
TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology
Department of Computer Science

Chair of Network Software

Sven Petai
001740IAPM

Detecting Anomalies in System Logs

Master’s Thesis

Supervisor: Risto Vaarandi, Ph.D

Tallinn 2014



Author’s Declaration

I hereby declare that I am the sole author of this thesis. The work is original and

has not been submitted for any degree or diploma at any other University. I further

declare that the material obtained from other sources has been duly acknowledged in

the thesis.

Sven Petai ......................................................

(signature and date)



Annotatsioon

Süsteemilogid on tihtipeale teenimatult vähekasutatud infoallikaks süsteemi üldise ter-

vise kohta – need sisaldavad infot, mida pole üheski muus allikas. Selle informatsiooni

efektiivne kasutamine võimaldab kiiremini avastada süsteemides tekkinud probleeme

ja leida väiksema vaevaga nende juurpõhjuseid.

Käesolev magistritöö räägib Elion Ettevõtted AS näitel süsteemilogides leiduva infor-

matsiooni efektiivsemast kasutuselevõtust. Peamiselt keskendub töö logidest reaalajas

automaatselt anomaaliate tuvastamisele ja logides leiduva informatsiooni efektiivse

visualiseerimise lahenduse loomisele.

Töö olulisimaks tulemiks on avatud lähtekoodiga logihaldusvahendi Punnsilm loomi-

ne. Punnsilm on kergekaaluline tööriist, mis on loodud välistamismeetodil (Artificial

Ignorance) logidest huvipakkuvate sõnumite filtreerimiseks ja lahti parsitud informat-

siooni edastamiseks teistele süsteemidele.
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Annotation

System logs are often ignored as a realtime information source about the health of

systems. This should not be so, because logs often contain information that is not

available from any other source. Using this information effectively enables one to

discover problems as they happen and makes it possible to find root causes of the

issues with less effort.

This master’s thesis discusses a path towards more effective use of the information

contained in the system logs, in the example of Elion Ettevõtted AS. The main focus of

this work is the creation of a solution for visualizing and monitoring that information

for anomalies.

The main contribution of this thesis is the creation of an open source log management

system called Punnsilm. Punnsilm is a lightweight tool for finding noteworthy events

in the system logs (using the Artificial Ignorance method) and for sending parsed

information to other systems.
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Chapter 1

Introduction

While participating in the development and operations of several of the largest web

services in Estonia, one constant theme that the author has noticed over the years

was that many problems that happened would have been detectable from the system

logs, far before we actually noticed them. We did not though, since we only used

logs reactively – to debug specific problems after they came to our attention through

other means.

Even in this reactive mode we just used various ad hoc methods for finding the root

cause of the problem. It became obvious that we would have gotten results much

quicker if we had log visualization tools in place.

In the author’s experience, relative indifference towards the great source of information

that the logs are, is rather a rule than an exception. Reasons for this are discussed

in detail later but in the widest sense the problem is that logs are unstructured and

it requires a lot of up-front investment of time before one gets positive results.

This work describes the author’s work at Elion Ettevõtted AS towards using logs

more proactively, and discusses different ways of extracting information about system

behavior from the logs. We start with simple methods, discuss problems with them

and work our way towards more complex solutions.
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1.1 Why Is Analyzing Logs Important?

There is usually a huge amount of information available in the log data which is not

available from any other source. This information could be used for many different

purposes from security analysis and general system health overview to marketing and

usability analysis. In a commercial setting, there are often also various regulations in

place that state what has to be logged and for how long it has to be kept.

In the author’s specific case though, the main motivation was to get problem discovery

time down. As a result, we are able to provide a better quality of service for our

customers which has been main focus for our company for several years now. Reducing

incident discovery time is important because it is usually a huge part of total incident

response time. While we have not done any formal analysis of all the issues we

have encountered, we have many specific examples where the problem discovery time

accounted for more than 95 percent of the total incident response time.

One of the reasons why problem discovery takes so long, is that we usually have

several different fallback mechanisms in place. Failures of a component often do not

result in outright failure but rather in a degradation of the service quality. Often, the

problems are also specific to the client’s configuration or the services that were used

(for example, problems with specific movies in the VOD service on specific platforms).

Such cases that are not easily reproducible, will usually take much longer to trickle

through the layers of helpdesk than problems that result in clear widespread service

outages.

Another reason why it takes a long time to discover problems, is that only a small

subset of the affected people will ever contact us. This is a widely known phenomenon

across many industries, and usually it is said that less than 5% of unhappy customers

bother to complain to the service provider. This has been confirmed by our analysis of

incidents, where we have been able to count customers that encountered an issue from

the logs, against the number of problem reports that we have received. In general,

that percentage seems to be less than 10% even though it varies somewhat, depending

on how the customer experiences the problem and how important that specific part

of the service is. While people usually do not complain to the service provider, they

do tell other prospective customers about such problems, which is bound to have

negative impact on business.

Drastically shortening incident response time can mainly be achieved by reducing

incident discovery time, which in turn can often be achieved by log analysis. This,
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in turn, will shorten the timeframe during which people will be able to encounter the

problems. That should result in more satisfied clients.

1.2 The Problem with the Logs

There are several reasons why analyzing and monitoring logs is hard. This difficulty

is the reason why it is not widely done. First of all, the log tends to be rather unstruc-

tured and one is basically dealing with the problem of parsing natural language. In

the widest sense, a log message is just a string. Usually it starts with a timestamp of

some kind but that can not be taken for granted. Even if the timestamp is present, it

can be in a seemingly endless variety of formats that have different precision and can

be ambiguous in different ways. Just as an example here are a handful of timestamps

from different logs of production systems at Elion: 20140411101815.230, 20140411

123734, 1397212838, 1397212838.078857, Apr 11 12:33:25, 2014-04-11 13:35:35, 2014-

04-11T13:35:35.447645+03:00.

A log message itself can be on one line or span multiple lines. If the message is spread

over several lines, there might be no reliable way to detect where one message ends and

another begins. Indeed, the author has encountered logs where some of the multi-line

messages are intermingled, so a stack trace in the error log file might consist of several

stack traces that were logged by different threads at the same time. There usually is

a bit of further structure inside the content part of the log message that is imposed

by the logging system, framework or the internal logging functions of the application

itself. All of this depends heavily on the specific application, its configuration and the

environment.

Even the structured data that are present can not be automatically trusted. For

example, an analysis of supercomputer logs (Oliner and Stearley, 2007) found that

59.34% of messages that were tagged with severity FATAL and FAILURE were actually

false positives.

Log messages are usually written by the developers ad hoc and primarily meant for

themselves, so the messages might not make much sense without understanding the

code that emitted them. As noted in (Allen, 2001) the developer usually writes

logging calls to answer the immediate question at hand. Thus, since the developer

often only wants to know when and where exactly the code fails, other questions such

as who, what and how caused it to fail might be impossible to answer. In other cases

the necessary context can be found but requires piecing it together from different
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moments of the same log, or from several different logs that have different granularity

and format. Lack of a formal structure makes initial configuration of most generic log

analyzing tools a really daunting task, which requires huge initial time investment to

get up and running.

Additional complexity comes from the fact that most of the production systems are

constantly evolving and consist of many different components running on many dif-

ferent machines. Some log message types are added, removed and modified with each

version change of a software component somewhere in the system. Sometimes version

changes might happen even multiple times per day. As continuous delivery becomes

mainstream, the deployment frequency will increase by a large factor. For example,

even back in 2011 Amazon1 was reported to be doing deployment every 11.6 seconds

during a normal business day (Jenkins, 2011).

Keeping a classical rule based log monitoring system up to date with that kind of rate

of change, is a Sisyphean2 task and, indeed, fittingly there actually is a log analysis

toolkit that goes by the same name3.

Another complication arises from the sheer amount of logs. In (Hansen and Atkins,

1993) the central log server of their system is said to log around 1MB of data per day

from 12 servers, after filtering out the majority of the messages. They note that it is

rather difficult and time consuming for a human to notice anything anomalous in that

amount of data. Since that time, the hardware has gotten a lot better and cheaper so

more data are normally logged for each operation and far more clients are served by

a single server. For example, the 6 backend nodes that are serving the hot.ee portal

generate about 2MB or logs per second. So the task of finding relevant information

in the huge amount of log data, has gotten many times harder from the time when it

already seemed hopeless.

1.3 Contributions of the Thesis

The objective of this thesis is to investigate different methods of extracting useful

information from logs. Based on these methods, a log analysis and monitoring system

is constructed for use at Elion Ettevõtted AS for IPTV and other systems. The

central component of the said solution is a log management and monitoring tool

1Amazon: http://amazon.com
2Sisyphus: King in the Greek mythology who was damned for an eternity to roll a large boulder

up a hill only to watch it roll back again.
3Sisyphus log-mining toolkit: http://www.cs.sandia.gov/~jrstear/sisyphus/
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called Punnsilm, which has been open sourced under the MIT license. Punnsilm is a

lightweight tool that primarily focuses on realtime parsing of structured information

out of the logs, sending the information to various other systems and detection of

anomalous lines using the Artificial Ignorance pattern.

1.4 Outline of the Thesis

This thesis will start with an overview of related technologies and projects that are

relevant to our purpose in the chapter 2 Related Work. In the chapter 3 Solution

we will describe requirements for our log analysis solution which is followed by the

description of the solution itself. Chapter 4 Results gives an overview of the results

and describes how widely the current solution is used. The chapter 5 Summary will

summarize all of the thesis.

1.5 Acknowledgements

I would like to thank Risto Vaarandi for thorough reviews and many good ideas on

how to explain things better. I am grateful to Elion Ettevõtted AS for letting me

open source Punnsilm and especially to my colleague Kaspar Kalve for taking care

of all the bureaucracy, configuring Punnsilm and providing countless ideas on how to

make it better. I would also like to thank Marju Ignatjeva for lots of LATEX advice

and grammar reviews.
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Chapter 2

Related Work

In this chapter, various existing open source log management projects are discussed.

In the last couple of years, the number of open source log management tools has

increased substantially, and we cannot possibly cover them all. The following selection

of tools is therefore rather subjective. It is primarily meant for giving some historical

perspective and background on the tools that we use in our solution or drew inspiration

from.

2.1 Logging Protocols

In the telecom environment, it is very common to configure all the servers, network

gear and other appliances to log into central log servers. From the security perspective,

it makes it much harder for an attacker to hide his tracks after the machine has

been compromised. Having all the relevant logs in one place is also convenient for

debugging issues, which often involves looking at and correlating logs from several

different machines. It also makes managing log access, archival and various other

administrative aspects much easier.

As we are primarily using various Unix-like operating systems (Linux1, FreeBSD2),

we use the BSD syslog protocol for centralized logging. It is also well supported by

various appliances from switches and video streamers to printers.

The BSD syslog protocol was introduced in 1984 by Eric Allman and was primarily

1Linux: https://www.kernel.org/
2FreeBSD: http://www.freebsd.org
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meant for centralizing logging inside a single machine (Ranum, 2005). It was meant

as a better alternative to directly writing log files from each and every program. The

latter results in log files in many different places all over the system. Having all the

logs go through a central syslog daemon meant that there was now a central point

where one could tune granularity, retention time, rotation, archival, file naming, rate

limiting and forwarding to remote systems.

The syslog protocol became the de facto standard on Unix systems and various net-

working gear. It was formalized retrospectively in RFC 3164 (Lonvick, 2001) in 2001.

At that point, the standard could only describe the lowest common denominator be-

tween the existing implementations because so much software with subtly different

nuances of the format and limits was already in use.

The RFC 3164 log packet consists of the following fields:

• facility : defines the category of the program that is logging from a predefined

set of facilities.

• severity : determines the importance of the message from 8 predefined levels

that range from debug to emerg

• timestamp: with format ”Mmm dd hh:mm:ss” (for example Apr 02 01:32:23 )

• hostname: might also be an IPv4 or IPv6 address

• message: starts with a tag that identifies the logging process and is followed by

the contents of the message

UDP is specified as a transport protocol with maximum total packet length of 1024

bytes. Because UDP is unreliable by its very nature, some of the packets might get

lost without notice. No transport layer security was specified and neither is there any

protection against spoofing. Hence, any host can easily use the hostname of any other

host in the hostname field and one program can easily impersonate another.

As we can see, the timestamp has only a precision of one second, which is far too

imprecise for many uses nowadays. It also lacks year and timezone information,

making it ambiguous. The message tag is also ambiguous and does not necessarily

uniquely identify the process that is logging. RFC 3164 states that the message

should only contain printable characters, preferably in the standard seven-bit ASCII

charset, because there is no way of communicating charset information to the recipient.

Newlines are also considered non-printable, so these are usually replaced. All of these

18



limitations make some sense, considering the time and environment where the syslog

protocol was originally created and that logging was mostly done over a local Unix

domain socket.

Actual implementations of the syslog servers might, and usually do, provide various

extensions to the protocol. For example, in practice, TCP and TLS support is widely

available, even though RFC 3164 explicitly specifies UDP. Also, longer messages than

1024 bytes might go through.

In 2009, RFC 54243 was created, which specifies the version of the syslog protocol that

among other enhancements, fixes all of the problems mentioned above. In addition

it adds the ability to use custom structured message fields (Gerhards, 2009). Trans-

port layer options were specified in separate RFCs, 54254 and 54265, which describe

transport over TLS and UDP, respectively. In the author’s experience, RFC 5424 is

not widely used yet.

Even if we get the event timestamp, the hostname and the program identifier from the

syslog headers, the majority of the information in the message is still in the message

content field which is a free form text. This seriously hinders ones ability to write

easily configurable and interoperable tools.

There have been some efforts to impose further structure on the contents of the log

messages and to define a clear taxonomy. The largest of such project seems to be

Common Event Expression6 which is being implemented by project Lumberjack7.

Both of these efforts seem to be inactive by now.

2.2 Log Parsing and Clustering

One of the ad hoc methods that is often used to find a reason for unexpected problems,

is to filter out all the known and expected log messages in the hope that whatever

remains might give hints as to what is wrong. In Unix-like systems this is usually done

by piping together successive inverse grep commands. For example, if one wants to

find all the lines in a logfile that do not contain the strings NONCRIT, socket timeout

and Permission denied, one can achieve it with the pipeline given in Listing 1.

3RFC 5424: http://tools.ietf.org/html/rfc5424
4RFC 5425: http://tools.ietf.org/html/rfc5425
5RFC 5426: http://tools.ietf.org/html/rfc5426
6Common Event Expression: http://cee.mitre.org/
7Lumberjack: https://fedorahosted.org/lumberjack/
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grep -v "NONCRIT" logfile | grep -v "socket timeout" | grep -v "Permission denied"

Listing 1: Example of a grep pipeline

The next logical step from searching logs ad hoc would be to write all of the known and

uninteresting regular expressions down to a file, tell grep to read the ruleset from there

and just run it periodically from the cron with the output sent to the administrator. If

the remaining output turns out to be non-interesting, the administrator will just add

it to the ignore ruleset file. That way one should be able to learn about new problems

even before one becomes aware that there is a problem. This method is really old and

is known under many names such as Active Ignorance, Artifical Ignorance (Ranum,

1997) and Sherlock Holmes Method (Collier-Brown).

The problem with this method is that the initial ruleset that one has to describe

before one gets any returns for their effort, might be huge, especially if the system has

many components. For example, the ruleset that we use for monitoring IPTV logs at

Elion has currently over 200 rules.

This method also does not work well for web servers that are open to the internet. In

these cases, one will see a lot of requests for resources that do not exist and malformed

requests that attempt to exploit various security problems. These requests are done

by automated attack scripts and there is little use in constantly bothering the system

administrator with such log messages.

2.3 Manual Ruleset Based Approaches

There are many tools available for doing manual ruleset based monitoring and cluster-

ing. These tools range from simple shell scripts to heavyweight commercial systems

that do a lot more than just matching rules.

2.3.1 Swatch

Swatch8 which stands for Simple WATCHer is one of the oldest log analyzing tools (Hansen

and Atkins, 1993) and it still sees some sporadic development. It is written in the

Perl9 programming language and is configured using simple rules. The rules consist

8Swatch: http://sourceforge.net/projects/swatch/
9Perl: http://www.perl.org
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of pattern-action blocks where the pattern consists of one or more regular expres-

sions and the action block can contain multiple actions. The most common action is

sending an e-mail to the operator but one can configure it to print the matching line

to the console in different colors, ring the system bell, execute a command or pipe

the line to another command. Also, there is a throttle keyword which will delay the

next matching of the rule that it appears in, for the given amount of time. Throttle is

helpful if one wants to avoid sending out hundreds of e-mails per second, once the rule

starts matching hundreds of times per second. In addition, Swatch supports adding

custom actions by writing custom extension modules (Atkins, 2006).

A sample Swatch configuration file is given in Listing 2

watchfor /out of memory/

echo red

mail addresses=foo@example.com,subject=memory issues

Listing 2: Example of a Swatch configuration rule

This rule tells Swatch to write all the log lines that contain the phrase ”out of memory”

to the console in the red color and send an e-mail to the address foo@example.com

with the subject ”memory issues”.

Rules are matched sequentially in the order that they appear in the configuration file.

Configuration of Artificial Ignorance can be created by defining blocks with the ignore

action.

2.3.2 Logsurfer

Logsurfer is similar to Swatch but implements several additional features. It states

that it is based on Swatch (Thompson) but this must be more of a philosophical

heritage because it is written in C instead of Perl. The main added feature is the

ability to group messages into sequences. For example, one might want to group all

the normal system bootup messages into a single group and be notified only once

when that group is matched. Performance is also reported to be much better than

with Swatch.
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2.3.3 Logcheck

Logcheck is a shell script that actually just calls the grep utility internally with

the ruleset files. It is specifically focused on the Artificial Ignorance pattern and

comes with rulesets that can handle messages occurring in the default Debian Linux10

installation. According to the Debian Popularity Contest11 the Logcheck package is in

much wider use than Swatch even though it is less powerful. This is probably because

it does not require any configuration in order to be useful, and the ruleset database

is being actively maintained by the Debian project.

2.3.4 Logstash

Logstash is a generic tool for log management that is built around the pipeline concept.

The configuration consists of input, filter and output sections each of which can contain

several module configuration blocks. A large selection of modules is included and more

is available from third parties. The configuration syntax also supports conditionals,

so one can take different actions based on the values in the event data structure.

This structure of the configuration allows construction of log parsing and shipping

pipelines that take events from a variety of sources in a variety of formats and are able

to output the resulting events in different formats and protocols. In between the input

and output, filters are able to modify the event in various ways. For example parsing,

dropping, cloning and adding additional information to the event are supported.

Logstash comes bundled with Elasticsearch12 which can be used for storage and fast

indexed searching of the structured log data. Elasticsearch in turn comes bundled

with the Kibana13 web interface that can be used for querying and visualizing data

in the Elasticsearch database.

2.4 Correlation

Event correlation is a conceptual interpretation of multiple alarms such that new

meanings are assigned to these alarms (Jakobson and Weissman, 1993). Basically

10Debian: http://www.debian.org/
11Debian Popularity Contest: http://popcon.debian.org/
12Elasticsearch: http://www.elasticsearch.org/
13Kibana: http://www.elasticsearch.org/overview/kibana/

22

http://www.debian.org/
http://popcon.debian.org/
http://www.elasticsearch.org/
http://www.elasticsearch.org/overview/kibana/


this means that some action is taken when the message arrives, based on its relation

with other messages that came before it. The action might be anything – ignoring

the message, creating a new synthesized message, incrementing a counter, starting a

timer etc.

Many different operations can be considered to fall under the term event correlation

and many of the log management tools implement a couple of specific examples of such

operations. For example, event compression which reduces many instances of identical

events into a single new event, is widely implemented in syslog servers. Another very

common example of event correlation is emitting a new event when more than X

similar events happen in a predetermined time interval, which is called thresholding.

This approach is widely used in specialized tools. For example, there are many open

source projects like SSHGuard14 that block access to the SSH (or some other) service

from the firewall, when brute force attacks are detected from the logs. Thresholding

is also supported by Swatch and Logsurfer. The latter also adds support for creating

and deleting dynamic rules.

In the widest sense, one can divide generic event correlators into rule based ones and

the ones based on artificial intelligence algorithms (neural networks, genetic learning

etc.). Rule based systems are easier to understand but require more effort to get up

and running, because domain expertise and time to codify it is required. In highly

dynamic environments, self learning systems might be preferred.

2.4.1 SEC

SEC15 (Simple Event Correlator) is a lightweight platform independent OSS tool for

generic event correlation that is written in Perl (Vaarandi, 2005). It is rule based

and despite its relative simplicity, it can be configured to implement many event

correlation operations.

A rule consists of a pattern, zero or more actions, an optional boolean context ex-

pression and possibly some other parameters. A pattern is something that should

match the event and it can be a substring, regular expression, Perl subroutine or a

truth value. Actions can contain various things like creating a new event, sending a

message to some external system or executing a command. Rules can also manipu-

late contexts which basically provide in memory storage for keeping state. Boolean

14SSHGuard: http://www.sshguard.net/
15SEC: http://simple-evcorr.sourceforge.net/
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context expressions can be used to place additional matching restrictions on the rule

that depend on the dynamic context. Additional rule parameters can specify things

such as counting thresholds and size of the correlation window.

2.5 Syslog Servers

Currently the most widely used syslog servers are syslog-ng, rsyslog and the BSD

syslogd. All of these servers provide the ability to specify how and where to log

each message, per logging program and many other parameters. The main difference

between these tools is the amount of flexibility of the configuration, and performance.

We will only cover syslog-ng here, because this syslog server is most widely used in

our company and it also provides a rather interesting range of extra features.

2.5.1 Syslog-ng

syslog-ng is primarily a Syslog server but it has incorporated some extra functionality

like ruleset matching, correlation, parsing structured data from messages and auto-

matic clustering. Its original ruleset was converted from the Logcheck ruleset, so it

should be able to recognize most of the common log messages that occur in a Linux

system out of the box.

What makes syslog-ng interesting, is that it uses radix trees to describe the patterns

instead of the regular expressions that almost all of the other tools use. It is said that

a radix tree based ruleset is faster, scales better and is easier to maintain than the

regular expression based solutions (Fekete, 2010). syslog-ng also has support for some

correlation operations, for example contexts can be created that emit new synthetic

events (Fekete, 2011). An example of this is the creation of an sshd login event from

multiple separate log lines that each contain only part of information (for example

the username might be in a different message than the IP address of the client).

Having an existing pattern database and a well performing implementation seem

to make syslog-ng a rather good fit for implementing Artificial Ignorance systems.

Somewhat surprisingly, the patterndb functionality of syslog-ng does not seem to be

all that popular.
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2.6 Automatic Clustering

As stated previously, a lot of time and effort is required to define and update rulesets

of the log parsing tools. It would help enormously if there were tools that detected

frequent patterns in the logs themselves and provided us at least with suggestions

for groups, if not the actual configuration. Sadly, there are only a few such tools

available.

2.6.1 SLCT and LogHound

SLCT16 (Simple Logfile Clustering Tool) is able to detect clusters in the line based log

files where each cluster represents a pattern that matches a number of lines. As such,

it is useful for quickly getting an overview of what types of events the log file contains

and what are the most anomalous lines that do not fit into any clusters (Vaarandi,

2008).

LogHound17 is another project by the same author that uses a bit different method

for mining clusters, called Frequent Itemset Mining. LogHound is better at finding

clusters of often occurring messages at the expense of detecting anomalous lines. As

such, it is a good fit for constructing an initial ruleset for the purposes of Artificial

Ignorance.

The main parameter that the user has to specify for both tools is a support threshold

which specifies how similar two messages have to be, in order to belong to the same

cluster. There does not seem to be a particularly good method for determining a

suitable value that provides good balance between over generalization and over spe-

cialization. A common method seems to be just to run the tool with a couple of

different values and use the result that looks most reasonable to the domain expert.

SLCT and LogHound have been used internally by a log mining toolkit called Sisy-

phus. The patterndb of syslog-ng contains the functionality for automatically discov-

ering clusters, which is also based on algorithms from SLCT and LogHound.

16SLCT: http://ristov.users.sourceforge.net/slct/
17LogHound: http://ristov.users.sourceforge.net/loghound/

25

http://ristov.users.sourceforge.net/slct/
http://ristov.users.sourceforge.net/loghound/


2.6.2 Source Code Aided Methods

Another approach to finding types of message in the logs, is to start from the other

end of the process by actually analyzing the functions that write the logs in the first

place (Xu et al., 2009). Intuitively, it should lead to much cleaner results than mining

the end result but comes with a couple of drawbacks. Depending on the environment

one operates in, the most important drawback might be the requirement for the

source code level access to the components one runs. With continuous increase in

the usage of OSS, it is becoming less and less of a problem, but probability is high

that for any largish corporate system, there are at least a couple of components that

one does not have source code for. Another practical drawback is that one needs to

have parsers that are capable of parsing the source code of one’s tools, that might

be written using different logging frameworks and are themselves written in many

different programming languages. At the present such tools are not available.

2.7 Logs as Time Series

In order to make information that is extracted from the logs better accessible and

analyzable, it is useful to split it into time series. As an example, one might want

to count the number of HTTP requests per second, the number of logins and the

mean response time to the login requests. Later such time series can be used for

visualization purposes but also to spot anomalous changes.

2.7.1 Graphite

Graphite18 is an open source real-time graphing tool and time serie database with

a powerful API (Davis, 2011). While it does not have anything to do with logging

specifically, it does provide a great building block for anything that wants to measure

a large amount of metrics.

One can send measurements for a metric to the Graphite server without defining

the metric beforehand, which makes adding new metrics really convenient. The API

for sending the measurements is very simple, too. The simplest method is a line

based protocol over a TCP connection where each line consists of the name, value

and Unix timestamp of the metric, that are separated by spaces. The name of the

18Graphite: http://launchpad.net/graphite
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metric is a string consisting of alphanumeric characters and dots. Dots are used as

hierarchy separators. For example, a metric that measures HTTP responses with

code 200 from the server called publicapi1 in the IPTV cluster, might be named

dtv.publicapi1.http.code.200.

In most installations, the data are not actually directly sent to Graphite but rather

to a small proxy called Statsd19 that performs aggregation. Statsd accepts input over

UDP which means that sending of the statistics to it is a lightweight fire-and-forget

event (Malpass, 2011). This decoupling is important if one wants to ensure that ones

application does not get slow or break if there is a problem with the server that is

gathering statistics.

Graphite has a simple but powerful HTTP based API, where the series that one is

interested in and the functions that should be applied to them are given as GET pa-

rameters. There are many functions available, ranging from simple ones like absolute()

to rather complex ones like mostDeviant() that returns the series having the largest

standard deviation from the average. Functions can be nested and some wildcard

symbols like * can be used in the names of the metrics.

For example, assuming one has a cluster of N servers and system load measurements

from these machines are stored under the keys dtv.webX.load.5min, one can use the

query parameters given in Listing 3, to get the 5 most deviant ones over the last 24

hours.

target=mostDeviant(5, dtv.web*.load.5min)&from=-24h

Listing 3: Example of a Graphite query

Besides being able to draw ad hoc graphs for visualization, one can also just export

the data in JSON format, which makes using it from external tools very simple.

19Statsd: https://github.com/etsy/statsd/
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Chapter 3

Solution

At the end of 2012, the operations team of the Elion’s IPTV project expressed in-

terest in analyzing their logs. The author decided to take this project because of

earlier experience with log analysis for the hot.ee project. This chapter describes the

environment we operate in, the requirements, the tools that were considered and the

architecture and rationale behind the solution.

3.1 Requirements

The author analyzed the kind of incidents they had encountered over the years in

different projects, and what would it have taken to detect these from the logs. As

a result, the author came up with the following list of features that our log analysis

system should have.

1. Artificial Ignorance – describing all the known messages and considering every-

thing that doesn’t match the ruleset, a noteworthy event.

2. Some of the known and described message types should be sent directly to the

person(s) responsible for handling it using e-mail.

3. In some cases, the log monitoring system should be able to take direct action

(restart the service when out of memory etc.)

4. Each described message type should be recorded as a time serie for easy ad hoc

visualization.
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5. Administrators need a dashboard that can be used to quickly determine the

health of the system and find source of anomalies.

6. We should monitor changes in message volumes in these time series. Both rapid

increase and a decrease can signal a problem.

7. In order to reduce administrative workload, we should make configuration as

easy as possible. To that end, we decided to provide some test tools, investi-

gate tools for automatic cluster detection and provide a utility for configuration

visualization.

8. Sequence detection and anomalies in discrete sequences – this is mostly useful for

detecting problems with clients that hang/crash while loading the application.

We also defined the following non-functional requirements:

1. The solution should be able to handle at least the current message volume of

our largest systems (around 1500 messages per second) and there should be a

clear path of scaling to handle larger volumes.

2. In general open source solutions are preferred because of the price, flexibility

and the company wide strategy.

3.2 Environment

We will only describe environment of our IPTV project here, even though the solution

described in this work is by now in use in several other projects at Elion. This is

because IPTV project was the first user of this solution and because of that had the

most influence on the resulting design. Other environments, that are quite different,

are briefly described in the Chapter 4.

IPTV is an interesting test case, because it is a relatively large and mission critical

project that serves more than 120,000 customers daily. It contains 10 clusters of

machines serving different purposes, and runs 2 major production versions of our

IPTV code in parallel. We can be relatively confident that whatever works for IPTV

performance and configuration flexibility wise can be transferable to our other projects

that are more homogeneous and less loaded.

The user interface of the Elion IPTV solution that clients see on their TV screens,
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is actually a web application written in Javascript. The browser is running in full

screen mode inside the STB. Applications communicate with our servers using a

REST HTTP API. So on the server side the majority of the logs are produced by

the web servers (Nginx1 in our case) and PHP2 web applications running on top of

it. There are also various other components in the system like proprietary appliances,

FTP servers, cache servers, SQL servers and others.

Several of our IPTV clusters share large parts of the code base, but also have slight

differences. This suggests that the solution should allow for an easy reuse of various

subsets of the ruleset between different log sources.

IPTV project had a central syslog server in place and everything was already con-

figured to log there. In some of the other environments, where we moved later, such

preconditions were not met and took months to implement.

3.3 Selection of the Solution

This section discusses the reasoning behind the selection of the tools that we decided

to use. First an overview is given of the relevant commercial tools, and reasons behind

not using any of these. The author will then discuss the open source offerings and

explain the reasoning for writing our own tool, in addition to using several open source

ones.

3.3.1 Commercial Options

One of the best known proprietary log handling tools is Splunk3 which is widely

used by enterprises and has impressive range of features. It provides functionality

for collecting, exploring and analyzing logs and other machine generated data. It

provides log indexing, search, visualization, report generation, event correlation and

lots of other functionality. Splunk is often criticized for its price and per log volume

licensing policy which encourages one to log less. It does, though, provide a well

integrated set of functionality. It would take a lot of integration and configuration

effort to achieve a similar result with various open source tools.

1Nginx: http://nginx.org/
2PHP: http://www.php.net
3Splunk: http://www.splunk.com
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There are some cheaper cloud based alternatives like Loggly4 that are becoming pop-

ular, but since logs contain a lot of sensitive data, sending it to an external party

would have been a violation of our security policies.

Our log analysis effort was largely a skunkworks ”project” without budget or man-

agement involvement. It would have been theoretically possible to secure funding

for commercial tools, but we felt it would have taken far too much work and prob-

ably more time than we spent on implementing what we needed. We saw the need

for a rather small and well defined set of functionality which is a tiny subset of the

functionality that the large integrated commercial tools like Splunk provide.

3.3.2 Open Source Tools

It was evident that in the last couple of years, something of a Cambrian explosion5 has

happened in the world of OSS log tools. There are layers upon layers of tools popping

up for just about any function one can think of. At every layer of the stack, one can

choose between several powerful alternatives that are actively developed and have

different strengths. Besides large projects such as Kibana6, Logstash7, Graylog28,

ELSA9 and Fluentd10, there are also host of smaller projects. With some integration,

these tools can be combined together in various ways to create tailor made solutions.

As an example, many people seem to not like how Graphite UI looks like, so there

are tens of different alternative GUI layer projects for Graphite such as Grafana11

and Graphene 12. Having the ability choose components from such a wide pool of

alternatives and being able to evolve our system as the needs change, directed our

choice towards open source solutions.

The author decided to use Graphite in our solution for storing information from logs

as time series and providing visualization. That choice was primarily motivated by

the ability to accept new metrics without the need to pre-define anything, and also

because of its great and easily extendable query language. PyStatsd was selected

to be used as a statsd server. As discussed in Chapter 2.7.1 statsd is an aggregating

4Loggly: https://www.loggly.com/
5Cambrian explosion: relatively rapid appearance of wide variety of animals around 542 million

years ago
6Kibana: http://www.elasticsearch.org/overview/kibana/
7Logstash: http://logstash.net/
8Graylog2: http://graylog2.org/
9ELSA: https://code.google.com/p/enterprise-log-search-and-archive/

10Fluentd: http://fluentd.org/
11Grafana: http://grafana.org/
12Graphene: http://jondot.github.io/graphene/

31

https://www.loggly.com/
http://www.elasticsearch.org/overview/kibana/
http://graylog2.org/
https://code.google.com/p/enterprise-log-search-and-archive/
http://fluentd.org/
http://grafana.org/
http://jondot.github.io/graphene/


proxy that is often used in front of Graphite to make data gathering more efficient and

robust. We decided to use PyStatsd instead of the original StatsD server, because the

original statsd is written in Node.js, which would have added an rather inconvenient

extra dependency to the system. We also decided to use Grafana on top of Graphite

for more pleasing UI.

With the Graphite selection in place we had to find a tool for parsing logs and sending

data to it. We also had to find a tool for the Artificial Ignorance requirement and

something for monitoring the time series in Graphite.

After analyzing some of the tools described in Chapter 2, the author came to a conclu-

sion that none of the existing tools is a perfect fit for our requirements. For example,

Logstash is a great log shipping tool with huge amount of modules, but it is somewhat

heavyweight because it runs on top of JVM and is not built for implementing Artificial

Ignorance pattern. Other tools, such as LogCheck, are good at Artificial Ignorance

but lack the ability to do real time analysis or log shipping. The author saw a lot of

overlap between the configuration of these two functionalities, so just using different

tools for these functions would have led to repeating the logically almost identical

configuration in several places using different syntax. The author already had written

lightweight Artificial Ignorance tool in 2009 for the hot.ee project, so the decision was

made to extend that tool with the log shipping functionality that we required.

In addition we also use open source Graphviz13 graph visualization software in our

solution for visualizing configurations of our tool.

3.3.3 Punnsilm

The log management tool that the author wrote is called Punnsilm. It is primarily

built as a lightweight tool for realtime Artificial Ignorance matching but also provides

some log shipping functionality. Punnsilm is primarily designed with our IPTV so-

lution in mind and our purpose was to make the configuration for that environment

as easily maintainable and repetition free as possible. This focus has resulted in pro-

viding syntax for heavy reuse of different subsets of the rule chain for multiple log

sources and the decision to use regular expression group names for extracting metrics

for Graphite. That approach allows us to extract large amount of time series from

the logs with very little configuration.

13Graphviz: http://www.graphviz.org/
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Punnsilm also contains a tool for monitoring time , called graphite-analyzer. There

are several existing OSS tools that provide monitoring and alerting support on top of

Graphite like Seyren14 and Rearview15. We did not want to use these since they were

far too heavyweight solutions for our needs, and would have introduced several new

programming languages, dependencies and configuration languages into the mix.

The author decided not to implement any correlation functionality inside our own tool,

and instead to provide a means to integrate our tool with SEC. We are not currently

using SEC yet in our solution though, primarily because we have not yet found any

good examples of problems that would have needed event correlation support for

detection.

3.3.4 Choosing the Language

There is a policy in Elion, that all the new software should be written either in Java

or Python, unless there is a really good argument for doing it in some other language.

The author chose Python for our tool because:

1. It should be very easy to extend the tool. In the author’s experience, this is far

easier in Python than in Java because there is a lot less boilerplate code and

tools needed to be productive. All one needs to write a plugin for Punnsilm is

a working text editor.

2. Most of our system administrators already know Python but only few are able

to write Java. Since the primary users of this tool will be operations people,

it is very important to make it as easy as possible to extend and configure for

them. Otherwise, the tool will just languish.

3. Python is increasingly taking over the scientific computing world (Yarkoni,

2013), which means that there are many high performance data crunching and

machine learning libraries available. Since some of our future goals are clearly

machine learning related, having easy access to such a great resource is a plus.

4. Python can easily be interfaced with almost any other language, while interfac-

ing Java with anything that does not run on top of JVM is rather hard.

14Seyren: https://github.com/scobal/seyren
15Rearview: https://github.com/livingsocial/rearview
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In addition to choosing Python as the language, the author also had to choose which

versions of it to support and how to do it. Python 2.X and 3.X series have some

incompatible syntax changes between them, which makes supporting both at the

same time non-trivial task. Even though Python 3.0 was released in 2008, the 2.X

series is, at the time of writing still far more popular, because of the huge amount

of libraries and proprietary code that is not yet Python 3 compatible. The author

decided to use Python 3.2 as a primary target, and employ workarounds in code that

make it backward compatible with Python 2.7.

3.4 The Architecture of Punnsilm

Punnsilm consists of various nodes that are connected in a graph like manner. Con-

figuration for each node consists of a name, type, parameters and optionally an empty

output list that holds the names of nodes to send output to. Configuration of the

Punnsilm consists of a list of such node configurations which together logically de-

scribe a graph. There are three basic node types: input-, output- and intermediate

nodes.

Input nodes are for example log file monitors, socket listeners and syslog listeners.

Intermediate nodes do filtering and rewriting of the messages. The most used in-

termediate node in our configurations is the rx grouper which holds a set of regular

expression groups that can all have different output lists. Output nodes have an ef-

fect on the world outside the graph like sending an e-mail, writing out logs, printing

messages or executing external commands.

Usually the configuration of Punnsilm is expected to form a directed acyclic graph,

but there are no safeguards in place to ensure that this is the case, so one can create

configurations that lead to infinite loops. Indeed one can think of configurations were

cycles make sense. For example, a normalizing node might want to feed a message back

to the parser node before it, that is able to parse it differently after normalization

step. Additionally one can also introduce cycles through external components for

example by writing to syslog that is also read from one of the inputs.

Punnsilm has a global state manager that each node can use to write down any state

information that it wants to keep over the program restart. This is useful for storing

things like how far parser has gotten in the log so that it would not start from the

beginning, when was the last e-mail sent and so on.
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The architecture is highly modular and most of the node types are actually imple-

mented as modules. The core only contains base classes, a state manager and functions

for reading configuration and connecting the graph together.

Users can extend the tool by writing custom nodes that implement a simple interface

and placing the module inside the modules directory of Punnsilm.

3.4.1 Modules

Table 3.1 describes the modules that are available in the core distribution of Punnsilm.

type function
file monitor Provides support for reading log files. Has

support for name expansions and handles ro-
tation.

syslog file monitor Provides parsers for several of the most com-
mon syslog log file formats.

syslog input Listens on a TCP or UDP socket and is able
to handle Syslog protocol.

graphite input Time serie monitor that periodically checks
Graphite dashboard values.

rx grouper Parses and groups messages using regular ex-
pressions.

rewriter Allows rewriting of the message contents.
console output Prints messages to the output streams. Sup-

ports different output streams and colors.
log output Outputs messages to the log.
pipe output Writes output into a named pipe or com-

mand over a Unix pipeline.
statsd output Sends messages to the Statsd daemon (an ag-

gregating proxy for Graphite).
smtp output Sends out e-mail.
http output Allows sending messages over HTTP proto-

col.
mariadb output Executes SQL queries in MariaDB. Can be

used for updating user login timestamps,
writing log to the SQL database etc.

Table 3.1: The modules of Punnsilm

We also have a couple of modules that are not public and are required for integration

with custom systems that we use.

An in-depth documentation about the functionality and configuration options of these
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nodes is available on the projects homepage16. Various configuration examples are

available in the test directory of the project.

In order to write a custom module for Punnsilm one only has to extend the

core.PunnsilmNode class and optionally implement a couple of methods. Once

the Python file containing the new module is placed into the modules directory of

Punnsilm it will be automatically picked up. Useful modules can be written in as

little as 5 lines of code, which lowers the barrier of entry for people who are not pri-

marily programmers. Indeed at least one such custom module has been written by

the user with minimal guidance from the author.

3.4.2 Performance

Using a scripting language like Python, for something that demands relatively high

performance, might at first seem a bit counter intuitive. In practice this did not worry

us since tools like SEC and Logstash (written in Perl and Ruby respectively) have

already proven that handling load similar to ours is possible, with software that is

written in a high level scripting language. The productivity gains that resulted from

using a very high level language (as compared to C or C++) were deemed far more

important than getting the best possible performance.

The author’s goal has also been a horizontally scalable architecture rather than one

which squeezes maximum throughput out from a single machine. The graph structure

of Punnsilm lends itself well to this goal, since there is a very clear communication

boundary between the nodes. This allows one to write node types in different lan-

guages and possibly, run these even on different machines. Currently, we have not

actually written any such nodes but it was an important design consideration that

influenced the design because it would have been hard to add afterwards.

A reasonable effort was also invested in getting good performance on a single machine.

Each input node is started in a separate thread which gives us the ability to use mul-

tiple CPU cores better. In the reference implementation of Python (CPython) there

is a Global Interpreter Lock (GIL) which serializes threads inside each interpreter

instance, so for CPU bound loads, using multiple threads does not actually help per-

formance wise. Indeed, it might actually have a negative impact on the performance.

In our specific case though, there are several reasons why using threads does give a

performance boost. First of all, in most Punnsilm configurations the majority of the

16Punnsilm: http://bitbucket.org/hadara/punnsilm/
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time is spent parsing strings and usually, it is done with regular expressions. For

matching regular expression we use the regex17 library that is a drop-in replacement

for the re library that comes with Python. The regex library has various performance

enhancements and drops the GIL while matching, so that the other threads can run

meanwhile. So in our specific case, we are actually able to get a performance boost

from using multiple threads in Python.

Python also has very good support for integration with other languages, which makes

it easy to write the few performance critical functions in a language that has better

performance. A popular and simple method for doing that is through Cython18 which

is a superset of Python that compiles to C code. This approach allows one to keep

the readability of Python, while gaining the performance that can be had in C. There

are currently no Cython based modules in the core Punnsilm distribution because

there has been no clear need for that, and the author did not want to introduce an

extra dependency for Punnsilm. The author did perform some experiments though,

to verify that such modules indeed work and give the expected boost in performance.

3.5 Configuration

The configuration files of Punnsilm are expected to be valid Python source files. In

general, the configuration should be kept as simple as possible and should ideally

contain nothing besides variable and node definitions. Nothing stops one from using

loops and conditionals in the configuration but it has to be kept in mind that these

will be evaluated at startup time, and will make configuration hard to follow for

non-programmers.

Originally, we started out with using JSON for configuration files because of its great

portability. Its lack of syntax for comments and other small inconveniences were the

reason for the switch to Python.

Configuration files can include other configuration files which allows one to better

structure the configuration and to reuse some of the sub configuration files between

different configurations.

The simplest Artificial Ignorance configuration for Punnsilm contains only 3 nodes

and is visualized in Figure 3.1.

17regex: https://pypi.python.org/pypi/regex
18Cython: http://cython.org/
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Figure 3.1: Minimal configuration graph implementing the Artificial Ignorance pat-

tern.

In Figure 3.1 and a couple of subsequent ones, the green boxes are used to represent

input nodes, the blue boxes show intermediate rx grouper nodes and the red ones

are output nodes. The number in the blue boxes indicates how many regular expres-

sions that group contains. The rx grouper node named filter contains five regular

expressions that match the known messages. It also contains the special group named

fallthrough which is passed all the messages that do not match any of the regular

expressions. The fallthrough group just passes all the messages to the output node

that prints these out. The full configuration, the input logfile and the output for this

configuration are given in Appendix A.

In order to show the power of Punnsilm, Figure 3.2 presents a bit more complex ex-

ample involving multiple log sources that share some of the intermediate nodes and

have several different outputs. Reusing some internal paths after removing the differ-

ences, makes it possible to write shorter configurations for various clusters that are at

some level different but still share a lot of code. Specifically, this example shows two

input nodes called syslog source web and syslog source sql that monitor web servers

and SQL servers respectively. These inputs are connected to the rx grouper nodes

that handle messages which are specific to the given input. The webserver specific

parser node called web filter is configured to send some of its output to the statsd

output module. Both web filter and sql filter send everything that does not match

their rules to the sys filter node which contains rules for parsing system level mes-

sages that are common between the servers (for example notices about administrator

logins). Everything that is not matched by sys filter is printed out to the console and

38



sent out to the administrators over e-mail.

Figure 3.2: Configuration graph implementing the Artificial Ignorance pattern.

The configuration that we use to handle IPTV logs is much more complex and uses

many layers of intermediate nodes that are shared between data coming from different

inputs, and has many different outputs. Figure 3.3 shows the high level connectivity

between the nodes of a specific subset of the IPTV configuration.
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Figure 3.3: Subset of the production configuration of Punnsilm in the IPTV environ-

ment

All the configuration visualizations in this section were created using configuration

visualization tool that is distributed with Punnsilm under the tools directory.

In large part, the configuration of Punnsilm consists of regular expressions in the

parameters of various rx grouper nodes that match and parse messages. There are

two common criticisms that are often levied against using regular expressions for that

purpose.

The first one is that regular expressions are hard to write and maintain. Listing 4

shows the example given in (Fekete, 2010) to illustrate this.

A log message from an OpenSSH server:
Accepted password for joe from 10.50.0.247 port 42156 ssh2

A regular expression that describes this log message and its variants:
Accepted \

(gssapi(-with-mic|-keyex)?|rsa|dsa|password|publickey|keyboard-interactive/pam) \
for [^[:space:]]+ from [^[:space:]]+ port [0-9]+( (ssh|ssh2))?

An equivalent pattern for the syslog-ng pattern database:
Accepted @QSTRING:auth_method: @ for @QSTRING:username: @ from \

@QSTRING:client_addr: @ port @NUMBER:port:@ @QSTRING:protocol_version: @

Listing 4: syslog-ng configuration example

While it is hard to argue with the point that the syntax used in the syslog-ng part

of the example is indeed easier to read and write than the variant with regular ex-

pressions, it is also a bit of a false dichotomy. If the syntax of a tool allows one to

define variables holding sub regular expressions and use these shared variables in the

construction of regular expressions, the end result does not have to look much differ-
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ent from the syslog-ng example. Such a configuration example for Punnsilm that uses

variables for sub patterns is available in Appendix B.

The second common criticism against using regular expressions is that they are slow.

Indeed, using radix trees like syslog-ng does, or a parser specification language should

be faster, and the difference might easily be by a factor or more. On the other hand,

many people are already familiar with regular expression syntax and there are lots

of high quality learning materials and tools available that help one to debug and

visualize expressions19. The performance of regular expressions is also tied to specific

constructs used and approaches taken in the implementation of the regular expression

library. In the author’s experience, performance has not been much of a problem

unless advanced concepts like lookarounds are used. So in our use case, familiarity of

the syntax and ease of implementation were considered to be more important than

getting extra performance.

It is also worth noting that subsequent rx grouper nodes can match rules against

specific fields of the message that were already parsed by upstream nodes. This

method allows one to write shorter and simpler expressions in the lower layers, which,

besides being easier to maintain, should also perform better.

3.6 Logs as Time Series

Extracting a lot of time serie data from the log was one of the main goals of our solution

from the beginning, so the author tried to require as little configuration as possible in

order to achieve it. Punnsilm does this by heavily exploiting named regular expression

groups and having the statsd output module interpret various forms of group names

as having certain implicit meanings. The actual mechanism behind the scenes is that

rx grouper sets all the matched named regular expression groups as attributes of the

message that is passed to the next graph node. The statsd output module iterates over

the message fields and sends out measurements for the fields that match its naming

conventions. So the connection between rx grouper and statsd output is logical rather

than technical.

In Listing 5 an example is given of how this looks like in practice.

19Debuggex: https://www.debuggex.com/
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Dec 20 13:21:09 publicapi8 nginx: 127.26.108.212 -

10.219.102.129 - - 20/Dec/2013:13:21:09 +0200

"GET /api/index/et/help HTTP/1.1" 200 787 0.023 0.021

"http://static.example.com/html5/"

"Mozilla/5.0 (Linux) AppleWebKit/534.51 (KHTML, like Gecko) Safari/534.51" .

Listing 5: Example of a log line

If we pass the message shown in Listing 5 through the configuration described in

Appendix B, the four measurements shown in Listing 6 will be sent to the StatsD

server.

Counter:test.publicapi8.http.code.200: 1

Counter:test.publicapi8.controller.help: 1

Timer:test.publicapi8.group1: 23.00000000ms

Timer:test.publicapi8.group1.help: 21.00000000ms

Listing 6: Example of StatsD messages

The first two measurements are counters that count the total number of HTTP re-

sponses with the status code of 200 and the number of requests against the controller

called help. The last components of the both time serie names are extracted from the

log entry itself and the name of the regular expression group is used in between the

hostname and the dynamic part. The last two measurements are of the timer type

which is also determined from the name of the regular expression group that extracted

them.

For measurements of the counter type, StatsD will just sum the measurements for

each time serie each second, and send the result to Graphite. For timers it will

calculate lower, mean, upper and upper 90 series for each time interval and send

these to Graphite. The first three of these should be self evident and the last one is

the upper value for the bottom 90th percentile. So for this single line, we will end

up with measurements in 10 different time series and this was achieved using a single

(admittedly lengthy) regular expression.

To give a better idea how this information can be used for ad hoc problem solving,

we will now present an overview of a realistic debug session. Let us say the system

administrator gets some reports that there is an anomalously high number of com-

plaints from the customers. Not much additional information is available because the

helpdesk has been unable to notice any common pattern in the complaints, other than

that they are all related to IPTV and an older version of the middleware. A good

starting point for analyzing the issue is to open up the Graphite dashboard for the
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IPTV services. There, as shown in Figure 3.4, the following graph should immediately

catch an eye because of all the red that is usually used to indicate trouble:

Figure 3.4: Error situation in one of the webserver clusters

As we can see from the legend, the red lines indicate HTTP 5XX reponses which is a

family of HTTP response codes that indicate all kinds of temporary errors. Knowing

that there are many nodes in that particular cluster, the next logical question to ask

is if these errors come from all the cluster nodes or only some of them. This question

can be easily answered with the Graphite query given in Listing 7, which selects the

top 3 hosts sorted by the 1 minute count of HTTP 500 errors.

highestAverage(hitcount(stats.dtv.web*.http.code.500, "1min"), 3)

Listing 7: Graphite query for finding hosts with most HTTP 500 errors

This query will return the graph given in Figure 3.5.
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Figure 3.5: Top 3 nodes of web cluster sorted by the number of HTTP 500 errors

From this picture, it is clear that only a single server is giving errors for some reason.

In this particular case the administrator remembered right away that this node had

been added to the cluster the same day. After checking the error messages from this

particular node, it became quickly clear that a broken firewall configuration was the

cause of the problem.

We have defined a number of dashboards that contain similar graphs representing

different aspects of the IPTV system and these are in day-to-day use for debugging

problems.

3.7 Monitoring Time Series

Having hundreds of graphs is nice but human attention is limited so we clearly needed

an automated tool that would notify us if there is a problem visible on some of

the important graphs. The following section discusses how to actually define what

abnormal values are, and how the author implemented the defining of abnormal values

in our time serie monitoring tool graphite-monitor.
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3.7.1 graphite-monitor

The graphite-monitor tool used to be separate from the main Punnsilm codebase but

at some point it became obvious that some of the output modules of Punnsilm, like

the e-mail output, would be useful for that tool too. In order to avoid repeating the

same configuration, the author merged the tools, so that graphite-monitor is nowadays

another Punnsilm setup that gets its input from the graphite input module.

We also used to have a specialized configuration syntax for defining what to monitor

and what the thresholds are. On the one hand, it allowed extreme flexibility on, mak-

ing rather complicated rules, on the other hand author felt from the beginning, that

having yet another configuration language was too cumbersome and would probably

seriously hinder the acceptance of the tool. It seemed desirable to make it possible for

every operations and development employee to add new time series into monitoring

without having to request it from administrators, or having to learn the configuration

language of yet another tool. Lowering the barrier of entry in such a way should

greatly increase the probability that new things will get added on top of the initial

configuration by the author.

Our solution was to gather all the monitored graphs into special dashboards, which

graphite input is configured to periodically monitor. Each graph is expected to contain

a serie called current and at least one of the series upper and lower. The monitoring

tool does not care how these series are defined and just checks if the value of current

is between upper and lower. Because Graphite is able to output the graph data as

JSON, fetching and parsing of the time serie data turned out to be surprisingly easy.

Internally, the module keeps track of state and only emits an event to its outputs

when the alarm status for the graph changes. State is also kept over restarts of the

monitoring tool similarly to the file input module.

In the following sections we will discuss some strategies for defining such graphs.

3.7.2 Constant Thresholds

In some cases, defining a simple constant threshold is enough. For example, one might

say that if the median response time for a specific request type takes over 100ms, the

system should raise a warning, and once the response time goes above 200ms, an alarm

should be raised. Constant thresholds work especially well if one is dealing with a
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well known finite resource like the amount of RAM, disk space or network throughput

limits. These specific examples are usually available through better structured means

than the log (for example SNMP) and are monitored by other tools, such as Opsview20.

There are, though, several examples where the information about resource usage is

only available from the log and in these cases Punnsilm is indeed the simplest method

of monitoring them. Practical examples include licensed bandwidth usage in custom

appliances and stack sizes of specific application server instances.

Constant thresholds are also suitable for monitoring values that should, under normal

circumstances, be zero. A real life example is the number of requests per second for

the URLs that serve the failover environment of the IPTV middleware.

3.7.3 Dynamic Thresholds

In many cases, there is no clear static value that could be used as a threshold.

Even monitoring some time series that measure errors is often not as straightforward

as just raising an alarm if one sees an error. As an example, it is normal to constantly

see a small number of HTTP requests failing with connection reset errors because of

various problems on the client side like power failures, software crashes and various

connectivity issues. Under normal circumstances, the number of these alarms per

time interval should be proportional to the load of the application servers. Sudden

change in the amount of connection errors might, on the other hand, be noteworthy

and might well signal network trouble on our side.

If the service at hand is primarily used from a single time zone, like almost all of our

services are, there are usually clear periodic components present in the time series

that measure aspects of that service. For example, if we want to monitor the number

of HTTP requests in general, or for a specific URL type in particular, there are normal

variances during day and night as users go to sleep, wake up, leave for work and get

back home.

In the aforementioned case with connection resets, there are far less of these during

night time. If the service is primarily providing entertainment content that people use

at home, the weekends will also see far higher load than the workdays. The inverse is

true for business oriented services that are primarily used during workdays.

One such example of a service that is mainly used during work days and has clear

20Opsview: http://www.opsview.com/
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periodic components, is shown in Figure 3.6. Besides the uniformly lower load during

the weekends, one can also see that the load drops off on Friday evenings as some

people turn off their computers before leaving for the weekend.

Figure 3.6: Authentication events per second showing periodic components

There might be even longer periodic components present and there might also be an

underlying slower trend in some direction, as a service gets more or less popular.

In some cases, a good indicator of trouble is the speed of change itself rather than

the actual value. Yet in other cases, rapid change at certain times is directly caused

by the implementation of the service in question and would result in false alarms if

historical context was not considered, too. Such a graph is shown in Figure 3.7 which

shows the load of a service that is automatically refreshed each night.
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Figure 3.7: Sudden periodic nightly peak in load that is caused by service logic

In general, a good anomaly detection algorithm should be able to detect anomalies

while being able to account for various periodic components, trends and sudden jumps

that are periodic.

3.7.4 Moving Average

A simple approach for monitoring a time serie for sudden changes is to compare the

current value against the moving average (or median) from a larger period (for example

the last 5 minutes). If the current value is more than, for example, 200 percent larger

or smaller than the moving average, it could possibly indicate a problem.

The moving average is defined in Equation 3.1, where k is the size of the moving

window.

st =
1

k

k−1∑
i=0

xt−i (3.1)

This method allows one to avoid triggering alarms for the slow ramp ups that are

usually normal, while still triggering an alarm for rapid changes that are often caused

by something breaking. An example graph of moving average and moving median of

a response time during an incident is given in Figure 3.8.
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Figure 3.8: Moving average and moving median of a response time during incident

There are several problems with this approach, though. First of all, it requires rather

expensive computation over all of the measurements in the window for each value,

which becomes a significant overhead for larger windows. Secondly, it does not take

into account any periodic variations or trends. Increasing the window size to enlarge

the context will not help with that because the mean value will become insensitive

to changes in the data. This, in turn, will result in constant alarms. Thirdly, this

approach will lead to lots of false alarms on series where the usage during night is low

and sporadic. Under these circumstances, insignificant a change in absolute numbers

might mean a deviation of several hundred percent from the average.

To take the weekly periodic component into account, the author has often used ad-

ditional ad hoc rules that also look at the value of the moving average from the same

time window the week before. In order to raise an alarm, the moving averages of both

the current and the last week have to differ enough from the current value.

Using the simple approach with moving window is good enough for some specific cases.

Examples of such cases are response time measurements which usually do not have

any periodic component and are rather stable under normal circumstances. Also, the

response counters of web servers that are frequently updated and have slowly changing

values, are good candidates for this approach. Sensitivity of the alarm trigger can be

tuned by changing the window size, window function, comparison period and the

percentage of difference.
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3.7.5 Holt-Winters Exponential Smoothing

The author wanted to use something less ad hoc than the moving average with various

extra rules, and decided to use the Holt-Winters exponential smoothing algorithm.

This algorithm is often used for making predictions for the next value of the data

serie based on the past values, and Graphite has an implementation of this algorithm

built in.

In order to explain how the algorithm works we have to start with weighted moving

average, which allows us to enlarge the averaging window, in order to take in more

context without making the result too insensitive. Weighted moving average is defined

in Equation 3.2. Where wi is a weighting factor from a set of weighting factors that

add up to 1.

st =
k∑

i=0

wixt−i (3.2)

It is useful to select weighting factors in a way that gives more weight to the latest

measurements.

Exponential smoothing is another improvement on top of weighted moving average

which is defined in Equation 3.3. Where a is a weighting factor that is chosen by the

user and st−1 is the estimate from the previous step.

st = awt−1 + (1 − a)st−1 (3.3)

The initial value s0 can, for example, be set to the measurement w0. Using exponential

smoothing is computationally much cheaper than the moving average because at each

step, one only needs the result from the previous step and the current measurement.

Holt-Winters exponential smoothing, in turn, is an improvement on top of the expo-

nential smoothing algorithm. It is able to take into account seasonal variances and

trends in the data by adding additional smoothing factors. A detailed explanation of

this algorithm is outside of the scope of this work but a good step by step explanation

can be found in (Office for National Statistics).

As an example of Holt-Winters smoothing in action, we will look at a sample incident

shown in Figure 3.9.
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Figure 3.9: Holt-Winters confidence bands during an incident

The blue line on Figure 3.9 shows the number of requests per second against a specific

URL in our IPTV REST API. The red area is a Holt-Winters prediction corridor where

the value should be based on the historical data. The purple line shows the deviation

between the predicted and real value. In this particular time frame, we can see a

large disturbance as a new version of the software had unintended side effect of doing

a lot more requests of certain type than before. We can see that the real value differs

considerably from the prediction at various points during the incident.

Figure 3.10: Monitoring graph with the alarm thresholds during an incident

Figure 3.10 shows the actual monitoring view of the same incident. The line current
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shows the difference of the current value from the one predicted by the Holt-Winters

algorithm, as a percentage, and is defined in Listing 8.

alias(

asPercent(

holtWintersAberration(

smartSummarize(sumSeries(stats.dtv.publicapi*.request.epg), "5min")

, 2),

smartSummarize(sumSeries(stats.dtv.publicapi*.request.epg), "5min")

)

, "current")

Listing 8: Graphite query for getting Holt-Winters aberration in percentages

Each and every monitored graph is a bit different and it currently requires some

thought and experimentation to define monitored graphs in a way that does not

provide too many false positives.

52



Chapter 4

Results

The author’s initiative of extracting more value from the logs was a grassroots project,

rather than something mandated from the top. With this in mind, the greatest success

of the project has been the organizational acknowledgement that analyzing system

logs is indeed really useful, and we should do more of it. This has been demonstrated

by several internal awards that this project has won, and interest from other teams.

Regardless of specific tools selected by different teams, the end result will certainly be

a better quality of service for our end users. So far two other projects besides IPTV

have started using Punnsilm and Graphite.

Punnsilm has been in use in our IPTV environment since spring 2013. It has helped us

detect many issues that we otherwise would probably have noticed a lot later. While

it is impossible to measure how long exactly it would have taken to notice these issues

without Punnsilm, we have an example of a specific type of issue that took more than

70 hours to notice before Punnsilm was put into use. A similar problem was noticed

and resolved in less than an hour afterwards.

Far more important than just saving time, is that a shorter incident discovery time

leaves less time for customers to encounter that particular problem. This, in turn,

should lead to a better user experience.

Both administrators and, to a lesser degree, developers have adopted the new tools

into their daily workflow. IPTV administrators have dedicated a special screen in their

room to live Punnsilm alarm logs and pay special attention to it after each change.

We have had to roll back several software upgrades and configuration changes because

of problems noticed that way. Figure 4.1 describes the deployment of the solution

described in this thesis in the context of the IPTV project.

53



Better understanding of the importance of logs has also led to several efforts of making

logs more structured and meaningful. For example, one of the projects that started

to use Punnsilm, did a sub project for unifying logging methods over their code base,

setting up central log server, adding RFC 5424 structured data fields to the messages

and using reasonable values for the priority field. Such approach gives much better

results and leads to simpler parsing possibilities.

Figure 4.1: Overview of the Punnsilm deployment in the IPTV project

4.1 Performance

Currently, the most loaded Punnsilm installation is the one monitoring our IPTV

solution. Anoter, a bit smaller installation updates last login timestamps in the SQL

database for all all the IMAP and POP3 sessions that are served from our public

e-mail services (hot.ee and suhtlus.ee).

Our IPTV installation parses around 20GB of logs per day that are sent from more

54



than 40 different servers. The current configuration of Punnsilm contains 47 nodes

that contain almost 200 regular expressions in total. The average flow of log messages

is around 1500 lines per second. Over 4000 time series are extracted from these logs

continuously and stored in Graphite. 1600 of these time series contain counters and

2500 contain timers.

Punnsilm runs on a dedicated virtual machine in the IPTV infrastructure that has 2

cores running at 2.4Ghz and has 2GB or RAM. The load average of that machine is

shown in Figure 4.2 and a more detailed CPU usage breakdown is shown in Figure

4.3.

Figure 4.2: Monthly system load average of the server running Punnsilm

Figure 4.3: Monthly CPU usage breakdown between userland and the kernel of the

server running Punnsilm

In our mail systems, Punnsilm currently runs on the same servers that generate the

logs. In total, it parses around 1000 messages per second in that installation and does

around 20 SQL updates per second.
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4.2 The Problems Discovered

Punnsilm has discovered more than 30 issues in our IPTV installation during the first

7 months of use. After this period of time, we stopped keeping track but in general, we

discover at least one problem per week. Currently, the discovered issues have mainly

been uncovered by the Artificial Ignorance approach and hardcoded notification rules.

Because our IPTV network is closed to the outside world, various automatic exploita-

tion tools that normally cause problems for this approach, have not been a problem

for us. Time serie monitoring has also uncovered several interesting anomalies but is

still a bit too noisy.

The problems discovered so far can be classified into the following categories:

1. resource starvation: This manifests itself in servers returning various unexpected

error codes and response timings going up unexpectedly.

2. configuration issues: This includes cases such as

(a) problems in the configuration of the proxy server that led to problems in

corner cases;

(b) problems in the configuration of content where files that were not present

were referenced from the UI;

(c) running into license limitations of the proprietary appliances;

3. content corruption: Several instances of video asset corruption were noticed,

that led to discoveries of different deeper underlying problems with encoding

parameters of specific channels, and in several cases, indicated developing hard-

ware problems.

4. communication problems with other internal services: Several unexpected re-

turn codes and recurring availability issues were noticed and fixed that would

otherwise probably have taken much longer to notice.

5. bugs in the code: Under some circumstances, broken URLs were constructed by

the client software that had gone unnoticed for over a year. Several instances

of requests to the development environment from the production environment

were noticed.
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Chapter 5

Summary

System logs are an often neglected source of information about the health of systems,

that is not available from any other source. Problems can often be noticed quicker

and the causes of known problems can be found faster, when this information is put

into effective use.

The goal of this thesis was to find a solution for monitoring and visualizing system

logs of various systems at Elion Ettevõtted AS. The introductory chapter discussed

reasons why log analysis is hard, which is the main reason why it is not widely used.

A selection of relevant tools was discussed next, and some of these were selected as

the building blocks for our solution.

The main part of the thesis described the requirements for our log analysis system

and the environment in which it has to operate. The author chose the components for

our solution and discussed the reasoning behind the choices. In our solution a lot of

information is extracted from the logs. The storing and visualizing of this information

is handled by an open source tool called Graphite. We also use several other smaller

Graphite related projects in our solution. The author decided to create a custom

tool called Punnsilm which primarily deals with extracting information from the logs,

detecting anomalies and forwarding information to other systems. The primary reason

for creating our own software was that none of the open source tools that we discussed,

were able to fulfill all of the requirements. Splitting the required functionality between

different tools would have led to the duplication of similar configuration which is a

violation of good practices. Punnsilm has been open sourced under the MIT license.

Anomalies are primarily detected from the logs using the Artificial Ignorance method.

The idea of this method is that one should describe all the expected messages in the
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system, and everything that remains must be anomalous. In the process of matching

the message against the ruleset, Punnsilm extracts a lot of structured information

(request response times, counts of different request types etc), which is stored in

Graphite as time series. This thesis describes how to use this information to find

the root causes of the problems, and discusses how Punnsilm can be used to monitor

these time series.

The resulting solution has been in production use for over a year, and has helped us

find and debug many problems. Several deployments of Punnsilm at Elion in total,

handle thousands of log messages per second from more than 50 different servers.

Usually, at least one new problem is discovered per week thanks to Punnsilm, and the

deployed visualization tools are in daily use by administrators.

In conclusion, the author’s grassroots log analysis project has been a great success

which has been confirmed by several internal awards and increasing interest from

other teams.
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Kokkuvõte

Süsteemilogid on tihtipeale teenimatult vähekasutatud infoallikaks süsteemi üldise ter-

vise kohta – need sisaldavad infot, mida pole üheski muus allikas. Selle informatsiooni

efektiivne kasutamine võimaldab kiiremini avastada süsteemides tekkinud probleeme

ja leida väiksema vaevaga nende juurpõhjuseid.

Töö eesmärk oli leida lahendus süsteemilogide jälgimiseks ja visualiseeerimiseks Elion

Ettevõtted Aktsiaseltsis. Sissejuhatavas osas käsitleti põhjuseid, miks logide analüüsimine

on keerukas – keerukus on selle lähenemise vähese levimise peamiseks põhjuseks. Vald-

konna ülevaate osas käsitleti erinevaid logihalduse seisukohalt olulisi avatud lähtekoodiga

projekte, millest osa leidsid kasutust lahenduse ehituskividena. Töö põhiosa kirjeldas

logihalduse lahendusele püstitatud nõudeid ja keskkonda, kus see lahendus toimima

peab. Järgnevalt valis autor välja komponendid ja selgitas valikute tagamaid.

Logides olev informatsioon eraldakse erinevatesse aegridadesse ja nende talletamiseks

ja visualiseerimiseks kasutatakse kirjeldatud lahenduses avatud lähtekoodiga tark-

vara Graphite. Lisaks on lahenduses kasutusel ka mitmeid väiksemaid Graphite’iga

seotud teisi komponente. Struktureeritud informatsiooni parsimiseks logidest, ano-

maaliate tuvastamiseks ja informatsiooni edastamiseks välistesse süsteemidesse otsus-

tas autor luua oma tarkvara, mille nimeks sai Punnsilm. Peamine põhjus oma tark-

vara loomiseks on, et ükski käsitletud olemasolevatest vahenditest ei suutnud täita

kõiki soovitud funktsioone. Samas erinevate vahendite kasutamine nende funktsiooni-

de täitmiseks oleks viinud sisult samade seadistuste kordamisele erinevate rakenduste

jaoks. Punnsilm on tänaseks avalikult saadaval MIT litsentsi all.

Logidest tuvastatakse anomaaliaid eeskätt välistamismeetodil (Artificial Ignorance).

Välistamismeetodi sisuks on süsteemis kõigi ootuspäraste sõnumite kirjeldamine ja

reeglistikuga mitte sobivate sõnumite käsitlemine anomaaliatena. Reeglistikuga so-

bivuse uurimise käigus eraldatakse sõnumist ka üsna palju stuktureeritud informat-

siooni (päringutele vastamise ajad, erinevat tüüpi päringute hulgad jne.), mis talle-

tatakse aegridadena Graphiteis. Töö kirjeldab selle informatsiooni abil probleemide
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juurpõhjuste otsimist ja selgitab, kuidas Punnsilma abil selliseid aegridu monitoorida.

Töö tulemusi käsitlevas osas kirjeldatakse erinevaid keskkondi, kus töös kirjeldatud

lahendus on kasutusel. Põhiliseks selliseks keskkonnaks on Elioni IPTV projekt, kus

Punnsilm analüüsib päevas umbes 20GB logi. Keskmiselt analüüsitakse selles projektis

umbes 1500 sõnumit sekundis ja eraldatud info põhjal on Graphiteis loodud rohkem

kui 4000 erinevate aegrida.

Projekti saab lugeda väga edukaks. Ühest küljest näitab seda avastatud probleemide

suur arv ja see, et IPTV administraatorid kasutavad vahendit igapäevaselt. Teiseks

on tekkinud projekti vastu huvi nii firma sees kui ka kontsernis laiemalt, mis on

muuhulgas viinud ka mitmete firmasiseste auhindadeni.
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Appendix A

Artificial Ignorance Example with

Punnsilm

SSHD_TAG = "^sshd\[\d+\]: "

NODE_LIST = [

{

’name’: ’syslog_source’,

’type’: ’syslog_file_monitor’,

’outputs’: [’filter’,],

’params’: {

’filename’: ’auth.log’,

}

},

{

# ignore known good sshd messages

’name’: ’filter’,

’type’: ’rx_grouper’,

’params’: {

’groups’: {

’ignore’: {

’rx_list’: [

SSHD_TAG + "Accepted password for",

SSHD_TAG + "pam_unix\(sshd:session\): session opened for",

SSHD_TAG + "Received disconnect from ",

SSHD_TAG + "pam_unix\(sshd:session\): session closed for user",

SSHD_TAG + "Connection closed by",

],

’outputs’: [],

},
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’_fallthrough’: {

’outputs’: [’console’],

},

},

},

},

{

’name’: ’console’,

’type’: ’console_output’,

’outputs’: [],

},

]

auth.log contents

Apr 13 11:11:23 hadara-laptop2 sshd[17471]: Accepted password for hadara from 127.0.0.1 port 39263 ssh2

Apr 13 11:11:23 hadara-laptop2 sshd[17471]: pam_unix(sshd:session): session opened for user hadara by (uid=0)

Apr 13 11:11:24 hadara-laptop2 sshd[17582]: Received disconnect from 127.0.0.1: 11: disconnected by user

Apr 13 11:11:24 hadara-laptop2 sshd[17471]: pam_unix(sshd:session): session closed for user hadara

Apr 13 11:11:35 hadara-laptop2 sshd[17683]: Invalid user joe from 127.0.0.1

Apr 13 11:11:35 hadara-laptop2 sshd[17683]: input_userauth_request: invalid user joe [preauth]

Apr 13 11:11:36 hadara-laptop2 sshd[17683]: pam_unix(sshd:auth): check pass; user unknown

Apr 13 11:11:36 hadara-laptop2 sshd[17683]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser=

rhost=localhost

Apr 13 11:11:38 hadara-laptop2 sshd[17683]: Failed password for invalid user joe from 127.0.0.1 port 39267 ssh2

Apr 13 11:11:39 hadara-laptop2 sshd[17683]: Connection closed by 127.0.0.1 [preauth]

Punnsilm output

$ punnsilm --config simple_ignorance.py --no-state

h:hadara-laptop2 ts:2014-04-13 11:11:35 content:sshd[17683]: Invalid user joe from 127.0.0.1

h:hadara-laptop2 ts:2014-04-13 11:11:35 content:sshd[17683]: input_userauth_request: invalid user joe [preauth]

h:hadara-laptop2 ts:2014-04-13 11:11:36 content:sshd[17683]: pam_unix(sshd:auth): check pass; user unknown

h:hadara-laptop2 ts:2014-04-13 11:11:36 content:sshd[17683]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0

tty=ssh ruser=

rhost=localhost

h:hadara-laptop2 ts:2014-04-13 11:11:38 content:sshd[17683]: Failed password for invalid user joe from 127.0.0.1 port 39267 ssh2
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Appendix B

Statsd Example with Punnsilm

This is an example of configuration for Punnsilm that builds regular expression out

of smaller regular expressions in different variables. Three time series are extracted

from the matching loglines and sent to statsd.

# obviously misses some legal IPs and matches some

# non-legal but is good enough for our specific case

IPV4 = """[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+"""

NGINX_TIMESTAMP = ’(?P<nginx_timestamp>[0-9]+/[A-Z][a-z]{2}/[0-9]+:[0-9]+:[0-9]+:[0-9]+ \+[0-9]+)’

STATUS_CODE = "(?P<_http_code_value>[0-9]+)"

BYTES_RETURNED = "(?P<bytes_returned>[0-9]+)"

TOTAL_TIME = "(?P<_ref_controller_value_time>[0-9]\.[0-9]+)"

BACKEND_TIME = "(?P<_backend_time>[0-9]\.[0-9]+)"

REFERER = "(?P<referer>[^ ]+)"

USER_AGENT = ’(?P<user_agent>[^"]+)’

HTTP_METHOD = ’(?P<http_method>[A-Z]+)’

PROTOCOL_VERSION = ’(?P<protocol>[A-Z]+)/(?P<http_version>1.[0-9]+)’

REQ = HTTP_METHOD+""" (?P<http_uri>/api/index/et/(?P<_controller_value>[a-z]+)[^ ]?) """+PROTOCOL_VERSION

NGINX_RX = ’nginx: ’+IPV4+’ - ’+IPV4+’ - - ’+NGINX_TIMESTAMP+’ "’+REQ+’" ’+STATUS_CODE+’ ’+BYTES_RETURNED+\

’ ’+TOTAL_TIME+’ ’+BACKEND_TIME+’ "’+REFERER+’" "’+USER_AGENT+’" .’

NODE_LIST = [

{

’name’: ’syslog_source’,

’type’: ’syslog_file_monitor’,

’outputs’: [

’nginx_parser’,

],

’params’: {

’filename’: ’testlog1.log’,

}

},

{

’name’: ’nginx_parser’,

’type’: ’rx_grouper’,

’params’: {

’groups’: {

’group1’: {

’rx_list’: [

NGINX_RX,

],
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’outputs’: [’statsd’,],

},

},

},

},

{

’name’: ’statsd’,

’type’: ’statsd_output’,

’params’: {

’key_prefix’: ’test’,

},

’outputs’: [],

},

]
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