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Abstract

We present a parallelization method for algorithms that solve a family of com-

binatorial optimization problems called the orienteering problem (OP) and its gen-

eralizations. This problem arises in the fields of logistics and automated planning

and consists of finding a most profitable route between fixed locations, under time

limit. An example of such a problem is automated creation of tourist trip plans,

where the goal is to create a tour between places that are most interesting for the

tourist, given that the tourist has a certain amount of time available.

We use an existing non-parallel algorithm that belongs to a group of generic

optimization techniques called metaheuristics. We develop a novel parallelization

method that benefits from cooperative behaviour. For comparison, we also exam-

ine two other parallelization approaches. We implement a non-cooperative paral-

lel version of the same algorithm. We also implement a known parallel algorithm

for similar metaheuristics called greedy randomized adaptive search procedure

with path relinking (GRASP-PR).

We compare our parallelization technique to these alternative versions to show

that the cooperative approach contributes to the solution quality and speed and

that our novel approach is competitive with a previously published approach. For

comparison, we perform tests on five benchmark datasets from the literature. The

results are also compared to non-parallel state of the art algorithms that have pro-

duced significant results on these benchmarks.

We show that our approach exhibits the useful property of reaching good qual-

ity suboptimal solutions early in the search, with predictable probability. We ad-

ditionally show that the technique scales well with up to 128 parallel worker pro-

cesses. The quality of the solutions varies depending on the benchmark, in some

problem sets our results exceed those of specialised algorithms, in other cases they

remain inferior.



Annotatsioon

Käesolevas töös esitletakse parallelset meetodit lahendamaks kombinatoori-

kaülesandeid, mis kuuluvad orienteerumisülesande ja selle laienduste hulka. Orien-

teerumisülesanne kuulub logistika ja automatiseeritud planeerimise ülesannete

valdkonda. Selle eesmärgiks on piiratud aja jooksul leida võimalikult kasulik mars-

ruut ette määratud objektide vahel. Näide orienteerumisülesandest on automaat-

selt turisti reisiplaani koostamine, kus turisti päevaplaani peaks koostama selliselt,

et turist saaks külastada talle kõige rohkem meeldivaid vaatamisväärsusi.

Aluseks on võetud olemasolev mitteparallelne algoritm, mis kuulub üldistatud

lahendusmeetodite perekonda nimega metaheuristikud. Töös kirjeldatakse uut pa-

ralleliseerimise tehnikat mis toetub koostööle paralleelsete komponentide vahel.

Võrdluse eesmärgil on töös kasutatud kahte täiendavat paralleelset algoritmi - va-

riant samast algoritmist, kus koostööd ei kasutada ning varasemalt erialases kir-

janduses tuntud algoritm mida on kasutatud sarnaste metaheuristikute puhul.

Võrdlus teostatakse, rakendades kõiki kolme paralleelset algoritmi viiele eri-

alases kirjanduses avaldatud ülesannete paketile. Selle eesmärgiks on näidata, et

koostöö kasutamine annab algoritmile lisaväärtust ning lähenemine on ühtlasi

konkurentsivõimeline juba teadaoleva meetodiga. Saadud tulemusi võrreldakse

ka parimate avaldatud tulemustega erialastest artiklitest.

Töös näidatakse, et valitud lähenemisel on kasulik omadus jõuda hea kvali-

teediga tulemusteni otsingu varajases faasis, sõltumatult ajast mis kulub lõpliku

tulemuse leidmisele. Ühtlasi näitavad tulemused, et esitletud koostööl põhinev

lahendus skaleerub hästi kuni 128 paralleelse protsessini. Tulemuste kvaliteet va-

rieerub võrreldes spetsiifilistele ülesannetele kohaldatud algoritmidega, ületades

neid kohati, aga mitte konsistentselt.
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Chapter 1

Introduction

This research presents a parallel algorithm that is designed to solve the orienteer-

ing problem (OP) and its extensions, with the focus on those related to automati-

cally creating tourist trip itineraries. We build the parallelization on the foundation

of an existing non-parallel algorithm that has previously exhibited good results on

problems belonging to the same class. We aim to show that our parallel method

benefits from cooperative behaviour and is scalable in parallel environments.

The OP is a combinatorial optimization problem that mathematically models

various logistics and planning tasks. The name originates from the sport of orien-

teering where the participants, equipped with a topographical map and compass,

visit the control points placed on terrain. In a variant called score orienteering, the

control points have scores assigned based on the difficulty of reaching or locating

them. The participants must plan the most profitable path between control points

that they are able to complete within a given time budget. (Tsiligirides 1984)

In the OP, the locations to be visited can be modeled as the vertices of a graph.

The vertices are associated with rewards and the edges with costs. The goal is

to maximize the reward collected by visiting the vertices without exceeding a

given limit of accumulated cost. The solution is a subset of vertices. The OP is

different from the travelling salesman problem (TSP) where the goal is to visit all

vertices and to minimize the accumulated cost. In TSP there is no limit of the

accumulated cost. However, the problems are closely related in that the optimum
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solution requires finding the shortest path between subsets of vertices.

The OP is being applied in various areas of automated planning. Examples in-

clude routing a fleet of service vehicles that need to visit customers in various lo-

cations, planning tourist itineraries (Vansteenwegen et al. 2011) and path planning

for law enforcement surveillance vehicles (Pietz and Royset 2013). Our interest

in the OP stems from tourist trip recommender system research. The problem of

recommending an itinerary for a trip or a tour is called the tourist trip design prob-

lem (TTDP) (Vansteenwegen and Oudheusden 2007). The trip must fit within a

given time budget and include the points of interest (POIs) that are most attractive

to the tourist.

The OP and its extensions have been the most common model for solving

the TTDP. In the context of the TTDP, the vertices represent POIs and the edges

usually represent the cost of movement. In tourist trip recommender systems,

various additional parameters, such as the opening hours, multi-day visits, budget

constraints and dependency on transport networks need to be observed. The basic

OP model is commonly extended to include these features, leading to various

generalizations of the OP. (Gavalas et al. 2014)

Metaheuristics are an attractive method of solving computationally demand-

ing problems. In common with the more ubiquitous concept of heuristics, they

offer an approximating approach that does not guarantee finding an optimal solu-

tion. Instead, the goal is to find a solution that is ”good enough”, ”fast enough”.

However, metaheuristics are viewed as a template or set of guidelines rather than

a specific algorithm. Their appeal is the ability to offer solutions to a wide range

of problems with predictable results. For example, Aiex et al. (2002) show ex-

perimentally that the probability of finding a solution with predetermined quality

using the greedy randomized adaptive search procedure (GRASP) metaheuristic

fits theoretical probability distribution.
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1.1 Related work

Modeling the TTDP is non-trivial, as there are several characteristic features that

different authors consider to be essential in producing quality solutions:

• multi-constraint optimization (Vansteenwegen and Oudheusden 2007; Gavalas

et al. 2014); including multiple time windows (Gavalas et al. 2014)

• multi-criteria optimization (Vansteenwegen and Oudheusden 2007; Schilde

et al. 2009; Rodrı́guez et al. 2012)

• time-dependence of costs (Fomin and Lingas 2002; Verbeeck et al. 2014)

and rewards (Hasuike et al. 2013; Erdogan and Laporte 2013; Yu et al. 2014)

• inter-dependence of the POIs (Vansteenwegen and Oudheusden 2007; Gio-

nis et al. 2014).

We are not aware of any OP generalizations that would encompass all of these

features. In the following we focus on publications that solve problems that con-

tain a subset of these features and represent the best-performing algorithms. The

reader is referred to Vansteenwegen et al. (2011) and Gavalas et al. (2014) for a

comprehensive overview of the OP and TTDP literature.

Customizing the team orienteering problem (TOP) (Chao et al. 1996a) for

tourist trip recommendation has produced a family of OP variants that include

constraints. The team orienteering problem with time windows (TOPTW) (Vansteen-

wegen et al. 2009) is the most actively researched of these. Cura (2014) provides a

summary of recent benchmark results. In this variant, vertices have legal time win-

dows during which they may be visited; this represents the opening or accessible

hours of POIs. The multi-constrained team orienteering problem with (multiple)

time windows (MCTOP(M)TW) adds budget and max-n type constraints (Garcı́a

et al. 2013; Souffriau et al. 2013). Currently, the GRASP-ILS hybrid (Souffriau

et al. 2013) has the best average gap, but the tabu search of (Sylejmani et al. 2012)

holds the best solution in 70 of the test instances.
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Several papers treat the TTDP as a multi-objective optimization problem (Schilde

et al. 2009; Rodrı́guez et al. 2012; Hasuike et al. 2014). Inevitably, without

context-specific information about the user preferences towards the criteria, a

multi-objective problem can only be optimized to the Pareto front of solutions

(Marler and Arora 2004; Schilde et al. 2009). This can leave a large number of

alternative recommendations and can be challenging to present in a user-friendly

manner (Adomavicius et al. 2011). Rodrı́guez et al. solve this with an interactive

step following the search.

In this paper, we only consider the applications where the goal is to non-

interactively find a single best solution. If the model includes multiple criteria,

then these may be aggregated into a single nonlinear objective function. For ex-

ample, Geem et al. (2005); Wang et al. (2008); Silberholz and Golden (2010) study

an instance of the generalized orienteering problem (GOP) where each vertex of

the network has a set of attributes. The objective function aggregates the objective

values computed by attribute as a weighted sum (the weights vector represents the

prior preference). The two-parameter iterative algorithm (2-PIA) of Silberholz

and Golden (2010) dominates the other published algorithms on the benchmark

dataset that consists of 27 POIs.

Dynamic models try to realistically convey the changes in urban environments

(time dependent costs) and varied user satisfaction depending on the time and

duration of visiting a vertex (time dependent rewards). The time dependent orien-

teering problem (TDOP) (Fomin and Lingas 2002) is a formulation of the former.

Currently only Verbeeck et al. (2014) include a benchmark for experimental eval-

uation.

OP variants with time dependent rewards have emerged recently. Hasuike

et al. (2013) present a model where the reward collected at a vertex is a function

of time. This is extended to include multiple criteria, classes of POIs (from ”must

visit” to ”don’t care”) and resource accumulation in (Hasuike et al. 2014). Erdo-

gan and Laporte formulate the orienteering problem with variable profits (OPVP),

where the reward is a function of number of passes at a vertex (OPVP1) or a func-

tion of the time spent at the vertex (OPVP2) (Erdogan and Laporte 2013). The
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reward-maximising variant of optimal tourist problem (OTP) (Yu et al. 2014) is

similar to OPVP2. Their solution method accommodates arbitrary reward col-

lection functions by finding piecewise linear approximations. Reproducible gap

results to benchmark instances are only reported in (Erdogan and Laporte 2013).

There are few papers that consider the inter-dependence of POIs. Gionis et al.

(2014) propose two formulations that classify the POIs into types and introduce

an ordering constraint of types. Depending on the parameters, the GOP objective

function as formulated in (Silberholz and Golden 2010) also makes the reward of

a POI dependent on the other POIs present in the solution.

To the best of our knowledge, no parallelized TTDP solvers have been pub-

lished to date (Gavalas et al. 2014). Mocholı́ et al. (2005) propose a parallel grid

ant colony algorithm for the OP. They report super-linear speedup in the larger

instances of 10000 vertices with up to 32 computing nodes. Catalá et al. (2007)

improve on the solution quality obtained using graphical processing units (GPUs),

however their scaling behaviour is poor in comparison. Parallel approaches to re-

lated routing problems are numerous (Alba et al. 2013), with the recent focus on

GPU computing (Schulz et al. 2013).

An overview and extensive bibliography of the greedy randomized adaptive

search procedure (GRASP) can be found in (Resende and Ribeiro 2010). GRASP

parallelization strategies are divided into independent and cooperative approaches.

The independent strategy involves either trivially partitioning GRASP iterations

between processors, starting each with an independent random seed or partition-

ing the search space. Threads only share the global best solution (Resende and

Ribeiro 2005). An early example of the partitioning method can be found in (Feo

et al. 1994). The cooperative strategy implies that the threads collaborate in or-

der to speed up local progress. This has been achieved through the path relinking

technique by sharing elite solutions (Resende and Ribeiro 2005). The pool of

elite solutions can either be local (Aiex and Resende 2005) or global (Ribeiro and

Rosseti 2007).
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1.2 Objectives and organization

The primary objective of the research presented here is to introduce a parallel so-

lution method for the TTDP. We treat the task of constructing a trip automatically

as the problem of solving OP generalizations on a graph. To solve OP variants

that are motivated by the TTDP, we rely on established methods of parallel meta-

heuristics. We adapt an existing sequential heuristic to a parallel method in a novel

way.

This paper presents a cooperative parallelized GRASP-ILS hybrid for general-

izations of the OP. The algorithm is a generic template that can handle non-linear

or even non-monotonic objective functions. We show that it can be adapted for

several of the generalizations discussed above. We present the performance eval-

uation of our parallelization using previously published benchmarks.

In addition to our novel parallelization techniques, we develop two paralleliza-

tion approaches to serve as a point of comparison. First, we use a non-cooperative

version of the same GRASP-ILS hybrid to determine the effect of cooperation

on the solution quality and speed. Second, we present a similar generic template

based on an existing parallel metaheuristic GRASP-PR, to be able to compare

against a previously published parallelization method.

For each OP variant examined, we develop problem-specific components that

can be incorporated into the generic algorithms. The problem-specific algorithms

are then implemented and tested in a cluster environment.

The rest of the paper is organized as follows. In Chapter 2 we present the

sequential algorithms that form the foundation of our parallelized versions. We

then proceed to present the algorithms implemented for comparison and finally

our novel parallelization technique in Section 2.3. Chapter 3 presents the results

of the experiments performed on a high performance computing cluster using ex-

isting benchmarks from the literature. For each benchmark, we also compare

the parallel techniques with the state of the art. In Chapter 4 we summarize the

findings and discuss further perspectives in applying and enhancing the solution

methods. Detailed benchmark results are included in Appendix A.
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Chapter 2

Hybrid metaheuristic template

We initially present the algorithms as a generic template. For each problem, the

specific features are then added as required. These problem-specific functions are

described in Chapter 3.

We begin by describing the sequential metaheuristics that the parallelization

techniques are built on. The first algorithm (Section 2.1) is pure GRASP en-

hanced with path relinking (GRASP-PR), which is a common technique used in

many combinatorial search problems (Resende and Ribeiro 2010). The second

algorithm (Section 2.2) is a hybridization of GRASP and Iterated Local Search

(ILS).

We then describe three parallelization methods: a cooperative parallel GRASP-

PR and an independent-walk strategy version of the GRASP-ILS hybrid are imple-

mented for comparison. Finally we present the cooperative version of the GRASP-

ILS hybrid that is the main subject of study in this paper (Section 2.3).

2.1 GRASP with path relinking

The GRASP is a family of search algorithms that are based on the idea that intro-

ducing some randomness in greedy search provides better coverage of the search

space and helps escaping local optima. The basic template consists of the random-

ized greedy construction phase that builds a feasible solution and a local search
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phase that then finds the local optimum in the neighbourhood of the solution. The

parameter α controls the randomness in the construction phase. In the construc-

tion phase, items are added to the solution iteratively. Each consecutive item is

picked randomly from a subset of the items, called restricted candidate list (RCL).

The size of the RCL is controlled by α. If α = 0 then only the item that appears to

be the best remains in the RCL and the construction degenerates to greedy search.

If α = 1 then the next insertion is made randomly. (Resende and Ribeiro 2010)

We adapt the canonical GRASP template to the OP as follows (Algorithm 1).

In line 1, the pool of elite solutions is initialized. The pool holds the current best

known solution as well as a number of other good solutions. Each iteration of the

loop body between lines 2-17 produces a new solution. If the solution is good

enough, it is added to the elite pool. The loop is repeated a fixed number of times.

After the loop terminates, the best solution in the elite pool is the best solution

that the search found.

Algorithm 1 GRASP with path relinking
1: ElitePool← ∅
2: for i← 1,MaxIterations do
3: α← RANDOMUNIFORM(0, 1)
4: Determine the heuristic value for each candidate
5: Solution← ∅
6: while Solution is not full do
7: RCL← MAKERCL(α)
8: Pick a random candidate from RCL and insert into Solution
9: Recalculate the heuristic value for each candidate

10: end while
11: Solution← LOCALSEARCH(Solution)
12: Guiding ← FINDGUIDINGSOLUTION(Solution, ElitePool)
13: Solution← PATHRELINKING(Solution,Guiding)
14: if Solution is elite then
15: Update ElitePool with Solution
16: end if
17: end for

Lines 3-5 initialize the search for the current iteration. We fix the parameter α

in the interval [0, 1]. There are several published techniques for finding a suitable
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value for α (Resende and Ribeiro 2010). Usually the best value depends on the

specific problem instance and on the heuristic function used to evaluate the candi-

dates. Here α is chosen randomly from the uniform distribution. This ensures that

each candidate has a non-zero probability of being included in the construction

phase.

Before the construction starts, the list of candidate insertion moves is prepared.

An insertion move is the pair (v, i) of vertex v and the insertion point i. If the

insertion move is executed, v is placed in the solution after the vertex at position

i− 1 and the remaining vertices i, i+ 1, i+ 2, . . . are shifted by one place.

If the set of vertices is V and the insertion points i = (1, 2, 3, ...) then the

candidate list C = {(v, imax) | v ∈ V, imax = arg maxi h(v, i)}. The heuristic

score h(v, i) allows differentiating the possible insertion positions to optimize the

path length. In the generalized model, the heuristic value h(v, i) depends on the

insertion point as well as the contents of the partial solution. The actual heuristic

function is problem-specific. Further details will be given in Sections 3.1-3.5.

In case of models with time windows, rearranging the path in the complete

solution, for example by using λ-opt search moves, is less effective (Potvin and

Robillard 1995). Because of that we only consider the locally best insertion for

each vertex. Additionally, we only consider moves that result in feasible solutions.

In case the heuristic function is expensive, this reduces the computational effort,

as there is no need to compute the heuristic value for non-feasible candidates.

We note that Souffriau et al. (2008) have described a similar approach for the

team orienteering problem, except that they include all feasible insertion moves

in the candidate list.

Lines 6-10 constitute the construction phase that builds the solution by choos-

ing moves from a list of candidate insertion moves. The construction phase termi-

nates when there are no more candidate moves that can be applied to the current

solution without violating any constraints.

The RCL is formed by taking a subset of the candidate list (line 7). Let hmin
and hmax be the lowest and highest heuristic values of the candidate moves. We

determine the threshold value ht = hmin+(1− α) (hmax − hmin) and theCRCL =
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{(v, i) ∈ C | h(v, i) ≥ ht. A random element (v, i) of the RCL is selected and

vertex v is inserted into the current solution at position i (line 8).

In some generalizations of the OP the objective function may be dynamically

changing during the construction of the solution. During the greedy construction

phase, the heuristic value1 of the candidate vertices is re-evaluated after each inser-

tion into the solution (line 9). Thanks to this ”adaptive” aspect, the metaheuristic

is well suited for optimizing arbitrary objective functions.

In line 11, the solution is optimized using local search moves. In general, this

involves re-ordering, inserting and removing vertices in the solution, until a local

optimum is reached. The local search is problem-specific, as the effectiveness of

search techniques varies depending on how constrained the problem is. It can also

be completely omitted. We describe the appropriate local search for each problem

in Sections 3.1-3.5.

The path relinking phase (lines 12-13) then attempts to enhance the current

solution further. One elite solution is selected as the guiding solution. We choose

the guiding solution randomly from the elite pool. A solution can be transformed

into another solution by applying successive search moves, such as insertions and

removals. This forms a path in the search space between the solutions. The path

relinking procedure follows this path and attempts to find intermediate solutions

that are better than the current solution. The expectation is that making the current

solution more similar to an elite solution improves it, while making an elite so-

lution more similar to an arbitrary solution diversifies the solutions the algorithm

visits.

Lines 14-16 update the pool of elite solutions. A solution is considered eligible

for the elite pool, if:

• the pool is not yet full;

• it has a higher score than any of the current elite pool members, or

• if it has a higher score that at least one of the elite pool members and is

sufficiently different from them.

1Resende and Ribeiro use the term ”greedy evaluation”.
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We define the measure of similarity between two solutions A and B to be
2|A∪B|
|A|+|B| (Souffriau 2010).

Algorithm 2 gives the path relinking procedure in detail. We use the mixed

path relinking technique (Resende and Ribeiro 2010) where the path between the

current and guiding solution is built from both ends simultaneously.

Lines 2-3 prepare the search procedure. BestSolution keeps track of the

locally best solution found on the search path. The set Difference consists of

the vertices in the guiding solution that are not present in the current solution.

From this point, the sets Solution and Guiding represent the ends of the paths

originating from the current solution and the guiding solution. The search will

repeat lines 4-16 until one of Solution and Guiding becomes a subset of the

other. At this point the solutions contain the same vertices, or no further progress

will be made by making them more similar, as this can only be accomplished by

removing vertices.

Lines 5-6 greedily select the vertex with the best heuristic value from the set

Difference. The heuristic value computed with the same function as in the

construction phase, except that the insertion may cause the solution to become

infeasible.

Lines 7-10 repair and optimize the working solution. The vertex with the

lowest heuristic value is removed, provided that v /∈ Solution ∩ Guiding . The

additional condition is needed to prevent cycles in the path that would result from

removing vertices that earlier steps have added. If there are no such vertices, the

repair step is allowed to fail in which case the search terminates early and the

current BestSolution is returned. Next, local search is applied to tighten the

path. This is repeated until the working solution becomes feasible.

In lines 11-13 the working solution is compared to the best known solution

along the path. BestSolution is updated, if necessary. Lines 14 and 15 then

switch to the other end of the connecting path by swapping Solution andGuiding

and computing the new difference. If Difference becomes an empty set, the ter-

mination condition is met (no further progress can be made) and the best solution

found along the path is returned.
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Algorithm 2 Path relinking procedure
1: procedure PATHRELINKING(Solution,Guiding)
2: BestSolution← Solution
3: Difference← Guiding \ Solution
4: while Difference 6= ∅ do
5: Compute the heuristic value for each item in Difference
6: Insert the item with best value into Solution
7: while Solution is not feasible do
8: Remove the item with worst heuristic value from Solution
9: Solution← LOCALSEARCH(Solution)

10: end while
11: if Solution is better than BestSolution then
12: BestSolution← Solution
13: end if
14: Swap Guiding and Solution
15: Difference← Guiding \ Solution
16: end while
17: return BestSolution
18: end procedure

2.2 Hybrid GRASP-ILS metaheuristic

There are several approaches to hybridizing GRASP with iterated local search.

Ribeiro and Urrutia (2007) apply ILS as the local search after the greedy con-

struction phase (ILS inside GRASP). In solving MCTOP(M)TW, Souffriau et al.

(2013) use greedy random construction to build the solution in each iteration

(greedy random construction inside ILS). We have used the latter approach with

some modifications (Algorithm 3).

The algorithm shares the general structure with pure GRASP. The main differ-

ence is that each random construction step is seeded with a partial solution instead

of an empty one. The seed solution is derived by perturbing the solution from pre-

vious iteration. Some items, with a bias towards the one that has lowest heuristic

value, are removed. They may also be temporarily eliminated from being used in

the construction.

The partial solutions carry over knowledge from previous iterations. The elim-

ination bias is helpful in diversifying the solutions - otherwise the items removed
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in the perturbation step may re-enter the solution immediately, in the extreme case

even reproducing a solution identical to the previous iteration.

Algorithm 3 GRASP-ILS hybrid
1: BestSolution← ∅
2: Solution← ∅
3: for i← 1,MaxIterations do
4: α← FINDALPHA()
5: Determine the heuristic value for each candidate
6: while Solution is not full do
7: RCL← MAKERCL(α)
8: Pick a random candidate from RCL and insert into Solution
9: Recalculate the heuristic value for each candidate

10: end while
11: Solution← LOCALSEARCH(Solution)
12: if Solution is better than BestSolution then
13: BestSolution← Solution
14: end if
15: Solution← PERTURB(Solution, β)
16: end for

Lines 1-2 initialize the known best solution and the current working solution.

The loop body between lines 3-16 then attempts to improve the working solution

by repetitively adding items, then removing a random subset of them. After the

loop terminates, BestSolution holds the best solution that the search found.

Each iteration begins with determining α (line 4) using the ”Reactive GRASP”

approach (Prais and Ribeiro 2000). At each iteration, α is chosen randomly from

the set A = {α1, α2, . . . , αm}. These values are predetermined. The probability

that αi is chosen is initially set to pi = 1
m

. We keep track of the average solu-

tion score S̄i resulting from using αi. Periodically, the probability distribution

is updated as follows. Let S∗ be the current value of BestSolution. For each

αi, we then compute the ”quality” qi =
(
S̄i

S∗

)δ
and the probability pi = qiPm

j=1 qj
.

The values of α that result in higher solution scores on the average, consequently

receive higher probabilities of being chosen again. The parameter δ can be used

to accelerate this process. Table 2.1 gives the values of parameters used in the

experiments.
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Lines 5-10 constitute the construction phase that is identical to the GRASP

with path relinking (Section 2.1). A candidate list of insertion moves (v, i) is

formed by assigning each vertex v a heuristic score h(v, i) that corresponds to

the insertion in the optimal position i. The RCL is then constructed by taking

candidates that have heuristic values over a certain threshold that depends on the

current α. A random move from the RCL is performed, after which the heuristic

scores for all vertices and insertions are recalculated (this is required because the

heuristic score is dependent on the current solution).

Similarly, line 11 performs a hill climbing local search which is problem de-

pendent and is specified in Sections 3.1-3.5. This completes the solution that the

current iteration has built and lines 12-14 update the BestSolution, if necessary.

Line 15 performs the perturbation of the current solution. This is the main

departure from the canonical GRASP template, as the resulting partial solution

will then become the initial state of the construction phase of the next iteration.

The parameter β determines the percentage of solution elements that are removed

at the end of the iteration. Let m be the current number of elements that are el-

igible for removal. Some problems instances specify mandatory elements, such

as start and end vertices, which should not be removed. Let Si the score after

removing the vertex i from the solution. Let k be the index of a vertex such that

∀i 6= kSk ≥ Si. The probability of removing vertex i 6= k is then pi = 1
m+1

.

The perturbation phase is biased towards removing the vertex k, with probabil-

ity pk = 2
m+1

. Once an item is removed, it is additionally eliminated from the

construction phase for a small number of iterations. This is similar to the ”per-

turb by elimination”2 strategy (Resende and Ribeiro 2010). Table 2.1 gives the

empirically chosen parameters used in the experiments reported here.

Short elimination duration is preferable for relatively small problem instances.

Otherwise a significant portion of the items are simultaneously eliminated and

the search progresses slower. By relying on empiric evidence, we’ve omitted

elimination completely in the experiments. The parameter β influences how close

2The word ”perturb” has a different meaning in this context, referring to changes in the heuris-
tic value

16



Table 2.1: Parameters of the GRASP-ILS hybrid used in the experiments. δ and
A apply to Reactive GRASP technique, the rest of the parameters are used in the
perturbation phase
Parameter Value

δ 2
A {0.1, 0.2, . . . , 0.9} (m = 10)
β random with biased distribution
Elimination duration none (items are immediately available again)

consecutive solutions are to each other in the search space. We choose β randomly

from a set biased towards smaller perturbation. This allows the search to remain

in the same neighbourhood for longer. It is also possible to borrow the idea of

the simulated annealing search and start with a large value of β, decreasing it

gradually. This would leads to perturbations decreasing with time.

2.3 Parallelization techniques

Pure GRASP is well suited for parallelization. Because of the independence of the

iterations the work may be partitioned between the processors with the expectation

of linear speedup (Aiex et al. 2002). While introducing memory into the search

makes its results less predictable theoretically (Resende and Ribeiro 2010), simple

partitioning has practical benefits when applied to the memory-enhanced search

as well (for example, as shown experimentally by Aiex and Resende (2005)).

We implement an independent parallel strategy (Algorithm 4) to serve both as

a baseline comparison and as a viable approach in case the communication be-

tween processes is expensive. The messaging is limited to maintaining the global

best solution and to detect process termination. The process is locally aware of

the lower bound on the global best solution. Sending a message is only necessary

when the last known global best is exceeded. At this point the lower bound is also

updated.

There is a separate monitor process that communicates with each worker pro-

cess individually. The monitor is responsible for storing the global best solution
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Algorithm 4 Independent parallel GRASP-ILS hybrid
1: KnownBestSolution← ∅
2: Solution← ∅
3: for i← 1,MaxIterations do
4: . . . Build Solution . . .
5: if Solution is better than KnownBestSolution then
6: SEND(Solution)
7: KnownBestSolution← RECEIVE(GlobalBestSolution)
8: end if
9: . . . Finish the iteration . . .

10: end for
11: SEND(Termination)

and reporting the search termination once all the processes have finished. Here

and in the following parallel algorithms, we define the primitive SEND() to be

a procedure that sends the specified message synchronously. The primitive RE-

CEIVE() receives the specified message from another process synchronously.

For brevity, we’ve omitted parts of the parallelized algorithms that do not dif-

fer from the sequential versions. At line 1, the local best solution is initialized.

Lines 2-4 correspond to the construction phase and local search of the sequential

GRASP-ILS algorithm (lines 2-11 in Algorithm 3). At line 5 we compare the

current working solution to the local best solution. If it is not better than the local

best solution, then it also cannot be better than the global best solution and we

may skip communicating with the monitor process. Otherwise, we send the solu-

tion to the monitor process as a new potential best solution. Regardless of whether

this results the global best solution being updated, the monitor process responds

by sending the global best which is stored locally in KnownBestSolution.

Lines 9-10 correspond to lines 15-16 in Algorithm 3. The solution is per-

turbed by eliminating elements randomly and the iteration ends. After the loop

terminates, KnownBestSolution is discarded. The worker process sends a ter-

mination message to the monitor. Once the monitor has received termination mes-

sages from all workers, it will also terminate. The global best solution stored by

the monitor process is the end result of the parallelized search.

We also present cooperative parallelizations for both sequential metaheuristics
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(Sections 2.1 and 2.2). The GRASP with path relinking is parallelized by sharing

the elite pool between processes. The collaboration is achieved by distributing

elite solutions found by one worker to all other workers. To simplify the algo-

rithm, we do not use local elite pools. Instead, we implement a monitor process

that stores the global elite pool. When the search needs to interact with the elite

pool, it will communicate with the monitor process.

Algorithm 5 Cooperative GRASP with path relinking
1: for i← 1,MaxIterations do
2: . . . Build Solution . . .
3: SEND(Solution)
4: Guiding ← RECEIVE(GuidingSolution)
5: Solution← PATHRELINKING(Solution,Guiding)
6: SEND(Solution)
7: end for
8: SEND(Termination)

Algorithm 5 represents the worker process. The algorithm does not require any

state to be maintained between iterations locally. The search begins immediately

with the GRASP main loop (line 1). Each iteration then proceeds to build the

solution (line 2) as follows. α is determined randomly and the working solution

is initialized to empty. The heuristic value for each vertex is then computed, RCL

constructed and one insertion move from the RCL performed. This is repeated

until no more vertices fit into the solution, then the solution is post-optimized

using local hill climbing search (see Algorithm 1, lines 3-11).

At line 3 the current solution is sent to the monitor process, requesting a suit-

able guiding solution. Lines 4-5 receive the guiding solution and call the path

relinking procedure (Algorithm 2) that examines the search space between the

current and guiding solution. The best solution found along that trajectory is sent

to the monitor process (line 6). The worker process does not require a response

to this message. Again, the parallelized search ends by sending a termination

message (line 8).

The monitor process (Algorithm 6) is responsible for maintaining the memory

of the search. At line 2, the pool of elite solutions is initialized to empty. The
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process then loops, waiting for messages from workers (lines 3-17) until each

worker has sent a termination message. The process ends by returning the best

solution in the elite pool (line 18).

Algorithm 6 The monitor process for maintaining the elite pool
1: procedure POOLMONITOR

2: ElitePool← ∅
3: while Any workers running do
4: RECEIVE(Message)
5: if Message is Termination then
6: Record that the sender has terminated
7: else if Message is Solution then
8: if this is a guiding solution request then
9: Find Guiding solution from the pool

10: SEND(Guiding)
11: else
12: if Solution is elite then
13: Update ElitePool with Solution
14: end if
15: end if
16: end if
17: end while
18: return the best solution in ElitePool
19: end procedure

At line 4 the RECEIVE() primitive is called. It blocks until a message arrives

from any of the workers. The type of the message determines the response from

the monitor process. If the message is a termination notification then the sender is

marked as no longer running (line 6). If this was the last worker running, the test

on line 3 fails and the loop ends.

If the message contains a solution, then it is either a request for a guiding so-

lution or a request to add the message to the elite pool. In the first case, a random

solution is taken from the elite pool and sent to the worker process (lines 9-10). In

the second case, same criteria as in the sequential search are applied to determine

whether the solution is elite (line 12). If the pool is not yet full, the solution is

always added. A globally best solution is also always added. Otherwise, the solu-
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tion is added if it is better than at least one solution in the pool and its similarity

measure to at least one solution is lower than a given threshold. If the elite pool

was full, we remove the solution, that is most similar to the added solution among

those that have lower score than the added solution (line 13).

The GRASP-ILS hybrid requires a different approach to collaboration. We ob-

serve that the method of perturbations creates a connected trajectory through the

search space. Similarly to the path relinking technique, we then take the assump-

tion that it is beneficial to explore the neighbourhoods of known good solutions.

The search (Algorithm 7) starts with each worker exploring a different tra-

jectory. Whenever a worker discovers a new global best solution, the rest of the

workers copy that solution and proceed to search its neighbourhood by introduc-

ing their own perturbations. The trajectories then diverge again, as each worker

has an independent randomness source. The speed at which the divergence occurs

depends on the distribution of β. We name this technique trajectory rejoining.

Algorithm 7 Cooperative parallel GRASP-ILS hybrid
1: KnownBestSolution← ∅
2: Solution← ∅
3: for i← 1,MaxIterations do
4: . . . Build Solution . . .
5: if Solution is better than KnownBestSolution then
6: SEND(Solution)
7: else
8: SEND(PollForBest)
9: end if

10: NewBestSolution← RECEIVE(GlobalBestSolution)
11: if NewBestSolution is better than KnownBestSolution then
12: KnownBestSolution← NewBestSolution
13: Solution← NewBestSolution . trajectory rejoin
14: end if
15: Solution← PERTURB(Solution, β) . trajectory diverges
16: end for
17: SEND(Termination)

Lines 1-2 initialize the current working solution and the known best solution to

empty. The score of the known best solution is a lower bound on the globally best

21



score. Lines 3-16 are repeated a fixed number of times, each time the solution is

constructed by adding vertices and then perturbed by removing vertices randomly.

After the loop ends, the termination message is sent to the monitor process (line

17).

Line 4 represents building the solution as in lines 4-11 of Algorithm 3. α for

the current iteration is determined using the Reactive GRASP technique. Then the

solution is filled by performing insertion moves from the RCL until there are no

legal candidate moves left. After each insertion the heuristic value of insertions is

re-evaluated and RCL rebuilt.

Lines 5-10 are responsible for discovering new best solutions found by other

workers. If the search has found a solution that is potentially globally best it is sent

to the monitor process (line 6). Otherwise the worker sends a poll to request the

current global best solution (line 8). In both cases the monitor process responds

by sending the globally best solution that is received by the worker synchronously

(line 10).

Lines 11-14 perform the join with the globally best trajectory. IfNewBestSolution

is better than the local KnownBestSolution then this indicates either that this

worker or another worker has found a new globally best solution. Line 12 updates

the locally known best. If the new global best was found by another worker then

line 13 makes the worker jump to the same point in the search space.

Line 15 is the perturbation phase that is identical to the sequential version

of the GRASP-ILS hybrid. A random number of vertices are removed from the

solution. They are not used in subsequent construction phases for a fixed number

of iterations, to diversify the search.

The monitor process for distributing the trajectory information to the workers

is nearly identical to the monitor process for the independent parallel GRASP-

ILS. It only needs to additionaly respond to the polls for the current global best

solution. The workers have sufficient information to detect when the global best

has changed, since by definition it must be better than the locally known best

solution.
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Chapter 3

Experimental results

We performed experiments on the following problems:

• orienteering problem (OP) (Section 3.1);

• generalized orienteering problem (GOP) as formalized, among others, by

Wang et al. (2008) (Section 3.2);

• team orienteering problem with time windows (TOPTW) (Section 3.3);

• multi-constrained team orienteering problem with multiple time windows

(MCTOPMTW) (Section 3.4);

• time dependent orienteering problem (TDOP) (Section 3.5).

By covering these problems, the evaluation includes the basic unconstrained model

with Euclidean costs and linear objective function as well as constrained mod-

els and a model with nonlinear cost function. The generic metaheuristics were

adapted to specific problems. We solved problem instances from published bench-

mark datasets for which known optimal or best known results are available.

The test programs were written in Python in object-oriented style, to facili-

tate implementing several closely related algorithms and problem models. The

interprocess communication was implemented using MPI, provided by the native

mpi4pymodule. To reduce the computation time required, most time-consuming
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parts of the algorithms (building the candidate list and the local search) were

rewritten in the Cython language, translated to C and compiled into binary mod-

ules.

The tests were executed on a HPC cluster with dual Intel Xeon E5-2630L

processors (12 cores and 24 threads total) per node. The nodes were connected

with Infiniband network.

The bulk of the test runs was performed node-locally with 23 parallel workers.

Each test run consisted of a fixed number of iterations assigned to each worker.

These tests produced the solution quality (gap) and average solution time results

reported in this chapter.

Additional tests were performed with an increased number of iterations to ob-

tain probability distribution of time to fixed suboptimal solution and varied num-

ber of workers for the scalability results.

3.1 Orienteering Problem

Adapting our algorithms to any specific problem requires at least two steps: im-

plementing a heuristic function and implementing the generation of feasible insert

moves in the construction step. Additionally, local search should be implemented

in cases where it is appropriate.

Let xij be 1 when the edge from vertex i to j is included in the solution and 0

otherwise. pj is the reward associated with vertex j. The objective function of the

OP can then be expressed as S =
∑n

i,j=1 pjxij .

Let cij be the cost of the edge between vertices i and j. Using this notation,

when inserting a vertex k between i and j, the total accumulated cost of the solu-

tion changes by ∆cikj = cik + ckj − cij .
We chose the heuristic value of an insertion move ”vertex k between vertices

i and j” to be hikj = pk

∆cikj
.

Generating the feasible insert moves is done as follows: for each vertex k that

is not yet included in the solution, we calculate ∆cikj for each pair of consecutive

vertices in the solution (i, j). Any move for which the resulting cost of the solution
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c+ ∆cikj > dlim where dlim is the distance budget for the problem instance, is in-

feasible. In case of the GRASP-ILS hybrid, the vertices that have been eliminated

in the perturbation step are also excluded from move generation.

Additionally, we implemented a path optimizing local search using 2-opt

moves. The search removes two edges in the solution and replaces them with

two different edges, provided that the total path cost decreases. This is repeated

until no moves that can decrease the total cost remain. This search is used by

GRASP-PR as the local search function in the GRASP main body and after each

path relinking step.

3.1.1 Comparison to published results

The comparison is made to the optimum or best published results. In case of the

Tsiligirides (1984) instances we compare to the optimum results obtained with

CPLEX (Souffriau 2010). In case of the 64- and 66-vertex instances of Chao

et al. (1996b) we compare against the best published result (Silberholz and Golden

2010; Schilde et al. 2009). For the TSPLIB based instances the optimum value is

taken from (Fischetti et al. 1998).

Table 3.1 gives the average minimum, arithmetic mean and maximum gap

over each set of test instances. GRASP-PR is the cooperative GRASP with path

relinking. GRILS-T is the cooperative GRASP-ILS hybrid using the trajectory

rejoin technique. GRILS-I in the independent (non-cooperative) version of the

same algorithm. We compare the results to the 2-PIA algorithm of Silberholz

and Golden (2010) for which the results are available for all of the OP datasets

included in the experiment. We’ve included the average time to solution tavg for

each algorithm. While direct comparisons between run times are not possible due

to various factors, this gives an estimate of expected time to solution in a practical

application.

2-PIA has the best solution quality on the smaller instances. For the larger

TSPLIB based dataset of Fischetti et al., GRASP-T performed more consistently,

having a better average and maximum gap. With the exception of the small Tsili-
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Table 3.1: Summary of gap to optimum in OP benchmarks. 0% gap indicates
optimum results, values larger than 0% indicate suboptimal results. Best results
are in bold
dataset instances Min. Avg. Max. tavg, s

Tsiligirides 49

2-PIA 0.00% 0.00% 0.00% 0.21
GRILS-T 0.00% 0.00% 0.05% 0.04
GRILS-I 0.00% 0.00% 0.00% 0.05
GRASP-PR 0.00% 0.13% 0.30% 1.5

Chao 40

2-PIA 0.38% 0.38% 0.38% 0.76
GRILS-T 0.06% 0.48% 1.04% 0.40
GRILS-I 0.24% 0.59% 1.03% 1.3
GRASP-PR 1.62% 3.13% 4.14% 3.3

Fischetti 123

2-PIA 1.66% 3.62% 4.31% 7.1
GRILS-T 1.70% 2.86% 4.01% 4.1
GRILS-I 2.40% 3.29% 4.09% 21
GRASP-PR 1.88% 3.25% 4.68% 44

girides instances, where GRASP-I has produced the optimum result in each test

run, it also dominates the other two evaluated parallelization approaches both in

terms of solution quality and average time to solution.

Appendix A.1 contains further detail about the experiment, including the gap

results for GRILS-T in each problem instance.

3.1.2 Execution time

For a randomized algorithm, timing of a single test run does not give an accurate

prediction of expected running time to a sufficiently high quality solution. We

performed additional tests of 100 runs on selected problem instances. The tests

were executed with the same number of workers (23) as the tests used to measure

solution quality (Section 3.1.1).

The criteria for choosing the problem instances for this test were as follows:

• all algorithms used in the experiment solved the instance to optimality (or

best known result) at least once;
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• two or more test runs (of any algorithm) reached the solution slower than 1

seconds;

• the problems with lower number of vertices were chosen among the possible

candidates.

These criteria were aimed to reduce the computation time required to produce

the results, at the same time avoiding trivial instances that can be solved, for ex-

ample, by greedy construction alone.

Using the methodology proposed by Aiex et al. (2002), we present the results

as an empirical probability distribution of ”time to target value”. We sort tests

i = 1, ..., 100 by the wall clock time ti spent to reach the solution with a score

equal or better than the target. The probability that the target is reached at a given

time ti is then pi = i−0.5
100

.

Figure 3.1 shows the empirical distribution of time to target value for the 48-

vertex problem instance gr48. Figure 3.2 shows the distribution for another 48-

vertex problem, hk48. 2% gap was selected as target in both cases. The graphs

show that for these problems, the probability of reaching a high quality solution

after 1 second of runtime exceeds 0.8 when using GRILS-T and GRILS-I.

3.1.3 Parallel performance

We evaluate the parallel performance by the efficiency metric. Ideal, or linear

speedup is achieved when the execution time of the algorithm is reduced n times

when executed by n workers in parallel. This corresponds to efficiency of 1. Let

T1 be the average time to reach a target value for a problem instance with one

worker process. Efficiency En = T1

nTn
.

To measure parallel efficiency, we performed tests by using from 1 to 128

worker processes on problem instances gr48 and hk48 that were selected for

the execution time experiment in Section 3.1.2. These test runs were not node-

local, i.e. node-to-node network communication was used. We measured wall

clock time to reach a target solution of 5% gap or better over 20 test runs.

27



0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100

p

time, s

GRILS-T
GRILS-I

GRASP-PR

Figure 3.1: Probability distribution of time to 2% gap for OP instance gr48 (Gen-
eration 1).
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Figure 3.2: Probability distribution of time to 2% gap for OP instance hk48 (Gen-
eration 1).

Table 3.2: Average efficiency of the parallelization approaches over the selected
OP instances, by number of parallel workers. Efficiency of 1 is equivalent to linear
speedup. Values between 0 and 1 indicate that some of the computing resource is
used redundantly, spent in communication or in blocking waits.

workers
2 4 8 16 32 64 128

GRILS-T 1.15 1.96 1.37 1.38 0.91 0.73 0.23
GRILS-I 1.00 0.93 0.83 1.02 0.68 0.51 0.35
GRASP-PR - - - - - - -
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Table 3.2 gives the average efficiency with 2 to 128 worker processes over the

selected problem instances. The difference between cooperative (GRILS-T) and

non-cooperative (GRILS-I) versions of the GRASP-ILS hybrid even out starting

from 32 parallel processes. Overall both approaches display excellent scalability

with to up to 64 processes. GRASP with path relinking was not capable of pro-

ducing results with 5% or better gap consistently with one process. Because we

did not obtain a reliable measure of T1 for GRASP-PR, it was omitted from the

comparison.

3.2 Generalized Orienteering Problem

While the GOP can be interpreted to be the OP with any objective function and

any cost function (Silberholz and Golden 2010; Ramesh and Brown 1991), we

implemented the formulation that is commonly referred to as the GOP in the lit-

erature. In this formulation, a vertex j has m attributes with associated scores

(pj1, pj2, . . . , pjm). A weight vector W = (w1, w2, . . . , wm) assigns importance

to each attribute. The objective function S =
∑m

a=1 wa

(∑n
i,j=1 p

k
jaxij

) 1
k
. As de-

fined in Section 3.1, xij is 1 if the edge from i to j is included in the solution and

0 otherwise.

The heuristic function was implemented as follows. Let S be the value of

the objective function for the current solution. Let Sk be the objective function

calculated for the solution where a new vertex k is inserted. The heuristic value

for an insertion move between vertices i and j is hikj = Sk−S
∆cikj

. The move is

evaluated based on the change in total score after the insertion. This is equal in

predictive power to the heuristic used for the OP.

In other respects the problem is identical to the OP. The feasible move gener-

ation and local search were implemented as described in Section 3.1.
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Table 3.3: Summary of gap to optimum in GOP benchmarks. 0% gap indicates
optimum results, values larger than 0% indicate suboptimal results. Best results
are in bold

Min. Avg. Max. tavg, s

2-PIA 0.00% 0.00% 0.00% 0.46
GRILS-T 0.22% 0.64% 1.39% 0.46
GRILS-I 0.33% 0.56% 0.91% 0.76
GRASP-PR 0.01% 0.11% 0.20% 3.33

3.2.1 Comparison to published results

We evaluated the algorithms on a 27-vertex problem dataset representing cities in

China. The reader is referred to the paper of Wang et al. (2008) for the full de-

scription of the ”Chinese Cities” benchmark and Appendix A.2 for the parameters

and detailed results of our experiment.

We compare the results of the experiments to the results for the two-parameter

iterative algorithm (2-PIA) of Silberholz and Golden (2010). Table 3.3 lists the

average gap to the best known solution and the average runtime to the best solution

over all test runs. Despite the small number of vertices in the graph, none of

the parallelization approaches were capable of reproducing the performance of 2-

PIA. The GRASP with path relinking is the only algorithm that uses 2-opt local

search and appears to benefit from that. The run times of the GRASP-ILS hybrid

approaches are comparable to that of 2-PIA. Overall this comparison favours 2-

PIA, which ran on a single core, to our parallel algorithms that used 23 virtual

cores.

3.2.2 Execution time

We calculate the empirical probability distribution of the random variable ”time to

target value” (see Section 3.1.2 for the description of the methodology). We chose

two sets of parameters for the experiment, based on the results of the solution

quality benchmark:

• all algorithms used in the experiment solved the instance to the best known
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result at least once;

• two or more test runs (of any algorithm) reached the solution slower than 1

seconds;

• k > 1 (k = 1 is equivalent to the OP).

We set target gap to 0.5%, because with parameter k ≥ 3 the numerical differ-

ences between solution scores are small. Figure 3.3 shows the empirical probabil-

ity for k = 3, with the weight vector W = (0, 1, 0, 0). In Figure 3.4 k = 4. All

of the evaluated algorithms display similar performance. As was the case with the

OP, the target solution can be expected to be reached by 1 second of computation

with the probability of 0.8 or better for the GRASP-ILS hybrid. GRASP with path

relinking was marginally slower.

3.2.3 Parallel performance

Scalability on the GOP dataset was evaluated with the same parameters that were

used in the execution time experiment. We measured wall clock time to target

solution that is equal or better than 2% gap to the best known solution for the

given parameter set. In Table 3.4 the average efficiency over 20 test runs for the

two parameter sets is given for the tested number of processors.

The efficiency of both parallelization methods of the GRASP-ILS hybrid is

excellent, although it can be observed to drop with 64 and 128 parallel workers.

Meanwhile, our implementation of GRASP with path relinking is clearly ineffi-

cient and does not scale according to expectations.

31



0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100

p

time, s

GRILS-T
GRILS-I

GRASP-PR

Figure 3.3: Probability distribution of time to 0.5% gap in the GOP benchmark
(k = 3, weight vector W = (0, 1, 0, 0)).
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Figure 3.4: Probability distribution of time to 0.5% gap in the GOP benchmark
(k = 4, weight vector W = (0, 1, 0, 0)).

Table 3.4: Average efficiency of the parallelization approaches over the selected
GOP instances, by number of parallel workers. Efficiency of 1 is equivalent to
linear speedup. Values between 0 and 1 indicate that some of the computing
resource is used redundantly, spent in communication or in blocking waits.

workers
2 4 8 16 32 64 128

GRILS-T 1.02 0.89 1.10 0.94 0.67 0.40 0.24
GRILS-I 0.90 0.78 0.58 0.60 0.57 0.30 0.21
GRASP-PR 1.08 0.57 0.27 0.08 0.02 0.01 0.00
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3.3 Team Orienteering Problem with Time Windows

The team orienteering problem (TOP) is a generalization of the OP where the

solution consists of a predetermined number of m ≥ 1 tours. Each tour must

honor the distance limit dlim. A vertex cannot be included in more than one tour.

When extended with time windows (TOPTW), a vertex k has an opening time Ok

and a closing time Ck. Let Pk be the set of vertices preceding k in the solution

and including k itself. The arrival time at vertex k is formally calculated as ak =

max{Ok,
∑n

i=1

∑
j∈Pk

xijcij}. The solution is considered feasible if ak ≤ Ck for

all vertices k that are part of the solution. We allow waiting at the vertex if the

opening time has not yet arrived.

Addressing multiple tours in feasible move generation is straightforward. When

considering the insertion of a vertex k, all possible insertion points in all tours are

generated as moves. Supporting time windows efficiently requires more work,

because insertions and removals cause changes in the arrival times of the ver-

tices succeeding the affected position in the solution. We adopt the approach of

Vansteenwegen et al. (2009). The time shift sk is calculated for a move of insert-

ing vertex k into the solution. In the theoretical model the vertices have no cost

associated, so for the insertion of k between vertices i and j, we may express the

time shift sikj = cik +wk + ckj − cij where wk = max{0, Ok− ak} is the waiting

time at k.

Each vertex k in the solution is associated with the maximum legal shift

(”maxshift”) smaxk
= min{Ck − ak, wj + smaxj

} where j denotes the vertex

following k. To evaluate the feasibility of an insertion, the algorithm needs to

check that the condition sikj ≤ smaxj
is fulfilled.

The maxshift variables need to updated on each insertion and removal. How-

ever, the time complexity of this operation is O(n2) for the solution size n per

each iteration. Since the feasible move generation already is of polynomial com-

plexity, the update of maxshift does not significantly reduce the performance of

the search.

As the objective function of TOPTW is the same as the objective function of

OP, we can derive the heuristic function to evaluate each insertion with a minor
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modification. hikj = pk

sikj
, because the calculated shift directly expresses how

much cost the move inflicts on the solution.

With the introduction of time windows, 2-opt based local search becomes

less effective as it causes reversals of sub-paths in the solution (Potvin and Ro-

billard 1995). We have omitted our local search completely from the experiments

involving problems with time windows.

3.3.1 Comparison to published results

The TOPTW experiments were carried out on the dataset of Montemanni and

Gambardella (2009). The comparison was made to two previously published al-

gorithms. Their average run times and gap values are taken from (Cura 2014). The

iterated local search (ILS) of Vansteenwegen et al. (2009) is one of the earliest al-

gorithms to tackle this problem. It has also remained one of the fastest algorithms

according to the literature. Later publications have improved on the results of ILS,

which invariably has involved a compromise in speed. Among those, the iterative

three-component heuristic (I3CH) has reached very high solution quality, espe-

cially when the number of tours m > 1. Those results were obtained by using,

on the average, 3 minutes and 40 seconds of computation (Hu and Lim 2014). A

more recent paper of Qin et al. (2015) reports a marginally better average gap by

using tabu search with the average computation time of 3 minutes and 42 seconds.

We present the results, organized by the dataset and the number of tours, in

Table 3.5 and Table 3.6. For the previously published results, we’ve kept the

numerical precision of Cura (2014), except for I3CH for Solomon instances with

4 tours, where the gap was very small but not equal to 0.

ILS is a deterministic algorithm so the Min., Avg. and Max. columns contain

the same values. I3CH contains nondeterministic components but the published

results were obtained using only one test on each instance, which is why the min-

imum, maximum and mean values are also taken to be equal.

The results of the cooperative GRASP-ILS hybrid compare favourable to those

of ILS. The average gap is better in all cases. The execution times are not directly
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Table 3.5: Summary of gap to optimum in TOPTW benchmarks (Solomon in-
stances). m is the number of tours in the benchmark. 0% gap indicates optimum
results, values larger than 0% indicate suboptimal results. Best results are in bold
tours instances Min. Avg. Max. tavg, s

m = 1 55

ILS 2.3% 2.3% 2.3% 0.9
I3CH 0.9% 0.9% 0.9% 79
GRILS-T 0.24% 0.66% 1.13% 1.9
GRILS-I 0.51% 0.81% 1.13% 5.0
GRASP-PR 1.07% 1.70% 2.33% 8.5

m = 2 55

ILS 2.4% 2.4% 2.4% 1.7
I3CH 0.3% 0.3% 0.3% 266
GRILS-T 0.86% 1.46% 2.08% 2.9
GRILS-I 1.15% 1.59% 1.98% 9.2
GRASP-PR 2.16% 2.98% 3.65% 16

m = 3 55

ILS 1.8% 1.8% 1.8% 1.6
I3CH 0.1% 0.1% 0.1% 89
GRILS-T 0.90% 1.42% 1.96% 2.9
GRILS-I 1.02% 1.49% 1.88% 7.1
GRASP-PR 1.92% 2.66% 3.32% 14

m = 4 55

ILS 1.7% 1.7% 1.7% 1.7
I3CH 0.03% 0.03% 0.03% 107
GRILS-T 1.08% 1.64% 2.21% 1.7
GRILS-I 1.35% 1.76% 2.06% 5.0
GRASP-PR 2.00% 2.61% 3.11% 7.7
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Table 3.6: Summary of gap to optimum in TOPTW benchmarks (Cordeau in-
stances). m is the number of tours in the benchmark. 0% gap indicates optimum
results, values larger than 0% indicate suboptimal results. Best results are in bold
tours instances Min. Avg. Max. tavg, s

m = 1 20

ILS 7.4% 7.4% 7.4% 1.9
I3CH 2.4% 2.4% 2.4% 120
GRILS-T 1.30% 2.76% 4.09% 2.6
GRILS-I 2.18% 3.25% 4.26% 9.0
GRASP-PR 2.70% 5.40% 7.61% 11

m = 2 20

ILS 7.0% 7.0% 7.0% 5.0
I3CH 1.3% 1.3% 1.3% 276
GRILS-T 2.45% 4.66% 6.83% 4.5
GRILS-I 4.42% 5.72% 6.76% 20
GRASP-PR 5.47% 7.74% 9.63% 32

m = 3 20

ILS 8.3% 8.3% 8.3% 9.5
I3CH 0.4% 0.4% 0.4% 461
GRILS-T 3.49% 5.65% 7.52% 5.8
GRILS-I 5.55% 6.66% 7.60% 26
GRASP-PR 6.22% 7.95% 9.45% 56

m = 4 20

ILS 8.2% 8.2% 8.2% 13.9
I3CH 0.1% 0.1% 0.1% 648
GRILS-T 4.20% 5.95% 7.36% 6.9
GRILS-I 5.93% 6.88% 7.65% 35
GRASP-PR 6.45% 7.63% 8.78% 79
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Table 3.7: New best TOPTW results found by the cooperative GRASP-ILS hybrid
instance m new best

rc208 1 1046
r104 2 550
r107 2 538
pr13 1 467
pr09 2 897

comparable because of the different hardware configurations, but they indicate

that in applications where the tour needs to be computed in response to an online

query, both algorithms in their test configuration would be equally usable.

The computation time of I3CH is much larger, which would make it more

suitable for pre-computing or batch processing tours. Hu and Lim (2014) have re-

ported that they also obtain high quality solutions with lower computation time as

well. However, these computation times are still on the average more than 2 times

slower (7.5 seconds in the fastest benchmark) than those of ILS and GRILS-T,

while the solutions quality at m = 1 is worse than our GRILS-T and approaching

our results at m = 2. I3CH remains superior at m > 2.

The other two parallelization approaches that were used in the experiment

were less successful. In terms of average solution quality, GRILS-I is dominated

by GRILS-T, although the difference is under 0.2% on Solomon instances and

approximately 1% on Cordeau instances. The difference is mainly in the time it

takes to reach the solutions, with the independent version being 5 times slower.

Our implementation of GRASP with path relinking was inferior to the rest of the

algorithms in both solution quality and speed.

The cooperative GRASP-ILS hybrid also found new best solutions in 5 of the

instances (Table 3.7). The full results and details of the experiment are given in

Appendix A.3.
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3.3.2 Execution time

We use empirical probability distribution of ”time to target value” to estimate how

long it takes for each of the presented parallelization approaches to reach a high

quality solution. We performed 20 tests on two TOPTW instances, chosen using

the following criteria:

• all algorithms used in the experiment solved the instance to the best known

result at least once;

• two or more test runs (of any algorithm) reached the solution slower than 1

seconds;

• the problems with lower number of tours were preferred.

These tests were performed with 23 parallel workers and node-locally. The

results vary by the chosen instance. rc108 was solved significantly faster, with

GRASP-T producing the required solution with probability 0.9 in 0.1 seconds

(Figure 3.5). For r101 (two tours), it took approximately a second for both

GRASP-ILS hybrids to produce a high quality solution with the probability 0.8

or higher (Figure 3.6).

3.3.3 Parallel performance

The scalability of the GRASP-ILS hybrids is very good with up to 32 parallel

workers, where the efficiency is near 1 (Table 3.8). With 64 and 128 workers

some degradation in efficiency appears. The tests were performed on rc108

(m = 1) and r101 (m = 2), with 5 test runs for each combination of the instance

and the number of workers. With GRASP-PR we were unable to obtain a reliable

measure of the average time with 1 worker at target gap 5% and therefore unable

to calculate the speedup.
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Figure 3.5: Probability distribution of time to 2% gap for the TOPTW instance
rc108 (m = 1).
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Figure 3.6: Probability distribution of time to 2% gap for the TOPTW instance
r101 (m = 2).

Table 3.8: Average efficiency of the parallelization approaches over the selected
TOPTW instances rc108 (m = 1) and r101 (m = 2), by number of paral-
lel workers. Efficiency of 1 is equivalent to linear speedup. Values between 0
and 1 indicate that some of the computing resource is used redundantly, spent in
communication or in blocking waits.

workers
2 4 8 16 32 64 128

GRILS-T 1.10 0.90 1.08 1.01 0.92 0.51 0.25
GRILS-I 1.39 1.04 1.24 1.21 0.81 0.63 0.33
GRASP-PR - - - - - - -
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3.4 Multi-Constrained Team Orienteering Problem

with Time Windows

In this experiment, we used the variation of the problem with multiple time win-

dows (MCTOPMTW). The differences from TOPTW (Section 3.3) are as follows:

• each vertex k has multiple pairs of opening and closing times {(Ok1 , Ck1), . . . , (Okn , Ckn)}.

• each vertex has a type vector 〈T1, T2, . . . , Tn〉 where Ti is 1 if the vertex is

of the given type and 0 otherwise. There is also a global constraint Tmaxi
of

the number of each type i in the solution P , so that
∑

j∈P Tj(i) ≤ Tmaxi
.

• each vertex has one or more associated attributes {A1, . . . An} which have

numerical values and must honor a global constraint Ai ≤ Amaxi
.

We implement the type count and attribute constraints by keeping track of

the number of each type and sum of the attributes over all of the vertices in the

solution. An insertion move is discarded, if the vertex would cause one of the

constraints to be violated. If this happens, the vertex is ignored in move genera-

tion until some vertices are removed from the solution (the perturbation phase or

resetting the solution).

When performing an insertion or removal move or generating insertion moves,

the current time window is determined first. This is the earliest time window for

which Cki
< ak (k refers to the vertex, ak is the arrival time at the vertex and i is

the index of the opening/closing time pair). After this, the current time window is

used in calculations in the same way as the single time window with the TOPTW.

Because the objective function and the computation of shifts is the same as

with the TOPTW, we may use the same heuristic function as with the TOPTW

(Section 3.3).

3.4.1 Comparison to published results

We compare our parallelization approaches to the sequential solution of Souffriau

et al. (2013). Their GRASP-ILS hybrid differs from ours in implementation de-
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tails but has a similar structure. To the best of our knowledge, their average gap

values are also the best published results. The dataset used in the experiment is

derived from the TOPTW datasets that are widely used. See Appendix A.4 for

details.

We have listed the results of Souffriau et al. (2013) with one modification.

They give the total runtime over 10 test runs. In our comparisons we have used

average runtime per one test run, so we divide their run times by 10.

Our results are clearly inferior to the state of the art, although in case of the

Cordeau et al. based instances and one tour, GRILS-T has reached better average

solution quality (Table 3.9).

3.4.2 Execution time

We estimate the executing time by determining the probability distribution of the

random variable ”time to target value” empirically. Two problem instances where

selected using the same guiding principles as in the TOPTW experiment (Sec-

tion 3.3.2). 20 test runs were performed with 23 parallel workers.

Figure 3.7 shows the probability curve for the instance r106. In Figure 3.8

the instance rc108 is shown. In both cases, the number of tours m = 1 and

the target gap chosen was 2%. Both GRASP-ILS hybrid approaches reached the

selected gap in under 0.5 seconds, with probability 0.8 or higher.

3.4.3 Parallel performance

The scalability tests were done on the same instances as the probability distribu-

tion experiment. We performed 5 test runs with the number of parallel workers

varying from 1 to 128. The efficiency of the GRASP-ILS hybrids is excellent in all

the tested configurations. In these tests both parallelizations achieved near-linear

speedup (Table 3.10). We omit the results for GRASP with path relinking, as we

were unable to reliably measure the solution time to the target 5% gap with one

worker.
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Table 3.9: Summary of gap to optimum in MCTOPMTW benchmarks. m is the
number of tours in the benchmark. 0% gap indicates optimum results, values
larger than 0% indicate suboptimal results. Best results are in bold
dataset instances Min. Avg. Max. tavg, s

Solomon (m = 1) 29

GRASP-ILS 0.59% 1.21% 2.02% 0.27
GRILS-T 1.75% 1.77% 1.92% 0.27
GRILS-I 1.75% 1.77% 1.89% 0.33
GRASP-PR 2.30% 2.89% 4.07% 1.8

Solomon (m = 2) 29

GRASP-ILS 1.30% 2.55% 3.85% 0.77
GRILS-T 1.92% 3.47% 5.38% 1.7
GRILS-I 2.31% 3.76% 4.99% 4.3
GRASP-PR 2.91% 5.40% 7.36% 6.8

Solomon (m = 3) 29

GRASP-ILS 1.80% 3.56% 4.96% 1.4
GRILS-T 3.47% 5.95% 8.17% 2.9
GRILS-I 5.17% 6.59% 7.96% 8.2
GRASP-PR 5.67% 7.96% 9.64% 11

Solomon (m = 4) 29

GRASP-ILS 2.85% 4.28% 5.59% 2.3
GRILS-T 4.60% 7.04% 8.88% 3.3
GRILS-I 6.17% 7.71% 8.84% 11
GRASP-PR 7.23% 9.24% 10.67% 14

Cordeau (m = 1) 8

GRASP-ILS 4.24% 5.86% 8.14% 0.68
GRILS-T 1.41% 1.94% 5.01% 2.3
GRILS-I 2.28% 3.80% 5.04% 7.4
GRASP-PR 4.45% 7.67% 10.87% 7.9

Cordeau (m = 2) 8

GRASP-ILS 1.91% 3.94% 5.55% 1.8
GRILS-T 4.96% 7.70% 11.06% 2.9
GRILS-I 7.61% 9.23% 10.52% 15
GRASP-PR 7.03% 10.22% 12.94% 18

Cordeau (m = 3) 8

GRASP-ILS 2.57% 4.38% 5.85% 3.2
GRILS-T 5.25% 7.64% 10.03% 5.8
GRILS-I 7.43% 8.89% 10.13% 24
GRASP-PR 8.38% 10.09% 11.65% 33

Cordeau (m = 4) 8

GRASP-ILS 2.86% 4.18% 5.24% 5.2
GRILS-T 5.43% 7.21% 8.67% 7.6
GRILS-I 6.86% 8.02% 9.10% 33
GRASP-PR 6.86% 8.60% 9.88% 50
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Figure 3.7: Probability distribution of time to 2% gap for the MCTOPMTW in-
stance r106 (m = 1).
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Figure 3.8: Probability distribution of time to 2% gap for the MCTOPMTW in-
stance rc108 (m = 1).

Table 3.10: Average efficiency of the parallelization approaches over the selected
MCTOPMTW instances r106 (m = 1) and rc108 (m = 1), by number of
parallel workers. Efficiency of 1 is equivalent to linear speedup. Values between
0 and 1 indicate that some of the computing resource is used redundantly, spent in
communication or in blocking waits.

workers
2 4 8 16 32 64 128

GRILS-T 0.86 0.73 0.97 1.28 1.82 1.16 1.35
GRILS-I 1.30 1.10 1.17 1.39 0.91 0.93 0.73
GRASP-PR - - - - - - -
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3.5 Time Dependent Orienteering Problem

The time dependent orienteering problem (TDOP) is a generalization of the OP

where the cost of traveling an edge from vertex i to j is a function of the departure

(because in the formalized OP, vertices have no cost, this is also the arrival) time

from vertex i. Based on (Verbeeck et al. 2014), c(i, j, ai) is a piecewise linear

function. The distances between vertices are fixed. The speed of travel is depen-

dent on both the edge type and time of day. This simulates typical commute and

urban traffic patterns.

An insertion or removal of a vertex is likely to cause a change in costs for

the edges following it, because arrival times for the following vertices are shifted.

Since the costs can both increase and decrease, there is a possibility that the total

duration of the tour decreases on an insertion or increases on a removal.

The adaptation of our algorithms to TDOP includes efficient feasible move

generation, the bookkeeping functionality to support that and a custom heuris-

tic function. To efficiently check the feasibility of an insertion we adopt the

”maxshift” approach of Verbeeck et al. (2014). For each vertex j, a′j is the latest

arrival time that does not cause the total duration of the tour to exceed the dura-

tion limit of the problem. The maximum allowed shift smaxj
= a′j − aj . For an

insertion of vertex k before vertex j, we compute sikj = c(i, k, ai) + c(k, j, ak)−
c(i, j, ai) and check that sikj ≤ smaxj

is satisfied.

In the perturbation phase of the GRASP-ILS hybrids we additionally need to

check that the removal of a vertex does not destroy the feasibility of the solution.

We use a simple heuristic measure of checking whether the vertex shortens the

overall duration of the tour. For the removal of k to be allowed sikj ≥ 0 must be

satisfied.

The heuristic function hikj = pk

max{ε,sikj}
where ε > 0 is a small value that

is used instead of a negative shift. For a constant pk, hijk is then a monotonic

function of sijk 1.

We do not use 2-opt local search with TDOP as arbitrarily reversing sub-

path causes similar difficulties with the cost function as with the time windows
1although a strictly ordered mapping would be more accurate
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Table 3.11: Summary of gap to optimum in TDOP benchmarks. 0% gap indicates
optimum results, values larger than 0% indicate suboptimal results. Best results
are in bold

Min. Avg. Max. tavg, s

ACS 0.2% 0.7% 1.3% 0.1
GRILS-T 5.79% 8.78% 10.78% 5.8
GRILS-I 6.25% 8.00% 9.39% 7.3
GRASP-PR 5.97% 8.60% 10.88% 23

(Section 3.3).

3.5.1 Comparison to published results

Verbeeck et al. (2014) have divided their results in two parts. We tested our paral-

lelization approaches with the smaller instances which have been solved to opti-

mality with CPLEX2. This set includes 24 instances. The larger set which requires

modification of edge costs based on intermediate CPLEX results was omitted from

our comparison.

Table 3.11 shows a large disparity between both the speed and the solution

quality of the ant colony system (ACS) of Verbeeck et al. and our approaches.

This could indicate that our heuristic function is too inaccurate and the construc-

tion phase produces systemically flawed solutions, because in our experiment,

both GRASP-ILS hybrids examined over 250000 solutions for each instance. This

is much more than the ACS needed to arrive at its high quality results.

We’ve omitted the execution time and scalability results for TDOP. They would

be less meaningful as both depend on the measurement of time to high quality

target solution. The evaluated algorithms were unable to produce high quality

solutions on this benchmark.

2http://www.ibm.com/software/integration/optimization/
cplex-optimizer/
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Chapter 4

Discussion

This research makes the following contributions:

• We have presented experimental results of a metaheuristic approach to solv-

ing generalizations of the OP in parallel.

• We have designed a parallelization technique for the GRASP-ILS hybrid

metaheuristic.

• We have shown that the approach is scalable and adaptable to applications

where the response time needs to be low.

The experiments cover four generalized models that are specifically chosen

for their applicability in tourist trip design. According to Gavalas et al. (2014),

parallelized approach to TTDP-s is a relevant yet unexplored research direction.

The design of the algorithms has intentionally been generic, with problem-specific

components plugged in as necessary. We covered these adaptations in Chapter 3

for each of the experiments.

Earlier parallelization techniques of the GRASP have exclusively relied on

path relinking (Resende and Ribeiro 2010). The GRASP-ILS hybrid metaheuris-

tic, that has already been shown to be effective in TTDP related problems (Souf-

friau et al. 2013) does not use an pool of elite solutions. We have adopted a simple

technique of sharing best solutions between the parallel workers to concentrate the
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search efforts in the neighbourhood of good solutions. This can be described as

rejoining search trajectories.

Distributed computing platforms that have expensive communication are more

prevalent than highly parallel closely integrated systems. Such platforms include

clusters and grids. In the environment of expensive messaging, non-cooperative

approaches are a strong alternative. Throughout the experiment we also evaluated

the performance of the independent parallel GRASP-ILS hybrid.

4.1 Application opportunities

Similar metaheuristics have already been deployed in recommendation systems

like CityTripPlanner1 and VisitEstonia2. The focus on the insertion move in the

search and random sampling makes them successful in models with time windows

and other constraints.

The greedy random construction can be conveniently started with a partial

solution. In the TTDP case, the user may provide their partial itinerary, which

GRASP can then augment. The POIs chosen by the user can be flagged so that

they are not removed from the solution by the recommender. The same principle

can also be applied in incremental, interactive construction of the solution.

Team variants of the OP have been used to model multi-day trips. This is

useful for an elegant mathematical formulation. However, a single tour spanning

multiple days is an equally valid approach, as it covers multiple OP related opera-

tions research problems. For example, accommodation can either be pre-selected

as part of the input or be included among the vertices of the problem with suitable

time windows associated. We suggest a single-tour model with multiple time win-

dows and compulsory vertices as a practical approach to TTDP. The metaheuristic

template we have presented is directly applicable to such a model.

1http://citytripplanner.be/
2http://www.visitestonia.com/en/travel-planner
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4.2 Further study opportunities

Several options in improving the algorithms were left unexplored. In the perturba-

tion phase of the GRASP-ILS hybrid, the β selection and the weighting of items

to be eliminated can both be done using an approach similar to Reactive GRASP.

β can also be chosen as a function of the current iteration number so that the

perturbations decrease over time (as in the simulated annealing heuristic).

Sequential components of the algorithms can be improved by local search

techniques that are suitable for the TOPTW model: 2-opt* and Or-opt (Potvin

and Robillard 1995; Mester and Bräysy 2005). Both of these are time window

friendly, 2-opt* is specifically tailored for multiple tours.

Our implementation of GRASP-PR suffered in both solution quality and speed.

This can be connected to its poor scalability, since the bulk of the experiments

were carried out with 23 worker processes. Not enough effort went to improving

its performance, so GRASP-PR cannot be discounted on the basis of our results.

For example, assuming that the elite pool was over-contended, we can increase

the locality by choosing the two-tiered elite pool strategy instead of a centralized

approach and reducing the frequency of the messaging.

4.3 Conclusions

We have presented the parallelized GRASP-ILS hybrid. Out of the tested ap-

proaches, the cooperative parallel version (GRASP-T) reached the best gap values

when tested on published benchmarks. It compared favourably to the state of the

art on the team orienteering problem with time windows (TOPTW) benchmark,

for which many competing algorithms exist.

Overall the solution quality results were mixed, most notably the performance

of the algorithms was unsatisfactory on the time dependent orienteering problem

(TDOP).

The independent version of the GRASP-ILS hybrid was slightly inferior over-

all. This indicates that our cooperative strategy is beneficial. Both parallelization
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methods of this metaheuristic displayed excellent scalability. In the tested con-

figurations, they were capable of near-linear speedup. Both methods also have a

characteristic probability distribution of time to target value, where high quality

solutions have a high probability of appearing early in the search. This makes the

techniques well suited in settings where the response time is a factor.
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Chapter 5

Summary

We presented a parallelization method for algorithms that solve a family of combi-

natorial optimization problems called the orienteering problem (OP) and its gen-

eralizations. This problem arises in the fields of logistics and automated planning

and consists of finding a most profitable route between fixed locations, under time

limit. An example of such a problem is automated creation of tourist trip plans,

where the goal is to create a tour between places that are most interesting for the

tourist, given that the tourist has a certain amount of time available.

We used an existing non-parallel hybrid metaheuristic that combines iterated

local search (ILS) and the construction method of the greedy random adaptive

search procedure (GRASP). We developed a novel parallelization method that

benefits from cooperative behaviour. For comparison, we also implemented a non-

cooperative parallel version of the same algorithm. To compare against a known

parallel metaheuristic, we additionally implemented a version of the greedy ran-

domized adaptive search procedure with path relinking (GRASP-PR) that follows

the general guidelines published in the literature.

We compared our parallelization technique to these alternative versions to

show that the cooperative approach contributes to the solution quality and speed

and that our novel approach is competitive with a previously published approach.

We performed tests with these three algorithms on five benchmark datasets from

the literature. The results are also compared to non-parallel state of the art algo-
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rithms that have produced significant results on these benchmarks.

We showed that the our approach exhibits the useful property of reaching good

quality suboptimal solutions early in the search, with predictable probability. Both

cooperative and non-cooperative versions of the GRASP-ILS hybrid scaled well

with up to 128 parallel worker processes. The quality of the solutions varied de-

pending on the benchmark, with some problem types remaining difficult to solve.
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Catalá, A., Martı́nez, J. J., and Mocholı́, J. A. Strategies for accelerating

ant colony optimization algorithms on graphical processing units. In Pro-

ceedings of the IEEE Congress on Evolutionary Computation, CEC 2007,

52

http://dx.doi.org/10.1007/978-0-387-85820-3_24
http://dx.doi.org/10.1007/978-0-387-85820-3_24
http://dx.doi.org/10.1007/0-387-25383-1_14
http://dx.doi.org/10.1007/0-387-25383-1_14
http://dx.doi.org/10.1023/A:1015061802659
http://dx.doi.org/10.1023/A:1015061802659
http://dx.doi.org/10.1111/j.1475-3995.2012.00862.x


25-28 September 2007, Singapore, pages 492–500. IEEE, 2007. doi: 10.

1109/CEC.2007.4424511. URL http://dx.doi.org/10.1109/CEC.

2007.4424511.

Chao, I.-M., Golden, B. L., and Wasil, E. A. The team orienteer-

ing problem. European Journal of Operational Research, 88(3):464

– 474, 1996a. ISSN 0377-2217. doi: http://dx.doi.org/10.1016/

0377-2217(94)00289-4. URL http://www.sciencedirect.com/

science/article/pii/0377221794002894.

Chao, I.-M., Golden, B. L., and Wasil, E. A. A fast and effective heuris-

tic for the orienteering problem. European Journal of Operational Re-

search, 88(3):475 – 489, 1996b. ISSN 0377-2217. doi: http://dx.doi.org/

10.1016/0377-2217(95)00035-6. URL http://www.sciencedirect.

com/science/article/pii/0377221795000356.

Cordeau, J., Gendreau, M., and Laporte, G. A tabu search heuristic for periodic

and multi-depot vehicle routing problems. Networks, 30(2):105–119, 1997. doi:

10.1002/(SICI)1097-0037(199709)30:2〈105::AID-NET5〉3.0.CO;2-G. URL

http://dx.doi.org/10.1002/(SICI)1097-0037(199709)30:

2<105::AID-NET5>3.0.CO;2-G.

Cura, T. An artificial bee colony algorithm approach for the team orienteering

problem with time windows. Computers & Industrial Engineering, 74:270–

290, 2014. doi: 10.1016/j.cie.2014.06.004. URL http://dx.doi.org/

10.1016/j.cie.2014.06.004.

Erdogan, G. and Laporte, G. The orienteering problem with variable prof-

its. Networks, 61(2):104–116, 2013. doi: 10.1002/net.21496. URL http:

//dx.doi.org/10.1002/net.21496.

Feo, T. A., Resende, M. G. C., and Smith, S. H. A greedy randomized adaptive

search procedure for maximum independent set. Operations Research, 42(5):

860–878, 1994. doi: 10.1287/opre.42.5.860. URL http://dx.doi.org/

10.1287/opre.42.5.860.

53

http://dx.doi.org/10.1109/CEC.2007.4424511
http://dx.doi.org/10.1109/CEC.2007.4424511
http://www.sciencedirect.com/science/article/pii/0377221794002894
http://www.sciencedirect.com/science/article/pii/0377221794002894
http://www.sciencedirect.com/science/article/pii/0377221795000356
http://www.sciencedirect.com/science/article/pii/0377221795000356
http://dx.doi.org/10.1002/(SICI)1097-0037(199709)30:2<105::AID-NET5>3.0.CO;2-G
http://dx.doi.org/10.1002/(SICI)1097-0037(199709)30:2<105::AID-NET5>3.0.CO;2-G
http://dx.doi.org/10.1016/j.cie.2014.06.004
http://dx.doi.org/10.1016/j.cie.2014.06.004
http://dx.doi.org/10.1002/net.21496
http://dx.doi.org/10.1002/net.21496
http://dx.doi.org/10.1287/opre.42.5.860
http://dx.doi.org/10.1287/opre.42.5.860
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Appendix A

Detailed gap results

A.1 Orienteering Problem

The following tables give the gap to optimum result for the cooperative GRASP-

ILS hybrid (GRILS-T) over all of the tested OP instances. The datasets tsi32,

tsi21 and tsi33 are the 32-vertex, 21-vertex and 33-vertex datasets, respec-

tively, of Tsiligirides (1984). The datasets chao66 and chao64 are the 66-

vertex and 64-vertex datasets of Chao et al. (1996b). The rest of the datasets

were converted from TSPLIB problems by Fischetti et al. (1998). The full set of

problem instances with pre-generated distance tables is available online 1.

dlim is the distance budget for the given instance. Optimum is determined as

described in Section 3.1.1. Min., Avg. and Max. give the minimum, arithmetic

mean and maximum gap for the given instance over 10 test runs. The gap was

calculated as
(

1− S
Sopt

)
100% where Sopt is the optimum for the instance and S

is the score of the test run.

The gap results are given for test runs with 23 parallel workers. The workload

was partitioned by assigning a fixed number of 2000 iterations to each worker.

1http://josilber.scripts.mit.edu/gop.zip
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Table A.1: Gap results for cooperative GRASP-ILS hybrid:
Tsiligirides instances

Problem dlim Optimum Min. Avg. Max.

tsi32 5 10 0.00% 0.00% 0.00%
tsi32 10 15 0.00% 0.00% 0.00%
tsi32 15 45 0.00% 0.00% 0.00%
tsi32 20 65 0.00% 0.00% 0.00%
tsi32 25 90 0.00% 0.00% 0.00%
tsi32 30 110 0.00% 0.00% 0.00%
tsi32 35 135 0.00% 0.00% 0.00%
tsi32 40 155 0.00% 0.00% 0.00%
tsi32 46 175 0.00% 0.00% 0.00%
tsi32 50 190 0.00% 0.00% 0.00%
tsi32 55 205 0.00% 0.00% 0.00%
tsi32 60 225 0.00% 0.22% 2.22%
tsi32 65 240 0.00% 0.00% 0.00%
tsi32 70 260 0.00% 0.00% 0.00%
tsi32 73 265 0.00% 0.00% 0.00%
tsi32 75 270 0.00% 0.00% 0.00%
tsi32 80 280 0.00% 0.00% 0.00%
tsi32 85 285 0.00% 0.00% 0.00%

tsi21 15 120 0.00% 0.00% 0.00%
tsi21 20 200 0.00% 0.00% 0.00%
tsi21 23 210 0.00% 0.00% 0.00%
tsi21 25 230 0.00% 0.00% 0.00%
tsi21 27 230 0.00% 0.00% 0.00%
tsi21 30 265 0.00% 0.00% 0.00%
tsi21 32 300 0.00% 0.00% 0.00%
tsi21 35 320 0.00% 0.00% 0.00%
tsi21 38 360 0.00% 0.00% 0.00%
tsi21 40 395 0.00% 0.00% 0.00%
tsi21 45 450 0.00% 0.00% 0.00%

tsi33 15 170 0.00% 0.00% 0.00%
tsi33 20 200 0.00% 0.00% 0.00%
tsi33 25 260 0.00% 0.00% 0.00%
tsi33 30 320 0.00% 0.00% 0.00%
tsi33 35 390 0.00% 0.00% 0.00%
tsi33 40 430 0.00% 0.00% 0.00%
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Table A.1: Continued

Problem dlim Optimum Min. Avg. Max.

tsi33 45 470 0.00% 0.00% 0.00%
tsi33 50 520 0.00% 0.00% 0.00%
tsi33 55 550 0.00% 0.00% 0.00%
tsi33 60 580 0.00% 0.00% 0.00%
tsi33 65 610 0.00% 0.00% 0.00%
tsi33 70 640 0.00% 0.00% 0.00%
tsi33 75 670 0.00% 0.00% 0.00%
tsi33 80 710 0.00% 0.00% 0.00%
tsi33 85 740 0.00% 0.00% 0.00%
tsi33 90 770 0.00% 0.00% 0.00%
tsi33 95 790 0.00% 0.00% 0.00%
tsi33 100 800 0.00% 0.00% 0.00%
tsi33 105 800 0.00% 0.00% 0.00%
tsi33 110 800 0.00% 0.00% 0.00%

Table A.2: Gap results for cooperative GRASP-ILS hybrid:
Chao et al. instances

Dataset dlim Optimum Min. Avg. Max.

chao64 5 10 0.00% 0.00% 0.00%
chao64 10 40 0.00% 0.00% 0.00%
chao64 15 120 0.00% 0.00% 0.00%
chao64 20 205 0.00% 0.00% 0.00%
chao64 25 290 0.00% 0.00% 0.00%
chao64 30 400 0.00% 0.00% 0.00%
chao64 35 465 0.00% 0.00% 0.00%
chao64 40 575 0.00% 0.35% 3.48%
chao64 45 650 0.00% 1.54% 3.08%
chao64 50 730 0.00% 0.96% 2.74%
chao64 55 825 0.00% 2.06% 3.64%
chao64 60 915 1.09% 2.73% 4.37%
chao64 65 980 0.00% 1.53% 3.06%
chao64 70 1070 0.00% 1.87% 4.67%
chao64 75 1140 0.00% 1.23% 3.07%
chao64 80 1215 0.00% 1.23% 1.65%
chao64 85 1270 0.00% 0.00% 0.00%
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Table A.2: Continued

Dataset dlim Optimum Min. Avg. Max.

chao64 90 1340 0.00% 0.37% 0.75%
chao64 95 1395 0.00% 0.00% 0.00%
chao64 100 1465 0.00% 0.00% 0.00%
chao64 105 1520 0.00% 0.00% 0.00%
chao64 110 1560 0.00% 0.00% 0.00%
chao64 115 1595 0.00% 0.00% 0.00%
chao64 120 1635 0.00% 0.00% 0.00%
chao64 125 1670 0.00% 0.00% 0.00%
chao64 130 1680 0.00% 0.00% 0.00%

chao66 15 96 0.00% 0.00% 0.00%
chao66 20 294 0.00% 0.00% 0.00%
chao66 25 390 0.00% 0.15% 1.54%
chao66 30 474 1.27% 1.27% 1.27%
chao66 35 576 0.00% 1.67% 3.12%
chao66 40 714 0.00% 0.00% 0.00%
chao66 45 816 0.00% 0.74% 1.47%
chao66 50 900 0.00% 0.87% 2.00%
chao66 55 984 0.00% 0.49% 0.61%
chao66 60 1062 0.00% 0.23% 1.13%
chao66 65 1116 0.00% 0.00% 0.00%
chao66 70 1188 0.00% 0.00% 0.00%
chao66 75 1236 0.00% 0.00% 0.00%
chao66 80 1284 0.00% 0.00% 0.00%

Table A.3: Gap results for cooperative GRASP-ILS hybrid:
Fischetti et al. instances

Dataset dlim Optimum Min. Avg. Max.

Generation 1

att48 5314 31 0.00% 0.00% 0.00%
gr48 2523 31 0.00% 0.00% 0.00%
hk48 5731 30 0.00% 0.00% 0.00%
eil51 213 29 0.00% 0.00% 0.00%
brazil58 12698 46 0.00% 1.09% 2.17%
st70 338 43 0.00% 0.47% 2.33%
eil76 269 47 0.00% 1.28% 2.13%
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Table A.3: Continued

Dataset dlim Optimum Min. Avg. Max.

pr76 54080 49 0.00% 1.84% 2.04%
gr96 27605 64 3.12% 5.31% 6.25%
rat99 606 52 0.00% 1.35% 1.92%
kroA100 10641 56 0.00% 0.00% 0.00%
kroB100 11071 58 0.00% 0.00% 0.00%
kroC100 10375 56 5.36% 5.71% 7.14%
kroD100 10647 59 1.69% 2.20% 3.39%
kroE100 11034 57 0.00% 0.00% 0.00%
rd100 3955 61 0.00% 1.80% 3.28%
eil101 315 64 0.00% 0.62% 1.56%
lin105 7190 66 0.00% 0.00% 0.00%
pr107 22152 54 0.00% 0.00% 0.00%
gr120 3471 75 1.33% 4.40% 6.67%
pr124 29515 75 0.00% 0.00% 0.00%
bier127 59141 103 0.00% 0.00% 0.00%
pr136 48386 71 4.23% 4.23% 4.23%
gr137 34927 81 0.00% 0.99% 1.23%
pr144 29269 77 0.00% 0.52% 3.90%
kroA150 13262 86 2.33% 4.53% 5.81%
kroB150 13065 87 2.30% 5.29% 8.05%
pr152 36841 77 1.30% 4.16% 6.49%
u159 21040 93 0.00% 0.65% 1.08%
rat195 1162 102 1.96% 2.94% 3.92%
d198 7890 123 3.25% 6.10% 7.32%
kroA200 14684 117 3.42% 4.27% 5.98%
kroB200 14719 119 5.04% 7.06% 9.24%
gr202 20080 147 2.72% 3.88% 4.76%
ts225 63322 125 2.40% 2.88% 4.80%
pr226 40185 134 9.70% 15.75% 17.91%
gr229 67301 176 1.70% 1.82% 2.27%
gil262 1189 158 4.43% 8.99% 12.03%
pr264 24568 132 0.00% 0.00% 0.00%
pr299 24096 162 4.32% 4.75% 5.56%
lin318 21045 205 10.24% 11.66% 14.63%
rd400 7641 239 6.69% 8.28% 9.62%

Generation 2

att48 5314 1717 0.00% 0.00% 0.00%
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Table A.3: Continued

Dataset dlim Optimum Min. Avg. Max.

gr48 2523 1761 0.28% 0.59% 0.62%
hk48 5731 1614 0.00% 0.62% 1.86%
eil51 213 1674 0.00% 0.22% 0.72%
brazil58 12698 2220 0.00% 0.16% 0.81%
st70 338 2286 0.04% 0.16% 0.44%
eil76 269 2550 0.63% 2.09% 3.14%
pr76 54080 2708 0.00% 0.42% 0.89%
gr96 27605 3425 3.27% 3.74% 4.41%
rat99 606 2944 1.15% 2.26% 4.62%
kroA100 10641 3212 0.00% 0.00% 0.00%
kroB100 11071 3241 0.74% 1.23% 1.85%
kroC100 10375 2947 0.00% 0.24% 1.36%
kroD100 10647 3307 0.24% 1.93% 3.87%
kroE100 11034 3090 0.06% 0.55% 1.65%
rd100 3955 3359 0.00% 0.68% 0.80%
eil101 315 3655 0.55% 0.84% 1.20%
lin105 7190 3544 0.23% 0.30% 0.48%
pr107 22152 2667 0.00% 0.00% 0.00%
gr120 3471 4371 0.96% 3.88% 7.62%
pr124 29515 3917 0.00% 0.05% 0.46%
bier127 59141 5383 0.85% 1.28% 2.02%
pr136 48386 4309 2.88% 5.07% 6.20%
gr137 34927 4294 0.37% 0.47% 0.63%
pr144 29269 4003 0.00% 0.29% 1.00%
kroA150 13262 4918 0.71% 2.89% 3.76%
kroB150 13065 4869 1.66% 5.17% 7.23%
pr152 36841 4279 0.91% 3.00% 5.63%
u159 21040 4960 1.15% 1.63% 3.19%
rat195 1162 5791 3.26% 4.57% 6.20%
d198 7890 6670 0.99% 2.57% 4.74%
kroA200 14684 6547 3.42% 5.59% 8.14%
kroB200 14719 6419 2.26% 3.94% 6.15%
gr202 20080 7848 2.45% 3.38% 4.36%
ts225 63322 6834 2.66% 2.89% 4.01%
pr226 40185 6615 7.32% 7.81% 8.06%
gr229 67301 9187 0.36% 1.19% 2.04%
gil262 1189 8321 2.92% 5.45% 8.11%
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Table A.3: Continued

Dataset dlim Optimum Min. Avg. Max.

pr264 24568 6654 0.00% 0.00% 0.00%
pr299 24096 9161 2.61% 6.61% 9.29%
lin318 21045 10900 4.04% 6.93% 10.56%
rd400 7641 13648 7.52% 9.07% 10.97%

Generation 3

att48 5314 1049 0.00% 0.00% 0.00%
gr48 2523 1480 0.00% 0.00% 0.00%
hk48 5731 1764 0.00% 0.00% 0.00%
eil51 213 1399 0.00% 0.06% 0.14%
brazil58 12698 1702 0.00% 0.04% 0.35%
st70 338 2108 0.00% 0.77% 1.80%
eil76 269 2467 0.20% 0.99% 1.95%
pr76 54080 2430 0.00% 0.13% 0.16%
gr96 27605 3182 1.16% 5.08% 7.95%
rat99 606 2908 1.34% 2.50% 3.37%
kroA100 10641 3211 0.72% 0.82% 1.03%
kroB100 11071 2804 0.00% 0.93% 1.78%
kroC100 10375 3155 4.25% 4.25% 4.25%
kroD100 10647 3167 0.51% 1.31% 2.12%
kroE100 11034 3049 1.90% 3.10% 3.87%
rd100 3955 2926 0.07% 3.66% 5.09%
eil101 315 3345 1.55% 1.93% 2.69%
lin105 7190 2986 3.08% 3.08% 3.08%
pr107 22152 1877 6.45% 6.45% 6.45%
gr120 3471 3779 2.38% 5.41% 9.69%
pr124 29515 3557 0.22% 0.22% 0.22%
bier127 59141 2365 0.72% 2.07% 2.62%
pr136 48386 4390 3.28% 4.25% 5.51%
gr137 34927 3979 1.01% 7.45% 12.49%
pr144 29269 3809 6.33% 7.83% 9.00%
kroA150 13262 5039 0.14% 0.36% 0.67%
kroB150 13065 5314 1.39% 4.17% 7.43%
pr152 36841 3905 0.00% 0.04% 0.28%
u159 21040 5272 2.26% 2.26% 2.33%
rat195 1162 6195 2.34% 3.88% 4.94%
d198 7890 6320 2.88% 4.25% 5.82%
kroA200 14684 6123 2.94% 4.51% 6.70%
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Table A.3: Continued

Dataset dlim Optimum Min. Avg. Max.

kroB200 14719 6266 0.45% 1.89% 4.12%
gr202 20080 8632 0.66% 2.48% 3.49%
ts225 63322 7575 6.44% 7.14% 9.60%
pr226 40185 6993 5.62% 6.97% 12.21%
gr229 67301 6347 2.39% 3.00% 4.35%
gil262 1189 9246 3.21% 5.55% 6.98%
pr264 24568 8137 1.18% 4.71% 7.02%
pr299 24096 10358 2.09% 4.84% 7.34%
lin318 21045 10382 6.24% 11.00% 12.68%
rd400 7641 13229 5.27% 5.92% 7.43%

A.2 Generalized Orienteering Problem

Table A.4 gives the gap to the best known result for the cooperative GRASP-ILS

hybrid (GRILS-T) over the 27-vertex dataset that is reproduced, among others,

in (Wang et al. 2008). The dataset is also distributed online 2 with pre-generated

distance tables. In each instance, the distance limit dlim was set to 5000.

In Table A.4, k is the parameter k in the objective function. Wt refers to the

weight vector used. For Wt = 0, the value of each attribute is 0.25. For Wt > 0,

the attribute with the given number is set to 1.0 and the rest of the attributes are

set to 0. Best known is the result of the 2PIA algorithm as given in (Silberholz

and Golden 2010). Min., Avg. and Max. give the minimum, arithmetic mean and

maximum gap for the given instance over 10 test runs. The gap was calculated

as
(

1− S
Sbest

)
100% where Sbest is the best known result for the instance and S

is the score of the test run. Following the convention of the earlier publications

using this benchmark, we round the results to 2 fractional digits.

Test runs were performed with 23 parallel workers. The workload was parti-

tioned by assigning a fixed number of 2000 iterations to each worker.

2http://josilber.scripts.mit.edu/gop.zip
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Table A.4: Gap results for cooperative GRASP-ILS hybrid:
the ”27 Chinese Cities” benchmark

k Wt Best known Min. Avg. Max.

1 0 99.50 0.00% 0.00% 0.00%
1 1 105.00 0.00% 0.00% 0.00%
1 2 97.00 0.00% 0.00% 0.00%
1 3 102.00 0.00% 0.00% 0.00%
1 4 96.00 0.00% 0.00% 0.00%
3 0 16.76 0.00% 0.00% 0.00%
3 1 17.95 0.00% 0.65% 1.74%
3 2 17.04 0.00% 0.00% 0.00%
3 3 17.45 0.00% 0.00% 0.00%
3 4 16.78 2.18% 3.55% 4.56%
4 0 13.71 0.00% 0.23% 0.25%
4 1 14.69 0.28% 0.79% 1.46%
4 2 13.99 0.00% 0.00% 0.00%
4 3 14.29 0.00% 0.00% 0.00%
4 4 13.84 0.00% 3.52% 6.05%
5 0 12.38 0.60% 0.66% 1.22%
5 1 13.10 0.39% 0.79% 1.74%
5 2 12.56 0.00% 0.14% 0.23%
5 3 12.78 0.00% 0.00% 0.00%
5 4 12.43 1.05% 3.19% 6.90%
10 0 10.54 0.56% 0.62% 0.62%
10 1 10.75 0.10% 0.21% 0.63%
10 2 10.57 0.09% 0.10% 0.12%
10 3 10.62 0.02% 0.02% 0.02%
10 4 10.48 0.20% 1.54% 9.28%

A.3 Team Orienteering Problem with Time Windows

The TOPTW benchmark 3 was originally designed by Montemanni and Gam-

bardella (2009), from the vehicle routing problem datasets of Solomon (1987) and

Cordeau et al. (1997). Each instance of the dataset can be solved as a TOPTW

problem with the number of tours 1 ≤ m ≤ 4.

3http://www.mech.kuleuven.be/en/cib/op/
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Tables A.5–A.8 provide the results of GRILS-T for the instances based on

the dataset of Solomon. Tables A.9–A.12 list the results for the instances derived

from the dataset of Cordeau et al.

dlim is the distance budget per tour for the given instance. Best known is the

reference best solution as given in (Cura 2014). There are some inconsistencies in

reporting the best known solutions for TOPTW instances, for example Vansteen-

wegen et al. (2009) give a higher best known score in some instances even though

its publication predates the work of Cura by several years.

In cases where GRILS-T found a new best solution, we’ve additionally ver-

ified that is is higher than the best solutions reported in (Vansteenwegen et al.

2009) and (Labadi et al. 2011). These results are printed in bold.

Min., Avg. and Max. give the minimum, arithmetic mean and maximum gap

for the given instance over 10 test runs. The gap was calculated as
(

1− S
Sbest

)
100%

where Sbest is the best known solution score for the instance and S is the score of

the test run.

Test runs were performed with 23 parallel workers. The workload was parti-

tioned by assigning a fixed number of 2000 iterations to each worker.

Table A.5: Gap results for cooperative GRASP-ILS hybrid:
the Solomon instances (m = 1)

Problem dlim Best known Min. Avg. Max.

c101 1236 320.00 0.00% 0.00% 0.00%
c102 1236 360.00 0.00% 0.00% 0.00%
c103 1236 400.00 0.00% 0.00% 0.00%
c104 1236 420.00 0.00% 0.00% 0.00%
c105 1236 340.00 0.00% 0.00% 0.00%
c106 1236 340.00 0.00% 0.00% 0.00%
c107 1236 370.00 0.00% 0.00% 0.00%
c108 1236 370.00 0.00% 0.00% 0.00%
c109 1236 380.00 0.00% 0.00% 0.00%
r101 230 198.00 0.00% 0.00% 0.00%
r102 230 286.00 0.00% 0.00% 0.00%
r103 230 293.00 0.00% 0.00% 0.00%
r104 230 303.00 0.00% 0.00% 0.00%
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Table A.5: Continued

Problem dlim Best known Min. Avg. Max.

r105 230 247.00 0.00% 0.00% 0.00%
r106 230 293.00 0.00% 0.00% 0.00%
r107 230 299.00 0.67% 0.70% 1.00%
r108 230 308.00 0.00% 0.00% 0.00%
r109 230 277.00 1.08% 1.08% 1.08%
r110 230 284.00 1.06% 1.06% 1.06%
r111 230 297.00 0.00% 0.00% 0.00%
r112 230 298.00 0.00% 0.17% 0.67%
rc101 240 219.00 1.37% 1.37% 1.37%
rc102 240 266.00 0.00% 0.00% 0.00%
rc103 240 266.00 0.00% 0.00% 0.00%
rc104 240 301.00 0.00% 0.00% 0.00%
rc105 240 244.00 0.00% 0.00% 0.00%
rc106 240 252.00 0.00% 0.00% 0.00%
rc107 240 277.00 0.00% 0.11% 1.08%
rc108 240 298.00 0.00% 0.00% 0.00%
c201 3390 870.00 0.00% 0.00% 0.00%
c202 3390 930.00 0.00% 0.43% 1.08%
c203 3390 960.00 0.00% 0.10% 1.04%
c205 3390 910.00 0.00% 0.00% 0.00%
c206 3390 930.00 0.00% 0.54% 1.08%
c207 3390 930.00 0.00% 0.00% 0.00%
c208 3390 950.00 0.00% 0.42% 1.05%
r201 1000 796.70 1.72% 2.11% 2.72%
r202 1000 930.00 2.69% 3.58% 4.62%
r203 1000 1020.00 0.98% 2.26% 3.14%
r204 1000 1076.30 -0.34% 0.24% 0.86%
r205 1000 953.00 1.15% 1.97% 3.46%
r206 1000 1023.60 0.16% 1.52% 3.18%
r207 1000 1069.00 0.00% 1.32% 2.43%
r208 1000 1101.50 -0.50% 0.80% 1.68%
r209 1000 948.00 1.58% 2.68% 2.95%
r210 1000 982.00 -0.20% 1.68% 2.95%
r211 1000 1041.00 0.96% 2.07% 3.94%
rc201 960 795.00 1.13% 1.74% 2.26%
rc202 960 930.00 -0.32% 0.96% 1.83%
rc203 960 988.20 0.43% 0.95% 1.54%
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Table A.5: Continued

Problem dlim Best known Min. Avg. Max.

rc204 960 1140.00 0.35% 1.41% 3.25%
rc205 960 854.00 0.12% 0.71% 1.29%
rc206 960 890.20 -0.54% 1.33% 2.38%
rc207 960 977.00 0.00% 1.73% 4.09%
rc208 960 1043.50 -0.14% 1.16% 3.31%

Table A.6: Gap results for cooperative GRASP-ILS hybrid:
the Solomon instances (m = 2)

Problem dlim Best known Min. Avg. Max.

c101 1236 590.00 1.69% 1.69% 1.69%
c102 1236 660.00 1.52% 1.52% 1.52%
c103 1236 720.00 1.39% 1.39% 1.39%
c104 1236 760.00 0.00% 0.00% 0.00%
c105 1236 640.00 0.00% 0.00% 0.00%
c106 1236 620.00 0.00% 0.00% 0.00%
c107 1236 670.00 1.49% 1.49% 1.49%
c108 1236 680.00 0.00% 0.00% 0.00%
c109 1236 720.00 1.39% 1.39% 1.39%
r101 230 349.00 0.00% 0.00% 0.00%
r102 230 508.00 0.00% 0.12% 0.79%
r103 230 519.00 -0.19% 0.67% 1.35%
r104 230 549.00 -0.18% 0.29% 0.91%
r105 230 453.00 2.21% 2.21% 2.21%
r106 230 529.00 0.00% 1.08% 1.89%
r107 230 533.00 -0.94% 0.34% 2.06%
r108 230 558.00 0.00% 0.50% 1.08%
r109 230 506.00 0.99% 1.34% 1.78%
r110 230 525.00 2.29% 2.63% 3.24%
r111 230 544.00 0.55% 1.19% 2.02%
r112 230 544.00 0.00% 1.47% 3.12%
rc101 240 427.00 0.70% 0.70% 0.70%
rc102 240 505.00 0.20% 0.26% 0.40%
rc103 240 523.00 0.00% 0.48% 2.10%
rc104 240 575.00 0.17% 0.90% 2.61%
rc105 240 480.00 0.00% 0.42% 0.83%
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Table A.6: Continued

Problem dlim Best known Min. Avg. Max.

rc106 240 483.00 0.21% 0.21% 0.21%
rc107 240 531.40 1.02% 1.37% 2.15%
rc108 240 554.00 0.18% 1.48% 2.89%
c201 3390 1452.00 0.83% 1.31% 1.52%
c202 3390 1470.00 0.68% 1.43% 2.04%
c203 3390 1472.00 1.49% 1.49% 1.49%
c205 3390 1470.00 0.68% 1.22% 1.36%
c206 3390 1480.00 0.68% 1.15% 1.35%
c207 3390 1484.00 0.94% 0.94% 0.94%
c208 3390 1486.00 1.08% 1.08% 1.08%
r201 1000 1242.00 1.61% 2.46% 3.38%
r202 1000 1344.00 1.49% 3.39% 4.54%
r203 1000 1416.00 2.47% 3.25% 3.74%
r204 1000 1458.00 1.58% 1.87% 2.26%
r205 1000 1380.00 1.67% 2.93% 3.77%
r206 1000 1430.00 0.91% 1.87% 3.22%
r207 1000 1458.00 1.30% 1.60% 2.13%
r208 1000 1458.00 1.17% 1.17% 1.17%
r209 1000 1404.00 2.85% 3.67% 4.49%
r210 1000 1415.00 2.33% 3.24% 4.17%
r211 1000 1457.00 1.65% 2.13% 2.54%
rc201 960 1377.00 0.73% 2.47% 3.27%
rc202 960 1502.40 1.49% 2.65% 4.82%
rc203 960 1627.00 2.77% 3.79% 4.92%
rc204 960 1710.20 0.36% 1.51% 2.41%
rc205 960 1458.00 1.30% 3.15% 5.08%
rc206 960 1528.00 0.65% 2.57% 3.99%
rc207 960 1582.00 -0.32% 1.19% 2.59%
rc208 960 1676.10 0.18% 1.55% 2.51%

Table A.7: Gap results for cooperative GRASP-ILS hybrid:
the Solomon instances (m = 3)

Problem dlim Best known Min. Avg. Max.

c101 1236 810.00 1.23% 1.23% 1.23%
c102 1236 920.00 1.09% 1.41% 2.17%
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Table A.7: Continued

Problem dlim Best known Min. Avg. Max.

c103 1236 990.00 1.01% 2.63% 3.03%
c104 1236 1030.00 0.00% 1.17% 1.94%
c105 1236 870.00 1.15% 1.61% 2.30%
c106 1236 870.00 0.00% 1.38% 2.30%
c107 1236 910.00 1.10% 1.10% 1.10%
c108 1236 920.00 1.09% 1.09% 1.09%
c109 1236 970.00 1.03% 1.65% 2.06%
r101 230 484.00 0.62% 0.97% 2.27%
r102 230 694.00 0.86% 2.10% 3.31%
r103 230 746.00 1.47% 2.36% 2.95%
r104 230 777.00 0.13% 1.13% 2.06%
r105 230 619.30 1.82% 2.62% 3.44%
r106 230 729.00 1.51% 2.77% 4.12%
r107 230 760.00 0.26% 1.11% 1.84%
r108 230 797.00 0.88% 1.47% 2.63%
r109 230 710.00 1.97% 2.82% 3.80%
r110 230 736.00 2.31% 3.94% 4.76%
r111 230 773.00 0.13% 0.62% 2.07%
r112 230 776.00 0.90% 1.56% 2.84%
rc101 240 621.00 0.00% 0.89% 1.61%
rc102 240 714.00 0.70% 1.67% 3.08%
rc103 240 764.00 0.13% 2.74% 3.80%
rc104 240 834.00 0.24% 0.89% 1.80%
rc105 240 682.00 0.29% 1.52% 2.35%
rc106 240 706.00 0.14% 1.20% 2.69%
rc107 240 773.00 0.91% 1.84% 2.85%
rc108 240 789.00 0.51% 1.15% 2.53%
c201 3390 1810.00 1.10% 1.93% 2.76%
c202 3390 1810.00 1.10% 1.60% 2.21%
c203 3390 1810.00 1.66% 1.88% 2.21%
c205 3390 1810.00 1.10% 1.16% 1.66%
c206 3390 1810.00 1.10% 1.10% 1.10%
c207 3390 1810.00 1.10% 1.10% 1.10%
c208 3390 1810.00 1.10% 1.10% 1.10%
r201 1000 1438.40 1.84% 2.43% 2.95%
r202 1000 1458.00 1.37% 1.72% 2.06%
r203 1000 1458.00 1.17% 1.17% 1.17%
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Table A.7: Continued

Problem dlim Best known Min. Avg. Max.

r204 1000 1458.00 1.17% 1.17% 1.17%
r205 1000 1458.00 1.17% 1.17% 1.17%
r206 1000 1458.00 1.17% 1.17% 1.17%
r207 1000 1458.00 1.17% 1.17% 1.17%
r208 1000 1458.00 1.17% 1.17% 1.17%
r209 1000 1458.00 1.17% 1.17% 1.17%
r210 1000 1458.00 1.17% 1.17% 1.17%
r211 1000 1458.00 1.17% 1.17% 1.17%
rc201 960 1689.40 1.21% 1.64% 2.10%
rc202 960 1724.00 0.75% 1.16% 1.39%
rc203 960 1724.00 0.17% 0.17% 0.17%
rc204 960 1724.00 0.17% 0.17% 0.17%
rc205 960 1719.00 1.22% 1.48% 1.98%
rc206 960 1724.00 0.17% 0.17% 0.17%
rc207 960 1724.00 0.17% 0.17% 0.17%
rc208 960 1724.00 0.17% 0.17% 0.17%

Table A.8: Gap results for cooperative GRASP-ILS hybrid:
the Solomon instances (m = 4)

Problem dlim Best known Min. Avg. Max.

c101 1236 1020.00 0.98% 0.98% 0.98%
c102 1236 1150.00 1.74% 2.09% 2.61%
c103 1236 1210.00 1.65% 2.98% 4.13%
c104 1236 1260.00 1.59% 2.06% 2.38%
c105 1236 1060.00 0.00% 0.85% 1.89%
c106 1236 1080.00 1.85% 2.96% 3.70%
c107 1236 1120.00 0.89% 2.14% 2.68%
c108 1236 1130.00 0.88% 1.95% 2.65%
c109 1236 1190.00 1.68% 2.02% 3.36%
r101 230 611.00 0.49% 1.42% 2.45%
r102 230 843.00 2.02% 4.09% 5.81%
r103 230 928.00 1.40% 2.53% 3.66%
r104 230 969.00 0.83% 1.71% 2.58%
r105 230 778.00 2.70% 3.87% 4.88%
r106 230 906.00 1.43% 3.27% 5.08%
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Table A.8: Continued

Problem dlim Best known Min. Avg. Max.

r107 230 950.00 1.16% 2.27% 4.00%
r108 230 994.00 1.11% 1.85% 3.32%
r109 230 885.00 1.02% 3.72% 5.08%
r110 230 915.00 4.15% 5.37% 6.99%
r111 230 952.00 1.37% 2.14% 3.36%
r112 230 967.00 1.14% 3.25% 4.76%
rc101 240 808.00 0.00% 1.49% 2.72%
rc102 240 902.00 0.44% 1.37% 2.55%
rc103 240 974.00 1.75% 2.95% 3.90%
rc104 240 1064.00 0.94% 1.11% 1.69%
rc105 240 875.00 2.06% 2.82% 4.34%
rc106 240 909.00 1.21% 2.08% 2.97%
rc107 240 980.00 0.00% 1.03% 2.04%
rc108 240 1023.00 0.98% 2.06% 2.74%
c201 3390 1810.00 1.10% 1.10% 1.10%
c202 3390 1810.00 1.10% 1.10% 1.10%
c203 3390 1810.00 1.10% 1.10% 1.10%
c205 3390 1810.00 1.10% 1.10% 1.10%
c206 3390 1810.00 1.10% 1.10% 1.10%
c207 3390 1810.00 1.10% 1.10% 1.10%
c208 3390 1810.00 1.10% 1.10% 1.10%
r201 1000 1458.00 1.17% 1.17% 1.17%
r202 1000 1458.00 1.17% 1.17% 1.17%
r203 1000 1458.00 1.17% 1.17% 1.17%
r204 1000 1458.00 1.17% 1.17% 1.17%
r205 1000 1458.00 1.17% 1.17% 1.17%
r206 1000 1458.00 1.17% 1.17% 1.17%
r207 1000 1458.00 1.17% 1.17% 1.17%
r208 1000 1458.00 1.17% 1.17% 1.17%
r209 1000 1458.00 1.17% 1.17% 1.17%
r210 1000 1458.00 1.17% 1.17% 1.17%
r211 1000 1458.00 1.17% 1.17% 1.17%
rc201 960 1724.00 0.17% 0.17% 0.17%
rc202 960 1724.00 0.17% 0.17% 0.17%
rc203 960 1724.00 0.17% 0.17% 0.17%
rc204 960 1724.00 0.17% 0.17% 0.17%
rc205 960 1724.00 0.17% 0.17% 0.17%
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Table A.8: Continued

Problem dlim Best known Min. Avg. Max.

rc206 960 1724.00 0.17% 0.17% 0.17%
rc207 960 1724.00 0.17% 0.17% 0.17%
rc208 960 1724.00 0.17% 0.17% 0.17%

Table A.9: Gap results for cooperative GRASP-ILS hybrid:
the Cordeau et al. instances (m = 1)

Problem dlim Best known Min. Avg. Max.

pr01 1000 308.00 0.00% 0.00% 0.00%
pr02 1000 404.00 0.00% 0.42% 0.99%
pr03 1000 394.00 0.00% 0.03% 0.25%
pr04 1000 489.00 2.25% 3.48% 4.91%
pr05 1000 594.00 1.68% 3.08% 4.21%
pr06 1000 590.00 1.69% 3.64% 6.44%
pr07 1000 298.00 1.68% 2.08% 2.35%
pr08 1000 463.00 1.94% 2.33% 2.38%
pr09 1000 490.00 -0.61% 1.84% 4.29%
pr10 1000 588.40 1.09% 2.04% 2.79%
pr11 1000 353.00 1.42% 1.93% 3.12%
pr12 1000 442.00 1.36% 1.54% 1.81%
pr13 1000 466.00 -0.21% 1.55% 4.08%
pr14 1000 560.10 2.16% 3.37% 5.73%
pr15 1000 707.00 1.13% 4.29% 6.22%
pr16 1000 652.60 1.62% 4.87% 7.45%
pr17 1000 362.00 1.10% 2.02% 2.76%
pr18 1000 539.00 2.04% 7.11% 10.39%
pr19 1000 551.60 1.74% 4.28% 5.55%
pr20 1000 656.60 3.90% 5.22% 6.18%

Table A.10: Gap results for cooperative GRASP-ILS hybrid:
the Cordeau et al. instances (m = 2)

Problem dlim Best known Min. Avg. Max.

pr01 1000 502.00 2.99% 3.21% 4.38%
pr02 1000 714.00 2.24% 3.47% 4.76%
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Table A.10: Continued

Problem dlim Best known Min. Avg. Max.

pr03 1000 741.00 0.94% 2.19% 3.91%
pr04 1000 917.00 0.11% 2.43% 5.67%
pr05 1000 1101.00 4.00% 5.40% 7.45%
pr06 1000 1070.20 0.86% 6.23% 9.64%
pr07 1000 566.00 1.77% 2.69% 3.00%
pr08 1000 826.20 2.57% 3.59% 4.74%
pr09 1000 883.40 -1.54% 2.78% 7.63%
pr10 1000 1117.00 0.63% 4.43% 8.68%
pr11 1000 566.00 1.41% 2.83% 4.06%
pr12 1000 768.00 2.73% 3.91% 4.95%
pr13 1000 832.00 1.92% 4.17% 6.25%
pr14 1000 999.00 1.90% 4.69% 7.11%
pr15 1000 1210.40 1.93% 5.43% 8.38%
pr16 1000 1217.80 6.88% 10.34% 12.63%
pr17 1000 652.00 2.76% 4.08% 5.37%
pr18 1000 937.00 3.84% 5.38% 7.68%
pr19 1000 1017.00 5.90% 8.34% 10.23%
pr20 1000 1224.40 5.18% 7.61% 10.16%

Table A.11: Gap results for cooperative GRASP-ILS hybrid:
the Cordeau et al. instances (m = 3)

Problem dlim Best known Min. Avg. Max.

pr01 1000 622.00 2.89% 3.47% 4.66%
pr02 1000 939.00 1.60% 2.92% 4.05%
pr03 1000 1010.00 1.39% 3.41% 5.84%
pr04 1000 1286.00 3.50% 5.00% 7.23%
pr05 1000 1481.00 3.31% 5.54% 7.63%
pr06 1000 1501.00 3.66% 6.49% 9.39%
pr07 1000 742.00 2.43% 3.26% 4.31%
pr08 1000 1139.00 4.21% 5.72% 6.58%
pr09 1000 1272.00 3.85% 7.19% 9.91%
pr10 1000 1567.00 2.36% 5.40% 7.66%
pr11 1000 654.00 2.29% 2.63% 3.06%
pr12 1000 997.00 2.91% 3.69% 4.61%
pr13 1000 1145.00 3.49% 6.33% 7.95%
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Table A.11: Continued

Problem dlim Best known Min. Avg. Max.

pr14 1000 1357.40 4.97% 6.62% 8.58%
pr15 1000 1654.00 2.78% 6.59% 9.01%
pr16 1000 1654.60 7.11% 9.04% 11.34%
pr17 1000 841.00 3.09% 4.46% 5.95%
pr18 1000 1276.00 3.37% 8.31% 11.52%
pr19 1000 1403.00 5.13% 8.98% 11.26%
pr20 1000 1677.60 5.40% 7.91% 9.93%

Table A.12: Gap results for cooperative GRASP-ILS hybrid:
the Cordeau et al. instances (m = 4)

Problem dlim Best known Min. Avg. Max.

pr01 1000 657.00 1.52% 1.70% 1.98%
pr02 1000 1073.00 2.89% 4.21% 4.85%
pr03 1000 1232.00 3.25% 5.30% 6.41%
pr04 1000 1585.00 3.79% 6.35% 7.95%
pr05 1000 1838.00 5.71% 7.54% 8.76%
pr06 1000 1840.40 1.38% 4.16% 6.76%
pr07 1000 872.00 3.67% 4.99% 6.08%
pr08 1000 1377.00 4.21% 6.08% 7.63%
pr09 1000 1604.00 6.23% 8.17% 9.73%
pr10 1000 1943.00 5.10% 7.03% 9.21%
pr11 1000 657.00 1.52% 1.52% 1.52%
pr12 1000 1130.10 3.64% 4.41% 5.50%
pr13 1000 1386.00 3.90% 6.53% 8.08%
pr14 1000 1651.00 2.79% 3.86% 5.69%
pr15 1000 2065.00 5.18% 7.74% 9.64%
pr16 1000 2017.00 6.54% 8.03% 9.62%
pr17 1000 934.00 3.32% 4.70% 5.46%
pr18 1000 1539.00 6.37% 9.38% 11.44%
pr19 1000 1750.00 7.20% 9.85% 12.11%
pr20 1000 2062.00 5.77% 7.42% 8.73%
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A.4 Multi-Constraint Team Orienteering Problem

with Multiple Time Windows

We used the dataset with multiple time windows designed by Souffriau et al.

(2013). This dataset is based on a subset of the vehicle routing problems of

Solomon (1987) and Cordeau et al. (1997).

The results of GRILS-T by number of tours m are given in Tables A.13–

A.16. dlim is the distance budget per tour for the given instance. Best known is

taken from the online accompanying materials 4 of (Souffriau et al. 2013).

Min., Avg. and Max. give the minimum, arithmetic mean and maximum gap

for the given instance over 10 test runs. The gap was calculated as
(

1− S
Sbest

)
100%

where Sbest is the known good solution for the instance and S is the score of the

test run. In one instance the solution was better than both the reference good so-

lution and the result of the experiment done by Souffriau et al. (2013). For this

instance the gap value is printed in bold.

Test runs were performed with 23 parallel workers. The workload was parti-

tioned by assigning a fixed number of 2000 iterations to each worker.

Table A.13: Gap results for cooperative GRASP-ILS hybrid:
MCTOPMTW (m = 1)

Problem dlim Best known Min. Avg. Max.

c101 1236 320.00 0.00% 0.00% 0.00%
c102 1236 360.00 0.00% 0.00% 0.00%
c103 1236 400.00 0.00% 0.00% 0.00%
c104 1236 420.00 0.00% 0.00% 0.00%
c105 1236 340.00 5.88% 5.88% 5.88%
c106 1236 340.00 0.00% 0.00% 0.00%
c107 1236 370.00 0.00% 0.00% 0.00%
c108 1236 370.00 0.00% 0.00% 0.00%
c109 1236 380.00 0.00% 0.00% 0.00%
r101 230 198.00 3.03% 3.03% 3.03%
r102 230 286.00 0.00% 0.00% 0.00%
r103 230 293.00 0.00% 0.00% 0.00%

4http://www.mech.kuleuven.be/en/cib/op/
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Table A.13: Continued

Problem dlim Best known Min. Avg. Max.

r104 230 303.00 5.28% 5.28% 5.28%
r105 230 247.00 0.00% 0.00% 0.00%
r106 230 293.00 0.00% 0.00% 0.00%
r107 230 299.00 4.35% 4.35% 4.35%
r108 230 308.00 7.14% 7.14% 7.14%
r109 230 277.00 6.14% 6.14% 6.14%
r110 230 284.00 5.99% 6.48% 10.92%
r111 230 297.00 5.05% 5.05% 5.05%
r112 230 298.00 0.00% 0.00% 0.00%
rc101 240 219.00 1.37% 1.37% 1.37%
rc102 240 266.00 0.00% 0.00% 0.00%
rc103 240 266.00 0.00% 0.00% 0.00%
rc104 240 301.00 6.64% 6.64% 6.64%
rc105 240 244.00 0.00% 0.00% 0.00%
rc106 240 252.00 0.00% 0.00% 0.00%
rc107 240 277.00 0.00% 0.00% 0.00%
rc108 240 298.00 0.00% 0.00% 0.00%
pr01 1000 308.00 0.00% 0.00% 0.00%
pr02 1000 404.00 0.00% 0.10% 0.99%
pr03 1000 394.00 0.00% 0.84% 4.82%
pr04 1000 489.00 0.00% 1.96% 13.29%
pr05 1000 595.00 0.00% 0.00% 0.00%
pr07 1000 298.00 6.71% 6.71% 6.71%
pr08 1000 463.00 4.54% 5.29% 8.21%
pr09 1000 493.00 0.00% 0.61% 6.09%

Table A.14: Gap results for cooperative GRASP-ILS hybrid:
MCTOPMTW (m = 2)

Problem dlim Best known Min. Avg. Max.

c101 1236 590.00 3.39% 3.39% 3.39%
c102 1236 650.00 3.08% 3.08% 3.08%
c103 1236 700.00 1.43% 3.57% 4.29%
c104 1236 750.00 0.00% 2.00% 4.00%
c105 1236 640.00 3.12% 4.53% 4.69%
c106 1236 620.00 1.61% 1.61% 1.61%

80



Table A.14: Continued

Problem dlim Best known Min. Avg. Max.

c107 1236 670.00 4.48% 5.22% 5.97%
c108 1236 670.00 0.00% 2.39% 2.99%
c109 1236 710.00 2.82% 4.93% 5.63%
r101 230 330.00 0.00% 0.00% 0.00%
r102 230 508.00 0.00% 0.22% 2.17%
r103 230 513.00 0.00% 1.01% 3.51%
r104 230 539.00 0.00% 0.98% 5.01%
r105 230 430.00 2.56% 2.56% 2.56%
r106 230 529.00 5.67% 7.49% 11.34%
r107 230 529.00 0.00% 4.93% 7.94%
r108 230 549.00 4.01% 5.72% 7.65%
r109 230 498.00 8.03% 10.06% 12.05%
r110 230 515.00 7.38% 8.29% 9.32%
r111 230 535.00 0.00% 3.64% 8.22%
r112 230 515.00 0.00% 2.78% 8.93%
rc101 240 427.00 0.70% 0.94% 3.04%
rc102 240 494.00 -0.20% 5.49% 8.10%
rc103 240 519.00 4.43% 6.01% 7.71%
rc104 240 565.00 2.48% 4.48% 6.90%
rc105 240 459.00 0.00% 2.51% 7.84%
rc106 240 458.00 0.66% 0.66% 0.66%
rc107 240 515.00 0.00% 0.00% 0.00%
rc108 240 546.00 0.00% 2.01% 7.33%
pr01 1000 471.00 2.12% 5.27% 7.43%
pr02 1000 660.00 4.24% 5.97% 7.88%
pr03 1000 714.00 3.22% 6.50% 14.57%
pr04 1000 863.00 4.87% 7.75% 12.40%
pr05 1000 1011.00 6.33% 8.89% 13.06%
pr07 1000 552.00 3.08% 3.51% 3.62%
pr08 1000 796.00 4.77% 8.23% 10.80%
pr09 1000 867.00 11.07% 15.51% 18.69%
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Table A.15: Gap results for cooperative GRASP-ILS hybrid:
MCTOPMTW (m = 3)

Problem dlim Best known Min. Avg. Max.

c101 1236 790.00 1.27% 1.27% 1.27%
c102 1236 890.00 1.12% 1.12% 1.12%
c103 1236 960.00 2.08% 3.02% 3.12%
c104 1236 1010.00 2.97% 4.36% 4.95%
c105 1236 840.00 3.57% 4.05% 4.76%
c106 1236 840.00 2.38% 3.10% 3.57%
c107 1236 900.00 5.56% 8.11% 10.00%
c108 1236 900.00 5.56% 6.78% 7.78%
c109 1236 950.00 5.26% 6.32% 7.37%
r101 230 481.00 2.70% 3.26% 5.41%
r102 230 685.00 2.92% 4.09% 5.99%
r103 230 720.00 5.56% 7.06% 8.47%
r104 230 765.00 2.48% 3.92% 7.45%
r105 230 609.00 3.78% 4.60% 6.73%
r106 230 719.00 6.54% 12.24% 15.16%
r107 230 747.00 2.41% 4.27% 6.16%
r108 230 790.00 2.53% 8.63% 11.39%
r109 230 699.00 3.58% 8.83% 12.45%
r110 230 711.00 5.06% 9.04% 13.92%
r111 230 764.00 6.94% 9.21% 12.17%
r112 230 758.00 3.03% 6.36% 10.55%
rc101 240 604.00 7.45% 9.30% 10.60%
rc102 240 698.00 -1.29% 6.76% 10.74%
rc103 240 747.00 2.54% 6.97% 12.05%
rc104 240 822.00 5.23% 7.29% 10.95%
rc105 240 654.00 3.36% 7.13% 10.55%
rc106 240 678.00 2.06% 5.90% 8.11%
rc107 240 745.00 2.55% 4.19% 5.77%
rc108 240 757.00 1.32% 5.27% 8.45%
pr01 1000 598.00 5.85% 8.16% 10.20%
pr02 1000 899.00 5.23% 7.17% 8.23%
pr03 1000 946.00 6.45% 8.60% 12.05%
pr04 1000 1195.00 7.28% 9.44% 11.80%
pr05 1000 1356.00 2.73% 4.67% 7.01%
pr07 1000 713.00 3.79% 6.96% 8.70%
pr08 1000 1082.00 6.10% 7.82% 10.26%
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Table A.15: Continued

Problem dlim Best known Min. Avg. Max.

pr09 1000 1144.00 4.55% 8.28% 11.98%

Table A.16: Gap results for cooperative GRASP-ILS hybrid:
MCTOPMTW (m = 4)

Problem dlim Best known Min. Avg. Max.

c101 1236 1000.00 2.00% 2.70% 3.00%
c102 1236 1090.00 0.92% 0.92% 0.92%
c103 1236 1150.00 2.61% 4.09% 5.22%
c104 1236 1220.00 3.28% 4.26% 4.92%
c105 1236 1030.00 3.88% 4.27% 4.85%
c106 1236 1040.00 4.81% 5.29% 5.77%
c107 1236 1100.00 5.45% 6.09% 6.36%
c108 1236 1100.00 5.45% 6.09% 6.36%
c109 1236 1180.00 5.08% 7.29% 8.47%
r101 230 601.00 1.66% 2.16% 3.16%
r102 230 807.00 2.97% 5.13% 7.31%
r103 230 878.00 1.59% 7.08% 9.00%
r104 230 941.00 2.55% 5.56% 8.08%
r105 230 735.00 2.45% 5.61% 9.12%
r106 230 870.00 6.55% 8.90% 10.80%
r107 230 927.00 6.80% 10.22% 12.84%
r108 230 982.00 4.89% 8.03% 10.69%
r109 230 866.00 9.12% 11.71% 14.20%
r110 230 870.00 7.24% 9.55% 11.26%
r111 230 935.00 6.20% 9.20% 11.76%
r112 230 939.00 4.47% 7.85% 10.65%
rc101 240 794.00 5.79% 10.20% 13.60%
rc102 240 881.00 10.78% 12.76% 13.85%
rc103 240 947.00 6.02% 9.43% 13.31%
rc104 240 1019.00 3.63% 5.29% 6.87%
rc105 240 841.00 2.26% 9.77% 12.96%
rc106 240 874.00 5.49% 8.09% 9.84%
rc107 240 951.00 5.05% 8.91% 11.04%
rc108 240 998.00 4.41% 7.66% 11.42%
pr01 1000 644.00 1.55% 2.11% 2.95%
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Table A.16: Continued

Problem dlim Best known Min. Avg. Max.

pr02 1000 1014.00 3.85% 4.29% 4.93%
pr03 1000 1162.00 4.39% 8.90% 11.36%
pr04 1000 1452.00 5.72% 7.29% 8.82%
pr05 1000 1665.00 4.86% 7.43% 9.61%
pr07 1000 840.00 6.31% 7.87% 9.05%
pr08 1000 1267.00 7.42% 9.06% 10.02%
pr09 1000 1460.00 9.32% 10.70% 12.60%

A.5 Time Dependent Orienteering Problem

Verbeeck et al. (2014) designed a dataset for the TDOP. For evaluation, we use

problems 1-3 from the dataset that have been solved to optimality using CPLEX.

The results of the cooperative GRASP-ILS hybrid (GRILS-T) are given in Ta-

ble A.17.

tmax is the time budget for the given instance. Optimum is the result of the

CPLEX solver, using the time dependent arc traversal speeds from the dataset.

Min., Avg. and Max. give the minimum, arithmetic mean and maximum gap for

the given instance over 10 test runs. The gap was calculated as
(

1− S
Sopt

)
100%

where Sopt is the optimum solution for the instance and S is the score of the test

run.

Test runs were performed with 23 parallel workers. The workload was parti-

tioned by assigning a fixed number of 10000 iterations to each worker.

Table A.17: Gap results for cooperative GRASP-ILS hybrid:
Time Dependent Orienteering Problem

Instance tmax Optimum Min. Avg. Max.

1.a 5 115.00 0.00% 6.09% 8.70%
1.b 6 135.00 3.70% 5.93% 7.41%
1.c 7 160.00 6.25% 6.56% 9.38%
1.d 8 185.00 5.41% 5.68% 8.11%
1.e 9 210.00 7.14% 8.10% 9.52%
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Table A.17: Continued

Instance tmax Optimum Min. Avg. Max.

1.f 10 230.00 4.35% 7.39% 8.70%
1.g 11 250.00 4.00% 7.20% 8.00%
1.h 12 270.00 5.56% 8.89% 11.11%
2.a 5 100.00 0.00% 0.00% 0.00%
2.b 6 150.00 10.00% 10.00% 10.00%
2.c 7 195.00 15.38% 16.41% 17.95%
2.d 8 220.00 0.00% 8.64% 11.36%
2.e 9 260.00 7.69% 10.38% 11.54%
2.f 10 310.00 6.45% 8.55% 12.90%
2.g 11 340.00 0.00% 5.59% 8.82%
2.h 12 375.00 1.33% 5.60% 8.00%
2.i 13 425.00 2.35% 6.12% 9.41%
3.a 5.5 370.00 5.41% 8.92% 10.81%
3.b 6.5 420.00 2.38% 4.29% 4.76%
3.c 7.5 500.00 4.00% 10.20% 14.00%
3.d 8.5 560.00 10.71% 13.93% 16.07%
3.e 9.5 620.00 12.90% 15.81% 17.74%
3.f 10.5 650.00 12.31% 15.69% 16.92%
3.g 11.5 690.00 11.59% 14.78% 17.39%
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