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Abstract 

The current thesis analyses the use of feature selection in unsupervised anomaly detection 

and supervised classification algorithms to create accurate and efficient botnet detection 

models for small, resource constraint Internet of Things devices. The work analyses how 

applying distinct feature selection algorithms to different phases of an IoT device 

lifecycle affects the outcome of the learning models, if it is possible to create effective 

models by training a single model for multiple similar devices and which feature selection 

and botnet detection models provide the overall best results.  

As a result of the thesis, thousands of different botnet detection models are created and 

evaluated on the data of 9 separate IoT devices. The pitched analysis goals are then 

accomplished based on the outcomes of the created models. Additionally, for any future 

analysis, the thesis also provides access to the full results of the models. 

This thesis is written in English and is 83 pages long, including 7 chapters, 19 figures and 

67 tables. 
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Annotatsioon 

 

Käesolev magistritöö keskendub Asjade Interneti, ehk IoT pahavara tuvastamise 

analüüsile, kasutades selleks erinevaid nii juhendamisega kui ka juhendamiseta 

masinõppe algoritme. Põhirõhk töös on tunnuste arvutamisel, et kahandada olemasoleva 

andmestiku dimensionaalsust ning selle abil luua tõhusamaid mudeleid, mida saaks 

kasutada väikeste ning piiratud ressursiga IoT seadmete jaoks. Töö analüüsib, kuidas 

tunnuste vähendamine erinevatel IoT seadmete eluea etappidel muudab mudelite 

tulemusi. Lisaks sellele uurib töö, kas mitme sarnase IoT seadme jaoks on võimalik luua 

tõhusat kombineeritud masinõppe mudelit, et vähendada hooldusele kuluvat ressurssi 

ning millised tunnuste arvutamise algoritmid ja juhendamisega ning juhendamiseta 

masinõppe algoritmid annavad parimaid tulemusi IoT seadmete pahavara tuvastamisel.  

Töö tulemusena valmisid tuhanded erinevad masinõppe baasil toimivad IoT zombivõrgu 

tuvastamismudelid, mille efektiivsust kontrolliti 9 erineva IoT seadme andmestiku peal. 

Mudelitest saadud tulemuste põhjal koostati laialdane analüüs, et leida vastused eelnevalt 

väljatoodud probleemidele. Lisaks korraldatud analüüsile, annab töö ligipääsu kõikide 

mudelite tulemustele, mille põhjal võib koostada lisaanalüüse tulevikus. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 83 leheküljel, 7 peatükki, 19 

joonist, 67 tabelit. 
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List of abbreviations and terms 

  

  

Ack TCP acknowledgement message flooding based attack 

COMBO Botnet attack that consists of sending spam data and opening a 

connection to a specified IP address and port 

DDoS Distributed Denial of Service, attack type 

IF Isolation Forest, unsupervised learning algorithm 

IoT Internet of Things, network of devices 

Junk Spam data based botnet attack 

KNN K-Nearest Neighbor, supervised learning algorithm 

LOF Local Outlier Factor, supervised learning algorithm 

ML Machine Learning, study of computer algorithms 

MLP Multi-Layer Perceptron, supervised learning algorithm 

Scan Botnet attack to scan a network for vulnerable devices 

SVM Support Vector Machine, supervised learning algorithm 

Syn TCP connection establishing message flooding based attack 

TCP  Transmission Control Protocol flooding based botnet attack 

UDP User Datagram Protocol flooding based botnet attack 

UDPPLain User Datagram Protocol flooding based botnet attack with fewer 

options 
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1 Introduction 

In the last decade, the world of Internet of Things or IoT has grown rapidly, and it shows 

no signs of slowing down. The concept of IoT is having ordinary common everyday items 

and devices connected to each other locally or more often via the internet to make their 

normal usage more effective. These, often so-called “smart” devices can then collect and 

broadcast data from their surrounding environment or receive remote commands to then 

act upon. These kinds of devices could be anything, such as different security cameras, 

baby monitors, light switches, cars and so on [1]. The number of IoT devices has been 

growing exponentially and in 2020 the worldwide number of IoT connections surpassed 

the number of non-IoT devices, such as smartphones and personal computers for the first 

time in history with approximately 11.7 billion active IoT devices [2]. 

1.1 Motivation 

Because of the ever-growing market, IoT devices have become targets of malware attacks 

to then use them for a variety of malicious activities. One of the most common such use-

case is using the network of infected devices, called a botnet, for Distributed Denial of 

Service (DDoS) attacks to try to interrupt a targeted server or service normal workflow 

by overflooding the target with a large amount of network requests [3]. When previously 

it was more difficult to gain access and use many computers and devices to carry out 

DDoS attacks, then with the growing popularity of IoT devices, new wave of such attacks 

emerged. Using IoT devices instead to flood targets with packets meant that attackers had 

many smaller and more easily accessible devices available. Due to the sheer number of 

IoT devices the existing attack detection systems proved to be less effective than 

previously. The sent requests often found their way around these systems and the attacks 

were more difficult to handle. In addition to that, IoT devices are often less protected with 

weaker passwords and security countermeasures making them easier targets to infect with 

malware and therefore gain access to [4].  
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To deal with the novel issue, new systems had to be invented to be able to detect malicious 

IoT activity from normal one as early as possible. Although a lot of research has been put 

into creating signature-based algorithms that are able to detect just that, these kinds of 

models can often create many false positives due to the nature of the methods. 

Additionally, because of the sizes of IoT networks, maintaining the rule updates for the 

signature-based methods can prove to be difficult [5]. More recently, a lot more research 

has been put into Machine Learning based models. However, these models do not often 

consider the very limited resources IoT devices usually have. This means that these 

created models usually just try to create as accurate models as possible without paying 

too much attention to, for example, reducing the dimensionality of the data or using 

shallower learning methods [6], [7].  

1.2 Problem statement 

The main issue the thesis is focused on, is reducing the complexity of botnet detection 

models to make them more suitable for small IoT devices. This can further be divided 

into multiple sub-problems that the work aims to solve. 

First, one of the biggest points is reducing the dimensionality of the data used in the 

detection models. In addition to the higher computational costs high dimensional data 

might cause, this kind of data can also create a problem called “curse of dimensionality”, 

where higher dimensional data becomes more sparse and much more data will be needed 

to get dependable results [6], [8]. The study plans to explore the novel idea of using 

feature selection methods to reduce the training and testing data feature sets and therefore 

optimise the learning models. 

Secondly, while using complex deep learning or overall supervised learning models have 

proven to effective in detecting botnets, these models require previously obtained attack 

data to be present during training. This can be an issue with IoT devices that have not 

come into any prior contact with attack data or just have not been able to correctly label 

the attack data they have previously encountered. While research papers where anomaly 

detection models were used for IoT botnet detection do exist [9] [6], then the current 

paper extends the research of the topic further. 
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Combining the previous two issues, it is unclear if and how much does having prior 

knowledge of attack data affects the feature selection process for different detection 

models. The work aims to compare the effectiveness of feature selection when applied to 

different stages of IoT device’s lifecycle of when a device has never encountered attack 

data before compared to a device which has already been infected with a malware. 

Next, most of the previous work on similar subjects have usually created separate models 

for different devices. However, in a large network of IoT devices this can severely cause 

the maintenance and computation costs to grow. The thesis additionally tries to see if 

creating common models for multiple devices, that have a similar purpose (e.g., all 

cameras), could reduce those costs. 

Lastly, a large variety of different feature selection, anomaly detection and classification 

algorithms have been proposed throughout the years that with slight modifications could 

potentially be used for IoT botnet detection as well. However, when dealing with IoT 

data, it is not often clear which methods would be able to achieve the highest accuracies 

in predicting attack data while consuming the least amount of computational power. 

To sum up the pitched problems, the thesis aims to solve the following: 

• Not enough previous research done on the topic of feature selection to reduce the 

dimensionality of the data for IoT botnet detection systems. 

• The previous studies have not covered how applying feature selection to different 

parts of an IoT device’s lifecycle can affect the outcome of feature selection and 

the overall botnet detection models. 

• Most of the previous solutions have created a separate detection model for each 

different IoT device and the idea of lowering the maintenance costs by training a 

single model for multiple devices has not been researched enough. 

• While different feature selection and learning models do exist, not enough has 

been done to see which ones work the best and most efficiently for IoT botnet 

detection. 

1.3 Related work 

A decent amount of research has already been done in the field of botnet detection using 

machine learning. Different specification-based [10], unsupervised anomaly-based [11], 
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supervised classification [12] [13] and deep learning [14] [15] ideas have been proposed 

that often produce highly accurate results [5]. However, most of such models cannot be 

directly adapted for different resource-constraint IoT devices and often work only on 

higher end devices. 

Research on IoT based botnets has started to come out mostly only in the recent years. As 

IoT networks continue to grow, the botnets based on them continue to develop as well 

and more work needs to be done to detect and act upon the attacks. Different studies have 

been made to create models dedicated to finding anomalies in the normal workflow of an 

IoT device. These models are often developed from the previously mentioned and proven 

botnet detection ideas. 

In the work proposed by [16], different supervised classification models and one neural 

network model were tested to detect between benign records and records sent from 

devices infected with Mirai malware. The detection models were built upon a middlebox 

device which all IoT devices in the network sent data through. While the models were 

able to detect Mirai malware with high accuracy, not much attention was paid to 

performance and computational costs as the models were not built on the IoT devices 

themselves. Additionally, only supervised methods were analysed, meaning that already 

labelled data was needed. 

While [16], as well as most other studies are based on being able to differentiate between 

normal and attack records that potentially already infected devices send out, then ideas 

have been proposed on how to detect possible attacks as early as possible in the 

propagation and Command and Control server phases. In the work [17], a lightweight 

deep-packet anomaly detection model was created that is suitable for low-performance 

IoT devices as well. The work used bit-pattern matching for feature selection and a binary 

representation of features in a look-up table that is used for detecting anomalies in the 

data. The method was tested against a variety of different types of attacks and was able 

to achieve highly accurate results.  

However, as suggested in [9], these early life detection models alone might become 

insufficient in the future, as early life detection datasets are difficult to acquire and 

simulate. Because of this, both the current thesis and the research paper [9] instead focus 

on already infected IoT devices and classification of the data they send out. The work set 
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up a test environment of 9 different commercial IoT devices from which three types of 

data was collected. In addition to normal data, the devices were then infected with 

BASHLITE and Mirai malware respectively and data was collected from the infected 

devices as well. The paper also made the dataset publicly available [18] and it will be 

used in the current thesis as well. The work then consisted of training and testing an 

experimental deep learning model, as well as three unsupervised anomaly detectors. 

While the models proved to be promising, the work did not center on optimization of the 

models to use them effectively on smaller IoT devices [9]. 

In addition to those, other works have been proposed to use different methods to 

effectively be able to detect possible IoT malware attacks. Such as [19], which proposed 

detecting Mirai attacks using neural networks and word embedding. Depending on the 

attack type, the created LSTM-RNN and BLSTM-RNN models were able to distinguish 

98%-99% of the attack data. Other works have proposed for example a hybrid anomaly- 

and specification-based intrusion detection system based on the MapReduce architecture 

[20], a SIEM-based IoT DDoS attack detection system [21] as well as others [22], [23]. 

However, while many different approaches have been proposed, most of the works pay 

little to no attention to the low computation power of IoT devices and reducing the 

performance costs. 

A few papers on the topic of IoT botnet detection and feature selection have been 

published in TalTech as well. Works proposed by [7] and [6] started investigating the 

usage of feature selection methods to reduce the number of features for the training and 

testing data and still provide accurate supervised and unsupervised anomaly detection 

models. The paper [6] tested some of the more common unsupervised learning models 

One-Class SVM and Isolation Forest with reduced datasets and [7] experimented on the 

supervised k-NN and Decision tree models. Both research papers showed much 

promising results and the current thesis will be largely based on those papers and will 

expand on the ideas proposed there by analysing and comparing a much larger number of 

different models. 

1.4 Goals 

The main goal of the thesis is to research the novel idea of using feature selection for IoT 

device attack data recognition and the accuracy and training and testing performance of 



21 

such models. In total, the goal can be divided into multiple sub-goals to solve the 

aforementioned problems. 

First, the work will analyse a large number of different anomaly detection models in order 

to see how much does having prior knowledge of attack data affect the feature selection 

results and the performance of the attack recognition models. Since most IoT devices used 

in different applications have never encountered any malicious data before, then initially 

the feature selection and training of anomaly detection models for such devices is going 

to be made using normal data only. To see if these kinds of models would be able to detect 

attack records better if they had any prior attack data available during feature selection as 

well, then additional models will be created where different types of attack data is added 

to the feature selection dataset. Initially only one type of attack data, Gafgyt, is used in 

feature selection to see if that would help in predicting other types of malicious records 

as well. Later, these results are compared with models where Mirai data was available 

during training as well. Knowing if and how much does attack data affect the feature 

selection is especially useful for unsupervised anomaly detection models where the 

training will be done on only benign data regardless of the data from which features were 

selected from. 

Additionally, the paper researches if it is possible to reduce the overall maintenance costs 

of IoT anomaly detection models by training the models on multiple devices of a similar 

category and creating a common model for those devices. Most previous works done on 

similar IoT botnet detection topics, such as [9] usually create a separate model for each 

device. While models like this can possibly have the advantage of reducing incorrect 

predictions caused by largely different data from different devices, they can suffer from 

the performance part of having to train and maintain many models.  

While comparing the feature selection datasets and devices the models get trained on are 

the two most important problems proposed by the thesis, the paper also proposes a slightly 

smaller third goal of comparing other possible parameters of the learning models and 

finding the best performing values. Here, different feature selection algorithms, powers 

of feature sets and anomaly detection and classification methods are compared. 

All the goals will be carried out on both the supervised and unsupervised malicious data 

detection models. 
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2 Analysis methods 

An overview of different methods and data used in the analysis to solve the proposed goals is 

summarized here.  

2.1 Data 

The data which the current thesis analysis is based on was acquired from 9 real commercial 

IoT devices from an authentic test environment. The tests were performed by a group of 

researchers from Ben-Gurion University of the Negev and Singapore University of Technology 

and Design [18]. The devices the data was acquired from are the following: 

• SimpleHome XCS7-1002-WHT security camera 

• SimpleHome XCS7-1003-WHT security camera 

• Provision PT-737E security camera 

• Provision PT-838 security camera 

• Samsung SNH-1011N web camera 

• Philips B120N/10 baby monitor 

• Ennio doorbell 

• Danmini doorbell 

• Ecobee thermostat 

From each device, thousands of 115-feature benign records were collected. In addition to that, 

the devices were then infected by two of the most common botnet malware types, BASHLITE 

(referenced to as Gafgyt in most of the following paper) and Mirai and additional data was 

extracted from those as well. The attack data can also be divided into 10 different attack types, 
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such as Scan, Junk, UDP, TCP and COMBO for Gafgyt and Scan, Ack, Syn, UDP and 

UDPplain for Mirai [9]. 

Each record from the collected datasets consists of 115 features. The features can be described 

by three parameters: stream aggregation, time-frame and the statistics extracted from the packet 

stream. For stream aggregation the following values are available [18]: 

• Source IP (H) 

• Source MAC-IP (MI) 

• Channel, or the source and destination IP (HH) 

• Channel jitter, or the source and destination traffic jitter (HH_jit) 

• Socket, or the source and destination IP and port (HpHp) 

The time-frame is displayed as the decay factor lambda used in the damped window with values 

of L5, L3, L1, L0.1 and L0.01 which correspond to time windows of 100ms, 500ms, 1.5s, 10s 

and 1min respectively [24]. 

Lastly, the following statistics are collected from the packet stream [18]: 

• Weight of the stream (weight) 

• Mean of the stream (mean) 

• Std. of the stream (std) 

• Root squared sum of two stream variances (radius) 

• Root squared sum of two stream means (magnitude) 

• Approximated covariance between two streams (cov) 

• Correlation coefficient of two streams (pcc) 

For the thesis analysis, a random sample of data is selected from each generated dataset. 

Depending on the tests, the amount of data records that is gathered from each set varies. 
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However, when a test is dealing with either Gafgyt or Mirai data, then approximately an equal 

amount of each previously described attack type is chosen. 

2.2 Feature selection datasets 

For the first main goal of the thesis of seeing how much prior knowledge of malicious data 

affects the feature selection, the incoming data must be grouped into multiple different subsets. 

These subsets are then later used in both the unsupervised anomaly detection and the supervised 

classification analysis during the feature selection part. The sample sets are divided as 

following: 

• benign – A data sample set that consists of only benign data. Usually in the size of 

20000 benign records 

• benign-gafgyt-balanced – A data sample set that consists of 50% benign and 50% 

Gafgyt data. Usually in the size of 10000 benign and 10000 Gafgyt records 

• benign-gafgyt-unbalanced – A data sample set biased towards Gafgyt data that consists 

of about 10% benign and 90% Gafgyt data. Usually in the size of 2000 benign and 

20000 Gafgyt records 

• benign-gafgyt-mirai-balanced – A data sample set that consists of about 33.3% benign, 

33.3% Gafgyt and 33.3% Mirai data. Usually in the size of 10000 benign, 10000 Gafgyt 

and 10000 Mirai records 

• benign-gafgyt-mirai-unbalanced – A data sample set biased towards attack data that 

consists of about 10% benign, 45% Gafgyt and 45% Mirai data. Usually in the size of 

2000 benign, 10000 Gafgyt and 10000 Mirai records 

2.3 Feature selection algorithms 

Since the main idea of the thesis was to research the use of feature selection in IoT botnet 

detection then several feature selection algorithms were tested during each part of the analysis. 

Following are the used algorithms for both unsupervised and supervised anomaly detection 

models. 
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2.3.1 Unsupervised anomaly detection 

For the unsupervised anomaly detection models the feature selection algorithms used are also 

all unsupervised. This means that none of the methods look at what type each record is and 

treat them all equally.  

2.3.1.1 Entropy 

The first method used in selecting the best features is entropy. Entropy is a measure of 

uncertainty of a random outcome used here to measure the discriminatory power of different 

features. Entropy E(vi) of a random variable vi is defined as [25]: 

 
𝐸(𝑣𝑖) = −∑𝑝𝑗 log2 𝑝𝑗

𝑘

𝑗=1

 
(1) 

Where pj is the fraction of data points belonging to class j for attribute value vi. After calculating 

the value-based entropies E(vi), the overall attribute-wise entropy E is defined as follows  [25]: 

 
𝐸 = ∑

𝑛𝑖𝐸(𝑣𝑖)

𝑛

𝑟

𝑖=1

 
(2) 

While normally entropy is used mainly for categorical values then with discretization it can be 

used for numeric variables as well [25]. In the current analysis, features resulting with higher 

entropy are selected. 

2.3.1.2 Variance 

Variance is a simple way of measuring how much does a feature vary within itself. Smaller 

variance scores mean that the data possesses similar values within a feature and therefore has 

less discriminatory power. This means that during feature selection the highest variance 

features should be selected [26].  

2.3.1.3 Gini index 

Similarly to entropy, Gini index is a way of measuring the discriminatory powers of certain 

features, that is mainly used for categorical values. It measures the impurity of how likely a 

randomly labelled element of a dataset would get labelled incorrectly [27]. Gini index G(vi) of 

a random variable vi is defined as follows [25]: 
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𝐺(𝑣𝑖) = 1 −∑𝑝𝑗

2

𝑘

𝑗=1

 
(3) 

Where pj is the fraction of data points belonging to class j for attribute value vi. Like with 

entropy, after calculating the value-based Gini indices G(vi) the overall attribute-wise Gini 

index G is defined as follows [25]: 

 
𝐺 = ∑

𝑛𝑖𝐺(𝑣𝑖)

𝑛

𝑟

𝑖=1

 
(4) 

In most cases Gini index and entropy achieve similar results with Gini index performing more 

efficiently, since unlike Entropy it does not have to compute the logarithm [25]. 

2.3.1.4 Hopkins statistic 

Hopkins statistic is a way of measuring datasets clustering tendency by comparing sample data 

points distances to their nearest neighbors to the distances of a sample of synthetic randomly 

generated data points and their nearest neighbors [28]. For Hopkins statistic, let D represent 

the original dataset. For each feature of D, a sample R of r data records is selected from it. In 

addition to this, a synthetic data sample S of r randomly generated points is created from the 

data space of D. Hopkins statistic H is then defined as follows [25]: 

 
𝐻 =

∑ 𝛽𝑖
𝑟
𝑖=1

∑ (𝛼𝑖 + 𝛽𝑖)
𝑟
𝑖=1

 
(5) 

Where αi are the distances of points in R to their nearest neighbors in D and βi are the distances 

of points in the synthetic dataset S to their nearest neighbors in D. 

The Hopkins statistic will end up in results between 0 and 1 with values around 0.5 meaning 

that the data is uniformly distributed. Other than that, values closer to 1 show a high cluster 

tendency and are therefore chosen during feature selection [25]. 

2.3.2 Supervised classification 

While during supervised classification analysis labelled data is already available, meaning that 

also supervised feature selection methods can be used, then for the sake of comparison, all the 

previously described unsupervised feature selection methods will be used here as well. In 

addition to those, one supervised method, Fisher’s score will be tested as well. 



27 

2.3.2.1 Fisher’s score 

Fisher’s score is a supervised measure that can be used for feature selection by comparing the 

discriminatory powers of different attributes within data. The method selects features such that 

the differences between the same type data points would stay small while the differences 

between different class data points are as large as possible [29]. Fisher’s score F is defined as 

follows [25]: 

 
𝐹 =

∑ 𝑝𝑗(𝜇𝑗 − 𝜇)2𝑘
𝑗=1

∑ 𝑝𝑗𝜎𝑗
2𝑗

𝑗=1

 
(6) 

Where µj is the mean-, σj is the standard deviation- and pj is the fraction of class j data points 

and µ is the global mean of the data. The highest scoring features have the highest 

discriminatory power and are therefore chosen during feature selection [25]. 

2.4 Anomaly detection algorithms 

The current work experiments with and analyses a variety of different unsupervised anomaly 

detection and supervised classification models to find answers to the main goals of the thesis. 

The goal of the methods is the same, for unsupervised models to correctly detect the anomalies 

in the data and for supervised methods to additionally correctly classify the type of a data point, 

between benign, Gafgyt and Mirai classes. 

2.4.1 Unsupervised anomaly detection 

The unsupervised anomaly detection methods work on only unlabeled data. This means that 

the training is done with benign records only and the anomaly detection methods then decide 

if an unseen data point belongs within the benign data or if it is an outlier [25]. Since evaluation 

of the methods uses both normal and attack data, then the validation of the anomaly detection 

models can be done similarly to supervised methods and is described more thoroughly in 

section 2.5. 

2.4.1.1 One-Class SVM 

One-class SVM, or one-class Support Vector Machine is an unsupervised learning model 

proposed by [30]. While the classic SVMs were originally supervised methods made for 

classification and regression analysis [25], then [30] presented a way of how the idea of SVM 

can be adapted to unsupervised learning as well by modifying a two-class SVM. SVMs work 
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by constructing an optimal hyperplane, that separates the distinct data points in a high-

dimensional feature space [31]. With one-class SVM, the model is trained on one type of data 

only (in this case benign data) and the model uses that knowledge to learn the boundaries of 

the normal records and to separate outliers from normal data [30].  

2.4.1.2 Isolation Forest 

Second anomaly detection method that is used in the analysis is Isolation Forest (IF). Isolation 

forest is an unsupervised learning model proposed by [32], that is based on the idea of decision 

trees. It works by isolating the outliers by randomly selecting a feature from the data set and 

then splitting it from a random value between the maximum and minimum values. Doing this 

repeatedly will eventually isolate a data point from the others and create a tree structure where 

the leaves are the isolated data points. Since outliers are more likely to be separated from the 

rest in earlier partitions then shorter paths to the root in the generated trees are likely to 

represent the outliers [32]. 

2.4.1.3 Local Outlier Factor 

The last unsupervised anomaly detection method used in the thesis, Local Outlier Factor (LOF), 

is a density-based detection algorithm. Proposed by [33], it works by comparing the densities 

of neighborhoods of each point in a data set based by the points k nearest neighbors. Calculating 

the LOF values for each point is a multi-step process that requires looking at the points 

distances to their nearest neighbors and the points average reachability distances from their 

neighbors. In the end, each point is left with a single value where higher LOF values indicating 

lower densities and therefore the probable outliers [25], [33]. 

2.4.2 Supervised classification 

Unlike the previous anomaly detection methods, the supervised classification models require 

the training data to be labeled and for samples of data from each class to present in the training 

set. Instead of just detecting outliers, the supervised methods divide each data point to their 

respective class. In the current work, the methods are going to differentiate between benign, 

Gafgyt and Mirai records. 

2.4.2.1 Decision Tree Classifier 

The Decision Tree classifier is a supervised learning model that works by continuously splitting 

data into partitions based on learned decision rules, forming a tree shaped structure. During 

training of the model, the decisions on where the data should be split, also known as the split 
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criterions are made based on some of the feature variables, such that the class variables in each 

branch are as distinct as possible [34]. For example, having a split criterion that says that each 

record for which some specific feature has a value less than 1 goes to one branch and the other 

records for which the value is at least 1 move to another branch. Later, the classification of yet 

unseen records will be done based on the generated tree using top-down traversal from the root 

of the tree [25]. 

2.4.2.2 Random Forest 

The Random Forest classifier creates several different discrete decision trees that all provide 

their own predictions. During training, random vectors are generated when building each 

decision tree. Later, during classification of yet unseen data records, each decision tree in the 

ensemble of trees creates their own prediction and the final decisions are made based on the 

most popular decisions of the many trees. This prevents individual errors showing up that a 

single decision tree might cause [25], [35]. 

2.4.2.3 K-Nearest Neighbors 

The k-nearest neighbors (KNN) classification algorithm is one of the easiest to understand 

learning models that works on the principle that data points which are close to each other are 

also more similar [36]. KNN uses a lazy learning approach which means that during training 

an explicit model is not created based on the training data, but rather the training data is stored 

and is used during classification [37]. When classifying previously unseen data, the model 

looks at the labels of the nearest neighbors in the training data and bases the label for the new 

data point on the majority of its neighbors [36]. 

2.4.2.4 AdaBoost 

AdaBoost is a supervised learning algorithm that uses a boosting approach. This means that 

the method uses a combination of many weak classifiers on iteratively modified versions of the 

initial data to train the model [25]. The model starts off by training weak classifiers with 

unmodified data. After evaluating the created model, all the data points get weights added to 

them, such that the incorrectly classified data points get assigned larger weights and the 

correctly classified points get assigned smaller weights than previously. A new weak classifier 

is then trained and evaluated with the new weighted data and new weights are assigned to the 

data points and the process is repeated. This process is iteratively run n times until the end 

results are then generated from a linear combination of each trained model [38].  
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2.4.2.5 MLP Classifier 

While the current thesis does not center on neural network models, one such baseline method 

was still tested. The MLP classifier or the Multi-layer Perceptron is a supervised feedforward 

artificial neural network learning model. While normal perceptron models contain just a single 

input layer and an output layer, then the multi-layer model consists of additionally to the input 

and output layers of one or more non-linear hidden layers. The layers are connected to each 

other in such a way that the nodes in one layer feed into the nodes in the next layer [25].  

2.4.2.6 Discarded methods (logistic regression, support vector machines) 

In addition to the previously mentioned models, a few more were initially tested but later 

discarded from the final analysis because they did not on average achieve as good results as 

others. One of those models were the Support Vector Machines [25] that were briefly covered 

in section 2.4.1.1. While SVMs can be highly accurate depending on the objective then in the 

current work they performed worse than the other models. Similarly to SVMs, it was initially 

planned to incorporate Logistic Regression model [25] in the analysis as well, but it was 

abandoned quite early in the work because of low accuracy and performance. 

2.5 Evaluation methods 

Evaluation of the anomaly detection and classification methods results is done by calculating 

different performance indicators based on the models confusion matrices. Confusion matrix is 

a table which visualizes the correctly and incorrectly classified classes. On Table 1, a sample 

confusion matrix is shown. 

Table 1. Two-class confusion matrix 

 Predicted Benign Predicted Attack 

Actual Benign True Positive (TP) False Negative (FN) 

Actual Attack False Positive (FP) True Negative (TN) 

 

The true positive and true negative values show the amount of data points that got correctly 

classified as either benign or attack data, respectively. The false negative value shows the 

benign points that got incorrectly classified as attack and the false positive shows the attack 

points that got incorrectly classified as benign. Based on these results, different performance 

indicators can be calculated [39]. 
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In the current work, four indicators are calculated for each model. The first one, accuracy, 

shows the ratio of correctly predicted data points to all data points. Accuracy is computed as 

following: 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

(7) 

The second calculated parameter is precision, or the ratio of correctly predicted positive 

(benign) data points to all predicted benign data points. Precision is computed as following: 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(8) 

The third parameter, recall, is the ratio of correctly predicted benign data points to all benign 

data points. Recall is computed as following: 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(9) 

The last calculated indicator is f1-score, which finds the weighted average of precision and 

recall. F1-score is computed as following: 

 
𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(10) 

All these metrics can be easily found for the unsupervised anomaly detection part of the 

analysis where the models are only able to distinguish between benign and attack data [39]. 

However, during classification, the models divide each data record into one of the three 

available classes, benign, Gafgyt and Mirai. Because of this, the confusion matrix ends up 

having an extra row and column, which makes finding the TP, TN, FP, and FN not as 

straightforward. There are a few ways of how to deal with such multi-class confusion matrices 

and in the current work the following method is used. First, a separate confusion matrix is made 

for each class and separate performance indicators are calculated for them as well. This is done 

by assuming that for each class, the positive values are of that specific class and negative values 

are the data points that belong in either of the other classes. For example, a three-class 

confusion matrix for benign class is shown on Table 2. After the accuracies, precisions, recalls 

and f1-scores have been calculated for each class separately, simply an unweighted mean of 

these values is found as the final result [40]. 
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Table 2. Three-class confusion matrix for benign class 

 Predicted Benign Predicted Gafgyt Predicted Mirai 

Actual Benign TP FN FN 

Actual Gafgyt FP TN TN 

Actual Mirai FP TN TN 

 

Lastly, in addition to the performance measures, the training time and testing time for each 

model is measured as well. The times are measured as the average times per instance, showing 

how much time did a model take per one training or testing data record. 

2.6 Tools 

The work was done in Python 3.8.51 language. Most of the experiments were done using the 

Python scikit-learn2 library, which is an extensive machine learning and data analysis library. 

Graphs and plots were made using the matplotlib3 library. 

 

 

1 https://www.python.org/ 

2 https://scikit-learn.org/stable/ 

3 https://matplotlib.org/2.0.2/index.html 
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3 Unsupervised anomaly detection analysis results 

The first part of the analysis covers the unsupervised anomaly detection methods.  

3.1 Analysis structure 

The goal of the analysis is to answer the questions proposed previously: is it possible to reduce 

the number of anomaly detection models by training the models on multiple devices, how much 

does a prior knowledge of attack data affect the feature selection and the overall accuracy of 

anomaly detection models and which feature selection and anomaly detection methods achieve 

the highest accuracies. For this many different models were trained and tested and the results 

of said models are then compared. 

3.1.1 Training and testing different models 

The analysis focuses on comparing different models based on the proposed goals. To make the 

analysis easier and to prevent the possibility where some specific model that has not been tested 

yet is needed later, then initially many different models with all possible parameter 

combinations were trained. After this, a selected sample of these models are deeply analysed. 

The models chosen for the analysis are based on the specific objective of the test and is 

explained more thoroughly later. For each model, approximately 20000 benign data records 

are randomly chosen as the training dataset. Depending on the test, these records might all 

come from one device or they might be a mixed dataset from different devices. In addition to 

the training data, 30000 testing data records will be chosen as well. This testing data consists 

of equal amount of benign, Gafgyt and Mirai records and unlike the training data, these records 

all come from the same device. 

For training and testing a model, a modified version of cross validation with a split size of 5 

will be used. Usual cross validation cannot be used for the current tests, since that would require 

taking the training and testing data from the same initial dataset, such that after splitting the 

data one part will be used for testing and the rest will be used for training. However, for 

unsupervised model, the model needs to be trained with benign data only and then evaluated 

on both benign and attack data, making it impossible to choose the splits from a single dataset. 
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In addition to that, in many cases when training the model on a combined dataset and then 

testing it on a single device, the initial data comes from different datasets. The modified cross 

validation method will split both the training and testing dataset into n splits and then on each 

iteration selects n-1 splits from the training set as training data and 1 split from testing set as 

testing data. Based on the previously mentioned amount of data records randomly selected for 

each model, this means that on each iteration the model is trained on 16000 benign records and 

tested on 6000 mixed records.  

3.1.2 Fixing values 

Since the total number of different trained and tested models is large and each of those models 

have multiple specific parameters that must be taken into consideration, then it makes sense to 

look at each variable one at a time and use them to reduce the necessary varying data for later 

parts of the analysis.  

For the first part of the test, some fixed values are taken for all, but one parameter and tests 

will be done on different values for this specific parameter. Doing this can show how much the 

end results differ when only changing one value. These fixed values can just be chosen as 

random but to try to prevent having to compare possibly highly inaccurate models, then some 

thought should be put into selecting them. There are a few different ways of how to choose the 

fixed values for the other parameters. First option would be to compare the average results for 

all models that used some specific value for a specific parameter. Based on the average results, 

one can fix the parameters to the values that were used in the models that resulted in highest 

average accuracies or f1-scores. For example, when selecting a feature selection algorithm, 

models with every other possible combination of other parameters (feature selection dataset, 

power of the feature set, anomaly detection algorithm, training dataset) will be tested and an 

average result of each of those models is computed. Those average results are then compared 

and the feature selection algorithm that was used in the most accurate models is fixed. This 

way, each possible value for a specific parameter would end up in the same number of tests, 

meaning that each value would have been tested equally. With this method however, there are 

still some possible caveats. For example, some specific values might result in highly accurate 

results when another parameter is also of some specific value but might perform poorly when 

the second parameter is of some other value. For example, using entropy as a mean of selecting 

features might result in great accuracy when using with an Isolation Forest anomaly detection 

algorithm but perform badly when combining it with Local Outlier Factor or One-Class SVM 
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instead. Another value however might cause mediocre results in all the tests, meaning that the 

average results of those tests end up higher than the previous value and therefore it will get 

selected more likely.  

Another option to counter the previous issue, would be to compare all the results of all the tests 

and then just choose the value that was used in the most accurate model. This would also cause 

the selected values to not be 100% correct, since that might end up with results where one 

specific parameter resulted in a high accuracy results, but overall did not perform that well in 

other tests. Additionally, having investigated the resulting data already, usually the most 

accurate models resulted in very similar accuracies and f1-scores and therefore the differences 

might be within a probable error. 

Third option would be to just research some previous papers written on similar topics and try 

selecting the fixed parameters based on that. However, since most of the research papers 

usually only cover a small sample of different parameters used here, then in the current thesis, 

the initial fixed values will be selected based on the average results. 

3.1.3 Comparison of different models 

After fixing all but one of the parameters, the results of the remaining models are then 

compared. For the analysis, initially all the accuracies and f1-scores of the different tested 

models are looked upon and compared with other models. In some cases, some additional 

analysis must be done to see how well a model did in correctly classifying benign or attack 

records by comparing the confusion matrices of few of the models. Additionally, for the tests 

where feature selection datasets or feature selection algorithms are compared, some extra 

attention must be paid to the actual features the currently selected methods chose. Lastly, since 

the goal of the analysis is to work with smaller and less powerful IoT devices and since it is 

necessary for these models to be able to detect attack data in real time applications, then some 

special focus should be given to the performance of the models as well. During the analysis, 

the testing times will be looked upon to see if the best accuracy models also perform quickly 

enough. 

3.2 Training and testing dataset analysis 

The analysis begins with one of the main questions proposed by the thesis, to find out, if it is 

possible to reduce the necessary computation power needed for anomaly detection by reducing 
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the total amount of trained models by creating a single model based on data received from 

multiple devices. 

3.2.1 Choosing the fixed values 

Comparing different device models requires taking fixed values for other possible parameters 

that can changed (feature selection algorithm, feature selection dataset, power of the feature 

set, anomaly detection algorithm) and comparing the results based on these values. To find out 

which fixed values to choose, the average f1-scores for every value of every parameter from 

thousands of tests will be compared and the values used in the overall most accurate models 

are selected. 

3.2.1.1 Feature selection algorithm 

From Figure 1, the average f1-scores of anomaly detection models corresponding to different 

feature selection algorithms can be seen. 

 

Figure 1.  Average f1-scores of anomaly detection models corresponding to given feature selection algorithms 

On Figure 1, models where features were selected by Hopkins statistic and Entropy both 

resulted in similar average f1-scores of about 48.5%-50%, with Hopkins statistic averaging just 

a little higher. Gini index and variance resulted in slightly lower f1-scores of about 43.3% and 

42.5%, respectively. While the scores do seem rather low, this is expected since these results 

take every model into account, both the ones that gave optimal results as well as the ones that 

did not perform too well. Since the difference between the most accurate methods is not huge, 

then additionally looking at the average evaluation time it took for different tests to predict the 
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anomalies with different feature selection algorithms is necessary. The average testing times 

can be seen on Figure 2. 

 

Figure 2. Average testing times of anomaly detection models corresponding to given feature selection 

algorithms 

On Figure 2 on average, tests done with Hopkins statistic took a little longer than the other 

three methods with Gini index being the second slowest. This means that two algorithms stand 

out from the rest, Hopkins statistic with slightly higher accuracy and Entropy with a little faster 

evaluation time. Choosing a feature selection algorithm is highly based on what the current 

goals with the models are, whether it is important to find the fastest method that still averages 

in decent accuracy results or if it is more necessary to choose the most accurate model, even if 

it performs slower than the other methods. Based on these results, currently the higher accuracy 

method is chosen and therefore Hopkins statistic is fixed as the feature selection algorithm used 

in further analysis.  

3.2.1.2 Feature selection dataset 

On Figure 3, the average f1-scores of anomaly detection models corresponding to different 

feature selection datasets can be seen. 
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Figure 3. Average f1-scores of anomaly detection models corresponding to given feature selection datasets 

From Figure 3, both first two datasets, that the features were chosen from, that provided the 

best scoring anomaly detection models consisted of just benign and Gafgyt data with no Mirai 

data in it. On average the results of all the models ended up looking quite similar to the previous 

with each dataset averaging about 2% higher f1-score than the next one on the list. While 2% 

difference can be large, especially when dealing with critical data, then since the current results 

only show the averages of hundreds of tests and the f1-scores for each of the models are not 

very high, then here the difference might not be as important. While benign-gafgyt-balanced 

data sample averaged in higher f1-score than the rest, then its unbalanced counterpart averaged 

in the highest accuracy overall. However, the benign-gafgyt-unbalanced dataset is very much 

skewed towards Gafgyt data, with it having only about 10% of benign data in it. Since usually 

in real world, outside of experimental networks benign data is much more common with most 

of the devices never having encountered attack data at all before, then again, looking at the 

average testing times and seeing if these correlate with the most accurate datasets is necessary. 

The average testing times can be seen on Figure 4. 
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Figure 4. Average testing times of anomaly detection models corresponding to given feature selection datasets 

Interestingly, the average model evaluation times tell a completely different story. From Figure 

4 it can be seen that both models that used all three types of data for feature selection, provided 

with considerably quicker results than the other datasets. Just like with feature selection 

algorithm, a choice between more accurate results or faster results must be made. Because the 

unbalanced datasets are biased towards attack data, then currently these will not be looked at 

and the fixed value will be chosen from the more balanced samples. Since the time difference 

between the two balanced samples is quite high, then the current choice for the dataset fixed 

value will be made from the evaluation times. Benign-gafgyt-mirai-balanced data based 

classification model was able to predict the anomalies about twice as fast as its benign-gafgyt-

balanced counterpart, meaning that it will be used during feature selection. 

3.2.1.3 Power of the feature set 

On Figure 5, the average f1-scores of anomaly detection models corresponding to different 

feature set powers can be seen. 
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Figure 5. Average f1-scores of anomaly detection models corresponding to given feature set powers 

From Figure 5, on average models based on all three feature set sizes of 3, 5 and 10 resulted in 

quite close f1-scores with the bigger sizes giving higher results than the rest, meaning that again 

looking at the average training times will hopefully give a definite option. The average testing 

times can be seen on Figure 6. 

 

Figure 6. Average testing times of anomaly detection models corresponding to given feature set powers 

From the graph the performance results correlate with the f1-scores, with the most accurate 

feature size also averaging in the lowest testing time. Because of this, the number of selected 

features for the initial tests will be fixed as 10. 
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3.2.1.4 Anomaly detection algorithm 

On Figure 7, the average f1-scores of anomaly detection models corresponding to different 

anomaly detection algorithms can be seen. 

 

Figure 7. Average f1-scores of anomaly detection models corresponding to given anomaly detection algorithms 

Unlike the previous three parameters, on Figure 7, a clear distinction between different values 

can be seen with Isolation Forest performing on average noticeably better than the other two 

anomaly detection algorithms and SVM resulting in the least accurate results. Although a clear 

distinction between the algorithms can be seen, looking at the evaluation times would still help 

to see if the choice would also make sense on the performance part. The average testing times 

can be seen on Figure 8. 
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Figure 8. Average testing times of anomaly detection models corresponding to given anomaly detection 

algorithms 

From Figure 7 and Figure 8, the models that used the most accurate algorithm also took the 

least amount of time. Based on the results Isolation Forest can be fixed as the anomaly detection 

model. 

After analysing the average results across all possible tests, the fixed values that the comparison 

of different training and testing datasets will be carried out on has been chosen. The fixed 

values are shown in Table 3. 

Table 3. Selected fixed values for training and testing dataset analysis 

Feature selection algorithm Hopkins statistic 

Feature selection dataset Benign-gafgyt-mirai-balanced 

Power of the feature set 10 

Anomaly detection algorithm Isolation Forest 

 

3.2.2 Comparison of anomaly detection models trained and tested on different devices 

Now that other parameters have fixed values, analysing, and comparing different training and 

testing dataset pairs can begin. As mentioned before, currently there are 54 total pairs of 

training and testing datasets available. The training will be carried out on all devices together, 

five types of different cameras together, two types of different SimpleHome security cameras 

together, two types of Provision security cameras together, two types of doorbells together and 

separate models will be created for every single device as well. All the models, except the ones 
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trained on just one device, will then be evaluated on all the devices separately. This means that 

for the following analysis the following aspects should be considered. First, and most 

importantly, it would be necessary to only choose a subsample of those 54 trained models so 

not every model has to be compared. For this, first thing that can be done is to exclude all the 

models that were trained on a combined dataset of multiple devices and evaluated on a device 

that was not present in the initial training set, since those models would most likely not result 

in the best scores. For example, using a model that was trained on cameras and then evaluated 

against Ecobee thermostat can be excluded. After removing all those models, 29 out of 54 are 

still left. From the leftover models some additional restrictions will be made to reduce the 

number of models needed in the analysis and to make the whole analysis more uniform for 

every device used. Currently out of the nine devices, four are available in four different models 

training sets, three devices are available in three different models and two devices are available 

in just two models. By removing the models that used the two combined security cameras 

datasets in training, the leftover models become more uniform, making the analysis easier. 

While before all four security cameras were present in four models, then after removing some 

of them, the 25 remaining models are divided as seen on Figure 9. Now, out of the nine devices, 

seven are used in three different models training set and two are used in just two different 

models.  

 

Figure 9. Structure of the different models training sets 

 



44 

3.2.2.1 Anomaly detection models results 

After the number of models were reduced to 25, the results of all said models can then be 

compared. On Table 4 the accuracies, f1-scores, and testing times per instance for each model 

are shown. The results are also illustrated on Figure 10.
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Table 4. Results for Isolation Forest anomaly detection models trained and tested on different devices 

Testing Device Category Model trained on all-devices Model trained on different device 

categories (cameras, doorbells) 

Model trained on single device 

  Accuracy F1-score Testing 

time 

(ms) 

Accuracy F1-score Testing 

time 

(ms) 

Accuracy F1-score Testing 

time 

(ms) 

Provision PT-

737E 

Cameras 0.81207 0.75147 0.00281 0.78713 0.70603 0.00278 0.78140 0.70079 0.00253 

Provision PT-

838 

Cameras 0.81127 0.74199 0.00299 0.79170 0.70264 0.00302 0.78193 0.69838 0.00300 

SimpleHome 

XCS7-1002-

WHT 

Cameras 0.82267 0.77622 0.00336 0.80030 0.74811 0.00277 0.62627 0.62337 0.00360 

SimpleHome 

XCS7-1003-

WHT 

Cameras 0.82447 0.78692 0.00333 0.79323 0.74838 0.00289 0.86463 0.82760 0.00301 

Samsung SNH 

1011N4 

Cameras 0.58835 0.59761 0.00468 0.67715 0.69174 0.00774 0.88800 0.88792 0.00426 

Ennio doorbell4 Doorbells 0.82090 0.84390 0.00662 0.74585 0.76270 0.00652 0.42410 0.59483 0.00297 

Danmini 

doorbell 

Doorbells 0.85593 0.82039 0.00283 0.60227 0.63270 0.00303 0.74670 0.62121 0.00257 

Ecobee 

thermostat 

- 0.76027 0.68304 0.00285 - - - 0.88873 0.84566 0.00250 

Philips 

B120N/10 

- 0.82690 0.78793 0.00269 - - - 0.71800 0.68770 0.00263 

Average 0.81090 0.77323 0.00308 0.70243 0.67561 0.00298 0.74664 0.72083 0.00301 

 

 

4 No Mirai data available 
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Figure 10. f1-scores and average testing times of different anomaly detection models 

Interestingly, when looking at the results, for most of the devices, the models that were 

trained on multiple devices managed to result in higher accuracies and f1-scores than the 

models trained on just the single device that the model was also evaluated against. These 

results are unexpected, since the more complex training sets of all devices and category-

based training data have less data records from each specific device compared to the 

single device model. Additionally, the more complex models use training data from other 

devices, not related to the testing device that might cause the models to incorrectly 

classify some records. From the nine devices, for only three did the single device model 

predict anomalies with a higher accuracy than the all-devices model. These devices are 

the SimpleHome XCS7-1003-WHT security camera, the Samsung SNH 1011N web 

camera and the Ecobee thermostat, which resulted in f1-scores of 82.8%, 88.8% and 

84.6% for the single device model compared to the results of the all-devices model of 

78.7%, 59.8% and 68.3% respectively. However, while comparing the all-devices and the 

single device models did end up with different results based on the device the model was 

evaluated against then the category-based model did almost always perform worse than 

the all-devices model. The only exception for this was Samsung SNH 1011N, where the 

all-devices model achieved an f1-score of 59.8% compared to cameras model f1-score of 

76.3%. Since the category-based models are the middle ground between more complex 

models that would require less maintenance and the single device models that should 

perform better in theory then in the current tests for the most part they did not get the 

advantage in either side.  
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Looking at the confusion matrices for some of the models that got opposite results, where 

for one the single device model achieved the highest accuracy compared to another where 

the all-devices model got the highest accuracy can hopefully tell how such results were 

achieved. For this, the confusion matrices for both types of models are presented for both 

SimpleHome security cameras in Table 5 - Table 8. 

Table 5. Confusion matrix for anomaly detection model trained on all devices and evaluated on 

SimpleHome XCS7-1002-WHT data 

 Predicted benign Predicted attack 

Actual benign 9229 771 

Actual attack 4549 15451 

 

Table 6. Confusion matrix for anomaly detection model trained on SimpleHome XCS7-1002-WHT data 

and evaluated on SimpleHome XCS7-1002-WHT data 

 Predicted benign Predicted attack 

Actual benign 9276 724 

Actual attack 10486 9514 

 

Table 7. Confusion matrix for anomaly detection model trained on all devices and evaluated on 

SimpleHome XCS7-1003-WHT data 

 Predicted benign Predicted attack 

Actual benign 9725 275 

Actual attack 4991 15009 

 

Table 8. Confusion matrix for anomaly detection model trained on SimpleHome XCS7-1003-WHT data 

and evaluated on SimpleHome XCS7-1003-WHT data 

 Predicted benign Predicted attack 

Actual benign 9116 884 

Actual attack 3177 16823 

 

From the confusion matrices both all-devices models got similar results. While the 

SimpleHome XCS7-1003-WHT model was able to correctly classify slightly more benign 

datapoints of about 97.3% (9725 out of 10000) compared to the other device’s 92.3% 

(9229 out of 10000) then the SimpleHome XCS7-1002-WHT model predicted more 

attack records correctly of about 77.3% (15451 out of 20000) compared to the other 

device’s 75% (15009 out of 20000). However, when looking at the results of the models 

that were trained on one device something curious appears. While the model trained on 
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SimpleHome XCS7-1002-WHT data classified a similar number of benign records 

correctly to the all-devices model then now the model did much worse in predicting attack 

data. The model classified more than half of the attack records as benign, causing an 

accuracy of only about 47.6% (9514 out of 20000). For the SimpleHome XCS7-1003-

WHT the results seemed to be the exact opposite. The single device model did worse in 

correctly classifying normal records at about 91.2% (9116 out of 10000) but managed to 

achieve higher results in predicting attack data at about 84.1% (16823 out of 20000). 

3.2.2.2 Anomaly detection models performance 

In addition to the accuracies the models achieved, special attention should be given to the 

testing times as well. Since for IoT devices performance is much more important than 

when just testing the methods on a more powerful PC then it is necessary to see if the 

models resulting in higher accuracies do not suffer from the performance perspective. For 

most of the models the testing times do not differ from each other by a large margin. The 

testing times are mostly around 0.003 millisecond per instance with some models 

performing slightly faster and others slightly slower. However, there are still a few 

outliers that take longer than the rest. The overall highest accuracy model, the one that 

was both trained and tested on the Samsung web camera took around 0.004 milliseconds 

to predict the attack records with other Samsung web camera models taking even longer 

up to 0.0077 ms. Another device that resulted in longer times was the Ennio doorbell, 

which all-devices and category-based models both took around 0.006 ms. Interestingly, 

the slower models were all based on the devices that did not have any Mirai data available. 

3.2.3 Summary of the models 

After extensive tests of comparing different anomaly detection models to find out if it is 

possible to efficiently reduce the total amount of trained models by creating a single 

model based on data received from multiple devices, it still cannot be answered with 

absolute confidence that works for every situation. While for most devices creating 

combined training datasets did seem to produce satisfactory results, and even increase the 

accuracy of the created models, then this was not the case for every single model that got 

tested. For few of the devices, the single device model did prove to be more accurate than 

the rest. On the performance part most of the models did achieve similar times and 

therefore all of them could be possibly used in real time anomaly detection. However, the 

current analysis only compared the results of a smaller subset of models where every 
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other parameter, other than the training and testing devices was given a fixed value. 

Changing those fixed values might completely change the overall outcome of the models. 

3.3 Feature selection dataset analysis 

The second main goal of the current thesis was to see if and how much does having prior 

knowledge of different types of attack data affect the results of feature selection and 

overall performance of the unsupervised and supervised anomaly detection models. 

Because of this, a series of tests will be carried out on similar data where the only 

parameter that will be changed is the data sample the best features are chosen from. Just 

like with the previous tests where different devices were compared, every other parameter 

will be fixed. 

3.3.1 Choosing the fixed values 

Since most of the parameters were already chosen by the previous training data analysis, 

then mostly the values will be used here as well, such as the anomaly detection algorithm 

and the feature selection algorithm. Additionally, the devices from where the training and 

testing datasets were taken from need to now be fixed as well. For this the same average 

function used when fixing the other parameters could be used again or the chosen datasets 

can be based on the previous results of the training data analysis. Although the previous 

testing results did not cover every single training and testing device pair, then the fixed 

devices will be still chosen from there by selecting the training and testing device pair 

that resulted in higher accuracy. While the SimpleHome XCS7-1003-WHT model was 

not the overall highest accuracy model, then since the more accurate models were either 

present in less datasets or did not have any Mirai attack data available, then the single-

device model for the SimpleHome security camera was selected. The chosen fixed values 

are shown in Table 9. 

Table 9. Selected fixed values for feature selection dataset analysis 

Training device SimpleHome XCS7-1003-WHT 

Testing device SimpleHome XCS7-1003-WHT 

Feature selection algorithm Hopkins statistic 

Power of the feature set 10 

Anomaly detection algorithm Isolation Forest 
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3.3.2 Comparison of anomaly detection models with different feature selection 

datasets 

With the other parameters fixed, analysing how different amounts and types of benign 

and attack data can affect the outcome of feature selection can start. Unlike the previous 

part of the analysis where two parameters, training device and testing device, did not have 

a fixed value set, then this time only one of the parameters can still vary. This means that 

there is no need to choose a subsample of the already largely sampled parameters and all 

the values can be tested. 

For analysing the different data that will be used for feature selection, first a sample of 

data will be taken from the training dataset. This sample will then be split into parts: only 

benign data; benign and Gafgyt data in balanced form; benign and Gafgyt data in 

unbalanced form where most of the data comprises of Gafgyt; benign, Gafgyt and Mirai 

data in balanced form and benign, Gafgyt and Mirai data in unbalanced form where most 

of the data comprises of Gafgyt and Mirai data. After this, the same series of feature 

selection and anomaly detection methods will be carried out on for all. It should also be 

noted that all the models will be evaluated on the same mixed dataset. 

3.3.2.1 Benign data 

For the first part the features were chosen strictly from benign data. This is usually most 

common in real life applications where a device has yet to previously encounter any attack 

data. After feature selection the following features from Table 10 were chosen. 

Table 10. Selected features for benign data 

HH_L3_covariance 

HH_jit_L5_mean 

HH_jit_L5_variance 

HH_jit_L3_mean 

HH_jit_L3_variance 

HH_jit_L1_variance 

HpHp_L5_covariance 

HpHp_L5_pcc 

HpHp_L3_covariance 

HpHp_L3_pcc 

 



51 

From the list of selected features by Hopkins statistic for benign data, most of the choices 

belonged to either the channel jitter (HH_jit) or socket (HpHp) categories with the 

exception of one channel (HH) based feature. All of the features also came from smaller 

time-frames of mostly 100ms and 500ms with one feature from 1.5s time-frame. 

After the features had been selected, Isolation Forest model was applied to detect the 

anomalies. The anomaly detection model results and the confusion matrix are seen in 

Table 11 and Table 12, respectively. 

Table 11. Results for anomaly detection model with 10 features selected by Hopkins statistic for benign 

data 

Accuracy Precision Recall F1 score Testing 

time (ms) 

Training 

time (ms) 

0.7928 0.66389 0.91768 0.75735 0.004626 0.002963 

 

Table 12. Confusion matrix for anomaly detection model with 10 features selected by Hopkins statistic 

for benign data 

 Predicted Normal Predicted Attack 

Actual Normal 9177 823 

Actual Attack 5393 14607 

 

The Isolation Forest model was able to predict the anomalies from a dataset where the 

best features were chosen by Hopkins statistic from benign data only with about 79.3% 

accuracy and 75.7% f1-score and with an average testing time of approximately 0.0046 

milliseconds per instance. From the confusion matrix the model was able to correctly 

predict a decent portion of benign cases at about 91.8% (9177 out of 10000) but failed to 

perform at predicting attack records, with it only classifying about 73% of these cases 

correctly.  

3.3.2.2 Benign and Gafgyt data balanced 

Here, the features were chosen from a mixed data of benign and Gafgyt records with equal 

amounts of both types of data. After feature selection the following features from Table 

13 were chosen. 

Table 13. Selected features for balanced benign and Gafgyt data 

HH_L5_covariance 

HH_L1_covariance 
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HH_jit_L5_mean 

HH_jit_L5_variance 

HH_jit_L3_mean 

HH_jit_L1_mean 

HH_jit_L0.1_mean 

HH_jit_L0.01_mean 

HpHp_L3_magnitude 

HpHp_L0.01_radius 

 

From the list of selected features by Hopkins statistic for benign and Gafgyt data in 

balanced form, some differences with the previous only benign data can be seen. This 

time the most discriminating features came mostly from channel jitter category (HH_jit), 

with two features from channel and two features from socket category. While most of the 

selected features again came from smaller time-frames, then this time also three larger 

time-frame features scored higher Hopkins statistic results than the rest.  

The anomaly detection model results and the confusion matrix are seen in Table 14 and 

Table 15, respectively. 

Table 14. Results for anomaly detection model with 10 features selected by Hopkins statistic for benign 

and Gafgyt balanced data 

Accuracy Precision Recall F1 score Testing 

time 

Training 

time 

0.79433 0.66625 0.90427 0.75747 0.003892 0.004941 

 

Table 15. Confusion matrix for anomaly detection model with 10 features selected by Hopkins statistic 

for benign and Gafgyt balanced data 

 Predicted Normal Predicted Attack 

Actual Normal 9043 957 

Actual Attack 5213 14787 

 

The Isolation Forest model based on data where best features were chosen from a 

balanced dataset of benign and Gafgyt records achieved quite similar results to the first 

part of the analysis. The model scored an accuracy of about 79.4% and f1-score of about 

75.7% with an average testing time of approximately 0.0039 milliseconds per instance. 

The confusion matrix does not differ from the first part by a large margin either, with the 
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current model being able to correctly predict about 90.4% (9043 out of 10000) of benign 

data and 73.9% (14787 out of 20000) of attack cases. 

3.3.2.3 Benign and Gafgyt data unbalanced 

Here, the features were chosen from a mixed data of benign and Gafgyt records with more 

Gafgyt records available. After feature selection the following features from Table 16 

were chosen. 

Table 16. Selected features for unbalanced benign and Gafgyt data 

HH_L5_mean 

HH_L5_radius 

HH_L3_mean 

HH_jit_L5_mean 

HH_jit_L5_variance 

HH_jit_L3_mean 

HH_jit_L3_variance 

HH_jit_L0.01_mean 

HpHp_L5_std 

HpHp_L3_magnitude 

 

When biasing the feature selection sample more towards Gafgyt data, the selected features 

seemingly started moving away from socket category and more towards channel jitter and 

channel. This time five of the ten most discriminating features belonged to channel jitter, 

three features belonged to channel and just two belonged to socket categories. The time-

frames were still mainly on the smaller side with just one feature obtained from the largest 

time-frame available. 

The Isolation Forest model results and the confusion matrix are seen on Table 17 and 

Table 18, respectively. 

Table 17. Results for anomaly detection model with 10 features selected by Hopkins statistic for benign 

and Gafgyt unbalanced data 

Accuracy Precision Recall F1 score Testing 

time 

Training 

time 

0.81173 0.65830 0.90610 0.76242 0.003759 0.002488 
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Table 18. Confusion matrix for anomaly detection model with 10 features selected by Hopkins statistic 

for benign and Gafgyt unbalanced data 

 Predicted Normal Predicted Attack 

Actual Normal 9061 939 

Actual Attack 4709 15291 

 

With the anomaly detection model where the best features were chosen from an 

unbalanced set of benign and Gafgyt cases the results improved slightly. The accuracy 

and f1-score of said model rose to approximately 81.2% and 76.2% respectively with an 

average testing time of about 0.0038 milliseconds per instance. While the amount of 

correctly predicted benign cases stayed close to the previous models at around 90.6% 

(9061 out of 10000) then the current model was able to correctly classify a slightly larger 

amount of attack records at 76.5% (15291 out of 20000). 

3.3.2.4 Benign, Gafgyt and Mirai data balanced 

Here, the features were chosen from a mixed data of benign, Gafgyt and Mirai records 

with equal amounts of all types of data. After feature selection the following features from 

Table 19 were chosen. 

Table 19. Selected features for balanced benign, Gafgyt and Mirai data 

HH_L5_radius 

HH_L3_radius 

HH_L3_covariance 

HH_L1_covariance 

HH_jit_L5_mean 

HH_jit_L5_variance 

HH_jit_L3_mean 

HH_jit_L0.01_mean 

HpHp_L3_mean 

HpHp_L3_magnitude 

 

With the addition of Mirai data, the selected features started skewing towards channel 

category. Most of the features now came from channel and channel jitter categories with 

again just two features belonging to socket. The time-frames however did not change a 

lot, with most of the features still obtained from shorter times. 
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For anomaly detection, Isolation Forest was able to predict the records with the following 

results and confusion matrix seen on Table 20 and Table 21. 

Table 20. Results for anomaly detection model with 10 features selected by Hopkins statistic for benign, 

Gafgyt and Mirai balanced data 

Accuracy Precision Recall F1 score Testing 

time 

Training 

time 

0.86463 0.77332 0.91164 0.82760 0.003013 0.001973 

 

Table 21. Confusion matrix for anomaly detection model with 10 features selected by Hopkins statistic 

for benign, Gafgyt and Mirai balanced data 

 Predicted Normal Predicted Attack 

Actual Normal 9116 884 

Actual Attack 3177 16823 

 

With the addition of Mirai data to the feature selection sample set the results of the 

Isolation Forest model did go up a step. The new model now achieved an accuracy of 

about 86.5% and an f1-score of about 82.8% with also a faster time of 0.003 milliseconds 

per instance. Looking at the confusion matrix the correctly predicted normal samples 

stayed similar to the previous cases with the model being able to classify 91.2% (9116 

out of 10000) of benign records correctly. However, the greatest enhancement came from 

predicting the attack records, with the model correctly classifying about 84.1% (16823 

out of 20000) of the attack cases which is almost an 8% improvement from the currently 

second-best model. 

3.3.2.5 Benign, Gafgyt and Mirai data unbalanced 

Here, the features were chosen from a mixed data of benign, Gafgyt and Mirai records 

with more Gafgyt and Mirai records available. After feature selection the following 

features from Table 22 were chosen. 

Table 22. Selected features for unbalanced benign, Gafgyt and Mirai data 

HH_L5_mean 

HH_L5_radius 

HH_L3_mean 

HH_L1_radius 

HH_jit_L5_mean 

HH_jit_L3_mean 
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HpHp_L5_mean 

HpHp_L5_std 

HpHp_L3_magnitude 

HpHp_L0.01_radius 

 

With the last, biased towards attack data, data sample most of the discriminating features 

did not belong to channel jitter category anymore, but were mostly of the channel and 

socket type. However, just like with last tests, the features still mostly belonged to the 

smaller time-frames.  

The Isolation Forest model results and the confusion matrix are seen on Table 23 and 

Table 24, respectively. 

Table 23. Results for anomaly detection model with 10 features selected by Hopkins statistic for benign, 

Gafgyt and Mirai unbalanced data 

Accuracy Precision Recall F1 score Testing 

time 

Training 

time 

0.94763 0.99724 0.84530 0.91493 0.003615 0.002658 

 

Table 24. Confusion matrix for anomaly detection model with 10 features selected by Hopkins statistic 

for benign, Gafgyt and Mirai unbalanced data 

 Predicted Normal Predicted Attack 

Actual Normal 8453 1547 

Actual Attack 24 19976 

 

After adding Mirai data to the feature selection data sample set and biasing that data more 

towards attack records, the anomaly detection model was able to produce even greater 

results. This time the model improved even further and was able to predict the anomalies 

with an accuracy of about 94.8% and an f1-score of about 91.5%. The testing time went 

back up slightly, at around 0.0036 milliseconds per instance. The confusion matrix shows 

that this time the model did classify a larger number of normal records incorrectly. While 

every previous model was able to predict over 90% of benign cases correctly then the last 

model did so only at around 84.5% (8453 out of 10000) accuracy. However, the model 

was able to achieve great results at classifying attack data with it correctly predicting 

almost 99.9% (19976 out of 20000) of the cases. Only 24 attack records got incorrectly 

classified as normal. 
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3.3.3 Summary of the models 

In Table 25, the distribution of the best 10 features selected by different feature selection 

datasets according to their categories can be seen. 

Table 25. Distribution of the best 10 features selected by different feature selection datasets 

Category Benign Benign, 

Gafgyt 

balanced 

Benign, 

Gafgyt 

unbalanced 

Benign, 

Gafgyt, 

Mirai 

balanced 

Benign, 

Gafgyt, 

Mirai 

unbalanced 

Source IP      

Source 

MAC-IP 

     

Channel 1 2 3 4 4 

Channel 

jitter 

5 6 5 4 2 

Socket 4 2 2 2 4 

 

Looking at the selected features from all the tests, it can be observed that the feature 

selection does in fact differ from whether a model has only benign data available 

compared to also having some prior knowledge of attack data. When with just benign 

data most of the selected features belonged to either channel jitter or socket categories, 

then with adding more attack data and removing benign data the most discriminating 

features started curving more towards channel category and away from channel jitter. 

The overall results of the five different models can be seen on Table 26. From these 

results, a few interesting points can be seen. Comparing the baseline model, where 

features were selected on benign data only with the two models where Gafgyt data was 

added to the feature selection as well the results did not differ by a large margin. For 

benign and benign, Gafgyt balanced models, the accuracies and f1-scores stayed 

approximately the same. When biasing the data more towards Gafgyt data the results did 

improve slightly but the change was not very large. The testing times did also get slightly 

quicker with the biggest difference seen between the model where features were selected 

on benign data only and the rest of the models. However, after introducing Mirai data to 

the feature selection dataset as well, the results did start improving. Model, where features 

were selected on a balanced dataset of all three types of data managed to predict anomalies 

with over 5% higher accuracy and over 6% higher f1-score than the previous best model. 

Biasing that data towards the two types of attack data, so only about 10% of the records 

in the feature selection dataset were from benign data caused the model to perform even 
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better. The accuracy and f1-score for the final model had risen from the baseline model 

for over 15%, the accuracy from 79.3% to 94.8% and the f1-score from 75.7% to 91.5%. 

However, while the final model did achieve high accuracy, the number of false negative 

predictions, where model predicted normal data to be of attack data did grow almost twice 

as high. This means that depending on the purpose of the model, the final model might 

not be the best choice if correctly labelling benign data is as or more important than 

correctly detecting attack records. Other than that, the model where feature selection was 

done on the balanced dataset of all three types of data managed to do better on both sides. 

The model did end up with a little more false positive records than the baseline benign 

model did, but the difference was not as big as with the other models. However, this 

model also improved in correctly detecting attack records. 

Table 26. Results for anomaly detection model with 10 features selected by Hopkins statistic from 

different data sample sets 

Feature selection 

data sample set 

Accuracy F1-score Testing time per 

instance (ms) 

Benign 0.79280 0.75735 0.00463 

Benign and Gafgyt 

balanced 

0.79433 0.75747 0.00389 

Benign and Gafgyt 

unbalanced 

0.81173 0.76242 0.00376 

Benign, Gafgyt and 

Mirai balanced 

0.86463 0.82760 0.00301 

Benign, Gafgyt and 

Mirai unbalanced 

0.94763 0.91493 0.00362 

 

3.4 Feature selection algorithm analysis 

Although the main goals of the thesis were to analyse how much does the knowledge of 

attack data affect the results of feature selection and if it is possible to create a common 

model for multiple IoT devices to reduce the maintenance costs, then a smaller goal of 

testing and comparing other parameters of unsupervised and supervised anomaly 

detection methods was proposed as well. Because of this, a series of similar tests will be 

carried out for selecting a feature selection algorithm, feature set size and an anomaly 

detection algorithm.  
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3.4.1 Choosing the fixed values 

Starting with selecting the optimal feature selection algorithm, first all other parameters 

need to be fixed once again. Just like before, since most of the parameters were already 

chosen in the previous parts of the analysis, then the same will be used here as well. The 

training and testing devices are chosen from the first part of the analysis results, the 

feature selection dataset is chosen from the second part of the analysis results and the 

power of the feature set and the anomaly detection algorithms will be chosen from the 

average results. The chosen fixed values are shown in Table 27. 

Table 27. Selected fixed values for feature selection algorithm analysis 

Training device SimpleHome XCS7-1003-WHT 

Testing device SimpleHome XCS7-1003-WHT 

Feature selection dataset Benign, Gafgyt and Mirai data balanced 

Power of the feature set 10 

Anomaly detection algorithm Isolation Forest 

 

3.4.2 Comparison of anomaly detection models with different feature selection 

algorithms  

With the other parameters fixed, analysing how different feature selection algorithms 

attached to the same datasets can affect the outcome of feature selection can start. For the 

analysis, first a sample of data is taken from the training dataset. After that, 10 features 

are chosen based on the results of the four different feature selection algorithms: highest 

entropy, highest variance, highest Gini index and highest Hopkins statistic score. Every 

other feature that did not get chosen is discarded. Then different anomaly detection 

algorithms are applied to the reduced datasets and the results are compared. 

3.4.2.1 Entropy 

Here, the 10 features that resulted in the highest entropies are chosen. These chosen 

features can be seen in Table 28. 

Table 28. Features chosen by highest entropy 

HH_L1_weight 

HH_L1_std 

HH_L1_radius 

HH_L0.1_weight 
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HH_L0.1_std 

HH_L0.1_radius 

HH_L0.01_std 

HH_L0.01_radius 

HH_jit_L1_weight 

HH_jit_L1_variance 

 

From the list of selected features by highest entropy, most of the choices belonged to the 

channel (HH) category apart from two channel jitter (HH_jit) based features. All of the 

features also came from larger time-frames of 1.5s to 1min. 

For anomaly detection, Isolation Forest was able to predict the records with the following 

results seen on Table 29. 

Table 29. Anomaly detection results for entropy feature selection algorithm 

Accuracy Precision Recall F1 score Testing 

time 

Training 

time 

0.67503 0.50714 0.90990 0.65123 0.003719 0.002637 

 

The Isolation Forest model was able to predict the anomalies from a dataset where the 

best features were chosen by Entropy only with about 67.5% accuracy and 65.1% f1-

score and with an average testing time of approximately 0.0037 milliseconds per instance. 

3.4.2.2 Variance 

Here, the 10 features that resulted in the highest variances are chosen. These chosen 

features can be seen in Table 30. 

Table 30. Features chosen by highest variance 

HH_jit_L5_mean 

HH_jit_L5_variance 

HH_jit_L3_mean 

HH_jit_L3_variance 

HH_jit_L1_mean 

HH_jit_L1_variance 

HH_jit_L0.1_mean 

HH_jit_L0.1_variance 

HH_jit_L0.01_mean 

HH_jit_L0.01_variance 



61 

 

When selecting features based on the highest variance only channel jitter category 

features got chosen with an equal number of features from every time-frame. 

For anomaly detection, Isolation Forest was able to predict the records with the following 

results seen on Table 31. 

Table 31. Anomaly detection results for variance feature selection algorithm 

Accuracy Precision Recall F1 score Testing 

time 

Training 

time 

0.84550 0.71550 0.93340 0.80603 0.003242 0.002342 

 

Compared to entropy, the model where features were chosen by the highest variance 

managed to perform with much higher accuracy of about 85.5% and f1-score of about 

80.6%. On average the model was able to predict the anomalies at 0.003 millisecond per 

instance. 

3.4.2.3 Gini index 

Here, the 10 features that resulted in the highest Gini indices are chosen. These chosen 

features can be seen in Table 32. 

Table 32. Features chosen by highest Gini index 

MI_dir_L0.1_mean 

MI_dir_L0.01_mean 

HH_L3_mean 

HH_L0.1_magnitude 

HH_L0.01_mean 

HH_L0.01_magnitude 

HpHp_L5_mean 

HpHp_L5_magnitude 

HpHp_L3_mean 

HpHp_L3_magnitude 

 

With Gini index, the features were mostly selected from channel and socket categories 

with two features also from Source MAC-IP. The features all came from different time-

frames with most of the source MAC-IP and channel features from larger time-frames 

and socket features from smaller time-frames. 
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For anomaly detection, Isolation Forest was able to predict the records with the following 

results seen on Table 33. 

Table 33. Anomaly detection results for Gini index feature selection algorithm 

Accuracy Precision Recall F1 score Testing 

time 

Training 

time 

0.91093 0.92952 0.82216 0.86683 0.00344 0.002313 

 

With features selected by Gini index, the Isolation Forest model performed even better, 

with an accuracy of 91.1% and f1-score of 86.7%. Testing took a similar amount of time 

to the previous models at around 0.0034 milliseconds per instance. 

3.4.2.4 Hopkins statistic 

Here, the 10 features that resulted in the highest Hopkins statistic are chosen. These 

chosen features can be seen in Table 34. 

Table 34. Features chosen by Hopkins statistic 

HH_L5_radius 

HH_L3_radius 

HH_L3_covariance 

HH_L1_covariance 

HH_jit_L5_mean 

HH_jit_L5_variance 

HH_jit_L3_mean 

HH_jit_L0.01_mean 

HpHp_L3_mean 

HpHp_L3_magnitude 

 

For Hopkins statistic the results are the same as in the previous feature selection dataset 

analysis. Most of the features are chosen from smaller time-frames and from channel and 

channel jitter categories with two features also coming from the socket category. 

For anomaly detection, Isolation Forest was able to predict the records with the following 

results seen on Table 35. 
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Table 35. Anomaly detection results for Hopkins statistic feature selection algorithm 

Accuracy Precision Recall F1 score Testing 

time 

Training 

time 

0.86463 0.77332 0.91164 0.82760 0.003013 0.001973 

 

With Hopkins statistic, the model achieved less accurate results than with Gini index but 

beat both Entropy and Variance. The model resulted in accuracy of about 86.5% and f1-

score of 82.8% with the average testing time of 0.003 milliseconds per instance. 

3.4.3 Summary of the models 

In Table 36, the distribution of the best 10 features selected by different feature selection 

algorithms according to their categories can be seen. 

Table 36. Distribution of the best 10 features selected by different feature selection algorithms 

Category Entropy Variance Gini index Hopkins 

statistic 

Source IP     

Source MAC-

IP 

  2  

Channel 8  4 4 

Channel jitter 2 10  4 

Socket   4 2 

 

From the table a clear distinction between different models can be seen. Both Entropy 

and Hopkins statistic seemed to select features mainly from channel and channel jitter 

categories with entropy favouring channel category. With variance every feature was 

chosen from the channel jitter category. This is also supported by the study [6], where a 

similar conclusion was found. The only method that picked any other category other than 

channel, channel jitter or socket was Gini index, which selected two features from the 

source MAC-IP category. The model where this method was used also provided with the 

best overall results. None of the methods selected any source IP features. 

The overall results of the four different models can be seen on Table 37. From there, 

model where feature selection was done with Gini index performed with an accuracy of 

almost 5% better than the next best model. The difference between the accuracies of the 

next two models, where features were selected by Hopkins statistic and variance 

respectively ended up smaller, with approximately 2% between them. By a large margin, 
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the worst result was achieved by entropy, that predicted anomalies with over 17% lesser 

accuracy than the variance-based model. Comparing the results with the selected features 

the best performing model was the only one which selected two host-based MAC-IP 

features, possibly showing that the given feature category possesses higher discriminatory 

power than the rest. The next two best methods, both chose more features from the 

channel jitter category and the worst performing model chose features mainly from the 

channel category which indicates a lower discriminatory power. These findings do 

correlate with the study [6], where it was also found out that host-based and channel jitter 

categories had higher discriminatory power than the rest. 

Table 37. Results for anomaly detection model with 10 features selected by different feature selection 

methods 

Feature selection 

method 

Accuracy F1-score Testing time per 

instance (ms) 

Entropy 0.67503 0.65123 0.00372 

Variance 0.84550 0.80603 0.00324 

Gini index 0.91093 0.86683 0.00344 

Hopkins statistic 0.86463 0.82760 0.00301 

 

3.5 Power of the feature set and anomaly detection algorithm analysis 

For the last part of the initial analysis, both two remaining parameters, power of the 

feature set and anomaly detection algorithm will be looked at together.  

3.5.1 Choosing the fixed values 

Since both, the feature set size and anomaly detection algorithm have a total of 3 possible 

values in the current tests, and since often the results of different anomaly detection 

methods can vary by the amount of features the input data has, then all 9 different 

combinations of the two parameters will be analysed. Every other parameter will receive 

their fixed value from the previous tests. The chosen fixed values are shown in Table 38. 

Table 38. Selected fixed values for feature set powers and anomaly detection algorithm analysis 

Training device SimpleHome XCS7-1003-WHT 

Testing device SimpleHome XCS7-1003-WHT 

Feature selection dataset Benign, Gafgyt and Mirai balanced 

Feature selection algorithm Gini index 
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3.5.2 Comparison of anomaly detection models with different feature set powers and 

anomaly detection algorithms 

With the other parameters fixed, the analysis of how different amounts of features and 

different unsupervised anomaly detection algorithms can affect the outcome of anomaly 

detection model can begin. For the analysis, first a sample of data is taken from the 

training dataset. After that, 3, 5 or 10 features are chosen based on the results of the 

selected feature selection algorithm. The current anomaly detection algorithm is then 

trained and evaluated on the reduced datasets and the results are compared. In Table 39, 

the results of each power of the feature set and anomaly detection method combination 

can be seen. 

Table 39. Anomaly detection results for different feature set powers and anomaly detection algorithms 

Feature 

set 

power 

Anomaly 

detection 

algorithm 

Accuracy Precision Recall F1-score Testing 

time per 

instance 

Training 

time per 

instance 

3 IF 0.90543 0.93146 0.80294 0.85582 0.00353 0.00241 

5 IF 0.93853 0.99975 0.81584 0.89841 0.00367 0.00241 

10 IF 0.91093 0.92952 0.82216 0.83383 0.00344 0.00231 

3 SVM 0.83423 1 0.50271 0.66899 0.62274 0.95802 

5 SVM 0.83437 1 0.50311 0.66933 0.63472 0.96814 

10 SVM 0.83480 1 0.50442 0.67052 0.58520 0.86618 

3 LOF 0.69833 0.52629 0.95281 0.67803 0.01232 0.02399 

5 LOF 0.69727 0.52545 0.94971 0.67655 0.01826 0.04460 

10 LOF 0.69717 0.52537 0.94904 0.67630 0.03059 0.06398 

 

Looking at the table, none of the three anomaly detection model results differed by a great 

margin when changing the amount of features the models were trained and evaluated on. 

For both One-Class SVM and Local Outlier Factor the accuracies and f1-scores differed 

by less than 0.5% across all three feature set sizes. The biggest differences appeared with 

Isolation Forest, where the 5-feature model achieved an accuracy of about 93.9% and f1-

score of 89.8% compared to lower accuracies of 90.5% and 91.1% and f1-scores of 85.6% 

and 83.4% for feature set powers of 3 and 10, respectively. Comparing the overall results 

of the anomaly detection methods, Isolation Forest achieved the best accuracies and f1-

scores across the table. The models were able to correctly classify 93%-99% of the attack 

records, while averaging at 80%-82% accuracy in correctly predicting normal records. 

When looking at the other two methods, it seems that SVM managed achieve about 14% 
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better accuracies than LOF. However, the f1-scores are very close for both of the methods 

with LOF resulting in little higher scores. From precision and recall values it appears that 

while SVM did a great job in correctly classifying attack records (every attack record got 

correctly classified in all three models) then it also had trouble in detecting normal cases. 

All three SVM models classified approximately half of the normal records as attack data. 

For LOF however, the case was exactly the opposite. While LOF classified about 95% of 

the normal records correctly, it only managed to predict about 52.5% of the attack data. 

On the testing time side, Isolation Forest models performed the fastest with LOF 

averaging 10 times slower times and SVM about 200 times slower times. This means that 

for the selection of anomaly detection method, the Isolation Forest stands out. Not only 

did it achieve the overall best results in predicting anomalies, but it also did that the 

quickest. For the power of the feature set, the choice however is not as clear, since all 

three sizes got similar results with the 5-feature model resulting in better f1-score than its 

3 or 10 feature counterparts. 
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4 Supervised classification analysis results 

The second part of the analysis covers the supervised classification methods. 

4.1 Analysis structure 

The goal of the analysis and most of the structure used in the analysis are the same as it 

was for the anomaly detection part. Just like previously, the analysis looks for answers to 

the goals proposed by the thesis by creating many classification models and then 

compares them based on some specific parameters. All the other parameters will get 

assigned some fixed values by using the same average results method described before. 

4.1.1 Training and testing different models 

One of the main changes between the unsupervised anomaly detection and the supervised 

classification analysis is the way of how training and evaluating the models is conducted. 

Since the tested models are all supervised, then the training is done with mixed data of 

benign and both types of attack data. 

Most of the training and testing uses a similar modified cross validation method as 

described in paragraph 3.1.1. This is because for a lot of the models, the training set and 

testing set contains a combination of different data. For example, a model might be trained 

on a combined dataset of data from multiple devices but then evaluated on a single device 

only.  

For models that are trained on a single device and tested on the same device, a more 

accurate bootstrap method can be used instead. A bootstrap method is a statistical method 

used for training and evaluating given models. While with cross validation the input data 

was randomly split into n splits such that each split contained different records than the 

rest and that each record was only present once in one split at the same time, then with 

bootstrap initially a random data sample is taken with replacement. Selecting a sample 

with replacement means that after randomly selecting a data record from the dataset it 

will not be removed from the initial data and is available for further selections as well. 
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The sample set that gets chosen after a specific number of iterations is called a bootstrap 

sample and most of the time the size of the bootstrap sample is the same as the original 

data set. Since the samples are chosen with replacement, then the bootstrap sample can 

contain some data records more than once and some others are not represented in the 

bootstrap sample at all. On average, a bootstrap sample with the size of the initial dataset 

contains approximately 63.2% of the original data records [41]. This generated bootstrap 

sample is then used during training of the classification models. All the records that did 

not get selected are the out-of-bag samples and are used for then evaluating the trained 

models. This process then gets repeated as many times as necessary and the mean of the 

results from all the models is found as the final result [41], [42]. In the current work, a 

bootstrap sample size of the original data size is selected, and the process is done for 20 

iterations. 

4.2 Training and testing dataset analysis 

The supervised classification analysis is set up similarly to the unsupervised models with 

starting off with one of the main goals of comparing models trained on multiple devices 

and models trained on a single device. 

4.2.1 Choosing the fixed values 

To analyse different models, parameters other than the training and testing dataset must 

be set to a fixed value. Selecting these fixed values will be based on the average f1-scores 

and the average testing times of the models the values were used in. 

4.2.1.1 Feature selection algorithm 

On Figure 11, the average f1-scores of supervised classification models where different 

feature selection algorithms were used can be seen. 
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Figure 11. Average f1-scores of classification models corresponding to given feature selection algorithms 

From Figure 11, models where features were chosen by Hopkins statistic, Gini index and 

Fisher’s score, all resulted on average in similar f1-scores of around 79%, meaning that 

two of the four tested unsupervised feature selection algorithms were able to select 

equally discriminating features as the supervised counterpart. The average testing times 

for each model can be seen on Figure 12. 

 

Figure 12. Average testing times of classification models corresponding to given feature selection 

algorithms 

Looking at the testing times, all models achieved fast results with very small time 

differences between models. From the three most accurate models, the model where 

features were selected by Gini index achieved just slightly faster results than the rest. 

However, since the time difference is small and since none of the three best scoring 
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feature selection algorithms resulted in much better classification models than the rest 

then the selection for the fixed value can be made freely. Based on these findings, the 

only supervised feature selection method, Fisher’s score, is chosen and used in further 

analysis. 

4.2.1.2 Feature selection dataset 

On Figure 13, the average f1-scores of classification models corresponding to different 

feature selection datasets can be seen.  

 

Figure 13. Average f1-scores of classification models corresponding to given feature selection datasets 

From Figure 13, three feature selection datasets on average resulted in higher scoring 

classification models than the rest. The three methods resulted in f1-scores of 85-88% 

with both models based on the unbalanced datasets scoring noticeably lower results. From 

the best models, the model where features were chosen from all three data types resulted 

in on average 2% higher f1-score than the next best model. While the benign-gafgyt-

mirai-balanced dataset did result in the most accurate models, then looking at the testing 

times will show if that selection would make sense at the performance part as well. The 

average testing times can be seen on Figure 14. 
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Figure 14. Average testing times of classification models corresponding to given feature selection 

datasets 

From the graph it can be quickly seen that the fastest models were also the ones that 

resulted in the highest average f1-scores. Because of this, the benign-gafgyt-mirai-

balanced dataset can be fixed as the feature selection dataset for further analysis. 

4.2.1.3 Power of the feature set 

On Figure 15, the average f1-scores of anomaly detection models corresponding to 

different feature set powers can be seen. 

 

Figure 15. Average f1-scores of classification models corresponding to given feature set powers 

From the figure, as expected, the models which were based on more features managed to 

result in more accurate results than the others, where models with 10 features resulted in 
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an average f1-score of about 90.2%, 5 features of about 87.5% and 3 features of about 

85.5%. The average testing times for these models can be seen on Figure 16. 

 

Figure 16. Average testing times of classification models corresponding to given feature set powers 

All the models with different feature set powers were able to classify records in very 

similar times with no apparent correlation between the number of features and the testing 

time. While the highest scoring classification models did take the longest amount of time 

during testing, the time differences are not huge and because of this, the power of selected 

features can be fixed as 10. 

4.2.1.4 Classification algorithm 

On Figure 17, the average f1-scores of classification models corresponding to different 

classification algorithms can be seen. 
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Figure 17. Average f1-scores of classification models corresponding to given classification algorithms 

From Figure 17, four out of the five tested supervised classification methods resulted on 

average in equally accurate models with f1-scores of about 91.4%-92.8%. Only one of 

the algorithms, Adaboost, averaged approximately 8% lower results than the next. Since 

not a clear distinction between four of the models can be made, then looking at the 

performance of the models is necessary. The average testing times can be seen on  

 

Figure 18. Average testing times of classification models corresponding to given classification algorithms 

Looking at the times, the decision tree model was able to classify the data record multiple 

times quicker than the other methods. While that model did not achieve the overall highest 

average f1-score, it did achieve the second-best results. The most accurate model, random 

forest, resulted in some of the slowest predictions. This makes sense, since random forest 



74 

classifier is essentially a collection of decision trees, while the quickest model consists of 

just a single tree. While it is possible, that in some cases the single decision tree might 

make mistakes and not be able to correctly predict as many cases as the random forest 

model, then in the current tests both models resulted in very similar results and because 

of this the initial selection will be made mainly based on the testing times. This means, 

that decision tree can be fixed as the classification model. 

After analysing the average results across the tests, the fixed values that the comparison 

of different training and testing datasets will be carried out on has been chosen. The fixed 

values are shown in Table 40. 

Table 40. Selected fixed values for training and testing dataset analysis 

Feature selection algorithm Fisher’s score 

Feature selection dataset Benign-gafgyt-mirai-balanced 

Power of the feature set 10 

Classification algorithm Decision tree 

 

4.2.2 Comparison of classification models trained and tested on different devices 

With all other parameters other than the training and testing dataset have been fixed the 

analysis for those devices can begin. The list of training and testing datasets that will be 

analysed has already been described in paragraph 3.2.2. Just like with anomaly detection, 

a total of 25 different models will be compared. 

4.2.2.1 Classification results 

After 25 different models has been selected, the results of all these models can then be 

compared. On Table 41 the accuracies, f1-scores, and testing times per instance for each 

model are shown. Since a single decision tree model is very fast, then the testing times 

per instance are miniscule. Because of this, for the following tests, the times are now 

shown in microseconds instead of the previous milliseconds. The results are also 

illustrated on Figure 19. 
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Table 41. Results for Decision Tree classification models trained and tested on different devices 

Testing Device Category Model trained on all-devices Model trained on different device 

categories (cameras, doorbells) 

Model trained on single device 

  Accuracy F1-score Testing 

time (μs) 

Accuracy F1-score Testing 

time (μs) 

Accuracy F1-score Testing 

time (μs) 

Provision PT-

737E 

Cameras 0.95647 0.95157 0.05553 0.98790 0.98793 0.06142 0.99832 0.99833 0.03801 

Provision PT-

838 

Cameras 0.96050 0.95660 0.05589 0.99376 0.99376 0.06762 0.99973 0.99973 0.03176 

SimpleHome 

XCS7-1002-

WHT 

Cameras 0.99897 0.99897 0.05895 0.99533 0.99532 0.05537 0.99888 0.99888 0.03735 

SimpleHome 

XCS7-1003-

WHT 

Cameras 0.99793 0.99793 0.05755 0.99780 0.99780 0.05420 0.99933 0.99933 0.03181 

Samsung SNH 

1011N5 

Cameras 0.99510 0.99510 0.08410 0.99635 0.99640 0.07315 0.99911 0.99910 0.04728 

Ennio doorbell5 Doorbells 0.99660 0.99660 0.07975 0.93700 0.93280 0.07455 0.99968 0.99970 0.03586 

Danmini 

doorbell 

Doorbells 0.98527 0.98511 0.05368 0.76370 0.73041 0.06464 0.99874 0.99873 0.03754 

Ecobee 

thermostat 

- 0.99887 0.99887 0.05491 - - - 0.99944 0.99944 0.03106 

Philips 

B120N/10 

- 0.98517 0.98485 0.05519 - - - 0.99961 0.99961 0.03161 

Average 0.98681 0.98578 0.05611 0.95016 0.94626 0.06232 0.99920 0.99921 0.03581 

 

 

5 No Mirai data available 
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Figure 19. f1-scores and average testing times of different classification models 

Looking at the results, most of the models were able to correctly classify more than 99% 

of the records, regardless of the dataset they were trained on. However, there were still a 

couple of anomalies within the models, where a model achieved lower accuracies and f1-

scores than the rest. One of the biggest differences happened with the category-based 

models that were evaluated on either type of doorbell. The models tested on Ennio 

doorbell and Danmini doorbell achieved f1-scores of about 93.6% and 76.4% 

respectively. When models that were either trained on all devices or just a single device 

were evaluated against the same doorbell data, then the models did much better and got 

results of around 99%. Other than that, the only other models that classified records with 

lesser accuracy were models that were trained on all devices and evaluated against data 

from either of the Provision security cameras. These models both achieved f1-scores of 

around 95%. 

To see why the doorbells models achieved such low results when trained on both types 

of doorbell data compared to other models, then a closer look to a few of the confusion 

matrixes will be taken. In Table 42 and Table 43, the confusion matrices for models 

trained on doorbells data and Danmini doorbell data respectively and evaluated on 

Danmini doorbell data are shown. 

Table 42. Confusion matrix for classification model trained on doorbells data and evaluated on Danmini 

doorbell data 

 Predicted benign Predicted Gafgyt Predicted Mirai 

Actual benign 8342 66 1592 
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Actual Gafgyt 6 8563 1431 

Actual Mirai 4 3990 6006 

 

Table 43. Confusion matrix for classification model trained on Danmini doorbell data and evaluated on 

Danmini doorbell data 

 Predicted benign Predicted Gafgyt Predicted Mirai 

Actual benign 73264 115 8 

Actual Gafgyt 117 73496 21 

Actual Mirai 2 16 73679 

 

From the doorbells model confusion matrix, when comparing just the benign and attack 

records, the model did well in correctly detecting attack data from normal data with only 

10 attack records out of a total 20000 got incorrectly classified as benign. On the other 

side however, approximately 16.5% (1658 out of 10000) of the normal records did get 

incorrectly classified as attack, with most of them getting labeled as Mirai. Looking at the 

two types of attack records, the model did have a hard time in differentiating them with 

about 14.3% (1431 out of 10000) of Gafgyt data getting classified as Mirai and 39.9% 

(3990 out of 10000) of Mirai data getting incorrectly classified as Gafgyt. From the single 

device model confusion matrix on Table 43, the model was able to correctly classify all 

three types of data with high accuracy. The single device model did make more mistakes 

when classifying between benign and Gafgyt data, unlike the doorbells model, where less 

mistakes were made between benign and Gafgyt data and the low accuracies came mainly 

because of Mirai data. This could be explained by the fact that additionally to Danmini 

doorbell, the doorbells model had data from just one other device, Ennio doorbell, which 

did not have any Mirai data available for it. This means that during training the model 

had less Mirai data available and might have suffered from undertraining. 

4.2.2.2 Classification models performance 

Additionally, to the accuracies and f1-scores, testing times for the models need to be taken 

into consideration as well. Looking at Table 43, most of the models that were trained on 

multiple devices managed to predict the cases in a similar time-frame of around 0.05-0.06 

μs per instance, regardless of the amount of different devices the combined training set 

was sampled from. However, the models did perform faster when just training the model 

on a single device, with most of them taking around 0.03-0.04 μs per instance. 

Additionally to that, similarly to the previously analysed anomaly detection models, the 
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models that were tested on the two different devices that did not have any Mirai data 

available achieved the slowest times of around 0.07-0.08. Overall, all the models 

performed exceptionally quickly and could possibly all be great choices for real time 

applications. Main reason for this is the selected Decision tree model and the results might 

vary when using a different classification method. 

4.2.3 Models summary 

The extensive tests of different training and testing sets showed that most of the models 

worked well and were able to correctly classify more than or around 99% of the data. A 

more detailed look at the numbers shows that in most cases the models that were trained 

on single device managed to achieve slightly higher results than the rest. In addition to 

that, the single device models achieved the result on average 30%-40% faster than the 

more complex models. Regardless of that, all the models were still very time effective 

and the differences in accuracies and f1-scores were not large, meaning that depending 

on the use case, combined models might be preferred to reduce the maintenance cost. 

4.3 Feature selection dataset analysis 

The current thesis proposed two main questions that needed to be answered, to analyse 

combined models of multiple devices and to see if having prior knowledge of attack data 

does affect the results of feature selection. While the second point is especially important 

for unsupervised methods, which does not require for any attack data to be previously 

available, then the same goal will be investigated for supervised methods as well. 

4.3.1 Choosing the fixed values 

Most of the values are fixed based on the average results that were analysed in paragraph 

3.2.1. The training dataset device and testing dataset device will be selected based on the 

results seen in Table 41. Since most of the models tested in the previous analysis 

performed similarly, then the selection is not quite as straightforward. On account of 

uniformity, the same training and testing devices as in the anomaly detection analysis will 

be selected, meaning that both the training and testing data samples will be taken from 

the SimpleHome XCS7-1003-WHT data. The chosen fixed values are shown in Table 44. 

Table 44. Selected fixed values for feature selection dataset analysis for classification 

Training device SimpleHome XCS7-1003-WHT 
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Testing device SimpleHome XCS7-1003-WHT 

Feature selection algorithm Fisher’s score 

Power of the feature set 10 

Classification algorithm Decision Tree 

 

4.3.2 Comparison of classification models with different feature selection datasets 

With the other parameters given fixed values, the comparison and analysis of models 

where features were selected from different datasets can begin. Just like in section 3.2.2, 

the data will be divided into 5 different datasets and the same series of feature selection 

and classification methods will be carried out on the data. 

4.3.2.1 Benign data 

Here, the features were chosen from strictly benign data. The 10 best features that were 

selected by Fisher’s score from the data can be seen in Table 45. 

Table 45. Selected features for benign data by Fisher’s score 

MI_dir_L5_weight 

MI_dir_L5_mean 

MI_dir_L5_variance 

MI_dir_L3_weight 

MI_dir_L3_mean 

MI_dir_L3_variance 

MI_dir_L1_weight 

MI_dir_L1_mean 

MI_dir_L0.1_weight 

MI_dir_L0.1_mean 

 

From Table 45, all of the features from benign data that achieved the highest Fisher’s 

score belonged to the source MAC-IP (MI) category. The times varied a lot with every 

time-frame, other than the largest 1 min time-frame, getting selected at least twice. 

However, the method still seemed to prefer smaller time-frames with 100ms and 500ms 

getting chosen for three features. 

After the features had been selected, the Decision tree model was trained and evaluated 

to classify the records with now less features. The classification model results and the 

confusion matrix are seen in Table 46 and Table 47, respectively. 
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Table 46. Results for classification model with 10 features selected by Fisher’s score for benign data 

Accuracy Precision Recall F1-score Testing 

time per 

instance 

(μs) 

Training 

time per 

instance 

(μs) 

0.99933 0.99932 0.99933 0.99932 0.46776 0.04277 

 

Table 47. Confusion matrix for classification model with 10 features selected by Fisher’s score for benign 

data 

 Predicted benign Predicted Gafgyt Predicted Mirai 

Actual benign 73503 90 1 

Actual Gafgyt 39 73334 2 

Actual Mirai 8 9 73821 

 

The Decision tree model was able to correctly classify over 99.9% of the records from a 

dataset where the best features were chosen by Fisher’s score from benign data only. 

From the confusion matrix, the model misclassified just 149 records out of the total 

220807 data points.  

4.3.2.2 Benign and Gafgyt data balanced 

Here, the features were chosen from a mixed data of benign and Gafgyt records with equal 

amounts of both types of data. The 10 best features that were selected by Fisher’s score 

from the data can be seen in Table 48. 

Table 48. Selected features for balanced benign and Gafgyt data by Fisher’s score 

MI_dir_L0.01_variance 

H_L5_weight 

H_L5_mean 

H_L5_variance 

H_L3_weight 

H_L0.01_variance 

HH_L5_weight 

HH_L5_mean 

HH_L5_std 

HH_L5_magnitude 

 



81 

After adding Gafgyt data to the feature selection dataset, Fisher’s score resulted in highly 

different results. Unlike with the benign only data, this time a feature from the Source 

MAC-IP category was selected just once. Every other feature was chosen from either the 

Source IP or Channel category. Time wise the model clearly preferred smaller time-

frames for the most part with 7 out of 10 features coming from the smallest 100ms time-

frame. Contrary to that however, two features also got selected from the largest time-

frame. 

The classification model results and the confusion matrix are seen in Table 49 and Table 

50, respectively. 

Table 49. Results for classification model with 10 features selected by Fisher’s score for benign and 

Gafgyt balanced data 

Accuracy Precision Recall F1-score Testing 

time per 

instance 

(μs) 

Training 

time per 

instance 

(μs) 

0.99890 0.99890 0.99890 0.99890 0.45932 0.04610 

 

Table 50. Confusion matrix for classification model with 10 features selected by Fisher's score for benign 

and Gafgyt balanced data 

 Predicted benign Predicted Gafgyt Predicted Mirai 

Actual benign 73916 102 0 

Actual Gafgyt 63 73253 15 

Actual Mirai 8 56 73512 

 

From Table 49, after adding Gafgyt data to the feature selection dataset, the model 

became slightly less accurate. This time the Decision tree model achieved accuracy and 

f1-score of little under 99.9%. However, the accuracy was still high and only 244 records 

out of the total 220925 points got classified incorrectly. 

4.3.2.3 Benign and Gafgyt data unbalanced 

Here, the features were chosen from a mixed data of benign and Gafgyt records with more 

Gafgyt records available. The 10 best features that were selected by Fisher’s score from 

the data can be seen in Table 51. 
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Table 51. Selected features for unbalanced benign and Gafgyt data by Fisher’s score 

HH_L5_weight 

HH_L5_std 

HH_L5_radius 

HH_L5_pcc 

HH_L3_weight 

HH_L3_mean 

HH_L3_std 

HH_L3_magnitude 

HH_L3_radius 

HpHp_L0.01_pcc 

 

After biasing the dataset more towards Gafgyt data, the feature selection model started 

choosing features mainly from the Channel category with just one feature additionally 

getting selected from the Socket category. Time wise the results did not differ too much, 

and most features still came from smaller time-frames. The classification model results, 

and the confusion matrix are seen in Table 49 and Table 50, respectively. 

Table 52. Results for classification model with 10 features selected by Fisher's score for benign and 

Gafgyt unbalanced data 

Accuracy Precision Recall F1-score Testing 

time per 

instance 

(μs) 

Training 

time per 

instance 

(μs) 

0.85096 0.89623 0.85096 0.84870 0.43216 0.04385 

 

Table 53. Confusion matrix for classification model with 10 features selected by Fisher's score for benign 

and Gafgyt unbalanced data 

 Predicted benign Predicted Gafgyt Predicted Mirai 

Actual benign 69210 3266 1088 

Actual Gafgyt 90 66166 7155 

Actual Mirai 47 21247 52445 

 

With less benign data available during feature selection, the model achieved much worse 

results than with the previous two feature selection datasets. This time the model got 

accuracy and f1-score of approximately 85% compared to the near perfect scores of the 

previous models. Looking at the confusion matrix at Table 53, it appears that while the 
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model still did a decent job in correctly predicting benign data, where 99.8% (69210 out 

of 69347) of the records that got classified as benign were from benign data, then it failed 

to correctly classify the attack records. Overall, 32893 records out of the total of 220714 

cases were predicted incorrectly. 

4.3.2.4 Benign, Gafgyt and Mirai data balanced 

Here, the features were chosen from a mixed data of benign, Gafgyt and Mirai records 

with equal amounts of all types of data. The 10 best features that were selected by Fisher’s 

score from the data can be seen in Table 54. 

Table 54. Selected features for balanced benign, Gafgyt and Mirai data by Fisher’s score 

MI_dir_L0.01_variance 

H_L5_weight 

H_L5_mean 

H_L0.01_weight 

H_L0.01_mean 

H_L0.01_variance 

HH_L5_weight 

HH_L5_mean 

HH_L5_std 

HH_L5_magnitude 

 

With the addition of Mirai data, the feature selection method achieved very similar results 

to the balanced Benign and Gafgyt data balanced at 4.3.2.2. The selected features all came 

from the same categories and with similar time-frames. This time the selected features all 

belonged either to the smallest time-frame of 100ms or the largest time-frame of 1m. 

The Decision tree model results and the confusion matrix can be seen in Table 55 and 

Table 56. 

Table 55. Results for classification model with 10 features selected by Fisher's score for benign, Gafgyt 

and Mirai balanced data 

Accuracy Precision Recall F1-score Testing 

time per 

instance 

(μs) 

Training 

time per 

instance 

(μs) 

0.99933 0.99933 0.99933 0.99933 0.38905 0.03180 
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Table 56. Confusion matrix for classification model with 10 features selected by Fisher's score for benign, 

Gafgyt and Mirai balanced data 

 Predicted benign Predicted Gafgyt Predicted Mirai 

Actual benign 73604 101 6 

Actual Gafgyt 15 73677 3 

Actual Mirai 3 20 73328 

 

With a balanced dataset of benign, Gafgyt and Mirai records, the model achieved similar 

results to the benign only model. The accuracy and f1-score of the model are both over 

99.9%. From the confusion matrix, the model misclassified just 148 records out of the 

total 220757 data points. 

4.3.2.5 Benign, Gafgyt and Mirai data unbalanced 

Here, the features were chosen from a mixed data of benign, Gafgyt and Mirai records 

with more Gafgyt and Mirai records available. The 10 best features that were selected by 

Fisher’s score from the data can be seen in Table 57. 

Table 57. Selected features for unbalanced benign, Gafgyt and Mirai data by Fisher’s score 

HH_L5_weight 

HH_L5_std 

HH_L5_radius 

HH_L5_pcc 

HH_L3_weight 

HH_L3_mean 

HH_L3_std 

HH_L3_magnitude 

HH_L3_radius 

HpHp_L0.01_pcc 

 

With the last feature selection dataset, where all three types of data were present, but the 

data was more biased towards attack data, Fisher’s score selected exactly the same best 

features than it did with the unbalanced benign and Gafgyt dataset at 4.3.2.3. 

The classification model results and the confusion matrix are seen on Table 58 and Table 

59, respectively.  
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Table 58. Results for classification model with 10 features selected by Fisher's score for benign, Gafgyt 

and Mirai unbalanced data 

Accuracy Precision Recall F1-score Testing 

time per 

instance 

(μs) 

Training 

time per 

instance 

(μs) 

0.85042 0.89566 0.85076 0.84821 0.51478 0.04293 

 

Table 59. Confusion matrix for classification model with 10 features selected by Fisher’s score for 

benign, Gafgyt and Mirai data 

 Predicted benign Predicted Gafgyt Predicted Mirai 

Actual benign 69306 2879 1546 

Actual Gafgyt 95 63588 10090 

Actual Mirai 46 18362 54827 

 

Since the selected features were the same as they were in 4.3.2.3, then the overall 

accuracies and f1-scores did not differ by a large margin either and the model was able to 

correctly predict about 85% of the records. Slight differences did show up because of the 

randomness of the bootstrap method with 33018 records out of the total 220739 cases 

getting predicted incorrectly. 

4.3.3 Models summary 

In Table 60, the distribution of the best 10 features selected by different feature selection 

datasets according to their categories can be seen.  

Table 60. Distribution of the best 10 features selected from different feature selection datasets 

Category Benign Benign, 

gafgyt 

balanced 

Benign, 

gafgyt 

unbalanced 

Benign, 

gafgyt, 

mirai 

balanced 

Benign, 

gafgyt, 

mirai 

unbalanced 

Source IP  5  5  

Source 

MAC-IP 

10 1  1  

Channel  4 9 4 9 

Channel 

jitter 

     

Socket   1  1 
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As was discovered during the analysis, the addition of Mirai data did not affect the 

outcome of Fisher’s score feature selection method too much. Both the models based on 

the benign and Gafgyt as well as the benign, Gafgyt and Mirai datasets, selected features 

from the same categories. However, when comparing the selected features with the 

benign only model, then bigger differences can be seen. While from just benign data, all 

the most discriminating features came from the source MAC-IP category, then with the 

addition of attack data, the selected features started curving more towards other 

categories. With the balanced datasets, the features got mainly chosen from source IP and 

channel categories and with datasets more biased towards attack data, most of the features 

came from the channel category. 

The overall results of the five different models can be seen in Table 61. All the models 

were trained and evaluated on the same data with the only difference being the features 

the datasets had available. From the table, two distinct levels of models show up. The 

three models from which the features were selected from a balanced dataset achieved 

considerably higher results than the models where the dataset consisted of more attack 

data and less benign data. While the differences between the models based on the 

balanced datasets were not huge, then the benign only and the benign, Gafgyt, Mirai 

models were able to correctly classify just slightly more records than the benign and 

Gafgyt based model, of around 99.93% compared to 98.9% respectively. These results 

support the findings of [6], where it was discovered that the host- or source-based feature 

categories had the highest discriminatory powers. From the testing times, the 

classification model where the features were selected from a balanced dataset of all three 

types of data, managed to perform just slightly quicker than the rest. 

Table 61. Results for classification models with 10 features selected by Fisher's score from different data 

sample sets 

Feature selection 

data sample set 

Accuracy F1-score Testing time per 

instance (μs) 

Benign 0.99933 0.99932 0.46776 

Benign, gafgyt 

balanced 

0.99890 0.99890 0.45932 

Benign, gafgyt 

unbalanced 

0.85096 0.84870 0.43216 

Benign, gafgyt, mirai 

balanced 

0.99933 0.99933 0.38905 
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Benign, gafgyt, mirai 

unbalanced 

0.85042 0.84821 0.51478 

 

4.4 Feature selection algorithm analysis 

One part of the third, slightly smaller goal was to compare different feature selection 

algorithms for both supervised and unsupervised learning methods.  

4.4.1 Choosing the fixed values 

As it has been done with every other part of the analysis, first all parameters need to be 

given a fixed value. Most of the values, other than the feature selection dataset are taken 

from parts 4.2.1 and 4.3.1. Feature selection dataset selection is based on the results of 

4.2. From the analysis, it was found that the models which used feature selection datasets 

of just benign data and of all three types of data in balanced form achieved the best overall 

results. However, since benign-gafgyt-mirai-balanced data was already used during 

anomaly detection part of the analysis, then it will be selected here as well. The chosen 

fixed values are shown in Table 62. 

Table 62. Selected fixed values for classification algorithm analysis 

Training device SimpleHome XCS7-1003-WHT 

Testing device SimpleHome XCS7-1003-WHT 

Feature selection dataset Benign-gafgyt-mirai-balanced 

Power of the feature set 10 

Classification algorithm Decision tree 

 

4.4.2 Comparison of classification models with different feature selection algorithms 

After the other parameters have been given fixed values, the analysis of how different 

feature selection algorithms can affect the outcome of feature selection begins. In total, 

10 features are chosen by 5 different feature selection algorithms and the results of the 

output models are compared. Since four out of the five algorithms were already analysed 

more deeply in section 3.4.2 and the Fisher’s score output with the currently fixed 

parameters was already analysed in section 4.3.2.2, then the individual analysis of each 

model will be skipped here.  
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4.4.3 Models summary 

In Table 63, all the features that were selected by different feature selection algorithms 

can be seen and in Table 64, the distribution of the best 10 features are shown. 

Table 63. Features chosen by different feature selection algorithms for classification 

Entropy Variance Gini index Hopkins 

statistic 

Fisher’s score 

HH_L1_weigh

t 

HH_jit_L5_me

an 

MI_dir_L5_me

an 

HH_L5_radius MI_dir_L0.01

_variance 

HH_L1_std HH_jit_L5_var

iance 

MI_dir_L0.1_

mean 

HH_L5_covari

ance 

H_L5_weight 

HH_L1_radius HH_jit_L3_me

an 

MI_dir_L0.01

_mean 

HH_L3_radius H_L5_mean 

HH_L0.1_wei

ght 

HH_jit_L3_var

iance 

HH_L0.01_me

an 

HH_jit_L1_var

iance 

H_L0.01_weig

ht 

HH_L0.1_std HH_jit_L1_me

an 

HH_L0.01_ma

gnitude 

HH_jit_L0.01_

mean 

H_L0.01_mea

n 

HH_L0.1_radi

us 

HH_jit_L1_var

iance 

HH_jit_L5_me

an 

HpHp_L3_ma

gnitude 

H_L0.01_varia

nce 

HH_L0.01_std HH_jit_L0.1_

mean 

HH_jit_L3_me

an 

HpHp_L3_cov

ariance 

HH_L5_weigh

t 

HH_L0.01_rad

ius 

HH_jit_L0.1_v

ariance 

HH_jit_L1_me

an 

HpHp_L1_ma

gnitude 

HH_L5_mean 

HH_jit_L1_we

ight 

HH_jit_L0.01_

mean 

HH_jit_L0.1_

mean 

HpHp_L0.1_m

ean 

HH_L5_std 

HH_jit_L1_var

iance 

HH_jit_L0.01_

variance 

HH_jit_L0.01_

mean 

HpHp_L0.01_

magnitude 

HH_L5_magni

tude 

 

Table 64. Distribution of the best 10 features selected by different feature selection algorithms 

Category Entropy Variance Gini index Hopkins 

statistic 

Fisher’s 

score 

Source IP     5 

Source 

MAC-IP 

  3  1 

Channel 8  2 3 4 

Channel 

jitter 

2 10 5 2  

Socket    5  

 

From the tables, a specific difference between the unsupervised feature selection methods 

and the supervised Fisher’s score method can be seen. While for most of the unsupervised 
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algorithms the features got mainly selected from the channel and channel jitter categories 

with a few aberrations, then Fisher’s score was more biased towards the host-based 

categories. From the unsupervised methods, Gini index additionally selected 3 features 

from the source MAC-IP category and Hopkins statistic selected 5 features from the 

Socket category. From Table 63, time wise there were no very clear preferences in almost 

any of the methods. While variance, Gini index and Hopkins statistic selected features 

from every time-frame available, then entropy preferred mainly the larger time-frames 

and Fisher’s score both the smallest and the largest time-frames. 

The overall results of the different models can be seen in Table 65. From the table, most 

of the models were able to correctly classify over 97.5% of the data records with the only 

exception being the model where the features were selected by entropy. The entropy-

based model achieved an f1-score of only about 86%. Not only did the model perform 

considerably worse than the rest, but it also took the longest to make the predictions. From 

the other models, two methods stand out. These methods are the Fisher’s score based 

model, which classified over 99.9% of the records correctly and the Gini index based 

model, which was able to achieve even higher results than Fisher’s score. Both models 

also took the least amount of time during testing. Since both of the best performing feature 

selection algorithms were the only two that also selected some features from the source-

based categories, then that also confirms the findings in paragraph 4.3.2 and in [6], that 

the host- or source-based categories have the highest discriminatory powers. 

Table 65. Results for classification model with 10 features selected by different feature selection 

algorithms 

Feature selection 

method 

Accuracy F1-score Testing time per 

instance (μs) 

Entropy 0.86472 0.86017 0.73848 

Variance 0.97679 0.97607 0.63495 

Gini index 0.99948 0.99948 0.48106 

Hopkins statistic 0.98492 0.98463 0.56298 

Fisher’s score 0.99933 0.99933 0.38905 

 

4.5 Power of the feature set and classification algorithm analysis 

For the last part of the classification analysis, both two remaining parameters, power of the 

feature set and anomaly detection algorithm will be looked at together. 
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4.5.1 Choosing the fixed values 

Similarly to anomaly detection part of the analysis, every combination of feature set 

powers and classification algorithms will be analysed. Since the tests were ran with three 

different feature set sizes of 3, 5 and 10 and five different classification algorithms, then 

in total 15 different models will be analysed. Every other parameter will receive their 

fixed value from the previous tests. The chosen fixed values are shown in Table 66. 

Table 66. Selected fixed values for feature set powers and classification algorithm analysis 

Training device SimpleHome XCS7-1003-WHT 

Testing device SimpleHome XCS7-1003-WHT 

Feature selection dataset Benign-gafgyt-mirai-balanced 

Feature selection algorithm Fisher’s score 

 

4.5.2 Comparison of classification models with different feature set powers and 

classification algorithms 

For the feature set powers and the classification methods analysis, first from the sample 

set 3, 5 or 10 best features are selected based on the results of the chosen feature selection 

algorithm. The training and testing datasets are then reduced such that they only contain 

these selected features. These sets are then used to train and evaluate the particular 

classification models. In Table 67, the results of each power of the feature set and 

classification method combination can be seen. 

Table 67. Classification results for different feature set powers and classification algorithms 

Feature 

set 

power 

Classification 

algorithm 

Accuracy Precision Recall F1-score Training 

time per 

instance 

(μs) 

Testing 

time per 

instance 

(μs) 

3 Decision 

tree 

0.98217 0.98381 0.98222 0.98204 0.40755 0.07458 

5 Decision 

tree 

0.98559 0.98685 0.98558 0.98549 0.34533 0.04688 

10 Decision 

tree 

0.99933 0.99933 0.99933 0.99933 0.38905 0.03181 

3 Random 

forest 

0.99089 0.99105 0.99090 0.99089 118.625 17.658 

5 Random 

forest 

0.99165 0.99183 0.99165 0.99165 128.043 15.834 
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10 Random 

forest 

0.99941 0.99941 0.99941 0.99941 195.617 14.673 

3 KNN 0.99449 0.99452 0.99449 0.99449 1.9957 23.0596 

5 KNN 0.99809 0.99809 0.99809 0.99808 2.3268 24.4457 

10 KNN 0.99223 0.99235 0.99221 0.99223 2.0799 29.9754 

3 Adaboost 0.86299 0.87913 0.96321 0.86192 29.4285 4.0093 

5 Adaboost 0.88470 0.89520 0.88434 0.88257 31.0801 3.4887 

10 Adaboost 0.92389 0.93507 0.92380 0.91362 51.7763 3.6783 

3 MLP 0.86290 0.88626 0.96282 0.85500 63.7428 1.2550 

5 MLP 0.92161 0.93387 0.92152 0.92065 62.6586 1.3077 

10 MLP 0.98386 0.98515 0.98388 0.98379 50.4256 1.1012 

 

Looking at the results in Table 67, most of the methods achieved high 98%-99% 

accuracies and f1-scores with all of the feature set sizes. In the most part, having more 

features did cause the models to perform more accurately with the only exception of KNN 

model where the 10-feature model got slightly worse results than the 3 or 5 feature 

counterparts. The difference was not huge however, with the 10-feature model averaging 

at f1-score of 99.2% and 3 and 5 feature models at 99.4% and 99.8% respectively. 

When comparing the results classification algorithm wise, then two methods stand up 

from the rest, scoring moderately lower accuracies and f1-scores than the rest. For both 

Adaboost and the MLP classifier the 3-feature model was only able to correctly classify 

approximately 86% of the records compared to other methods 98%-99%. With higher 

feature set powers, the Adaboost and MLP models did get more accurate, achieving f1-

scores of 91.4% and 98.4% respectively, which however are still lower than for the rest 

of the methods. The results for the other methods stayed similar to each other with 10-

feature Random Forest model achieving the overall highest f1-score of 99.94%. 

Comparing the average times the different models took, the testing times do correlate 

with the overall average results found at Figure 18. The KNN algorithm took the longest 

to evaluate with all three feature set sizes, followed by Random Forest. By a large 

magnitude, the fastest algorithm was the single Decision tree working multiple hundreds 

of times quicker than the slowest KNN. It should be mentioned that the timings might 

vary a lot based on the parameters set for the models, such as the number of neighbors 

for KNN or the number of trees for Random Forest. In the current thesis, these parameters 

were set experimentally during the tuning phase of a model. For example, the current 
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Random forest classifier consists of a total of 400 trees and the KNN bases the predictions 

on 14 neighbors. Reducing these numbers could help speed up the models, without 

possibly affecting the results too much. While the KNN model achieved the worst timings 

during the testing phase, then it was the second fastest model to train, following Decision 

tree. The reason for this is the aforementioned lazy learning of KNN. The slowest method 

by far was Random forest which took multiple times longer to train than the second 

slowest MLP classifier. This again was mainly caused by the large number of trees the 

method consisted of and could possibly be reduced quite a bit.  

The results show that for effective IoT botnet prediction a variety of different 

classification methods can be used. Three of the five tested models provided effective 

results even with the smallest amounts of features and one model started getting similar 

accuracies to others with larger number of features. The only method from the current 

tests that achieved slightly lower results was Adaboost, but even that was able to correctly 

classify more records than the majority of the unsupervised methods. From the 

performance part, a single Decision tree provided to achieve fairly accurate results very 

fast and could be a great candidate for IoT botnet detection. Random forest was able to 

reduce the incorrectly classified results of a single Decision tree, but made the model take 

a longer time. Therefore, the Random forest classifier with smaller forest size than was 

currently tested could also be a good choice for IoT botnet detection. 
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5 Discussion 

In the study, many different supervised and unsupervised botnet detection models were 

trained, and their results analysed. The first part of the analysis covered finding the 

parameters that result in the overall best performing anomaly detection models and the 

second half of the thesis did the same for classification models. One of the main goals of 

the thesis was to find out how much does the presence of attack data during the feature 

selection phase of botnet detection models affect the features that get chosen and the 

accuracy of the anomaly detection and classification models. During anomaly detection 

analysis, Hopkins statistic was used to select the best features. Comparing the features 

that got selected from just benign data with features that got selected from benign and 

Gafgyt or benign, Gafgyt and Mirai data, showed that on the most part the best performing 

features stayed the same. The main difference was that with data which had higher 

percentage of attack data presence, more features got selected from channel category and 

less from channel jitter. The resulting anomaly detection models showed that while 

models where features were selected from benign only or from benign and Gafgyt data 

achieved similar results, then with the addition of Mirai data, the accuracies and f1-scores 

went up by a considerable margin. Testing times stayed similar along all the tests. 

The second goal was to compare models that were trained on just a single device with 

models that are trained on more than one machine. For this, three different models with 

the same parameters were trained for each device, one that was trained on the single 

device, one that was trained on multiple devices belonging to the same category and one 

that was trained on all devices. The result of the analysis was slightly unexpected, as for 

the most part, the combined models performed more accurately than models that were 

trained on just a single device. There were some exceptions, but this was true for the 

majority. The combined models also did so without negatively affecting the performance. 

Lastly, the thesis also compared the different remaining parameters of the models: the 

feature selection algorithms, powers of the feature set and anomaly detection and 

classification algorithms. For anomaly detection, the models which selected features 

based on the results of Gini index averaged in the most accurate results. It was followed 
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by Hopkins statistic and Variance. The worst performing models by a large margin used 

entropy as a mean of selecting features. From the list of features that every model selected, 

distinct feature selection methods selected the features from different feature categories. 

While Entropy and Hopkins statistic selected most of the features from the channel and 

channel jitter categories, then Variance chose features only from jitter. Gini index was 

the only one which skipped the jitter category and additionally took features from the 

host-based categories, indicating higher discriminatory powers of these categories.  

For selecting the best anomaly detection algorithm, three methods were looked at: One-

Class SVM, Isolation Forest and Local Outlier Factor. The analysis showed clear results 

of the Isolation Forest performing much better than the other two methods. The highest 

f1-score for IF was around 89.8% compared to 67% for SVM and 67.8% for LOF. In 

addition, IF was a lot faster than the others. The different powers of the feature sets had 

a unique effect to each different method. While for SVM not much changed regardless of 

the amount of features the data had, with LOF the training and testing times went up as 

more features were present. With the best performing IF method the 5-feature model 

resulted in the highest f1-score.  

After completing the analysis for the unsupervised anomaly detection methods, the same 

points were covered for the supervised classification models as well. During the feature 

selection dataset analysis, Fisher’s score was used to select the best features. With 

Fisher’s score most of the features that were selected from either the benign only dataset 

or either of the balanced datasets belonged to the host-based categories. For the remaining 

two, biased towards attack data datasets, all of the features were chosen from channel and 

socket categories. Additionally, it was seen that the addition of Mirai data did not affect 

the feature selection this time and the chosen features stayed the same as with benign and 

Gafgyt datasets. Overall, the classification models where features were selected from 

either benign only or balanced dataset were all able to correctly classify around 99.9% of 

the data records without differing too much from the performance perspective either. The 

models based on the unbalanced sets performed much worse of around 85% f1-score, 

indicating once more that the host-based features have higher discriminatory powers.  

When comparing models trained on a single device and models trained on multiple 

devices, then most of the resulting models were able to achieve high accuracy results 

regardless of the dataset used.  However, this time for the most part the single device 
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models did prove to be slightly more effective than the rest. These results were largely 

based on the device they were tested on, for some the difference between all-devices 

model and a single device model was miniscule and all the models were able to correctly 

predict over 99% of the records, while for others the single device model resulted in 

reasonably higher accuracies and f1-scores. Additionally, on the performance part, the 

single device models were able to classify records almost twice as fast as the other 

models. 

When comparing the feature selection algorithms, a similar trend to some of the previous 

results were seen. Out of the five tested feature selection methods, two of them, Gini 

index and Fisher’s score, selected at least some of the features from the host-based 

categories. The classification models based on those two methods were also the most 

accurate, scoring f1-scores of over 99%. Following them were the Hopkins statistic, 

variance, and entropy, which based models classified 98.5%, 97.6% and 86% of the 

records correctly, respectively. The two most accurate models were also the quickest. 

Unlike with anomaly detection, this time the feature set powers had an effect on almost 

all of the models results. For the most part, the higher feature set sizes were also able to 

correctly classify more records correctly without negatively affecting the performance. 

From the five tested classification algorithms, the Decision tree, Random forest and KNN 

models all achieved f1-scores of around 99.9%. From these, the decision tree models were 

by far the quickest, averaging about 350 times lower times than the next fastest random 

forest method. 

Overall, the tests showed that just having extra Gafgyt data available during feature 

selection compared to only benign data, does not affect the supervised and unsupervised 

learning models by a lot. However, after selecting the features based on all three types of 

data, the IF anomaly detection algorithm did get more accurate than the rest while for 

supervised classification the results stayed similar to the previous models.  

Additionally, the tests showed that it is possible to create common models for multiple 

devices without losing much accuracy. For anomaly detection, the more complex models 

proved to be even more accurate than the models trained on single devices while for 

classification the combined models did achieve slightly lower scores but depending on 

the device the model was tested against, these differences were often miniscule. However, 
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it was also seen, that these results can differ from device to device, meaning that this 

conclusion might not be true to every single IoT device. 

Lastly, for the feature selection, Hopkins statistic and Gini index were able to get the best 

results for anomaly detection and Gini index and Fisher’s score for classification. For the 

anomaly detection algorithm, isolation forest was able to perform much more accurately 

and much quicker than the rest, regardless of the number of features that were present. 

For classification, decision tree was by far the quickest to perform and achieved very high 

results for 10-feature model. If testing time is not as important of a factor, then both KNN 

and Random Forest were also able to get f1-scores of over 99.9% with longer times.  
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6 Future work 

While the thesis did cover many different sides of supervised and unsupervised IoT botnet 

detection models, there is a lot of future analysis that can be written on the topic. First, 

additionally to the results analysed in the thesis, many extra tests were carried out that 

were not deeply covered in the study. These tests covered all kinds of possible 

combinations of different methods and because of this the current analysis might not 

reflect the overall best models or results that work for every situation. The test results are 

all provided in Appendix 2  and future analysis can be based on the findings. 

In addition to the used models in the current analysis, more work can also be put into 

analysing deep learning and neural network models. The current thesis only touched the 

surface of the topic by analysing the MLP classifier but did not dive more deeply into it. 

While deep learning has been analysed and used in previous works, such as the bachelor 

thesis written in TalTech [43], which centered around using neural networks for IoT 

botnet detection, then to my knowledge, it has not been as extensively researched. 

On the power of the feature set size, the thesis only worked with features of size 3, 5 and 

10. While these sizes do not cover all the possibilities, then they did offer an overlook of 

some of the different magnitudes. More work could be put into analysing the different 

powers and narrowing the selection down to the absolute best windows of values, which 

give out the most accurate and quickest results. 

Lastly, currently the classification part of the analysis only differentiated between three 

types of data: benign, Gafgyt and Mirai. In addition to this, the initial data was divided 

into different attack types, as described in section 2.1. It could be useful to expand the 

analysis further in the future to be able to additionally classify the records based on what 

type of attack it tries to carry out, as that might help in deciding what protective measures 

need to be taken.  
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7 Conclusion 

In the present thesis, an extensive analysis of thousands of different supervised and 

unsupervised IoT botnet detection models was carried out and highly promising results 

were seen. The analysis showed that with the use of feature selection it is possible to 

reduce the complexity of the dataset and the overall cost of botnet detection models while 

still maintaining highly accurate models. It was shown that while the selected features did 

differ depending on how much benign, Gafgyt and Mirai was initially available, then for 

the most part less complex dataset models were still able to produce substantial results 

for both supervised and unsupervised methods. 

Secondly, the paper did find out that creating combined models that are trained on more 

than one device are able to achieve highly accurate detection rates while reducing the 

maintenance costs of the models. Depending on the devices and methods that were used 

for botnet detection, the combined models often produced even greater results than their 

single-device counterparts. 

Lastly, the analysis covered many different feature selection algorithms, powers of the 

feature sets and anomaly detection and classification algorithms to find the best 

performing and lowest computational cost models. 
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