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ABSTRACT

The importance of correlation modelling has long been recognized as one of the corner-
stones of modern portfolio risk management. Though univariate volatility modelling has been in
focus of academic research for over thirty years, multivariate volatility modelling has just recent-
ly been getting more academic attention. The importance of correlations in portfolio risk man-
agement is however hard to overestimate, as their dynamics will define the ultimate costs and
benefits of diversification. This thesis seeks to explain the general dynamics of time-varying cor-
relations, introduces the most prominent correlation models and evaluates their out-of-sample
forecasting performance with an objective to find a superior model that could be used in real life
applications. By using one day ahead correlation forecasts, each model is tested for high and low
volatility periods on samples from developed markets and emerging markets, where developed
market results are based on previous academic research and emerging market results on the cal-
culations of the author. Furthermore, as different asset types can experience different dynamics,
separate samples are created for equity, currency and multi asset portfolios. The evaluation crite-
ria used to find the best performing model is based on two factors. First, which model is able to
predict the outcome of the next day most precisely? Second, what is the cost, measured in com-
puting hours, of using certain model? General results are mixed as no single best model is found
that would unconditionally outperform others in all market and asset type conditions. There are
some preference towards asymmetric version of dynamic conditional correlation model (ADCC)
in developed market setting and towards constant conditional correlation model (CCC) in emerg-
ing market setting. Furthermore, more sophisticated models, including the dynamic versions of
conditional correlation models show unrealistically high computational time cost to be used in
real life applications.

Keywords: correlation modelling, multivariate GARCH, multivariate volatility, loss function,

model confidence set, forecasting



ABBREVIATIONS

ADCC — Asymmetric Dynamic Conditional Correlation
BEKK - Baba-Engle-Kraft-Kroner correlation
BIP-cDCC — Bounded Innovation Propagation cDCC
BIP-DCC — Bounded Innovation Propagation DCC
CCC - Constant Conditional Correlation

c¢DCC — Aielli version of DCC

DBEKK — Diagonal BEKK

DCC — Dynamic Conditional Correlation

DECO — Dynamic Equicorrelation

DVEC — Diagonal VEC

EWMA — Exponentially Weighted Moving Average correlation
EWMA"™© — Fleming-Kirby-Ostdiek version of EWMA
EWMA® — RiskMetrics version of EWMA

FBEKK — Full BEKK

FVEC — Full VEC

GARCH — Generalized Autoregressive Conditional Heteroskedasticity
GJR-GARCH - Glosten-Jagannathan-Runkle GARCH
MCS — Model Confidence Set

MGARCH — Multivariate GARCH

O-GARCH - Orthogonal GARCH

SBEKK — Scalar BEKK

SMA — Simple Moving Average correlation

SVEC — Scalar VEC

VEC — Vectorized correlation



INTRODUCTION

During the financial crisis of 2007-08 volatilities of global asset returns surged to levels
not seen in recent history. One of the consequences of this increased risk perception was the sub-
stantial strengthening of co-movements between various asset returns. Latter posed a problem for
global banks, insurance companies and money managers as these institutions had historically re-
lied on correlations as a tool to diversify risk in their asset portfolios. Now when both volatilities
and correlations reached new highs, their total asset portfolio volatility levels often reached the
levels that violated both internal as well as external regulatory risk limits. Violations in turn
forced them to unload the riskier assets to already oversold markets putting even more pressure
on global asset prices and risk levels. Such regulation driven forced selling was and still can be a
source of systematic risk in the global financial system.

Since 1952 when Markowitz published an article on portfolio selection (Markowitz 1952),
correlation estimates have been considered as one of the cornerstones of portfolio risk manage-
ment. Since then, global regulatory environment has embraced various risk systems (value-at-risk
and expected shortfall being the most prominent) all relying on correlations as risk diversifiers.
Being ones objective the minimization of portfolio risk given a target return, or return maximiza-
tion given a target risk, all decisions rely on three types of variables: expected returns and vari-
ances of underlying instruments and their respective expected correlations. While variance mod-
elling has been in focus of academic research since 1982 when Engle published his seminal paper
on autoregressive conditional heteroskedasticity (Engle 1982), modelling of correlations has been
getting somewhat less focus. This might be due to two reasons. First, the importance of correla-
tions compared to univariate volatility in risk models is somewhat less significant. Second, corre-
lation modelling suffers from the so called ,,dimensionality curse®. The latter means that most of

the existing correlation models are not even usable with portfolios above 100 instruments.



This thesis seeks to explain the general dynamics of time-varying correlations, introduces
the most prominent correlation models and evaluates their out-of-sample forecasting performance
with an objective to find a superior model that could be used in real life applications. Further em-
phasis will be put on the usage of underlying data. This means that correlation model should per-
form equally well in various market conditions (i.e. in calm and turbulent markets) as well as not
be dependent on the underlying asset type (i.e. equities, fixed income, currencies, etc.) nor be in-
fluenced by market type (i.e. developed market or emerging market). In addition, modelling effi-
ciency represented by computational time cost of various correlation models will be investigated.
Looking at correlation model forecasting performance together with its estimation efficiency
could potentially provide some useful insights about correlation models’ integration possibilities
into real-life risk systems.

The thesis proceeds as follows. In Chapter 1 some well-known facts about correlation dy-
namics will be introduced. In Chapter 2, theoretical concepts of correlation modelling together
with formal definitions of eight correlation models will be given. Chapter 3 will be dedicated to
the literature review on the forecasting ability of these correlation models in the context of devel-
oped markets. In Chapter 4, empirical analysis will be carried out to evaluate forecasting perfor-

mance of nine correlation models in the context of emerging markets.



1. SIXSTYLIZED FACTS ABOUT CORRELATION
DYNAMICS

In this chapter six well known facts about correlation dynamics will be presented. These
so called “stylized facts” will then serve as requirements against which theoretical correlation
models will be benchmarked in Chapter 2.

Consider the time series of three equity market indices. Figure 1.1 plots index level and
daily log return information from three countries (S&P 500 of United States, DAX of Germany
and HSI of Hong Kong). Based on the charts in Figure 1.1, couple of observations can be made.
Firstly, in general stock market indices move in tandem, indicating that there should be a positive
correlation between different equity market indices. Furthermore, looking at the return charts
(charts 2 to 4), one can also notice that the co-movements have been more synchronized in the
end of time series than in the beginning of it. This in turn could be an indication of positive rela-
tionship between correlation and time. Indeed, investigating seven major country stock indices
over the period of 1960-1990, Longin and Solnik (1995) found evidence of increasing correla-
tions over this period.

Secondly, even though in short term the correlation can fluctuate substantially, it still has
a tendency to revert back to its long term (increasing) average value. In fact, the correlation time
trend and the fluctuations around this time trend are rather similar to the long and short term
growth dynamics in economic growth. Namely, when describing economic growth dynamics as a
combination of long term steady growth trend and a short term business cycle driven growth dy-
namics, a parallel can be drawn in which increasing correlations serve as long term steady trend
dynamics (in case of correlations, this means increasing integration of global economy) and a
more hectic short term correlation dynamics (mainly driven by business cycles). From the corre-

lation modelling perspective, this means that the correlation model should be able to assign dif-



ferent weights to different historical return observations as well as to be able to incorporate a
more static long term average correlation term.

Thirdly, it is a well-known fact that stock market returns are heteroskedastic (see return
charts for illustrative evidence). As correlations depend on volatilities, this could very well mean
that also correlations can change (break) during more volatile periods. Using information from
the stock market crashes of 1987 (Black Monday), 1989 (Russian Crisis), 2001 (dot-com bubble
burst) and 2008 (subprime mortgage crisis) Sandoval et al. (2010) showed that correlations be-
tween stock market indices' do increase significantly during great crashes.

Fourthly, as the downside deviation of returns tends to be much higher than the upside
deviation (see return charts), it could also mean that there is some asymmetry in correlation dy-
namics. Longin and Solnik (2001) showed by using monthly equity index returns from 1959 to
1996 for United States, United Kingdom, France, Germany and Japan that empirical correlations
tend to increase during down-markets and decrease during up-markets.

For the modelling perspective, facts three and four mean that the model should be flexible
enough to take into account both the possible correlation breaks as well as asymmetry.

Fifth fact relates to the persistence in correlation dynamics. Again turning back to our re-
turn charts, it is evident that returns tend to cluster, meaning that high absolute returns are likely
to be followed by more high absolute returns and vice versa. If persistence in correlation dynam-
ics exists, then from the correlation modelling perspective it is important also to take account of
the lagged correlation terms.

The sixth fact is also evident from daily index level and return charts, as it involves outli-
ers, or sudden jumps in prices. Boudt et al. (2013) explain that such outliers are often caused by
one-off events such as news announcements. As an example, consider a news announcement in-
volving one asset but not the other. In such case, correlation will tend to zero. When however, the
announcement involves both assets, the correlation can tend to either plus one or minus one de-
pending on the announcement symmetry (both positive/negative or opposite). Furthermore, same
problems can be found in an index framework. Boudt et al. (2010) point to a October 19, 1987

market crash as a clear outlier that biases correlation estimate. Latter is also observable in Figure

! Sandoval et al. (2010) used stock market indices from US, UK, Germany, Spain, Sweden, Brazil, Mexico, Japan,
Hong Kong, Malaysia, South Korea and Australia.



1.1. As all three equity indices experience drastic fall on that day, the correlation coefficients be-
tween indices tend to plus one. The existence of outliers therefore indicate that it is important to
control for outliers whenever modelling correlations.
In the next sections, I will try to find illustrative evidence for the six (stylized) facts:

1) time trend;

2) mean reversal;

3) correlation breakdown;

4) correlation asymmetry;

5) correlation persistence; and

6) outliers.

Index Levels United States
58P 500 index, DAX Index, Hang Seng index S8P 500 Index
10 e -
a5 | — S&P500Index -
— DAX Index
9 : Hang Seng Index 5%
T B85 &
LIRE g
x 75 & 0% -
b= T 9 =
L= 2 ¥ o
S 65 ‘g’ 59 —
= 6 =
B .
= - 10%
5
45
4 - -15% -
T T T T T It Tt r T rrrrrrrrrd ¥ T T T T T T T T T T T I T T T T T T Tr1
1969 1976 1982 1988 1994 2000 2006 2012 1969 1976 1982 1988 1994 2000 2006 2012
Germany Hong Kong
DAY index Hang Seng index
8% 15%
6% - 10% —
e 4% & g%
3 <}
2 29 =
¢ ¢ 0% -
> 0% - =
£ 5 5%
é 2% - s
= -
4% - 10 %
5% - 15%
5% - 20 %
T T T T I T IT T rr T rrrrrrrrrd ¥ T T T T T T T T T T T T T T T T T T T T TI1
1969 1976 1982 1988 1994 2000 2006 2012 1969 1976 1982 1988 1994 2000 2006 2012

Figure 1.1. United States, German and Hong Kong stock market index log level and return
developments from November 21, 1969 to February 21, 2014
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1.1. Data

This section will introduce the data sample that is used throughout this chapter. In the
presentation of the first three stylized facts (time trend, breakdown and asymmetry), daily close-
to-close equity index data from Bloomberg database is used. Equity indices observed are grouped
into two samples (see Table 1.1). The first, smaller sample is constructed so that it would include
as many geographic regions as well as historical observations as possible. In so doing, the sample
includes price information starting from November 21, 1969 to February 21, 2014. The second,
larger sample includes more indices, but because of lack of historical observations in case of

some indices, the observation period length is from January 23, 1992 to February 21, 2014.

Table 1.1. Sample data

Index name Region Country Symbol | Small Large
sample | sample
Standard and Poor's 500 Index | North America | United States Spx Yes Yes
S&P/Toronto SE Comp Index | North America | Canada sptsx No Yes
Ibovespa Index Latin America | Brazil ibov No Yes
FTSE 100 Index Europe United Kingdom | ukx No Yes
CAC 40 Index Europe France cac No Yes
DAX Index Europe Germany dax Yes Yes
IBEX 35 Index Europe Spain ibex No Yes
AEX Index Europe Netherlands aex No Yes
OMX Stockholm 30 Index Europe Sweden omx No Yes
Swiss Market Index Europe Switzerland smi No Yes
Nikkei-225 Stock Average Asia Japan nky No Yes
Hang Seng Index Asia Hong Kong hsi Yes Yes

Source: Author’s compilation

To address the data synchronization problem arising from sample geographical and time-
zone diversity, 2-day rolling averages of log returns have been used [see for example Forbes and
Rigobon (2002), Hon et al. (2004) and Kotkatvuori-Ornberg et al. (2013)]. Furthermore, for ver-
ification purposes, both local currency as well as US dollar subsamples are constructed.

For the presentation of the last two stylized facts (i.e. persistence and outliers), high-

frequency data from Bloomberg database is used. Sample is constructed based on the selection of
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German DAX index constituents (see Table 1.2) and spans from August 14, 2013 to February 25,
2014. Data is organized into 5 minute intervals including total of 13 586 observations per com-

ponent (101 observations per trading day).

Table 1.2. Selected DAX index components

Component Symbol Currency Trading hours
E.ON eaon EUR 10:00 — 18:30
Deutsche Bank dbk EUR 10:00 — 18:30
Commerzbank cbk EUR 10:00 — 18:30
Infineon Technologies ifx EUR 10:00 — 18:30
Daimler dai EUR 10:00 — 18:30
Deutsche Lufthansa lha EUR 10:00 — 18:30
Deutsche Telekom dte EUR 10:00 — 18:30
SAP sap EUR 10:00 — 18:30

Source: Author’s compilation

The analysis is performed with statistical computing software R (source code is available
upon request) and econometrics software Gretl. When not stated otherwise, all correlations and
volatilities presented in the current chapter are unconditional, meaning that they are simple aver-

ages of past observations without conditioning on any information set’.

1.2. Time trend

To model correlation time trend, two samples are used as defined in Table 1.1. Small and
large sample 1-year rolling mean correlations are calculated in local currency and US dollars. The
results are presented in Figure 1.2.

Both small and large sample indicate upward trending correlations in time. Furthermore,
the smaller sample which includes stock market indices from United States, Germany and Hong

Kong and starts from the year 1969 provides especially strong evidence of the time trend. When

iy e 1 = .. .
* Unconditional volatility is calculated as o, = EZle(xt —Xx)? and unconditional correlation as py, =

21— D Ye=)

T-Donsy where X and y are simple historical averages of assets x and y returns respectively.
“1)sysy
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for example in the 1970s, the sample correlation was on average around 0.1, then by the 2000s

average correlation between US, German and Hong Kong stock markets had already risen to 0.5.
As there is no significant difference between local currency and US dollar based results

[the results also confirmed by Hon et al. (2004)], then the future analysis will be based only on

local currency returns.
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Figure 1.2. Correlation time trend
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1.3. Mean reversal

Using data starting from the 1970s, it was shown in the last section that long term correla-
tions between global equity markets have been increasing. Nevertheless, when measuring correla-
tion dynamics using shorter time periods, another interesting dynamics arises. Figure 1.3 plots 30
day rolling average correlations between years 2000 and 2007 for both small and large sample of
equity indices. Red line on both charts represents a 5 year moving average of rolling 30 day cor-
relations. It is well seen that in case of US, Germany and Hong Kong, the 30 day rolling correla-
tion fluctuates around average correlation of approximately 0.4. In case of the larger sample, the
moving average of rolling correlations fluctuates around a steadily increasing average correlation.
However, in both cases it appears that short term correlations move back to some long term
(moving) average correlation. From the correlation modelling standpoint it is therefore important
to consider incorporating some long term average correlation as an intercept to a more dynamic

correlation component.

30-Day Rolling Correlation 30-Day Rolling Correlation
spx-dax-hsi in local currency 12 index set” in local currency
— 5 year moving average 08 -| — 5year moving average

¢ ﬂAJ

Unconditional Correlation
Unconditional Correlation

T 1 1 X7 T F- LT T F &1 = F

2000 2001 2002 2003 2004 2005 2006 2007 2007 2000 2001 2002 2003 2004 2005 2006 2007 2007

Figure 1.3. Correlation mean reversal

14



1.4. Correlation Breaks

In order to investigate possible breaks in correlations, again two samples from Table 1.1
were used.

To find out whether correlations differ in various market conditions, local currency two
day rolling log returns (adjusted returns) were allocated into 6 groups. First group includes all
adjusted returns of sample indices for periods when S&P 500 index adjusted return was less then
minus 2 standard deviations from its mean. Second group includes adjusted returns conditional
on S&P 500 adjusted return falling between -2 and -1 standard deviations from its mean and so
on [Group 3: (-1,0); Group 4: (0,+1); Group 5: (+1,+2); Group 5: (+2,+)]. Conditional mean
correlations were thereafter calculated based on the adjusted returns in each group.

The results are provided in Figure 1.4. “Conditional Volatility” charts give information on
the average absolute return in each group and “Conditional Mean Correlation” charts provide in-
formation on the average correlation in those groups.

As can be seen, the correlations tend to increase with volatility. Hence we can conclude
that there exists at least illustrative evidence that correlations do increase significantly in more

volatile periods.
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Conditional Volatility Conditional Mean Correlation
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Figure 1.4. Correlation breakdown

Having shown that empirical correlations do increase in more volatile periods, the fact
that is also supported by many empirical surveys, there is still no universal agreement on wheth-
er the increase is only empirical or also theoretical. To clarify, Boyer et al. (1999) provide a fol-

lowing theorem.
Theorem: Consider a pair of bivariate normal random variables x and y with variances oy and oy,
respectively, and covariance a,?y. Put p = gy, /(0x0,), the unconditional correlation between x

and y. Consider any event x € A, where A € R such that 0 < Pr(4) < 1. The conditional correla-

tion p, between x and y, conditional on the event x € A, is equal to:

? See for example Longin and Solnik 1995, Longin and Solnik 2001, Chua et al. 2009, Loretan and English 2000
among others.
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B _ Var(x) 2 1.1
pA—,O(p2+(1 pZ)Var(x|xEA)> (-1

The most important observation that can be made from equation (1.1) is that when p # 0
and Var(x | x € A) 2 Var(x) then |p4| 2 |p|, indicating that when volatilities temporarily in-
crease, then correlations increase as well (in absolute value) even though the full sample correla-
tion remains the same.

In general, the theoretical correlations can be shown to be upward sloping in more volatile
periods as demonstrated by Boyer et al. (1999) and Loretan et al. (2000) or downward sloping as
demonstrated by Longin and Solnik (2001) and Chua et al. (2009). In the end it all depends on
conditioning of sub-samples: when sub-sampling is done based on absolute values then normal
correlations® increase and when it is done on signed values then normal correlations decrease.
Furthermore, Campbell et al. (2008) demonstrate that when replacing the normal distribution
with Student-¢ distribution (which is more appropriate for fat-tailed return distributions), then
theoretical correlations increase even in case the conditioning is done over the signed values. To
illustrate the above effects, author used Monte Carlo simulation to generate 1 million standard
normally and Student-7 distributed random observations for two variables (altogether 2 million
observations for both distributions). The variable observations were thereafter correlated with
unconditional correlation of 0.5 using Cholesky decomposition. The results for normal correla-
tions with conditioning on absolute and signed values as well as Student-# correlations with 5 de-
grees of freedom and conditioning on signed values are provided in Figure 1.5.

There are two observations one can make from Figure 1.5. First, theoretical correlation
moves in the same direction as theoretical volatility, i.e. increases when theoretical volatility rises
and decreases when it falls. Second, under more relevant Student-# distribution with 5 degrees of
freedom theoretical correlation is increasing.

In conclusion it can be argued that based on the simulation as well as more recent research

results, correlation breaks are not only empirical but also theoretical phenomenon.

* Normal correlations are correlations for jointly normally distributed variables.
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First two charts plot correlation and volatility dynamics for jointly normally distributed standard
random variables with unconditional correlation of 0.5, in case conditioning is done on the
absolute returns of both variables. Third and forth chart plot correlation and volatility dynamics
for jointly normally distributed standard random variables with unconditional correlation of 0.5,
in case conditioning is done on the signed returns of both variables. Last two charts plot
correlation and volatility dynamics for jointly Student-¢ distributed (with 5 degrees of freedom)
standard random variables with unconditional correlation of 0.5, in case conditioning is done on
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1.5. Correlation Asymmetry

For correlation asymmetry analysis, the same data and results can be used as in case of
correlation breakdowns. Namely, investigating Figure 1.4 one can see some evidence that nega-
tive return periods do bring about larger correlation increases than positive return periods. As
mentioned in the introductory section to this chapter, Longin and Solnik (2001) as well as Chua
et al. (2009) both using global equity index data have found similar evidence of asymmetry in

correlation dynamics.

1.6. Persistence

To illustrate the possible persistence in correlation dynamics, high frequency data was
used for instruments defined in Table 1.2. Based on 5-minute log return data spanning from Au-
gust 14, 2013 to February 25, 2014, realized correlation coefficients were calculated in accord-
ance with Andersen et al. (2003). According to Andersen et al. (2003), realized correlations can
be approximated for each day using sufficient amount of return observations from that day’. Data
synchronisation issue was addressed by using instruments from the same stock exchange together
with the constraint on liquidity (i.e. only the most liquid instruments were included in the sam-
ple).

Based on sample data, 135 realized correlations were calculated for each of the randomly
selected 7 instrument pairs from Table 1.2 (see table Table 1.3). Table 1.3 provides results from
partial autocorrelation analysis of realized correlation time series. There is strong evidence of
persistence (represented by partial autocorrelation) of at least one day lag. In most cases, persis-

tence also exists for the 2 day lag.

> Andersen et al. (2003) used 30 minute intervals in 24 hour foreign exchange markets to minimize market micro-
structure noise. Due to XETRA exchange shorter opening hours, the reason that the analysis is only illustrative and
only the most liquid stocks were selected, 5 minute intervals was considered as sufficient for current analysis.
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Table 1.3. Partial autocorrelation coefficients and the significance of the first three lags

Component 1-day 2-day 3-day

Commerzbank - Infineon Technologies 0.2307 *** 0.2193 ** 0.0428
Daimler - Commerzbank 0.2695 *** 0.2436 *** 0.0400
Deutsche Bank - Daimler 0.3677 *** 0.1725 ** 0.2069 **
Deutsche Telekom - Deutsche Lufthansa 0.3007 *** 0.2717 *** 0.0585
Infineon Technologies - E.ON 0.4122 *** 0.2384 *** 0.1441 *
Deutsche Lufthansa - Deutsche Bank 0.3780 *** 0.0963 0.0962
SAP - Deutsche Telekom 0.3467 *** 0.2614 *** 0.0930

*** statistically significant at the 1% level; ** st. significant at the 5% level; * st. significant at the 10% level

Source: Author’s compilation

1.7. Outliers

Similarly to the analysis of persistence related stylized fact, the illustration of outlier ef-
fect entails using high frequency data and realized correlations. As mentioned in the introductory
section of the current chapter, outliers caused by one-off events (such as news announcements)
can potentially cause a bias in the correlation estimate.

To illustrate the point, 5S-minute log returns of two stocks (EO.N and Deutsche Bank)
trading an a German stock exchange (XETRA) have been used from August 14, 2013 to Febru-
ary 25, 2014. The results are presented in Figure 1.6, Figure 1.8 and Figure 1.8.

The forth chart in Figure 1.6 (,,Realized Correlation®) plots daily realized correlations
against 5-minute E.ON-Deutsche Bank log return differential. Consider for example the observa-
tion circulated in red. The log return differential on October 11" exceeds 1.5 percent consequent-
ly pushing the correlation down towards zero.

More in depth analysis (see Figure 1.8 and Figure 1.8) provides further evidence on outli-
er effect. Figure 1.8 (October 1% and October 2™%) provide log return frequency distributions for
,hormal® periods (i.e. without outliers). The realized correlations calculated for these days are
0.45 and 0.46 respectively. Alternatively, Figure 1.8 provides frequency distributions for ,,non-
normal* or ,outlier days. The information is for the October 7™ and October 11™ (mentioned
above) with outliers circulated in red. As can be seen, the realized correlation drops from around

0.45 to around 0.
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Figures 1.6 through 1.8 illustrate what effect one-off events (i.e. outliers) can potentially
have to correlation estimate. When not properly accounted for, such events will push correlations
toward zero when once-off events affect only one asset and towards +1/-1 when the effect is sim-

ultaneously similar/opposite.

1.8. Conclusions

In the current chapter, six stylized facts about correlation dynamics were discussed. Facts
considered were time trend in correlations, mean reversal, correlation breakdown, correlation
asymmetry, correlation persistence and outliers. Based on illustrative evidence, support was
found for the increasing correlations between global equity returns as well as for the mean rever-
sal. Additionally, based on conditional correlation analysis, correlations do appear to break when
markets experience turbulence. However, as it was shown with Monte Carlo simulation, this
break is also evident in theoretical correlations. Some support was found that negative shocks
will cause correlations to increase more than similar positive shocks. Investigating intraday high
frequency data, support was also found for the persistence in correlation dynamics as well as the
existence of outlier problem.

Next chapter will be dedicated to the introduction of various existing correlation models

as well as to the investigation of how well these models meet the aforementioned requirements.
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2. REVIEW OF CORRELATION MODELS

In Chapter 1 six stylized facts were introduced about correlation dynamics. In this chap-
ter, theoretical concepts of correlation modelling together with formal definitions of eight correla-
tion models will be given. The chapter proceeds as follows. In the first subsection, some nota-
tional aspects will be discussed that will be used throughout the rest of the thesis. In the second
subsection, two technical considerations will be introduced that are of significant importance
when modelling correlations. Subsections three through five will then provide theoretical defini-
tions of the eight, in authors opinion most prominent, correlation models. In the last subsection,

some concluding remarks regarding theoretical concepts of correlation modelling will be made.

2.1. Notation

As per Silvennoinen and Terasvirta (2008) and Bouwens et al. (2006) we can set the mod-
el up as follows. Consider a stochastic vector process { r; } with dimension N x 1 such that Er; =
0. Let F;_; denote the information set generated by the observed series { r, } up to and including

time ¢ — 1. We assume that r, is conditionally heteroskedastic:

given the information set F,_, where the N x N matrix H; = [h;;] is the conditional covariance
matrix of 7, and #, is an iid vector error process such that En,m; = 1. H 1/ % s any N x N positive
definite matrix such that H, is the conditional variance matrix of r, e.g. H %/ 2 may be obtained
by Cholesky factorization of H,. This defines the standard multivariate generalized autoregres-

sive conditional heteroskedasticity (MGARCH) framework, in which there is no linear depend-

ence structure in { r, }.
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In the following subsections a review of correlation models with different specifications
of H, will be provided. Based on their specification, three nonmutually exclusive classifications
of correlation models are provided: (i) naive correlation models; (i1) models of conditional covar-
iance matrix; and (iii) models of conditional variances and covariances. First category includes
models such as Simple Moving Average correlation and RiskMetrics version of Exponentially
Weighted Moving Average correlation. VEC®, BEKK’ and Orthogonal GARCH models are in
the second category. The last category contains constant and dynamic conditional correlation

models.

2.2. Some technical considerations

Before the introduction of various model specifications, there are two additional technical
considerations that need to be explained. Firstly, the covariance matrix of a correlation model
needs to be positive semidefinite. When it is not the case and covariance matrix ends up being
negative definite, the resulting aggregated asset portfolio variance will be negative. Negative var-
iance however is not an economically realistic result.

There are couple of reasons that might result in covariance matrix not to be positive sem-
idefinite. Firstly, when the number of historical observations is less than the number of assets.
The most probable situation where it could happen is with MGARCH type models where the co-
variance matrix is estimated with decaying weights. Namely, when those weights are decaying
too fast, it could make the number of effective historical observations too small for the covari-
ance matrix to be positive semidefinite. Second reason for covariance matrix not to be positive
semidefinite is when the asset returns are strongly linearly correlated with each other. (Jorion
2006)

Another technical consideration when modelling correlations is the dimensionality prob-
lem. Consider for example a portfolio of 100 assets. In order to estimate the covariance matrix,

altogether 5 050 covariance and variance terms need to be estimated. Using for example VEC

% Named after vech(-) operation used in the model.
7 Named after its authors Baba-Engle-Kraft-Kroner.
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type MGARCH model for the estimation, further 51 010 050 model parameters need to be esti-
mated. Latter makes the whole process infeasible for medium to large systems. So in order to

make system feasible, some simplifying assumptions are often made for modelling purposes.

2.3. Naive correlation models

Before the introduction of more sophisticated MGARCH type models, two so called naive
correlation estimation models will be introduced in this subsection. The models include equally
weighted rolling average correlation (Simple Moving Average) and RiskMetrics version of Ex-
ponentially Weighted Moving Average correlation. The reason for describing the two aforemen-
tioned models separately is because of their relative simplicity compared to most MGARCH

models and their wide use by industry practitioners.
2.3.1. Simple Moving Average

In bivariate case Simple Moving Average correlation (SMA) can be defined as follows

(Engle 2002):

!
Yit-1T2¢-1

\/(T1,t—17"'1,t—1)(Tz,t—17"’2,t—1)

P12t = (2.2)

where py, ¢ is the conditional correlation estimate made for time fon #-1. 7y ,_; isa 1 X k column
vector for asset 1 daily returns up to 7 — 1 so that 1y = (¥144-1,..., 1)) and Ty, 1 iSa 1l X k
column vector for asset 2 daily returnsup to r — 1 so that v,y = (2,04-15- ., 72,1-1)-

In (2.2), the length of the rolling window k determines the degree of memory that is used
in estimation. For example, assuming k£ = 252 (1 year) and ¢ = 1 008 (4 years), correlation esti-
mate will give an equal weight to all daily returns in year 4 and zero weight to all returns in the
first three years.

The aforementioned feature is also the biggest critique against using the SMA to estimate

correlation. Namely, by choosing a smaller k value to incorporate heteroskedasticity, the model
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will disregard potentially important more distant historical observations. Alternatively, by choos-
ing a high &, the model might average out the important heteroskedastic conditions of current
state.

Coming back to the six stylized facts introduced in Chapter 1, considering a commonly
used k value of 252 (one year), the model is incapable of handling neither correlation breaks, nor
mean reversion or time trend. Furthermore, even though correlation estimate from SMA model is
persistent, it most probably is persistent on a wrong level. Under no setting in (2.2) can we incor-
porate asymmetry nor can we avoid outliers. On the positive side, SMA estimated covariance
matrix is guaranteed to be positive semi-definite and the model does not suffer from dimensional-

ity problem.
2.3.2. RiskMetrics EWMA

RiskMetrics version of Exponentially Weighted Moving Average correlation (RiskMet-
rics EWMA) developed by RiskMetrics'™ (RiskMetrics 1996), uses a decay factor A to assign
weight to historical observations. The weighting is done so that the importance of historical ob-
servations declines exponentially as a function of 4.

For N assets we can define exponentially smoothed correlation measure as follows

(Andersen et al. 2007):

Hi=2H, 1+ (1 - Dre a1y (2.3)

where H; is the conditional covariance matrix estimated at ¢-1 for time # and r;_; isan N X 1
row vector of daily returns for N assets. From (2.3) conditional correlation matrix R; can be de-

rived as follows:

R.=(IQOH)Y*H,(I1O H,)™/? (2.4)

where (© denotes Hadamard product (i.e. matrix elementwise product) and Iis a N X N identity

matrix with ones on the main diagonal and zeros everywhere else. As equation (2.4) can be used
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whenever we need to transform conditional covariance matrix H; to a conditional correlation ma-
trix R;, only H; will be formally defined in the following subsections.

RiskMetrics EWMA has two important advantages over the equally weighted model.
First, correlation reacts faster to shocks in the market as recent data carry more weight than data
in the distant past. Second, the model does not have a fixed observation termination point in the
past. This means that the model is capable of incorporating all of the observable history into its
estimate (although using standard decay factor of 0.94 is already very discriminating against the
more distant history®). Furthermore, due to its simple structure, covariance matrix of RiskMetrics
EWMA model is easily estimated, and provided that the decay factor is not too low and N is not
too high, model is also guaranteed to be positive semidefinite (Andersen et al. 2007).

On the negative side, as the model imposes the same degree of smoothness on all ele-
ments of the estimated covariance matrix, the result can be potentially biased. This is confirmed
by various studies which have found that the optimal decay factor varies both across assets and
among asset classes. Moreover, similarity to SMA, RiskMetrics EWMA ignores correlation
mean-reverting (Andersen et al. 2007) and time trend properties as well as asymmetry and possi-

ble outliers.

2.4. Models of conditional covariance matrix

24.1. VEC Model

VEC-GARCH model of Bollerslev, Engle, and Wooldridge (1988), is a generalization of
the univariate GARCH model. Every conditional variance and covariance is a function of all
lagged conditional variances and covariances, as well as lagged squared returns and cross-

products of returns (Silvennoinen, Terdsvirta 2008).

The VEC(1,1) model is defined as follows (Bollerslev et al. 1988):

vech(H,) = ¢ + Avech(r,_iri_,;) + Bvech(H;_;) (2.5)

¥ For example, when using annual daily return observations, the last six month of data will have a combined weight
0f 99.96% in the model.
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where ¢ is an N(N + 1)/2 x 1 vector, and 4 and B are N(N + 1)/2 x N(N + 1)/2 parameter matri-
ces. vech(-) operator converts the unique lower triangular elements of a symmetric matrix into a
N(N + 1)/2 x 1 column vector.

The generality of the VEC model is an advantage in the sense that the model is very flexi-
ble by allowing mean-reversion (intercept vector ¢) as well as correlation breaks and persistence.
However such flexibility also brings disadvantages. One is that there exist only sufficient, rather
restrictive, conditions for H; to be positive definite for all # (Silvennoinen, Terdsvirta 2008).

Another disadvantage of this model is that the dimensionality of the model increases ex-
ponentially. In fact the number of parameters is defined as (p + g) (M(N + 1)/2)* + N(N+1)/2,
where p and ¢ are VEC lagged terms, i.e. VEC(p,q)’. In our VEC(1,1) specification, having a 100
asset portfolio (N = 100) results in 51 010 050 parameters to be estimated.

The dimensionality problem can be alleviated somewhat by assuming a diagonal matrix
for both A4 and B (diagonal VEC, or DVEC) where each element A;;; depends only on its own lag
and on the previous value of r,_;7;_; (Bauwens et al. 2006). Number of parameters to be esti-
mated in DVEC decreases then to N(N+5)/2 (e.g. for N = 100 number of parameters will be
5250).

The DVEC(1,1) is defined as follows (Bauwens et al. 2006):

H=C+A Q1) +B OH,_, (2.6)

where C°, A°, B° are symmetric N x N matrices so that A = diag[vech(4")],
B = diag[vech(B’)] and ¢ = diag[vech(C’)]. As long as C°, A", B’ as well as initial covari-
ance matrix H are positive definite, then so is H, for all # (Bauwens et al. 2000).

Nevertheless, even in DVEC setting there are too many parameters to be jointly estimat-
ed, which is computationally infeasible in systems of medium and large size (Andersen et al.
2007). An even simpler version of VEC is called scalar VEC, or SVEC. SVEC model constrain
A’, B matrices to be rank one matrices, or a positive scalar times the matrix of ones (Bauwens et

al. 2006). The SVEC(1,1) can then be written as in (2.7).

? In equations (2.5) p=¢=1, i.e. VEC(1,1).
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vech(H,)) =c+a (ry_qr;_y) + bH,_4 (2.7)

As can be seen, RiskMetrics EWMA of (2.3) is a particular case of SVEC model where ¢
=0,a=1-4and b = . Latter demonstrates well one of the previously stated negative aspects of
RiskMetrics EWMA model. Namely by setting ¢ = 0, RiskMetrics EWMA model is not mean
reverting.

In conclusion, when benchmarking VEC, DVEC and SVEC models against stylized facts
of Chapter 1, all models can handle mean-reversion, correlation breaks and persistence (though
on different levels, VEC being the most flexible). Nevertheless, none of the specifications of

(2.5), (2.6) and (2.7) can handle time trend, asymmetry nor outliers.
2.4.2. BEKK Model

Because it is difficult to guarantee the positivity of H, in the VEC representation without
imposing strong restrictions on the parameters, Engle and Kroner (1995) propose a new parame-
terization for H, that guarantees its positivity, i.e. the Baba-Engle-Kraft-Kroner (or BEKK) mod-
el (Bauwens et al. 2006).

BEKK (1,1,K) model is (Engle, Kroner 1995):

K K
H,=C"C + z AT T AL+ Z BY'H, B, 2.8)
k=1 k=1
where C*, A}, and B}, are N x N parameter matrices, C* is lower triangular and the H, summation
limit K determines the generality of the process.

The number of parameters in the BEKK(1,1,1) model is N(SN + 1)/2 (e.g. if N =100 then
there are altogether 25 050 parameters to be estimated). To reduce this number, and consequently
to reduce the generality, one can impose a diagonal BEKK model in which 4 and B in (2.8) are
diagonal matrices. This model is also a DVEC model but it is less general, although it is guaran-
teed to be positive definite while the DVEC is not. (Bauwens et al. 2006)

The most restricted version of the diagonal BEKK model is the scalar BEKK with 4 = al

and B = bl where a and b are scalars (Silvennoinen, Terdsvirta 2008).
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With regard to meeting the requirements established in Chapter 1, the outcome is the
same as for VEC type models, namely all BEKK specifications (though on various levels) are

able to handle mean reversion, correlation breaks and persistence.

2.4.3. Orthogonal GARCH

Orthogonal GARCH (O-GARCH) model of Alexander and Chibumba (1997) is a general-
ization of the factor GARCH model introduced by Engle, Ng and Rothschild (1990) to a multi-
factor model with orthogonal factors. The O-GARCH model allows N x N GARCH covariance
matrices to be generated from m<N univariate GARCH models, where the m univariate models
are based on principal components that are linearly independent of each other (Alexander 2001).
Furthermore, Alexander (2001) notes that since only the univariate GARCH models are used, it
does not really matter if m is significantly smaller than V.

With regards to the advantages of O-GARCH model, Alexander (2001) states that there
are at least three major advantages in using principle components in covariance matrix estima-
tion. First, in a highly correlated system, only a few principal components are required to repre-
sent the system variation to a very high degree of accuracy. Second, the covariance matrix that is
constructed using the principal components method is guaranteed to be positive semidefinite.
Third, O-GARCH method gives one the option of cutting out any moise’ in the data that would
otherwise make correlation estimates unstable.

The procedure to calculate conditional covariance matrix with O-GARCH model is to first
construct unconditionally uncorrelated linear combinations of the series r. Then, as a second step,
estimate univariate GARCH models for some or all of these series, and in a third and final step,
to construct full covariance matrix by assuming the conditional correlations are all zero. (Engle
2002)

Thus the m X m diagonal matrix of variances of the principal components is a time-
varying matrix denoted D, and the time-varying covariance matrix H; of the original system is

approximated by (Alexander 2001):

H, = AD,A' (2.9)
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where A4 is the N x m matrix of re-scaled factor weights and D; is a diagonal matrix of variances

of the principal components estimated using a GARCH univariate model. Factor weights in (2.9)

. . S S)/ : : 10
are eigenvalues of standardized I'V>*N = rg_)lrg_)l, where I' has zero mean and unit variance ",

i.e. TNXNWNXN = WNXNANXN where W represents eigenvectors corresponding to I', and A is a

PN*N ig thereafter calculat-

diagonal matrix of eigenvalues of I'. Matrix of principal components
ed by multiplying the original return matrix I' and its eigenvalues based re-ordered matrix of ei-
genvectors WY so that P = TW°. Dimension of 4 will be then set according to the variances of
principal components. Namely, as the sum of variances of principal components equals the sum
of individual N return series in I' (Tuckman, Serrat 2011) and knowing that we have standardized
our variances to one, then the variance contribution is defined as the eigenvalue of i principal
component divided by N. m will then be set according to the sum of first m principal component
variances that explains sufficient amount of total variance of the system. The final matrix A4 is
then obtained by multiplying each factor weight by the corresponding standard deviation.

According to Alexander (2001) equation (2.9) will give a positive semidefinite matrix at
every point in time for any size of m. On a negative side, Bauwens et al. (2006) argue that as the
conditional variance matrix has reduced rank when m < N, it might cause problems for applica-
tions and for diagnostic tests which depend on the inverse of H,.

It was already established that O-GARCH meets the technical requirements of positivity
and low dimensionality, but how does O-GARCH deal with the stylized facts introduced in Chap-
ter 1?7 As with VEC and BEKK models, O-GARCH can handle mean-reversion, correlation

breaks and persistence, but falls again short in coping with time-trend and asymmetry.

' Standardization of r,_; to get rgs_)l is done by subtracting sample mean from r,_, and dividing the result by VT
times the sample standard deviation.
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2.5. Models of conditional variances and covariances

2.5.1. Constant Conditional Correlation

Bollerslev (1990) proposes a class of MGARCH models in which the conditional correla-
tions are constant and thus the conditional covariances are proportional to the product of the cor-
responding conditional standard deviations (Constant Conditional Correlation, or CCC model).
This restriction greatly reduces the number of unknown parameters and thus simplifies the esti-
mation (Bauwens et al. 2006).

The CCC model is defined as (Bollerslev 1990):

Ht = DtRDt (210)

where D, denotes the N x N stochastic diagonal matrix with elements /h;i, ...,/ Ayn: and R is a

positive definite N x N time invariant matrix of correlations [p;;] were p; = 1,i=1, ..., N. Each

element +/h;;, in D, is estimated via GARCH(1,1) specification'':

hise = w; + a1 q + Bihiir—a (2.11)

Under GARCH(1,1) specification, the CCC model contains N(N +5)/2 parameters. Ac-
cording to Bauwens et al. (2006), when all N conditional variances in (2.10) are positive and R is
a positive definite matrix, then H, is guaranteed to be positive definite as well.

Even though the assumption of constant conditional correlation can be too restrictive, the
model has some good features that none of the previous models had. Namely, the model has sep-
arated volatility dynamics from correlation dynamics. Latter gives us the flexibility to use vast
amount of valuable knowledge regarding univariate volatility dynamics. For instance, we can
now incorporate volatility asymmetry (for example by using GJR-GARCH'" type model instead
of standard GARCH model). Nevertheless, considering that the conditional correlation in CCC

"' The model can also be extended to GARCH(p, ¢) specification (see Silvennoinen, Terisvirta 2008).
2 GJR-GARCH model after the names of its authors (Glosten, Jagannathan and Runkle) introduces different
weighting schemes for negative and positive shocks taking into account the leverage effect (Ali 2013).
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model is by definition constant, the model is not fulfilling none of the correlation dynamics re-

quirements established in Chapter 1.

2.5.2. Dynamic Conditional Correlation

Engle (2002) proposes an estimator called Dynamic Conditional Correlation model or
DCC. The DCC model of Engle differs from CCC model in allowing R to be time varying giving
a model (Engle 2002):

H, = D,R,D, (2.12)
where R, =0 Q) V2Q.UOQ)? (2.13)
Q=0-a—-p)S+ag_1&_1+PpQ: (2.14)

7Lt ) and S is set to the unconditional

NICR:

covariance matrix. Because a and f are scalars, all conditional correlations obey the same dynam-

with &, defined as the vector of scaled residuals (i.e. &, =

ics (Jorion 2006). This is necessary to ensure that R; is positive definite.

If the conditional variances are specified as GARCH(1,1) models then DCC model con-
tains (N + 1)(N + 4)/2 parameters (Bauwens et al. 2006).

DCC model is designed to allow for two-stage estimation of the conditional covariance
matrix H,;: in the first stage univariate volatility models are fitted for each of the assets and esti-
mates of h; ; are obtained; in the second stage asset returns, transformed by their estimated stand-
ard deviations resulting from the first stage are used to estimate the parameters of the conditional
correlation.

Even though two-stage estimation is far more efficient than the to one-stage estimation of
VEC and BEKK models, Engle and Kelly (2012) argue that the estimation of DCC model param-
eters becomes increasingly cumbersome as the size of the system grows. In fact Engle and Kelly
(2012) also note that the DCC model of Engle has only been successfully applied to up to 100

assets.
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When benchmarking DCC model against the six stylized facts, it can be shown that the
model satisfies the mean-reverting properties as well as it can handle correlation breaks and per-
sistence. Also, by using asymmetric univariate GARCH model (such as GJR-GARCH) in the
first estimation phase, it is possible to add asymmetry into volatility estimate (but not into corre-

lation estimate). Neither time trend nor outliers are handled by DCC model.
2.5.3. Asymmetric Dynamic Conditional Correlation

As explained in Chapter 1, conditional estimates of the second moments of certain assets
often exhibit asymmetric phenomenon, where volatilities as well as correlations increase more
after a negative shocks than after positive shocks of the same magnitude. Furthermore, in the last
subsection it was argued that even though DCC model is capable of handling asymmetric uni-
variate volatility dynamics, it is still not able to handle asymmetry in correlation dynamics.

An Asymmetric Dynamic Conditional Correlation (or ADCC) extends the DCC model by
accounting for asymmetries in the correlation dynamics through the additional term
V(Et—1€'t—1 O] 1gt_1<01’£t_1<0) in (2.14) where 1, .o is a vector of dimension N such that

[1gt_1<0]i =11if &,_, <0 and 0 otherwise (Laurent et al. 2010). ADCC model can then be de-

fined as follows:

Q:=A-a—-p)S+ag_15_4+ Y(St—1£2—1 © 1st_1<01fst_1<0) + BQ:-1 (2.15)

Conditional correlation matrix R; and conditional covariance matrix H, is then calculated
according to equation (2.13) and (2.12) respectively.

Additionally to satisfying the properties of mean-reversion and persistence together with
the ability to handle correlation breaks, the ADCC model is also capable of handling asymmetry
in correlation dynamics. Latter makes ADCC model out of the models introduced the most flexi-

ble with respect to stylized facts established in Chapter 1.
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2.6. Conclusions

In this chapter, formal definitions of eight correlation models were given. Based on model
complexity and estimation routine, the models were allocated into three categories: naive models,
models of conditional covariance matrix and the models of conditional variances and covari-
ances. Within the naive models class, Simple Moving Average and RiskMetrics Exponentially
Weighted Moving Average correlation models were introduced. It was argued that even though
naive models are easy to use and the resulting covariance matrix is guaranteed to be positive sem-
idefinite, they lack flexibility needed to incorporate most of the requirements established in
Chapter 1. The second class of models, models of conditional covariance matrix, included VEC,
BEKK and Orthogonal GARCH. These models are far more flexible than the naive models, but at
the expense of increased dimensionality and the fact that the resulting covariance matrix might
not always be positive semidefinite (VEC, BEKK). In the third class, models such as Constant
Conditional Correlation (CCC), Dynamic Conditional Correlation (DCC) and Asymmetric Dy-
namic Conditional Correlation (ADCC) models were introduced. Compared to VEC, BEKK and
O-GARCH models in which the estimation takes place in one step, in CCC, DCC and ADCC the
estimation is done in two stages, where in the first stage conditional volatilities are estimated and
in the second stage, based on the newly standardized residuals, conditional correlations are esti-
mated. The two-step estimation procedure both simplifies the estimation routine as well as guar-
antees the positiveness of estimated covariance matrix.

In addition to the eight correlation models introduced, there are many other correlation
models that were not formally defined in this chapter. One such model, that will also be men-
tioned in Chapter 3, is BIP-cDCC. BIP-cDCC model of Boudt et al. (2013) is an extension of the
DCC model with the ability to handle outliers. Additionally, there are Copula GARCH type mod-
els, multivariate versions of stochastic volatility models and realized volatility models. With re-
gard to the latter, one multivariate realized volatility model was already introduced in Chapter 1.

More will be said about this family of models in Chapter 3.
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3. CORRELATION MODEL FORECASTING PERFORMANCE.
A LITERATURE REVIEW

In the previous chapter, various multivariate volatility models were introduced. It was
shown that multivariate volatility models can range from relatively easy configurations to highly
complex ones. This chapter will be dedicated to the literature review on the forecasting ability of
the aforementioned models, with the goal to clarify which models are superior in their predictive
ability as well as to find out whether this increased predictive ability is accompanied by unrea-
sonable computational cost. Multivariate volatility model forecasting performance in this chapter
will be evaluated based on its covariance forecast H,. This means that the results will be influ-
enced by covariances as well as volatilities. However, since all correlation models introduced in
Chapter 2 were multivariate models with correlations derived directly from H, estimate, then by
using covariance matrix we are able to assess the model performance correctly. Further evalua-
tion on correlation forecast performance can then be made by controlling for how the univariate
models have be specified”. Before going into the empirical findings, certain methodological as-
pects will be touched upon to make sure that the results can be considered as robust and compa-

rable.
3.1. Loss Functions
It is well known that in case of correlation we are dealing with an unobservable variable.

This makes it difficult to benchmark forecasting model result against realized outcome. In order

to overcome this difficulty, two sets of so called loss functions have been proposed in the litera-

" For example, in case of models with conditional variances and covariances (models such as CCC, DCC and
Asymmetric DCC) we can assess correlation estimates by using the same specification to model univariate volatility
[this is done in Chapter 4, where the univariate volatility is modelled with the GARCH(1,1) specification].
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ture. First set of loss functions are the ones that try to evaluate the goodness of correlation model
covariance forecasts directly. This class of functions are called direct or statistical loss functions
and include measures such as mean squared error, quasi-likelihood, forbenius distance and others.
Second set of loss functions include the ones that try to evaluate the goodness of the models via
some underlying economic consideration indirectly. This class of functions are referred to as in-
direct or economic loss functions and include functions based on (global) minimum variance
portfolio, value at risk, tracking error, utility from the returns to the minimum variance portfolio
and others.

Various empirical research papers have used many different statistical and economic loss
functions to assess the relative predictive ability of various multivariate volatility models. It is
therefore critical to make sure that the results provided by those various loss functions are compa-
rable and robust. This section will provide an overview of the most widely used robust statistical
and economic loss functions. The list draws on the research by Patton and Sheppard (2007),

Clements et al. (2009) and Laurent et al. (2013).
3.1.1. Statistical loss functions

Given forecasting errors Z,—H,, the family of consistent loss functions is defined as fol-

lows (Laurent et al. 2013):

L; (2., H,) = vech(E,—H,) Avech(Z,—H,) (3.1)

where H, is the covariance forecast, £, is an observable covariance proxy for true unobservable
conditional covariance matrix £, and A is a matrix of weights that defines the relative importance
of the forecasting errors in ,—H,. As a reminder, vech(-) is an operator that converts the unique
lower triangular elements of a symmetric matrix into a N(N + 1)/2 x 1 column vector.

Based on the aforementioned quadratic form, mean squared error (MSE) loss function is

defined as follows (Clements et al. 2009):
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LSF(E, Hy) = %vech(ft—Ht)’vech(ft—Ht) (3.2)

Laurent et al. (2013) propose two additional distance measures that are based on forecast-
ing error £,—H, and weight matrix A.

First, Euclidean distance where A = Iy is a general form of MSE. Only difference is that
MSE is a mean loss per matrix element, whereas Euclidean loss is the sum of errors accross

whole error matrix.

L)Z':"uclidean (f:t'Ht) — vech(ft—Ht)'VeCh(ft_Ht) (3.3)

It should be noted that the use of MSE and Euclidean loss functions will give exactly the
same ranking in the evaluation of covariance forecast performance.

Second loss functions proposed by Laurent et al. (2013) is the Frobenius loss function.

LI;robeniuS(ft' H) = TT'[(Ht _ ft)'(Ht — ft)] 3.4

where Tr(-) is a trace operator that sums up all the main diagonal elements.

Frobenius loss function in (3.4) is a result of setting A = diag(vech(V)), where V is a
symmetric matrix with 1’s on its main diagonal and 2’s everywhere else. This allows to assign
double weights on covariance forecast errors.

Alternative robust loss function specification from (3.1) is a quasi-likelihood (QLIKE)
function as defined in (3.5).

L5 (H,) = log|H,| — €,H; ¢, (3.5)

where &, is an N X 1 vector of N asset disturbances, so that r, = u, + &, and £€,~F(0,X;). In
Chapter 2 the assumption was made that the expected return r; is zero. As in the real world it is

not always the case (i.e. asset mean return g, # 0), zero-mean residuals &, are used in (3.5)'*. As

' In Chapter 4, AR(1) model will be used to generate zero mean residuals.
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can be seen, quasi-likelihood function is not a distance measure. Nevertheless, it still allows dif-
ferent forecasts of X; to be compared (Clements et al. 2009). In fact, according to Clements et al.
(2009), likelihood based statistical measures outperform the distance based functions (in their
case QLIKE outperformed MSE).

There are other statistical loss functions that are considered robust (such as Stein function
that also accounts for asymmetry, Mahalanobis distance, etc.). Nevertheless, as the focus of this
thesis is on correlation model evaluation and the aforementioned loss functions are somewhat less

widely used in empirical research, the introduction of those models will remain out of scope.
3.1.2. Choosing a proxy for statistical loss functions

Equations (3.1) through (3.4) used an observable covariance proxy £, against which loss-
es were measured. Covariance proxy &, was used instead of the true covariance matrix X, be-
cause the true covariance matrix is unobservable. For this reason, various covariance proxies
have been proposed in the literature, all derived from the intraday return observations. The fol-
lowing will give an overview on various covariance proxies that have been proposed in the litera-
ture.

Firstly, Andersen et al. (2003) argue that intraday returns sampled with 30 minute fre-
quency can be used as a proxy for realized covariance. Realized Covariance (RCov) is then de-
fined as the sum of the outer products of those intraday returns. Furthermore, they argue that
when the sampling frequency is less than 30 minutes an increased microstructure noise might
start to compromise the estimation of RCov. Laurent et al. (2013) argue however that when the
quality of covariance proxy deteriorates (sampling frequency gets smaller), inferior correlation
models might start to outperform models that would be otherwise preferred when more accurate
proxy would be used. As a result sampling frequency between 5 and 20 minutes is suggested by
Laurents et al. (2013) as the best compromise between loss of accuracy and noise caused by mi-
crostructure frictions.

In addition to realized covariance proxy of Andersen et al. (2003), various other proxies
have been proposed. Firstly, in order to overcome the outlyingness problem described in Chap-

ter 1, Berndorff-Nielsen and Sheppard (2004) proposed Realized BiPower Covariation (RBPCov)
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which is a combination of conditionally normal component with time-varying covariance matrix
and a jump component. Despite solving most of the outlier related bias, Boudt et al. (2011) point
to some weaknesses in RBPCov. Namely, they pointed to the upward bias that is caused mainly
by co-jumps in continuous returns. Also, they note that RBPCov matrices are not always positive
semidefinite and correlation coefficients derived form covariance coefficients might therefore not
lie between -1 and 1. To overcome latter deficiencies, Boudt et al. (2011) proposed Realized Out-
lyingness Weighted Covariation (ROWCov) measure that downweights returns of large outlying-
ness. Outlyingness itself in ROWCov is defined as having extreme value relative to its neigh-
bouring values. According to Boudt et al. (2011) the measure is both more efficient and more ro-

bust to jumps than RBPCov.
3.1.3. Economic loss functions

Building on the Engle and Colacito (2006) and Patton and Sheppard (2007), Clements et
al. (2009) propose two robust economic loss functions that are both based on minimum variance

portfolio.

T
1
LIXIVP(Ht) = LgMVP(Ht) = ?Z W W, (3.6)
t=1

where weights for minimum variance portfolio loss function (L¥V?) are defined in (3.7) and for

global minimum variance portfolio loss function (L¢M"?) in (3.8).

H:'n
wivP = —————p, 3.7)
wH p,
H:
weMVP _ Il e 38
t UH N (3-8)

where p, in (3.7) is the target return for the portfolio so that wy, = wifi;, t in (3.8) isan N X 1

unit vector, H; is a covariance estimate and fi; is an N X 1 vector of expected asset returns. As
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can be seen, the only difference between w'? and wiM"? is that the latter does not require any

assumptions regarding ;.

Lack of the aforementioned requirement might also be the reason why in empirical litera-
ture loss functions based on the global minimum variance portfolio are more widely used than the
ones based on minimum variance portfolio. Engle and Sheppard (2008) for example used GMVP
based loss function together with Diebold-Moreno test to compare the performance of covariance
models in a setting of 50 sector indices belonging to a S&P 500 total market index. Clements et
al. (2012) used GMVP based loss functions together with to assess the relative performance of
covariance models in the context of larger dimensions (up to 200 instrument sample).

It is worthwhile to note that economic loss functions have one distinct advantage over
most statistical loss functions. Namely, as the size of the covariance matrix increases, compari-
sons based on statistical loss functions that use intraday realized covariance as a proxy might be-
come infeasible. Latter is due to the reason that when N gets bigger than the intraday sampling
frequency 7, covariance proxy might itself become negative-definite. Fortunately there are also
some loss functions among the class of statistical loss functions that do not suffer from this prob-

lem (such as QLIKE).

3.2. Procedures for model comparison

Once the losses have been properly calculated, the relative ranking of models can be es-
tablished. Again there are various methods to pinpoint the models with superior predictive ability.
Using the classification of Clements et al. (2009), the first such class of methods are for model
pairwise comparison. This class includes methods such as Diebold-Mariano test and West test. In
both tests, correlation models are evaluated in pairs, so effectively we need to perform more than
one test to find out which models are superior to others (given that we have more than two mod-
els to compare). Second class of methods are able to compare more than two models at the time,
but require a benchmark model against which all other models are evaluated. Reality Check of
White and Superior Predictive Ability is among the ones belonging to this class of methods. On

the positive side, the number of tests in this class of methods decreases to one. The negative as-
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pect however is that we are left with a subjective choice on which correlation model to use as a
benchmark. Lastly, Model Confidence Set (MCS) which itself is a modified version of Superior
Predictive Ability test, can evaluate many models at one time and does not require a benchmark.
Under MCS, the process starts with the full set of candidate models. MCS process then sequen-
tially drops inferior models one by one until the null hypothesis that all the remaining models
have equal predictive ability cannot be rejected (Laurent et al. 2010).

Due to its generality, MCS is by far the most widely used method in the empirical re-

search on relative performance of MGARCH models.

3.3. Other considerations

Some further considerations need to be made before making conclusions on empirical re-
sults of MGARCH model performances. Firstly, are the results based on in-sample or out-of-
sample observations? If the first is true, the most flexible model almost always wins'>. Good in-
sample performance will not however guarantee good out-of sample performance as it might only
be due to model overfitting. Secondly, as both volatilities and correlations are influenced by re-
turn heteroskedasticity, it could mean that the correlation model might have different forecasting
powers under different states of market volatility. Therefore, it would be useful to divide the full
observation sample into low and high volatility subsamples. Thirdly, type of asset as well as li-
quidity might influence covariance model out-of-sample performance. Fourthly, as shown in the
last chapter, most MGARCH models are difficult to use in larger dimensions. Considering the
aforementioned issues, subsequent analyses will be carried out based on out-of-sample results for

various asset types and in both high/low volatility as well as small/large dimensional settings.

' In the context of correlation models, the flexibility can be defined as the number of estimated parameters included
in the the model. For example, with BEKK type models introduced in Chapter 2, full BEKK model was the most
flexible, followed by diagonal BEKK and then by scalar BEKK as the least flexible model. Also, as none of the loss
functions defined in Subsection 3.1.1 are able to punish the unnecessary flexibility, then added flexibility is always
rewarded in case of in-sample model evaluation.
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3.4. Empirical results

Even though there are various studies that evaluate correlation model in-sample perfor-

mance'®, there are only a handful of studies that deal with the evaluation of correlation model

out-of-sample performance. Furthermore, as the area of correlation model out-of-sample perfor-

mance evaluation has just recently been receiving focus, then all the empirical studies used in the

following section ended up being published within the last five years'’. Selection of empirical

surveys used in this chapter was further limited to include sections that follow covariance model

evaluation best practices established in sections 3.1 through 3.3 (see Table 3.1 for further details).

Table 3.1. Robust out-of-sample model performance evaluation requirements for loss functions,
covariance proxies and estimation sampling

Category Method Abbreviation

Loss function | Mean Squared Error as in equation (3.2) MSE
Euclidean distance as in equation (3.3) Euclidean
Frobenius distance as in equation (3.4) Frobenius
Quasi-likelihood function as in equation (3.5) QLIKE
Minimum variance portfolio as in equations (3.6) and (3.7) MVP
Global minimum variance portfolio as in equations (3.6) and (3.8) GMVP

Covariance Realized covariance of Andersen et al. (2003) with sampling frequency | RCov

proxies of 30 minutes or higher
Realized bipower covariance of Berndorff-Nielsen and Sheppard (2004) | RBPCov
with sampling frequency of 30 minutes or higher
Realized outlyingness weighted covariance of Boudt et al. (2011) with | ROWCov
sampling frequency of 30 minutes or higher

Performance Out-of-sample

evaluation

Market state Low volatility sub-sample; High volatility sub-sample

Dimension Small sample:1 to 10 instruments, Large sample: 50 to 200 instruments

Asset types Equities, Currencies, Multi asset

Source: Authors compilation

'® Among others, Engle (2002) evaluates DCC model in-sample performance against SMA, EWMA, O-GARCH,
Scalar BEKK and Diagonal BEKK using analytical functions (constant, sine, step and ramp functions); Engle and
Colacito (2006) evaluate in-sample performance of Scalar BEKK, Diagonal BEKK, O-GARCH, DCC and

Asymmetrical DCC using minimum variance portfolio based loss function and Diebold-Mariano test.

'7 The lack of research in this field was also confirmed by the studies that were included in the empirical literature

review section.
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The survey is divided into two parts. In the first part, overview will be given about the
correlation model relative performance in a smaller dimensional setting. The second part will
provide an overview on correlation model relative performance in larger dimensions.

The separation into small and large samples is important for two reasons. Firstly, in larger
dimensions some correlation models simply become time wise too costly to use. Secondly, posi-
tive-definiteness of realized covariance proxies cannot be assured when the number of assets in-
creases above the sampling frequency of the covariance proxy. Latter in turn limits the loss func-
tions that can be used in the assessment of model relative performance in case of larger samples.
Based on the available groupings in different empirical surveys, small sample will be limited to
10 or less instruments. Large sample spans from 50 to 200 instruments.

Full list of surveys included in the empirical literature review together with relevant con-

figurations is provided in Appendix 1.

3.4.1. Model forecasting performance in smaller dimensions

In this section overview will be given on covariance model performances in a smaller di-
mensional setting. There were altogether six empirical studies that provided results for samples of
less than or equal to 10 instruments (see Table 3.2 for complete list). Five of the studies also pro-
vided separate results for low volatility and high volatility periods. Even though Laurent et al.
(2013) provided results only for the full sample, this full sample was classified as a low volatility
sample [the results for EURUSD and JPYUSD sample volatilities almost exactly matched those
of Boudt et al. (2013) low volatility sample volatilities]. List of surveys used together with re-
spective low and high volatility period definitions as well as covered sample sizes are presented

in Table 3.2.

Table 3.2. Empirical studies on covariance model relative performance in smaller samples

Survey Low volatility period High volatility period Sample size
Laurent et al. 2010 Apr 2003 — Jul 2007 Jan 1999 — Mar 2003 10
Aug 2007 — Dec 2008
Caporin and McAleer, 2012 2006 Apr 2008 — Mar 2009 5-10
Clements et al. 2012 2003-2007 2001 —2002 5,10
2008 — 2009
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Boudt, et al. 2013 2004 - 2006 2006 - 2009 2
Laurent et al. 2013 Jan 2002 — Sep 2004 na 3
Clements et al. 2009 Before Financial crisis Financial crisis of 2008 5

Source: Authors compilation

3.4.1.1. Low volatility period

Out of the five studies for small low volatility samples three covered equities, one curren-

cies and one was a mix of different asset types. Summary results for low volatility periods are

presented in Table 3.3.

Table 3.3. Small low volatility sample one day ahead forecast results for selected covariance

models
Laurent et al. Caporin and Clements et al. Boudt et al. Clements et al.
2010 McAleer 2012 2012 2013 2009
Loss Function MSE MSE GMVP Z | Oy QLIKE
1<i,j<N
— hijel
Proxy RCovVsmin RBPCoVsmin ROWCo0V30min
EWMA"™ out out 2 out
EWMA"*© 10 5
SBEKK 10 out
DBEKK out out
BEKK out
CCC 10 5,6,7,8,9,10 out out
DCC 10 5,6,7,8,9,10 5 out 5
BIP-DCC 2
cDCC 7,8,9,10 out
BIP-¢cDCC 2
ADCC 10 7,8,9,10 5
OGARCH 10 5,9,10
DECO 10 out

The result cells in Table 3.3 can be interpreted as follows: when cell is empty, given row model
was not included in the study; when ‘out’ is displayed, the model was not included in the final
model confidence set (a=25%); when number(s) are displayed, number(s) indicate instrument
samples that were included in the final model confidence set (0=25%). Source: Authors
compilation based on Laurent et al. 2010, Caporin and McAleer 2012, Clements et al. 2012,
Boudt et al. 2013 and Clements et al. 2009
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As Laurent et al. (2013) was the only study that did not provide results at 25% signifi-
cance level, their results were omitted from Table 3.3. Nevertheless, at 10% significance level
and using 5 minute RCov as a covariance proxy in equation (3.4), authors were able to narrow
model confidence set town to only CCC model (with symmetric and asymmetric univariate vola-
tility dynamics).

Based on results in Table 3.3 and of Laurent et al. (2013) couple conclusions can be
drawn. Firstly, simple models such as RiskMetrics version of EWMA (EWMA®") and different
BEKK type models tend to underperform DCC type models under low volatility conditions. Only
,simple® model that does well is the Fleming-Kirby-Ostdiek version of EWMA (EWMA™?)'®.
The finding that EWMA"™ ? strongly outperforms EWMAR®M is somewhat interesting as former is
an extension of latter. For direct comparison, we can analyze results from Laurent et al. (2010)
and Clements et al. (2012)"°. Laurent et al. (2010) found DCC and DECO models to be superior
to EWMA®™, whereas Clements et al. 2012 found EWMA™ to be equally good to DCC and
superior to DECO. As EWMA™ and EWMA™© are similar in all respects other than the value
of decay factor, it could mean that with careful selection of decay factor, simple EWMA methods
can potentially be as good as more sophisticated dynamic conditional correlation models.

There are also some interesting differences between equity and other asset class model
performances. Based on the their results, Laurent et al. (2010) state that over low volatility peri-
ods assumption of constant conditional correlation and symmetry cannot be rejected. This is also
confirmed by Caporin and McAleer (2012) for equities (see Table 3.3) and Laurent et al. (2013)
for currencies. Nevertheless, the hypothesis of constant conditional correlation in low volatility
setting is rejected by Boudt et al. (2013) for currencies as well as by Clements et al. (2009) for
multi asset class portfolio. The hypothesis of symmetry however tends to hold for all asset clas-
ses.

Considering the results for different asset classes, DCC type models tend to outperform
simple models over low volatility periods with the exception of EWMA™ . Nevertheless, the

results are still quite mixed as the same models receive dissimilar rankings in different studies.

'8 Fleming-Kirby-Ostdiek version of EWMA is an extension of RiskMetrics EWMA model defined as H, =
exp(—a)H,_; + aexp(—o)r;_,T;_,, where exp(-a) is a rate of decay similar to A in RiskMetrics EWMA (Clements
et al. 2009).

"% Both used US equity return samples during the period of 2003 — 2007.
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3.4.1.2. High volatility period

Summary results for small high volatility period relative model out-of-sample perfor-

mance are provided in Table 3.4.

Table 3.4. Small high volatility sample one day ahead forecast results for selected covariance

models.

Laurent et al. Caporin and Clements, et Boudt et al. Clements et al.
2010 McAleer, 2012 al. 2012 2013 2009
Loss Function MSE QLIKE GMVP Z | Oy QLIKE
1<i,j<N
— hijel
Proxy RCoVspmin ROWCo0V3pmin
EWMA®M 10 out out out
EWMAFKO 5,10]5,10 out
SBEKK out out
DBEKK out out
BEKK out
CCC 10 out out out
DCC 10 5,6,7 out|5 out out
BIP-DCC out
cDCC 5,6,7,8,9,10 out
BIP-cDCC 2
ADCC 10 5,6,7,8,9,10 5
OGARCH 10 out
DECO 10 out | out

The result cells in Table 3.4 can be interpreted as follows: when cell is empty, given row model
was not included in the study; when ‘out’ is displayed, the model was not included in the final
model confidence set (0=25%); when number(s) are displayed, number(s) indicate instrument
samples that were included in the final model confidence set (¢=25%); when ‘|’ is used, two
separate high volatility sample results have been reported. Source: Authors compilation based on
Laurent et al. 2010, Caporin and McAleer 2012, Clements et al. 2012, Boudt et al. 2013 and
Clements et al. 2009.

Similarly to low volatility sample results, DCC type specifications tend to outperform
other models under high volatility conditions. Additionally, all studies that included ADCC as a
competing model, ended up having ADCC also in a final model confidence set on 25% signifi-
cance level. ADCC performed equally well in equity and in multi asset samples whereas outlier

adjusted version of cDCC (BIP-cDCC) was the best performer in currency samples. As the
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aforementioned model has not been used in other studies, it is hard however to assess its relative
performance under other asset type settings.

While the results for the hypothesis of constant conditional correlation were mixed during
low volatility periods, the hypothesis of constant conditional correlation is rejected for all asset
classes during high volatility periods. Furthermore, contrary to the low volatility period result in
which ADCC model performance was not statistically superior to its symmetric counterpart
DCC, it is evident that asymmetry improves model out-of-sample performances during high vola-
tility periods™. This is in agreement with the asymmetry related stylized fact introduced in Chap-
ter 1, according to which both correlations and volatilities tend to increase more during down-
markets (when volatility is high) than during the up-markets (when volatility is relatively low).
We can therefore conclude that the hypothesis of covariance symmetry can be rejected during

high volatility periods.
3.4.1.3. Overall conclusions for smaller dimensions

Based on low and high volatility period empirical survey results, the following conclu-
sions can be drawn for smaller samples. Firstly, DCC type models tend to outperform the rest
across different volatility periods as well as asset type specifications. Secondly, assumption of
constant conditional correlation can be rejected during high volatility periods, whereas results for
low volatility period are somewhat mixed. Thirdly, the assumption of symmetry can be rejected
during high volatility periods, but not during low volatility periods. Fourthly, there is no signifi-

cant difference in relative model performances between various asset types.

3.4.2. Model forecasting performance in larger dimensions

In this section overview will be given on correlation model performances in a larger di-

mensional setting. There were two empirical studies that provided results for samples of more

*% In addition to ADCC outperformance in multi asset sample of Clements et al. (2009), both DCC model in Laurent
et al. (2009) and DCC/cDCC models in Caporin and McAleer (2012) had been modelled with asymmentric univari-
ate GARCH models.

48



than or equal to 50 instruments®'. One of the studies provided separate results for both low and
high volatility periods whereas the other gave formal results only for the latter. List of surveys
used, together with respective low and high volatility period definitions as well as covered sam-

ple sizes are presented in Table 3.5.

Table 3.5. Empirical studies on covariance model relative performance in larger samples

Survey Low volatility period  |High volatility period [Sample size

Caporin and McAleer, 2012  |na Apr 2008 — Mar 2009 |50, 60, 70, 80, 89

Clements et al. 2012 2003-2008 2001 — 2002 50, 100, 200
2008 — 2009

Source: Authors compilation
Summary results for both low and high volatility periods are presented in Table 3.6.

Table 3.6. Large low volatility sample one day ahead forecast results for selected covariance
models.

Low volatility period High volatility period
Clements et al. 2012 Caporin and McAleer 2012 Clements et al. 2012
Loss Function GMVP QLIKE GMVP
EWMA™ out
EWMA"*° 50, 100, 200 50,100,200 | 50,100,200
SBEKK
DBEKK
BEKK out
CCC out
DCC out out out | 200
BIP-DCC
cDCC out
BIP-cDCC
ADCC 50, 60, 70, 80, 89
OGARCH out
DECO out out | out

The result cells in Table 3.6 can be interpreted as follows: when cell is empty, given row model
was not included in the study; when ‘out’ is displayed, the model was not included in the final
model confidence set (0=25%); when number(s) are displayed, number(s) indicate instrument

2! The number of studies that could have been used in this section was limited for two reasons. First, as previously
explained, the number of studies dedicated to correlation model out-of-sample performance evaluation is itself lim-
ited and second, dimensionality problem in correlation modelling has made it extremely hard to carry out large scale
modelling exercises (DCC model with 200 instruments took Clements et al. (2012) 287 hours to estimate).
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samples that were included in the final model confidence set (0=25%). Source: Authors
compilation based on Caporin and McAleer 2012, Clements et al. 2012

Based on QLIKE loss function and 25% significance level two correlation models outper-
form others: ADCC with GJR-GARCH univariate dynamics (GJR-ADCC) and Fleming-Kirby-
Ostdiek version of EWMA (EWMA©). Unfortunately, as GJR-ADCC and EWMA™ did not
directly compete with each other, the relative performance of these models cannot be evaluated.
Furthermore, as correlation modelling literature defines large dimension normally starting from

100 instruments, then in this case EWMA™©

is strongly preferred. This is also confirmed by
Clements et al. (2012) calculation cost results. Namely, the CPU time® for their 2 029 forecasts
for 200 instrument sample took 01:17 (HH:MM) for EWMA"©, 08:32 for DECO and 13:18 for
DCC model. Furthermore the estimation (2 000 observations) for the same 200 instrument sam-
ple took DCC model 287 hours. This clearly shows the drawbacks of DCC type models: they be-

come very expensive to use in case of larger dimensions.

3.5. Conclusions

The objective of the chapter was to provide a literature review on covariance model out-
of-sample performance. Empirical literature covering various asset types, volatility states and
sample sizes was used. In addition, further empirical survey filtering was carried out in order to
control for robustness of empirical results via proper loss function and covariance proxy assump-
tions. Based on remaining empirical findings, the following conclusions were drawn. Firstly, in
case of smaller samples DCC type of models are preferred. Secondly, during more volatile peri-
ods asymmetric version of DCC model should further improve model out-of-sample perfor-
mance. Thirdly, in a larger samples DCC type models become computationally too costly to use

with no additional performance gain relative to simple EWMA model of Fleming-Kirby-Ostdiek.

22 Central Processing Unit. Clements et al. (2012) computer specification: 12 core 2.66GHz 64bit Inter Xeon proces-
SOor.
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It is also worth to note, that in general EWMA model of Fleming-Kirby-Ostdiek works relatively
well in most conditions and is strongly preferred to its class member RiskMetrics EWMA®.

Some additional side-observations were made based on the selected empirical results.
Firstly, during low volatility periods one cannot make strong conclusions on the effect of constant
correlation. However, during the more volatile periods it was observed that the hypothesis of
constant correlation is indeed rejected for all asset classes by all empirical results. Secondly, it

was observed that covariance asymmetry becomes relevant only during the more volatile periods.

> Though it was also mentioned that this outperformance might only be due to better decay factor selection.
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4. CORRELATION MODEL FORECASTING PERFORMANCE
IN EMERGING MARKETS

So far the thesis has researched and surveyed correlation dynamics and its modelling tools
as follows. Firstly, in Chapter 1 some more important stylized facts about correlation dynamics
were presented. These stylized facts were then used as theoretical requirements against which
various correlation models were benchmarked in Chapter 2. In Chapter 3, using the existing em-
pirical literature and the sample of correlation models introduced in Chapter 2, out-of-sample per-
formance of these models was surveyed.

In this chapter, the one day ahead out-of-sample forecasting performance of nine correla-
tion models will be evaluated in the context of emerging market equity and currency samples.
The following research differs from the previous empirical research presented in Chapter 3 in
three important ways. Firstly, contrary to the surveys introduced in the last chapter that all used
developed market asset samples (in fact, all equity samples were built only from US domiciled
assets), in this chapter more volatile emerging market data samples will be used**. Secondly, cor-
relation model out-of-sample forecasting performance will be evaluated in case of two different
asset classes during the same period. Previous studies have only concentrated on either equity
sample, currency sample or a multi asset sample, but none have analyzed correlation model out-
of-sample performance using various asset classes concurrently in the same market environment.
Thirdly, currency pairs were chosen so that the correlation between pairs would on average be
negative. Both Boudt et al. (2013) and Laurent et al. (2013) used developed market currencies

that experience largely same correlation dynamics in various market states. In this study, two cur-

* The countries that will be included in the dataset are Poland and Czech Republic as emerging market countries and
Switzerland as developed market country. Even though economic classification of Poland and Czech Republic (by
GDP per capita) can be different from the classification into emerging markets, using equity index provider MSCI
country classifications, both Poland and Czech Republic fall under emerging markets category. The rationale in
doing so is to follow asset allocation principles of global asset managers that tend to use index provider asset class
classifications.
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rencies were chosen on the basis of them to behave differently in various market states, i.e. on
average move in opposite directions.
In all other respects, similar methods and procedures were used wherever possible as in

the literature surveys presented in Chapter 3.

4.1. Competing models

The selection of correlation models that were included in model performance evaluation
sample was based on two criteria. First, at least one of the models from each group of correlation
models introduced in Chapter 2*° needed to be included in the evaluation sample. From the naive
correlation model group, both Simple Moving Average and RiskMetrics Exponentially Weighted
Moving Average models were included. From the group of models with conditional covariance
matrix scalar VECH, Full BEKK, Diagonal BEKK and Scalar BEKK were included. Finally,
from the group of models with conditional variances and covariances, CCC (Constant Condition-
al Correlation), DCC (Dynamic Conditional Correlation) and ADCC (Asymmetric Dynamic
Conditional Correlation) models were included. Second criteria in choosing the models to be in-
cluded into the evaluation sample was the condition that the resulting covariance matrix must be
positive semidefinite. As explained in Chapter 2 all the aforementioned models will provide a
positive semi-definite covariance matrix. Furthermore, as most of the models included in the
model evaluation sample were also surveyed in Chapter 3, further analysis about model relative
performance in developed versus emerging markets is made possible. Full names of correlation
models together with their abbreviations and model specifications are provided in Table 4.1.

The procedure for parameter estimation was as follows. In the first step, AR(1) equations
were estimated to extract conditional means of each return series. AR(1) equation residuals were

then used to estimate all conditional volatilities, conditional correlations and model parameters.

 Correlation model groups introduced in Chapter 2 were as follows: (i) naive correlation models; (ii) models of
conditional covariance matrix; and (iii) models of conditional variances and covariances.
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Furthermore, univariate GARCH(1,1)* specification was used to model volatility dynamics in all

conditional correlation type models (CCC, DCC, ADCC).

Table 4.1. Correlation models included in out-of-sample performance evaluation

Model Name Formulation Abbreviation
Simple Moving Average (252-day rolling) Equation 2.2 (4=252) | SMA
Risk Metrics version of Exponentially Weighted Moving Avg. | Equation 2.4 (1=0.94) | EWMA
Scalar VECH Equation 2.12 with SVECH
variance targeting”’
Full BEKK Equation 2.13 FBEKK
Diagonal BEKK Equation 2.13 DBEKK
A and B are diagonal
matrices
Scalar BEKK Equation 2.13 SBEKK
A=al; B=>bl
Constant Conditional Correlation Equation 2.18 CCC
Dynamic Conditional Correlation Equation 2.21 DCC
Equation 2.22
Equation 2.23
Asymmetric Dynamic Conditional Correlation Equation 2.21 ADCC

Equation 2.22
Equation 2.26

Source: author’s compilation

4.2. Data

Two portfolios, one consisting of equity market instruments and the other consisting of

currency market instruments are provided in Table 4.2.

Table 4.2. Portfolios used in correlation model performance evaluation

Equity portfolio (hedged®)

Currency portfolio (euro)

Asset 1 | WIG Index (Poland)

CHF (Switzerland)

Asset 2 | PX Index (Czech Republic)

PLN (Poland)

Source: Authors compilation

** Dynamics in GARCH(1,1) specification was defined again as h?, = w + ar?_; + BhZ,_;.

Y vech(H) =c(1—a—b)+a (. 7,_,) + bH,_,.

** Portfolio currency effect is hedged, i.e. portdolio return is only influenced by local currency returns.
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Equity portfolio constituent indices were chosen from the sample of Central Eastern Eu-
rope country equity indices based on two criteria. First, the markets needed to be with sufficient
liquidity and second, the market closing times needed to be approximately the same. Latter two
criteria are important to avoid asynchronous data in correlation modelling. As Polish and Czech
equity markets are the biggest in Central Eastern Europe (by market capitalization) and the mar-
kets close at 18:00 (CET, Central European Time) and 18:15 (CET) respectively, then the portfo-
lio was considered as sufficiently representative for correlation analysis.

For sample time series data, daily local currency index closing values were collected from
Bloomberg database. The sample period included calendar days® between (and including) Janu-
ary 3rd, 2000 to July 31st, 2009. Furthermore, time series data was filtered to include only the
days when both markets were open for trading. Latter filtering decreased the end-sample from
2 500 observations (not including weekends) to 2 283 observations (not including weekends and
non-trading weekdays).

Unconditional volatility®® of log returns for Polish WIG index and Czech PX index time
series for sample period was calculated to be 24.6% and 26.2% respectively. Unconditional cor-
relation between WIG and PX index log returns were calculated to be 0.58.

Figure 4.1. provides further insights into the volatility and correlation dynamics during the
sample period. In-sample conditional volatility in Figure 4.1. was modelled using univariate
GARCH(1,1)’" model and conditional correlations with Dynamic Conditional Correlation (DCC)
and Constant Conditional Correlation (CCC) models, both with univariate GARCH(1,1) dynam-

ics in their volatilities (see Chapter 2 for further details).

*% Calendar days means all days in a selected period including all weekends and holidays.

.. e e L 1 =
3% Unconditional volatility is a simple measure of sample standard deviation calculated as g, = P I (o — X)2

*! Conditional variance dynamics in GARCH(1,1) specification was defined as h?, = w + arf_; + BhZ,_,
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Figure 4.1. WIG and PX index local currency log return volatility and correlation dynamics dur-
ing the period of 03.01.2000 — 31.07.2009 (observation number 1 through 2,283)

Currency portfolio constituents were selected with a goal to have an average negative cor-
relation between chosen currencies. In order to achieve that, a portfolio made up of two curren-
cies were chosen: one belonging to the class of ,,risk-on* currencies and the other belonging to
the class of ,,risk-off™ currencies’?. Selected currencies were Polish Ztoty (PLN) as ,risk-on*
currency and Swiss franc (CHF) as ,,risk-off* currency. Portfolio base currency was selected to
be Euro (EUR).

Daily end-of-day values were then collected from Bloomberg database for EUR/CHF and
EUR/PLN currency pairs. Taking into consideration that currency markets are trading 24/7°>,
then no filtering was done for public holidays. Nevertheless, due to lower liquidity, weekends
were still removed from final dataset. Latter resulted in 2 500 daily observations for both curren-
cy pairs in the end-sample.

Based on log returns, in-sample unconditional volatilities for EUR/CHF and EUR/PLN
were 4.7% and 11.1%, respectively. Unconditional correlation between EUR/CHF and EUR/PLN
log returns during the same period was -0.19.

Figure 4.2. provides further insights into the volatility and correlation dynamics during the
sample period. As with equity indices, in-sample conditional volatility in Figure 4.2. is modelled

with the univariate GARCH(1,1) model and conditional correlations with Dynamic Conditional

32 In general , risk-on* assets outperform , risk-off* assets during less volatile periods (usually in good economic con-
ditions) and ,,risk-off assets outperform ,,risk-on‘ assets during more volatile (usually in bad economic conditions).
33 24/7 means 24 hours a day and 7 days a week.
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Correlation (DCC) and Constant Conditional Correlation (CCC) models, both again with univari-
ate GARCH(1,1) dynamics.

In-samle annualized daily volatility In-sample daily correlation dynamics
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Figure 4.2. EURCHF and EURPLN log return volatility and correlation dynamics during the pe-
riod of 03.01.2000 — 31.07.2009 (observation number 1 through 2,500)

In order to evaluate correlation model out-of-sample performance, Clements et al. (2009,
2012), Laurent et al. (2010), Caporin and McAleer (2012) and Boudt et al. (2013) used low and
high volatility sub-samples to assess the consistency in model performances across different mar-
ket conditions. Both Figure 4.1. and Figure 4.2. indicate that there are periods when markets are
calm and there are periods when volatility increases substantially. Consider for example charts on
the left in Figure 4.1. and Figure 4.2. One can see that starting from around observation number
2 000 in case of equity indices and 2 250 in case of currencies, the volatility jumps up and stays
high for the following 250-300 days. Such a substantial increase in volatility levels was due to the
financial crisis of 2007-2008 which culminated with Lehman Brothers®* bankruptcy in September
2008. Following the bankruptcy announcement, global equity markets went into freefall causing
drastic increases in the return volatilities of risky assets.

Alternatively, the period up to the observation number 2 000 for equity indices and be-
tween 1 000 and 2 000 for currencies, showed very little volatility. This was the period preceding
the financial crisis when equity markets were rising and volatility levels were low.

As the market dynamics and hence correlation model forecasting performance during

such periods can be substantially dissimilar form each other, and following the testing principles

34 Lehman Brothers was United States domiciled investment bank.
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of the aforementioned empirical surveys, equity and currency samples were divided into three

parts: initial in-sample training set, calm period sub-sample and turbulent period subsample. The

propose of the initial in-sample training set was to calibrate correlation models for the first out-

of-sample one day ahead forecast. Subsample observations together with the corresponding sta-

tistics are provided in Table 4.3. and Table 4.4.

Table 4.3. Equity portfolio division into initial training set, calm period subsample and turbulent

period subsample

Dates Observations | Annualized unconditional volatility Uncondltl'onal
correlation
WIG Index PX Index WIG - PX
iy - 03.01.2000 - 0 0
Initial training set 30.09.2005 1-1343 21.5% 20.8% 0.40
. 30.09.2005 - o 0
Calm period 78.12.2007 1343 -1 893 20.9% 19.0% 0.65
. 28.12.2007 - 0 0
Turbulent period 31.07.2009 1893 -2283 32.4% 44.8% 0.77

Source: author’s calculations

Table 4.4. Currency portfolio division into initial training set, calm period subsample and turbu-
lent period subsample

Dates Observations | Annualized unconditional volatility Uggl?;:ll;iigﬁal
EUR/CHF EUR/PLN Eg}gﬁ,}&
i‘eliﬁal training gg:gééggg | 1-1500 3.8% 10.7% -0.03
Calm period 33:?3;883 T 1 1500-2085 3.3% 6.9% -0.20
Turbulent period gf (1)%88; © | 2085-2500 8.2% 16.1% -0.36

Source: author’s calculations
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4.3. Forecast Evaluation

Out-of-sample performances of nine correlation models in Table 4.1. were assessed using
Model Confidence Set (MCS) with 25% significance level (a=25%) and with QLIKE loss func-
tion as defined in equation 3.5.

Initial model parameter estimation was done based on the initial training set defined in
Table 4.3. and Table 4.4.

Based on the parameter values, one day ahead out-of-sample forecast was made which in
turn was fed into QLIKE loss function for the calculation of loss for a given day. Next, the model
in-sample was adjusted to include the first out-of-sample observation day and model parameters
were re-evaluated. Again, based on the new parameter values, new out-of-sample forecast was
made for each model, QLIKE loss calculated and in-sample once again lengthened by one day.
The procedure was continued until the last sample observation (in case of equities until observa-
tion number 2 283 and in case of currencies until observation number 2 500). Once all losses
were calculated, model losses from calm and turbulent periods were fed into MCS to find out
which were the winning models.

Furthermore, as in Clements et al. (2012) calculation cost was calculated for each model.
For a given model, calculation cost was defined as time that was needed to estimate and forecast
all parameters and results for all iterations.

All calculations were made in MATLAB, with Kevin Sheppards’ MFE Toolbox to esti-
mate parameters in correlation models other than SMA. SMA model, one step ahead forecast and
loss calculations were performed using code written by the author. MCS procedure was again
carried out using MFE Toolkit”. One step ahead forecasts for all models were reconciled against
secondary independent forecasts made using MS Excel to ensure validity of authors code. The

same validation was also carried out for the loss function results.

3% All MCS calculations were made with block length of 1 and 10 000 bootstrap replications.
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4.4. Equity Sample Results

Equity sample results from the initial training set are provided in Figure 4.3 and Appen-
dix 2°° .The figure is divided into two parts. First part — left chart — gives the in-sample results for
all nine models. For further clarity, the second part — right chart — gives the in-sample results for
six models. Three models omitted from right chart are SVECH, DBEKK and FBEKK. The first
two models, SVECH and DBEKK are omitted due to their similar results compared to EWMA
and SBEKK models. FBEKK is omitted due to its higher volatility and range that influences the
visibility of other model dynamics. As dynamics of the omitted models are very similar across
asset classes and in-sample versus out-of-sample plots, the aforementioned structure is followed

throughout the rest of the chapter.

Equity In-sample Conditional Correlation Equity In-sample Conditional Correlation
9-models

Correlation
Correlation

0% 200 400 600 800 1000 1200 03200 400 600 800 1000 1200
Time Time
— WA EWMA, SVECH SBEKK DBEKK FBEKK cCC Dec ADCC s— SMA EWMA SBEKK CCC m— DCC PR ADCC

Figure 4.3. WIG and PX in-sample correlation dynamics (initial training set)

In-sample result plots are mostly for illustrative purposes, but still convey some useful in-
formation. Namely, one can see that more flexible models also experience higher volatility. Also,
there is evidence of similar dynamics in case of EWMA, SVECH, SBEKK and DBEKK and in
case of DCC and ADCC. Contrary to the first group, where SVECH and DBEKK were omitted
for similar dynamics from right charts, ADCC was not omitted for reasons to be seen in the fol-
lowing section discussing the results for currency sample.

Equity portfolio one day ahead out-of-sample forecast model performance results are

provided in Table 4.5. Table results can be interpreted as follows. The number in each result cell

36 For better visibility, larger versions of Figure 4.3 through Figure 4.6 are provided in the corresponding appendices
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represents corresponding models’ p-value for a given sample period. The grey cells indicate
which models were included in the final model confidence set at the 25% significance level (i.e. p

>0.25).

Table 4.5. MCS results for equity sample. Winning models in grey

Calm Period Turbulent Period Full Period

SMA
EWMA
SVECH
SBEKK
DBEKK
FBEKK
CCC 0.1731 1
DCC 0 0
ADCC 0 0 0
One day ahead out-of-sample forecast model performance using QLIKE loss function and MCS
a=25%. p-values provided in result cells. Source: author’s calculations
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During calm periods FBEKK model tends to outperform all other models. This might be
due to its high flexibility that is not compromised by volatility surprises. Latter means that in case
the market volatility and correlation structure does not change dramatically, FBEKK is the best
model out of our sample models to forecast one day ahead correlations for Polish and Czech eq-
uity market indices.

MCS results for the turbulent period gave strong preference to CCC model (see Table
4.5). This is a rather surprising result considering that most of the previous empirical studies have
found DCC and ADCC models outperforming CCC model in more volatile periods. As the
QLIKE loss is calculated for the entire covariance matrix, i.e. including volatility loss, one could
argue that volatility loss might play a role in the total loss calculation. However, as the three con-
ditional correlation models, CCC, DCC and ADCC, were all modelled with GARCH(1,1) uni-
variate dynamics, then volatility loss effect in the model relative performance is neutralized and
the loss difference is explained by correlation forecast loss only.

Hence, the most probable explanation for CCC model outperformance is the daily insta-
bility of realized correlation between WIG and PX indices. Latter causes dynamic models to sys-

tematically under-/overshoot the realized correlation generating losses greater than for the con-
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stant estimate. Nevertheless, when omitting CCC model from MCS and re-running the procedure,
ADCC model followed by DCC model outperform the other models in turbulent period. Latter
agrees with the results obtained in Chapter 3.

According to MCS results, by reversing the losses (from bads to goods)’’, SMA model is
the worst performing model in all sample periods (calm, turbulent and full period). This most
probably is due to its naive specification across the entire covariance matrix. By equally
weighting the observations from the last 252 trading days, the model is incapable of adjusting to
the most recent changes in the market volatility and correlation structure.

Figure 4.4. (Appendix 3) provides some further illustrative evidence for one day ahead

out-of-sample correlation dynamics.

Equity One-Day-Ahead Correlation Farecast Dynamics Equity One-Day-Ahead Correlation Farecast Dynamics
Calm Period, 9-models Calm Period, 6-models
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Figure 4.4. WIG and PX one day ahead correlation forecast dynamics

37 L600d = —1 x LB where LP% is a T X M matrix of losses for M models and T periods.
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A couple noteworthy observations can be made from Figure 4.4. First, FBEKK model is
highly unstable varying between -1 and +1. However, as explained, this flexibility pays off in the
low volatility period where correlation structure remains intact. During the more volatile period,
FBEKK model is in fact one of the worst performing models, outperformed by CCC, ADCC,
DCC, EWMA and DBEKK. Second, the results for DCC and ADCC models are almost identical
in calm periods and differ only slightly in more turbulent periods. Nevertheless latter difference is
sufficient for ADCC to outperform DCC in the turbulent period.

One additional interesting observation can be made from the above results. As can be seen
from Figure 4.4, correlation dynamics is relatively static in SMA model and close to completely
static in CCC model. Considering now that one model is the best performer in almost all states
(CCC) and the other is the worst performer in all states (SMA) and also taking into account how
the volatilities are modelled in both cases, then it can be argued that volatility dynamics is far
more important to the covariance matrix than correlation dynamics. In fact, as CCC model out-
performs DCC and ADCC models (all having the same underlying volatility dynamics), it can be
further argued that in case of the sample data used, dynamic correlation modelling can be even
hurtful to the overall covariance (and correlation) out-of-sample forecasting performance.

Turning now to the issue of computational time cost, Table 4.6. provides evidence about

the time it took to estimate and forecast each model.

Table 4.6. Simulation computational time cost for equity sample (ordered by time)

Model Time

SMA 00:00:05
EWMA 00:00:13
CCC 00:23:10
SVECH 01:30:15
DCC 04:24:03
SBEKK 05:19:22
ADCC 08:06:58
DBEKK 08:30:14
FBEKK 20:19:38

Time format: HH:MM:SS. Processor: Intel(R) Core 15-2520M CPU @ 2.50GHz, 2501 Mhz, 2
Cores, 4 Logical Processors. Source: author’s calculations
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FBEKK model results took by far the most time to be simulated. This is due to the reason
that the model has the highest number of parameters to be estimated at each step. Not surprising-
ly, naive models were computationally two of the least costly models to be simulated, followed
by CCC model. All in all, it took more than two days to estimate and forecast all nine model one
day ahead out-of-sample results. Considering that we are dealing with only two asset portfolio, it

is a clear evidence of the costliness of correlation modelling.

4.5. Currency Sample Results
Currency sample results from the initial training set is provided in Figure 4.5 (Appen-
dix 4).

Currency In-sample Conditional Correlation Currency In-sample Conditional Correlation
9-models 6-models

Correlation
Caorrelation

0 500 1000 1500
Time Time
—smA EWMA SVECH SBEKK DHEKK FBEKK = CCC = DOC = ADCC — SMA EWMA SBEKK —CCC —DCC —ADCC

Figure 4.5. EURCHF and EURPLN in-sample correlation dynamics (initial training set)

One interesting observation can be made from Figure 4.5. Namely DCC and ADCC mod-
el results deviate substantially. This is due to the reason that when the correlation between two
assets is negative, then the asymmetry component is almost always present in the correlation es-
timate. In the currency markets, it is also interesting to interpret the impact of negative return to
volatility, as negative return in one currency is always positive return in the other currency. For
instance, when Swiss franc experiences negative return while being a risk off currency, would
that mean that volatility rises? Usually, volatility asymmetry is linked to market stress. Now,

when Swiss franc declines against euro, that should mean that we are in a risk-on, or alternatively

64



bull market, and volatility should be low (in relative terms). All in all, it is interesting to see
whether ADCC can still outperform DCC in case of our risk-on/risk-off currency portfolio.
Currency portfolio one day ahead out-of-sample forecast model performance results are

provided in Table 4.7.

Table 4.7. MCS results for currency sample. Winning models in grey

Calm Period Turbulent Period Full Period
SMA 0 0 0
EWMA 0 0 0
SVECH 0 0 0.0493
SBEKK 0 0 0.0493
DBEKK 0 0 0
FBEKK 1 0 1
CCC 0 1 0.0493
DCC 0 0 0
ADCC 0 0.0014 0

One day ahead out-of-sample forecast model performance using QLIKE loss function and MCS
a=25%. p-values provided in result cells. Source: author’s calculations

As with equity sample, FBEKK model was found to outperform all other models during
the calm period and CCC model in turbulent period. Possible reasons for this outperformance are
the same as with equity sample. In the calm period, the flexibility of FBEKK model once again
appears to fit the market correlation dynamics the best and in the turbulent period, constant con-
ditional correlation seems to outperform any dynamic estimate. Furthermore, the worst perform-
ing models for calm, turbulent and full periods were tested and the results were as follows. SMA
type model was the worst in turbulent and full period, whereas EWMA was the underperformer
during calm period sub-sample.

As mentioned in the beginning of current section, it would be interesting to assess ADCC
relative performance against DCC. Eliminating CCC from model set and re-running MCS proce-
dure for turbulent period ends up having three models in the final model confidence set (a=25%):
ADCC, DCC and EWMA, with ADCC having the highest p-value. So even when considering the
nature of our currency portfolio, an asymmetric version of DCC model tends to outperform the
general DCC model specification. Illustrative dynamics of one day ahead out-of-sample forecasts

is provided in Figure 4.6 (Appendix 5).
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Figure 4.6. EURCHF and EURPLN one day ahead out-of-sample correlation dynamics
Simulation computational time cost for currency sample is provided in Table 4.8.

Table 4.8. Simulation computational time cost for currency sample (ordered by time)

Model Time

SMA 00:00:00
EWMA 00:00:13
CCC 00:26:31
SVECH 01:50:27
DCC 04:44:23
SBECK 06:18:10
DBECK 09:31:07
ADCC 09:45:57
FBECK 24:45:50

Time format: HH:MM:SS. Processor: Intel(R) Core i5-2520M CPU @ 2.50GHz, 2501 Mhz, 2
Cores, 4 Logical Processors. Source: author’s calculations
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Similarly to the results for equity sample, FBEKK model results took the most time to be

simulated, while naive models again providing quick results.

4.6. Conclusions

In this chapter, using data from emerging markets, one day ahead forecasting performance
of nine correlation models was evaluated. Based on the data from the beginning of year 2000 un-
til end of July 2009, two two-asset portfolios were constructed, one with Polish and Czech equity
indices and the other with Swiss and Polish currencies. Model out of sample performance was
then evaluated separately for low volatility (calm) period and high volatility (turbulent) period.

In general, the results were quite similar for equity and currency portfolio samples. In
both cases the Full BEKK model outperformed the rest of the models during the calm period be-
fore the global financial crisis and Constant Conditional Correlation (CCC) during turbulent peri-
od. The results for turbulent periods are in large part at odds with the results from previous em-
pirical studies on the same subject. Most of these studies have found evidence of Dynamic Con-
ditional Correlation (both asymmetric and symmetric) model outperforming CCC model under
more volatile market conditions. The possible reason for CCC outperforming its dynamic coun-
terparts might be the structural differences between developed and emerging market volatility
and correlation structure. Furthermore, based on the very poor results of Simple Moving Average
model and very good results of CCC model, it was argued that when forecasting the full covari-
ance matrix the best performance in case of emerging market assets is achieved with the combi-
nation of dynamic volatility and nearly constant correlation.

Further evidence in favour of using CCC model in out-of-sample forecasting was provid-
ed with the computational time cost evaluation results. Namely, in relative terms, CCC model
estimation and forecasting time was roughly 50 times less than for Full BEKK, 20 times less than
for Dynamic Conditional Correlation (DCC) model and 10 times less than for Asymmetric DCC
model.

Based on the previous empirical research as well as the results from this study, it can be

argued that when considering different market environments, asset types as well as modelling
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time costs there is no single best model that would work equally well under any given condition.
However, it would be interesting to see whether there would be any changes to the results when
some statistical loss function is used with outlier adjusted covariance proxy. Using alternative
loss function in combination with emerging market data might therefore be of interest in future
studies on similar subject. Also, another area of potential future research could be the incorpora-
tion of theoretical correlations into some naive or Constant Conditional Correlation model®®. This

might further improve correlation model forecasting ability without compromising its efficiency.

3¥ It was explained in Chapter 1 that both empirical as well as theoretical correlations break during periods of high
volatility.
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SUMMARY

Since the introduction of modern portfolio theory in 1952 (Markowitz 1952), expected
correlations have played a significant role in the field of asset allocation. Expected correlations
together with expected volatilities and expected returns have been the cornerstones of any portfo-
lio allocation decision, being it risk minimization or return maximization. In this thesis correla-
tion model out-of-sample forecasting performance was evaluated with a goal to find a correlation
model that would consistently outperform others in its forecasting ability, i.e. would consistently
provide the best estimate of expected correlation. Such model could then be used in risk systems
(or equivalently in any other allocation driven system) to model portfolio expected variance.
Having measured expected portfolio variance correctly, institutions are able to make both better
risk budgeting decisions as well as avoid regulation-driven forced liquidation of risky assets in
stressed market environments.

The thesis presented various correlation modelling related theoretical concepts and empir-
ical results as follows. In Chapter 1 the properties of time-varying correlations were investigated.
It was argued that a correlation model should be able to handle six so called stylized facts about
correlation dynamics. These properties, or stylized facts were said to be of importance when as-
sessing the theoretical soundness of various correlation models. The six facts introduced in Chap-
ter 1 included the tendency for correlations to strengthen over time and the fact that they are
mean-reverting. Also, it was demonstrated that correlations can change significantly during mar-
ket stress and that they exhibit asymmetric tendency by changing significantly only during down-
markets. The last two properties discussed in Chapter 1 were correlation persistence and possible
outliers. It was then shown that correlation does indeed tend to be autocorrelated with its lagged
observations and that outliers do exist and can potentially have substantial effect on correlation
estimate. After the aforementioned stylized facts were established, eight correlation models were
formally defined in Chapter 2 and benchmarked against the aforementioned stylized facts. Pre-
sented models were as follows: (i) Simple Moving Average correlation (SMA) and RiskMetrics

version of Exponentially Weighted Moving Average correlation (RiskMetrics EWMA) from the
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class of naive correlation models; (i1)) VEC, BEKK, and Orthogonal GARCH (O-GARCH) mod-
els from the class of models with conditional covariance matrix; and (iii) Constant Conditional
Correlation (CCC), Dynamic Conditional Correlation (DCC) and Asymmetric Dynamic Condi-
tional Correlation (ADCC) from the class of models with conditional variances and covariances.
It was argued that out of the eight models presented, ADCC model by handling mean-reversion,
correlation breaks, asymmetry and persistence is by construction the most flexible model while
CCC model by not handling any of the stylized facts presented in Chapter 1 is the least flexible
model. It was further argued that some models, such as more flexible versions of VEC model,
cannot guarantee the positive semidefiniteness of the resulting covariance matrix (the result could
be negative portfolio expected volatility). Nevertheless, all models with conditional variances and
covariances (CCC, DCC, ADCC) as well as naive models (SMA, RiskMetrics EWMA) were
guaranteed to provide covariance matrix estimates that are positive semidefinite.

An extensive review of the literature on correlation model out-of-sample forecasting per-
formance was provided in Chapter 3. It was argued that additional complications arise when
evaluating correlation model forecasting performance because the true correlation is unobserva-
ble (i.e. is a latent variable). For this reason various robust statistical and economic loss functions
were introduced that would overcome latter problem and make it possible to assess how far off
we are with our forecast compared to the ,,realized outcome**’. Finally, Model Confidence Set
was used as a procedure for selecting winning models with superior forecasting ability*’. With
regard to data samples, the results from the existing literature were based on developed market
data during calm and turbulent market environments. Further sampling was done to differentiate
between various asset types (equity, currency and mixed) as well as portfolio size. The results
were as follows.

In general, ADCC model outperformed others in the developed market samples. The pref-
erence for the ADCC model was stronger during turbulent (i.e. high volatility) period than during
the calm (i.e. low volatility) period. In fact, neither the assumption of constant correlation nor the
assumption of symmetry could be rejected during calm periods. Furthermore, no significant dif-

ferences in results was found between equity, currency and mixed asset samples. Relating to

39 realized outcome® is in quotation marks because we still do not exactly know what is ,realized” (as true

correlation is unobservable).
% Model Confidence Set was described to be a statistical procedure that selects a set of equally superior models from
the initial set of competing models.
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large portfolio sample, it was found that the most flexible models (such as DCC) become compu-
tationally too costly to use in large portfolios.

In Chapter 4, nine correlation model specifications were tested for Polish and Czech equi-
ty market index sample and for Czech krona and Swiss franc currency sample. All calculations
were performed by author using same procedures and sampling principles as were used in Chap-
ter 3. The results were as follows.

The best performing model in the calm period was Full BEKK model and in turbulent pe-
riod CCC model. The finding is interesting as it is at odds with the results from developed market
samples in Chapter 3. The fact that CCC model outperformed its dynamic peers during turbulent
markets indicates that at least within the selected samples dynamic models are incapable of dy-
namically forecasting one day ahead correlations well enough to beat constant estimate. As in
Chapter 3, additional analysis was carried out in Chapter 4 to clarify the costliness of using vari-
ous correlation models in practice. Even though author only dealt with two-asset portfolios, Full
BEKK model took around 24 hours to be simulated (approximately 1 000 one day ahead fore-
casts with the same number of model parameter re-estimations). ADCC model took around 8-9
hours, CCC model around half an hour and RiskMetrics EWMA took only 13 minutes to be sim-
ulated.

Overall conclusion based on both literature review and own analysis was that with regard
to forecasting performance no single model can be considered unconditionally superior to others.
Furthermore, taking into account the computational time cost that is needed for the estimation of
dynamic versions of conditional correlation models as well as for models with conditional covar-
iance matrix, it might also be suboptimal to implement such models into real life portfolio risk
measurement systems.

Some areas were mentioned that could be of interest in future investigation. First, it would
be interesting to see the results for model performance based on alternative emerging market data
sample together with same other robust loss function. Second, further research could be done in
the field of theoretical correlation modelling with an aim to incorporate theoretical correlation
dynamics into some naive or constant conditional correlation model. This might make it possible
to incorporate correlation dynamics into correlation models without compromising its estimation

efficiency.
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RESUMEE

KORRELATSIOONI MODELLEERIMINE NING PROGNOOSIMINE
FINANTSADMETEL

Matis Tomiste

Alates 1952. aastast mil Markowitz avaldas oma mdjuvdimsa portfelliteooria
aluspohimotteid kisitleva artikli (Markowitz 1952), on varade vahelisi oodatavaid korrelatsioone
peetud iiheks portfelli risijuhtimise nurgakiviks. Sellest ajast alates on iilemaalmine regulatiivne
keskkond tervitanud kdikvdimalike portfelliteooriale tuginevate riskisiisteemide teket, milles
koigis on olulist rolli etendanud nii alusvarade oodatavad dispersioonid kui ka nendevahelised
oodatavad korrelatsioonid. Vastupidiselt dispersiooni modelleerimisele, mis on olnud aka-
deemilite uurimustdode tédhelepanu keskpunktis alates Engle’i publikatsioonist teemal autoreg-
ressiivne tingimuslik heteroskedastiivsus (Engle 1982), on korrelatsiooni modelleerimine selle
aja jooksul monevorra vihem tahelepanu saanud. Vdimalikke pdhjusi selleks on kaks. Esiteks on
korrelatsioonide olulisus riskimudelites monevorra véiksem dispersioonide omast. Teiseks
kannatab korrelatsiooni modelleerimine niinimetatud ‘“dimensionaalsuse probleemi” kées.
Viimane tdhendab seda, et instrumentide arvu poolest suuremate portfellidele korrelatsiooni-
diinaamika modelleerimine vdib muutuda paljude korrelatsioonimudelite jaoks juba iiletamatuks
probleemiks.

Kéesoleva magistritod eesmérgiks oli korrelatsioonimudelite vordlev analiilis ning parima
prognoosivoimega korrelatsioonimudeli véljaselgitamine. Selleks uuris autor esmalt korrela-
tsiooni diinaamikat finantsturgudel, tuues vélja kuus stiliseeritud fakti millega korrelatsioonimu-
del peaks toime tulema. Viimasteks olid korrelatsiooni tugevnemine ajas ning keskvaartuse juur-

de tagasipoordumine, korrelatsiooni murdumine ja viimase asiimmeetria, autokorrelatsioon korre-
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latsiooni diinaamikas ning vdimalikud erindid. Jargnevalt esitas autor formaalsed definitsioonid
kaheksale korrelatsioonimudelile, uurides samas ka nende vOimet tulla toime eelnimetatud
stiliseeritud faktidega. Defineeritud mudelite hulka kuulusid: (i) Tavalise libiseva keskmise
mudel (SMA, Simple Moving Average) ning RiskMetrics’i versioon Eksponentsiaalselt kaalutud
libiseva keskmise mudelist (RiskMetrics EWMA, RiskMetrics Exponentially Weighted Moving
Avarage), mis kuuluvad niinimetatud naiivsete korrelatsioonimudelite klassi; (i) VEC, BEKK ja
Ortogonaalne GARCH (O-GARCH, Orthogonal Generalized Autoregressive Conditional
Heteroskedasticity) tingimuslike kovariatsioonimudelite klassist; ning (iii) Konstantne
tingimuslik korrelatsioon (CCC, Constant Conditional Correlation), Diinaamiline tingimuslik
korrelatsioon (DCC, Dynamic Conditional Correlation) ja Aslimmeetriline diinaamiline tin-
gimuslik korrelatsioon (ADCC, Asymmetric Dynamic Conditional Correlation) tingimuslike dis-
persiooni- ja kovariatsioonimudelite klassist. Lahtudes vaid teoreerilisest mudeli {ilesehitusest,
vastas ADCC mudel stiliseeritud faktidele kdige paremini ning CCC mudel kdige halvemini.
Magistritod kolmandas ja neljandas peatiikis uuris autor eelnimetatud mudelite prognoosi-
misvOimet arenenud ning arenevatel turgudel. Kui arenenud turgude puhul tugines autor oma
jéreldustes juba olemasolevatele uurimustdodele, siis arenevate turgude andmetel tehtud jéreldu-
sed tuginesid juba autori enda arvutustel. Nii eelneva kirjanduse kasutamises kui ka enda arvutus-
tes kasutas autor nn. robustseid kaotusfunktsioone ning mudeli usaldus komplekti (MCS, Model
Confidence Set) protseduuri. Lisaks arenenud ja arenevate turgude eristamisele, eristati tulemusi
ka turu volatiilsuse (madala ja kdrge volatiilsuse valimid) ja vara tiiiibi (aktsiad, valuutad ning
sega) loikes. Kuigi tulemused polnud iiheselt méératavad, kippus ADCC mudel edestama teisi
mudeleid arenenud turgudel ning CCC mudel arenevatel turgudel*'. PShjusteks miks ADCC ei
suutnud iiletada CCC mudelit arenevatel turgudel vois autori hinnangul olla ADCC mudelile eba-
sobiv ebakorrapdrane diinaamika autori poolt valitud valimites. Lisaks korrelatsioonimudelite
sooritusvoime uurimisele, uuris autor ka korrelatsiooni modelleerimise suurest dimensionaalsu-
sest tingitud arvutustest tulenevat ajakulu. Nii autori enda kui eelneva uurimust66 tulemustele

tuginedes leidis autor, et seoses suure ajakuluga voib nii tingimustlike kovaratsioonimudelite kui

! Autori aktsiaportfelli valimisse kuulusid Poola ja TSehhi borsiindeksid ning valuutaportfelli Poola ja Sveits valuu-
tad.
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ka diinaamiliste tingimuslike dispersiooni- ja kovariatsioonimudelite (ehk vélja arvatud CCC)
rakendamine praktilises riskimddtmises osutuda iiletamatuks probleemiks.

Lopliku jireldusena leidis autor, et ei eksisteeri iiheselt parimat korrelatsioonimudelit,
mille sooritusvdime prognoosimisel oleks iihtmoodi hea erinevates turu-, vara tiiiibi ja geograafi-
listes tingimustes ning mille rakendamine suuremahulistes valimites oleks praktiliselt teostatav.

Edasisteks voimalikeks uurimisteemadeks pakkus autor vélja uutel arenevate turgude
andmetel pohinevate valimite peal alternatiivsete kaotusfunktsioonide kasutamise. Nimelt kasutas
autor kdesolevas t66d QLIKE kaotusfunktsiooni. Kasutades aga nditeks monda kaotusfunktsioo-
ni, mille kaotus mdddetakse otseselt mone realiseeritud kovariatsioonimaatriksi vastu, voivad tu-
lemused potensiaalselt olla erinevad. Teiseks, stiliseeritud faktide juures mainis autor korrelat-
siooni diinaamika eksisteerimist teoreetilistes korrelatsioonides. Seetdttu oleks autori hinnangul
huvitav ndha kas teoreetilise korrelatsioonidiinaamika sisseviimine naiivsesse voi CCC tiitipi

mudelisse annaks veelgi paremaid tulemusi.
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APPENDICES

Appendix 1. Selected features of empirical surveys

Laurent et al. | Caporin and | Clements et | Boudtetal. | Laurentetal. | Clements et
2010 McAleer al. 2012 2013 2013 al. 2009
2012
Asset Class Equity Equity Equity Currency Currency Multi Asset
Sample 10 stocks 89 stocks 200 stocks |[EUR/USD  |EUR/USD 5 futures on:
NASDAQ  [S&P 100 S&P 1500 |Yen/USD Yen/USD S&P 500
NYSE GBP/USD NASDAQ
US Tr. Bonds
Gold
Crude Oil
Covariance ~ [EWMA®™ |[EWMA®™ [EWMA™® EwWMA®™ |[EWMA™ EWMA*Y
models SBEKK BEKK DCC,y SBEKK DBEKK EWMA™®
DBEKK CCC,y DECO,, DBEKK CCC,, CCC
CCC,, DCC,y (SMA) CCC,, DCC,y DCC
DCC,y ADCC,y (MIDAS) DCC,y OGARCH,,, ADCC
ADCC,,, ¢DCC, 0/ ¢DCC, (GOGARCH,,))”?|(SMA)
DECO,, OGARCH, BIP-DCC,,, (STAT)
OGARCH, BIP-cDCC,,,
(chol)
Volatility Arch* Garch* Gjr Bip-garch Garch Garch
models Aparch* Gjr Aparch
Egarch* Egarch
Garch* Gjr
Gjr* Igarch
Hgarch Rm
Igarch
Figarch
Rm
Loss Function |Euclidean MSE GMVP z | o, .. [Frobenius MSE
Frobenius  |QLIKE . Lot QLIKE
o | GMVP
Lt MVP

*2 GO-GARCH or Generalized Orthogonal GARCH model of van der Weide (2002) is an extension of O-GARCH
where m = N (see O-GARCH subsection in Chapter 2 for definitions of m and N).
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PI'OXy RCOV5mm RBPCOVsmin NA RCOV3()min RCOV5min RCOVg()mm
RBPCOV:;Omm
ROWCOV30min

MCS signifi- |a=25% a=25% a=25% a=25% a=10% 0=25%

cance level
(authors
choice)

Subscript vol indicates that univariate volatility has been modeled according to specification un-
der volatility models section (vol includes all volatility models, vol* includes only those models
that are denoted with *). Covariance models in parentheses were included in source literature, but
were omitted from current survey. Source: Authors compilation
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Appendix 2. WIG and PX in-sample correlation dynamics (initial training set)
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Appendix 3. WIG and PX one day ahead correlation forecast dynamics

Equity One-Day-Ahead Correlation Farecast Dynamics
Calm Period, 9-models
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Appendix 3 continued

Equity One-Day-Ahead Correlation Farecast Dynamics
Turbulent Period, 9-models
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Appendix 4. EURCHF and EURPLN in-sample correlation dynamics (initial
training set)

Currency In-sample Conditional Correlation
9-models
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Appendix 5. EURCHF and EURPLN one day ahead out-of-sample correlation

dynamics
Currency One-Day-Ahead Correlation Farecast Dynamics
Calm Period, 9-models
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Appendix 5 continued

Correlation

Correlation

Currency One-Day-Ahead Correlation Farecast Dynamics
Turbulent Period, 9-models
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