following. First we cluster the heat map dots to avoid 

showing lots of markers very close to each other. Then we look for the most popular 

Wikipedia articles near the hotspots: the higher-ranked a heat map spot is, the larger 

the area to search. If nothing is found or the found article has a much lower popularity 

than the heat map spot, we do not attach anything to the hotspot. Otherwise we 

connect a hotspot to the Wikipedia article plus the corresponding Wikitravel article, if 

available. 

As mentioned before, in order to generate the popularity data and a popularity-sorted 

list of Wikipedia articles we use the logfiles mentioned before plus an additional 

coefficient giving a significant bonus to Wikipedia articles with a type suitable for 

sightseeing, for example, world heritage sites. 

It is worth noting that knowing a highest-ranked Wikipedia article for an area helps 

users to google for more, since the article always gives us a title of the place to look 

for. 

3.2 Basic merging with Foursquare 

The ultra-high-res heat maps for which we do load Foursquare data is populated with 

the combined Wikipedia and Foursquare markers for top spots in the heat map, using 

an algorithm which – similarly to the Wikipedia labelling algorithm from the previous 

chapter – first tries to associate Wikipedia and Foursquare objects to the most popular 

places on the map and finally interleaves the remaining, unmatched top Wikipedia and 

Foursquare articles to the mix, even if they are not located near a visually attractive 

spot.  

Foursquare places merging with Wikipedia articles is performed using an algorithm 

which takes into account both the geographical distance and a similarity of the names 

of the place vs. the article. In order to be merged, both of these parameters must be 

sufficiently similar. 

Foursquare locations are ordered based on the combination of different users ever 

checked in and the type of the place. First, we exclude both geotagged Wikipedia 

articles and Foursquare locations with obviously non-geographic or non-sightseeing 



 

type (homes, offices, bus stops etc.). Second, we add bonuses to articles and locations 

based on the suitability of their type: for example, castles, churches and public 

squares get different bonuses. 

In most cases the geographical coordinates of the underlying visually popular spot, 

the closest popular Wikipedia article and the corresponding Foursquare location 

(close both by coordinates and the name), as well as the name of the article/location 

are noticeably different. We use a relatively complex heuristic algorithm to determine 

the most suitable name and coordinate to present for the user as a marker. The 

percentage of errors our algorithm makes varies a lot for different zoom levels and 

regions and has not been measured with a sufficient quality to present it in the paper. 

4 Labelling areas and merging objects: issues and improvements 

The general idea behind labelling visual hotspots was briefly described above. Here 

we will present some main problems we have encountered and propose ways to 

improve our system. 

For every visual hotspot we try to to find a matching Wikipedia article. A significant 

percentage of popular hotspots will get a match from Wikipedia. We try to find the 

name for non-matching objects by looking at Panoramio pictures nearby. We take a 

certain area around the hotspot (for example, 1 km radius) and look at the titles of 

pictures within that area. Based on this information we try to get the name of the 

object in the hotspot. 

Table 1. An example of candidate list for pictures near Cliffs of Moher. The best 

match is has rank 1 and n 3 (marked with italics). Some less frequent candidates are 

omitted. 

Candidate n Rank Pos Total %  

moher 1 1 656 859 76.4  

of 1 2 631 859 73.5  

cliffs 1 3 587 859 68.3  

of moher 2 1 595 859 69.3  

cliffs of 2 2 559 859 65.1  

moher ireland 2 3 67 859 7.8  

cliffs of moher 3 1 534 859 62.2  

of moher ireland 3 2 64 859 7.5  

cliffs of moher ireland 4 1 60 859 7.0  

The title of the picture is tokenised into lower case words. We ignore commas, full-

stops etc. For every tokenised title we will find the word n-grams for n being from 1 

to 4. An n-gram is combined by taking n consecutive words from the title. A simple 

example: given a title "A picture of Big Ben", we will end up with tokens: "a", 

"picture", "of", "big", "ben". All 1-grams are: "a", "picture", "of", "big", "ben". And 

all 4-grams are: "a picture of big", "picture of big ben". 



 

After finding n-grams for every picture in the area of interest, we take the 5 most 

frequent n-grams for every n. We will end up having up to 20 n-grams (5 most 

frequent for every n=1..4) for a hotspot which we consider name candidates. 

An example candidate list for "Cliffs of Moher" (pictures near Lahinch, Galway in 

Ireland) is presented in Table 1. The column n stands for n used in n-gram (how many 

tokens is used to form up a candidate), Rank stands for rank in current n (1 being the 

most frequent n-gram), Pos ("positive" pictures) is a number of pictures which 

contain the given n-gram, Total represents the total number of pictures near by and % 

shows the percentage of "positive" pictures. We have marked the correct candidate in 

the table. 

The given example illustrates already some problems we have with this methodology. 

After generating a list of candidates, we have to pick the correct candidate. Finding 

the correct one is not so straightforward. It is obvious that we cannot use the most 

frequent candidate as the final name, because it may-be just part of our final name. If 

our final name consists of 3 words, then every word alone in this name has at least the 

same or even higher frequency. This is very clear in the example: “cliffs”, “of” and 

“moher” all have higher frequency than “cliffs of moher” together. 

The idea we have with the candidate selection is to find the longest candidate which 

has frequency above a certain threshold. For example, if the threshold is 30%, then we 

would find “cliffs of moher” to be the best candidate. To improve the precision, we 

are planning to apply machine learning to find the best threshold (or may-be even 

have additional indicators for the best pick in addition to frequency and term count). 

Another problem is more related to the concept of taking pictures. It often happens 

that bigger (high) objects can be captured only from distance. It is very hard to take a 

picture of Eiffel Tower when being right in front of it. The same applies for our 

example “Cliffs of Moher”. The candidate list we presented earlier is actually taken 

from about 2 kilometres from the object itself (object location based on Wikipedia). 

Wikipedia location for the cliffs has about 400 pictures and 267 mention “Cliffs of 

Moher”, while 2 kilometres away the count of pictures is about 800 and 534 of those 

mention the correct object. 

For our system, we actually need both those places. If later we want to have a 

recommendation of the best sightseeing places, we can prefer the distant location to 

take pictures. The 2 kilometre gap between the objects makes it harder to merge them 

into one. Currently we will have two separate objects (even though the name of two 

places could be the same). 

In the next section we will present some experiments with Panoramio picture titles. 

All the work presented is based on the methodology described in the current section. 



 

5 Experiments and Results 

We use two different datasets for our tests: pictures from United Kingdom and 

pictures from France. For every popular place we have found up to 20 possible 

candidate titles. In order to evaluate our simple approach, we use Wikipedia to extract 

titles of popular objects. For every popular object we find a Wikipedia article with the 

same or close geocoordinates. In case there are several Wikipedia pages for one 

location, we try to take the most appropriate (popular and type-wise suitable). 

Obviously, not all visually popular locations have a Wikipedia entry. In our evaluation 

we only consider those locations which have a linked Wikipedia article. After 

generating all the n-gram candidates for a location we will see whether the Wikipedia 

name is within those candidates. Statistics about the datasets can be found in Table 2. 

Table 2. Statistics about the datasets for UK and France. 

Property UK France 

Hotspots 14 768 13 621 

Wikipedia objects 9753 9931 

Panoramio picture count 1.4M 1.5M 

Wikipedia object match 5458 5531 

Match % 56% 56% 

As shown in the Table 2, we were able to find about 56% Wikipedia objects from the 

Panoramio pictures. This means that the Wikipedia name matches (we allowed 

Levenshtein distance (Levenshtein distance, edit distance, 

http://en.wikipedia.org/wiki/Levenshtein_distance) up to 3) with one candidate. We 

outline several reasons why some objects are not found/matched: 

 The number of pictures in the close vicinity is very low (or even zero). If 

we have an object and only 3 pictures mention that object, we want to look 

at pictures from the bigger area. We can extend the search area, and end up 

with 20 new pictures, but none of those mention the object we were looking 

for (all the new pictures mention some other object). 

 Wikipedia and Panoramio coordinates do not match. We look only those 

matches which are close to each other. For our matching evaluation we need 

Wikipedia and Panoramio pictures to be very close. It may happen that the 

source data has somewhat rounded coordinates (0.01 difference in latitude 

or longitude number can mean 1 km distance). Another possibility is that 

some objects are usually pictured from a distance. A good example was 

given in the previous section about Cliffs of Moher. 

 Different name variants. In Wikipedia, some objects have additional 

information like county or country in their titles. For the Wikipedia place 



 

"Lincoln, England" we have found an n-gram "Lincoln", which is a correct 

match. These kinds of matches are not counted in our "match" number. 

 The Panoramio title is too general. For some objects, there are a lot of 

pictures which indicate the name of the city or county where the object is 

located. For example, the case where there are 100 pictures near a certain 

Wikipedia object and only 3 mention the object itself. Other pictures 

mention the city, the county etc. It can easily happen that  more general n-

grams push the correct object out. 

Our dataset for the described experiments has about 14 000 "hotspot" objects and 

about 10 000 Wikipedia objects. For the objects with Wikipedia articles, we could 

combine Panoramio and Wikipedia data to validate the title of the object. For the rest, 

we have to rely on Panoramio pictures (or on some additional external data source). 

Usually the title generated from the Panoramio title n-grams is not wrong, but it might 

be too general or a slightly different variation than Wikipedia article would have. We 

estimate that the Panoramio based object titles are correct in at least 56% of cases. If 

we add different name variations and more general objects, we might end up with 70-

80 %. 

6 Related Work 

Heatmaps are used in various domains in order to visualise intensity of a certain 

values. We mention few which are also related to tourism. Fisher (2007) uses tile 

download statistics from Microsoft map server to present popular areas. He calls the 

system Hotmap. Every time a user looks a map, she downloads visible tiles from the 

server. Objects (and tiles) which are watched more often, have higher download 

numbers and they will become more popular for Hotmap. They present different ways 

to use heatmaps mentioning also a possibility to draw users' attention to prominent 

objects. 

Kurata (2012) presents a potential-of-interest map based on Flickr pictures in 

Yokohoma. He present an interesting approach for finding popularity of objects where 

only pictures from non-local users are taken into account. Users who live in the city, 

are considered as non-tourists and their pictures do not add popularity. In our case, to 

find the name and the type of the object, we have to use pictures from local people. 

And it may happen, that those are even more accurate than tourist pictures, as a tourist 

may not know the exact name of the object. Kurata presents user evaluation which is 

very valuable and something we still have to organise for our recommender system. 

Crandall et al. (2009) describe their system which uses image textual and visual 

features to group pictures into popular objects. They find a name and a descriptive 

picture for every popular object. Processing image textual information is very close to 

what we have presented in our paper. They use distinctiveness to order name 

candidates instead of using candidate name ratio to all pictures near-by the object. 

They present a machine learning technique usage for solving the problem of naming 



 

the objects (where the photo is taken). Although they present that combining textual 

and visual features yield the best results, we keep our focus on using only textual 

information. 

Alves et al. (2009) present KUSCO system which deals with enriching POI data. 

They extract information from search engine to gather web pages about a certain POI. 

Then they use natural language processing to extract concepts for objects. An 

interesting idea is to use WordNet (http://wordnet.princeton.edu/) concepts matched 

with words from the web pages. We have started working on something similar: we 

try to extract words from Panoramio picture titles and find similarity or distance 

between found words and WordNet concepts. We only consider certain concepts from 

WordNet which represent categories of POI: museum, restaurant, hotel, church etc. 

Popescu et al. (2008) present a system which integrates Wikipedia and Panoramio in 

order to identify geographical names, categorise objects, find geographical 

coordinates and rank objects. They use Panoramio picture count as one possible rank 

for objects (more pictures means higher rank). They also try to find categories for 

objects where they use language processing from the first sentence of Wikipedia and 

web search. They compare their system with Geonames (http://www.geonames.org/), 

but they do not use Geonames as a source for their data. A lot of our ideas align with 

their proposed solutions: using Panoramio for ranking objects, merge objects with 

Wikipedia, try detecting categories from web search (something we are currently 

working on). 

Popescu et al. (2009) present a multilingual geographical gazetteer creation based on 

Flickr, Panoramio, Wikipedia and web search. They detect place names using a 

vocabulary with geographical concepts. They also present object ranking and 

categorisation. They have improved some of the methods compared to their paper 

from 2008. They use Flickr instead of Panoramio. They have also published their 

gazetteer which can be downloaded (http://georama-

project.labs.exalead.com/gazetiki.htm). We could evaluate our system against this 

dataset. However, we need to implement some additional functionality before doing 

the evaluation, in order to perform full range comparison. 

Zheng et al. (2009) describe a system for building a world-wide landmark database. 

They use pictures from Picasa (http://picasa.google.com) and Panoramio along with 

Google Image Search (http://images.google.com) to download picture files. They also 

use textual information from Wikitravel to complement objects which are not present 

in pictures. They use picture and Wikitravel text information to find the name for the 

popular object. Image processing helps to detect different pictures about the same 

object which can be clustered into one group. In addition to image processing they use 

picture title word n-grams – the most frequent n-gram is used as the title for the 

group. 



 

7 Conclusions and Future Work 

We have presented the Sightsmap system with a goal to build a world-wide database 

of the sightseeing popularity of concrete POI-s. We are using purely crowd-sourced 

data: Panoramio, Wikipedia, Wikitravel, Foursquare. While the main goal is to detect 

popularity, first we have to tackle different data extraction and integration problems. 

We have presented experiments on finding an object name from the Panoramio 

picture titles. We have also described the way to gather information and to use 

different sources to calculate popularity for objects in the world. We have presented a 

heat map solution sightsmap.com, where all our data is put to use. 

One of the future plans is to be able to recommend objects all over the world. The 

recommendation should be based on the interests of the tourist, hence we need to find 

a category for every object in the world. We have already started working on this goal 

and have briefly mentioned our ideas on the subject.  
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ABSTRACT
This paper is about scraping web pages for tourism objects
and resolving duplicates for a tourism recommender system
Sightsplanner. Gathering information from different web
portals, we end up having several versions of the same object
in our database. It is very important that we can find out
which objects are duplicates and merge those. Only unique
objects are presented to the end user. The main focus of
this paper is therefore on deduplication problem. We have
implemented a duplication detection system and tuned the
parameters manually to get up to 85% accuracy. In this pa-
per we present a machine learning setup which we used to
improve deduplication accuracy of tourism attractions by 13
percentage points to achieve 98% accuracy. All the steps in
the process are presented along with problems we tackled.

Categories and Subject Descriptors
H.3.3 [INFORMATION STORAGE AND RETRIEVAL
]: Information Search and Retrieval

General Terms
Experimentation, Measurement
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1. INTRODUCTION
Internet access has made tourism object information avail-

able for tourists. A tourist can find several interesting ob-
jects she wants to visit during her trip. With all this in-
formation, the tourist could have a problem that she cannot
find out the best objects for her. We introduce a tourism rec-
ommender system named Sightsplanner1, which helps tourists
to find personalized suggestions depending on their interests.
In this paper we focus on information retrieval from the In-
ternet. Gathering information from different web portals
produces duplicate objects. In this paper we also present
how to deal with tourism object deduplication.

The contributions of the paper include:

• Empirical feature study for disambiguating non-frequent
geo-objects scraped from different web portals.

• Evaluation of training set selection heuristics in order
to tackle highly unbalanced training set in disambigua-
tion problems.

• Optimization of distance functions with machine learn-
ing techniques for disambiguation geo-entities.

Our evaluation shows, that we can improve the disam-
biguation accuracy from a manually tuned similarity mea-
sure by 13 percent points to 98% accuracy. Hence, our
work shows that machine learning based methods have to
be favoured over manually tuning efforts in term of effec-
tiveness and efficiency.

This paper is organised as follows. In section 2 we will give
a short overview of the whole recommender system. In sec-
tion 3 we describe data gathering techniques and give some

1Tallinn Sightsplanner, see
http://tallinn.sightsplanner.com/



Figure 1: GUI first page

examples about the tourist object data. We will continue
with deduplication overview in section 4. In section 5 we
present our work on improving deduplication using machine
learning. Finally, we give a short overview of related work
in section 6, draw a conclusion and discuss future work in
section 7.

2. RECOMMENDER SYSTEM
Sightsplanner is a semantic recommender and route com-

poser system for tourists. A tourist can specify her location,
time and duration of the visit and her preferences about
different types of objects and events. Based on the cre-
ated tourist profile, the recommender identifies interesting
objects for the given user. For each found object a rank-
ing score is found. The objects that the user probably likes
have a higher score and vice versa. A planning mechanism
organizes the objects and events into a trip timetable. In
an interactive feedback cycle, the tourist has the option
to modify the suggested trip. To calculate the final list of
recommended objects, the following processes are involved:
(a) Object verification process, (b) Matching process, (c)
Planning process, (d) Result representation process, and (e)
Feedback process.

The recommendation process starts when the user opens
the web page and defines her interests by using a slider-based
approach for adjusting individual preferences. In Figure 1
the first page of the user interface is shown. The tourist can
indicate her interest in seven main topics moving the corre-
sponding sliders. Each of them also has subtopics. In the
figure the ”Events” slider is ”opened” and its subsliders are
shown. The tourist has stated that she likes ”Museums and
arts” and ”Architecture and city” very much. She also likes
some ”Eating out”, ”Shopping” and ”Events”. Especially she
likes ”Jazz” and ”Rock concerts”. Every topic in the user
profile matches a type in tourism objects’ properties. The
user can also specify the start date and time of her visit,
visit duration and preferred travelling method.

After the tourist has selected her interests, she starts the
overall recommendation process. The user profile is sent
to the planner, which is responsible of returning a person-
alised recommendation for the given profile. The planner
uses all the relevant data from the memory database. All
the objects in the requested city which also are opened dur-
ing user’s visit will be processed. Based on the object types,
location, opening time and some other properties, different

Web page 1 Web page 2 Web page N

Scraper  1 Scraper  2 Scraper  N...

...

Merger DatabaseMatch found?
Match found: update

No match: insert

Figure 2: Data scraping

trip timetables are created for the user. The planner has to
return the best trip it has found after a certain time limit
- this is then presented to the user as a timetable and as a
map.

The recommended plan can be modified by the user start-
ing an interactive feedback cycle: she can remove some ob-
jects or change visit time for objects and re-run the recom-
mendation based on the performed changes: after the mod-
ification, the planner takes the changes into account and a
new recommendation is created for the user.

3. DATA ACQUISITION
In order to provide accurate recommendations, tourism

objects like restaurants and their properties like opening
times have to be scraped from web pages and harmonized
with already existing data regularly. For Tallinn Sightsplan-
ner, we are scraping six different sites all with different data
structure. All those portals are regular web pages. For every
data source we have manually described the page structure
for our scraper, which then normalizes data into our custom
ontology. Gathered information can be divided into more
dynamic and more static objects. One-time events (con-
certs, performances etc.) are more rapidly changing, there-
fore we are scraping those daily to get changes and new
events. Other type of objects are places of interest (POI)
with mostly static information - nothing changes in months
or even years. POI objects are updated typically once a
month.

A brief overview of the architecture of our importer is pre-
sented in the Figure 2. The importer can connect to several
web pages using manually created scraper algorithms. Each
scraper downloads the content of the web pages, finds the
necessary information (for example using XPath2 to extract
title, description etc.), normalizes data for our system and
sends it to the Merger. We will describe the Merger func-
tionality more in the section 4.

A tourism object, or simply an object, has several facts
and zero or more child objects. Every fact is described with
following fields: property, value, language, datatype, score,
source, timestamp. property shows what this fact describes
(e.g. ”title”, ”address”, ”phone”). Fact’s value can be stored
in different languages and datatypes (e.g. number, string,
date). A fact also has a confidence or probability score in
range [0; 1], where 1 indicates a certain fact and lower value

2XML Path Language, see http://www.w3.org/TR/xpath/



lowers the certainty of the fact (e.g. 0.7 means that the
given fact is true with a probability 0.7). source indicates
the datasource of the given fact, timestamp is date and time
when the fact was written.

An object can have child objects. Every child object has
the same fields as described previously. In our system we
use child objects to describe opening times. One opening
time consists of several facts, for example weekday (object
is opened on Wednesdays), start time (from 10 AM) and end
time (to 7 PM).

Definition 1. The set of all the tourism objects is O =
{O1, O2, . . . , On}.

Possible property URIs are defined by our custom ontol-
ogy. An object can have several facts with the same prop-
erty (different titles in different languages etc.). Some of
the most important properties for calculating recommen-
dation are ”#latitude”, ”#longitude” (location of the ob-
ject), ”#opening time”(when is the object opened), ”#type”
(to match the object against user interests), ”#popular-
ity tourist” (to favour more popular objects), ”#visit time”
(the time suggested to spend on sight). Some other proper-
ties are important for presenting the object to the user. The
most important ones are ”#title” and ”#description”, which
will be stored in different languages. An object can have a
different title in English and in Estonian. Different values
are presented to the user depending on their user interface
language. Often web pages do not provide data in separate
languages. We try to use automatic translation via Google
Translate API 3 to fill in the missing values. We make use of
the score field and have lower value for automatically trans-
lated texts. Usually scraped information from the source
web page gets a score 1.0. For automatically translated ti-
tle and description we will use lower score value (e.g. 0.5).
Later, when we find the same object from another website,
where missing information is available, we can prefer a title
fact with higher score over the automatically translated one.

To recommend an object to the user, the object needs
to have the same category that the user has marked as her
interest. Often data sources do not define the type or the
category of the object. Or categories they are using do not
match with our set of categories. To overcome this problem,
we are using keyword extraction from the description field in
different languages to find keywords which could be mapped
into a category known for us. For every language we have
a list of keywords along with score values. The score value
will be applied to the created category fact. For example,
if the system finds a keyword ”painting” in the text and
in our keyword list the ”painting” keyword is mapped to
”#art” category with a score 0.6, then the object will get a
fact, which says that the object has a category ”#art”with a
confidence score 0.6. The score for category facts can be also
seen as a strength or a weight. More details about keyword
extraction and data in general is presented in [4].

4. DEDUPLICATION
Scarping information from different sources yields in du-

plicate objects as most of the web pages do not provide
global URI, which could be used to match the same resources
from different sources. From the recommendation point of

3Google Language API Family, see
http://code.google.com/apis/language/

view, having duplicate objects in the proposed schedule re-
duces the quality of our system. Often sources do not have
full information about an object. Different source may have
some information about the object which was missing in the
first source etc. So, merging duplicate objects may improve
the quality of the merged object. Taken into account that
deduplication will improve our recommendations and object
information quality, we were motivated to work on the solu-
tion.

First, we will define some notations which we will be using
later.

Definition 2. Object Ai is a duplicate of object Aj if they
represent the same pyhsical object. Let d be a symmetric
function which returns 1 if all its arguments are duplicates,
0 otherwise:

d(A1, . . . , An) =

{
1 if all Ai are duplicates
0 otherwise

In addition to comparing different objects, in our notation
object is a duplicate of itself: d(A,A) = 1 or d(A) = 1.

Definition 3. A group of duplicates, called a cluster, is
a set C which consists of at least one object from all the
objects O so that all the included objects are duplicates:

C = {A1, . . . , An|d(A1, . . . , An) = 1}

A cluster could also consist of only one object C = {A},
as D(A,A) = 1.

Definition 4. A maximal group of duplicates, called a max-
imal cluster, is a cluster which cannot accept any new ob-
jects so that all the objects would be duplicates of each other
(there is no additional object which is a duplicate of the ob-
jects in the cluster).

In this paper, we are interested in maximal clusters. There-
fore we use term cluster to denote maximal clusters if not
noted differently.

Definition 5. A similarity between two objects A and B
is defined by function S which is weighted average over sim-
ilarity values:

S(A,B) =

∑
i wi ∗ simi(A,B)∑

i wi

simi is a function which compares certain property or prop-
erties of two objects and returns a similarity score in range
[0; 1]
wi is a weight value for the similarity function simi.
The value of S will be in range [0; 1].

Definition 6. Two objects are duplicates by similarity func-
tion if the similarity function S between the objects A and
B exceeds a threshold T :

S(A,B) ≥ T ⇒ d(A,B) = 1

In the data acquisition section we gave an overview of
the data importing process. We also mentioned the Merger
component, which deals with deduplication. Every scraped
object is sent to the Merger which compares the new object
with the existing ones by computing the similarity value be-
tween the objects (using title similarity, location similarity



etc.). From certain similarity value threshold, the new ob-
ject is considered to be a duplicate of the found existing
object(s). In the case of match, the existing object in the
database is updated with new scraped data. If there is no
matching object in the database, the scraped object is added
as a new object. More details about the merging and Merger
implementation are presented in [5].

For our current system, we have manually tuned weights
wi for similarity functions simi and the threshold T value.
Our best setup had equal weights for every similarity func-
tion except for the distance similarity, which had double
importance. We used total of 6 different similarity func-
tions. The threshold value which indicated the separation
of duplicate and non-duplicate object pair was 0.9. Using
this setup, we were able to get F-score 0.85. Our goal was
to improve this metrics at least above 0.9. That is where we
started using machine learning.

5. EXPERIMENTS
Instead of manually trying to adjust the weight parame-

ters of similarity function in definition 5, we have used ma-
chine learning to find the best settings. In this section, we
will present the setup of the whole process along with the
results. The section is divided into subsections about learn-
ing problem, data used for experiments, feature selection,
sample selection, learning setup and results.

5.1 Learning problem definition
Instead of trying to group objects directly, we have a dif-

ferent approach. We try to learn whether two objects are
duplicates or not based on the property similarity functions.
Every sample in our learning set is a set of similarity values
calculated by comparing two objects. That is the reason,
why we presented object pair counts in Table 1. We want
to learn how to separate positive and negative pairs (e.g.
whether a pair of objects represent the same physical ob-
ject or not). If we have 4 objects A,B,C,D, we can have 6
unique samples: comparisons of pairs AB,AC,AD,BC,BD
and CD.

Definition 7. Given the similarity function S(A,B) (def-
inition 5) we define fA,B as a feature vector with fi being
the evaluation of simi on objects A,B.

fA,B = 〈f1, f2, . . . , fn〉
where

fi = simi(A,B)

simi may be chosen from a set of similarity functions Sim.
A sample is given by xA,B = fA,B

A sample can be also called xi if the compared objects are
not known or not important.

A sample set
X = {xAi,Aj |Ai, Aj ∈ O} or
X = {x1,x2, . . . ,xm}, where m is the number of samples.

A classification label is given by

yA,B =

{
1 if d(A,B) = 1
0 if d(A,B) = 0

A label set
Y = {yAi,Aj |(Ai, Aj ∈ O), (xAi,Aj ∈ X)} or

Y = {y1, y2, . . . , ym}, where m is the number of samples.
Label set Y has labels for the same object pairs which are
present in sample set X in the same order.

A sample xA,B is called a positive sample if yA,B = 1, e.g.
object A and B are duplicates. If yA,B = 0, then the sample
xA,B is called negative sample.

A learning function is given by λ = 〈L,X, Y 〉, where L
defines a learning algorithm along with parameter values, X
is a set of samples, Y is a set of labels for the samples X.
Learning function λ returns a function p which predicts with
some accuracy whether given two objects A and B are du-
plicates or not.
The goal of λ is to find a function p which would yield in
highest prediction accuracy.

Our learning problem is defined to learn, whether given
two objects are duplicates or not. One sample (which can
used for training and also for testing) is a set of similarity
values between two objects. Every similarity value indicates
a similarity of a certain property or properties between two
objects. For example, let us use two features: title similar-
ity and description similarity. Every sample in our train-
ing/testing dataset would have 2 values. If we have objects
A and B, which are very similar, then the sample can have
values xA,B = 1.0, 0.9. Another pair of objects A and C
might not be similar and have values xA,C = 0.3, 0.1. Both
those samples have also a label value: yA,B = 1, yA,C = 0. If
the system would have only those two samples for training,
it might learn that high feature values will yield in label 1
and vice versa. This is actually correct, because our features
all have built this way that similar objects (near-duplicates
or duplicates) have high values.

We use different sample and label sets for training and
testing. After we have used some samples and labels for
training, we want to test how well we have trained our
model. For example, we have samples xB,C = 0.5, 0.9 and a
label yB,C = 0. After we have applied learning algorithm to
our training set, we have got our deduplication function p.
As we saw before, high feature values seem to indicate that
two objects are duplicates. It may happen, that our func-
tion predicts d(B,C) = 1. The real label is y(B,C) = 0. We
can see, that we made an error and may-be we did not learn
the best possible deduplication function. Depending on the
setup, we can just accept that we have made an error or we
can try to train a better model. More about the learning
setup will be presented in one of the next subsections.

5.2 Data for learning
Our initial Tallinn dataset had objects from different cat-

egories. Some data sources only provide eating places, some
only events and so on. The dataset only has a small num-
ber of duplicate objects and maximum number of different
data sources for one objects is three (there are three sources
which provide eating places, so the same restaurant can be
scraped from three sites). Therefore we have scraped a sep-
arate dataset for our learning setup. The dataset consists of
Tallinn eating places from five different web portals. Some
eating places are present in every data source, so after merg-
ing, the objects will be merged from five different sources.
In addition to Tallinn dataset, we are using Riga tourism
objects to test our learning model. The Riga dataset is not
limited to eating places, there are also museums, galleries
etc. Testing our trained model on Riga dataset gives us in-



formation whether our solution of duplicate detection can
be applied for cross-city and cross-category datasets. Riga
dataset is scraped from two different sources.

To be able to train and evaluate learning algorithms, we
have manually annotated all the duplicate pairs. We have
created a simple web interface which allows us to manually
compare every objects with another object. Based on the
information available, a user was able to state whether two
objects are physically the same or not. Tallinn data con-
sists of about 1800 scraped object, comparing every object
with every other object would yield in 1.6M comparisons.
To limit this number, we have added a duplicate candidate
selection, where only a certain number of best matching ob-
jects are presented to the user. Objects, which are too far
away from each other most likely are not duplicates. We
also filter objects by type and data source. Data source fil-
ter means that we compare an object only with objects from
different data sources. Our initial presumption was that a
data source does not have duplicates within their data. It
comes out, that actually there are duplicates within certain
sources, but this is not a problem. After we have found
that two compared objects are duplicates, then the connec-
tion is bidirectional (if object A is a duplicate of object B,
then object B is a duplicate of object A). Every group of
duplicate objects forms a complete graph (if object A is a
duplicate of object C and object B is a duplicate of object
C, then object A is also a duplicate of object B). Because of
the completeness, it is usually enough to compare an object
only to objects which do not have the same source. With
filtering, every object had average about 20 possible can-
didates, which narrowed down the comparison space about
100 times.

Manual annotation still raised many questions amongst
users who had to find duplicate pairs. Even if you are lo-
cal and know most of the tourism objects, there are still
cases, which cannot be solved with 100% confidence. Also,
as we mentioned, we used candidate selection, which might
have left some duplicates out. Objects, which were not in
the candidate list, were not checked by the annotator. Al-
together we believe that the error of manual deduplication
can be about 3-5%. We will take this into account when we
later evaluate our results.

Table 1: Statistics about the dataset for Tallinn and
Riga

Property Tallinn Riga
Object count 1808 3839
Different sources 5 2
Non duplicates 478 3762
2-object groups (object count) 203 (406) 75 (150)
3-object groups (object count) 133 (399) 1 (3)
4-object groups (object count) 68 (272) -
5-object groups (object count) 43 (215) -
6-object groups (object count) 5 (30) -
8-object groups (object count) 1 (8) -
Positive (duplicate) pairs 1543 78
Negative (non-duplicate) pairs 1.6M 7M
Positive pair % 0.1 % 0.001 %

We have presented an overview of the dataset in Table 1.
For Tallinn dataset, we have total of 1808 scraped objects
from 5 data sources. 478 objects did not have any duplicate

objects (or we could say they form up 478 clusters each con-
sisting of only one object), 406 objects formed 203 groups
with 2 duplicates in each cluster, etc. As can be seen, some
objects have duplicate entries in the same data source. For
example, in Tallinn dataset there is one cluster which is
merged from 8 initial objects (duplicate object was present
once in 2 data sources and twice in 3 data sources). Total
number of unique duplicate pairs (graph undirected edges)
is 1543. If object A is a duplicate of object B, then it is
counted only once - pair object B is a duplicate of object A
is not counted. All other possible unique pairs between the
objects are non-duplicate pairs. For Tallinn data, there are
about 1.6M non-duplicate pairs. We have also presented a
percentage of duplicate pairs to non-duplicate pairs to indi-
cate the balance of our dataset. As can be seen, for Riga
the percentage is even worse.

5.3 Feature selection
We have implemented about 20 different functions for fea-

tures. The most interesting for this paper are:

• Title comparison using Levenshtein distance4;

• Custom title comparison with weighted words (com-
mon words weigh less and therefore do not change the
outcome too much);

• Custom title comparison, which we will describe below;

• Custom title comparison with weighted words (com-
mon words weigh less and therefore do not change the
outcome too much);

• Euclidean distance using originally scraped coordinates;

• Address string comparison;

• Euclidean distance using coordinates which were cal-
culated from address strings.

Custom title comparison works as follows. The title is
split into words. For every word a match from other title’s
words are found. Every match gives a positive score. All
the words, which do not have a match in other title, will
give negative score. Both scores are added together and
normalized (to get a result within the range [0, 1]) and the
result is the similarity between object titles. To find a match
for a word, the words do not have to match exactly. A
certain number of symbols can be different depending on the
length of the word. If all the words from one title are found
in the second title, then similarity is near to 1 (for example
”papa pizza”vs ”papa pizza with some extra words”will yield
in almost total similarity, as additional words do not make
the match worse). As we mentioned earlier, an object can
have different titles in different languages. All the languages
are compared and the best match is returned. The same
logic is applied with weighted words. More common words
have less impact on both positive (in case of match) and
negative (in case of no match) score. If we compare titles
like ”Papa pizza” and ”Mama pizza”, then ”pizza” is common
word and having a common word in both titles does not
make objects similar (positive match will be low). In the
previous example, words ”mama” and ”papa” are probably

4Levenshtein distance, edit distance, see
http://en.wikipedia.org/wiki/Levenshtein distance



not so popular, which makes the negative match high. In
this example, objects are not similar. But if we consider
titles like ”Papa pizza” and ”Papa restaurant”. ”Papa” is not
very popular name, so the positive match is high. ”Pizza”
and ”restaurant” are usually very popular, which makes the
negative score low. Based on the weighted title comparison,
those two objects could represent the same physical object.

To give a short example of custom title comparison, let
us consider two titles ”Tallinn city hall” and ”Tallinn city
pharmacy”. There are two words, which are present in both
titles: ”Tallinn” and ”city”. Both titles have one additional
different word (”hall” and ”pharmacy”). If we do not use
weights, we find an average non-matching word count for
both titles. In this example the average is 1. The similarity
between two titles is calculated as follows: matching count /
(matching count + avg non matching count). In our exam-
ple, it would be 2 / 3 = 0.66. If we consider titles like ”papa
pizza” and ”papa pizza in shopping center”, then matching
word count is 2. We also have 3 non-matching words. All
the non-matching words which are present due to title length
difference (if one title has 2 words less than the other, then
those 2 words usually are also non-matching) have lower
penalty. In the current example, the calculation can be for
example: 2 / 2.6 = 0.77. The lower penalty depends on the
count of non-matching words and on the length of the titles.
If the titles are long, then the penalty will get lower (if you
have one non-matching word for 10 words title, then penalty
will be near to 0).

In addition to mentioned custom title comparison, we also
have so called custom title comparison with join. Regular
custom title comparison splits the title into words and starts
comparing. The comparison with join tries to combine dif-
ferent words into one and run the custom title comparison
then. For example, if we have titles ”McDonalds” and ”Mc
Donalds”, then the regular custom title comparison would
return 0 as there is no matching words, whereas after joining
two words in the second name we would compare the same
titles and the result will be high score. The join version
of comparison basically finds all the combination of joining
consecutive words on both titles and for every combination,
the regular custom title comparison is run. This makes the
join version several times slower.

To find out, which combination of features is the best, we
have done training and testing with all the possible combi-
nations up to 5 features. We will present results soon. First
we have to discuss the sample selection.

5.4 Sample selection
As we presented in Table 1, the possible number of object

pairs is for Tallinn data about 1.6M. The table also shows
that only 0.1% of those positive samples (duplicate pairs).
If we would take all the samples, then we would have several
problems:

• Generating a feature value set for 1.6M pairs takes
time;

• Learning with large number of data takes a lot of time;

• The balance between positive and negative samples is
heavily skewed.

One of our goal is to use as few samples as possible. There-
fore we did not try to use all the samples. Instead, we aimed
for 10 000 samples for Tallinn data. If we used random

sample selection, we would end up only about 15 positive
training samples, which is obviously too few.

If we think about the possible samples in our dataset,
then for one object, there are about 1800 samples available
(comparison with every other object). Feature like objects
distance will have similarity value 0 or very low when the
distance is more than 500 meters for example. Most of the
objects are farther than this. For distance features, maxi-
mum 100 objects would give similarity score about 0. The
same is usually the problem with titles. For example, an
object with title ”McDonalds” do not have many matches
amongst the whole dataset. If we would take all 1.6M neg-
ative samples, then many will end up having all the feature
values near to zero. We do not need to include all those
for our learning dataset. Instead, we are more interested on
negative pairs, which are closer to duplicates. With positive
samples, we do not filter anything out - we will use all 1543
positive samples for learning.

Our sample selection for Tallinn data currently has 10
000 samples, 1543 of those are positives, and we try to take
mostly negative pairs which have high feature values (near-
duplicates). Of course, we cannot leave out the low negative
samples (all feature values near to zero), otherwise we might
end up with classification which only recognizes mid-values
as non-duplicates. About 1000 samples have close to zero
feature values. For Riga dataset, we have taken more sam-
ples. We have just limited the number of samples with fea-
ture values close to zero to 10 000. Riga data is used only
for testing and it has about 100 000 samples: 78 positive
ones, about 10 000 low negative ones, the rest is mid-valued
or near-duplicate negative samples.

5.5 Learning setup
We have used Python software scikit-learn5 to assist our

learning process. The software supports various number of
different learning algorithms. For our problem, we have used
SVM (Support Vectore Machine) classification and decision
trees. For SVM, we used grid search, which tries several dif-
ferent parameters and returns the one with the best results.
The grid search tries both linear and radial basis function
(RBF) as a kernel. For decision trees, we are using extra
trees which train several (30 in our case) independent mod-
els randomly and uses average over the models to predict.
B learning algorithms are run with all the combination of
all the features. This way we can find out the most impor-
tant features. We also would like to minimize the calculation
costs for prediction, therefore we try to minimize the number
of features necessary for a model.

As mentioned earlier, we use Tallinn data for training
and testing, Riga data is used only for evaluation. Tallinn
dataset is divided into two equal sized parts where the ra-
tio of positive and negative samples also remains the same.
One part is for development and the other is for evalua-
tion. On development part, we do training with 10-fold
cross-validation. The model which yields in best results on
cross-validation, will be used for evaluation both with re-
maining Tallinn data and with Riga data.

5.6 Learning results
We have constructed several different datasets (different

number of samples and different selection of samples) which

5scikit-learn: machine learning in Python, see http://scikit-
learn.sourceforge.net/stable/



Table 2: Learning results using one feature

Feature (code) Algorithm
Tallinn Riga

precision recall f-score precision recall f-score

Address string comparison (ADD)
rbf 0.92 0.94 0.93 0.52 0.91 0.66
extree 0.96 0.92 0.94 0.59 0.88 0.71

Title comparison without

joining words (T1)
rbf 0.99 0.85 0.91 0.76 0.91 0.83
extree 0.99 0.85 0.91 0.65 0.91 0.76

Title comparison with

joining words (T2)
rbf 0.98 0.89 0.94 0.69 0.96 0.80
extree 0.98 0.92 0.95 0.52 0.97 0.68

Title comparison with

edit distance (ED)
rbf 0.96 0.85 0.90 0.09 0.94 0.16
extree 0.97 0.86 0.91 0.14 0.91 0.24

Distance with original

source coordinates (OD)
rbf 0.76 0.67 0.71 0.65 0.67 0.66
extree 0.84 0.82 0.83 0.36 0.90 0.51

Distance with re-calculated
coordinates (RD)

linear 0.93 0.95 0.94 0.55 0.96 0.70
extree 0.96 0.95 0.95 0.71 0.88 0.79

Title comparison without joining

words, with word weights (TW1)
linear 0.97 0.90 0.94 0.36 0.99 0.53
extree 0.97 0.96 0.96 0.27 0.99 0.43

Title comparison with joining

words, with word weights (TW2)
linear 0.97 0.94 0.95 0.28 1.00 0.43
extree 0.98 0.97 0.98 0.28 0.99 0.44

Table 3: Learning results using two features

Feature codes Algorithm
Tallinn Riga

precision recall f-score precision recall f-score

ADD + T1
rbf 0.99 0.95 0.97 0.93 0.99 0.96
extree 0.99 0.97 0.98 0.73 0.99 0.84

T1 + RD
linear 0.98 0.97 0.98 0.93 1.00 0.96
extree 1.00 0.97 0.98 0.93 0.99 0.96

RD + TW1
linear 0.97 0.99 0.98 0.71 1.00 0.83
extree 1.00 0.98 0.99 0.88 1.00 0.93

RD + TW2
linear 0.99 0.97 0.98 0.80 1.00 0.89
extree 1.00 0.99 0.99 0.89 1.00 0.94

T2 + RD
rbf 0.98 0.99 0.98 0.86 1.00 0.92
extree 1.00 0.98 0.99 0.94 0.99 0.96

Table 4: Learning results using two features

Feature codes Algorithm
Tallinn Riga

precision recall f-score precision recall f-score

ADD + T1 + RD
rbf 0.99 0.97 0.98 0.97 0.99 0.98
extree 1.00 0.97 0.99 0.93 0.99 0.96

ADD + T2 + RD
linear 0.99 0.98 0.99 0.94 1.00 0.97
extree 1.00 0.99 0.99 0.93 1.00 0.96

T1 + RD + TW1
linear 0.99 0.97 0.98 0.91 1.00 0.95
extree 1.00 0.98 0.99 0.91 1.00 0.95

T1 + RD + TW2
linear 0.99 0.99 0.99 0.89 1.00 0.94
extree 1.00 0.99 0.99 0.94 1.00 0.97

T1 + RD + T2
rbf 0.98 0.99 0.98 0.87 1.00 0.93
extree 1.00 0.98 0.99 0.96 0.99 0.97

ED + RD + T2
linear 0.98 0.99 0.98 0.91 1.00 0.95
extree 1.00 0.99 0.99 0.92 0.99 0.95
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Figure 3: Learning curves for training, Tallinn test
and Riga test data using grid search (SVM param-
eter optimization) and features ADD + T1 + RD
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Figure 4: Precision-recall curve for features ADD +
T1 + RD trained with SVM

were trained with different learning algorithms. The total
number of test run is over 400. Here we present results for
some of those tests. The tables described in this section all
have the same structure. Each table has different number
of features used for the learning problem. The first column
indicates, which features are used for training and testing.
Every feature set is evaluated with 2 different learning al-
gorithms. The first one is Support Vector Machine (SVM)
and the other is extra trees (extended version of decision
trees). For SVM, we have shown the used kernel (linear or
rbf - radial basis function). All this data is trained with the
same amount of randomly chosen samples from Tallinn data.
The ratio of positive and negative samples remains the same
for training and testing data. All the tables present results
which are trained with 50% of Tallinn data (5771 samples,
771 of those are positive). The other part of Tallinn data
will be used for evaluation. In addition, we have evaluated
every trained model with Riga data (33750 samples, 78 of
those are positives).

Metrics used for evaluation are:

precision =
tp

tp+ fp
(1)

recall =
tp

tp+ fn
(2)

F = 2 · precision · recall
precision+ recall

(3)

,
where tp is the number of true positive predictions (how

many predicted positive samples are actually positives), fn
is the number of false negative predictions (predicted neg-
ative, but actually are positive), fp is the number of false
positive predictions (predicted positive, actually are nega-
tive). In our problem, we concider both precision and recall
equally important, therefore we use F1 score6 as the main
evaluation of our model.

The Table 2 shows the results for 8 best features used
alone. For training and testing, only values of one feature
(for example title similarity) was used. Note that every fea-
ture has a short code after the name. Those codes are used
later in other tables. From the results we can see that using
only one feature, we can have F-score near 0.8. We can also
see that edit distance or Levenshtein distance (feature ED)
alone does not separate duplicates from non-duplicates very
well.

The Table 3 present results for some combination of two
features. The F-score here is already very promising. We
can see here that title similarity combined with location/address
similarity gives good results. For example ADD + T1 (ad-
dress string similarity and custom title similarity) and T1 +
RD (custom title similarity and re-calculated distance simi-
larity) both give F-scores about 0.95. We did test also with
the combinations of three features which are presented in
Table 4. All presented results have F-score near or over
0.95. The first feature set ADD + T1 + RD (address string
similarity, title custom similarity and recalculated distance
similarity) has the highest Riga test result. Also, as we
stated earlier, we believe that the manual annotation of du-
plicate objects has also an error of 3-5%, then 0.98 F-score

6F1 score treats both precision and recall equally important
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Figure 5: Learning curves for training, Tallinn test
and Riga test data using extree (decision trees) and
features ADD + T1 + RD

is very good result. We have completed tests also for 4 and
5 feature combinations, none of those performed better than
3 feature combination ADD + T1 + RD.

In addition, we evaluated the learning capability of our
best model. In the Figure 3 we have drawn learning curves
(which indicate F-scores) for training and testing datasets
for different training dataset size using grid search (SVM).
To give a better overview of the changes to the curves,
we have used logarithmic scale. X-axis shows the training
dataset size. Our results in the tables were trained with
about 5000 samples. As can be seen from the learning curve,
we get good predictions already starting from 64 training
samples. The learning curve also shows that our learning
problem does not suffer from overfitting (our training accu-
racy is not too high compared to testing accuracy, the gap
is close to 0 starting from 1000 training samples).

If we compare grid search learning curve with decision
trees’ curve in Figure 5, we can see, that decision tree takes
more training samples to get better result on Riga (addi-
tional test) data. In addition to learning curve, we have
plotted precision and recall curve in Figure 4 for SVM model
with features ADD + T1 + RD.

In the end, we will give an example plot of our samples
with 2 features in Figure 6. We have used SVM to plot
features T1 + RD (custom title similarity and recalculated
distance similarity) which gives an idea, how the features
are located. The black line is class trained separator: right
upper corner is for positive (duplicates) predictions, lower
left corner is for negative (non-duplicates) predictions.

6. RELATED WORK
Deduplication is very popular topic, especially when we

have access to more information. Various data sources across
the Internet are presenting information about the same ob-
jects. Semantic web tries to ease the problem to offer global
URIs or references to widely known information sites (for
example DBpedia7). Here we will look into some papers,

7DBpedia, see http://dbpedia.org/
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Figure 6: Tallinn dataset with features T1 + RD

which have been inspired our work and will continue to do
that.

One similar system to ours is presented in [7]. They also
have geographical objects and they need to detect dupli-
cates. They have introduced 4 similarity functions or fea-
tures: two title comparisons, address similarity and cate-
gory similarity. Taking category into account is something
we have to look into. The main problem is that every data
source has its own categories. We do keyword extraction to
find some types for every object, but often we will get mis-
placed objects in some category. Another problem is that
currently we have build category hierarchy for user inter-
face. Often this does not work well in terms of similarity.
We should introduce a separate category model, which could
be used for finding duplicate objects.

Aforementioned article has surprisingly low accuracy after
the training. May-be the data we are using has more quality
and therefore learning and predicting work even with small
dataset sizes. The authors do not go into details about the
learning part. Also, it is somewhat unclear, why they did
not use more samples for their training and testing set.

Bilenko and Mooney have written about deduplication in
databases [2] and evaluating duplicate detection [3]. The ap-
proach they are using is similar to what we have described
in this paper. One interesting work from them is learning
string distance metrics. While in our case, edit distance did
not give good enough results, we manually created a cus-
tom title comparison function. Instead, we could also learn,
which metrics could be used and combine different standard
methodologies with weights in order to find the best one for
tourism object titles. As most of our objects do not have de-
scriptions, we cannot make use of using larger text to com-
pare objects. This would be interesting and hopefully we
will start getting more descriptions and reviews about the
objects, which gives us opportunity to do more text similar-
ity calculations. One very active field of study is research
paper deduplication. The text of the paper is very important
to detect whether two articles are the same or not.

In [3], they have mentioned precision and recall curve as
one evaluation metrics for deduplication problem. We have
also drawn those curves to study features and dataset. In



the result section we presented the curve for our best model.
With current data and feature setup, we were not able to
use this curve much, because our problem was too easy to
solve. We will be applying our deduplication methodology
on another domain, where we certainly will have lower accu-
racy. That is where the the precision and recall curves can
help to solve problems.

In [6] the author represents learning approach for dupli-
cate detection for geospatial objects. The approach is again
very similar to what we have presented here. They argue
in their paper that traditional textual similarity functions
do not work well with place names, because their stylistic
variability is too great. Our custom title similarity function
is implemented exactly because of this. They also mention
that common names (like street) could be ignored when com-
paring address strings. We had one feature, which tried to
do that (more specifically, words that occur more often, have
less impact). But non weighted word similarity worked bet-
ter. We are in the middle of analysing the results, where
we can see, in which cases weighted words would outper-
form non-weighted words, if at all. The results the author
presents in the paper are very promising. The paper has a
good overview of text comparison metrics, which we could
also try on our system to see, whether we can get better
results for title comparison.

Martins describes the problem of different geocoding, which
we also tackled in our research. We try to get geo coordi-
nates for every object in our database to ease to route plan-
ning. Also, the same coordinates can be used to find du-
plicates. If we scrape information from different web sites,
we end up with noisy data. Sometimes the same object was
located 500-1000 meters away. We used normalization of
geo coordinates using object addresses, which improved the
quality. In the result table with one feature, you can com-
pare features OD (originally scraped coordinates) and RD
(recalculated based on address). After recalculation, if the
address was the same, we actually got the same coordinates
for the objects. Before, there was always some difference.
For some objects, it was 5-10 meters, for other 100 meters
etc.

An article about Swoosh [1] presents good results in entity
resolution problem in terms of accuracy and speed. They in-
troduce an algorithm which can reduce the number of com-
parisons between the objects. While our system basically
compares every object to every other object, their algorithm
can perform magnitude of less comparisons. To determine
the similarity between two objects, they use features and
coefficients/thresholds. Manual tuning of those coefficients
can give good results, but as we learned in our system, we
were able to improve the accuracy when we learned from
the data itself. Mentioned algorithm Swoosh is still very
promising and we are planning to do some more experiments
where we integrate Swoosh with machine learning. The idea
would be to learn which features and which coefficients to
use, while Swoosh can help with finding candidate objects
and merging.

7. CONLUSIONS
In our paper we have given an overview of a tourism rec-

ommender system Sightsplanner. We described the infor-
mation gathering process and presented our manually tuned
deduplication algorithm. From there we were motivated to
improve our accuracy of duplicate detection. We have used

machine learning techniques to find ways to increase our ac-
curacy. In this paper we describe, how we have set up the
learning system. We have manually annotated 1500 dupli-
cate objects to evaluate our learning. We introduced the
technique, how we compare objects, where every sample in
our dataset is a comparison of two objects. Using pairs like
that, we are able to find groups of three or more duplicate
objects.

We present some of our results in the previous section.
Along with prediction accuracy, we also analysed learning
curves. As can be seen from one of our learning curves, we
could use several times less training data to achieve approx-
imately the same f-score. Depending on the needs of the
system. To guarantee f-score 0.9 or higher, we could use
may-be 10 times less training data. This gives an oppor-
tunity to start with training your model with rather small
dataset. The learning curve also showed that with adding
more data, the f-score may even improve (if we start for
example 256 training samples).

Another finding of our work is that our approach learn-
ing by comparing tourism object pairs can be applied cross-
category, cross-language and cross-city datasets. For train-
ing, we used Tallinn eating places. For additional evaluation
we tested trained models on Riga data, where in addition to
eating places there are museums, galleries etc. The results
show that using two or more features, we are able to get
very high results with Riga data.

The main goal of our learning setup was to improve the
manual deduplication accuracy. Our manually tuned algo-
rithm was able to detect duplicates with F-score 0.85. With
machine learning, we have increased the f-score to 0.98.

In the future, we will try to apply the same methodology
used in tourism domain to some other domain, probably
for research paper deduplication. We have to work on our
textual similarity functions. We also plan to run our recom-
mender system for larger cities, where we can gather more
data to further evaluate our deduplication system. Along
with more data, we will investigate new features (we already
mentioned category similarity).
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Abstract

We  will  present  the  information  extraction  algorithms  for  a  semantic  personalised  tourist  
recommender system Sightsplanner. The main challenges: information is spread across various 
information sources,  it  is  usually stored in proprietary formats and is available in different  
languages  in  varying  degrees  of  accuracy.  We will  address  the  mentioned  challenges  and 
describe our  realization and ideas how to deal  with each of  them: scraping and extracting 
keywords from different  web portals  with different  languages,  dealing with missing multi-
lingual data and identifying the same objects from different sources.

Keywords: recommender system; information retrieval; entity disambiguation

1 Introduction

We will describe the information retrieval techniques used in the tourist recommender 
system Sightsplanner for Tallinn (http://tallinn.sightsplanner.com, [2011]). The first 
iteration of the system was called Smart City and is presented in (Luberg et al., 2011). 
We use semi-automatic web scraping of different web portals to gather information 
about tourism objects. The data is transformed into our own custom  ontology and 
cleaned up for later use by the recommender.

Information about the objects on the internet is spread across various sources and is 
usually stored in different languages. The outcome shown to a tourist should be 
complete and precise facts about the sights. The paper focuses mainly on how the data 
about the tourism objects is gathered, how it is stored and how it is cleaned up. We 
will present both the problems we have overcome and the problems we still have to 
tackle to improve the results of our data gathering module.

In the following two sections we will provide a brief overview of the system. In the 
section 4 we will describe data retrieval process in more detail. We will end our paper  
with related work and conclusion.



2 Tourism Recommender System

Sightsplanner is a semantic recommender and route composer system for tourists. A 
tourist can specify her interests on different categories, her location and time of the 
visit. Provided characteristics create a user profile, which is sent to the recommender. 
Based on the profile, the system calculates a ranking score to every object in the 
database. The objects that the user likes more will get a higher score and vice versa. A 
schedule is created out of the objects which will give the best overall score. Several 
processes are involved when calculating the final list of objects: object verification 
process, matching process, planning process, result representation process, and 
feedback process.

The recommendation process starts when the user opens the web page and provides 
her preferences. A slider can be used to define the strength of interest on every object 
category. In our system we are using two levels of categories. One general category 
(like “Music”) has subcategories (like “Rock”, “Jazz”). Every object in the database 
has also defined types from the same set of categories. Besides interests the user can 
define her start time, duration of the visit and preferred travelling method.

After the user has submitted the form, the created profile is sent to the recommender. 
The planner filters out objects by location, opening times and categories. Found 
objects are combined into a timetable iteratively. After a certain time limit the system 
returns  the result  with the highest  total  score  which is  presented  to  the user  as  a 
timetable and a map.

The user can modify the result by giving feedback for objects: objects can be removed 
and the visiting duration of objects can be changed. A new planning process is started 
after the submission of the modifications.

3 Technical Overview

The main components of the system are presented in the Figure 2. In this section we 
will describe data discovery and recommendation process with details about each of 
the components.

Fig. 1. A screenshot of 
the Sightsplanner.com frontpage.



Information about the tourism objects stored in our database is gathered from various 
web sources in proprietary formats and is available in different languages in varying 
degrees of accuracy. The more detailed and coherent we can gather this data, the 
better recommendations we can provide.

In the  current implementation we scrape information about objects in a  semi-
automatic fashion. First we crawl different web portals and normalise the gathered 
data into our custom  ontology. In some cases the information available is not 
complete, therefore we have added an option to modify or add data manually. All the 
gathered information is stored in PostgreSQL (www.postgresql.org, [2011]) database. 
In section 4 we will describe the data discovery process in more details.

Object information is saved into the  database using extended RDF triple structure 
(http://www.w3.org/TR/rdf-concepts/  ,  [2004]). Every fact about each  object is 
conceptually  represented as  an  object, property, value triple  (in  standard  RDF 
terminology  subject, predicate, object). We have extended this structure by adding 
new fields for every fact. The main additional  fields are the unique triple  identifier, 
connection score, source,  and timestamp. The  unique identifier is automatically 
assigned by the database engine. The connection score indicates the probability of 
correctness of the given fact. The score is within the range [0; 1] and indicates the 
intuitive likelihood that the fact is true. The source field stores the name of the source 
from where the fact is gathered (web portal name, manual insertion, generated etc.). 
The timestamp stores the date and the time when the fact was created.

The recommendation engine has to quickly handle a large amount of data: all 
properties of all objects and a relatively large ontology. Fetching all this data from the 
conventional relational database takes too much time. In addition to fetching the data 
we also would like to deduct new facts by applying rule-based reasoning. We have 
built a new reasoner-equipped fast in-memory database to serve our needs. This in-

Fig. 
2. System architecture



memory database is implemented in shared memory as a library, without any 
continuously running processes.

Data imported from the web pages is synchronised from PostgreSQL to the memory 
database once a day. Currently the synchronisation works only one way: all the data 
from persistent database is copied to the memory database. We  employ  our 
specialized reasoner to derive new types, opening times etc. 

The recommendation process verifies suitable objects by loading the tourism objects 
from the in-memory database and applying an object filter: objects that do not have 
the  required properties (coordinates, opening/closing times), belong to a different 
locale or are not accessible during the given visit duration are ignored. For each 
loaded object the recommender assigns a ranking score based on a matching between 
object types and preferences taken from the user profile.

The recommender runs the planning algorithm that produces a number of candidate 
solutions. These are ranked using an aggregate score which is based on the average 
score of the objects included, as well as how the time is divided between different 
categories of objects, when compared to the relative importance of the categories in 
the user's profile. The top ranking solution is returned to the user. The output of the 
planner is a timetable of objects, containing a Unified Resource Identifier (URI), 
arrival and departure time and method of travel from the previous location for each 
object.

Using the URI-s from the planner output, the recommender retrieves additional data, 
including visualisation components, descriptions in the user's language and contact 
information from the PostgreSQL database and creates the timetable representation.

4 Data Discovery

For our recommender system we are currently scraping six different web portals with 
completely different structures. For every portal we have written mapping rules to 
normalise raw data for our system. Some of the objects in the recommender are based 
on dynamic, rapid changing information such as one-time events (concerts, 
performances etc.) which are scraped from the web daily. Another category of objects 
is formed by places of interest (POIs) with mostly static information - nothing 
changes in months or even years. The POI objects are updated typically once a month.

The importer can connect to several web pages using different manually created 
scraper algorithms. Each scraper downloads the content of the web pages, finds the 
necessary information (for example using Xpath (http://www.w3.org/TR/xpath/, 
[1999]) to extract title, description etc.), normalises data for our system and sends it to 
the Clusterer. The Clusterer  compares the new object with the existing clusters  by 
computing the similarity between the object and every cluster. From certain similarity 
value, the object is considered to belong to the cluster. In case of a match, the object 



and the cluster data is merged. When the match is not found, the object creates a new 
cluster. More details about clustering and merging is presented in the next sections.

The recommendation process uses properties latitude, longitude, opening_time, type, 
popularity_tourist, visit_time to calculate the recommendation for the user profile. 
The coordinates are mandatory and cannot be empty. If the opening times are missing, 
we use the  default values based on the object type (restaurants and museums have 
different default opening times). We extract types from the title and the description 
values. Tourist popularity indicates the average amount of tourists visiting the object 
in one day. If the value is missing, it is defaulted to 1. Visit time represents the 
recommended visit duration for the given object. The default value is 30 minutes, 
which can be modified by the tourist.

Our system stores information in various languages. Properties like name and 
description have language code along with the textual value. With multilingual data 
we often have a problem of missing translations. Usually the web pages we are 
scraping only have data in one language which makes it harder to get all the 
information in all the languages. To overcome the problem of missing multi-lingual 
information, we use the Clusterer. An object is scraped from one web page which 
only has data in Estonian. We add the object into the database. If the system finds an 
object from another web site, which is in English, the found object is compared to the 
existing objects. Based on the location, types and other properties, the Clusterer 
knows that the Estonian object and the new English object describe the same object. 
The objects are added into the same cluster. Data from the objects is merged and the 
original Estonian object gets an additional English name and description. In addition 
to the multilingual textual information, the new scraped object can have additional 
metadata (phone number, homepage etc.) which can be merged to the existing cluster. 
If we cannot scrape information in other languages for an object, we run into the 
problem that some objects in our database do not have translations.

Fig. 3. 
Clustering of objects. An object is added to Clusterer. Case 2a illustrates the result 
when no matching cluster is found. Case 2b illustrates the result when a matching 

cluster is found and the object is added to that cluster.



Table 1. An example of multilingual description

Object Property Value @ language Score Source

#church #name Oleviste Church @ en 1.0 #scraper1

#church #name Estonian name @ et 1.0 #scraper1

#church #description Translated English description @ en 0.8 #translator

#church #description Scraped English description @ en 1.0 #scraper2

We  have  implemented  automatic  translation  functionality,  which  currently  uses 
Google  Translate  API  (http://code.google.com/apis/language/,  2011).  We  are 
translating  title  and  description  properties.  The  translated  value  is  saved  in  the 
database with a lower probability score than for originally scraped values. In Table 1 
we have presented a simple example with the language for every value and also the 
source for every fact. The scenario itself is as follows. We get the description of a 
church from one Estonian web page. The fact  (description in Estonian) will  get  a 
score of 1.0. To be able to give some information about the object for foreign tourist,  
we translate the description automatically into English with a score of 0.8. At some 
point we will add a new web page scraper into our system which gets an English 
description for the same church. The scraped description would get a score of 1.0 and 
is therefore preferred over the automatically translated description (the fact with the 
source "#scraper2” is used to show English description). The scores for translation 
and different scrapers can be modified - instead of 1.0 and 0.8 other numbers can be 
used. For the web pages with low text quality, even the automatic translation can be 
preferred.

In  the  following  subsections  we  will  present  more  details  about  different  data 
discovery  topics.  First  we  describe  keyword  extraction  from  object  multi-lingual 
description. After that we will present our data clustering and merging technique with 
some examples.

4.1 Keyword extraction

The web pages  usually  do not  provide enough meta-information about  the  object 
types or categories. Those are, however, crucial for suggesting tourism objects which 
match the user selected interests. Some web pages only offer a very general topic like 
“music”.  In  our  system we  would also  like  to  know the  genre  of  the  music,  for  
example  rock  or  classical.  Therefore  we  have  introduced  a  keyword  extraction 
methodology in our system.

We realize conceptual indexing in an automatic fashion. Conceptual indexing usually 
involves firstly, the detection of relevant concepts, and secondly, the calculation of a 
relevance weight for each detected concept. We follow the approach of projecting the 
ontology onto the document by extracting all the concepts the following way: 

As mentioned above, we store object information in different languages. To get object 
types, we analyse all the description properties in all the languages. Every language 



has its own keywords which match with possible object types. The descriptions are 
parsed  and  all  the  matched  keywords  are  found.  The  keywords  are  grouped  by 
corresponding object types. The object will get all the found types with certain scores.  
The type which corresponds to more extracted keywords, gets a higher score and vice 
versa.

4.2 Data clustering

We have already given a brief  overview of clustering.  In  this  subsection we will  
present more details about the process. First, we have to define the cluster. When data 
is scraped from the web into our system, everything is stored as an imported object  
(referred  as  “object”  or  “imported object”).  Cluster  itself  is  also a tourism object  
(referred  as  “cluster”,  but  sometimes  also  as  “object”).  It  represents  one  physical 
object or event. If the same church is defined in different web pages resulting, for 
example, three imported objects, the Clusterer should put all the imported objects into 
one  cluster.  Cluster  can  consist  of  one  or  more  imported  objects,  it  has  all  the  
information (facts)  imported object  has.  In fact,  the only main difference from an 
imported object is that cluster has an additional fact which just states that the given 
object is cluster. During Clusterer work, imported objects are left unchanged. Instead, 
clusters will be modified or added when needed. The recommendation process uses 
only cluster objects. After the import and clustering every imported objects should be 
in a cluster. If no similar objects are found, then the number of clusters will be the 
same as the number of imported objects.

Figure 3 describes how the Clusterer works. A new object (imported object) is sent to 
the  Clusterer.  The  Clusterer  compares  the  given  object  to  every  cluster.  If  no 
matching cluster  is  found, a new cluster  is  created and the object  is  added to the 
cluster.  If  a  matching  cluster  is  found,  the  object  will  be  added to  the  matching 
cluster. Facts about the object and the found cluster are merged. We will describe data 
merging in subsection 4.4.

Comparing an object and a cluster is done by finding a similarity value between the 
two. Similarity in our system is a number in range [0.0; 1.0]. If the similarity is above  
a  certain  threshold,  two  objects  are  considered  to  be  the  same.  More  about  the 
similarity calculation will be presented in the next subsection.

Comparing objects for similarity is expensive in terms of time consumption. To avoid 
comparing an object to every cluster, we try to find a smaller number of candidates 
for a new object. We have implemented location based candidate search: there is no 
point in comparing objects which are too far away from each other. Currently, with 
3000 clusters and 300 new objects, the total running time of comparison process is 
around 10 minutes on a quad-core laptop. The number depends on the concrete data 
and the number of similar objects. If we had 5000 objects, it would probably take 
hours. The clustering process is usually run once a day. As mentioned, we regularly 
update  only  event  data.  More  static  POI  data  is  updated  only  once  a  month.  To 
improve the speed of clustering, we are looking into better candidate selection to get 
fewer candidates, different clustering algorithms and simpler comparison functions.



4.3 Similarity

Different data sources can describe the same physical tourism object or event. Usually 
those sources do not link data together. When importing the information, we end up 
with several different objects in our system. Now it is up to us to decide, which of  
those objects are actually the same. We are using the  similarity to decide that. The 
system calculates  similarity value of two objects and if the value is above a certain 
threshold, the objects are considered to be the same and are put into the same cluster.

We have implemented several  functions named  comparators which deal only with 
certain characteristics. For example, we have a separate function for getting location 
similarity (whether two objects are similar based on the coordinates or address) or for 
titles (whether the titles of the objects are similar) and so on. Every function gives a 
result in range [0.0; 1.0]. All the  comparators have  importance value, which states 
how important the result of this function is in the total similarity. The calculation of 
total similarity can be viewed as a weighted mean. In our implementation, the formula 
is:

similarity=
2∗locationtitletype propertiesevent start time

6

All five elements of the sum are different similarity functions. As can be seen, the  
importance for location is twice as high as for other elements. Importance values are 
currently set manually. We plan to use machine learning algorithms to learn better 
values. If the similarity is above 0.9, the system puts the objects into the same cluster.

In the next subsections we will describe the main  comparators.  Every  comparator 
provides a check function which is used to test whether the corresponding comparator 
can  be  applied.  For  example,  if  one  of  the  objects  is  not  an  event,  start  time 
comparator cannot be used as the similarity result would be 0. When the comparator 
is not used, it is not included in total similarity calculation. In the case of non-events, 
the similarity formula will have 5 as divisor (instead of 6).

4.3.1 Location comparator

One of the most important comparisons in our system uses object distances. Objects 
in database are described by latitude and longitude. Using coordinates, we calculate 
direct distance between the objects. We have defined three ranges: first is allowed 
distance without penalty, second one is allowed distance with penalty, and third one is 
distance not allowed. Currently, if the distance is smaller than 10 meters, the location 
similarity will be 1.0. If the distance is between 10 and 100 meters, the similarity will 
fall linearly: 10 meters would still yield in similarity of 1.0, where 100 meters would 
give 0.0. Distances over 100 meters would give 0.0 as a result.

Comparing only the coordinates might be misleading. As we scrape information from 
various sources,  they can  apply different  coordinate  systems (Google versus  local 
Estonian  system)  or  simply  provide  different  location  for  the  same  object.  For 



example, if the building is 200 meters long, one source can point to one side of the 
building as the other can point to the opposite side. If we compare the locations, we 
would get similarity 0.0. To overcome the problem, we also compare addresses.

Address comparison is done in two different ways. The first one is string comparison:  
we remove common words like “street”, “road” etc., extract the street name and the 
building number. If both the street part and the building part match, the similarity will  
be 1.0. We also use Google maps API (http://code.google.com/apis/maps/, 2011) to 
get coordinates for the address. Google accepts address in various formats and returns 
one certain location for  different  address  strings.  We use coordinates  provided by 
Google and compare locations as we did with our original coordinates.

4.3.2 Event start time comparator

Comparing only the location does not help us in the case when some events take place 
at the same building. Therefore we compare starting time of the events. Similarly to 
location comparison we have defined three ranges. If the time difference is below 15, 
the similarity will be 1.0. The difference between 15 and 60 minutes would decrease 
the similarity from 1.0 to 0.0 linearly.

4.3.3 Text comparator

With only  location and  start time comparators we would still experience problems, 
for example a cinema with three movies starting at the same time. The only way to 
make difference is to compare titles. Another example would be small shops or cafés 
inside a huge supermarket. Again, we need to compare titles.

As with location, we have implemented several different comparison functions. First 
is to compare all the words from objects' titles. We try to remove common words like 
“café”, “shop” to find out that “Cafè X” and “Cafè Y” are not similar although “cafè” 
matches. With different languages, it is often a problem to know the common words.

Another example is “McDonalds” and “McDonald's”. Depending on how the splitting 
into separate words is done, the problem still occurs when there are some symbols 
different  (due  to  misspelling  or  special  symbols).  For  the  given  case,  we  have 
introduced two string comparison algorithms: Levenshtein distance (also known as 
edit distance) and trigram comparison. They are both good in the case of misspelled 
symbols  or  when only small  number  of  symbols  are  different.  For  example  “Mc 
Donald's” and “McDonalds” are similar when using those methods.

Described algorithms do not solve all the cases. For example, in a shopping centre X 
there are two eating places:  “McDonald's  X” and “Pizzeria X”. The address is the 
same,  they both are  eating  places  and  X part  of  the  word  is  matching.  The  title  
similarity will not be 1.0, but it is high enough to push the total similarity above the 
threshold. Here we have an idea to use the knowledge, that X is a shopping centre (if 
it is present in our database) and consider this part of the titles as common word. Then 
we would compare “McDonald's” and “Pizzeria”, which would yield in similarity 0.



There are several cases where we still have to find a better solution. Often the title  
comparison is decisive whether the objects are the same or not. This is one priority in 
our current work.

4.4 Data merging

After two objects have been put into one cluster, the cluster has to have representative 
information. An easy solution would be to just add all the facts from every imported 
object to the cluster. This may end up with objects which have two different names. 
To simplify the task of presenting data with user interface, we have implemented a 
merging process, which tries to remove obsolete information about the object.

During the clustering process  all  the facts  from imported objects are added to the 
clusters.  The  merger  component  is  run  separately  after  clustering.  Current 
implementation keeps  the value with highest  connection score  for  every  property. 
Certain properties, for example all the imported types, are always kept.

Often values have the same probability score.  For that case we have introduced a 
source priority list: value from the source which has a higher priority is preferred.  
Current  approach  has  weaknesses  and  more  sophisticated  selection  based  on  the 
context should be implemented.

5 Experiments and Results

On Sightsplanner.com we currently have about 2200 scraped objects about Tallinn: 
1200 POIs and 1000 events. The number of different events is about 150, but we keep 
every occurrence as a separate object (a play which takes place three times will be 
stored as three objects in our database). We scrape data from six different portals both 
in English and in Estonian. Every night we automatically update event information.

We  have  gathered  a  dataset  of  Tallinn  eating  places  to  measure  the  clustering 
precision. We have a total of 1700 eating places (including duplicates). Total number 
of different objects when duplicates are merged is 800. Eating places are gathered 
from 5 different  sources,  which results  in  high number  of  comparison space  (the 
number of possible object pairs to compare is above 10 000 000). Some objects have 
to be merged from 5 different data sources, where others only from 2 sources. Given 
the size of comparison space, we have gathered a different  dataset to measure the 
clustering accuracy.

We have manually found all the duplicates in a dataset of about 3500 scraped objects  
for another city Riga. Created dataset along with all the similar objects is used as a 
control dataset. We have used the same configuration of the Clusterer as with Tallinn 
data to get the results. In the given dataset, there are 77 duplicate objects, e.g. 154  
objects will create 77 clusters, 2 objects in every cluster. The results with our current 
implementation are 87% precision (67 objects found from 77) and 87% recall  (10 
false  negatives).  90%  precision  should  be  achievable,  the  main  problem  is  title 



comparison, where we would to take into account additional context information like 
object type, location, common keywords and existing shopping centre names etc.

Our next goal is to apply the same accuracy measure on Tallinn data. We have to 
create a subset of our data to limit the search space in order to be able to manually 
indicate all the duplicates. The selected subset can then be used as a training data for 
machine learning, which could optimize the similarity function parameters to improve 
clustering and merging of the objects.

6 Related Work

Geographical  information extraction task is covered by Alves et al. (2009),  where 
they describe KUSCO system which searches internet to enrich a Place of Interest 
(POI) data. Words from the results are used to discover the Semantics of Place. In the 
work they use natural language processing to extract  nouns which will be used as 
concepts  for  entities.  We  are  currently  extracting  keywords  only  from  specified 
sources and are looking into extending the lookup to the whole web, which would 
give us more information and also help to improve deduplication process.

In  (Tré, 2010) a formal theory about POI deduplication and data merging is given. 
The article  focuses  mainly on  coreferent (clustered in  our terminology) POI data 
merging.  The  approach  described  in  the  paper  is  somewhat  similar  to  our 
methodology. We do not calculate true and false probabilities. Instead we make use of 
the probabilities of our facts. In some cases (for example for descriptions) proposed 
techniques could be used to combine descriptions. As mentioned in the article, they 
do not deal with multilingual data. In one example, a translated title for a POI is lost  
due to merging. Our system has a requirement to merge data separately for every 
language.

Bleiholder  and  Naumann  (2008)  have  given  a  good  overview  of  data  merging 
techniques. The describe different approaches for different requirements. Along with 
every approach, they have provided SQL examples. When using terminology from the 
article, we are using mostly Take the information and Trust your friends strategies. In 
addition we use fact probabilities to choose the one with the highest score.

A very similar approach is used in (Zheng, 2010) where the authors present a problem 
of  finding  near  duplicate  records  in  location  datasets.  They  compare  POI  titles, 
addresses  and types. As they have proposed a structure for the address field, they 
probably have rather high distances between objects. In our case, most of the objects 
are located in one part of the city. Our lowest hierarchy should be street, which is 
actually  included  in  our  address  similarity  calculation.  Our  current  similarity 
measures are also near 0.9, which probably improve after we apply machine learning.



7 Conclusions and Future Work

In  this  paper  we have  described  the  tourism recommender  Sightsplanner.  A brief 
overview of the system architecture is given. The main focus of the paper is on the 
data discovery topics, where data importing, entity disambiguation and data fusion 
processes  are described.  We have presented the main functionality about different 
data processes along with some problems we have to overcome in order to improve 
the quality of the system and data itself.

In our current implementation we are using six different data sources. The goal is to 
be able to use an unlimited number of portals from the web. To achieve this, we have 
to improve the clustering process which would enable gathering information which 
for example,  does not have coordinates.  If we have an object  in our database,  we 
could just look for a more detailed description. Currently, the disambiguation depends 
strongly on location. We could also add information from user generated content by 
the title of the object: a tourist has visited one restaurant and writes about that in a  
blog. If we can identify the object in our database, we can add the new data into our 
cluster and merge all the facts.

We are  already working on adding open linked data  into our importer.  There  are 
several  web  portals  which  could  be  used  to  retrieve  linked  data  (DBpedia, 
OpenStreetMap etc.). Another future improvement will be user feedback on both data 
and recommendations. Based on that we could evaluate the quality of our planner and 
information retrieval. 
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ABSTRACT
We present information extraction for a semantic person-
alised tourist recommender system. The main challenges in
this setting are that information is spread across various in-
formation sources, it is usually stored in proprietary formats
and is available in different languages in varying degrees of
accuracy. We address the mentioned challenges and describe
our realization and ideas how to deal with each of them.
In our paper we describe scraping and extracting keywords
from different web portals with different languages, how we
deal with missing multi-lingual data, and how we identify
the same objects from different sources.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Content Anal-
ysis and Indexing

General Terms
Theory

Keywords
Multilingual information retrieval, keyword extraction, ob-
ject similarity, recommender system, tourism

1. INTRODUCTION
In this paper we describe information retrieval and extrac-
tion for a semantic tourist recommender system Sightplan-
ner. We are using semi-automatic scraping of different web
portals. The data is normalized into our ontology. The
main challenges in this setting are that information is spread
across various information sources, it is usually stored in
proprietary formats and is available in different languages
in varying degrees of accuracy (e.g. an Estonian museum
might provide a rich description of events in Estonian but
only a short introduction in English).

In the following two sections we will provide a short overview
of the overall system and its technical parts. In section 4 we
describe the data gathering process in more detail. We end
our paper with an overview of related work and conclusion.

2. TOURISM RECOMMENDER SYSTEM
Sightsplanner is a semantic recommender and route com-
poser system for tourists. A tourist can specify her location,
time and duration of the visit and her preferences about
different types of objects and events. Based on the cre-
ated tourist profile, the recommender identifies interesting
objects for the given user. For each found object a rank-
ing score is found. The objects that the user probably likes
have a higher score and vice versa. A planning mechanism
organizes the objects and events into a trip timetable. In
an interactive feedback cycle, the tourist has the option
to modify the suggested trip. To calculate the final list of
recommended objects, the following processes are involved:
(a) Object verification process, (b) Matching process, (c)
Planning process, (d) Result representation process, and (e)
Feedback process.



Figure 1: GUI first page

The recommendation process starts when the user opens the
web page and defines her interests by using a slider-based
approach for adjusting individual preferences. In figure 1
the first page of the user interface is shown. The tourist can
indicate her interest in seven main topics moving the corre-
sponding sliders. Each of them also has subtopics. In the
figure the ”Events” slider is ”opened” and its subsliders are
shown. The tourist has stated that she likes ”Museums and
arts” and ”Architecture and city” very much. She also likes
some ”Eating out”, ”Shopping” and ”Events”. Especially she
likes ”Jazz” and ”Rock concerts”. Every topic in the user
profile matches a type in POI properties. The user can also
specify the start date and time of her visit, visit duration
and preferred travelling method.

After the tourist has selected her interests, she starts the
overall recommendation process. The user profile is sent
to the planner, which is responsible of returning a person-
alised recommendation for the given profile. The planner
uses all the relevant data from the memory database. All
the objects in the requested city which also are opened dur-
ing user’s visit will be processed. Based on the object types,
location, opening time and some other properties, different
trip timetables are created for the user. The planner has a
time limit, after what it has to return the best trip it has
found so far - this is then presented to the user as a timetable
and as a map.

The recommended plan can be modified by the user starting
an interactive feedback cycle: she can remove some objects
or change visit time for objects and re-run the recommenda-
tion based on the performed changes: after the modification,
the planner takes the changes into account and a new rec-
ommendation is created for the user.

The PostgreSQL database [12] of Sightsplanner contains all
the known facts about the tourism objects. The data needed
for computing the recommendation is periodically propa-
gated to the in-memory database. The PostgreSQL database
itself contains additional properties that are used for display-
ing the recommendation to the user.

3. TECHNICAL OVERVIEW
The main components of the system are presented in fig-
ure 2. In this section we will give a brief overview of the
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Figure 2: System architecture

Table 1: A fragment of POI data in database
Object Property Value Score
#town hall sq #name Town hall square 1.0
#town hall sq #type #architecture 0.9
#town hall sq #type #city 0.9
#town hall sq #type #shopping 0.4
#town hall sq #latitude 59.437165314024 1.0
#town hall sq #longitude 24.745137236142 1.0

different parts. First we will look into data gathering part.
Then we will describe the whole process with some details
about each of the components.

Information about the objects stored in our database is
spread across various information sources, it is stored in dif-
ferent proprietary formats and is available in different lan-
guages in varying degrees of accuracy. The more detailed
and coherent we can gather this data, the better recommen-
dations and scheduling we can provide to the user. One cru-
cial requirement is for example the POI (point-of-interest)
data.

In our current implementation we scrape information about
objects in a semi-automatic fashion. First, we crawl differ-
ent web portals and normalize the gathered data into our
ontology. In some cases, the information available in the
provided portals is not complete. Therefore we can also add
data manually: we can add a new complete object or modify
some properties for the existing objects. All this information
is stored in our main database which in our system is Post-
greSQL [12]. In section 4 we will describe the data importer
component and its subcomponents more deeply.

POI information is saved into database used extended RDF
triple structure [13]. In our database, every detail can be
represented with a triple: object, property, value (originally
subject, predicate and object accordingly). We have ex-
tended this structure by adding fields like unique identifier,
connection score, source, timestamp. Unique identifier is
automatically assigned by the database engine. Connection
score indicates the probability of correctness of a certain
fact. The score is within the range [0; 1]. If the score is 1.0,
then the fact is likely to be true. The score 0.0 states that



the fact is unlikely to be true. The source stores the name
where the fact is gathered (web page name, manual insertion
etc.). The timestamp stores the date and time when the fact
is created. A small fragment of the database is presented in
table 1. For the example to be more clear, we have only
shown object, property, value and score fields.

The recommendation engine has to quickly handle a large
amount of data: all properties of all POIs and a relatively
large ontology. Fetching all this data from the conventional
relational database takes too much time. In addition to
fetching the data we also would like to deduct new facts
by applying rule-based reasoning. In particular, it is not
suitable to run the reasoning engine by querying all the po-
tential premises of rules from the conventional database for
each rule application during derivation. The reasoning en-
gines are typically built on specialised efficient main-memory
data stores.

We have built a new reasoner-equipped fast in-memory data-
base to serve our needs. This in-memory database is imple-
mented in shared memory as a library, without any con-
tinuously running processes. Each update or query to the
database is performed as a call to the corresponding func-
tion. In order to enable parallel queries, we have imple-
mented a fast global read/write lock using spinlocks. Those
prohibit simultaneous data addition and reading from the
global data area. Each query process has an additional local
non-shared data area for query input and temporary results.
Thus it is possible to conduct several derivation queries in
parallel, avoiding the need to copy common data to all the
separate simultaneous derivation processes.

All the imported data from the web pages is stored in Post-
greSQL. In order to make the same data available for mem-
ory database, we synchronize the data once a day. Currently
the synchronization works only one way: all the data from
persistent database is copied to the memory database. The
employed reasoner is used to derive new types, opening times
etc. For example, we have a rule

fact(?X type architecture 0.9∗?N) : − (1)

fact(?X type church ?N) (2)

which says that if the object X has a type ”church”with score
N , then the same object would get a type ”architecture”with
score 0.9 ∗N .

The recommendation process verifies suitable objects by load-
ing the tourism objects from the in-memory database and
applying an object filter: objects that do not have required
properties (coordinates, opening/closing times), belong to a
different locale or are not accessible during the given visit
duration are ignored. For each loaded object the recom-
mender assigns a ranking score based on a matching between
”#type” properties of the object and the preferences taken
from the user profile.

The array of objects is sorted in descending order of the
calculated ranking scores. The recommender then runs the
planning algorithm that arranges the objects in a timetable

for the user while attempting to maximise the individual
object rankings that are being included in the recommen-
dation. There are several constraints to the timetable that
need to be satisfied - the tourism objects have opening times
(therefore, the optimization problem as modelled in Sights-
planner may be classified as an instance of OPTW [18] prob-
lem) and each of the preferred categories that was present
in the user profile should be represented (due to the latter
requirement the OPTW problem in Sightsplanner could be
classified as multi-objective optimization, however we have
chosen to aggregate this criteria into the overall score of the
recommended timetable).

The planning problem is solved using a meta-heuristic search
based on GRASP [15]. The method of search was originally
described by Vansteenwegen et al, who employed this type of
heuristic in their Citytripplanner recommender [17] . Sight-
splanner uses a similar approach, where the candidate ob-
jects chosen in GRASP iterations are added incrementally
into the current solution, therefore having no distinct local
search phase. The balance criteria that requires objects from
varied categories to be present in candidate solutions is used
to additionally guide the selection of items in the GRASP
search.

When computing the solution to the maximisation problem,
the ”#latitude” and ”#longitude” properties of the objects
are used to estimate the time required to move from one
candidate object to another. The ”#opening time” proper-
ties are used to determine, whether an object is accessible
at any given moment.

The meta-heuristic search produces a number of candidate
solutions which are ranked using an aggregate score which
is based on the average score of the objects included and
the balance criteria. The top ranking solution is returned
to the user. The output of the planner is a timetable of ob-
jects, containing a Unified Resource Identifier (URI), arrival
and departure time and method of travel from the previous
location for each object.

Using the URI-s from the planner output, the recommender
retrieves additional data, including visualisation components,
descriptions in the user’s language and contact information
from the PostreSQL database and creates the timetable rep-
resentation.

4. DATA DISCOVERY
For our recommender system we are currently scraping six
different web portals with completely different structures.
Raw data obtained from the portals is then normalized for
our system. Some of the objects in the recommender are
based on dynamic, rapid changing information such as one-
time events (concerts, performances etc.) which are scraped
from the web daily. Another category of objects is formed
by places of interest (POI-s) with mostly static information
- nothing changes in months or even years. The POI objects
are updated typically once a month.

A brief overview of the architecture of our importer is pre-
sented in the figure 3. The importer can connect to sev-
eral web pages using different manually created scraper al-
gorithms. Each scraper downloads the content of the web



Table 2: A small fragment of profile ontology
Parent URI Description
Profile #events and happenings Events and happenings
#events and happenings #events and happenings concert classic Classical music concert
#events and happenings #events and happenings concert rock Rock concert
#events and happenings #events and happenings concert jazz Jazz concert

Web page 1 Web page 2 Web page N

Scraper  1 Scraper  2 Scraper  N...

...

Merger DatabaseMatch found?
Match found: update

No match: insert

Figure 3: Data scraping

pages, finds the necessary information (for example using
XPath[20] to extract title, description etc), normalizes data
for our system and sends it to the Merger. The Merger com-
pares the new object with the existing ones by computing
the similarity between the objects. From certain similar-
ity value, the objects are considered to be the same. In the
case of match, the existing object in the database is updated
with new scraped data. If there is no matching object in the
database, the scraped object is added. More details about
the merging is presented in the next sections.

The recommendation process uses properties ”#latitude”,
”#longitude”, ”#opening time”, ”#type”,
”#popularity tourist”, ”#visit time” to calculate the recom-
mendation for the user profile. The coordinates are manda-
tory and cannot be empty. If opening times are missing, we
use default values based on the object type (restaurants and
museums have different default opening times). We extract
types from the title and the description values. Tourist pop-
ularity indicates the average amount of tourists visiting the
object in one day. If the value is missing, it is defaulted
to 1. Visit time represents the recommended visit duration
for the given object. The default value is 30 minutes. The
tourist can modify the suggested visit duration for every ob-
ject. Along with mentioned properties, there are many other
meta fields.

Our system stores information in various languages. Prop-
erties like ”#name” and ”#description” have language in-
formation along with the textual value. With multilingual
data we often have a problem of missing translations. Usu-
ally the web pages we are scraping only have data in one
language which makes it harder to get all the information
in all the languages. To overcome the problem of missing
multi-lingual information, we use the Merger. An object is
scraped from one web page which only has data in Estonian.
We add the object into the database. If the system finds an

object from another web site, which is in English, the found
object is compared to the existing objects. Based on the
location, types and other properties, the Merger knows that
the Estonian object and the new English object describe
the same object. The Merger updates the original Estonian
object and adds the English name and description. In addi-
tion to the multilingual textual information, the new scraped
object can have additional metadata (phone number, home-
page etc.) which can be added to the existing object. If we
cannot scrape information in other languages for an object,
we run into the problem that some objects in our database
do not have translations because we could identify a simi-
lar object by scraping different portals but the majority of
objects is still not available in the other languages necessary.

We have implemented automatic translation functionality,
which currently uses Google Translate API [10]. We are
translating title and description properties. The translated
value is saved in the database with lower probability score.
When the text is scraped from a web page, then the score
is higher than for the automatically translated text. In ta-
ble 3 we have presented a simple example. In the table we
have shown the language for every value and also the source
for every fact. The scenario itself is as follows. We get the
description of a church from one Estonian web page. The
fact (description in Estonian) will get a score 1.0. To be
able to give some information about the object for foreign
tourist, we translate the description automatically into En-
glish with a score 0.8. At some point we will add a new web
page scraper into our system which gets English description
for the same church. The scraped description would get a
score 1.0 and is therefore preferred over the automatically
translated description (the fact with the source ”#scraper2”
is used to show English description). The scores for trans-
lation and different scrapers can be modified - instead of
1.0 and 0.8 other numbers can be used. For the web pages
with low text quality, even the automatic translation can be
preferred.

In the following subsections we will present more details
about different data discovery topics. First, we describe key-
word extraction from object multi-lingual description. After
that, we present our data merging technique with some ex-
amples.

4.1 Keyword Extraction
The web pages usually do not provide enough meta-informa-
tion about the object types or categories. For our recom-
mender system those are very important to suggest objects
which match with user selected interests. The web page can
only offer a very general category like music. In our system
we would also like to know the genre of the music, for ex-
ample rock or classical. Therefore we introduce a keyword
extraction methodology in our system.



Table 3: An example of multilingual description

Object Property Value@language Score Source

#church #name Oleviste Church@et 1.0 #scraper1

#church #name Estonian description@et 1.0 #scraper1

#church #description Automatically translated description@en 0.8 #translator

#church #description English description@en 1.0 #scraper2

Table 4: An example of keywords to extract from
text

Keyword Ontology term / type Score
rock #concert rock 1.0
pop #concert pop 1.0
musical #concert pop 0.8
jazz #concert jazz 1.0
music #events and happenings 0.7
folk #events and happenings 0.8

We realize conceptual indexing in an automatic fashion. Con-
ceptual indexing usually involves firstly, the detection of rel-
evant concepts, and secondly, the calculation of a relevance
weight for each detected concept. In concept detection from
documents, two alternative ways can be distinguished: The
first projects the ontology onto the document by extracting
all multi-word concepts from the ontology and then identi-
fies those occurring in the document. The second approach
follows the opposite way, it projects the document onto the
ontology by combining adjacent words in text phrases. Usu-
ally, the words in their original form are looked up in the
the ontology and if necessary, their base forms are used to
resolve the problem of word forms. For multi-word concepts,
the longest term for which a concept is detected, is used. We
follow the first approach in the following way:

As mentioned above, we store object information in different
languages. To get object types, we analyse all the descrip-
tion properties in all the languages. Every language has its
own keywords which match with possible object types. The
descriptions are parsed and all the matched keywords are
found. The keywords are grouped by corresponding object
types. The object will get all the found types with certain
scores. The type which corresponds to more extracted key-
words, gets a higher score and vice versa.

In the table 4 we have presented a small example of our key-
word base. We have shortened the ontology terms for the
first four rows (each should have ”#events and happenings ”
as a prefix). The score indicates the confidence of the given
match. For example, if the description consists of words
”rock” and ”musical”, the event would get corresponding
types with scores 1.0 and 0.8 accordingly. If the same de-
scription would consist a word ”pop”, then
”#events and happenings concert pop”type would get high-
est score amongst matching keywords, which is 1.0. If the
description consists more of the same keyword, the score is
multiplied with a factor, which currently in our system is
2.0.

4.2 Data Merging
The POI data comes from different sources and often many
web pages can have information about the same object. If
all the data sources would use semantic web technology, the
same object would have the same URI, which would make
scraping easier. In our case we do not have any information
about the similarity of objects in different sources. Therefore
we have implemented our own merger, which was briefly
mentioned in section 4.

We have a very simple general algorithm for calculating ob-
ject similarity which is presented in algorithm 1. We have
defined several different comparators, which all have a com-
parison function. Each function compares certain properties
or values and returns a value in range [0, 1]. Along with the
function, comparators have importance value. The higher
the importance value is, the more the given function affects
the total similarity. The importance is calculated as a ratio
to total importance. For example, if we have two compara-
tors: one has importance 2 and the other has importance 3.
The total importance would be 5. Now the first comparator
would affect the total similarity 2/5 = 40%, the second one
3/5 = 60%. The first similarity function can compare ti-
tles. If the titles match, it returns 1 and the total similarity
would be 0.4 ∗ 1 = 0.4. The second function compares loca-
tions. The objects are not located in the same place, so the
outcome of the function is 0.5, which would add to the total
similarity 0.6 ∗ 0.5 = 0.3. And the total similarity would be
0.7.

In the algorithm we also have used check function which
returns boolean whether the function can be applied for the
given objects. For example, there is a comparison for events
which compares start times. There is no point of employing
the same comparison to POIs, as they do not have start
times (they do have starting opening time). If the check
function returns false, then the given comparator is left out
from both total importance and total similarity calculations.

For every scraped object, the best match is found from the
existing objects. If the similarity is above certain thresh-
old, the objects are considered to represent the same object.
In our current implementation the threshold for matching
objects is 0.9.

We have compared the Merger results manually for Tallinn
eating places. We used two different web portals to scrape
the data: http://tourism.tallinn.ee with 270 object and
http://toidukohad.eu with 510 object. Our current config-
uration for comparators and the threshold resulted in 90%
of accuracy on deciding the match. One of the main prob-
lems was matching eating places inside a supermarket. Also,
common names like ”cafe” and ”pub” matched some objects,



Algorithm 1 General similarity calculation

1: procedure compare(object1, obect2)
2: Comparators← all the comparators
3: total importance← 0
4: for all comp ∈ Comparators do
5: if not defined(compcheck function) ∨ compcheck function(object1, object2) then
6: . check function not defined or returned true, then this comparator is used
7: total importance← total importance + compimportance

8: end if
9: end for

10: total similarity ← 0
11: for all comp ∈ Comparators do
12: if not defined(compcheck function) ∨ compcheck function(object1, object2) then
13: similarity ← compcomparison function(object1, object2)
14: max similarity ← compimportance/total importance
15: total similarity ← total similarity + similarity ∗max similarity
16: end if
17: end for

return total similarity
18: end procedure

which actually were different.

This field needs some more testing and experimenting. We
already have started with few different cities to test our
Merger. The gathered test data will certainly give us more
information on how to tune our configuration setup. We
can also get more accurate evaluation results with different
datasets.

Next we will present some comparators we are successfully
using in our system. Note that each comparator provides
a check function which is used to test whether the corre-
sponding comparator can be applied. E.g. for the Start
time comparator if one of the objects is not an event, the
check function would return false and the given comparator
is not used for the given objects as non-event objects do not
have fixed starting time and the comparison would always
yield to 0 result.

4.2.1 Location comparator
One of the most important comparisons in our system calcu-
lates object distances. Every object in database is described
by latitude and longitude properties. If we compare ob-
jects, we calculate direct distance between the two objects.
Along with the comparator we have defined three ranges:
first range is allowed distance without penalty, the second
one is allowed distance with penalty and the third one is
not allowed distance. If the distance between the objects is
less than 10 meters, the similarity based on the location is
1.0. If the distance is between 10 and 100 meters, then the
similarity would fall linearly. 10 meters would still yield for
similarity 1.0, 100 meters would give 0.0. Distances over 100
meters would give 0.0.

Comparing only the coordinates itself might be misleading.
As we scrape the locations from various sources, they can
apply different coordinate systems (Google [9] versus local
Estonian system [14]) or simply provide a different location
for the same object. For example, if the building itself is 200
meters long, one source can point to one side of the building
as the other can point to the opposite side. If we compare

the locations, the function would return 0.0. To overcome
this problem, we also compare addresses.

Address comparison is done in two different ways. The first
one is to compare strings. Before comparing we remove com-
mon words like ”street”, ”st”, ”road”, ”avenue” etc. from the
addresses. We also extract the building and the apartment
number. Then we compare the street part and building part
separately. If we find that both of them match, then we re-
turn 1.0 as location similarity. If we do not find a complete
match, we use Google maps API [8] to get the coordinates for
the addresses. Google accepts addresses in different formats
and returns one certain location for the same address. We
compare coordinates provided by the Google and calculate
the similarity as we did with our original coordinates.

4.2.2 Event start time comparator
The location comparison on its own often does not satisfy
our needs. Especially if there are events taking place in
the same location. Therefore we also need to compare the
starting times of the events. As with the distance we use here
different time ranges. If the difference between the events
is less than 15 minutes, the time based match return 1.0.
From 15 minutes to 60 minutes, the similarity falls linearly
to 0.0. Events with start time different more than one hour
would get similarity 0.0.

4.2.3 Text comparator
With location and start time comparators, we still expe-
rience problems with some objects. For example a cinema
with three movies taking place at the same time at the same
address, only the room is different. Another example would
be shops and cafes in supermarkets. As those are not events,
start times are not compared. And as they are located in the
same building, the address and the location are the same.
Therefore we need another comparison for this kind of ob-
jects. We have introduced a text comparator.

We divide the text into keywords and find the matches in the
other object’s texts. We remove some common keywords like



”Cafe”, ”shop” etc. Otherwise the titles ”Cafe X” and ”Cafe
Y” already would have some similarity, but actually they are
not similar (in the context of being the same place). Another
problem arises with supermarket name. If the supermarket
is named X, then there can be ”Hesburger X” and ”McDon-
ald’s X”. Again, X would match in both names and therefore
would be similar. We have tried to remove full object names
from titles, but it only removes a small number of problems.
Often the object itself has a name ”supermarket X”. Now
we would like to know that X is so called ”common” part of
the name and matching X does not say anything about the
similarity of the objects.

Another problem comes from translations. For the objects,
which do not have information available in all the needed
languages, automatic translation is used. And when com-
paring automatically translated name with a professionally
translated name, they often do not match.

In our system, the importance of the text comparison is
lower than used for location and start time comparators.

4.2.4 Examples
To illustrate the comparison process and results of the cal-
culations, we provide two examples.

1) We have two objects:

Table 5: An example 1 of comparing objects
Property Object A Object B
#title McDonald‘s Rocca McDonald’s Rocca
#latitude 59.4258329 59.4258492
#longitude 24.65024 24.65464
#address Paldiski mnt 102 Paldiski mnt. 102

When we compare locations by coordinates, we get 248 me-
ters as the distance between the objects. Comparing ad-
dresses says it is the same building, which means that the
location similarity is 1.0. If we had just used the coordinates-
based calculation, the similarity would have been 0.0. The
start time comparator will be skipped because it has check
function which checks whether both objects are events (given
objects are not events). The similarity between titles is also
1.0. Therefore the Merger gets total similarity 1.0, which
means the objects represent the same physical object.

2) We have two objects:

Table 6: An example 2 of comparing objects
Property Object A mistoimub Object B
#title The Little Prince Carmen
#latitude 59.4346093673 59.4341302
#longitude 24.7507912449 24.7506081
#address Estonia pst. 4 Estonia pst 4
#start time 19:00 19:00

In this example there are two events at the same place. Both
events take place in Estonian National Opera in the same
time, but in different rooms. First, if we compare coordi-
nates, we get the distance 54 meters. This would give the
location similarity 0.5 (100 meters would be 0.0, 0-10 meters

would be 1.0). Again, we need to compare addresses (which
are the same) and get the actual similarity 1.0. Comparing
start times we get the similarity 1.0. The only comparable
difference presented in our example is the title. As there are
no matching words, the title similarity will be 0.0. We have
selected the title comparator importance so that in the cur-
rent situation it would affect the total similarity enough to
fall below our selected matching threshold. The real num-
bers in our implementation are: threshold 0.9, title compara-
tor importance 0.15 (with 0.0 title similarity, the maximum
total similarity can be 0.85, which would be lower than the
threshold). In addition to mentioned comparators, we com-
pare event types (ballet versus opera), event homepage etc.
The total similarity between those objects is actually 0.7.

5. RELATED WORK
Early approaches for creating fully automatic semantic an-
notations are for example implemented in MnM [19], a tool
for ontology-driven automatic and semi-automatic annota-
tion of web pages or KIM [11] is another tool for auto-
matic semantic annotation of web pages based on light-
weight upper level ontologies. The whole research area of ’in-
formation extraction’ is dedicated to this problem (e.g. [6]).
They either extract metadata from the web site’s underlying
databases, learning algorithms based on textual content of
web pages and/or NLP techniques. Most of these methods
use a pre-defined ontology as the semantic model for the
annotations. None of these approaches implement methods
how to deal with missing or ambiguous information. Infor-
mation extraction in a multilingual scenario is for example
realized in the GATE framework [2].

To match user preferences with the object representation,
both represented by weighted concepts of our domain ontol-
ogy, one can distinguish between several approaches in the
information retrieval research community: (a) Graph-based
approaches including graph traversals (e.g. [1]), adaptations
of existing link-based approaches from standard IR (e.g. [7])
as well as spreading activation based approaches (e.g. [16]).
(b) RDFS/OWL Reasoning approaches (e.g. [5]). (c) Ap-
proaches which consider concept hierarchies for ranking as
well as concept-similarity based approaches (e.g. [4]) or (d)
Vector-space model based approaches (e.g. [3]). All of these
approaches do not have to face the problem of taking the
location context into account.

6. CONCLUSIONS
We have described the information extraction for the se-
mantic tourist recommender system Sightsplanner. We pre-
sented the main challenges, which include data scraping
from various information sources, normalizing data into our
ontology, dealing with multi-lingual data, matching objects
from different data sources. Along with the description of
the mentioned problems, we have provided our current so-
lutions. Our system can handle proprietary formats and
missing languages from web pages. The system uses key-
word extraction from description in different languages and
adds corresponding types to the object. We also have pre-
sented the Merger, which can find the similarity between
the objects. Based on the similarity value the system de-
cides whether the two objects represent the same physical
object.



As we are expanding our system and adding new data sources,
we have to deal with the problems we currently have. The
more cities we have, the more we have to deal with multi-
lingual content. The missing information in English makes
the data quality poor for a foreign tourist who does not un-
derstand the local language. We have offered a solution to
translate information automatically. Currently, the quality
of translation is poor, but in most cases the tourist under-
stands the main points of the description. An automatic
search of the English information from the web could yield
in better results. We are investigating the technical solution
for that idea.

Object merging quality becomes very important, if the same
object can be retrieved from a large number of data sources.
In our current implementation most of the objects can only
come from maximum of two different sources. If the match-
ing is missed, there will be one duplicate object. For larger
cities, the number of data sources can be ten times higher
than we currently have. If the matching fails, there can
be tens of duplicate objects. The opposite result - some
different objects are merged by the system - will also be in-
tolerable. Our current Merger is optimised for our current
data set. When we try the same configuration in different
city with different languages, the result can be worse. As
a future plan we will apply our merger to another city and
based on the test data we can modify our implementation.
Our current solution is optimized for Tallinn and proba-
bly would yield poor results when applied to other cities.
Therefore we will look into the machine learning techniques
to better deal with disambiguation for different cities.
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Abstract—We present a database structure and main al-
gorithms for a tourism recommender system. The presented
structures are implemented in the Sightsplanner system, able to
create plans for visiting interesting objects and events on the trip,
based on the personal preference profile. The database structure
can be seen as RDF extended with metainformation fields. Every
fact in the database has a confidence score, interpreted as the
probability. The score is used to deduct new facts and recommend
objects to tourists.

Index Terms—Recommender system; database; reasoning;
RDF

I. INTRODUCTION

The papers about recommender systems and algorithms
typically avoid the issues of data storage and encoding. We
attempt to fill this gap by presenting the schemaless database
structure along with the custom in-memory database, inte-
grated with the ontology-oriented reasoner. Everything de-
scribed in the paper is a part of an already functioning tourism
recommender system for Tallinn: www.sightsplanner.com.

The paper is structured as follows. First a brief overview of
the recommender system itself is given. In sections III and IV
we will describe our schemaless structure both in PostgreSQL
and in our main memory database. We have also prepared
a short performance test in section V and the related work
overview in section VI.

II. TOURISM RECOMMENDER SYSTEM

Sightsplanner is a semantic recommender and route com-
poser system for tourists. A tourist can specify her location,
time of the visit and her preferences about different types
of objects and events. Based on the created profile, the
recommender finds interesting objects for the given user. For
each found object a ranking score is found. The objects that
the user probably likes have a higher score and vice versa. The
objects and events are organized into a timetable based on their
location and time. Finally the trip route will be presented to
the user. The tourist has an option to modify the suggested
objects and to create a more suitable timetable.

The recommendation process starts with loading the tourism
objects from the in-memory database, applying an object

filter: objects that don’t have required properties (coordinates,
opening/closing times), belong to a different locale or are
not accessible during the visit duration are ignored. For each
loaded object the recommender assigns a ranking score that is
calculated by combining the #type properties of the object with
the preferences from the user profile. The score calculation
algorithm is presented in Algorithm 1.

Algorithm 1 Object score calculation
1: Objects← all objects
2: Profile← all user interests
3: for all o ∈ Objects do
4: Matches← {}
5: for all r ∈ Profile do
6: for all p ∈ oproperties do
7: if pname = rname then
8: Matches←Matches ∪ {rscore ∗ pscore}
9: break

10: end if
11: end for
12: end for
13: Matches ← sort descending(|m|,m ∈Matches)

. sort matched elements by absolute value, preserv the
actual value in result

14: sum← 0
15: for i← 1, size(Matches) do
16: sum← sum+Matchesi/2

i−1

17: end for
18: oscore ← sum
19: end for

The array of objects is sorted in descending order of the
calculated ranking scores. The recommender then runs the
planning algorithm that arranges the objects in a timetable
for the user while attempting to maximise the individual
object rankings that are being included in the recommendation.
There are several constraints to the timetable that need to be
satisfied - the tourism objects have opening times (therefore,
the optimization problem as modelled in Sightsplanner may



be classified as an instance of OPTW [1] problem) and each
of the preferred categories that was present in the user profile
should be represented (due to the latter requirement the OPTW
problem in Sightsplanner could be classified as multi-objective
optimization, however we have chosen to aggregate this crite-
ria into the overall score of the recommended timetable).

The planning problem is solved using a meta-heuristic
search based on GRASP [2]. The method of search was
originally described by Vansteenwegen et al, who employed
this type of heuristic in their Citytripplanner recommender [3]
. Sightsplanner uses a similar approach, where the candidate
objects chosen in GRASP iterations are added incrementally
into the current solution, therefore having no distinct local
search phase. The balance criteria that requires objects from
varied categories to be present in candidate solutions is used to
additionally guide the selection of items in the GRASP search.

When computing the solution to the maximisation problem,
the #latitude and #longitude properties of the objects are used
to estimate the time required to move from one candidate
object to another. The #opening time properties are used
to determine, whether an object is accessible at any given
moment.

The meta-heuristic search produces a number of candidate
solutions which are ranked using an aggregate score which is
based on the average score of the objects included and the
balance criteria. The top ranking solution is returned to the
user. The output of the recommender is a timetable of objects,
containing a Unified Resource Identifier (URI), arrival and
departure time and method of travel from the previous location
for each object.

The PostgreSQL database of Sightsplanner contains all
the known facts about the tourism objects. Periodically, the
data needed for computing the recommendation is propagated
to the in-memory database. The PostgreSQL database itself
contains additional properties that are used for displaying the
recommendation to the user. This data is retrieved using the
object URIs from the solution.

III. POSTGRESQL

Before we can give a more detailed look into database, we
have to describe how the data is obtained. For the Tallinn
recommender system we are currently scraping six different
web portals with completely different structures. Raw data
obtained from the portals is then normalized for our system.
Some of the objects in the recommender are one-time events
(concerts, performances etc) which are scraped from the
web daily. Another categeory of objects is formed by places
of interest (POIs) with mostly static information - nothing
changes in months or even years. The POI objects are updated
typically once a month.

We have implemented a specific scraper algorithm for every
site based on the structure of the web page. The system also
looks for existing objects in the database before adding new
data. Objects are compared by different properties (location,
title, categories, opening times and other meta data) and the
similarity is found. The comparison algorithm has different

weights for different comparators. For example, the location
comparison can have higher impact on the similarity outcome
than the title comparison (different fast food eating places with
the same name). The real weight values depend on the objects
which are compared - events have totally different comparison
conditions than static POIs. If the found similarity exceeds a
certain threshold, the objects are merged - the new scraped data
is added to the existing matching object. The merging is very
important for multilingual data. Currently we are gathering
data in English and in Estonian. We scrape some pages, which
only present information in one of those languages. Without
merging, we would end up having two instances of the same
object - one in Estonian, one in English. With the help of
location, categories, phone number, title etc. we can find the
duplicate objects and merge those.

In addition to the scraping algorithms, we are using several
manual data manipulation methods. The quality of scraped
data cannot be trusted 100% and some important events, POIs
and their information are not available for scraping. Hence
the need to manually enhance scraped data. For example, the
popularity information for most of the objects is not available
from the web. Therefore all the objects are associated with the
popularity value, which indicates the estimation of daily tourist
visits for the given object. We have also added a significant
amount of POI object types (like church, museum, subtypes
of these etc) manually.

As said, we use both the traditional database (PostgreSQL)
and the in-memory database. All the data manipulation for
initial insertion, enhancing and modification takes place in
PostgreSQL. The automated type derivation algorithms as well
as the ranking and scheduling algorithms called for user re-
quests operate on the in-memory database. Therefore we have
set up an automatic synchronization of two databases. The
information from PostgreSQL is imported into the memory
database. This takes place every night, since we scrape new
information about events nightly.

The database structure is based on the RDF model, extend-
ing the traditional triplet fields (object, property, value) with
metainformation about the triplet. The reason for the extension
is to avoid reification. The system has one main data table for
the records. All the values and URIs are stored in the second,
string table. The description of the main data table can be seen
in the table I.

The score field shows the confidence or probability of the
fact within range [0; 1]. For example, a fact can say that
”church X has a name Oleviste” with the score 0.9. Another
fact about the same object X may say ”object X has a name
Niguliste” with a lower score 0.5, intuitively meaning that the
church X probably has a name ”Oleviste”.

The system uses scores to calculate the recommended
objects for each user request. As a typical example of score
usage, consider object types. Each object may have several
different types, each associated with the probability score.
For example: ”object X has a type #church” with score 1.0,
”object X has a type #architecture” with score 0.7, ”object
X has a type #museum” with score 0.2. If the tourist likes



TABLE I
THE MAIN TABLE STRUCTURE

Data type in
PostgreSQL

Data type in
memory DB

Description

integer int Unique row id

integer uri Object URI (reference to string table id)

integer uri Property URI (reference to string table id)

integer depending on the data type Value URI (reference to string table id)

real double Score/strength of given connection/association

integer uri Source URI of given fact (reference to string table id)

timestamp int Timestamp when this fact was created

datetime int Fact is valid starting from this datetime

datetime int Fact is valid until this datetime

integer int Whether this row is private (not visible) info

churches and doesn’t like museums so much, object X would
be recommended for her. But if the tourist likes museums and
doesn’t like churches so much, then the object is unlikely to
be recommended for her.

The source field indicates the name of the source for
the given fact. Facts come from different sources. Some are
scraped from the web, some are manually inserted, others are
reasoned from other facts etc. Different methods result in a
different source name. For example, we often get different
names for the same object from different web portals. Using
source fields, we can make difference between the facts and
favour one over the other.

The timestamp field shows the date and the time of the
creation of the fact.

The validity start and validity end fields show the period
during which the fact is valid. If the fields are omitted, then
the fact is valid all the time.

Privacy indicates the level of invisibility. Default is NULL,
which means the fact is visible or public. Higher value would
mean that the fact is hidden (not visible) and therefore cannot
be used for all purposes.

In PostgreSQL, the main table does not hold direct values
for object, property, value and source. All those fields are
references to the string table, which holds the real values. As
the value field in string table holds text, we also need the
additional data type field. We use several different data types
(string, URI, date, time, integer etc). For example, String is
just a text value like the name ”Oleviste”. URI is represented
by a text value, typically started by the ”#” symbol. The
object id, property id and source id fields reference to URIs.
The value id can also reference to URI on certain cases. For
example, the type of an object described above in the examples
is an URI. Each fact with a string value references to a different
string table record. However, all the same URIs point to the
same string table record. Other data types act as strings - there
can be duplicate values.

Our in-memory database uses a similar structure for storing
facts. Most of the values from PostgreSQL are stored in one
main table. Only long strings and URIs are stored separately
while a pointer is stored in the main table.

Our in-memory database allows different rows to have a
different number of fields with different types. However, in our
recommender application we do not use this functionality: all
the in-memory database rows have the same number of fields
with the same types.

IV. THE REASONER WITH THE SHARED MEMORY
DATABASE

The reasoner uses rules to deduct new facts about the
objects. We are using RIF [4] style rules with an additional
confidence score attached to each rule. Similarly, confidence
scores are also attached to each fact in the database.

The main goal of the rules is to derive confidence-annotated
new additional types for data objects from both given types
and additional information, like the name of the object.

Consider these three rules:
0.9: fact(?X type architecture) :- fact(?X type church).
0.9: fact(?X type drinking place) :- fact(?X type bar).
0.7: fact(?X type eating place) :- fact(?X type bar).

The first rule indicates that if an object has a type church
with the confidence score N , it is also an architecture with
the confidence score 0.9 * N . Similarly, a bar will be - with
a high confidence - a drinking place, but also - with a lower
confidence - an eating place.

The reasoning engine employed by the system has to handle
a large amount of data - all properties of all POIs - plus a
relatively large ontology. The same holds for the suggestion
engine, which has to quickly access all the original and all the
derived data about POIs and user preferences.

Object properties do not depend on the user profile. Our
reasoner generates all the properties with confidence scores
for each object based on the rules. As the rules and the data
do not change often, the property generation process is run
once every night. This saves time for the suggestion requests,
which use pre-calculated facts.

We employ a principle that all - or relevant for this day - data
from the relational database is loaded into the fast in-memory
database handled by the prover. Changes in the relational
database are synchronised into the in-memory database using



TABLE II
REAL TIME USAGE IN MS

Function Query Pure query
avg 137.28 110.51

stdev 0.39 0.44

scripts. All the derivations conducted by the reasoner use only
the in-memory database, which serves as a native data store
of the reasoner.

As explained before, we have built a new reasoner-equipped
fast in-memory database to serve our needs. This in-memory
database is implemented in shared memory as a library,
without any continuously running processes. Each update or
query to the database is performed as a call to the corre-
sponding function. In order to enable parallel queries, we have
implemented a fast global read/write lock using spinlocks.
Those prohibit simultaneous data addition and reading from
the global data area. Each query process has an additional local
non-shared data area for query input and temporary results.
Thus it is possible to conduct several derivation queries in
parallel, avoiding the need to copy common data to all the
separate simultaneous derivation processes.

As the shared memory must be able to accept all kinds of
data and all kinds of schemas we may use in our relational
database, it is ”schemaless” in the sense of not having the
classical schema of relational databases.

The shared memory database must be also suited for keep-
ing RDF data in the efficient manner: therefore we have
implemented native support for RDF datatypes like URIs,
XML literals, strings with the language attribute etc. However,
the database - and the reasoner - is not limited to RDF. It
is capable of holding arbitrarily long tuples of arbitrary data.
Hence our data kept in the relational database can be imported
into the shared memory database in a straightforward manner,
without the need to reify, i.e. each database record is converted
to a single shared memory database record with exactly the
same number of fields.

Our reasoner is built on the first order resolution-based
theorem prover Gandalf [5], employing and extending selected
algorithms from this prover. Additionally we are using a
highly specialised C code module, which is essentially a hand-
compiled set of core rules performing the same task as the
reasoner. The hand-coded module is highly efficient, but lacks
the flexibility of the rule system.

We employ both conventional in-memory database indexing
algorithms (T-trees and hashes on fields and field vectors)
combined with the indexing algorithms conventionally used
in provers, like the widely used discrimination tree index for
unit subsumption and unit deletion.

V. PERFORMANCE

To give an overview of the performance of the memory
database, we measured the average query time needed to
retrieve all the data that is used to make one recommendation.
15 different user profiles where used. These profiles represent

TABLE III
MATCHED OBJECTS

Function Loaded Accessible Matched
min 1551 474 44

max 1551 532 528

typical usage, including interest in a single category of objects
as well as a wide range of categories. User profile presets
from Sightsplanner web interface were included. Each test was
repeated 5 times. The database included 1551 attractions which
represents a realistic size for a localized tourism recommender
database.

We have measured two different times: query shows the
total time spent on retrieving the objects by the recommender.
Because this also includes the object score calculation, the
second measure pure query shows only the database querying
time. The tests were run on a Core2Duo T8100 system, with
100MB of shared memory used by the database. Times are
shown in Table II. The first row shows the average running
time of tasks in milliseconds, whereas the second row shows
standard deviation. As the standard deviation is low, we can
say that query time did not depend significantly on the user
profile.

The results of the queries are given in Table III: column
loaded shows the total object count in database, accessible
presents the number of objects, which were found to be opened
during the user visit and matched shows the number which
gave a positive match to the user profile. The number of objects
loaded from the memory database stayed constant throughout
the test. About one third of all the objects were opened during
user’s visit time, the small variations were due to the different
start times and durations in different profiles. The number of
objects matched to the profile exhibited the most variation.

VI. RELATED WORK

There are several triple store databases which use the
relational database management systems (RDBMS) for data
storage. We will review some of them as the schema is
available and can be easily compared with our system. There
are other triple stores for which the underlying data storage is
complicated or unknown. Therefore it is hard to draw parallels
with our system.

First, we look Jena [6] - Semantic Web programmers toolkit,
open-source, implemented in Java. Jena version 1 used very
similar approach to ours. They have a table for statements
which has 4 fields: subject reference, predicate reference, ob-
ject URI reference, object literal reference. Subject, predicate
and object URI refer to resources table, object literal refers
to literals table. Instead of resources and literals tables we
have one string table in PostgreSQL which combines values
and URIs. In Jena2, subject, predicate and object fields in
statement table store the value instead of referring to literals
or resources table. They have denormalized the structure in
order to save time querying data, but they have increased the
database size. Jena1 did not duplicate URIs, Jena2 schema



does duplicate subject URIs. To lower the space usage, longer
URIs and values are still stored in resources and literals tables.

Another triple store engine we look into is Sesame [7]
- framework for processing RDF data. They also have an
option to store data in RDBMS along with memory and
native configuration. The schema has four main tables: Class,
Property, SubClass and SubProperty. For every new class or
property a new table is created which stores all its instances.
They also have resources table, which stores values of every
resource and literal to minimize the size of the database.
Adding tables to the database does not follow schemaless
structure that we try to have in our system, therefore this path
is not an option.

We also include Virtuoso [8] in our review. Virtuoso is
universal platform for data integration and management. It has
many functionalities, data storage is one of them. Virtuoso
DBMS also has RDF support, which basically has one data
table with four fields: graph, predicate, subject and object.

Here we have drawn some parallels to our database structure
and few popular public database engines. As we have com-
pared triple data stores, then the basic idea is the same. The
main difference is how to handle different RDF objects (value
in our structure) and how to store often used properties. In our
system we store all the literals and resources in the string table,
which also has fields to indicate the value language and type:
an URI, a string, an integer etc. We have extended our data
table to add fields like score, source, timestamp and others.
Score is the most important of them as it is used both by the
reasoner and the suggestion engine. In the memory database,
where the actual reasoning and querying takes place, we have
only one table. All the data from the PostgreSQL string table
is added to this one table.

VII. CONCLUSION

We have given a brief overview of the database structure and
usage in our recommender system. The presented schemaless
structure in PostgreSQL and in our memory database have
proven to be efficient and useful. With every fact in the
database we store the score or probability which indicates the
strength of the fact. The score is used to deduct new types for
POIs and to calculate the object preference score for each user
profile. The probabilistic score gives an opportunity to conduct
probabilistic reasoning tailored to the tourism application.

Some future directions for our database and reasoner part
include SPARQL [9] implementation and probabilistic reason-
ing improvements. Currently we have very limited needs for
querying data from the database, hence there is no strong need
for using SPARQL. However, the SPARQL implementation
would give us an opportunity to compare our database directly
with the other implementations using benchmark frameworks
like The Berlin SPARQL Benchmark [10].
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Abstract

We are presenting the architecture of a personalised recommendation system using probabilistic 
reasoning. The system creates plans for visiting interesting objects and events on the trip, based  
on  the  personal  preference  profile.  We  will  provide  a  short  description  of  the  system 
architecture,  its  main components  and the probabilistic  reasoner  along with  a small  ruleset 
example with score calculations.

The  described  architecture  and  components  comprise  the  first  iteration  of  the  Smart  City 
system.

Keywords: Recommendation engine; tourism; semantic web; rule-based reasoning.

1 Introduction

People  planning  a  trip  often  start  investigations  by  looking  for  materials  on  the 
Internet.  The  user  can  find  a  large  amount  of  information  about  the  city  and  its 
popular tourism objects, but it takes a long time to select the most interesting objects 
and create a good plan for a visit. For example, consider a tourist planning a two-day 
visit to Paris. If she wants to put together an organized plan for those days, she will  
first have to find all the potentially interesting objects in Paris. Then she will have to 
decide which ones she would like to visit. After that she will have to organize the 
selected objects into a schedule. It may turn out that some of the objects do not fit into 
the time schedule, in which case she will have to select different objects. All this takes 
a lot of effort.

Our project  focuses on automating the object selection and visit schedule creation. 
Smart City (SC) is a semantic recommender and route composer system for tourists.  
A tourist can specify her location, time of the visit and her preferences about different 
types of objects and events. Based on the created profile, the suggestion engine finds 
interesting  objects  for  the  given  user.  For  each  found  object  a  score  of 
"interestingness" is found. The objects that the user probably likes have a higher score 
and vice versa. The objects and events are organized into a timetable based on their  
location and time. Finally the schedule and the trip route will be presented to the user. 
The tourist has an option to modify the suggested objects and to create a more suitable 
timetable.



The system is currently undergoing the public test phase (see http://gn61.zone.eu/gui/) 
and will  be properly deployed  at  the beginning of 2011 with the initial  launch in 
Tallinn,  Estonia,  to  be  followed  by  several  cities  outside  Estonia.  The  adequate 
business analysis of the first deployment phase can be given after the system has been  
fully exploited for at  least several  months/half a year.  However,  we would like to 
point out our initial business assumptions and foreseeable business implications.

First of all, the system is not targeting the functionality of traditional tourism sites, 
hence  it  would  obviously  make  sense  to  deploy  the  system  as  a  search/planning 
component of a larger tourism site. This is exactly the plan for the initial deployment  
in  Tallinn,  where  the  system  should  be  a  new  component  of  the  existing  site 
http://www.tourism.tallinn.ee/ . This gives us an obvious way to direct visitors to our 
site  and  an  additional  benefit  of  having  better  organisational  means  for  both  (a) 
competing  for  advertiser  funding  and  (b)  accessing  existing  databases,  hence 
somewhat diminishing the need to do complex html scraping for data.

The direct  benefit  to consumers  is  obvious:  easier  planning of  the trip  and better 
search possibilities, hopefully leading to a better practical experience and satisfaction 
on location. However, we believe that the indirect benefits are even more important. 
First  of  all,  the  tourist  will  have  far  better  means  for  finding  specific  objects  of 
interest,  even  if  they  are  not  so  "mainstream"  or  hugely  popular.  Concerts  and 
performances would be a perfect example: most tourist sites do not directly integrate  
the  concert/performance  listings  and  if  they  do,  it  is  hard  to  find  the  personally 
interesting  genre  and  even  harder  to  fit  the  performance  into  the  trip  plan,  for  
example,  by  selecting  a  restaurant  based  on  the  combination  of  a  performer,  
performance time, restaurant type and suitable location and match in the trip schedule.

The wider adoption of the system would likely benefit the wider spectrum of service 
providers in the city: there would be more tourists at less "mainstream" locations and 
consequentially somewhat fewer tourists at the main tourism sites. We believe this  
would also give a better experience to the tourist, who would get a better "blend-in" 
feeling, diminishing the often negative experience of seeing only highly "touristic" 
places.

The  Smart  City  project  uses  experience  from  the  Smartmuseum  project  (Liiv, 
Tammet, Ruotsalo, & Kuusik, 2009) and applies some of the ideas deployed in the 
Smartmuseum project to the outside tourist scenario.

2 Related Work

In the recent decade a significant amount of research has been conducted in the field 
of recommendation systems. There are several overviews of different techniques and 
methodologies (Adomavicius & Tuzhilin, 2005). The most widely known technique 
used in recommendation systems is Collaborative Filtering (CF) (Pitsilis & Marshall, 
2008; Goldberg, Nichols, Oki, & Terry, 1992). For example, Amazon.com and Jester 
(joke  recommendation  system)  both  use  CF  (Adomavicius  &  Tuzhilin,  2005). 



Collaborative filtering systems can produce personal recommendations by computing 
the similarity between the user preference and the one of the other user. Typically, a 
subgroup of users of the similar interests to the user is selected. The given subgroup 
preferences  are  then  used  to  recommend  options  which  do  not  have  a  personal 
opinion.

As there are several problems concerning CF ("cold start" problem - a new user or a  
new item is added without connections etc.) (Adomavicius & Tuzhilin, 2005), hybrid 
or  other  techniques  are  used  (Sebastia,  Garcia,  Onaindia,  &  Guzman,  2008).  A 
content-based (contextual) recommendation system is described in (Gonzalo-Alonso, 
Juan, Garcí-A-Hortelano, & Iglesias, 2009). Contextual recommendation is based on 
finding similarities in the user profile and candidate items. Obviously, the quality of 
the recommendations depends on the amount of relevant information about items and 
the profiles.

Recommendation system authors often point out the necessity to use ontologies or 
relatively simple taxonomies, see (Sebastia, Garcia, Onaindia, & Guzman, 2008). A 
common ontology gives an opportunity to group the necessary terms and define the 
relationships  between  the  related  terms.  A  brief  overview  on  ontologies  and  the 
Semantic Web in E-Tourism is presented in (Siricharoen, 2008).  Chiu, Yueh, fung 
Leung, & Hung (2009) present a specific application-oriented ontology.

Several systems use probabilities or a fuzzy criteria to recommend the items. In article 
by young Kang, Kim, & Cho (2006) a similarity coefficient is offered to find the best 
suitable point of interests for the given user. The similarity is calculated by the profile 
and  the  item vectors.  The similarity  is  larger  if  the  angle  between  the  vectors  is 
smaller.  Ciaramella,  Cimino,  Lazzerini,  &  Marcelloni  (2009) have  presented  an 
uncertainty of situations based on the contextual conditions.

Golovin, & Rahm (2005) are creating rules by the recommendation process. Given 
rules  are  stored  in  the  recommendation  database.  Another  paper  (Fuhr,  1999) 
describes probabilistic Datalog. The system is able to cope with independent events. 
Calculating  the  probabilities  of  the  independent  events  is  far  less  complex  than 
calculating probabilities of dependent events. In case the degree of dependency is not 
known, intervals are required to present the probabilistic range of the event.  Fuhr 
(1999) also describes an implementation of a working system based on the presented 
algorithms and principles of probabilistic Datalog.

As we have already mentioned, the work originating from the Smartmuseum (SM) 
(Liiv, Tammet, Ruotsalo, & Kuusik, 2009) project is used in the SC project. SM is a 
recommendation system for museums. The tourist creates a profile about her interests. 
Similarly to  the  SC project,  different  objects  inside a  museum are  recommended. 
However,  the architecture and the recommendation methods are different  from the 
methods employed in the current SC project.



3 Overview of the Recommendation System

The browser-based user interface has only two main views. The figure 1 shows the 
start page of the system. The user defines her visit time and degree of interest in five  
different  main  topics.  Four  predefined  interest  combinations  are  available.  In  the 
figure the “Walk in the city” is selected. After submitting the form a suggested trip  
plan  is  calculated  and  shown (figure  2).  The  itinerary  contains  all  the  suggested 
objects and walking time between them. Each object in the list can be removed or the 
visit duration can be changed. All the objects are also presented on the map below the 
listing.

The tourist has an option to get more objects into the plan: the system will try to fit  
new objects into the existing timetable.

A  more  detailed  description  of  recommendation  process  and  schedule  creation  is 
provided in a separate section Score calculation.

The Smart City system itself is divided into several different components. We will 
present an overview of the components and their role in the system. A more technical  
and detailed description of critical modules can be found in the next section.

Fig. 1. The start page of the recommender system



Fig. 2. Suggested schedule view

The central  component  in our architecture  is  the Control  Centre (CC).  The CC is 
responsible for communicating with the different components and generating the User 
Interface (UI). The CC is connected directly to the persistent database which holds all 
the information about the tourism objects. The data is gathered automatically from the 
different content providers. Some publish web services, some provide access to their 
database  or  data  files.  For  each  source  provider  we  use  importer  script  designed 
specifically  for  the  needs.  As  the  sources  are  different,  the  problem  of  data 
interoperability has to be solved. We have adopted our own structure for the storage 
and convert the original data formats to this structure. We also have created our own 
ontology for the terms and objects.

The CC is connected to the suggestion engine (SE), which is responsible for creating 
a trip plan. The CC sends all the information about the user preferences to the SE. 
JSON (JavaScript  Object  Notation) is  used to transport  information between those 
two components. The SE returns a list of the suggested objects along with times. The 
CC presents the list to the user. If changes are made into the plan (user has removed 
some objects or altered the visit time for the objects) the CC sends the modified plan  
to the SE. Thus SE knows about the changes and can leave the user modifications 
unaffected.

The suggestion engine uses a rule-based reasoner with an integrated shared memory 
database  to  find  all  the  scores  for  the  objects.  The  reasoner  employs  the  user  
preferences and rules to add scores to the objects. The objects with scores for the 
given user  are returned  to the SE. The reasoner  uses  the memory database as  its  
knowledge base.  The memory database  should always  have  the latest  information 



about the objects, therefore all the necessary data is synchronized from the persistent 
database.  A  more  detailed  preview  of  the  reasoner  and  the  score  calculation  is 
presented in the next sections.

4 Technical Overview of Components

The Smart City recommendation system uses an ontology to classify both the places 
of interest and event (POI) types and user interests. Every term used in the rules is  
presented in the ontology. We have used different online vocabularies to assist our 
work:  (Wordnet  Princeton  University,  2010) and  Getty  (The J.  Paul  Getty  Trust, 
2010).

Table 1. The main table structure in PostgreSQL

Field Description

id Unique row id.

object Object URI of N3.

property Property URI of N3.

value Value URI of N3.

connection_score Score/strength of the fact in range [0..1].

source Source of the given fact.

timestamp Date and time when the fact was created.

validity_start The fact is valid starting from this date and time.

validity_end The fact is valid until this date and time.

privacy Whether the fact is private (not visible).

Data providers use different formats to present their information. A separate import  
module  is  created  for  each  source.  For  example,  a  custom  structured  XML  is 
converted into our ontology. We have imported data from the Visit Estonia system, 
presented to us as XML files. We are also using web pages as data sources (Tallinn 
Tourism  web  page  and  local  events  database  mistoimub.ee).  A  web  scraper 
configuration  is  created  for  different  sources.  Since  some sources  do not  use  the 
structured data presentation, we are planning to use content-based classification in the 
future.  For  example,  a  concert  might  not  have  an  annotation  about  the  genre.  
However,  the  description of  the  given  event  can  be  parsed  to  find certain  words 
describing genres. The performing bands can also be used. If the bands are annotated 
in the system and each has a set of genres provided, this information will be used to 
classify the event.



All the information is stored in the persistent database. Smart City uses PostgreSQL 
with an essentially  schemaless  structure,  extending a  triple storage  structure  RDF 
used often in the Semantic Web context. Each fact is a tuple containing an object,  
property, value and additional information. The main table structure is shown in the 
table 1.

5 The Reasoner With the Shared Memory Database

The reasoning engine employed by the system has to handle a large amount of data -  
all properties of all POI-s - plus a relatively large ontology. The same holds for the  
suggestion engine, which has to quickly access all the original and all the derived data 
about POI-s and user preferences.

Fetching all this data from the conventional relational database takes too much time. 
In particular, it is hopeless to run the reasoning engine by querying all the potential 
premises  of  rules  from the conventional  database  for  each  rule application during 
derivation. The reasoning engines  are typically built on specialised efficient  main-
memory data stores.

Hence  we  employ a  principle  that  all  -  or  relevant  for  this  day  -  data  from the 
relational database is loaded into the fast in-memory database handled by the prover. 
Changes  in  the  relational  database  are  synchronised  into  the  in-memory database 
using scripts. All the derivations conducted by the reasoner use only the in-memory 
database, which serves as a native data store of the reasoner.

Additionally,  the  reasoner  should  be  able  to  serve  a  number  of  queries 
simultaneously, each one conducting a complex derivation. Hence the common set of 
facts and rules should be kept in the same memory store for all the queries, capable of  
running in parallel.

We have built a new reasoner-equipped fast in-memory database to serve our needs.  
The in-memory database is implemented in shared memory as a library, without any 
continuously running processes. Each update or query to the database is performed as 
a  call  to  the corresponding  function.  In  order  to  enable  parallel  queries,  we have 
implemented  a  fast  global  read/write  lock  using  spinlocks.  Those  prohibit 
simultaneous data addition and reading from the global data area. Each query process 
has an additional local non-shared data area for query input and temporary results.  
Thus it is possible to conduct several derivation queries in parallel, avoiding the need 
to copy common data to all the separate simultaneous derivation processes.

As the  shared  memory must  be  able  to  accept  all  kinds of  data  and all  kinds of 
schemas we may use in our relational database, it is "schemaless" in the sense of not 
having the classical schema of relational databases.

The  shared  memory  database  must  be  also  suited  for  keeping  RDF  data  in  the 
efficient manner: therefore we have implemented native support for RDF datatypes 



like  URI-s,  XML  literals,  strings  with  the  language  attribute  etc.  However,  the 
database - and the reasoner - is not limited to RDF. It is capable of holding arbitrarily  
long tuples of arbitrary data. Hence our data kept in the relational database can be 
imported into the shared memory database in a straightforward manner, without the 
need  to  reify,  i.e.  each  database  record  is  converted  to  a  single  shared  memory 
database record with exactly the same number of fields.

Our  reasoner  is  built  on  the  first  order  resolution-based  theorem  prover  Gandalf 
(Tammet, 1997), employing and extending selected algorithms from this prover.

The system employs the reasoner in two different ways. First, it regularly completes 
the database by deriving all the new facts from the rules and input facts. We use a  
specialised version of a forward-chaining hyper-resolution for this goal.  Second, it  
may perform specific  queries,  where  we employ a version of  a  binary backward-
chaining set-of-support strategy. See (Robinson, & Voronkov, 2001) for the common 
algorithms employed in first-order automated reasoners.

We employ both conventional in-memory database indexing algorithms (T-trees and 
hashes  on  fields  and  field  vectors)  combined  with  the  indexing  algorithms 
conventionally used in provers, like the widely used discrimination tree index for unit  
subsumption and unit deletion. The temporary, local area uses the discrimination tree 
index while the shared memory database area uses T-trees and hashes.

6 Score Calculation

The Control Centre sends the user profile properties with a property preference score 
to the suggestion engine. The latter will send this information to the reasoner. On the 
first page of the system's graphical user interface the user can use sliders to indicate 
her interests in different topics. Each slider will provide a certain property preference  
score for the user profile. We will provide a short example:

user1 profile:
music 70
architecture 40
museums 40
sports 40
food 50

In this example we have five preferences along with the scores. The score indicates 
the user interest in the given preference within the range [0, 100]. Let us consider two 
following objects:

object1:
music 50
architecture 30



museums 20
food 10

object2:
music 90
sports 60

Objects  have  properties  with  property  confidence  scores.  The  score  indicates  the 
confidence that the given object has this property.

The reasoner uses rules to deduct new facts about the objects. We are using RIF (Rule 
Interchange Format, 2010) style rules with an additional confidence score. The given 
score is presented as a number in the range [0,1] and is included to each rule. We will 
provide a simple example:

fact(?X type architecture 0.9*?N) :- fact(?X type church ?N)

The above rule indicates that if an object has a type church with confidence score N, 
it is also an architecture with the confidence score 0.9 * N.

Each object in the database is compared to the given user profile. Based on the profile  
property  preference  score and  the  object  property  confidence  score the  object  
preference score is found.

Object properties do not depend on the user profile. Our reasoner generates all the 
properties with confidence scores for each object based on the rules. As the rules and 
the data do not change often, the property generation process is run once every night.  
This saves time for the suggestion requests, which use pre-calculated facts.

Once the user runs a suggestion query, the profile is passed to the suggestion engine. 
The reasoner generates  the profile  with the properties  and their  preference scores  
based on the rules. After the profile generation, the reasoner calculates the scores for 
each property available both in the profile and the object. We use a simple product of 
the  two  scores  as  the  result.  Our  two  objects  will  have  the  following  property 
confidence scores:

object1 for user1
music 0.7 * 0.5 = 0.35
architecture 0.4 * 0.3 = 0.12
museums 0.4 * 0.2 = 0.08
food 0.5 * 0.1 = 0.05

object2 for user1
music 0.7 * 0.9 = 0.63
sports 0.4 * 0.6 = 0.24



All the objects with the property confidence scores for the given user are found and 
SE will calculate the object preference score. Our current logic for the calculation is 
to sum all the property confidence scores. So, the object preference score for object1 
would be 0.35 + 0.12 + 0.08 + 0.05 = 0.6. object2 will have a score 0.87.

The suggestion engine computes the preference scores for each object. All the objects 
are passed to the schedule creating process, which consists of the following steps: 1.  
sort the array of objects by  preference score,  2. run multiple schedule calculation 
algorithms on the resulting array of objects, and 3. collect the results and find the 
result which has the highest overall score.

To  maintain  a  reasonable  response  time  for  the  suggestion  engine  service,  the 
schedule calculation step has a limited running time (100ms in SmartCity, currently). 
Schedule calculation algorithms may use one of two techniques: either process the 
entire array of objects once or process the array iteratively, increasing the number of 
objects examined on each iteration. The iterative technique is based on the rationale 
that  the  algorithm is  guaranteed  to  return  some result,  even  suboptimal,  in  early 
iterations with a low number of objects and then progressively improve the calculated 
schedule by examining more objects, until the timer expires. Since the array of objects 
is pre-sorted, early iterations examine the higher-scoring objects.

Three scheduling algorithms have been implemented. Dummy is an extremely fast and 
inaccurate algorithm that returns the top-scoring objects from the array, only ensuring 
that they are actually open during the time of the visit. Bruteforce is an accurate but 
slow  algorithm  which  attempts  to  examine  all  possible  combinations  of  objects, 
therefore  obtaining  optimal  results  on small  data  sets.  A* is  an  adaptation  of  the 
widely-known path finding algorithm. The cost  in conventional  A* is  replaced  by 
cost/benefit value, which is calculated as time/score. The "goal" in A* is to use up the 
entire  time allocated  for  the schedule  -  as the algorithm tries  to keep  the cost  as 
minimum, the score (inverse of cost) will be maximised. This algorithm is between 
the other two in terms of speed and accuracy. By combining the different algorithms,  
the  scheduler  can  exploit  their  individual  strengths  depending  on  the  situation 
(number of objects; server load; different profiles etc.).

Preliminary testing on a database of 261 real tourism objects shows that  Bruteforce 
algorithm obtains better-scoring schedules in approximately 80% of the tests when the 
visit time is shorter, while for longer schedules the A* algorithm obtains higher scores 
in  approximately  50% of  the  cases  and  has  a  higher  average  score.  The  dummy 
algorithm is out-performed by the other two in vast majority of the tests. These results 
are consistent with the expected properties of the individual algorithms.

The results returned by the schedule algorithms are checked for quality. Penalties are 
assigned to a schedule score based on the interaction of the objects. Following criteria 
apply:  similar  objects  should  not  be  repeated  several  times;  as  many  different  
categories  of  objects  as  possible  should  be  represented;  eating  out  and  workout-
related objects should be limited in number (the tourist has limited capacity for eating 
and  generally  does  not  wish  to  exert  herself  excessively).  The  highest-scoring 



schedule,  post-quality  check,  is  selected  as  the  recommendation  by  the  scheduler 
component. 

7 Conclusions and Future Work

In this paper we have provided a quick overview of the architecture of the Smart City 
system.  Our project  uses  ontologies  and rules  to reason  and calculate  the interest  
scores for tourism objects and events. A simple and intuitive user interface makes it  
easy to find the needed information quickly. We have described the logic of rules and 
reasoning. We are continuing our research with the goal of improving the suggestion 
process. New data providers will be connected to import more facts. Along with the 
new knowledge we will improve our ontology to support the obtained data.

The described  system is only a small  part  of  the whole project.  We have already 
planned  several  additions  which  would  improve  the  system.  One  of  the  planned 
improvements is saving the user preferences into a persistent profile. This profile will  
store all the user's history and feedback. The recommendation system can then make 
suggestions based on user's earlier choices. Also, the engine will not suggest objects 
which the user has already visited.

While the user  is  on the  trip,  she can  make changes  into the plan and  obtain an 
updated suggestion. For example, the user wants to skip one object or spend more 
time  in  one  museum.  The  system  will  automatically  modify  the  rest  of  the  plan 
according  to  the  situation.  For  example,  it  can  find  an  alternative  object  to  visit 
instead of the skipped one. The system could also just skip one object so that the user  
has more time to spend on the previous object or to relax.

Additional data from the social networks can be gathered to complement the profile. 
The user may have watched videos of classical music in Youtube or has become a fan 
of a pizza place in Facebook. All this information could be used to improve the user 
profile. The user does not have to add her interests manually in the cases where this 
information is available on connected sites.

Our current approach is certainly not final and continuous research on the different  
topics will proceed. We are actively working on the subject of negative facts (like vs 
dislike).  Dependent  properties  could  be  handled  differently  from  independent 
properties.  In  our examples we had an object and a profile with only independent 
properties, but we already have started working on dependent properties. An ongoing 
research  on  how  to  improve  the  object  score  calculation  and  how  to  get  more 
balanced schedules will continue.
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