
TALLINN UNIVERSITY OF TECHNOLOGY 

Tallinn School of Economics and Business Administration 

Department of Finance and Economics 

Chair of Finance and Banking 

 

 

 

Matis Tomiste 

CORRELATION MODELLING AND FORECASTING OF 

FINANCIAL DATA 

Master’s Thesis 

 

 

 

 

 

 

Supervisor: Professor Karsten Staehr 

 

 

 

 

 

 

 

 

 

 

Tallinn 2014 



2 
 

TABLE OF CONTENTS 

ABSTRACT .................................................................................................................................... 4 

ABBREVIATIONS ......................................................................................................................... 5 

INTRODUCTION ........................................................................................................................... 6 

1.  SIX STYLIZED FACTS ABOUT CORRELATION DYNAMICS ....................................... 8 

1.1.  Data ................................................................................................................................. 11 

1.2.  Time trend ....................................................................................................................... 12 

1.3.  Mean reversal .................................................................................................................. 14 

1.4.  Correlation Breaks .......................................................................................................... 15 

1.5.  Correlation Asymmetry .................................................................................................. 19 

1.6.  Persistence ...................................................................................................................... 19 

1.7.  Outliers ............................................................................................................................ 20 

1.8.  Conclusions ..................................................................................................................... 22 

2.  REVIEW OF CORRELATION MODELS ........................................................................... 23 

2.1.  Notation .......................................................................................................................... 23 

2.2.  Some technical considerations ........................................................................................ 24 

2.3.  Naïve correlation models ................................................................................................ 25 

2.3.1.  Simple Moving Average .......................................................................................... 25 

2.3.2.  RiskMetrics EWMA ................................................................................................. 26 

2.4.  Models of conditional covariance matrix ....................................................................... 27 

2.4.1.  VEC Model .............................................................................................................. 27 

2.4.2.  BEKK Model ............................................................................................................ 29 

2.4.3.  Orthogonal GARCH ................................................................................................. 30 

2.5.  Models of conditional variances and covariances .......................................................... 32 

2.5.1.  Constant Conditional Correlation ............................................................................. 32 

2.5.2.  Dynamic Conditional Correlation ............................................................................ 33 

2.5.3.  Asymmetric Dynamic Conditional Correlation ....................................................... 34 



3 
 

2.6.  Conclusions ..................................................................................................................... 35 

3.  CORRELATION MODEL FORECASTING PERFORMANCE. A LITERATURE 
REVIEW ........................................................................................................................................ 36 

3.1.  Loss Functions ................................................................................................................ 36 

3.1.1.  Statistical loss functions ........................................................................................... 37 

3.1.2.  Choosing a proxy for statistical loss functions ......................................................... 39 

3.1.3.  Economic loss functions ........................................................................................... 40 

3.2.  Procedures for model comparison .................................................................................. 41 

3.3.  Other considerations ....................................................................................................... 42 

3.4.  Empirical results ............................................................................................................. 43 

3.4.1.  Model forecasting performance in smaller dimensions ........................................... 44 

3.4.2.  Model forecasting performance in larger dimensions .............................................. 48 

3.5.  Conclusions ..................................................................................................................... 50 

4.  CORRELATION MODEL FORECASTING PERFORMANCE IN EMERGING 
MARKETS .................................................................................................................................... 52 

4.1.  Competing models .......................................................................................................... 53 

4.2.  Data ................................................................................................................................. 54 

4.3.  Forecast Evaluation ......................................................................................................... 59 

4.4.  Equity Sample Results .................................................................................................... 60 

4.5.  Currency Sample Results ................................................................................................ 64 

4.6.  Conclusions ..................................................................................................................... 67 

SUMMARY .................................................................................................................................. 69 

RESÜMEE .................................................................................................................................... 72 

BIBLIOGRAPHY ......................................................................................................................... 75 

APPENDICES ............................................................................................................................... 78 

Appendix 1. Selected features of empirical surveys .................................................................. 78 

Appendix 2. WIG and PX in-sample correlation dynamics (initial training set)....................... 80 

Appendix 3. WIG and PX one day ahead correlation forecast dynamics .................................. 81 

Appendix 4. EURCHF and EURPLN in-sample correlation dynamics (initial training set) .... 83 

Appendix 5. EURCHF and EURPLN one day ahead out-of-sample correlation dynamics ...... 84 

 



4 
 

ABSTRACT 

The importance of correlation modelling has long been recognized as one of the corner-

stones of modern portfolio risk management. Though univariate volatility modelling has been in 

focus of academic research for over thirty years, multivariate volatility modelling has just recent-

ly been getting more academic attention. The importance of correlations in portfolio risk man-

agement is however hard to overestimate, as their dynamics will define the ultimate costs and 

benefits of diversification. This thesis seeks to explain the general dynamics of time-varying cor-

relations, introduces the most prominent correlation models and evaluates their out-of-sample 

forecasting performance with an objective to find a superior model that could be used in real life 

applications. By using one day ahead correlation forecasts, each model is tested for high and low 

volatility periods on samples from developed markets and emerging markets, where developed 

market results are based on previous academic research and emerging market results on the cal-

culations of the author. Furthermore, as different asset types can experience different dynamics, 

separate samples are created for equity, currency and multi asset portfolios. The evaluation crite-

ria used to find the  best performing model is based on two factors. First, which model is able to 

predict the outcome of the next day most precisely? Second, what is the cost, measured in com-

puting hours, of using certain model? General results are mixed as no single best model is found 

that would unconditionally outperform others in all market and asset type conditions. There are 

some preference towards asymmetric version of dynamic conditional correlation model (ADCC) 

in developed market setting and towards constant conditional correlation model (CCC) in emerg-

ing market setting. Furthermore, more sophisticated models, including the dynamic versions of 

conditional correlation models show unrealistically high computational time cost to be used in 

real life applications. 

Keywords: correlation modelling, multivariate GARCH, multivariate volatility, loss function, 

model confidence set, forecasting 
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ABBREVIATIONS 

ADCC – Asymmetric Dynamic Conditional Correlation 

BEKK - Baba-Engle-Kraft-Kroner correlation 

BIP-cDCC – Bounded Innovation Propagation cDCC 

BIP-DCC – Bounded Innovation Propagation DCC 

CCC – Constant Conditional Correlation 

cDCC – Aielli version of DCC 

DBEKK – Diagonal BEKK 

DCC – Dynamic Conditional Correlation 

DECO – Dynamic Equicorrelation 

DVEC – Diagonal VEC 

EWMA – Exponentially Weighted Moving Average correlation 

EWMAFKO – Fleming-Kirby-Ostdiek version of EWMA 

EWMARM – RiskMetrics version of EWMA 

FBEKK – Full BEKK 

FVEC – Full VEC 

GARCH – Generalized Autoregressive Conditional Heteroskedasticity 

GJR-GARCH - Glosten-Jagannathan-Runkle GARCH 

MCS – Model Confidence Set 

MGARCH – Multivariate GARCH 

O-GARCH – Orthogonal GARCH 

SBEKK – Scalar BEKK 

SMA – Simple Moving Average correlation 

SVEC – Scalar VEC 

VEC – Vectorized correlation 
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INTRODUCTION 

During the financial crisis of 2007-08 volatilities of global asset returns surged to levels 

not seen in recent history. One of the consequences of this increased risk perception was the sub-

stantial strengthening of co-movements between various asset returns. Latter posed a problem for 

global banks, insurance companies and money managers as these institutions had historically re-

lied on correlations as a tool to diversify risk in their asset portfolios. Now when both volatilities 

and correlations reached new highs, their total asset portfolio volatility levels often reached the 

levels that violated both internal as well as external regulatory risk limits. Violations in turn 

forced them to unload the riskier assets to already oversold markets putting even more pressure 

on global asset prices and risk levels. Such regulation driven forced selling was and still can be a 

source of systematic risk in the global financial system. 

Since 1952 when Markowitz published an article on portfolio selection (Markowitz 1952), 

correlation estimates have been considered as one of the cornerstones of portfolio risk manage-

ment. Since then, global regulatory environment has embraced various risk systems (value-at-risk 

and expected shortfall being the most prominent) all relying on correlations as risk diversifiers. 

Being ones objective the minimization of portfolio risk given a target return, or return maximiza-

tion given a target risk, all decisions rely on three types of variables: expected returns and vari-

ances of underlying instruments and their respective expected correlations. While variance mod-

elling has been in focus of academic research since 1982 when Engle published his seminal paper 

on autoregressive conditional heteroskedasticity (Engle 1982), modelling of correlations has been 

getting somewhat less focus. This might be due to two reasons. First, the importance of correla-

tions compared to univariate volatility in risk models is somewhat less significant. Second, corre-

lation modelling suffers from the so called „dimensionality curse“. The latter means that most of 

the existing correlation models are not even usable with portfolios above 100 instruments.    
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This thesis seeks to explain the general dynamics of time-varying correlations, introduces 

the most prominent correlation models and evaluates their out-of-sample forecasting performance 

with an objective to find a superior model that could be used in real life applications. Further em-

phasis will be put on the usage of underlying data. This means that correlation model should per-

form equally well in various market conditions (i.e. in calm and turbulent markets) as well as not 

be dependent on the underlying asset type (i.e. equities, fixed income, currencies, etc.) nor be in-

fluenced by market type (i.e. developed market or emerging market). In addition, modelling effi-

ciency represented by computational time cost of various correlation models will be investigated. 

Looking at correlation model forecasting performance together with its estimation efficiency 

could potentially provide some useful insights about correlation models’ integration possibilities 

into real-life risk systems. 

The thesis proceeds as follows. In Chapter 1 some well-known facts about correlation dy-

namics will be introduced. In Chapter 2, theoretical concepts of correlation modelling together 

with formal definitions of eight correlation models will be given. Chapter 3 will be dedicated to 

the literature review on the forecasting ability of these correlation models in the context of devel-

oped markets. In Chapter 4, empirical analysis will be carried out to evaluate forecasting perfor-

mance of nine correlation models in the context of emerging markets. 
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1. SIX STYLIZED FACTS ABOUT CORRELATION 

DYNAMICS 

In this chapter six well known facts about correlation dynamics will be presented. These 

so called “stylized facts” will then serve as requirements against which theoretical correlation 

models will be benchmarked in Chapter 2.  

Consider the time series of three equity market indices. Figure 1.1 plots index level and 

daily log return information from three countries (S&P 500 of United States, DAX of Germany 

and HSI of Hong Kong). Based on the charts in Figure 1.1, couple of observations can be made. 

Firstly, in general stock market indices move in tandem, indicating that there should be a positive 

correlation between different equity market indices. Furthermore, looking at the return charts 

(charts 2 to 4), one can also notice that the co-movements have been more synchronized in the 

end of time series than in the beginning of it. This in turn could be an indication of positive rela-

tionship between correlation and time. Indeed, investigating seven major country stock indices 

over the period of 1960-1990, Longin and Solnik (1995) found evidence of increasing correla-

tions over this period.  

Secondly, even though in short term the correlation can fluctuate substantially, it still has 

a tendency to revert back to its long term (increasing) average value. In fact, the correlation time 

trend and the fluctuations around this time trend are rather similar to the long and short term 

growth dynamics in economic growth. Namely, when describing economic growth dynamics as a 

combination of long term steady growth trend and a short term business cycle driven growth dy-

namics, a parallel can be drawn in which increasing correlations serve as long term steady trend 

dynamics (in case of correlations, this means increasing integration of global economy)  and a 

more hectic short term correlation dynamics (mainly driven by business cycles). From the corre-

lation modelling perspective, this means that the correlation model should be able to assign dif-
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ferent weights to different historical return observations as well as to be able to incorporate a 

more static long term average correlation term. 

Thirdly, it is a well-known fact that stock market returns are heteroskedastic (see return 

charts for illustrative evidence). As correlations depend on volatilities, this could very well mean 

that also correlations can change (break) during more volatile periods. Using information from 

the stock market crashes of 1987 (Black Monday), 1989 (Russian Crisis), 2001 (dot-com bubble 

burst) and 2008 (subprime mortgage crisis) Sandoval et al. (2010) showed that correlations be-

tween stock market indices1 do increase significantly during great crashes. 

Fourthly, as the downside deviation of returns tends to be much higher than the upside 

deviation (see return charts), it could also mean that there is some asymmetry in correlation dy-

namics. Longin and Solnik (2001) showed by using monthly equity index returns from 1959 to 

1996 for United States, United Kingdom, France, Germany and Japan that empirical correlations 

tend to increase during down-markets and decrease during up-markets.  

For the modelling perspective, facts three and four mean that the model should be flexible 

enough to take into account both the possible correlation breaks as well as asymmetry. 

Fifth fact relates to the persistence in correlation dynamics. Again turning back to our re-

turn charts, it is evident that returns tend to cluster, meaning that high absolute returns are likely 

to be followed by more high absolute returns and vice versa. If persistence in correlation dynam-

ics exists, then from the correlation modelling perspective it is important also to take account of 

the lagged correlation terms. 

The sixth fact is also evident from daily index level and return charts, as it involves outli-

ers, or sudden jumps in prices. Boudt et al. (2013) explain that such outliers are often caused by 

one-off events such as news announcements. As an example, consider a news announcement in-

volving one asset but not the other. In such case, correlation will tend to zero. When however, the 

announcement involves both assets, the correlation can tend to either plus one or minus one de-

pending on the announcement symmetry (both positive/negative or opposite). Furthermore, same 

problems can be found in an index framework. Boudt et al. (2010) point to a October 19, 1987 

market crash as a clear outlier that biases correlation estimate. Latter is also observable in Figure 

                                                 
1 Sandoval et al. (2010) used stock market indices from US, UK, Germany, Spain, Sweden, Brazil, Mexico, Japan, 
Hong Kong, Malaysia, South Korea and Australia. 
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1.1. Data 

This section will introduce the data sample that is used throughout this chapter. In the 

presentation of the first three stylized facts (time trend, breakdown and asymmetry), daily close-

to-close equity index data from Bloomberg database is used. Equity indices observed are grouped 

into two samples (see Table 1.1). The first, smaller sample is constructed so that it would include 

as many geographic regions as well as historical observations as possible. In so doing, the sample 

includes price information starting from November 21, 1969 to February 21, 2014. The second, 

larger sample includes more indices, but because of lack of historical observations in case of 

some indices, the observation period length is from January 23, 1992 to February 21, 2014. 

Table 1.1. Sample data 

Index name Region Country Symbol Small 
sample 

Large 
sample 

Standard and Poor's 500 Index North America United States spx Yes Yes 
S&P/Toronto SE Comp Index North America Canada sptsx No Yes 
Ibovespa Index Latin America Brazil ibov No Yes 
FTSE 100 Index Europe United Kingdom ukx No Yes 
CAC 40 Index Europe France cac No Yes 
DAX Index Europe Germany dax Yes Yes 
IBEX 35 Index Europe Spain ibex No Yes 
AEX Index Europe Netherlands aex No Yes 
OMX Stockholm 30 Index Europe Sweden omx No Yes 
Swiss Market Index Europe Switzerland smi No Yes 
Nikkei-225 Stock Average Asia Japan nky No Yes 
Hang Seng Index Asia Hong Kong hsi Yes Yes 

 

Source: Author’s compilation 

To address the data synchronization problem arising from sample geographical and time-

zone diversity, 2-day rolling averages of log returns have been used [see for example Forbes and 

Rigobon (2002),  Hon et al. (2004)  and Kotkatvuori-Örnberg et al. (2013)]. Furthermore, for ver-

ification purposes, both local currency as well as US dollar subsamples are constructed. 

For the presentation of the last two stylized facts (i.e. persistence and outliers), high-

frequency data from Bloomberg database is used. Sample is constructed based on the selection of 
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German DAX index constituents (see Table 1.2) and spans from August 14, 2013 to February 25, 

2014. Data is organized into 5 minute intervals including total of 13 586 observations per com-

ponent (101 observations per trading day). 

Table 1.2. Selected DAX index components  

Component Symbol Currency Trading hours 
E.ON eaon EUR 10:00 – 18:30 
Deutsche Bank dbk EUR 10:00 – 18:30 
Commerzbank cbk EUR 10:00 – 18:30 
Infineon Technologies ifx EUR 10:00 – 18:30 
Daimler dai EUR 10:00 – 18:30 
Deutsche Lufthansa lha EUR 10:00 – 18:30 
Deutsche Telekom dte EUR 10:00 – 18:30 
SAP sap EUR 10:00 – 18:30 
Source: Author’s compilation 

The analysis is performed with statistical computing software R (source code is available 

upon request) and econometrics software Gretl. When not stated otherwise, all correlations and 

volatilities presented in the current chapter are unconditional, meaning that they are simple aver-

ages of past observations without conditioning on any information set2. 

1.2. Time trend 

To model correlation time trend, two samples are used as defined in Table 1.1. Small and 

large sample 1-year rolling mean correlations are calculated in local currency and US dollars. The 

results are presented in Figure 1.2.  

Both small and large sample indicate upward trending correlations in time. Furthermore, 

the smaller sample which includes stock market indices from United States, Germany and Hong 

Kong and starts from the year 1969 provides especially strong evidence of the time trend. When 

                                                 
2 Unconditional volatility is calculated as ∑ ̅   and unconditional correlation as 

∑ ̅
, where ̅ and  are simple historical averages of assets x and y returns respectively. 
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1.4. Correlation Breaks 

In order to investigate possible breaks in correlations, again two samples from Table 1.1 

were used.  

To find out whether correlations differ in various market conditions, local currency two 

day rolling log returns (adjusted returns) were allocated into 6 groups. First group includes all 

adjusted returns of sample indices for periods when S&P 500 index adjusted return was less then 

minus 2 standard deviations from its mean. Second group includes adjusted returns conditional 

on S&P 500 adjusted return falling between -2 and -1 standard deviations from its mean and so 

on [Group 3: (-1,0); Group 4: (0,+1); Group 5: (+1,+2); Group 5: (+2,+∞)]. Conditional mean 

correlations were thereafter calculated based on the adjusted returns in each group. 

The results are provided in Figure 1.4. “Conditional Volatility” charts give information on 

the average absolute return in each group and “Conditional Mean Correlation” charts provide in-

formation on the average correlation in those groups. 

As can be seen, the correlations tend to increase with volatility. Hence we can conclude 

that there exists at least illustrative evidence that correlations do increase significantly in more 

volatile periods.  
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 1
| ∈

 (1.1)

The most important observation that can be made from equation (1.1) is that when  0 

and 	 	|	 ∈ 	 ≷  then | | ≷ | |, indicating that when volatilities temporarily in-

crease, then correlations increase as well (in absolute value) even though the full sample correla-

tion remains the same.  

In general, the theoretical correlations can be shown to be upward sloping in more volatile 

periods as demonstrated by Boyer et al. (1999) and Loretan et al. (2000) or downward sloping as 

demonstrated by Longin and Solnik (2001) and Chua et al. (2009). In the end it all depends on 

conditioning of sub-samples:  when sub-sampling is done based on absolute values then normal 

correlations4 increase and when it is done on signed values then normal correlations decrease. 

Furthermore, Campbell et al. (2008) demonstrate that when replacing the normal distribution 

with Student-t distribution (which is more appropriate for fat-tailed return distributions), then 

theoretical correlations increase even in case the conditioning is done over the signed values. To 

illustrate the above effects, author used Monte Carlo simulation to generate 1 million standard 

normally and Student-t distributed random observations for two variables (altogether 2 million 

observations for both distributions). The variable observations were thereafter correlated with 

unconditional correlation of 0.5 using Cholesky decomposition. The results for normal correla-

tions with conditioning on absolute and signed values as well as Student-t correlations with 5 de-

grees of freedom and conditioning on signed values are provided in Figure 1.5. 

There are two observations one can make from Figure 1.5. First, theoretical correlation 

moves in the same direction as theoretical volatility, i.e. increases when theoretical volatility rises 

and decreases when it falls. Second, under more relevant Student-t distribution with 5 degrees of 

freedom theoretical correlation is increasing. 

In conclusion it can be argued that based on the simulation as well as more recent research 

results, correlation breaks are not only empirical but also theoretical phenomenon. 

                                                 
4 Normal correlations are correlations for jointly normally distributed variables. 
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1.5. Correlation Asymmetry 

For correlation asymmetry analysis, the same data and results can be used as in case of 

correlation breakdowns. Namely, investigating Figure 1.4 one can see some evidence that nega-

tive return periods do bring about larger correlation increases than positive return periods. As 

mentioned in the introductory section to this chapter, Longin and Solnik (2001) as well as Chua 

et al. (2009) both using global equity index data have found similar evidence of asymmetry in 

correlation dynamics. 

1.6. Persistence 

To illustrate the possible persistence in correlation dynamics, high frequency data was 

used for instruments defined in Table 1.2. Based on 5-minute log return data spanning from Au-

gust 14, 2013 to February 25, 2014, realized correlation coefficients were calculated in accord-

ance with Andersen et al. (2003). According to Andersen et al. (2003), realized correlations can 

be approximated for each day using sufficient amount of return observations from that day5. Data 

synchronisation issue was addressed by using instruments from the same stock exchange together 

with the constraint on liquidity (i.e. only the most liquid instruments were included in the sam-

ple). 

Based on sample data, 135 realized correlations were calculated for each of  the randomly 

selected 7 instrument pairs from Table 1.2 (see table Table 1.3). Table 1.3 provides results from 

partial autocorrelation analysis of realized correlation time series. There is strong evidence of 

persistence (represented by partial autocorrelation) of at least one day lag. In most cases, persis-

tence also exists for the 2 day lag. 

                                                 
5 Andersen et al. (2003) used 30 minute intervals in 24 hour foreign exchange markets to minimize market micro-
structure noise. Due to XETRA exchange shorter opening hours, the reason that the analysis is only illustrative and 
only the most liquid stocks were selected, 5 minute intervals was considered as sufficient for current analysis. 
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Table 1.3. Partial autocorrelation coefficients and the significance of the first three lags 

Component 1-day 2-day 3-day 
Commerzbank - Infineon Technologies 0.2307 *** 0.2193 ** 0.0428 
Daimler - Commerzbank 0.2695 *** 0.2436 *** 0.0400 
Deutsche Bank - Daimler 0.3677 *** 0.1725 ** 0.2069 **
Deutsche Telekom - Deutsche Lufthansa 0.3007 *** 0.2717 *** 0.0585 
Infineon Technologies - E.ON 0.4122 *** 0.2384 *** 0.1441 * 
Deutsche Lufthansa - Deutsche Bank 0.3780 *** 0.0963 0.0962 
SAP - Deutsche Telekom 0.3467 *** 0.2614 *** 0.0930 

*** statistically significant at the 1% level; ** st. significant at the 5% level; * st.  significant at the 10% level 

Source: Author’s compilation 

1.7. Outliers 

Similarly to the analysis of persistence related stylized fact, the illustration of outlier ef-

fect entails using high frequency data and realized correlations. As mentioned in the introductory 

section of the current chapter, outliers caused by one-off events (such as news announcements) 

can potentially cause a bias in the correlation estimate.  

To illustrate the point, 5-minute log returns of two stocks (EO.N and Deutsche Bank) 

trading an a German stock exchange (XETRA) have been used from August 14, 2013 to  Febru-

ary 25, 2014. The results are presented in Figure 1.6, Figure 1.8 and Figure 1.8. 

The forth chart in Figure 1.6 („Realized Correlation“)  plots daily realized correlations 

against 5-minute E.ON-Deutsche Bank log return differential. Consider for example the observa-

tion circulated in red. The log return differential on October 11th exceeds 1.5 percent consequent-

ly pushing the correlation down towards zero.  

More in depth analysis (see Figure 1.8 and Figure 1.8) provides further evidence on outli-

er effect. Figure 1.8 (October 1st and October 2nd) provide log return frequency distributions for 

„normal“ periods (i.e. without outliers). The realized correlations calculated for these days are 

0.45 and 0.46 respectively. Alternatively, Figure 1.8 provides frequency distributions for „non-

normal“ or „outlier“ days. The information is for the October 7th and October 11th (mentioned 

above) with outliers circulated in red. As can be seen, the realized correlation drops from around 

0.45 to around 0. 
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2. REVIEW OF CORRELATION MODELS 

 In Chapter 1 six stylized facts were introduced about correlation dynamics. In this chap-

ter, theoretical concepts of correlation modelling together with formal definitions of eight correla-

tion models will be given.  The chapter proceeds as follows. In the first subsection, some nota-

tional aspects will be discussed that will be used throughout the rest of the thesis. In the second 

subsection, two technical considerations will be introduced that are of significant importance 

when modelling correlations. Subsections three through five will then provide theoretical defini-

tions of the eight, in authors opinion most prominent, correlation models. In the last subsection, 

some concluding remarks regarding theoretical concepts of correlation modelling will be made. 

2.1. Notation 

As per Silvennoinen and Terasvirta (2008) and Bouwens et al. (2006) we can set the mod-

el up as follows. Consider a stochastic vector process { rt } with dimension Ν × 1 such that Ert = 

0. Let  denote the information set generated by the observed series { rt } up to and including 

time t – 1. We assume that rt is conditionally heteroskedastic: 

 /   (2.1)

given the information set , where the N × Ν  matrix  = [hij,t] is the conditional covariance 

matrix of rt and ηt is an iid vector error process such that .  /  is any N × N positive 

definite matrix such that  is the conditional variance matrix of , e.g. /  may be obtained 

by Cholesky factorization of . This defines the standard multivariate generalized autoregres-

sive conditional heteroskedasticity (MGARCH) framework, in which there is no linear depend-

ence structure in { rt }.  
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In the following subsections a review of correlation models with different specifications 

of  will be provided. Based on their specification, three nonmutually exclusive classifications 

of correlation models are provided: (i) naïve correlation models; (ii) models of conditional covar-

iance matrix; and (iii) models of conditional variances and covariances. First category includes 

models such as Simple Moving Average correlation and RiskMetrics version of Exponentially 

Weighted Moving Average correlation. VEC6, BEKK7 and Orthogonal GARCH models are in 

the second category. The last category contains constant and dynamic conditional correlation 

models. 

2.2. Some technical considerations 

Before the introduction of various model specifications, there are two additional technical 

considerations that need  to be explained. Firstly, the covariance matrix of a correlation model 

needs to be positive semidefinite. When it is not the case and covariance matrix ends up being  

negative definite, the resulting aggregated asset portfolio variance will be negative. Negative var-

iance however is not an economically realistic result.  

There are couple of reasons that might result in covariance matrix not to be positive sem-

idefinite. Firstly, when the number of historical observations is less than the number of assets. 

The most probable situation where it could happen  is with MGARCH type models where the co-

variance matrix is estimated with decaying weights. Namely, when those weights are decaying 

too fast, it could make the number of effective historical observations too small for the covari-

ance matrix to be positive semidefinite. Second  reason for covariance matrix not to be positive 

semidefinite is when the asset  returns are strongly linearly correlated with each other. (Jorion 

2006) 

Another technical consideration when modelling correlations is the dimensionality prob-

lem. Consider for example a portfolio of 100 assets. In order to estimate the covariance matrix, 

altogether 5 050 covariance and variance terms need to be estimated. Using for example VEC 

                                                 
6 Named after vech(·) operation used in the model. 
7 Named after its authors Baba-Engle-Kraft-Kroner. 
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type MGARCH model for the estimation, further 51 010 050 model parameters need  to be esti-

mated. Latter makes the whole process infeasible for medium to large systems. So in order to 

make system feasible, some simplifying assumptions are often made for modelling purposes. 

2.3. Naïve correlation models 

Before the introduction of more sophisticated MGARCH type models, two so called naïve 

correlation estimation models will be introduced in this subsection. The models include equally 

weighted rolling average correlation (Simple Moving Average) and RiskMetrics version of Ex-

ponentially Weighted Moving Average correlation. The reason for describing the two aforemen-

tioned models separately is because of their relative simplicity compared to most MGARCH 

models and their wide use by industry practitioners.  

2.3.1. Simple Moving Average 

In bivariate case Simple Moving Average correlation (SMA) can be defined as follows 

(Engle 2002): 

 ,
, ,

, , , ,

  (2.2)

where ,  is the conditional correlation estimate made for time t on t-1. ,  is a 1  k column 

vector for asset 1 daily returns up to t – 1 so that ,  = (r1,t-k-1,…, r1,t-1) and ,   is a 1  k 

column vector for asset 2 daily returns up to t – 1 so that ,    = (r2,t-k-1,…, r2,t-1). 

In (2.2), the length of the rolling window k determines the degree of memory that is used 

in estimation. For example, assuming k = 252 (1 year) and t =  1 008 (4 years), correlation esti-

mate will give an equal weight to all daily returns in year 4 and zero weight to all returns in the 

first three years. 

The aforementioned feature is also the biggest critique against using the SMA to estimate 

correlation. Namely, by choosing a smaller k value to incorporate heteroskedasticity, the model 
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will disregard potentially important more distant historical observations. Alternatively, by choos-

ing a high k, the model might average out the important heteroskedastic conditions of current 

state. 

Coming back to the six stylized facts introduced in Chapter 1, considering a commonly 

used k value of 252 (one year), the model is incapable of handling neither correlation breaks, nor 

mean reversion or time trend. Furthermore, even though correlation estimate from SMA model is 

persistent, it most probably is persistent on a wrong level. Under no setting in (2.2) can we incor-

porate asymmetry nor can we avoid outliers. On the positive side, SMA  estimated covariance 

matrix is guaranteed to be positive semi-definite and the model does not suffer from dimensional-

ity problem. 

2.3.2. RiskMetrics EWMA 

RiskMetrics version of Exponentially Weighted Moving Average correlation (RiskMet-

rics EWMA) developed by RiskMetricsTM (RiskMetrics 1996), uses a decay factor λ to assign 

weight to historical observations. The weighting is done so that the importance of historical ob-

servations declines exponentially as a function of λ. 

For N assets we can define exponentially smoothed correlation measure as follows 

(Andersen et al. 2007): 

 1  (2.3)

where  is the conditional covariance matrix estimated at t-1 for time t and   is an N	 	 1  

row vector of daily returns for N assets. From (2.3) conditional correlation matrix 	can be de-

rived as follows: 

 ⊙ / ⊙ /  (2.4)

where ⊙ denotes Hadamard product (i.e. matrix elementwise product)  and I is a N × N  identity 

matrix with ones on the main diagonal and zeros everywhere else. As equation (2.4) can be used 
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whenever we need to transform conditional covariance matrix  to a conditional correlation ma-

trix , only   will be formally defined in the following subsections. 

RiskMetrics EWMA has two important advantages over the equally weighted model. 

First, correlation reacts faster to shocks in the market as recent data carry more weight than data 

in the distant past. Second, the model does not have a fixed observation termination point in the 

past. This means that the model is capable of incorporating all of the observable history into its 

estimate (although using standard decay factor of 0.94 is already very discriminating against the 

more distant history8). Furthermore, due to its simple structure, covariance matrix of RiskMetrics 

EWMA model is easily estimated, and provided that the decay factor is not too low and N is not 

too high, model is also guaranteed to be positive semidefinite (Andersen et al. 2007). 

On the negative side, as the model imposes the same degree of smoothness on all ele-

ments of the estimated covariance matrix, the result can be potentially biased. This is confirmed 

by various studies which have found that the optimal decay factor varies both across assets and 

among asset classes. Moreover, similarity to SMA, RiskMetrics EWMA ignores correlation 

mean-reverting (Andersen et al. 2007) and time trend properties as well as asymmetry and possi-

ble outliers. 

2.4. Models of conditional covariance matrix 

2.4.1. VEC Model 

VEC-GARCH model of Bollerslev, Engle, and Wooldridge (1988), is  a generalization of 

the univariate GARCH model. Every conditional variance and covariance is a function of all 

lagged conditional variances and covariances, as well as lagged squared returns and cross-

products of returns (Silvennoinen, Teräsvirta 2008). 

The VEC(1,1)  model is defined as follows (Bollerslev et al. 1988): 

  (2.5)
                                                 
8 For example, when using annual daily return observations, the last six month of data will have a combined weight 
of 99.96% in the model. 



28 
 

where c is an N(N + 1)/2 × 1 vector, and A and B are N(N + 1)/2 × N(N + 1)/2 parameter matri-

ces. vech(·) operator converts the unique lower triangular elements of a symmetric matrix into a 

N(N + 1)/2 × 1 column vector.  

The generality of the VEC model is an advantage in the sense that the model is very flexi-

ble by allowing mean-reversion (intercept vector c) as well as correlation breaks and persistence. 

However such flexibility also brings disadvantages. One is that there exist only sufficient, rather 

restrictive, conditions for  to be positive definite for all t (Silvennoinen, Teräsvirta 2008). 

Another disadvantage of this model is that the dimensionality of the model increases ex-

ponentially. In fact the number of parameters is defined as (p + q) (N(N + 1)/2)2 + N(N+1)/2, 

where p and q are VEC lagged terms, i.e. VEC(p,q)9. In our VEC(1,1) specification, having a 100 

asset portfolio (N = 100) results in 51 010 050 parameters to be estimated. 

The dimensionality problem can be alleviated somewhat by assuming a diagonal matrix 

for both A and B (diagonal VEC, or DVEC) where each element hij,t depends only on its own lag 

and on the previous value of  (Bauwens et al. 2006). Number of parameters to be esti-

mated in DVEC decreases then to N(N+5)/2 (e.g. for  N = 100 number of parameters will be 

5 250).  

The DVEC(1,1)  is defined as follows (Bauwens et al. 2006): 

 ° ° ⊙ ° ⊙  (2.6)

where °, °, ° are symmetric  N × N  matrices so that ° , 

°  and ° . As long as °, °, ° as well as initial covari-

ance matrix  are positive definite, then so is   for all t (Bauwens et al. 2006). 

Nevertheless, even in DVEC setting there are too many parameters to be jointly estimat-

ed, which is computationally infeasible in systems of medium and large size (Andersen et al. 

2007). An even simpler version of VEC is called scalar VEC, or SVEC. SVEC model constrain 

°, ° matrices to be rank one matrices, or a positive scalar times the matrix of ones (Bauwens et 

al. 2006). The SVEC(1,1) can then be written as in (2.7). 

                                                 
9 In equations (2.5) p=q=1, i.e. VEC(1,1). 
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  (2.7)

As can be seen, RiskMetrics EWMA of (2.3) is a particular case of SVEC model where c 

= 0, a = 1 – λ and b = λ. Latter demonstrates well one of the previously stated negative aspects of 

RiskMetrics EWMA model. Namely by setting c = 0, RiskMetrics EWMA model is not mean 

reverting. 

In conclusion, when benchmarking VEC, DVEC and SVEC models against stylized facts 

of Chapter 1, all models can handle mean-reversion, correlation breaks and persistence (though 

on different levels, VEC being the most flexible). Nevertheless, none of the specifications of 

(2.5), (2.6) and (2.7) can handle time trend, asymmetry nor outliers.  

2.4.2. BEKK Model 

Because it is difficult to guarantee the positivity of  in the VEC representation without 

imposing strong restrictions on the parameters, Engle and Kroner (1995) propose a new parame-

terization for  that guarantees its positivity, i.e. the Baba-Engle-Kraft-Kroner (or BEKK) mod-

el  (Bauwens et al. 2006). 

BEKK (1,1,K) model is (Engle, Kroner 1995): 

 ∗ ∗ ∗ ∗ ∗ ∗   (2.8)

where ∗, ∗  and ∗  are N × N parameter matrices, ∗ is lower triangular and the   summation 

limit K determines the generality of the process. 

The number of parameters in the BEKK(1,1,1) model is N(5N + 1)/2 (e.g. if N = 100 then 

there are altogether 25 050 parameters to be estimated). To reduce this number, and consequently 

to reduce the generality, one can impose a diagonal BEKK model in which A and B in (2.8) are 

diagonal matrices. This model is also a DVEC model but it is less general, although it is guaran-

teed to be positive definite while the DVEC is not. (Bauwens et al. 2006) 

The most restricted version of the diagonal BEKK model is the scalar BEKK with A = aI 

and B = bI where a and b are scalars (Silvennoinen, Teräsvirta 2008). 
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With regard to meeting the requirements established in Chapter 1, the outcome is the 

same as for VEC type models, namely all BEKK specifications (though on various levels) are 

able to handle mean reversion, correlation breaks and persistence. 

2.4.3. Orthogonal GARCH  

Orthogonal GARCH (O-GARCH) model of Alexander and Chibumba (1997) is a general-

ization of the factor GARCH model introduced by Engle, Ng and Rothschild (1990) to a multi-

factor model with orthogonal factors. The O-GARCH model allows N × N GARCH covariance 

matrices to be generated from m N univariate GARCH models, where the m univariate models 

are based on principal components that are linearly independent of each other (Alexander 2001). 

Furthermore, Alexander (2001) notes that since only the univariate GARCH models are used, it 

does not really matter if m is significantly smaller than N. 

With regards to the advantages of O-GARCH model, Alexander (2001) states that there 

are at least three major advantages in using principle components in covariance matrix estima-

tion. First, in a highly correlated system, only a few principal components are required to repre-

sent the system variation to a very high degree of accuracy. Second, the covariance matrix that is 

constructed using the principal components method is guaranteed to be positive semidefinite. 

Third, O-GARCH method gives one the option of cutting out any 'noise' in the data that would 

otherwise make correlation estimates unstable. 

The procedure to calculate conditional covariance matrix with O-GARCH model is to first 

construct unconditionally uncorrelated linear combinations of the series r. Then, as a second step, 

estimate univariate GARCH models for some or all of these series, and in a third and final step, 

to construct full covariance matrix by assuming the conditional correlations are all zero. (Engle 

2002) 

Thus the m × m diagonal matrix of variances of the principal components is a time-

varying matrix denoted Dt and the time-varying covariance matrix  of the original system is 

approximated by (Alexander 2001): 

  (2.9)
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where A is the N × m matrix of re-scaled factor weights and Dt is a diagonal matrix of variances 

of the principal components estimated using a GARCH univariate model. Factor weights in (2.9) 

are eigenvalues of standardized 	 , where Γ has zero mean and unit variance10, 

i.e.  where W represents eigenvectors corresponding to Γ, and  is a 

diagonal matrix of eigenvalues of Γ. Matrix of principal components  is thereafter calculat-

ed by multiplying the original return matrix Γ and its eigenvalues based re-ordered matrix of ei-

genvectors WO so that P = ΓWO. Dimension of A will be then set according to the variances of 

principal components. Namely, as the sum of variances of principal components equals the sum 

of individual N return series in Γ (Tuckman, Serrat 2011) and knowing that we have standardized 

our variances to one, then the variance contribution is defined as the eigenvalue of ith principal 

component divided by N. m will then be set according to the sum of first m principal component 

variances that explains sufficient amount of total variance of the system. The final matrix A is 

then obtained by multiplying each factor weight by the corresponding standard deviation.  

According to Alexander (2001) equation (2.9) will give a positive semidefinite matrix at 

every point in time for any size of m. On a negative side, Bauwens et al. (2006) argue that as the 

conditional variance matrix has reduced rank when m < N, it might cause problems for applica-

tions and for diagnostic tests which depend on the inverse of . 

It was already established that O-GARCH meets the technical requirements of positivity 

and low dimensionality, but how does O-GARCH deal with the stylized facts introduced in Chap-

ter 1? As with VEC and BEKK models, O-GARCH can handle mean-reversion, correlation 

breaks and persistence, but falls again short in coping with time-trend and asymmetry.  

                                                 
10 Standardization of 	to get 	is done by subtracting sample mean from 	and dividing the result by √  
times the sample standard deviation. 
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2.5. Models of conditional variances and covariances 

2.5.1. Constant Conditional Correlation 

Bollerslev (1990) proposes a class of MGARCH models in which the conditional correla-

tions are constant and thus the conditional covariances are proportional to the product of the cor-

responding conditional standard deviations (Constant Conditional Correlation, or CCC model). 

This restriction greatly reduces the number of unknown parameters and thus simplifies the esti-

mation (Bauwens et al. 2006). 

The CCC model is defined as (Bollerslev 1990): 

 (2.10)

where  denotes the N × N stochastic diagonal matrix with elements , … ,  and  is a 

positive definite N × N time invariant matrix of correlations  were  = 1, i = 1, ... , N. Each 

element   in  is estimated via GARCH(1,1) specification11:  

 , ,  (2.11)

Under GARCH(1,1) specification, the CCC model contains N(N +5)/2 parameters. Ac-

cording to Bauwens et al. (2006), when all N conditional variances in (2.10) are positive and  is 

a positive definite matrix, then  is guaranteed to be positive definite as well.  

Even though the assumption of constant conditional correlation can be too restrictive, the 

model has some good features that none of the previous models had. Namely, the model has sep-

arated volatility dynamics from correlation dynamics. Latter gives us the flexibility to use vast 

amount of valuable knowledge regarding univariate volatility dynamics. For instance, we can 

now incorporate volatility asymmetry (for example by using GJR-GARCH12 type model instead 

of standard GARCH model). Nevertheless, considering that the conditional correlation in CCC 

                                                 
11 The model can also be extended to GARCH(p, q) specification (see Silvennoinen, Teräsvirta 2008). 
12 GJR-GARCH model after the names of its authors (Glosten, Jagannathan and Runkle) introduces different 
weighting schemes for negative and positive shocks taking into account the leverage effect (Ali 2013). 
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model is by definition constant, the model is not fulfilling none of the correlation dynamics re-

quirements established in Chapter 1.   

2.5.2. Dynamic Conditional Correlation 

Engle (2002) proposes an estimator called Dynamic Conditional Correlation model or 

DCC. The DCC model of Engle differs from CCC model in allowing  to be time varying giving 

a model (Engle 2002): 

  (2.12)

where ⊙ / ⊙ /  

1  

 (2.13)

(2.14)

with   defined as the vector of scaled residuals (i.e. ,
,

,
) and S is set to the unconditional 

covariance matrix. Because α and β are scalars, all conditional correlations obey the same dynam-

ics (Jorion 2006). This is necessary to ensure that  is positive definite.  

If the conditional variances are specified as GARCH(1,1) models then DCC model con-

tains (N + 1)(N + 4)/2 parameters (Bauwens et al. 2006). 

DCC model is designed to allow for two-stage estimation of the conditional covariance 

matrix : in the first stage univariate volatility models are fitted for each of the assets and esti-

mates of ,  are obtained; in the second stage asset returns, transformed by their estimated stand-

ard deviations resulting from the first stage are used to estimate the parameters of the conditional 

correlation. 

Even though two-stage estimation is far more efficient than the to one-stage estimation of 

VEC and BEKK models, Engle and Kelly (2012) argue that the estimation of DCC model param-

eters becomes increasingly cumbersome as the size of the system grows. In fact Engle and Kelly 

(2012) also note that the DCC model of Engle has only been successfully applied to up to 100 

assets. 



34 
 

When benchmarking DCC model against the six stylized facts, it can be shown that the 

model satisfies the mean-reverting properties  as well as it can handle correlation breaks and per-

sistence. Also, by using asymmetric univariate GARCH model (such as GJR-GARCH) in the 

first estimation phase,  it is possible to add asymmetry into volatility estimate (but not into corre-

lation estimate). Neither time trend nor outliers are handled by DCC model. 

2.5.3. Asymmetric Dynamic Conditional Correlation 

As explained in Chapter 1, conditional estimates of the second moments of certain assets 

often exhibit asymmetric phenomenon, where volatilities as well as correlations increase more 

after a negative shocks than after positive shocks of the same magnitude. Furthermore, in the last 

subsection it was argued that even though DCC model is capable of handling asymmetric uni-

variate volatility dynamics, it is still not able to handle asymmetry in correlation dynamics. 

An Asymmetric Dynamic Conditional Correlation (or ADCC) extends the DCC model by 

accounting for asymmetries in the correlation dynamics through the additional term 

⊙1 1  in (2.14) where 1  is a vector of dimension N such that 

1 1 if , 0 and 0 otherwise (Laurent et al. 2010). ADCC model can then be de-

fined as follows: 

 1 ⊙ 1 1  (2.15)

Conditional correlation matrix  and conditional covariance matrix  is then calculated 

according to equation (2.13) and (2.12) respectively.  

Additionally to satisfying the properties of mean-reversion and persistence together with 

the ability to handle correlation breaks, the ADCC model is also capable of  handling asymmetry 

in correlation dynamics. Latter makes ADCC model out of the models introduced the most flexi-

ble with respect to stylized facts established in Chapter 1. 
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2.6. Conclusions 

In this chapter, formal definitions of eight correlation models were given. Based on model 

complexity and estimation routine, the models were allocated into three categories: naïve models, 

models of conditional covariance matrix and the models of conditional variances and covari-

ances. Within the naïve models class, Simple Moving Average and RiskMetrics Exponentially 

Weighted Moving Average correlation models were introduced. It was argued that even though 

naïve models are easy to use and the resulting covariance matrix is guaranteed to be positive sem-

idefinite, they lack flexibility needed to incorporate most of the requirements established in 

Chapter 1. The second class of models, models of  conditional covariance matrix, included VEC, 

BEKK and Orthogonal GARCH. These models are far more flexible than the naïve models, but at 

the expense of increased dimensionality and the fact that the resulting covariance matrix might 

not always be positive semidefinite (VEC, BEKK). In the third class, models such as Constant 

Conditional Correlation (CCC), Dynamic Conditional Correlation (DCC) and Asymmetric Dy-

namic Conditional Correlation (ADCC) models were introduced. Compared to VEC, BEKK and 

O-GARCH models in which the estimation takes place in one step, in CCC, DCC and ADCC the 

estimation is done in two stages, where in the first stage conditional volatilities are estimated and 

in the second stage, based on the newly standardized residuals, conditional correlations are esti-

mated. The two-step estimation procedure both simplifies the estimation routine as well as guar-

antees the positiveness of estimated covariance matrix. 

In addition to the eight correlation models introduced, there are many other correlation 

models that were not formally defined in this chapter. One such model, that will also be men-

tioned in Chapter 3, is BIP-cDCC.  BIP-cDCC model of Boudt et al. (2013) is an extension of the 

DCC model with the ability to handle outliers. Additionally, there are Copula GARCH type mod-

els, multivariate versions of stochastic volatility models and realized volatility models. With re-

gard to the latter, one multivariate realized volatility model was already introduced in Chapter 1. 

More will be said about this family of models in Chapter 3. 
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3. CORRELATION MODEL FORECASTING PERFORMANCE. 

A LITERATURE REVIEW 

In the previous chapter, various multivariate volatility models were introduced. It was 

shown that multivariate volatility models can range from relatively easy configurations to highly 

complex ones. This chapter will be dedicated to the literature review on the forecasting ability of 

the aforementioned models, with the goal to clarify which models are superior in their predictive 

ability as well as to find out whether this increased predictive ability is accompanied by unrea-

sonable computational cost. Multivariate volatility model forecasting performance in this chapter 

will be evaluated based on its covariance forecast Ht. This means that the results will be influ-

enced by covariances as well as volatilities. However, since all correlation models introduced in 

Chapter 2 were multivariate models with correlations derived directly from Ht estimate, then by 

using covariance matrix we are able to assess the model performance correctly. Further evalua-

tion on correlation forecast performance can then be made by controlling for how the univariate 

models have be specified13. Before going into the empirical findings, certain methodological as-

pects will be touched upon to make sure that the results can be considered as robust and compa-

rable.  

3.1. Loss Functions 

It is well known that in case of correlation we are dealing with an unobservable variable. 

This makes it difficult to benchmark forecasting model result against realized outcome. In order 

to overcome this difficulty, two sets of so called loss functions have been proposed in the litera-

                                                 
13 For example, in case of models with conditional variances and covariances (models such as CCC, DCC and 
Asymmetric DCC) we can assess correlation estimates by using the same specification to model univariate volatility 
[this is done in Chapter 4, where the univariate volatility is modelled with the GARCH(1,1) specification]. 
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ture. First set of loss functions are the ones that try to evaluate the goodness of correlation model 

covariance forecasts directly. This class of functions are called direct or statistical loss functions 

and include measures such as mean squared error, quasi-likelihood, forbenius distance and others. 

Second set of loss functions include the ones that try to evaluate the goodness of the models via 

some underlying economic consideration indirectly. This class of functions are referred to as in-

direct or economic loss functions and include functions based on (global) minimum variance 

portfolio, value at risk, tracking error, utility from the returns to the minimum variance portfolio 

and others. 

Various empirical research papers have used many different statistical and economic loss 

functions to assess the relative predictive ability of various multivariate volatility models. It is 

therefore critical to make sure that the results provided by those various loss functions are compa-

rable and robust. This section will provide an overview of the most widely used robust statistical 

and economic loss functions. The list draws on the research by Patton and Sheppard (2007), 

Clements et al. (2009) and Laurent et al. (2013). 

3.1.1. Statistical loss functions 

Given forecasting errors  , the family of consistent loss functions is defined as fol-

lows (Laurent et al. 2013): 

 , ′  (3.1) 

where  is the covariance forecast,  is an observable covariance proxy for true unobservable 

conditional covariance matrix  and  is a matrix of weights that defines the relative importance 

of the forecasting errors in . As a reminder, vech(·) is an operator that converts the unique 

lower triangular elements of a symmetric matrix into a N(N + 1)/2 × 1 column vector. 

Based on the aforementioned quadratic form, mean squared error (MSE) loss function is 

defined as follows (Clements et al. 2009): 
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 ,
1

′  (3.2) 

Laurent et al. (2013) propose two additional distance measures that are based on forecast-

ing error	  and weight matrix . 

First, Euclidean distance  where  is a general form of MSE. Only difference is that 

MSE is a mean loss per matrix element, whereas Euclidean loss is the sum of errors accross 

whole error matrix. 

 	 , ′  (3.3) 

It should be noted that the use of MSE and Euclidean loss functions will give exactly the 

same ranking in the evaluation of covariance forecast performance. 

Second loss functions proposed by Laurent et al. (2013) is the Frobenius loss function. 

 , ′  (3.4) 

where Tr(·) is a trace operator that sums up all the main diagonal elements.  

Frobenius loss function in (3.4) is a result of setting , where  is a 

symmetric matrix with 1’s on its main diagonal and 2’s everywhere else. This allows to assign 

double weights on covariance forecast errors. 

Alternative robust loss function specification from (3.1) is a quasi-likelihood (QLIKE) 

function as defined in (3.5). 

 log| |  (3.5) 

where  is an 1 vector of N asset disturbances, so that  	and ~ 0, . In 

Chapter 2 the assumption was made that the expected return  is zero. As in the real world it is 

not always the case (i.e. asset mean return 0), zero-mean residuals  are used in (3.5)14. As 

                                                 
14 In Chapter 4, AR(1) model will be used to generate zero mean residuals. 
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can be seen, quasi-likelihood function is not a distance measure. Nevertheless, it still allows dif-

ferent forecasts of  to be compared (Clements et al. 2009). In fact, according to Clements et al. 

(2009), likelihood based statistical measures outperform the distance based functions (in their 

case QLIKE outperformed MSE). 

There are other statistical loss functions that are considered robust (such as Stein function 

that also accounts for asymmetry, Mahalanobis distance, etc.). Nevertheless, as the focus of this 

thesis is on correlation model evaluation and the aforementioned loss functions are somewhat less 

widely used in empirical research, the introduction of those models will remain out of scope. 

3.1.2. Choosing a proxy for statistical loss functions 

Equations (3.1) through (3.4) used an observable covariance proxy  against which loss-

es were measured. Covariance proxy  was used instead of the true covariance matrix  be-

cause the true covariance matrix is unobservable. For this reason, various covariance proxies 

have been proposed in the literature, all derived from the intraday return observations. The fol-

lowing will give an overview on various covariance proxies that have been proposed in the litera-

ture. 

Firstly, Andersen et al. (2003) argue that intraday returns sampled with 30 minute fre-

quency can be used as a proxy for realized covariance.  Realized Covariance (RCov) is then de-

fined as the sum of the outer products of those intraday returns. Furthermore, they argue that 

when the sampling frequency is less than 30 minutes an increased microstructure noise might 

start to compromise the estimation of RCov. Laurent et al. (2013) argue however that when the 

quality of covariance proxy deteriorates (sampling frequency gets smaller), inferior correlation 

models might start to outperform models that would be otherwise preferred when more accurate 

proxy would be used. As a result sampling frequency between 5 and 20 minutes is suggested by 

Laurents et al. (2013) as the best compromise between loss of accuracy and  noise caused by mi-

crostructure frictions. 

In addition to realized covariance proxy of Andersen et al. (2003), various other proxies 

have been proposed. Firstly, in order to overcome the outlyingness problem described in Chap-

ter 1, Berndorff-Nielsen and Sheppard (2004) proposed Realized BiPower Covariation (RBPCov) 
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which is a combination of conditionally normal component with time-varying covariance matrix 

and a jump component. Despite solving most of the outlier related bias, Boudt et al. (2011) point 

to some weaknesses in RBPCov. Namely, they pointed to the upward bias that is caused mainly 

by co-jumps in continuous returns. Also, they note that RBPCov matrices are not always positive 

semidefinite and correlation coefficients derived form covariance coefficients might therefore not 

lie between -1 and 1. To overcome latter deficiencies, Boudt et al. (2011) proposed Realized Out-

lyingness Weighted Covariation (ROWCov) measure that downweights returns of large outlying-

ness. Outlyingness itself in ROWCov is defined as having extreme value relative to its neigh-

bouring values. According to Boudt et al. (2011) the measure is both more efficient and more ro-

bust to jumps than RBPCov.  

3.1.3. Economic loss functions 

Building on the Engle and Colacito (2006) and Patton and Sheppard (2007), Clements et 

al. (2009) propose two robust economic loss functions that are both based on minimum variance 

portfolio. 

 
1

 (3.6) 

where  weights for minimum variance portfolio loss function (  are defined in (3.7) and for 

global minimum variance portfolio loss function ( ) in (3.8). 

  (3.7) 

 

  (3.8) 

where  in (3.7) is the target return for the portfolio so that ,  in (3.8) is an 1 

unit vector, Ht is a covariance estimate and  is an 1 vector of expected asset returns. As 
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can be seen, the only difference between  and  is that the latter does not require any 

assumptions regarding  .  

Lack of the aforementioned requirement might also be the reason why in empirical litera-

ture loss functions based on the global minimum variance portfolio are more widely used than the 

ones based on minimum variance portfolio. Engle and Sheppard (2008) for example used GMVP 

based loss function together with Diebold-Moreno test to compare the performance of covariance 

models in a setting of 50 sector indices belonging to a S&P 500 total market index. Clements et 

al. (2012) used GMVP based loss functions together with to assess the relative performance of 

covariance models in the context of larger dimensions (up to 200 instrument sample).  

It is worthwhile to note that economic loss functions have one distinct advantage over 

most statistical loss functions. Namely, as the size of the covariance matrix increases, compari-

sons based on statistical loss functions that use intraday realized covariance as a proxy might be-

come infeasible. Latter is due to the reason that when N gets bigger than the intraday sampling 

frequency T, covariance proxy might itself become negative-definite. Fortunately there are also 

some loss functions among the class of statistical loss functions that do not suffer from this prob-

lem (such as QLIKE). 

3.2. Procedures for model comparison 

Once the losses have been properly calculated, the relative ranking of models can be  es-

tablished. Again there are various methods to pinpoint the models with superior predictive ability. 

Using the classification of Clements et al. (2009), the first such class of methods are for model 

pairwise comparison. This class includes methods such as Diebold-Mariano test and West test. In 

both tests, correlation models are evaluated in pairs, so effectively we need to perform more than 

one test to find out which models are superior to others (given that we have more than two mod-

els to compare). Second class of methods are able to compare more than two models at the time, 

but require a benchmark model against which all other models are evaluated. Reality Check of 

White and Superior Predictive Ability is among the ones belonging to this class of methods. On 

the positive side, the number of tests in this class of methods decreases to one. The negative as-
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pect however is that we are left with a subjective choice on which correlation model to use as a 

benchmark.  Lastly, Model Confidence Set (MCS) which itself is a modified version of Superior 

Predictive Ability test, can evaluate many models at one time and does not require a benchmark. 

Under MCS, the process starts with the full set of candidate models. MCS process then sequen-

tially drops inferior models one by one until the null hypothesis that all the remaining models 

have equal predictive ability cannot be rejected (Laurent et al. 2010).  

Due to its generality, MCS is by far the most widely used method in the empirical re-

search on relative performance of MGARCH models.  

3.3. Other considerations 

Some further considerations need to be made before making conclusions on empirical re-

sults of MGARCH model performances. Firstly, are the results based on in-sample or out-of-

sample observations? If the first is true, the most flexible model almost always wins15. Good in-

sample performance will not however guarantee good out-of sample performance as it might only 

be due to model overfitting. Secondly, as both volatilities and correlations are influenced by re-

turn heteroskedasticity, it could mean that the correlation model might have different forecasting 

powers under different states of market volatility. Therefore, it would be useful to divide the full 

observation sample into low and high volatility subsamples. Thirdly, type of asset as well as li-

quidity might influence covariance model out-of-sample performance. Fourthly, as shown in the 

last chapter, most MGARCH models are difficult to use in larger dimensions. Considering the 

aforementioned issues, subsequent analyses will be carried out based on out-of-sample results for 

various asset types and in both high/low volatility as well as small/large dimensional settings. 

                                                 
15 In the context of correlation models, the flexibility can be defined as the number of estimated parameters included 
in the the model. For example, with BEKK type models introduced in Chapter 2, full BEKK model was the most 
flexible, followed by diagonal BEKK and then by scalar BEKK as the least flexible model. Also, as none of the loss 
functions defined in Subsection 3.1.1 are able to punish the unnecessary  flexibility, then added flexibility is always 
rewarded in case of  in-sample model evaluation. 
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3.4. Empirical results 

Even though there are various studies that evaluate correlation model in-sample perfor-

mance16, there are only a handful of studies that deal with the evaluation of correlation model 

out-of-sample performance. Furthermore, as the area of correlation model out-of-sample perfor-

mance evaluation has just recently been receiving focus, then all the empirical studies used in the 

following section ended up being published within the last five years17. Selection of empirical 

surveys used in this chapter was further limited to include sections that follow covariance model 

evaluation best practices established in sections 3.1 through 3.3 (see Table 3.1 for further details). 

Table 3.1. Robust out-of-sample model performance evaluation requirements for loss functions, 
covariance proxies and estimation sampling 

Category Method Abbreviation
Loss function Mean Squared Error as in equation (3.2)  MSE 

Euclidean distance as in equation (3.3) Euclidean 
Frobenius distance as in equation (3.4) Frobenius 
Quasi-likelihood function as in equation (3.5) QLIKE 
Minimum variance portfolio as in equations (3.6) and (3.7) MVP 
Global minimum variance portfolio as in equations (3.6) and (3.8) GMVP 

Covariance 
proxies 

Realized covariance of Andersen et al. (2003) with sampling frequency 
of 30 minutes or higher 

RCov 

Realized bipower covariance of Berndorff-Nielsen and Sheppard (2004) 
with sampling frequency of 30 minutes or higher 

RBPCov 

Realized outlyingness weighted covariance of Boudt et al. (2011) with 
sampling frequency of 30 minutes or higher 

ROWCov 

Performance 
evaluation 

Out-of-sample  

Market state Low volatility sub-sample; High volatility sub-sample  
Dimension Small sample:1 to 10 instruments, Large sample: 50 to 200 instruments  
Asset types Equities, Currencies, Multi asset  
Source: Authors compilation 

                                                 
16 Among others, Engle (2002) evaluates DCC model in-sample performance against SMA, EWMA, O-GARCH, 
Scalar BEKK and Diagonal BEKK using analytical functions (constant, sine, step and ramp functions); Engle and 
Colacito (2006) evaluate in-sample performance of Scalar BEKK, Diagonal BEKK, O-GARCH, DCC and 
Asymmetrical DCC using minimum variance portfolio based loss function and Diebold-Mariano test.  
17 The lack of research in this field was also confirmed by the studies that were included in the empirical literature 
review section. 
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The survey is divided into two parts. In the first part, overview will be given about the 

correlation model relative performance in a smaller dimensional setting. The second part will 

provide an overview on correlation model relative performance in larger dimensions.  

The separation into small and large samples is important for two reasons. Firstly, in larger 

dimensions some correlation models simply become time wise too costly to use. Secondly, posi-

tive-definiteness of realized covariance proxies cannot be assured when the number of assets in-

creases above the sampling frequency of the covariance proxy. Latter in turn limits the loss func-

tions that can be used in the assessment of model relative performance in case of larger samples. 

Based on the available groupings in different empirical surveys, small sample will be limited to 

10 or less instruments. Large sample spans from 50 to 200 instruments. 

Full list of surveys included in the empirical literature review together with relevant con-

figurations is provided in Appendix 1. 

3.4.1. Model forecasting performance in smaller dimensions 

In this section overview will be given on covariance model performances in a smaller di-

mensional setting. There were altogether six empirical studies that provided results for samples of 

less than or equal to 10 instruments (see Table 3.2 for complete list). Five of the studies also pro-

vided separate results for low volatility and high volatility periods. Even though Laurent et al. 

(2013) provided results only for the full sample, this full sample was classified as a low volatility 

sample [the results for EURUSD and JPYUSD sample volatilities almost exactly matched those 

of Boudt et al. (2013) low volatility sample volatilities]. List of surveys used together with re-

spective low and high volatility period definitions as well as covered sample sizes are presented 

in Table 3.2. 

Table 3.2. Empirical studies on covariance model relative performance in smaller samples 

Survey Low volatility period High volatility period Sample size 
Laurent et al. 2010 Apr 2003 – Jul 2007 Jan 1999 – Mar 2003 

Aug 2007 – Dec 2008 
10 

Caporin and McAleer, 2012 2006 Apr 2008 – Mar 2009 5-10 
Clements et al. 2012 2003-2007 2001 – 2002 

2008 – 2009 
5,10 
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Boudt, et al. 2013 2004 - 2006 2006 - 2009 2 
Laurent et al. 2013 Jan 2002 – Sep 2004 na 3 
Clements et al. 2009 Before Financial crisis Financial crisis of 2008 5 
Source: Authors compilation 

3.4.1.1. Low volatility period 

Out of the five studies for small low volatility samples three covered equities, one curren-

cies and one was a mix of different asset types. Summary results for low volatility periods are 

presented in Table 3.3.  

Table 3.3. Small low volatility sample one day ahead forecast results for selected covariance 
models  

 Laurent et al. 
2010 

Caporin and 
McAleer 2012 

Clements et al. 
2012 

Boudt et al. 
2013 

Clements et al. 
2009 

Loss Function MSE MSE GMVP 
, ,

,

, ,  

QLIKE 

Proxy RCov5min RBPCov5min  ROWCov30min  
 

EWMARM out out  2 out 
EWMAFKO   10  5 
SBEKK 10   out  
DBEKK out   out  
BEKK  out    
CCC 10 5, 6, 7, 8, 9, 10  out out 
DCC 10 5, 6, 7, 8, 9, 10 5 out 5 
BIP-DCC    2  
cDCC  7, 8, 9, 10  out  
BIP-cDCC    2  
ADCC 10 7, 8, 9, 10   5 
OGARCH 10 5, 9, 10    
DECO 10  out   
The result cells in Table 3.3 can be interpreted as follows: when cell is empty, given row model 
was not included in the study; when ‘out’ is displayed, the model was not included in the final 
model confidence set (α=25%); when number(s) are displayed, number(s) indicate instrument 
samples that were included in the final model confidence set (α=25%). Source: Authors 
compilation based on Laurent et al. 2010, Caporin and McAleer 2012, Clements et al. 2012, 
Boudt et al. 2013 and Clements et al. 2009 
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As Laurent et al. (2013) was the only study that did not provide results at 25% signifi-

cance level, their results were omitted from Table 3.3. Nevertheless, at 10% significance level 

and using 5 minute RCov as a covariance proxy in equation (3.4), authors were able to narrow 

model confidence set town to only CCC model (with symmetric and asymmetric univariate vola-

tility dynamics).  

Based on results in Table 3.3 and of Laurent et al. (2013) couple conclusions can be 

drawn. Firstly, simple models such as RiskMetrics version of EWMA (EWMARM) and different 

BEKK type models tend to underperform DCC type models under low volatility conditions. Only 

„simple“ model that does well is the Fleming-Kirby-Ostdiek version of EWMA (EWMAFKO)18. 

The finding that EWMAFKO strongly outperforms EWMARM is somewhat interesting as former is 

an extension of latter. For direct comparison, we can analyze results from Laurent et al. (2010) 

and Clements et al. (2012)19. Laurent et al. (2010) found DCC and DECO models to be superior 

to EWMARM, whereas Clements et al. 2012 found EWMAFKO to be equally good to DCC and 

superior to DECO. As EWMARM and EWMAFKO are similar in all respects other than the value 

of decay factor, it could mean that with careful selection of decay factor, simple EWMA methods 

can potentially be as good as more sophisticated dynamic conditional correlation models. 

There are also some interesting differences between equity and other asset class model 

performances. Based on the their results, Laurent et al. (2010) state that over low volatility peri-

ods assumption of constant conditional correlation and symmetry cannot be rejected. This is also 

confirmed by Caporin and McAleer (2012) for equities (see Table 3.3) and Laurent et al. (2013) 

for currencies. Nevertheless, the hypothesis of constant conditional correlation in low volatility 

setting is rejected by Boudt et al. (2013) for currencies as well as by Clements et al. (2009) for 

multi asset class portfolio. The hypothesis of symmetry however tends to hold for all asset clas-

ses.  

Considering the results for different asset classes, DCC type models tend to outperform 

simple models over low volatility periods with the exception of EWMAFKO. Nevertheless, the 

results are still quite mixed as the same models receive dissimilar rankings in different studies. 

                                                 
18 Fleming-Kirby-Ostdiek version of EWMA is an extension of RiskMetrics EWMA model defined as 
exp	 α exp	 α , where exp(-α) is a rate of decay similar to λ in RiskMetrics EWMA (Clements 
et al. 2009). 
19 Both used US equity return samples during the period of 2003 – 2007. 
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3.4.1.2. High volatility period 

Summary results for small high volatility period relative model out-of-sample perfor-

mance are provided in Table 3.4. 

Table 3.4. Small high volatility sample one day ahead forecast results for selected covariance 
models.  

 Laurent et al. 
2010 

Caporin and 
McAleer, 2012 

Clements, et 
al. 2012 

Boudt et al. 
2013 

Clements et al. 
2009 

Loss Function MSE QLIKE GMVP 
, ,

,

, ,  

QLIKE 

Proxy RCov5min   ROWCov30min  
 

EWMARM 10 out  out out 
EWMAFKO   5, 10 | 5, 10  out 
SBEKK out   out  
DBEKK out   out  
BEKK  out    
CCC 10 out  out out 
DCC 10 5, 6, 7 out | 5 out out 
BIP-DCC    out  
cDCC  5, 6, 7, 8, 9, 10  out  
BIP-cDCC    2  
ADCC 10 5, 6, 7, 8, 9, 10   5 
OGARCH 10 out    
DECO 10  out | out   
The result cells in Table 3.4 can be interpreted as follows: when cell is empty, given row model 
was not included in the study; when ‘out’ is displayed, the model was not included in the final 
model confidence set (α=25%); when number(s) are displayed, number(s) indicate instrument 
samples that were included in the final model confidence set (α=25%); when ‘|’ is used, two 
separate high volatility sample results have been reported. Source: Authors compilation based on 
Laurent et al. 2010, Caporin and McAleer 2012, Clements et al. 2012, Boudt et al. 2013 and 
Clements et al. 2009.  

Similarly to low volatility sample results, DCC type specifications tend to outperform 

other models under high volatility conditions. Additionally, all studies that included ADCC as a 

competing model, ended up having ADCC also in a final model confidence set on 25% signifi-

cance level. ADCC performed equally well in equity and in multi asset samples whereas outlier 

adjusted version of cDCC (BIP-cDCC) was the best performer in currency samples. As the 
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aforementioned model has not been used in other studies, it is hard however to assess its relative 

performance under other asset type settings. 

While the results for the hypothesis of constant conditional correlation were mixed during 

low volatility periods, the hypothesis of constant conditional correlation is rejected for all asset 

classes during high volatility periods. Furthermore, contrary to the low volatility period result in 

which ADCC model performance was not statistically superior to its symmetric counterpart 

DCC, it is evident that asymmetry improves model out-of-sample performances during high vola-

tility periods20. This is in agreement with the asymmetry related stylized fact introduced in Chap-

ter 1, according to which both correlations and volatilities tend to increase more during down-

markets (when volatility is high) than during the up-markets (when volatility is relatively low). 

We can therefore conclude that the hypothesis of covariance symmetry can be rejected during 

high volatility periods.  

3.4.1.3. Overall conclusions for smaller dimensions 

Based on low and high volatility period empirical survey results, the following conclu-

sions can be drawn for smaller samples. Firstly, DCC type models tend to outperform the rest 

across different volatility periods as well as asset type specifications. Secondly, assumption of 

constant conditional correlation can be rejected during high volatility periods, whereas results for 

low volatility period are somewhat mixed. Thirdly, the assumption of symmetry can be rejected 

during high volatility periods, but not during low volatility periods. Fourthly, there is no signifi-

cant difference in relative model performances between various asset types.  

3.4.2. Model forecasting performance in larger dimensions 

In this section overview will be given on correlation model performances in a larger di-

mensional setting. There were two empirical studies that provided results for samples of more 

                                                 
20 In addition to ADCC outperformance in multi asset sample of Clements et al. (2009), both DCC model in Laurent 
et al. (2009) and DCC/cDCC models in Caporin and McAleer (2012) had been modelled with asymmentric univari-
ate GARCH models. 
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than or equal to 50 instruments21. One of the studies provided separate results for both low and 

high volatility periods whereas the other gave formal results only for the latter. List of surveys 

used, together with respective low and high volatility period definitions as well as covered sam-

ple sizes are presented in Table 3.5. 

Table 3.5. Empirical studies on covariance model relative performance in larger samples 

Survey Low volatility period High volatility period Sample size 
Caporin and McAleer, 2012 na Apr 2008 – Mar 2009 50, 60, 70, 80, 89 
Clements et al. 2012 2003-2008 2001 – 2002 

2008 – 2009 
50, 100, 200 

Source: Authors compilation 

Summary results for both low and high volatility periods are presented in Table 3.6.  

Table 3.6. Large low volatility sample one day ahead forecast results for selected covariance 
models.  

 Low volatility period High volatility period 
 Clements et al. 2012 Caporin and McAleer 2012 Clements et al. 2012 

Loss Function GMVP QLIKE GMVP 
    

EWMARM  out  
EWMAFKO 50, 100, 200  50,100,200 | 50,100,200 
SBEKK    
DBEKK    
BEKK  out  
CCC  out  
DCC out out out | 200 
BIP-DCC    
cDCC  out  
BIP-cDCC    
ADCC  50, 60, 70, 80, 89  
OGARCH  out  
DECO out  out | out 
The result cells in Table 3.6 can be interpreted as follows: when cell is empty, given row model 
was not included in the study; when ‘out’ is displayed, the model was not included in the final 
model confidence set (α=25%); when number(s) are displayed, number(s) indicate instrument 

                                                 
21 The number of studies that could have been used in this section was limited for two reasons. First, as previously 
explained, the number of studies dedicated to correlation model out-of-sample performance evaluation is itself lim-
ited and second, dimensionality problem in correlation modelling has made it extremely hard to carry out large scale 
modelling exercises (DCC model with 200 instruments took Clements et al. (2012) 287 hours to estimate). 
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samples that were included in the final model confidence set (α=25%). Source: Authors 
compilation based on Caporin and McAleer 2012, Clements et al. 2012 

Based on QLIKE loss function and 25% significance level two correlation models outper-

form others: ADCC with GJR-GARCH univariate dynamics (GJR-ADCC) and Fleming-Kirby-

Ostdiek version of EWMA (EWMAFKO). Unfortunately, as GJR-ADCC and EWMAFKO did not 

directly compete with each other, the relative performance of these models cannot be evaluated. 

Furthermore, as correlation modelling literature defines large dimension normally starting from 

100 instruments, then in this case EWMAFKO is strongly preferred. This is also confirmed by 

Clements et al. (2012) calculation cost results. Namely, the CPU time22 for their 2 029 forecasts 

for 200 instrument sample took 01:17 (HH:MM) for EWMAFKO, 08:32 for DECO and 13:18 for 

DCC model. Furthermore the estimation (2 000 observations) for the same 200 instrument sam-

ple took DCC model 287 hours. This clearly shows the drawbacks of DCC type models: they be-

come very expensive to use in case of larger dimensions. 

3.5. Conclusions 

The objective of the chapter was to provide a literature review on covariance model out-

of-sample performance. Empirical literature covering various asset types, volatility states and 

sample sizes was used. In addition, further empirical survey filtering was carried out in order to 

control for robustness of empirical results via proper loss function and covariance proxy assump-

tions. Based on remaining empirical findings, the following conclusions were drawn. Firstly, in 

case of smaller samples DCC type of models are preferred. Secondly, during more volatile peri-

ods asymmetric version of DCC model should further improve model out-of-sample perfor-

mance. Thirdly, in a larger samples DCC type models become computationally too costly to use 

with no additional performance gain relative to simple EWMA model of Fleming-Kirby-Ostdiek. 

                                                 
22 Central Processing Unit. Clements et al. (2012) computer specification: 12 core 2.66GHz 64bit Inter Xeon proces-
sor. 
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It is also worth to note, that in general EWMA model of Fleming-Kirby-Ostdiek works relatively 

well in most conditions and is strongly preferred to its class member RiskMetrics EWMA23. 

Some additional side-observations were made based on the selected empirical results. 

Firstly, during low volatility periods one cannot make strong conclusions on the effect of constant 

correlation. However, during the more volatile periods it was observed that the hypothesis of 

constant correlation is indeed rejected for all asset classes by all empirical results. Secondly, it 

was observed that covariance asymmetry becomes relevant only during the more volatile periods. 

  

                                                 
23 Though it was also mentioned that this outperformance might only be due to better decay factor selection. 
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4. CORRELATION MODEL FORECASTING PERFORMANCE 

IN EMERGING MARKETS 

So far the thesis has researched and surveyed correlation dynamics and its modelling tools 

as follows. Firstly, in Chapter 1 some more important stylized facts about correlation dynamics 

were presented. These stylized facts were then used as theoretical requirements against which 

various correlation models were benchmarked in Chapter 2. In Chapter 3, using the existing em-

pirical literature and the sample of correlation models introduced in Chapter 2, out-of-sample per-

formance of these models was surveyed.  

In this chapter, the one day ahead out-of-sample forecasting performance of nine correla-

tion models will be evaluated in the context of emerging market equity and currency samples. 

The following research differs from the previous empirical research presented in Chapter 3 in 

three important ways. Firstly, contrary to the surveys introduced in the last chapter that all used 

developed market asset samples (in fact, all equity samples were built only from US domiciled 

assets), in this chapter more volatile emerging market data samples will be used24. Secondly, cor-

relation model out-of-sample forecasting performance will be evaluated in case of two different 

asset classes during the same period. Previous studies have only concentrated on either equity 

sample, currency sample or a multi asset sample, but none have analyzed correlation model out-

of-sample performance using various asset classes concurrently in the same market environment. 

Thirdly, currency pairs were chosen so that the correlation between pairs would on average be 

negative. Both Boudt et al. (2013) and Laurent et al. (2013) used developed market currencies 

that experience largely same correlation dynamics in various market states. In this study, two cur-

                                                 
24 The countries that will be included in the dataset are Poland and Czech Republic as emerging market countries and 
Switzerland as developed market country. Even though economic classification of Poland and Czech Republic (by 
GDP per capita) can be different from the classification into emerging markets, using equity index provider MSCI 
country classifications, both Poland and Czech Republic fall under emerging markets category. The rationale in 
doing so is to follow asset allocation principles of global asset managers that tend to use index provider asset class 
classifications. 
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rencies were chosen on the basis of them to behave differently in various market states, i.e. on 

average move in opposite directions.  

In all other respects, similar methods and procedures were used wherever possible as in 

the literature surveys presented in Chapter 3.  

4.1. Competing models 

The selection of correlation models that were included in model performance evaluation 

sample was based on two criteria. First, at least one of the models from each group of correlation 

models introduced in Chapter 225 needed to be included in the evaluation sample. From the naïve 

correlation model group, both Simple Moving Average and RiskMetrics Exponentially Weighted 

Moving Average models were included. From the group of models with conditional covariance 

matrix scalar VECH, Full BEKK, Diagonal BEKK and Scalar BEKK were included. Finally, 

from the group of models with conditional variances and covariances, CCC (Constant Condition-

al Correlation), DCC (Dynamic Conditional Correlation) and ADCC (Asymmetric Dynamic 

Conditional Correlation) models were included. Second criteria in choosing the models to be in-

cluded into the evaluation sample was the condition that the resulting covariance matrix must be 

positive semidefinite. As explained in Chapter 2 all the aforementioned models will provide a 

positive semi-definite covariance matrix. Furthermore, as most of the models included in the 

model evaluation sample were also surveyed in Chapter 3, further analysis about model relative 

performance in developed versus emerging markets is made possible. Full names of correlation 

models together with their abbreviations and model specifications are provided in Table 4.1.  

The procedure for parameter estimation was as follows. In the first step, AR(1) equations 

were estimated to extract conditional means of each return series. AR(1) equation residuals were 

then used to estimate all conditional volatilities, conditional correlations and model parameters. 

                                                 
25 Correlation model groups introduced in Chapter 2 were as follows: (i) naïve correlation models; (ii) models of 
conditional covariance matrix; and (iii) models of conditional variances and covariances. 
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Furthermore, univariate GARCH(1,1)26 specification was used to model volatility dynamics in all 

conditional correlation type models (CCC, DCC, ADCC).  

Table 4.1. Correlation models included in out-of-sample performance evaluation 

Model Name Formulation Abbreviation
Simple Moving Average (252-day rolling) Equation 2.2 (k=252) SMA 
Risk Metrics version of Exponentially Weighted Moving Avg. Equation 2.4 (λ=0.94) EWMA 
Scalar VECH Equation 2.12 with 

variance targeting27 
SVECH 

Full BEKK Equation 2.13 FBEKK 
Diagonal BEKK Equation 2.13 

A and B are diagonal 
matrices 

DBEKK 

Scalar BEKK Equation 2.13 
A = aI; B = bI 

SBEKK 

Constant Conditional Correlation Equation 2.18 CCC 
Dynamic Conditional Correlation Equation 2.21 

Equation 2.22 
Equation 2.23 

DCC 

Asymmetric Dynamic Conditional Correlation Equation 2.21 
Equation 2.22 
Equation 2.26 

ADCC 

Source: author’s compilation 

4.2. Data 

Two portfolios, one consisting of equity market instruments and the other consisting of 

currency market instruments are provided in Table 4.2. 

Table 4.2. Portfolios used in correlation model performance evaluation 

 Equity portfolio (hedged28) Currency portfolio (euro) 
Asset 1 WIG Index (Poland) CHF (Switzerland) 
Asset 2 PX Index (Czech Republic) PLN (Poland) 

Source: Authors compilation 

                                                 
26 Dynamics in GARCH(1,1) specification was defined again as , , , . 
27 1 	 . 
28 Portfolio currency effect is hedged, i.e. portdolio return is only influenced by local currency returns. 
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Equity portfolio constituent indices were chosen from the sample of Central Eastern Eu-

rope country equity indices based on two criteria. First, the markets needed to be with sufficient 

liquidity and second, the market closing times needed to be approximately the same. Latter two 

criteria are important to avoid asynchronous data in correlation modelling. As Polish and Czech 

equity markets are the biggest in Central Eastern Europe (by market capitalization) and the mar-

kets close at 18:00 (CET, Central European Time) and 18:15 (CET) respectively, then the portfo-

lio was considered as sufficiently representative for correlation analysis.   

For sample time series data, daily local currency index closing values were collected from 

Bloomberg database. The sample period included calendar days29 between (and including) Janu-

ary 3rd, 2000 to July 31st, 2009. Furthermore, time series data was filtered to include only the 

days when both markets were open for trading. Latter filtering decreased the end-sample from 

2 500 observations (not including weekends) to 2 283 observations (not including weekends and 

non-trading weekdays).  

Unconditional volatility30 of log returns for Polish WIG index and Czech  PX index time 

series for sample period was calculated to be 24.6% and 26.2% respectively. Unconditional cor-

relation between WIG and PX index log returns were calculated to be 0.58. 

Figure 4.1. provides further insights into the volatility and correlation dynamics during the 

sample period. In-sample conditional volatility in Figure 4.1. was modelled using univariate 

GARCH(1,1)31 model and conditional correlations with Dynamic Conditional Correlation (DCC) 

and Constant Conditional Correlation (CCC) models, both with univariate GARCH(1,1) dynam-

ics in their volatilities (see Chapter 2 for further details). 

                                                 
29 Calendar days means all days in a selected period including all weekends and holidays. 

30 Unconditional volatility is a simple measure of sample standard deviation calculated as ∑ ̅  
31 Conditional variance dynamics in GARCH(1,1) specification was defined as , , ,   
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of the aforementioned empirical surveys, equity and currency samples were divided into three 

parts: initial in-sample training set, calm period sub-sample and turbulent period subsample. The 

propose of  the initial in-sample training set was to calibrate correlation models for the first out-

of-sample one day ahead forecast. Subsample observations together with the corresponding sta-

tistics are provided in Table 4.3. and Table 4.4. 

Table 4.3. Equity portfolio division into initial training set, calm period subsample and turbulent 
period subsample 

 Dates Observations Annualized unconditional volatility 
Unconditional 

correlation 
   WIG Index PX Index WIG - PX 

Initial training set 
03.01.2000 - 
30.09.2005 

1 – 1 343 21.5% 20.8% 0.40 

Calm period 
30.09.2005 - 
28.12.2007 

1 343 – 1 893 20.9% 19.0% 0.65 

Turbulent period 
28.12.2007 - 
31.07.2009 

1 893 – 2 283 32.4% 44.8% 0.77 

Source: author’s calculations 

Table 4.4. Currency portfolio division into initial training set, calm period subsample and turbu-
lent period subsample 

 
Dates Observations Annualized unconditional volatility 

Unconditional 
correlation 

   
EUR/CHF EUR/PLN 

EUR/CHF - 
EUR/PLN 

Initial training 
set 

03.01.2000 - 
30.09.2005 

1 – 1 500 3.8% 10.7% -0.03 

Calm period 
30.09.2005 - 
28.12.2007 

1 500 – 2 085 3.3% 6.9% -0.20 

Turbulent period 
28.12.2007 - 
31.07.2009 

2 085 – 2 500 8.2% 16.1% -0.36 

Source: author’s calculations 
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4.3. Forecast Evaluation 

Out-of-sample performances of nine correlation models in Table 4.1. were assessed using 

Model Confidence Set (MCS) with 25% significance level (α=25%) and with QLIKE loss func-

tion as defined in equation 3.5. 

Initial model parameter estimation was done based on the initial training set defined in 

Table 4.3. and Table 4.4. 

Based on the parameter values, one day ahead out-of-sample forecast was made which in 

turn was fed into QLIKE loss function for the calculation of loss for a given day. Next, the model 

in-sample was adjusted to include the first out-of-sample observation day and model parameters 

were re-evaluated. Again, based on the new parameter values, new out-of-sample forecast was 

made for each model, QLIKE loss calculated and in-sample once again lengthened by one day. 

The procedure was continued until the last sample observation (in case of equities until observa-

tion number 2 283 and in case of currencies until observation number 2 500). Once all losses 

were calculated, model losses from calm and turbulent periods were fed into MCS to find out 

which were the winning models. 

Furthermore, as in Clements et al. (2012) calculation cost was calculated for each model. 

For a given model, calculation cost was defined as time that was needed to estimate and forecast 

all parameters and results for all iterations. 

All calculations were made in MATLAB, with Kevin Sheppards’ MFE Toolbox to esti-

mate parameters in correlation models other than SMA. SMA model, one step ahead forecast and 

loss calculations were performed using code written by the author. MCS procedure was again 

carried out using MFE Toolkit35. One step ahead forecasts for all models were reconciled against 

secondary independent forecasts made using MS Excel to ensure validity of authors code. The 

same validation was also carried out for the loss function results. 

                                                 
35 All MCS calculations were made with block length of 1 and 10 000 bootstrap replications. 
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represents corresponding models’ p-value for a given sample period. The grey cells indicate 

which models were included in the final model confidence set at the 25% significance level (i.e. p 

≥0.25). 

Table 4.5. MCS results for equity sample. Winning models in grey 

 Calm Period Turbulent Period Full Period 
SMA 0 0 0 
EWMA 0 0 0 
SVECH 0 0 0 
SBEKK 0 0 0 
DBEKK 0 0 0 
FBEKK 1 0 0.0026 
CCC 0.1731 1 1 
DCC 0 0 0 
ADCC 0 0 0 

One day ahead out-of-sample forecast model performance using QLIKE loss function and MCS 
α=25%. p-values provided in result cells. Source: author’s calculations 

During calm periods FBEKK model tends to outperform all other models. This might be 

due to its high flexibility that is not compromised by volatility surprises. Latter means that in case 

the market volatility and correlation structure does not change dramatically, FBEKK is the best 

model out of our sample models to forecast one day ahead correlations for Polish and Czech eq-

uity market indices.  

MCS results for the turbulent period gave strong preference to CCC model (see Table 

4.5). This is a rather surprising result considering that most of the previous empirical studies have 

found DCC and ADCC models outperforming CCC model in more volatile periods. As the 

QLIKE loss is calculated for the entire covariance matrix, i.e. including volatility loss, one could 

argue that volatility loss might play a role in the total loss calculation. However, as the three con-

ditional correlation models, CCC, DCC and ADCC, were all modelled with GARCH(1,1) uni-

variate dynamics, then volatility loss effect in the model relative performance is neutralized and 

the loss difference is explained by correlation forecast loss only. 

Hence, the most probable explanation for CCC model outperformance is the daily insta-

bility of realized correlation between WIG and PX indices. Latter causes dynamic models to sys-

tematically under-/overshoot the realized correlation generating losses greater than for the con-
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A couple noteworthy observations can be made from Figure 4.4. First, FBEKK model is 

highly unstable varying between -1 and +1. However, as explained, this flexibility pays off in the 

low volatility period where correlation structure remains intact. During the more volatile period, 

FBEKK model is in fact one of the worst performing models, outperformed by CCC, ADCC, 

DCC, EWMA and DBEKK. Second, the results for DCC and ADCC models are almost identical 

in calm periods and differ only slightly in more turbulent periods. Nevertheless latter difference is 

sufficient for ADCC to outperform DCC in the turbulent period. 

One additional interesting observation can be made from the above results. As can be seen 

from Figure 4.4, correlation dynamics is relatively static in SMA model and close to completely 

static in CCC model. Considering now that one model is the best performer in almost all states 

(CCC) and the other is the worst performer in all states (SMA) and also taking into account how 

the volatilities are modelled in both cases, then it can be argued that volatility dynamics is far 

more important to the covariance matrix than correlation dynamics. In fact, as CCC model out-

performs DCC and ADCC models (all having the same underlying volatility dynamics), it can be 

further argued that in case of the sample data used, dynamic correlation modelling can be even 

hurtful to the overall covariance (and correlation) out-of-sample forecasting performance. 

Turning now to the issue of computational time cost, Table 4.6. provides evidence about 

the time it took to estimate and forecast each model. 

Table 4.6. Simulation computational time cost for equity sample (ordered by time) 

Model Time 
SMA 00:00:05
EWMA 00:00:13
CCC 00:23:10
SVECH 01:30:15
DCC 04:24:03
SBEKK 05:19:22
ADCC 08:06:58
DBEKK 08:30:14
FBEKK 20:19:38

Time format: HH:MM:SS. Processor: Intel(R) Core i5-2520M CPU @ 2.50GHz, 2501 Mhz, 2 
Cores, 4 Logical Processors. Source: author’s calculations 
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bull market, and volatility should be low (in relative terms). All in all, it is interesting to see 

whether ADCC can still outperform DCC in case of our risk-on/risk-off currency portfolio. 

Currency portfolio one day ahead out-of-sample forecast model performance results are 

provided in Table 4.7. 

Table 4.7. MCS results for currency sample. Winning models in grey 

 Calm Period Turbulent Period Full Period 
SMA 0 0 0 
EWMA 0 0 0 
SVECH 0 0 0.0493 
SBEKK 0 0 0.0493 
DBEKK 0 0 0 
FBEKK 1 0 1 
CCC 0 1 0.0493 
DCC 0 0 0 
ADCC 0 0.0014 0 

One day ahead out-of-sample forecast model performance using QLIKE loss function and MCS 
α=25%. p-values provided in result cells. Source: author’s calculations 

As with equity sample, FBEKK model was found to outperform all other models during 

the calm period and CCC model in turbulent period. Possible reasons for this outperformance are 

the same as with equity sample. In the calm period, the flexibility of FBEKK model once again 

appears to fit the market correlation dynamics the best and in the turbulent period, constant con-

ditional correlation seems to outperform any dynamic estimate. Furthermore, the worst perform-

ing models for calm, turbulent and full periods were tested and the results were as follows. SMA 

type model was the worst in turbulent and full period, whereas EWMA was the underperformer 

during calm period sub-sample. 

As mentioned in the beginning of current section, it would be interesting to assess ADCC 

relative performance against DCC. Eliminating CCC from model set and re-running MCS proce-

dure for turbulent period ends up having three models in the final model confidence set (α=25%): 

ADCC, DCC and EWMA, with ADCC having the highest p-value. So even when considering the 

nature of our currency portfolio, an asymmetric version of DCC model tends to outperform the 

general DCC model specification. Illustrative dynamics of one day ahead out-of-sample forecasts 

is provided in Figure 4.6 (Appendix 5). 
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Similarly to the results for equity sample, FBEKK model results took the most time to be 

simulated, while naïve models again providing quick results. 

4.6. Conclusions 

In this chapter, using data from emerging markets, one day ahead forecasting performance 

of nine correlation models was evaluated. Based on the data from the beginning of year 2000 un-

til end of July 2009, two two-asset portfolios were constructed, one with Polish and Czech equity 

indices and the other with Swiss and Polish currencies. Model out of sample performance was 

then evaluated separately for low volatility (calm) period and high volatility (turbulent) period.  

In general, the results were quite similar for equity and currency portfolio samples. In 

both cases the Full BEKK model outperformed the rest of the models during the calm period be-

fore the global financial crisis and Constant Conditional Correlation (CCC) during turbulent peri-

od. The results for turbulent periods are in large part at odds with the results from previous em-

pirical studies on the same subject. Most of these studies have found evidence of Dynamic Con-

ditional Correlation (both asymmetric and symmetric) model outperforming CCC model under 

more volatile market conditions. The possible reason for CCC outperforming its dynamic coun-

terparts might be the structural differences between developed and emerging market volatility 

and correlation structure. Furthermore, based on the very poor results of Simple Moving Average 

model and very good results of CCC model, it was argued that when forecasting the full covari-

ance matrix the best performance in case of emerging market assets is achieved with the combi-

nation of dynamic volatility and nearly constant correlation.  

Further evidence in favour of using CCC model in out-of-sample forecasting was provid-

ed with the computational time cost evaluation results. Namely, in relative terms, CCC model 

estimation and forecasting time was roughly 50 times less than for Full BEKK, 20 times less than 

for Dynamic Conditional Correlation (DCC) model and 10 times less than for Asymmetric DCC 

model.  

Based on the previous empirical research as well as the results from this study, it can be 

argued that when considering different market environments, asset types as well as modelling 
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time costs there is no single best model that would work equally well under any given condition. 

However, it would be interesting to see whether there would be any changes to the results when 

some statistical loss function is used with outlier adjusted covariance proxy. Using alternative 

loss function in combination with emerging market data might therefore be of interest in future 

studies on similar subject. Also, another area of potential future research could be the incorpora-

tion of theoretical correlations into some naïve or Constant Conditional Correlation model38. This 

might further improve correlation model forecasting ability without compromising its efficiency.  

  

                                                 
38 It was explained in Chapter 1 that both empirical as well as theoretical correlations break during periods of high 
volatility. 
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SUMMARY 

Since the introduction of modern portfolio theory in 1952 (Markowitz 1952), expected 

correlations have played a significant role in the field of asset allocation. Expected correlations 

together with expected volatilities and expected returns have been the cornerstones of any portfo-

lio allocation decision, being it risk minimization or return maximization. In this thesis correla-

tion model out-of-sample forecasting performance was evaluated with a goal to find a correlation 

model that would consistently outperform others in its forecasting ability, i.e. would consistently 

provide the best estimate of expected correlation. Such model could then be used in risk systems 

(or equivalently in any other allocation driven system) to model portfolio expected variance. 

Having measured expected portfolio variance correctly, institutions are able to make both better 

risk budgeting decisions as well as avoid regulation-driven forced liquidation of risky assets in 

stressed market environments. 

The thesis presented various correlation modelling related theoretical concepts and empir-

ical results as follows.  In Chapter 1 the properties of time-varying correlations were investigated. 

It was argued that a correlation model should be able to handle six so called stylized facts about 

correlation dynamics. These properties, or stylized facts were said to be of importance when as-

sessing the theoretical soundness of various correlation models. The six facts introduced in Chap-

ter 1 included the tendency for correlations to strengthen over time and the fact that they are 

mean-reverting. Also, it was demonstrated that correlations can change significantly during mar-

ket stress and that they exhibit asymmetric tendency by changing significantly only during down-

markets. The last two properties discussed in Chapter 1 were correlation persistence and possible 

outliers. It was then shown that correlation does indeed tend to be autocorrelated with its lagged 

observations and that outliers do exist and can potentially have substantial effect on correlation 

estimate. After the aforementioned stylized facts were established, eight correlation models were 

formally defined in Chapter 2 and benchmarked against the aforementioned stylized facts. Pre-

sented models were as follows: (i) Simple Moving Average correlation (SMA) and RiskMetrics 

version of Exponentially Weighted Moving Average correlation (RiskMetrics EWMA) from the 
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class of naïve correlation models; (ii) VEC, BEKK, and Orthogonal GARCH (O-GARCH) mod-

els from the class of models with conditional covariance matrix; and (iii) Constant Conditional 

Correlation (CCC), Dynamic Conditional Correlation (DCC) and Asymmetric Dynamic Condi-

tional Correlation (ADCC) from the class of models with conditional variances and covariances. 

It was argued that out of the eight models presented, ADCC model by handling mean-reversion, 

correlation breaks, asymmetry and persistence is by construction the most flexible model while 

CCC model by not handling any of the stylized facts presented in Chapter 1 is the least flexible 

model. It was further argued that some models, such as more flexible versions of VEC model, 

cannot guarantee the positive semidefiniteness of the resulting covariance matrix (the result could 

be negative portfolio expected volatility). Nevertheless, all models with conditional variances and 

covariances (CCC, DCC, ADCC) as well as naïve models (SMA, RiskMetrics EWMA) were 

guaranteed to provide covariance matrix estimates that are positive semidefinite. 

An extensive review of the literature on correlation model out-of-sample forecasting per-

formance was provided in Chapter 3. It was argued that additional complications arise when 

evaluating correlation model forecasting performance because the true correlation is unobserva-

ble (i.e. is a latent variable). For this reason various robust statistical and economic loss functions 

were introduced that would overcome latter problem and make it possible to assess how far off 

we are with our forecast compared to the „realized outcome“39. Finally, Model Confidence Set 

was used as a procedure for selecting winning models with superior forecasting ability40. With 

regard to data samples, the results from the existing literature were based on developed market 

data during calm and turbulent market environments. Further sampling was done to differentiate 

between various asset types (equity, currency and mixed) as well as portfolio size. The results 

were as follows.  

In general, ADCC model outperformed others in the developed market samples. The pref-

erence for the ADCC model was stronger during turbulent (i.e. high volatility) period than during 

the calm (i.e. low volatility) period. In fact, neither the assumption of constant correlation nor the 

assumption of symmetry could be rejected during calm periods. Furthermore, no significant dif-

ferences in results was found between equity, currency and mixed asset samples. Relating to 

                                                 
39 „realized outcome“ is in quotation marks because we still do not exactly know what is „realized“ (as true 
correlation is unobservable). 
40 Model Confidence Set was described to be a statistical procedure that selects a set of equally superior models from 
the initial set of competing models. 
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large portfolio sample, it was found that the most flexible models (such as DCC) become compu-

tationally too costly to use in large portfolios. 

In Chapter 4, nine correlation model specifications were tested for Polish and Czech equi-

ty market index sample and for Czech krona and Swiss franc currency sample. All calculations 

were performed by author using same procedures and sampling principles as were used in Chap-

ter 3. The results were as follows.  

The best performing model in the calm period was Full BEKK model and in turbulent pe-

riod CCC model. The finding is interesting as it is at odds with the results from developed market 

samples in Chapter 3. The fact that CCC model outperformed its dynamic peers during turbulent 

markets indicates that at least within the selected samples dynamic models are incapable of dy-

namically forecasting one day ahead correlations well enough to beat constant estimate. As in 

Chapter 3, additional analysis was carried out in Chapter 4 to clarify the costliness of using vari-

ous correlation models in practice. Even though author only dealt with two-asset portfolios, Full 

BEKK model  took around 24 hours to be simulated (approximately 1 000 one day ahead fore-

casts with the same number of model parameter re-estimations). ADCC model took around 8-9 

hours, CCC model around half an hour and RiskMetrics EWMA took only 13 minutes to be sim-

ulated.  

Overall conclusion based on both literature review and own analysis was that with regard 

to forecasting performance no single model can be considered unconditionally superior to others. 

Furthermore, taking into account the computational time cost that is needed for the estimation of 

dynamic versions of conditional correlation models as well as for models with conditional covar-

iance matrix, it might also be suboptimal to implement such models into real life portfolio risk 

measurement systems.  

Some areas were mentioned that could be of interest in future investigation. First, it would 

be interesting to see the results for model performance based on alternative emerging market data 

sample together with same other robust loss function. Second, further research could be done in 

the field of theoretical correlation modelling with an aim to incorporate theoretical correlation 

dynamics into some naïve or constant conditional correlation model. This might make it possible 

to incorporate correlation dynamics into correlation models without compromising its estimation 

efficiency.   
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RESÜMEE 

KORRELATSIOONI MODELLEERIMINE NING PROGNOOSIMINE 

FINANTSADMETEL 

Matis Tomiste 

Alates 1952. aastast mil Markowitz avaldas oma mõjuvõimsa portfelliteooria 

aluspõhimõtteid käsitleva artikli (Markowitz 1952), on varade vahelisi oodatavaid korrelatsioone 

peetud üheks portfelli risijuhtimise nurgakiviks. Sellest ajast alates on ülemaalmine regulatiivne 

keskkond tervitanud kõikvõimalike portfelliteooriale tuginevate riskisüsteemide teket, milles 

kõigis on olulist rolli etendanud nii alusvarade oodatavad dispersioonid kui ka nendevahelised 

oodatavad korrelatsioonid. Vastupidiselt dispersiooni modelleerimisele, mis on olnud aka-

deemilite uurimustööde tähelepanu keskpunktis alates Engle’i publikatsioonist teemal autoreg-

ressiivne tingimuslik heteroskedastiivsus (Engle 1982), on korrelatsiooni modelleerimine selle 

aja jooksul mõnevõrra vähem tähelepanu saanud. Võimalikke põhjusi selleks on kaks. Esiteks on 

korrelatsioonide olulisus riskimudelites mõnevõrra väiksem dispersioonide omast. Teiseks 

kannatab korrelatsiooni modelleerimine niinimetatud “dimensionaalsuse probleemi” käes. 

Viimane tähendab seda, et instrumentide arvu poolest suuremate portfellidele korrelatsiooni-

dünaamika modelleerimine võib muutuda paljude korrelatsioonimudelite jaoks juba ületamatuks 

probleemiks. 

Käesoleva magistritöö eesmärgiks oli korrelatsioonimudelite võrdlev analüüs ning parima 

prognoosivõimega korrelatsioonimudeli väljaselgitamine. Selleks uuris autor esmalt korrela-

tsiooni dünaamikat finantsturgudel, tuues välja kuus stiliseeritud fakti millega korrelatsioonimu-

del peaks toime tulema. Viimasteks olid korrelatsiooni tugevnemine ajas ning keskväärtuse juur-

de tagasipöördumine, korrelatsiooni murdumine ja viimase asümmeetria, autokorrelatsioon korre-
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latsiooni dünaamikas ning võimalikud erindid. Järgnevalt esitas autor formaalsed definitsioonid 

kaheksale korrelatsioonimudelile, uurides samas ka nende võimet tulla toime eelnimetatud 

stiliseeritud faktidega. Defineeritud mudelite hulka kuulusid: (i) Tavalise libiseva keskmise 

mudel (SMA, Simple Moving Average) ning RiskMetrics’i versioon Eksponentsiaalselt kaalutud 

libiseva keskmise mudelist (RiskMetrics EWMA, RiskMetrics Exponentially Weighted Moving 

Avarage), mis kuuluvad niinimetatud naiivsete korrelatsioonimudelite klassi; (ii) VEC, BEKK ja 

Ortogonaalne GARCH (O-GARCH, Orthogonal Generalized Autoregressive Conditional 

Heteroskedasticity) tingimuslike kovariatsioonimudelite klassist; ning (iii) Konstantne 

tingimuslik korrelatsioon (CCC, Constant Conditional Correlation), Dünaamiline tingimuslik 

korrelatsioon (DCC, Dynamic Conditional Correlation) ja Asümmeetriline dünaamiline tin-

gimuslik korrelatsioon (ADCC, Asymmetric Dynamic Conditional Correlation) tingimuslike dis-

persiooni- ja kovariatsioonimudelite klassist. Lähtudes vaid teoreerilisest mudeli ülesehitusest, 

vastas ADCC mudel stiliseeritud faktidele kõige paremini ning CCC mudel kõige halvemini. 

Magistritöö kolmandas ja neljandas peatükis uuris autor eelnimetatud mudelite prognoosi-

misvõimet arenenud ning arenevatel turgudel. Kui arenenud turgude puhul tugines autor oma 

järeldustes juba olemasolevatele uurimustöödele, siis arenevate turgude andmetel tehtud järeldu-

sed tuginesid juba autori enda arvutustel. Nii eelneva kirjanduse kasutamises kui ka enda arvutus-

tes kasutas autor nn. robustseid kaotusfunktsioone ning mudeli usaldus komplekti (MCS, Model 

Confidence Set) protseduuri. Lisaks arenenud ja arenevate turgude eristamisele, eristati tulemusi 

ka turu volatiilsuse (madala ja kõrge volatiilsuse valimid) ja vara tüübi (aktsiad, valuutad ning 

sega) lõikes. Kuigi tulemused polnud üheselt määratavad, kippus ADCC mudel edestama teisi 

mudeleid arenenud turgudel ning CCC mudel arenevatel turgudel41. Põhjusteks miks ADCC ei 

suutnud ületada CCC mudelit arenevatel turgudel võis autori hinnangul olla ADCC mudelile eba-

sobiv ebakorrapärane dünaamika autori poolt valitud valimites. Lisaks korrelatsioonimudelite 

sooritusvõime uurimisele, uuris autor ka korrelatsiooni modelleerimise suurest dimensionaalsu-

sest tingitud arvutustest tulenevat ajakulu. Nii autori enda kui eelneva uurimustöö tulemustele 

tuginedes leidis autor, et seoses suure ajakuluga võib nii tingimustlike kovaratsioonimudelite kui 

                                                 
41 Autori aktsiaportfelli valimisse kuulusid Poola ja Tšehhi börsiindeksid ning valuutaportfelli Poola ja Šveits valuu-
tad. 
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ka dünaamiliste tingimuslike dispersiooni- ja kovariatsioonimudelite (ehk välja arvatud CCC) 

rakendamine praktilises riskimõõtmises osutuda ületamatuks probleemiks.  

Lõpliku järeldusena leidis autor, et ei eksisteeri üheselt parimat korrelatsioonimudelit, 

mille sooritusvõime prognoosimisel oleks ühtmoodi hea erinevates turu-, vara tüübi ja geograafi-

listes tingimustes ning mille rakendamine suuremahulistes valimites oleks praktiliselt teostatav. 

Edasisteks võimalikeks uurimisteemadeks pakkus autor välja uutel arenevate turgude 

andmetel põhinevate valimite peal alternatiivsete kaotusfunktsioonide kasutamise. Nimelt kasutas 

autor käesolevas tööd QLIKE kaotusfunktsiooni. Kasutades aga näiteks mõnda kaotusfunktsioo-

ni, mille kaotus mõõdetakse otseselt mõne realiseeritud kovariatsioonimaatriksi vastu, võivad tu-

lemused potensiaalselt olla erinevad. Teiseks, stiliseeritud faktide juures mainis autor korrelat-

siooni dünaamika eksisteerimist teoreetilistes korrelatsioonides. Seetõttu oleks autori hinnangul 

huvitav näha kas teoreetilise korrelatsioonidünaamika sisseviimine naiivsesse või CCC tüüpi 

mudelisse annaks veelgi paremaid tulemusi. 
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APPENDICES 

Appendix 1. Selected features of empirical surveys 

 Laurent et al. 
2010 

Caporin and  
McAleer 

2012 

Clements et 
al. 2012 

Boudt et al. 
2013 

Laurent et al. 
2013 

Clements et 
al. 2009 

Asset Class Equity Equity Equity Currency Currency Multi Asset 
Sample 10 stocks 

NASDAQ 
NYSE 

89 stocks 
S&P 100 

200 stocks 
S&P 1500 

EUR/USD 
Yen/USD 

EUR/USD 
Yen/USD 
GBP/USD 

5 futures on: 
S&P 500 
NASDAQ 
US Tr. Bonds
Gold 
Crude Oil 

Covariance 
models 

EWMARM 

SBEKK 
DBEKK 
CCCvol 
DCCvol 
ADCCvol 
DECOvol 
OGARCHvol* 
(VCvol) 

EWMARM

BEKK 
CCCvol 
DCCvol 
ADCCvol 
cDCCvol 
OGARCHvol*

EWMAFKO

DCCvol 
DECOvol 
(SMA) 
(MIDAS) 

EWMARM

SBEKK 
DBEKK 
CCCvol 
DCCvol 
cDCCvol 
BIP-DCCvol 
BIP-cDCCvol 

EWMARM 

DBEKK 
CCCvol 

DCCvol 
OGARCHvol 
(GOGARCHvol)
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EWMARM

EWMAFKO 

CCC 
DCC 
ADCC 
(SMA) 
(STAT) 
 

Volatility 
models 

Arch* 
Aparch* 
Egarch* 
Garch* 
Gjr* 
Hgarch 
Igarch 
Figarch 
Rm 

Garch* 
Gjr 

Gjr Bip-garch Garch 
Aparch 
Egarch 
Gjr 
Igarch 
Rm 

Garch 

Loss Function Euclidean 
Frobenius 

MSE 
QLIKE 

GMVP 
, ,

,

, ,  

Frobenius MSE 
QLIKE 
GMVP 
MVP 

                                                 
42 GO-GARCH or Generalized Orthogonal GARCH model of van der Weide (2002) is an extension of O-GARCH 
where m = N  (see O-GARCH subsection in Chapter 2 for definitions of m and N). 
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Proxy RCov5min RBPCov5min NA RCov30min 
RBPCov30min 
ROWCov30min

RCov5min RCov30min 

MCS signifi-
cance  level 
(authors 
choice) 

α=25% α=25% α=25% α=25% α=10% α=25% 

Subscript vol indicates that univariate volatility has been modeled according to  specification un-
der volatility models section (vol includes all volatility models, vol* includes only those models 
that are denoted with *). Covariance models in parentheses were included in source literature, but 
were omitted from current survey. Source: Authors compilation 
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