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1  Introduction 
Modern manufacturing systems continue to face persistent inefficiencies due to 
misalignment between production logistics and real-time workstation needs. Although 
Industry 4.0 has introduced digital tools such as manufacturing execution systems (MES), 
Internet of Things (IoT) sensors, and digital twins (DT), their industrial use often remains 
limited to monitoring or offline analysis rather than real-time control. Many factories, 
therefore, struggle with issues such as delayed material delivery, unstable buffer levels, 
frequent micro-stoppages, and unpredictable throughput. These challenges were 
consistently observed across the industrial use cases addressed in this dissertation, 
including chemical, food, metal, wood, and apparel manufacturing. As companies move 
toward Industry 5.0, the need for adaptive, autonomous, and human-centric coordination 
mechanisms becomes even more critical. This context provides the foundation for the 
decentralized AI-driven control model developed in this research.  

The motivation for addressing these challenges also stems from the author’s extensive 
hands-on experience with industrial digitalization projects, where recurring inefficiencies—
such as materials and intermediate products failing to reach workstations on time—
regularly caused delays and performance bottlenecks [1]. Observing these patterns in 
practice revealed the gap between available digital technologies and their actual use in 
production control, emphasizing the need for a more adaptive and intelligent system that 
can respond to real-time shop-floor conditions. This practical perspective directly 
inspired the development of a control approach that combines digital optimization 
methods with real-time performance signals through decentralized, AI-enhanced 
decision-making. 

The integration of intelligent digital control systems into modern manufacturing has 
become a strategic focus under the Industry 5.0 framework [2]. Unlike Industry 4.0, 
which mainly emphasizes automation and data sharing, Industry 5.0 prioritizes 
human-centricity, flexibility, and the use of artificial intelligence (AI) to support both 
machine and human decision-making [3,4]. One of the primary operational challenges in 
industrial settings is inefficient coordination between production logistics and real-time 
shop-floor operations, which often results in workstation downtime, uneven workloads, 
and reduced throughput [5,6]. These coordination issues are frequently caused by rigid, 
top-down scheduling systems that fail to accommodate the dynamic nature of actual 
production environments. To overcome these challenges, lean manufacturing principles—
such as waste reduction, flow enhancement, and standardization-provide a core 
philosophy for identifying and eliminating inefficiencies in logistics and production 
alignment [7,8].  

To effectively address these inefficiencies, it is crucial to understand the complex 
interactions between logistics scheduling, real-time decision-making, and production 
system responsiveness. Figure 1 positions this research within the Industry 5.0 landscape 
by demonstrating how digital twins serve as the real-time data backbone, how 
decentralized control enables autonomous local decision-making, and how AI-powered 
reasoning links these elements into an adaptive, responsive production system. 
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Figure 1. Key enabling technologies of Industry 5.0 [6]. 
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The development process for this research was systematically organized using the 
Define, Measure, Analyze, Improve, and Control (DMAIC) methodology, a fundamental 
part of the Lean Six Sigma approach, which provides a structured, data-driven 
improvement cycle applied throughout this work [9]. Applying DMAIC during the design 
and validation phases kept a consistent cycle of problem identification, solution 
development, and empirical feedback. This method ensured that each step, from data 
collection to system testing, was based on real operational needs and performance 
analysis [10]. 

The primary goal of this doctoral research is to develop and implement a decentralized, 
AI-driven control model for production processes that enables adaptive, autonomous 
coordination between production logistics and shop-floor operations. The proposed 
model incorporates digital twin technology, real-time data analytics, and autonomous 
agent-based decision logic to ensure continuous material flow and balanced workstation 
performance. By synchronizing logistics operations with the dynamic needs of production, 
the system improves Overall Equipment Effectiveness (OEE), reduces throughput time, 
and enhances flexibility and resilience across the manufacturing network [11]. This 
approach aligns with Industry 5.0’s strategic goals by focusing on human-centricity 
through real-time decision support for operators, coupled with intelligent automation 
and sustainable productivity in industrial settings. 

The main tasks of the thesis are as follows: 

• To design a modular, distributed architecture in which each production
entity (workstation, buffer, or transport unit) functions as an autonomous
decision-making agent within the production network.

• To employ real-time production data and AI algorithms for analyzing material
flow, detecting bottlenecks, and optimizing task allocation through decentralized
control logic.

• To integrate and validate the developed model in both simulation and
industrial environments through digital-twin-based case studies, demonstrating 
its effectiveness in improving OEE and production flow stability.

The research methodology encompasses digital twin modeling [12], OEE-based 
performance tracking [13], agent-based and clustering analysis [14], and simulation of 
intralogistics using autonomous mobile robots (AMRs)  [15]. A data-driven approach 
is applied throughout the work, using real-world production data collected from 
collaborating industrial companies. The model is validated using both virtual simulations 
and real-life factory applications. Both Lean principles and the DMAIC cycle were directly 
integrated into the model design and evaluation criteria. For instance, the system aims 
to reduce waste by decreasing workstation idle times, preventing overproduction 
through just-in-time material supply, and standardizing logistics operations using 
autonomous mobile robots guided by real-time data and AI logic. 

The thesis’s theoretical novelty lies in the concept of integrating decentralized AI with 
logistics and production control logic. Unlike traditional MES, which enforces fixed 
production routing and restricts decision-making to a central authority, the proposed 
system uses autonomous decentralized control, allowing each node (workstation, buffer, 
or transport unit) to operate independently with local information, while still ensuring 
coordinated flow throughout the network system [16]. The practical innovation is 
demonstrated through five industrial use case studies (chemical, food, metal, wood, 
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apparel), showing that AI-supported autonomous agents can collectively enhance flow 
stability, decrease idle time, and deliver actionable performance feedback [17]. Early 
research established the virtual factory and data-acquisition backbone (Publications I 
and V), providing the foundation for Task 1 – Designing the digital twin model. Mid-phase 
studies validated AMR coordination and KPI-driven control in simulation (Publications II, 
III, and VI), directly supporting Task 3 – Simulating with AMRs. Publication IV contributed 
to Task 2 – Developing AI-based control logic by refining the decentralized optimization 
model. Late-stage work deployed the DIMUSA platform in SMEs (Publications VII and VIII), 
completing Task 4 – Validating in production through real industrial implementation. 
Together, these publications create a coherent progression from architectural 
development to simulation and industrial validation, fulfilling the thesis research tasks 
and anchoring the contribution in real operational settings.  

The results of this research show that the proposed decentralized model successfully 
decreased workstation idle time, stabilized overall equipment effectiveness (OEE), and 
improved responsiveness across all tested cases. The research questions were explored 
through both simulation and industrial validation, confirming the approach's practical 
viability. At the same time, the work recognizes limitations related to data quality, legacy 
system integration, and the gap between simulation and real-world implementation, 
which provide clear directions for future research. 

The results of this research have been shared at international conferences and 
published in peer-reviewed scientific journals. This thesis is based on eight publications. 
Together, these publications provide the scientific and empirical foundation for the 
proposed system. 

1.1 Motivation and Significance 
The manufacturing industry is undergoing a significant transformation, increasingly 
influenced by the Industry 5.0 paradigm- a human-centric, sustainable, and resilient 
approach to industrial development. Unlike its predecessor, Industry 4.0, which focused 
on automation and connectivity, Industry 5.0 shifts the industrial strategy to prioritize 
people and the planet in innovation, integrating advanced technologies with societal 
purpose [18,19]. This represents a strategic transition within the Industry 5.0 framework, 
aiming to align industrial competitiveness with long-term goals such as ecological 
balance, inclusive economic growth, and quality employment, thereby redefining 
technology's role as a means to achieve sustainable societal value. To operationalize this 
vision, manufacturing systems must evolve from centralized automation toward 
intelligent, adaptive networks of interconnected agents. Figure 1 illustrates the key 
enabling technologies that support this transformation, including AI, digital twins, 
collaborative robots (cobots), and edge computing. These technologies enable production 
systems to become more autonomous, context-aware, and human-aligned. 

However, despite this paradigm shift, recent analysis shows that the European Union 
is currently trailing behind global competitors, such as the United States and China, in 
developing and deploying many of these critical technologies. As illustrated in Figure 2, 
the EU holds comparatively lower leadership shares in fields such as artificial intelligence 
(AI), cybersecurity, and innovative manufacturing technologies. This technological gap 
presents a clear call to action: for Europe to secure its industrial future and ensure quality 
employment, targeted innovation in Industry 5.0 enablers must become a strategic 
priority [18].  
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Figure 2.Relative technological leadership in Industry 5.0 domains across global regions. The green 
segment represents the EU  [18]. 
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Despite advances in digitalization, many factories continue to suffer from a persistent 
bottleneck: the misalignment between logistics flows and the dynamic needs of 
workstations. Material shortages, transportation delays, and unbalanced workflows 
often result in idle time and reduced operational efficiency. Traditional centralized 
control systems frequently lack the responsiveness to manage these real-time 
fluctuations effectively [20,21]. This challenge highlights the need for more flexible and 
responsive coordination mechanisms that can maintain stable production flow and 
minimize the impact of real-time disruptions on throughput and workstation performance. 
The research draws upon the author’s practical experience in industrial digitalization 
projects, where recurring inefficiencies in material flow and production coordination 
were observed. The research draws on the author’s practical experience in industrial 
digitalization projects, where ongoing inefficiencies in material flow and production 
coordination were observed. While individual technological components—such as AMRs, 
AI-based decision support, real-time OEE monitoring, and digital twins—exist, their 
isolated use has been insufficient to achieve a stable, adaptive production flow. What 
remains missing, and what this thesis addresses, is an integrated approach where these 
components work together within a coherent decentralized control model supported by 
real-time digital twins, Industry 5.0 principles, and the structured DMAIC improvement 
cycle. 

The proposed approach is especially relevant today as manufacturers look for 
solutions that go beyond basic automation. It enables systems to adapt in real time, 
operate autonomously, and improve sustainability and resilience. By treating each 
production component—workstations, buffers, and transport units—as an autonomous 
decision-making agent connected through a digital twin and guided by OEE-based 
feedback, the model supports a flexible and resilient production environment aligned 
with the main goals of Industry 5.0. 

1.2 Research Objectives and Questions 
The main goal of this doctoral research is to develop and implement a decentralized, 
AI-driven control model for production processes that enables adaptive, autonomous 
coordination between production logistics and shop-floor operations. The proposed 
system combines digital twin technology, real-time performance data, and AI to ensure 
continuous material flow and balanced workstation performance. By synchronizing 
inbound and outbound logistics with evolving production needs, the model aims to 
enhance throughput, improve OEE, and increase system-wide flexibility and resilience in 
modern manufacturing environments. This overarching goal aligns with the vision of 
Industry 5.0, which integrates intelligent automation with human-centricity, sustainability, 
and adaptive decision-making. 

Based on this research aim, the following research questions are formulated: 

• RQ1: How can a decentralized, AI-driven control model improve the coordination
between production logistics and shop floor operations in dynamic manufacturing
environments?

• RQ2: What impact does such a model have on workstation efficiency, OEE, and
overall throughput time?

• RQ3: How can real-time data from digital twins be used to assign logistics tasks
to a mobile robot dynamically?
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In support of validation and performance measurement, a quantitative research 
question is also introduced: 

• RQ4 (quantitative): To what extent can the proposed system reduce
workstation idle time (%) and improve average throughput time (min)
compared to baseline logistics coordination?

To address these questions, the thesis defines the following research tasks: 

• Task 1 – Design a digital twin model of a production system with modular and
real-time data interfaces.

• Task 2 – Develop AI-based decentralized control logic enabling autonomous
decision-making based on local contextual data.

• Task 3 – Simulate and test logistics scenarios using AMRs, allowing evaluation
of alternative coordination strategies under controlled conditions.

• Task 4 – Validate the model in real industrial environments and evaluate its
impact on throughput and workstation-level OEE.

• Task 5 – Synthesize results into a generalized framework for adaptive and
scalable production logistics control.

The relationship between the research questions (RQ) and the defined research tasks 
is summarized in Table 1, and further elaborated in Chapter 4 through cross-publication 
analysis. Each task contributes to answering one or more research questions, ensuring 
comprehensive coverage of both conceptual and practical aspects of the proposed system. 

Table 1. Mapping of research tasks to research questions. 

RESEARCH TASK RQ1 RQ2 RQ3 RQ4 PUBLICATION 

TASK 1: DESIGN A DIGITAL TWIN MODEL ✔ ✔ I, V 
TASK 2: DEVELOP AI-BASED CONTROL LOGIC ✔ ✔ IV, VI 
TASK 3: SIMULATE WITH AMRs ✔ ✔ ✔ II, III, VI 
TASK 4: VALIDATE IN PRODUCTION ✔ ✔ ✔ VII, VIII 
TASK 5: SYNTHESIZE INTO A MODEL ✔ - 

By organizing the research around these objectives, questions, and tasks, the thesis 
guarantees a systematic approach to creating and assessing a decentralized production 
digital optimization and control model system.  

1.3 Scope and Limitations 
This doctoral research focuses on integrating intelligent digital optimization and control 
models with production optimization in discrete manufacturing settings. The study 
emphasizes shop-floor operations, where coordinating material transport with workstation 
readiness is crucial to maintaining continuous flow and high operational efficiency.  

Four key elements define the thesis: 

• Development of a decentralized control architecture based on digital twins
and AI.

• Application of autonomous mobile robots (AMRs) to manage intralogistics
tasks at the workstation level.



18 

• Performance assessment through indicators such as OEE, workstation idle
time, and throughput time.

• Validation across real-world use cases and industrial pilots across the
chemical, food, wood, apparel, and metalworking industries.

Several limitations are also acknowledged. The proposed model is specifically designed 
for discrete manufacturing and may not be suitable for continuous or batch processing 
industries. Successful implementation depends on structured, real-time production data, 
which is often lacking in legacy systems. The research does not address enterprise-wide 
planning tools, such as Enterprise Resource Planning (ERP) or MES, beyond their role as 
interfaces with the digital twin infrastructure. Moreover, while the model supports AI-
based local decision-making, global system-wide optimization across multiple factories 
is outside its scope. Lastly, the validation scenarios involve only a few partner companies 
and may not fully represent the diversity of the entire manufacturing sector. 

To provide clarity, the main boundaries of the study are summarized in Table 2, which 
highlights the areas included in the scope and those explicitly excluded. 

Table 2. Scope and limitations of the research. 

In Scope Out of Scope 
Decentralized control model Enterprise-wide ERP/MES 
AI-based local decision-making Global optimization across factories 
Digital twins for real-time data Process industry applications 
AMRs for intralogistics Legacy data integration challenges 
Validation in real factories Large-scale generalization 

This focused scope enables an in-depth investigation of decentralized, AI-driven 
production control and its practical feasibility. At the same time, it outlines clear 
boundaries for the model's applicability and identifies areas where future research is 
needed, particularly in extending scalability and interoperability to broader industrial 
domains and multi-line production systems. 

1.4 Research Methodology Overview 
This doctoral research employs a mixed-method approach that combines design science, 
simulation modeling, and empirical validation in industrial settings. The main goal is not 
only to develop a theoretical framework but also to iteratively design, implement, and 
evaluate a decentralized control model that enhances synchronization between 
production logistics and shop floor operations. To accomplish this, the research utilizes 
a set of complementary methodological components, each addressing a key aspect of 
the development process. These components ensure that the proposed model is both 
conceptually rigorous and practically applicable. 

The methodology consists of the following key elements: 

• Digital Twin Modeling: Virtual replicas of the production environment are
created to reflect real-time operational conditions, including workstation
statuses, buffer levels, and material routes. These models are constructed using 
3D simulation tools and factory-specific data inputs.
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• Data Acquisition and OEE Tracking: Real-time data is collected from production 
systems to calculate key performance indicators (KPIs) such as availability,
performance, and quality. Besides supporting continuous performance
monitoring and OEE-based decision-making, this real-time data stream also
constantly updates and strengthens the digital twin, ensuring its virtual state
accurately reflects the physical production environment.

• AI-Based Decentralized Control: Autonomous agents-representing machines,
buffers, or mobile robots-make localized decisions based on AI logic. These
include rule-based heuristics, clustering algorithms, and feedback loops to
support adaptive coordination.

• Simulation-Based Testing: Various logistics scenarios are tested in a controlled
simulation environment to explore system behavior under different workloads,
identify bottlenecks, and optimize task allocation strategies.

• Validation in Industrial Case Studies: The proposed model is tested and
evaluated in real-world manufacturing settings, encompassing the chemical,
food, wood, apparel, and metalworking industries. Performance improvements
are quantified by comparing baseline results (manual or centralized
coordination) with those of the AI-based system.

• Cross-Publication Synthesis: Insights from 8 peer-reviewed scientific publications
are consolidated into a validated framework. Each article addresses specific
elements of the architecture, including model design, algorithm development,
and industrial deployment.

Each of these elements serves a specific purpose in the research process: digital twins 
act as a testing environment for model design, data collection ensures decisions are 
based on evidence, AI logic enables autonomy and flexibility, simulation provides a 
controlled setting for evaluation, and industrial validation connects the results to 
real-world practice. 

The research methodology follows an iterative and practice-oriented cycle, as 
illustrated in Figure 3. 
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Figure 3. The research methodology cycle and DMAIC integration were employed in the dissertation 
(T. Raamets). 

In addition to the core methodological elements, the research process is structured 
around the DMAIC cycle, which provides a systematic framework for iterative 
development and validation. Originating from Six Sigma, DMAIC ensures that problem 
identification, solution development, and empirical testing follow a disciplined and 
repeatable process [22,23]. Applying this cycle kept the research closely aligned with 
both industrial needs and academic rigor, ensuring that improvements remained 
continuously grounded in measurable results. In the Define phase, the primary 
challenges in production logistics were identified, including material shortages, idle time, 
and unbalanced workflows. This was followed by establishing clear transformation 
objectives in collaboration with industrial partners. The Measure phase focused on 
collecting real-time production data—such as workstation idle times, transport delays, 
and OEE losses—to establish a quantitative baseline of existing inefficiencies. During the 
Analyze phase, simulation experiments and clustering techniques were used to identify 
bottlenecks, systemic weaknesses, and opportunities for improvement within the 
production process. The Improve phase involved designing and refining AI-based 
decentralized control logic, testing alternative coordination strategies in digital twin 
environments, and selecting the most effective solutions for deployment. Finally, 
the Control phase validated the improved system in industrial pilot studies, ensuring 
sustained performance improvements through continuous monitoring, feedback loops, 
and adaptive reconfiguration. By embedding DMAIC into the research methodology, 
the work ensures that each stage of system development—from conceptualization 
to industrial validation—follows a structured improvement cycle. This enhances both 
the credibility of the research findings and their practical applicability in real-world 
manufacturing environments. 
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1.5 Scientific and Practical Novelty 
The novelty of this doctoral research lies in the design and implementation of a 
decentralized, AI-driven control architecture that integrates digital twin technology with 
real-time production logistics, enabling more adaptive, efficient, and resilient 
manufacturing processes. Unlike conventional centralized systems, the proposed 
approach empowers each production element-such as workstations, buffers, and 
autonomous transport units-to act as an autonomous decision-making agent while still 
contributing to system-wide efficiency [24,25]. A further contribution lies in transforming 
extended OEE from a retrospective performance indicator into a real-time control signal 
that dynamically triggers decentralized logistics actions, providing a new mechanism for 
synchronizing production flow with actual workstation conditions. 

From a scientific perspective, this work makes several distinct contributions to the 
academic field: 

• Integration of digital twins with mobile robots – enabling dynamic adaptation
to local production conditions, a capability that remains underexplored in previous
research and broadens current understanding of cyber-physical logistics systems.
• Clustering analysis combined with real-time OEE tracking – Introducing an
interpretable, data-driven system for detecting bottlenecks, optimizing workstation
flow, and guiding decentralized operations decision-making.
• A modular simulation model – Combining digital twin modeling with AI-based
control logic to assess decentralized logistics scenarios before physical deployment,
thereby enhancing design science methodology in manufacturing research.
• Integration of Design Science, digital twin simulation, DMAIC structuring, and
industrial validation into a unified methodological framework – creates a clear,
iterative process for developing, testing, and refining decentralized AI-driven
control systems. This combined approach has not been previously applied in
research on autonomous production logistics, making it a novel methodological
contribution of this dissertation.
• A theoretical contribution to distributed manufacturing control – aligning
decentralized system design with the principles of Industry 5.0, including resilience,
adaptability, and human–machine collaboration.

In addition to these scientific advances, the integration of the proposed DMAIC- and 
Industry 5.0–based technological backbone into real-world production environments 
enables several practical benefits and innovations: 

• Industrial validation across multiple domains – including chemical, food, wood, 
apparel, and metalworking industries, demonstrating robustness and adaptability 
under heterogeneous operational conditions.
• Improved operational performance – including measurable reductions in idle
time, improved workstation uptime, increased throughput consistency, and
smoother logistics–production synchronization supported by AMR coordination.
• Real-time decision support for operators – delivering interpretable insights
through OEE-driven triggers, clustering-based diagnostics, and digital twin
visualizations that enhance human decision-making consistent with Industry 5.0’s 
human-centric principles.
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• A scalable and cost-efficient pathway for SMEs – enabling gradual digitalization 
without demanding replacement of existing MES or ERP systems, thereby
supporting wider industry adoption of intelligent decentralized control.

The technical implementation details behind these contributions are presented in 
Chapters 3 and 4, where the digital twin architecture, DIMUSA data pipeline [26], 
clustering workflow, and AI-based decision logic are described in depth. Their practical 
application and validation are further demonstrated in Publications I–VIII. Specifically, 
the digital twin and data-acquisition architecture are detailed in Publications I and V, the 
simulation and AMR intralogistics analysis in Publications II, III, and VI, the AI-based 
control logic in Publication IV, and the full industrial validation in Publications VII and VIII. 
The combination of these scientific and practical contributions demonstrates that the 
research is not only conceptually novel but also relevant for real-world manufacturing. 
The results show that decentralized, AI-enhanced decision-making can simultaneously 
advance theoretical knowledge and deliver tangible benefits in industrial environments. 
A summary of the key scientific and practical novelties is provided in Table 3. 

Table 3. Summary of scientific and practical novelties. 

Scientific Novelty Practical Novelty 
Integration of digital twins with a mobile 
robot for localized adaptation 

Validated in apparel and wood industry 
use cases 

Use of clustering and real-time OEE 
tracking for decision-making 

Improved workstation uptime and 
throughput time using AMR coordination 

Modular simulation combining digital 
twins and AI control logic 

Real-time feedback for human decision-
makers 

Integration of Design Science, digital 
twin simulation, DMAIC structuring, and 
industrial validation into a unified 
methodological framework 

Provides a structured and scalable 
implementation pathway that supports 
incremental adoption in real factories 

Theoretical contribution to distributed 
control in Industry 5.0 context 

Scalable solution suitable for SME 
implementation 

The proposed method enhances theoretical understanding of decentralized, AI-driven 
production control and demonstrates tangible benefits in industrial settings. This dual 
focus highlights the dissertation's substantial contribution to advancing intelligent 
manufacturing systems, aligning with the broader objectives of sustainable, resilient, and 
human-centered production within the Industry 5.0 framework. 

1.6 Structure of the Thesis 
This doctoral thesis is organized into five main chapters, each contributing to the 
development, validation, and synthesis of a decentralized digital control model for 
production logistics within the Industry 5.0 framework. The structure follows a logical 
progression from problem definition and theoretical grounding to methodological 
design, empirical validation, and synthesis of findings. 
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The thesis is based on eight scientific publications organized into three thematic clusters: 
(1) conceptual and architectural foundations—Publications I and V; (2) simulation-based
design and optimization—Publications II, III, and VI; and (3) industrial validation—
Publications IV, VII, and VIII. Together, these works create a comprehensive foundation
that connects theory, simulation, and practice, thereby supporting the overall research
framework presented in this dissertation.

The structure of the thesis is illustrated in Figure 4, showing the progression from 
conceptual foundations through methodology and case-based validation to a generalized 
model and conclusions. 

Figure 4. Structure of the doctoral thesis. 

Additionally, the thesis includes a list of publications, a statement of the author’s 
contributions, abbreviations, references, and an Estonian-language summary. The chosen 
structure provides a coherent narrative flow: it begins with the identification of research 
problems and theoretical foundations, progresses through the systematic development 
and validation of the proposed model, and concludes with its broader implications. This 
organization guarantees both conceptual rigor and practical relevance, while providing 
readers with a clear overview of how the research objectives are consistently met.  
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2 Theoretical Background 
The development of a decentralized, AI-supported digital optimization and control model 
for innovative manufacturing environments necessitates a multidisciplinary theoretical 
foundation. This chapter outlines the key concepts, technologies, and frameworks that 
inform and support the approach proposed in this dissertation. It begins with an 
exploration of the Industry 5.0 paradigm, which redefines industrial progress by shifting 
focus from automation and efficiency alone toward human-centricity, resilience, and 
sustainability [27]. Within this context, smart manufacturing emerges as a response to 
the growing demand for production systems that are flexible, adaptable, and aligned 
with societal objectives. Subsequent sections introduce the core technological and 
methodological building blocks relevant to modern manufacturing research: production 
logistics and throughput time management, OEE, the role of AMRs in distributed logistics, 
the use of DT for real-time monitoring and simulation, and AI techniques used for 
dynamic decision-making and optimization. Each subchapter outlines the operational 
challenges faced by contemporary factories and summarizes how existing research 
addresses these issues through distributed intelligence, autonomous systems, and 
real-time data integration. 

The application of these technologies within the specific decentralized control model 
developed in this dissertation is described later in Chapters 3 and 4, ensuring that the 
present chapter focuses solely on the theoretical background and state of the art. 

2.1 Industry 5.0 and Smart Manufacturing 
Industry 5.0 represents the next evolution of industrial development, building on the 
technological foundations of Industry 4.0 while reintroducing the human element into 
advanced manufacturing. While Industry 4.0 emphasized automation, digitization, and 
cyber-physical systems, Industry 5.0 seeks to establish systems that are not only efficient 
and data-driven but also sustainable, resilient, and human-centric [28,29]. Whereas 
Industry 4.0 primarily focused on cyber-physical integration, automation, and data-driven 
optimization, Industry 5.0 extends this paradigm by explicitly addressing societal and 
human-oriented goals. It marks a shift from technology-driven transformation toward 
purpose-driven industrial ecosystems, where resilience, sustainability, and human 
empowerment become equally important alongside productivity. This evolution highlights 
not only technological advancement but also the strategic reorientation of manufacturing 
toward long-term societal value. The European Commission defines Industry 5.0 as a 
vision in which technological advancements serve broader societal goals, aligning 
productivity with worker well-being and environmental responsibility [30]. This 
encompasses integrating technologies such as artificial intelligence (AI), digital twins, 
and collaborative robotics, which not only optimize production but also foster adaptable 
processes that empower human workers to be more effective. The three foundational 
principles of Industry 5.0 are human-centricity, resilience, and sustainability [31]. 
As illustrated in Figure 5, Industry 5.0 promotes talent and empowerment, ensures 
adaptability and robustness through flexible technologies, and respects environmental 
limits while advancing sustainability. 
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Key principles of Industry 5.0 include: 

• Human-centricity: Systems are designed to support human workers, providing
decision support, customization, and ergonomic features that enhance user
experience.

• Resilience: Production systems must be able to adapt to disruptions, such as
supply chain volatility or rapid market changes.

• Sustainability: Emphasis is placed on reducing waste, improving energy efficiency, 
and designing circular production models that minimize environmental impact.

The human-centric dimension of Industry 5.0 goes beyond ensuring worker safety and 
well-being. It emphasizes co-creation of value, where human operators and intelligent 
systems collaborate in decision-making. In this context, artificial intelligence functions as 
a co-pilot rather than a replacement, augmenting human skills with predictive insights 
and adaptive support. This principle ensures that technological development empowers 
rather than displaces the workforce, thereby reinforcing the human role in smart 
factories. 

Figure 5. Core values of Industry 5.0 [31]. 

In the context of smart manufacturing, these principles are operationalized through 
the collection of real-time data, predictive analytics, and autonomous systems that 
respond to dynamic conditions. Innovative manufacturing environments rely heavily on 
intelligent control systems that integrate information from various sources—machines, 
sensors, and humans—and act upon it in near real-time [32]. 
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Figure 6. Schematic diagram of the components of a smart factory [32]. 

The principles of Industry 5.0 are clearly reflected in the model presented in this 
dissertation. Resilience is achieved through decentralized, agent-based decision-making 
that enables production systems to respond quickly to disruptions. Sustainability is 
emphasized by optimizing resource use, reducing idle time, and minimizing unnecessary 
transportation through AI-driven logistics coordination. Human-centricity is supported 
via the system’s Smart Services layer (as shown in Figure 6), which offers operators 
real-time performance feedback, visual analytics, and decision support tools. This approach 
ensures that humans remain central to supervision, interpretation, and strategic 
management. Therefore, the dissertation advances not only the technological foundation 
of Industry 5.0 but also its broader societal objectives. 

  The contribution to Industry 5.0 involves demonstrating how digital twins and AI can 
be used to implement decentralized, disturbance-responsive control on real shop floors. 
This is illustrated through tangible improvements in material flow synchronization across 
the industrial use cases. 

2.2 Lean Manufacturing Principles 
Lean manufacturing is a philosophy and systematic approach to improving production 
efficiency by eliminating waste, optimizing value streams, and continuously improving 
work processes [33]. Originating from the Toyota Production System, Lean principles 
have become a foundational framework for operational excellence across various 
manufacturing sectors [34]. Lean manufacturing provides not only a philosophy of 
efficiency but also a structured set of principles that directly address inefficiencies in 
production and logistics. For this research, Lean principles are not considered in isolation, 
but as a framework that can be integrated with digital technologies such as DT, OEE, and 
AMRs. This integration allows Lean thinking to evolve from a primarily organizational 
philosophy into a digitally supported, data-driven methodology that supports real-time 
decision-making and decentralized logistics control [35]. In particular, five core Lean 
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principles form the foundation for structuring the proposed model, including: value 
identification, which defines what truly creates value from the customer’s perspective; 
value stream mapping, which analyzes and visualizes every step of the production 
process to eliminate non-value-adding activities; flow optimization, aimed at ensuring a 
smooth and continuous production flow by reducing waiting times and bottlenecks; 
pull-based systems, which focus on producing only what is needed, when it is needed, 
thereby minimizing inventory and overproduction; and finally, the pursuit of perfection, 
which establishes a culture of continuous improvement (Kaizen) across all organizational 
levels. Central to Lean manufacturing is the reduction of waste, which is classified into 
eight categories: defects, overproduction, waiting, non-utilized talent, transportation, 
inventory, motion, and extra processing.  

  In the context of this research, several Lean principles are embedded within the 
decentralized digital logistics system through the integration of AMRs, digital twins, and 
OEE-based monitoring. Within the proposed model, waste reduction is achieved by 
minimizing idle time and unnecessary transport movements, which are automatically 
detected and addressed through real-time feedback from the digital twin; flow 
optimization is supported by AMRs that dynamically respond to production needs, 
ensuring just-in-time material delivery and minimizing workstation waiting times; 
standardization is established via agent-based digital twins, which apply consistent logic 
in requesting and executing logistics tasks; and continuous improvement is sustained 
through OEE tracking, which highlights losses in availability, performance, and quality, 
providing data for iterative process optimization and enhancement. 

Table 4 illustrates how key Lean principles are mapped to elements of the proposed 
digital optimization and control system. 

Table 4. Mapping of Lean principles to the optimization and control model. 

Lean Principle Digital Logistics Implementation 
Waste reduction Real-time identification of transport and idle-time 

inefficiencies via OEE and digital twin monitoring 
Flow optimization AMRs autonomously coordinate material delivery to 

ensure uninterrupted production flow. 
Standardization Digital twin agents use predefined control logic and 

communication protocols. 
Pull-based operations Workstations initiate logistics requests based on real-

time production needs. 
Continuous improvement OEE-based analytics provide feedback loops for system 

tuning and improvement. 

While Lean principles have been applied in digital manufacturing contexts before, 
previous research has typically focused on centralized scheduling, predefined rules, 
or standalone analytics tools [36]. Few studies combine Lean flow principles with a 
decentralized, agent-based logistics system that responds to real-time OEE signals and 
digital twin feedback. The innovation in this dissertation is operationalizing Lean 
principles—such as waste reduction, pull-based flow, and continuous improvement—
within a distributed, AI-supported control model in which workstations and logistics units 
function as autonomous agents. This approach extends traditional Lean methods by 
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enabling real-time, data-driven responses that adapt dynamically to disruptions and 
variability on the shop floor. 

By integrating Lean principles into the digital optimization and control model, 
the research ensures that the system stays focused on value creation, continuous flow, 
and waste reduction, even as new technologies are introduced. The synergy between 
Lean thinking and digital tools, such as AMRs, digital twins, and AI-based decision logic, 
enables production systems to respond more quickly, manage resources more effectively, 
and sustain long-term improvements [37]. Therefore, the Lean framework is not only 
aligned with the goals of Industry 5.0 but also offers a practical structure for embedding 
waste reduction, flow optimization, and continuous improvement into the proposed 
decentralized control system. 

2.3 Production Logistics and Throughput Time 
Production logistics plays a critical role in ensuring the smooth, continuous flow of 
materials, components, and finished goods throughout the manufacturing process. 
It involves the planning, execution, and control of all intralogistics activities, including the 
supply of raw materials to workstations, handling of intermediate products, and movement 
of finished goods within the factory [38,39]. 

One of the key performance indicators in production logistics is throughput time, the 
total time it takes a product to move through the entire production process, from the 
release of raw materials to the completion of the final product. Throughput time is 
directly influenced by factors such as material availability, workstation readiness, 
transport system responsiveness, and task coordination [40,41]. 

To precisely analyze and improve production logistics efficiency, throughput time (TT) 
must be clearly defined and monitored. Throughput time is the total elapsed time 
required for a product to pass through the entire production system—from the release 
of raw materials to the completion of the finished product. This metric is crucial for 
identifying bottlenecks and inefficiencies in both production and intralogistics flow[42]. 

Throughput can be expressed with the following formula: 

𝑇𝑇𝑇𝑇  =  𝑇𝑇process   +  𝑇𝑇quality  +  𝑇𝑇transport  +  𝑇𝑇waiting  (2.1) 

In Equation (2.1) [43]  𝑇𝑇𝑝𝑝 Is process time, 𝑇𝑇𝑞𝑞 Is quality inspection time, 
𝑇𝑇𝑡𝑡 Is transportation time, and 𝑇𝑇𝑤𝑤 It is the waiting time.  

This decomposition enables more targeted analysis and optimization of each 
component in the total time. 

In traditional production systems, logistics planning is often centralized and 
prescheduled, resulting in inflexible operations that struggle to adapt to disturbances on 
the shop floor [44].  

Common issues in traditional production systems include delayed material delivery 
or removal, which leads to idle workstations; overloaded buffers, which obstruct 
transport systems and reduce process visibility; and bottlenecks arising from misaligned 
timing between production and logistics activities [45,46]. 
     These inefficiencies not only increase throughput time but also negatively impact OEE, 
which reflects how well a manufacturing system utilizes its resources in terms of 
availability, performance, and quality. 
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To address these challenges, modern production systems increasingly adopt real-time, 
decentralized logistics control, where decisions about material flow are made dynamically 
based on current conditions. In such systems, each production unit (such as a workstation 
or AMR) functions as an intelligent agent capable of communicating its needs, monitoring 
local status, and independently requesting or executing logistics actions [47]. 

This thesis builds on this concept by proposing a decentralized digital optimization and 
control model supported by digital twins and artificial intelligence [48]. The goal is to 
reduce idle time at workstations, minimize transport delays, and ultimately improve 
throughput time. By combining real-time data with autonomous control, the system 
enables more responsive and balanced production flows, which are essential for 
high-performance Industry 5.0 environments. 

2.4 Overall Equipment Effectiveness (OEE) 
OEE is one of the most widely recognized performance indicators in manufacturing, 
providing a quantitative measure of how effectively a production system utilizes its 
resources [49]. Initially introduced by Seiichi Nakajima as part of the Total Productive 
Maintenance (TPM) framework in the 1980s, OEE has since evolved into a global 
benchmark for assessing production efficiency across industries [50,51]. The metric 
combines three dimensions-availability, performance, and quality-into a single index that 
highlights both technical and organizational losses. Availability reflects the proportion of 
scheduled time the equipment is operational; performance measures the actual output 
speed relative to the designed capacity; and quality accounts for the ratio of good units 
produced relative to the total [52]. By capturing these aspects simultaneously, OEE 
provides a comprehensive view of equipment utilization and productivity bottlenecks 
[53,54]. 

It is calculated as the product of three core components: 

• Availability: The percentage of scheduled time that the equipment is
available for production (i.e., no breakdowns or waiting for materials).

• Performance: The speed at which the process operates as a percentage of its
designed capacity.

• Quality: The proportion of good units produced out of the total output.

Equation (2.2)  [55] is typically expressed as: 

𝑂𝑂𝑂𝑂𝑂𝑂 = (𝐴𝐴) × (𝑃𝑃) × (𝑄𝑄)  (2.2) 
 

Where, 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) =
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
(2.3) 

Performance(P)  =
Actual amount of production

Planned amount of production 
(2.4) 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄(𝑄𝑄) =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
(2.5) 
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It is particularly relevant in high-mix, low-volume environments, where frequent 
changeovers and material-handling disruptions significantly affect productivity [56,57]. 
Traditional OEE implementations, however, focus mainly on machines or production 
lines and often overlook logistics-induced downtime [58].  

In the proposed control model, OEE values are calculated in real time at the 
workstation level and used as an active control signal. For example, when availability 
drops due to missing input materials, an urgent transport request can be triggered to an 
AMR. Similarly, if buffers are full, OEE feedback can reprioritize AMR tasks to remove 
excess items. By embedding OEE into the decision-making loop, the system transforms 
the metric from a retrospective performance measure into a dynamic driver of 
decentralized optimization. 

The application of dynamic, data-driven OEE calculations facilitates intelligent 
decision-making and adaptive logistics flow control, aligning with the decentralized 
architecture advocated in Industry 5.0 systems. Moreover, by integrating OEE feedback 
directly into the control loop, the system can continuously self-optimize, proactively 
address bottlenecks, and maximize workstation utilization. 

To highlight the conceptual differences, Table 5 compares the traditional OEE 
calculation with the extended OEE approach developed in this research, which explicitly 
integrates logistics-related downtime and real-time data into the metric. 

Table 5. Comparison of Traditional OEE and Extended OEE (logistics-inclusive). 

Aspect Traditional OEE Extended OEE in this research 

Scope Machine or production line Workstation + logistics units 
(AMRs, buffers) 

 

Data basis Equipment uptime and quality 
metrics 

Real-time OEE + transport status + 
buffer conditions 

Focus Retrospective efficiency 
analysis 

Proactive logistics-driven control 
signal 

Bottleneck 
coverage 

Breakdowns, speed losses, 
quality defects 

Includes logistics delays, waiting, 
and congestion 

Application KPI for monitoring and 
improvement programs 

Real-time optimization of 
intralogistics and flow 

As shown in Table 5, the extended OEE not only measures equipment efficiency but 
also functions as a control signal for decentralized logistics coordination, making it a 
cornerstone of the proposed optimization model. OEE decomposes losses into availability, 
performance, and quality. In discrete manufacturing, the largest share of availability loss 
frequently originates from logistics-induced starvation and blocking (i.e., empty input 
buffers and full output buffers). Treating OEE as a live signal, therefore, provides a direct 
control handle for intralogistics: when availability drops due to input starvation, an AMR 
mission is triggered; when blocking is detected, it is removed as a priority. In this way, 
OEE ceases to be a retrospective KPI and becomes a proactive driver for AMR task 
generation and routing. 

 By integrating OEE into the digital twin and AI-driven architecture, the research aligns 
with Industry 5.0 principles of adaptability, resilience, and human-centricity. The dynamic 
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application of OEE not only improves equipment utilization but also enhances material 
flow coordination, making it a cornerstone of decentralized production control and a 
practical enabler for Industry 5.0 logistics optimization. 

2.5 Autonomous Mobile Robots (AMRs) in Manufacturing 
AMRs have emerged as a key enabler of flexible and intelligent material handling in 
modern manufacturing environments [59]. Unlike Automated Guided Vehicles (AGVs), 
which follow predefined paths, AMRs use onboard sensors, cameras, and AI algorithms 
to dynamically navigate factory floors, avoid obstacles, and make autonomous routing 
decisions [60]. These features make them well-suited to modern manufacturing 
environments characterized by frequent layout changes and variable tasks. 

Figure 7 shows the AMRs applied in this research for simulation and experimental 
validation. 

Figure 7. Examples of Autonomous Mobile Robots (AMRs) used in research and industrial case 
studies: a) Boxbot (TalTech prototype), b) MiR100, c) Robotnik RB-2, d) Robotino. 

The adoption of AMRs is particularly relevant in discrete manufacturing, where 
production volumes, product variants, and layout configurations change frequently. 
AMRs offer a scalable, adaptable alternative to traditional conveyor systems or manual 
transport, enabling just-in-time (JIT) delivery of materials and parts without extensive 
infrastructure [61]. 
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Key benefits of AMRs in production logistics include: 

• Decentralized decision-making: AMRs can assess their current environment
and make routing or task decisions independently,

• Real-time responsiveness: They can reprioritize tasks or reroute based on
live conditions (e.g., workstation status or transport congestion),

• Flexible task allocation: AMRs can be assigned dynamically to pick up, deliver,
or transfer goods as needed,

• Reduced downtime: Intelligent coordination between AMRs and workstations
can help minimize idle time due to delayed deliveries or full buffers.

In this research, AMRs are used as mobile agents within a decentralized digital control 
system. Each AMR functions as both an executor and a decision-maker, receiving input 
from digital twins and OEE monitoring to determine where and when to deliver or pick 
up materials. Unlike traditional centralized dispatching, the agent-based approach 
enables each AMR to evaluate multiple requests simultaneously, negotiate task priorities, 
and independently adapt to changing shop floor conditions [62]. Several of the industrial 
case studies presented in this dissertation, especially those in the food manufacturing 
sector, demonstrate how AMRs contribute to notable improvements in throughput, 
workstation availability, and resource efficiency [63,64]. Integrating AMRs with lean-
inspired scheduling reduced idle time and improved the balance between material inflow 
and outflow, confirming their effectiveness in high-variance production environments 
[65]. An additional example of the simulation data used in this research is provided in 
Appendix 9. The proposed system extends beyond simple dispatching by incorporating 
AI-based coordination logic that enables AMRs to dynamically adjust their routes, 
reprioritize deliveries, and share real-time status information with workstations. This 
capability is strengthened by their integration with digital twin platforms, which simulate 
congestion risks, buffer status, and material demand in advance, allowing for predictive 
rather than purely reactive decision-making [66]. 

Furthermore, simulation environments were created to assess AMR performance 
under different load conditions, energy limits, and control strategies. These simulations 
not only guided model adjustments but also provided insights into safety issues, task 
allocation efficiency, and resilience in the face of unexpected disturbances [67]. Such 
testing confirmed that decentralized coordination enhances scalability and decreases 
dependence on rigid pre-planned schedules. The integration of AMRs as autonomous 
control units within the digital twin architecture enables decentralized task execution 
and real-time coordination across the production system. Their behavior is synchronized 
with the digital twin, ensuring that transport tasks are assigned based on current system 
conditions without relying on centralized scheduling. The practical application of these 
principles in the industrial case studies of this dissertation is presented in Chapters 3 and 4. 

2.6 Digital Twins and Simulation-Based Optimization 
DTs are virtual representations of physical assets, systems, or processes that are 
continuously synchronized with real-world data. Unlike traditional simulation models, 
which are static and primarily used for offline analysis, modern DTs are dynamic, 
predictive, and adaptive, enabling real-time closed-loop optimization of manufacturing 
processes [68]. 
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In manufacturing, DTs serve multiple roles: they enable scenario testing without 
disrupting actual production, provide real-time transparency into machine and logistics 
states, and support predictive decision-making [69]. When combined with advanced AI 
algorithms, DTs evolve from passive replicas into active decision-support systems, 
capable of optimizing resource allocation, scheduling, and flow control [70,71]. 
    The digital twin concept enables simulation and forecasting, allowing virtual models to 
test alternative scenarios and predict the impact of changes without disrupting real 
production. Through real-time synchronization, the digital twin continuously receives live 
data from the shop floor, accurately reflecting the current state of machines, workstations, 
and logistics flows. This integration supports closed-loop optimization, enabling 
control systems to act on insights from the digital twin to dynamically adjust and 
improve operations in real time. As illustrated in Figure 8, the Deloitte Digital Twin [72] 
model conceptualizes the bidirectional interaction between the physical and digital 
environments, emphasizing continuous data exchange and analytics-driven optimization. 

Figure 8. Deloitte Digital Twin model [72]. 

In this research, DTs were developed to model workstations, buffers, and autonomous 
mobile robots (AMRs) as intelligent agents, each with local control logic. This agent-based 
representation contrasts with traditional hierarchical MES, enabling decentralized 
decision-making that improves responsiveness, scalability, and fault tolerance. 
The simulation-based optimization framework further enables the evaluation of 
logistics strategies, buffer sizing, and AMR routing under varying workloads, before 
implementation in real factories. Each element in the production system-whether 
a machine, workstation, or robot-is modeled as an autonomous agent within a digital 
twin framework. These agents operate under agent-based control logic, allowing them 
to make local decisions based on real-time status and input. They communicate and 
coordinate with other agents—for example, by requesting material delivery or reporting 
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idle time—and collectively enhance overall system efficiency through distributed 
intelligence and adaptive interaction. 

The digital twin platform developed in this research serves both as a monitoring tool 
and a simulation environment for validating logistics coordination strategies. Combined 
with real-time OEE tracking and AI algorithms, it forms the technological backbone of the 
decentralized production control system proposed in this dissertation. Beyond monitoring, 
the platform embodies the evolution of digital twins into adaptive and predictive 
systems. It enables proactive logistics planning, energy-efficient scheduling, and 
continuous flow optimization, while also supporting operators through improved 
transparency and decision support. The integration of digital twins and agent-based 
control enables the creation of intelligent production systems that can autonomously 
respond to unexpected events like machine failures or material delays, continuously 
optimize operations with live data, and reduce the need for human intervention in 
routine tasks decision-making. 

In this way, the platform not only enhances decentralized coordination but also 
demonstrates the principles of Industry 5.0, such as adaptability, resilience, and 
human-machine collaboration. 

2.7 Artificial Intelligence in Decentralized Control 
Artificial Intelligence (AI) has become a central enabler of the evolution of modern 
manufacturing systems. In production control, AI enhances decision-making, automates 
complex tasks, and enables systems to learn and adapt based on both historical and 
real-time data [73]. Compared to rule-based or deterministic systems, AI-driven control 
enables the prediction of bottlenecks before they occur, optimizes scheduling and task 
allocation, learns from historical performance, and allows for localized, autonomous 
decisions even under uncertain or incomplete information [74]. In recent years, several 
dominant trends have shaped the application of AI in manufacturing [75]. Predictive 
analytics and anomaly detection are increasingly used to anticipate disturbances and 
improve system resilience [76,77]. Optimization techniques, including combinatorial 
Dijkstra’s algorithm, heuristic and metaheuristic methods such as genetic algorithms 
(GAs), and ant colony optimization (ACO), are applied to material flow and AMR routing 
problems [78,79]. Meanwhile, clustering and classification approaches, such as k-means 
and DBSCAN, support interpretable diagnostics by identifying patterns in systemic 
inefficiencies [80,81]. In addition, recent studies emphasize that modern production 
environments increasingly rely on heterogeneous, distributed data sources, which must 
be integrated into a unified decision-making framework to enable decentralized 
intelligence [82]. Such findings reinforce the need for AI-driven control architectures 
capable of operating on fragmented, multi-layered, and dynamically changing datasets. 
These trends provide the theoretical foundation for this research, in which AI is 
embedded not as a centralized optimizer but as independent agents operating within a 
decentralized control architecture. 

Logistics Agents 

Logistics agents are responsible for coordinating material flow using AMRs. Each agent 
evaluates local conditions: task urgency, workstation buffer status, and AMR availability. 
It assigns missions according to a weighted cost function in Equation (2.6) [83]: 

 f(i, j) = α ⋅ 𝑑𝑑(i, j) + β ⋅ 𝑡𝑡j + γ ⋅ 𝑜𝑜j  (2.6) 
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Where 𝑑𝑑(𝑖𝑖, 𝑗𝑗) is the travel distance of the AMR 𝑖𝑖 to the workstation 𝑗𝑗, and 𝑡𝑡𝑗𝑗 is task 
urgency derived from idle-time signals, and 𝑜𝑜𝑗𝑗  is the operational load of the workstation 
𝑗𝑗.  

 To compute the shortest path corresponding to the distance component 𝑑𝑑(𝑖𝑖, 𝑗𝑗), 
a classical Dijkstra algorithm was used. Given a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) of navigation nodes and 
weighted edges, Dijkstra’s method (2.7) [84] determines the minimum-cost path by 
iteratively relaxing edges according to: 

D(v) =   𝑚𝑚𝑚𝑚n� D(v),   D(u) +  w(u, v)� (2.7) 

Where 𝐷𝐷(𝑣𝑣) is the shortest known distance from the source node to the node  v, w(u, v) 
is the weight (time or distance) of the edge (u,v) and 𝑢𝑢 predecessor node currently 
under evaluation. The algorithm proceeds by initializing 𝐷𝐷(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 0 and all others 
𝐷𝐷(𝑣𝑣) = ∞ , then extracting nodes from a priority queue ordered by current distance. All 
outgoing edges are relaxed until the shortest path tree is complete. As described in 
Publication VI, Dijkstra provides a favourable balance between computational efficiency 
and routing accuracy in dynamic factory environments [85]. Its time complexity is 
expressed as: 

𝑂𝑂(𝐸𝐸 + 𝑁𝑁 log𝑁𝑁) (2.8) 

Where 𝑁𝑁 is the number of navigation nodes and 𝐸𝐸 the number of edges in the graph. 
Simulation studies demonstrated that a Dijkstra-based path search provided the best 
balance between computational efficiency and responsiveness in dynamic factory 
environments, outperforming more complex metaheuristics such as GA and ACO in 
terms of real-time applicability [86,87]. 

OEE Monitoring Agents 

As introduced in Section 2.4, OEE is a comprehensive measure that combines availability, 
performance, and quality. In this research, OEE is extended from a retrospective KPI to 
an active control signal. Each workstation agent continuously monitors its OEE, 
particularly availability losses related to logistics delays. 

To make these signals actionable, clustering methods were applied to both historical 
and real-time OEE datasets. Using k-means clustering, workstations were grouped into 
categories such as stable, bottleneck-prone, or underutilized: 

𝐸𝐸 =  ���|𝑥𝑥 −  𝜇𝜇𝑖𝑖|�
2

𝑥𝑥∈𝑆𝑆𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 (2.9) 

In Equation (2.9) [88], 𝐸𝐸 denotes the objective function measuring the total  
within-cluster variance. 𝑆𝑆𝑖𝑖 represents the set of data points belonging to the cluster 𝑖𝑖, 
and 𝜇𝜇𝑖𝑖 is the centroid (mean vector) of the cluster 𝑖𝑖 . |𝑆𝑆𝑖𝑖| indicates the number of data 
points in the cluster 𝑖𝑖, and �|𝑥𝑥 −  𝜇𝜇𝑖𝑖|� denotes the Euclidean distance between a data 
point 𝑥𝑥 and its cluster centroid.  

 𝜇𝜇𝑖𝑖 =  �
1

|𝑆𝑆𝑖𝑖|
�� 𝑥𝑥
𝑥𝑥∈𝑆𝑆𝑖𝑖

 (2.10) 

In Equation (2.10), the centroid  𝜇𝜇𝑖𝑖 of the cluster 𝑖𝑖 is calculated as the mean of all data 
points assigned to that cluster. 
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To improve robustness, DBSCAN was used to filter anomalies and irregular downtime 
patterns. These clusters provided interpretable triggers for logistics agents-for example, 
if a group of stations exhibited recurring availability losses, AMR tasks were reprioritized 
accordingly. This transformation of OEE from a monitoring tool to a real-time decision 
input was validated in an apparel industry case study [89]. 

Contribution to Throughput Improvement 

As described in Section 2.3, throughput time (TT) is a key metric for evaluating the 
efficiency of production flow. The integration of AI-based logistics and OEE agents 
contributes directly to TT reduction by: 

• decreasing workstation idle time through just-in-time material supply,
• balancing workloads across stations using clustering-based insights,
• reducing transport delays through adaptive AMR task allocation.

The combined effect is improved flow stability and higher overall OEE across the 
production network. 

Justification of Selected AI Approaches 

The chosen algorithms and control strategies were selected according to three main 
criteria: 

• Industrial feasibility: Computationally efficient and interpretable methods
(Dijkstra for routing, k-means for clustering) were favored over complex black-
box models.

• Adaptability: Weighted cost functions and clustering-based thresholds support
real-time adjustment under variable conditions.

• Transparency: OEE-based triggers and interpretable clusters provide actionable 
and explainable feedback to human operators, strengthening trust in AI-driven
decisions.

By integrating AI agents within a decentralized control framework, the system 
facilitates real-time coordination between logistics and workstation monitoring. Logistics 
agents assign AMR tasks based on local conditions, while OEE agents deliver ongoing 
performance signals that guide task prioritization. The selected algorithms—Dijkstra for 
routing and k-means for clustering—were chosen for their computational efficiency and 
transparency, ensuring appropriateness for real-time industrial applications environments. 
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3 Development and Implementation of a Decentralized 
AI-Driven Control Model for Production Processes 
The research methodology defines the systematic approach used to design, develop, and 
validate the proposed decentralized control model. Since the aim of this dissertation is 
not only to advance theoretical understanding but also to demonstrate practical 
applicability in industrial environments, the methodology combines design science 
research, simulation-based testing, and empirical case studies.  The development steps 
described in this chapter build directly on the results and methods presented in 
Publications I–VIII, with each subsection clarifying the specific contribution of the 
respective papers. This mixed-method approach ensures both conceptual rigor and 
industrial relevance.  

 The design science perspective was chosen because the central contribution of this 
work is an artifact—a digital optimization and control model that must be iteratively 
developed, implemented, and evaluated. Simulation environments offer a controlled 
setting for developing and evaluating alternative coordination strategies, while industrial 
case studies facilitate their implementation and validation under real operating conditions. 

 The methodology is also structured around the DMAIC cycle, which provides a 
disciplined framework for iterative improvement. Each phase corresponds to specific 
research tasks, from problem definition and data collection to the development of 
AI-based decision logic and its validation in real factories. This cyclical structure ensures 
that the results are systematically refined based on empirical feedback and industrial 
requirements. 

By combining these elements-design science, digital twin simulation, DMAIC structuring, 
and industrial validation- the research methodology creates a clear foundation for 
reaching the main goal of this thesis: to develop and apply a decentralized AI-based 
control system that enhances synchronization between production logistics and shop 
floor operations. 

3.1 Research Design 
The research employs a design science methodology supported by empirical case studies 
and simulation-based validation. Its goal is to create a decentralized control model for 
production logistics and assess its performance in both digital and physical 
manufacturing settings. Design science offers the framework for developing and 
improving the artifact—integrating digital twins, agent-based logic, and AI-driven 
decision support—while the DMAIC cycle ensures a systematic progression from 
problem identification to model refinement validation.  Requirement analysis in this 
research was grounded in real industrial contexts. The system requirements were derived 
from discrete manufacturing processes across the chemical, food, wood, apparel, and 
metal industries. In these environments, recurring bottlenecks in material supply and 
removal were observed, highlighting the need for modular, real-time, and autonomous 
control mechanisms to reduce idle time and throughput delays. These requirements 
guided the selection of digital twins, autonomous agents, and AI algorithms as the main 
enabling technologies for the proposed control model.  

As part of the research design, the concept of the Virtual Factory (VF) was applied and 
tested in the chemical industry, focusing on real-time data acquisition and planning using 
simulation models. The VF represents an early version of the digital twin concept, serving 
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as a virtual environment for testing production behaviors, layout choices, and planning 
scenarios before implementation in the physical factory. In this study, the VF laid the 
groundwork for subsequent digital twin development, enabling integrated monitoring of 
production units, evaluating throughput, lead times, and resource use, and guiding 
sensor placement and data collection strategies before physical deployment [90]. This 
approach demonstrated how digital twins can support the alignment of logistics and 
production processes at an early design stage, ensuring that control mechanisms are 
virtually validated before deployment in real industrial environments.  In addition to the 
Virtual Factory concept, the DIMUSA platform is introduced in the methodology as the 
primary system for real-time data acquisition, processing, and visualization. While its 
technical details are discussed later in Chapters 3.3 and 4, it is mentioned here for clarity, 
as DIMUSA served as the main data integration layer across the industrial use cases. This 
ensured that machine states, OEE metrics, workstation events, and AMR task logs could 
be reliably synchronized with the digital twin models and the decentralized control logic. 
The developed production line model, illustrated in Figure 9, shows how AMRs were 
integrated into the VF to simulate material flow between workstations and warehouses. 
This model provided the first empirical basis for testing data-driven logistics coordination 
in a controlled digital environment. 

Figure 9. Virtual factory model of a chemical industry production unit, used for real-time data 
acquisition and simulation of production logistics (adapted from Publication I). 

Each of the eight publications that form the basis of this thesis contributed a specific 
perspective, ranging from simulation-based analysis to industrial validation, allowing 
both conceptual clarity and practical relevance to emerge from the overall research 
process. Together, these publications follow the logic of the DMAIC and design science 
methodologies: early papers address the Define, Measure, and Analyze stages through 
data acquisition and simulation (Publications I–III), mid-stage works contribute to 
solution development and improvement through the design and refinement of control 
logic (Publications IV–VI), and the final papers validate the implemented system in 
industrial settings, aligning with the Improve and Control phases (Publications VII–VIII). 
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 This structured research design ensured that each phase of the study built directly on 
the outcomes of the previous one. Problem identification and requirement analysis 
grounded the work in real industrial challenges, while model development and 
simulation created a safe environment for iterative testing. The subsequent validation in 
industrial case studies confirmed the model’s applicability under practical constraints. 
Finally, the synthesis phase integrated findings from all case studies, resulting in a 
generalized framework for decentralized control. 

By combining design science with simulation-driven analysis and empirical validation, 
the methodology strikes a balance between scientific rigor and industrial relevance. This 
approach not only enabled the creation of a novel decentralized AI-based control system 
but also ensured that the solution is transferable, scalable, and aligned with the strategic 
principles of Industry 5.0. The following sections (3.2–3.6) provide a detailed description 
of the data sources, modeling tools, validation scenarios, and performance indicators 
used to implement this research design. 

General System Architecture 

Based on this foundation, a general system architecture was developed to support 
decentralized, AI-driven production logistics. As illustrated in Figure 10, the architecture 
integrates three interconnected layers: (1) the real-time data layer, (2) the AI-based 
analysis layer, and (3) the virtual-factory simulation layer. Together, these components 
provide a unified digital twin framework for synchronizing physical operations with 
analytical and simulation-based decision support. 

Figure 10. Developed framework for the agent-based digital twin architecture, combining process 
data, virtual factory simulations, and AI-based analysis to support real-time optimization (adapted 
from Publication VIII). 

The architecture is organized into three interconnected layers: 

• (1) Real-time data layer (DIMUSA). This layer gathers workstation states,
buffer levels, AMR positions, and process events through the DIMUSA
connectors. The resulting data stream ensures synchronization between
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physical and digital assets and supports downstream analytics and simulation 
workflows. Interfaces with MES and sensor infrastructures enable seamless 
integration into existing industrial systems environments. 

• (2) AI-based analysis layer. This layer provides analytical capabilities for
monitoring system conditions and supporting decentralized control decisions.
It includes performance-tracking components, data-driven diagnostic tools
(e.g., clustering), and interfaces to agent-based logic described later in
Section 3.4. Although it does not execute decisions at this level, this layer
provides the information required by the autonomous agents.

• (3) Virtual-factory simulation layer. The virtual factory models workstation
behaviour, buffer dynamics, AMR movements, and material flows. It enables
scenario testing, early validation of design choices, and iterative refinement
of the control logic prior to deployment in real environments.

Through the interaction of these three layers, the system operates as a decentralized 
architecture where each production unit can function independently while contributing 
to coordinated system-level performance. The virtual-factory pilot developed for the 
chemical industry provided an initial environment for testing data-acquisition workflows 
and assessing the early versions of the digital-twin components before full deployment. 

3.2 Digital Twin Architecture and Modeling Tools 
At the core of the proposed system lies a modular digital twin architecture that 
represents each physical component of the production system—such as workstations, 
buffers, and AMRs—as a virtual agent with embedded logic. This architecture enables 
decentralized control and real-time decision-making by combining live data streams with 
simulation models and AI-based algorithms. Earlier studies in the chemical industry 
demonstrated how the Virtual Factory concept could serve as a foundation for such 
modeling (Case A – Chemical industry), while later implementations in the wood and 
apparel industries validated its scalability and adaptability (Case D – Wood industry and 
Case E – Apparel industry). 

The digital twin framework is structured into three layers (Figure 10). The data layer 
collects real-time sensor information, including machine states, buffer levels, and AMR 
locations. The virtual model layer mirrors the current state of each physical object, 
providing a continuously updated representation of the production system. In addition 
to these, the control logic layer includes decision-making mechanisms implemented as 
rule-based logic or AI algorithms. This separation of concerns provides flexibility, allowing 
individual layers to be updated or replaced without disrupting the overall architecture. 

Within this framework, different types of agents assume specific roles and 
responsibilities. Workstation agents continuously monitor their OEE, detect waiting 
states such as material shortages or blocked buffers, and trigger appropriate requests. 
AMR agents manage transport tasks by receiving and prioritizing requests, navigating 
dynamically based on real-time floor conditions, and reporting their status back to the 
system. Buffer agents are responsible for tracking capacity levels and forecasting 
potential congestion, coordinating with both upstream and downstream units to 
maintain balanced flow. Optionally, a supervisor agent can be introduced to aggregate 
system-wide data for visualization and optimization purposes, while still respecting the 
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decentralized design by avoiding direct hierarchical control. Each agent operates with 
only partial local knowledge yet contributes to global efficiency through lightweight 
communication and adaptive behavior. The detailed logic and interaction mechanisms of 
these agents are explained in Sections 3.4 and 3.5. 

Coordination and communication between agents are achieved via a message-passing 
protocol that transmits task requests, status updates, and OEE-triggered alerts. 
For example, a workstation agent can issue a request for material delivery, a buffer agent 
can report congestion, or an OEE agent can signal idle time caused by missing inputs. This 
event-driven communication approach ensures rapid responsiveness while reducing 
decision-making latency, particularly in dynamic, variable production environments. 

 The digital twin and agent system was implemented using a hybrid technology stack. 
3D simulation tools, such as Visual Components and Siemens Plant Simulation, were 
employed for factory layout and material flow modeling (Case A – Chemical industry; 
Case D – Wood industry). Control logic and decision-making algorithms were implemented 
in Python-based agent modules, while database interfaces and MQTT communication 
protocols enabled real-time data integration with physical systems (Case C – Metal 
industry; Case E – Apparel industry). This hybrid setup enabled both offline 
simulation-based experimentation and live piloting in industrial environments, ensuring 
the robustness, transferability, and scalability of the decentralized control model [91]. 

3.3 Data Sources and Acquisition from Industrial Use Cases 
The empirical foundation of this dissertation is based on industrial data collected through 
collaborative digitalization projects conducted with multiple manufacturing companies. 
The selected industrial use cases spanned diverse domains, including the chemical, food, 
metal, wood, and apparel industries, and were explicitly chosen to capture variations in 
workflows, logistics requirements, and levels of automation maturity. This diversity 
enabled comprehensive validation of the proposed decentralized digital optimization 
and control model across heterogeneous industrial contexts.  

Across these use cases, several recurring problems were observed that highlighted 
the limitations of existing production logistics coordination. In the chemical industry 
(Case A), the main issue was the lack of integrated, real-time data for monitoring material 
movement and workstation activity. The food industry (Case B) experienced frequent 
transport delays and unbalanced buffer levels due to manual dispatching and limited 
synchronization with workstation needs. The metal industry (Case C) exhibited fragmented, 
inconsistent machine-level data, making it challenging to identify micro-stoppages and 
low-frequency disruptions. The wood industry (Case D) required early detection of 
layout bottlenecks during design stages, as physical reconfiguration was costly and 
time-consuming. The apparel industry (Case E) struggled with high takt variability, 
manual scheduling, and unstable material supply, resulting in frequent idle periods. 
These case-specific challenges motivated the development of a decentralized, data-driven 
control model capable of addressing variability, improving responsiveness, and enhancing 
flow stability across heterogeneous industrial environments. 

Primary Data Categories 

Several categories of empirical data were gathered and integrated into the research 
framework to support modeling, simulation, and evaluation. Real-time shop floor data 
were collected from controllers and DIMUSA interfaces, including machine states, 
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process parameters, and sensor signals (Table 6). To enable seamless data exchange 
between the physical and digital layers, DIMUSA was employed as a middleware and 
integration platform, connecting production assets, sensors, and control logic to the 
digital twin environment. While the core DIMUSA platform is an existing industrial 
system, its capabilities were extended in this research through the integration of 
AI-based decision-support components that enable real-time evaluation of workstation 
conditions and trigger decentralized logistics actions. This architecture ensured 
bidirectional communication, allowing virtual models to receive live process data and 
send control commands back to the shop floor (Figure 11).  

Figure 11. DIMUSA architecture for data integration and real-time synchronization (adapted from 
Publication V). 

Workstation-level OEE metrics-including availability, performance, and quality-were 
systematically recorded, along with detailed logs of downtime reasons and production 
losses. In parallel, material handling and logistics data were monitored, such as buffer fill 
levels, transport lead times, and task queue lengths. To complement quantitative 
information, qualitative insights were collected through structured observations and 
semi-structured interviews with operators, logistics staff, and supervisors.  In addition to 
informal feedback collected during pilot stages, formal operator feedback was obtained 
in Publication VIII, where the DIMUSA-based digital twin interface was deployed in an 
apparel manufacturing SME. Operators provided direct input on task initiation, task 
completion logging, and the clarity of workstation status indicators. Their feedback led 
to refinements in the visualization, such as more transparent reporting of operation 
start/finish events and improved real-time queue displays. These results, summarized in 
Table 8, confirm that the user-centric dashboard design supported both operator 
awareness and decision-making. Finally, historical performance records were utilized for 
clustering analysis, benchmarking, and validation of the simulation model. A representative 
example of the collected DIMUSA data structure used in these analyses is presented in 
Appendix 11. 
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The data collection process combined automated logging from industrial equipment 
with manual input in environments with limited digital infrastructure. In several cases, 
the author designed and implemented custom data pipelines and visualization dashboards, 
providing real-time monitoring interfaces and facilitating integration with digital twin 
environments. The feasibility of this approach was first demonstrated in the chemical 
industry through the Virtual Factory model, where sensor placement strategies and data-
integration workflows were validated in a 3D simulation environment before 
transitioning to fully digital-twin implementation (Publication I). 

Table 6. Overview of data sources and collection by case. 

Case & 
sector 

Main data 
types Volume/horizon 

Acquisition 
method Use in thesis 

Case A – 
Chemical 

Sensor states 
(ms), line 

events, buffer 
status (units 

per hour) 

3 lines, 6–12 
months 

DIMUSA 
connectors 
+ custom

middleware 

Virtual factory + 
OEE monitoring & 
AMR simulation (I, 

III) 

Case B – 
Food 

Cycle times 
(s), AMR task 
duration (s), 
buffer levels 
(units), OEE 

(%) 

8 cells, 3–6 
months 

Logs + 
manual 

time-studies 

AMR simulation & 
KPI eval (II, IV, VI) 

Case C – 
Metal 

Workstation 
OEE (%), 

micro-stops 
(s), production 
orders (units) 

5 cells, 3 
months 

DIMUSA 
connectors 

+ 
dashboards 

Data analytics & 
transparency (V) 

Case D – 
Wood 

Layout, 
routing, buffer 
levels (units), 

OEE (%) 

full line, design 
stage 

CAD + Plant 
Simulation + 

samples 

Layout sensitivity & 
clustering (VII) 

Case E – 
Apparel 

Live OEE (%), 
task queues 
(operation), 

takt variability 
(s) 

12 stations, 3 
months 

DIMUSA; 
operator 

inputs 

Industrial validation 
& clustering (VIII) 

Table 6 summarizes the primary data sources used in the five industrial cases (A–E), 
covering both simulation and real production environments. Each case contributed 
different data types—ranging from workstation OEE and micro-stops to AMR telemetry 
and buffer dynamics—which served as the empirical foundation for model development, 
simulation, and validation across Publications I–VIII. Representative data structures 
related to these cases are provided in Appendices 9–11: 
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• Appendix 9 – Visual Components simulation data used in the Chemical
industry case (Case A), supporting Publications I and III. Publication II also
uses simulation but based on the Food industry model.

• Appendix 10 – DIMUSA AMR telemetry and mission-control data used in
Case B AMR deployment (Publications IV and VI).

• Appendix 11 – DIMUSA workstation-level OEE and flow-monitoring data
used in Case C, Case D, and Case E for clustering and layout analysis
(Publications V, VII, and VIII).

Together, Table 6 and Appendices 9–11 provide a complete overview of the data 
landscape supporting the decentralized control model and its industrial validation. 

3.4 Simulation and AMR Motion Optimization Development 
A central innovation of this research is the use of real-time OEE feedback as a control 
signal within the decentralized logistics system. Unlike conventional approaches, where 
OEE serves only as a retrospective KPI, it becomes an active input for decision-making by 
intelligent agents here. This enables the system to detect performance losses dynamically 
and initiate corrective actions in real time. The approach was validated in several 
simulation environments and later in industrial pilots (Publications IV, VI, VIII). 

Real-Time OEE Monitoring 

Each workstation agent continuously monitors its performance using three components: 
availability, which indicates downtime caused by material shortages or buffer blockages; 
performance, which shows deviations from expected cycle times; and quality, which 
measures the percentage of rejected or defective parts. These metrics are calculated 
locally and stored in the workstation agent’s status memory. Predefined thresholds turn 
OEE deviations into triggers for corrective actions-for example, requesting urgent 
material delivery when availability drops, alerting AMR agents to prioritize buffer 
removal during congestion, or suggesting diagnostic checks when cycle times increase. 
This closed-loop system allows each agent to optimize its own state while also affecting 
the behavior of other agents. To enable adaptive decision-making, each workstation 
agent continuously monitors its availability, performance, and quality indicators. These 
OEE components produce local signals when deviations occur, enabling AMR agents to 
prioritize material deliveries or removal tasks accordingly. This way, OEE becomes an 
operational control input rather than a retrospective KPI. The implementation of this 
mechanism and its use within the simulation and optimization workflow are described 
below. A detailed comparison between virtual factory outputs, production-order 
feedback, and real-time DIMUSA measurements is presented in Section 3.6, where the 
performance of the proposed control model is evaluated under real industrial conditions. 

AMR Mission Generation and Optimization 

In addition to workstation-level OEE monitoring, the system includes a mechanism that 
enables AMR agents to generate and optimize missions. Each mission is defined as a 
sequence of pick-up and delivery tasks, determined by real-time workstation requests 
and buffer status. The mission generation process relies on two levels of decision-making. 
At the upper level, the system selects which nodes (loading/unloading points) to visit in the 
next mission based on urgency signals, such as material shortages or buffer congestion.  
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At the lower level, the system computes the optimal path through these nodes, ensuring 
that the AMR follows the most efficient route while meeting the time constraints and 
resource priorities. 

Figure 12 illustrates the AMR-based logistics control system, showing how robot 
control modules, AI-based path optimization, ERP integration, and efficiency analysis are 
connected to OEE-driven decision-making. 

Figure 12. Architecture of the AMR-based logistics control system, integrating robot control, AI-based 
path optimization, ERP connectivity, and performance analysis (adapted from Publication IV). 

The optimization model is represented as a directed graph, where each node 
corresponds to a workstation, buffer, or auxiliary area (e.g., a washing or maintenance 
area). Edges between nodes are weighted by distance or estimated travel time, updated 
dynamically from sensor data. This representation allows missions to be adapted online 
to reflect real factory conditions (Case B - Food industry). 

 For path optimization, several algorithms were tested, including genetic algorithms 
(GA), ant colony optimization (ACO), and classical shortest-path methods such as 
Dijkstra’s algorithm. While evolutionary algorithms provided flexibility for complex 
layouts, Dijkstra’s method proved most effective for fast recalculation in dynamic 
environments, as demonstrated in Case B - Food industry. Figure 13 presents the AMR 
motion model, represented as a directed graph of nodes and edges, where each node 
corresponds to a loading, unloading, or maintenance point. 
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Figure 13. AMR optimization model represented as a directed graph, where nodes correspond to 
loading/unloading points and edges are weighted by distance or travel time (adapted from 
Publications IV and VI). 

Once the mission nodes were defined in the motion model, the next step was to 
compute the optimal path for the AMR. The optimization considered factors such as 
distance, estimated travel time, and workload priorities, ensuring that each route 
minimized idle times while meeting workstation demands. This step translated the 
abstract graph-based representation into a practical navigation plan for the robot, 
balancing efficiency and real-time adaptability.  Figure 14 illustrates the result of optimal 
path generation for one mission, showing how the selected route passes through 
required nodes in the most efficient sequence. 
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Figure 14. Example of optimal AMR path (red line) generation, showing the most efficient route 
through selected nodes based on real-time mission priorities (adapted from Publications IV and VI). 

This optimization logic is detailed in Publication IV. 

Clustering Analysis 

To identify systemic inefficiencies that extend beyond individual workstations, clustering 
techniques were applied to OEE-based datasets in both simulation and real industrial 
environments. 

 In Case D – Wood industry, a virtual factory model was created in Siemens Plant 
Simulation, and workstation-level OEE metrics were analyzed over 3 months. A k-means 
clustering algorithm (k = 5, using the elbow method) was applied to segment workstations 
based on performance patterns. This allowed the identification of the five most efficient 
and five least efficient workstations, providing targeted insights for layout redesign, 
buffer sizing, and flow balancing. The analysis demonstrated how clustering could be 
used proactively during the design stage to prevent bottlenecks before implementation 
in a physical facility. 

 In Case E – Apparel industry, clustering was applied to real-time production data 
streams structured via the DIMUSA platform, allowing continuous analysis of workstation 
behavior within a digital shadow environment. A two-step approach was used: first, 
DBSCAN filtering removed outliers and anomalous data points, such as excessively long 
idle times; then, k-means clustering classified operational states into interpretable 
groups (e.g., “stable,” “delayed,” “high variation”). This workflow enabled supervisors to 
visualize recurring inefficiencies, especially those related to micro-batch sequencing and 
workstation synchronization, and to cross-validate them against simulation scenarios. 

 These provided supervisors with clear, understandable insights into performance 
disparities, helping to prioritize interventions such as operator reallocation, buffer 
resizing, or maintenance-related actions based on emerging performance data 
anomalies. 

Figure 15 illustrates the results of clustering OEE metrics, grouping workstations by 
availability and performance levels (Case D – Wood industry). Critical bottlenecks can be 
identified in the lower-left quadrant (low availability, low performance), while benchmarks 
for efficiency are found in the upper-right quadrant (high availability, high performance). 
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Figure 15. Clustering of workstation OEE data by availability and performance, identifying efficiency 
benchmarks and bottleneck-prone stations (adapted from Publications VII). 

Integration into Control Flow 

In the decentralized control framework, two complementary mechanisms are combined: 
the AMR-based transport system and OEE-based performance monitoring with clustering 
analysis. 

 On the operational side, the AMR agents ensure that workstations are consistently 
supplied with raw materials and that finished products are transported to the next 
designated buffer or workstation. Each mission originates directly from the shop floor: 
when a workstation agent signals a shortage, the AMR delivers the necessary input 
materials; when a buffer agent indicates that output is ready for removal, the AMR clears 
the workstation. In addition, the AMR system is connected to higher-level planning tools, 
including the ERP system and the DIMUSA platform, which provide production plans, task 
priorities, and workstation norms. This integration aligns local AMR decisions with global 
production objectives, ensuring that logistics respond promptly to real-time shop floor 
needs while maintaining consistency with overall schedules. The underlying architecture 
for AMR control, including robot navigation, AI-based optimization, and ERP connectivity, 
was detailed and validated in earlier work (Case B – Food industry). 

 On the analytical side, OEE monitoring and clustering provide diagnostic feedback on 
workstation efficiency. While AMRs ensure the physical flow of materials, OEE indicators 
reveal whether workstations are operating effectively or experiencing losses due to 
issues with availability, performance, or quality. Clustering analysis extends this perspective 
by uncovering patterns across multiple workstations: identifying bottleneck-prone cells, 
recurring inefficiencies, and underutilized resources. These insights do not directly 
control AMR behavior but instead guide supervisors and engineers in prioritizing 
improvement actions, refining layouts, or reallocating resources. Such applications were 
demonstrated in the wood industry case, where k-means clustering was applied to 
workstation OEE metrics (Case D – Wood industry), and in the apparel SME case, where 
a combination of DBSCAN and k-means clustering in the DIMUSA platform revealed 
systemic inefficiencies (Case E – Apparel industry). 
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 Together, these two layers provide a balanced integration: AMRs secure short-term 
adaptability by responding to local signals, while ERP/DIMUSA plans, and OEE clustering 
support long-term system improvements by highlighting inefficiencies that require 
strategic attention. This dual perspective—operational execution complemented by 
analytical feedback—was validated across multiple case studies and resulted in smoother 
synchronization between workstations and logistics, reduced idle time, and improved 
throughput without relying on centralized scheduling. By embedding both reactivity and 
adaptability into the control loop, the framework aligns directly with Industry 5.0’s goals, 
emphasizing autonomy, resilience, and human-centric decision support.  

3.5 Overview of Industrial Cases 
To ensure both generalizability and practical relevance, the research was validated 
through five industrial case studies conducted in collaboration with manufacturing 
companies across sectors. Each case was carefully selected to represent a distinct 
combination of product types, workflow characteristics, logistics requirements, and 
levels of automation maturity. The intention was not only to test the decentralized control 
model in a narrow context but also to examine its adaptability across heterogeneous 
environments, ranging from process-intensive industries to high-variability SMEs. In this 
chapter, the overview also explains the origins of the empirical data used for modeling, 
simulation, and validation across these cases. In the following subchapters, each use case 
is presented with a consistent structure—Problem, Applied Technology, and Contribution—
to clearly show both the initial challenge and the specific role of the methods and tools 
used in the research. 

Case A – Chemical industry (Publication I, III) 

The chemical industry served as the starting point for validating the methodology, as it 
provided a structured production environment with well-defined flows and a strong 
demand for reliable data acquisition. This context enables testing the feasibility of the 
Virtual Factory approach, in which data integration, sensor placement, and intralogistics 
processes could be evaluated in a digital environment before implementation in the 
physical system. 

Publication I introduced the Virtual Factory framework for the chemical industry, 
focusing on real-time data acquisition and sensor integration. The model demonstrated 
how IR, RFID, and weight sensors could be positioned to monitor AMR activity, loading 
platforms, and conveyor flows. This enabled the systematic evaluation of sensor roles in 
logistics coordination, ensuring that real-time signals could later be utilized as inputs for 
OEE monitoring and informed decision-making. Publication III further extended this 
approach by applying the Virtual Factory to intralogistics analysis in the same industrial 
context. Here, 3D simulations were used to model production line operations, material 
handling flows, and alternative layout configurations. These studies confirmed that the 
Virtual Factory not only supported sensor-strategy validation but also served as a 
decision-support tool for optimizing production logistics in process-intensive industries. 
Focus: Real-time data acquisition, sensor integration, and intralogistics simulation in the 
chemical industry. 
Contribution: Development of a Virtual Factory framework that enabled sensor placement 
validation and logistics flow analysis, combining simulation-based planning (Publication I) 
with intralogistics scenario evaluation (Publication III). 
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Figure 16 presents the sensor placement diagram showing how IR, RFID, and weight 
sensors were integrated with AMR and conveyor systems to support real-time data 
collection. Figure 17 shows the physical implementation of RFID and optical sensors in 
the production environment, enabling automatic identification and synchronization of 
transport tasks with AMRs. 

Figure 16. Virtual Factory sensor placement diagram for the chemical industry case, showing the 
integration of IR, RFID, and weight sensors with AMR and conveyor systems to support real-time 
data acquisition (adapted from Publication I). 

Figure 17. Implementation of RFID and optical sensors in the chemical industry case, enabling 
automatic identification and synchronization of transport tasks with AMRs (adapted from 
Publication I). 
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Case B – Food industry (Publications II, IV, VI) 

The food industry represented a domain where intralogistics plays a critical role in 
throughput and efficiency, making it an ideal environment for evaluating AMR 
coordination and AI-based decision support. Frequent material movements, variable 
product flows, and strict hygiene requirements posed a realistic challenge for the 
decentralized model.  
Focus:  Simulation-based intralogistics analysis with AMRs, KPI evaluation, and clustering 
of workstation performance. 
Contribution: Provided OEE-based workstation modeling, 3D simulation of logistics 
flows, and tested AI-enhanced AMR coordination. 

Figure 18 illustrates a logistics simulation scenario developed for the food industry 
case, where AMRs were tested under varying load conditions. The simulation 
environment enabled the evaluation of task allocation strategies, validation of AMR 
responsiveness, and identification of potential bottlenecks in intralogistics. By adjusting 
workload intensity and transport frequency, the model revealed that decentralized 
decision-making improved throughput time and reduced workstation idle time. 

Figure 18. Proposed approach for analyzing the performance of AMRs in production logistics, 
integrating simulation, AI-based task allocation, and KPI monitoring (adapted from Publication VI). 

Figure 19 presents the AMR loading and unloading station model that was 
implemented to represent critical material transfer points in the food industry. This 
model served as a basis for analyzing the interactions among AMRs, conveyors, and 
buffer areas, and helped quantify the effects of automated transport on OEE. Figure 19 
illustrates the arrangement of different buffer areas along the AMR transport paths, 
including the empty boxes area (W), filled boxes area (F), dirty boxes area (D), and process 
buffers for picking up and placing goods. The unified view shows the loading and unloading 
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locations utilized by AMRs for material handling within the production environment. 
The combination of  Figure 18 and Figure 19 demonstrates how simulation-driven analysis 
supports the validation of AI-enhanced intralogistics coordination in environments with 
high product variability and strict operational constraints.  

Figure 19. AMR loading and unloading station model in the food industry case (adapted from 
Publication IV). 

Case C – Metal industry (Publication V) 

The metal industry case was used to validate the methodology in a discrete manufacturing 
environment, where production data were often fragmented and heterogeneous, and 
were generated under highly variable operating conditions. This case highlighted the 
practical challenges of acquiring, preprocessing, and visualizing shop floor data as a reliable 
basis for advanced analytics. 
Focus: Establishing methods for industrial data acquisition and visualization at the 
workstation level, enabling consistent and interpretable inputs for AI-based optimization. 
Contribution: The study demonstrated how to systematically collect, structure, and 
integrate machine logs, downtime records, and sensor readings from different 
workstations into dashboards. These visualizations provided both operators and 
engineers with clear insights into workstation behavior while ensuring that subsequent 
AI applications (e.g., OEE monitoring, decision-support models) were based on accurate, 
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consistent data. Figure 20 presents the robotic bending workstation model, which 
illustrates the integration of a Yaskawa robot with a sheet-metal bending machine and 
associated material-handling stations. This model served as a reference for capturing 
operational data and testing the feasibility of implementing a digital twin in a metal 
industry environment. 

Figure 20. Robotic bending workstation model in the metal industry case, showing the integration 
of a Yaskawa robot with a bending machine, input/output tables, and palletizing stations (adapted 
from Publication V). 

Figure 21 shows the DIMUSA dashboard view, where real production data from both 
the bending machine and robotic workstation were collected and visualized across a 
single shift. Together, the figures demonstrate the complementary role of digital twin 
modeling and data analytics in creating a transparent, data-driven decision-support 
framework. 
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Figure 21. DIMUSA dashboard view from the metal industry case, visualizing bending machine and 
robotic workstation data collected during one production shift (adapted from Publication V). 

Case D – Wood industry (Publication VII) 

The wood industry case provided a context characterized by batch-based variability, long 
material flows, and frequent changes in product types. This created an ideal environment 
for extending the digital twin methodology by integrating simulation with AI-based 
analysis. The case demonstrated how a virtual factory model could be used to represent 
complex layouts and evaluate the impact of reconfiguration on throughput and 
workstation performance. 
Focus: Development of a virtual factory model enhanced with AI-based clustering for OEE 
optimization in a batch-production environment. 
Contribution: The study demonstrated how Siemens Tecnomatix Plant Simulation can be 
integrated with OEE-driven analysis to optimize resource allocation and minimize 
bottlenecks in multi-stage processes. Clustering methods were applied to workstation-
level OEE data, providing actionable insights for rebalancing production flows and 
improving system utilization. The integration of these techniques validated the scalability 
of the decentralized model to production systems with high variability and long cycle 
times. Figure 22 illustrates the virtual factory model developed for the wood industry 
case, implemented in Siemens Plant Simulation. The model enabled evaluation of 
resource utilization, material flow, and production layout efficiency. Resource statistics 
were used to identify bottlenecks and idle times, supporting data-driven decisions for 
logistics and production optimization. 
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Figure 22. Virtual factory model of a wood industry production line in Siemens Plant Simulation, 
including resource statistics used for analyzing workstation utilization and bottlenecks (adapted 
from Publication VII). 

Case E – Apparel industry (Publication VIII) 

The apparel industry case was selected as a particularly demanding validation for the 
decentralized model, owing to the high variability of customized products, frequent 
changeovers, and limited resources typical of SMEs. This environment provided an 
opportunity to test whether the proposed approach could remain scalable and 
interpretable under conditions where flexibility and rapid adaptation are crucial.  
Focus: Implementation of an AI-driven digital twin for production logistics optimization 
in a custom sportswear SME. 
Contribution: The case demonstrated the development and deployment of the DIMUSA 
system, which integrated digital twin modeling, clustering analysis, and AI-based logistics 
decision support. Real-time workstation-level data were collected and visualized in 
dashboards, while clustering algorithms (K-means combined with DBSCAN) were used to 
detect anomalies and recurring inefficiencies. Simulation models were employed to 
validate improvement scenarios and to cross-check analytical insights with real-world 
observations. The results confirmed that even a lightweight, modular digital twin system 
can enhance transparency, provide interpretable feedback for operators, and support 
continuous improvement in SMEs with limited digital infrastructure. 

To provide context for the pilot implementation, Figure 23 presents the digital twin 
layout of the apparel factory used in the case study. The model illustrates the shop floor 
configuration, including workstations, material buffers, and AMR transport routes, which 
were digitally replicated to capture the dynamics of production flow. This visualization was 
essential for planning the data acquisition strategy and for designing clustering-based 
performance analysis. By mapping the genuine factory into a virtual environment, the 
research ensured that subsequent DIMUSA implementation and anomaly detection 
could be directly validated against actual production conditions. 
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Figure 23. Digital twin layout of the apparel factory in the SME case, illustrating workstation 
configuration, material buffers, and AMR transport routes (adapted from Publication VIII). 

One of the central findings was the discrepancy between simulation assumptions and 
actual production behavior. Figure 24 illustrates this by comparing workstation 
availability values generated in the virtual factory model (a) with actual measurements 
collected via DIMUSA sensors (b). The contrast highlights how simulation tends to 
assume more stable availability patterns, whereas real-world SME operations exhibit 
greater fluctuation due to manual handling, operator-induced variability, and micro-batch 
sequencing dependencies. By visualizing these differences, the system provided 
decision-makers with actionable insights into synchronization problems, material 
readiness delays, and operator coordination issues, which would have been difficult to 
detect with standard KPI reporting alone. 
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Figure 24. Comparison of workstation availability in the apparel SME case: (a) simulation model 
assumptions vs. (b) actual DIMUSA measurements collected on 16 October 2024 (adapted from 
Publication VIII). 
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Empirical Contributions 

The following section outlines the empirical foundation of this research by summarizing 
the industrial case studies, data sources, and observed operational challenges that 
informed the development of the proposed digital optimization and control model. 
Rather than presenting conclusions, this overview introduces the practical contexts in 
which the methodology and technologies were applied. A detailed analysis of the 
empirical results and their implications is provided later in the Discussion chapter. 

Together, the five case studies provided a comprehensive and robust empirical 
foundation for the dissertation. By spanning industries as diverse as chemicals, food, 
metals, wood, and apparel, they demonstrated that the proposed decentralized control 
system is not limited to a single production type but can be transferred across 
heterogeneous contexts. Each case contributed distinct insights: the chemical industry 
case highlighted the importance of structured data acquisition and sensor integration; 
the food industry emphasized the role of AMRs and intralogistics coordination; the metal 
industry provided validation for OEE clustering and data-driven optimization; the wood 
industry tested the scalability of virtual factory models in batch production; and the 
apparel industry case proved the feasibility of full digital twin implementation in a 
high-variability SME setting. 

These cases collectively validated the modularity and scalability of the decentralized 
architecture. In practice, this meant that new agents could be added without redesigning 
the entire system, and that the same core logic functioned effectively in both highly 
automated and resource-constrained environments. The diversity of contexts also ensured 
that the proposed solution was stress-tested across very different organizational and 
technical conditions, including centralized ERP environments, hybrid manual-automated 
workflows, and SME-specific constraints such as limited IT infrastructure. 

The case studies further enabled the testing of autonomous control algorithms under 
realistic conditions. Scenarios such as high-load AMR utilization, workstation bottlenecks, 
buffer congestion, and equipment failures were addressed not only in simulation but also 
in live production trials. The results confirmed that the system could dynamically 
reprioritize tasks, rebalance workloads, and recover from disturbances without central 
supervision, demonstrating robustness and adaptability in environments characterized 
by uncertainty. 

From a performance perspective, the validation showed measurable improvements. 
Across different industries, workstation availability increased due to reduced waiting 
times, throughput time was shortened thanks to synchronized logistics, and OEE scores 
improved as a result of combined gains in availability, performance, and quality. In some 
cases, additional benefits such as higher AMR utilization and reduced operator workload 
were observed, further strengthening the business case for decentralized logistics 
control. 

Ultimately, this cross-sector validation confirmed the model’s generalizability. It showed 
that decentralized, AI-enhanced agents are not only theoretically viable but also 
practically deployable across multiple industries. This scalability positions the proposed 
solution as a strong candidate for Industry 5.0 applications, where resilience, adaptability, 
and human-centric decision support are increasingly required. 
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3.6 Validation and Performance Indicators 
To evaluate the performance, scalability, and robustness of the proposed decentralized 
production control system, a comprehensive simulation environment was developed and 
iteratively refined. This environment replicated real production layouts, workflows, and 
logistics interactions by integrating digital twins with agent-based control logic. It enabled 
systematic testing under representative operating conditions, while also allowing the 
exploration of edge-case scenarios—such as AMR congestion, workstation breakdowns, 
or highly variable task sequences —that would be difficult, costly, or risky to reproduce 
in physical factories. By combining realism with experimental flexibility, the simulation 
framework provided a safe yet reliable foundation for validating the decentralized 
architecture before industrial piloting (Case B – Food industry and Case D – Wood industry). 

Validation Approach 

The validation of the proposed decentralized control model follows a layered strategy 
that combines virtual-factory simulations, production-order feedback, and real-time 
sensor measurements. This structure allows the model to be evaluated under both 
idealized and real operating conditions. Virtual factory simulations provide upper-bound 
performance baselines; production records offer historical references of expected 
behaviour; and DIMUSA real-time data expose the true variability of the shop floor, 
including micro-stoppages, operator-induced delays, and transport disruptions. By 
integrating these complementary data sources, the validation process captures the gap 
between planned, simulated, and actual performance. The following subsections present 
the results of this multi-layered validation in detail. 

Virtual Factory Baseline (Case E – Apparel industry) 

To evaluate how workstations should perform under ideal conditions, a virtual factory 
model was created for Case E. The model offers an optimal performance baseline, while 
actual monitoring reflects variability caused by manual handling, operator decisions, and 
small-batch sequencing. Table 7 displays workstation-level OEE results produced by the 
virtual factory model. 

Table 7. Workstation-level OEE values from the virtual factory model in Case E – Apparel industry 
(Publication VIII). 
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In this simulated environment, availability, performance, and quality metrics were 
calculated assuming stable process conditions, synchronized material flow, and minimal 
human-related disruptions. Transport tasks are completed on schedule, cycle times stay 
consistent, and operator influence is minimal. This model, therefore, represents the 
“ideal state” of the apparel production system. 

The benefit of using a virtual factory baseline is that it enables performance 
benchmarking and scenario testing prior to industrial deployment. However, virtual 
models tend to overestimate efficiency, especially workstation availability, because they 
do not account for short interruptions, micro-delays, or operator-driven disturbances. 

Comparison with Real-Time DIMUSA Measurements 

To address these limitations, Table 8 provides a detailed comparative analysis of two 
representative workstations (Plotter and Press) based on three complementary data 
sources: 

• production order feedback (manual input),
• virtual factory simulation outputs,
• real-time DIMUSA measurements.

Table 8. Comparative analysis of workstation-level performance based on production order feedback, 
virtual factory model outputs, and real-time DIMUSA measurements in Case E – Apparel industry 
(Publication VIII). 

 Plotter KJ-PL040

Press KJ-PR050 

Production order data offer a high-level view of output and downtime but lack the 
resolution to detect micro-stops. The virtual factory model provides idealized results, 
assuming stable operations. Real-time DIMUSA monitoring shows actual shop-floor 
conditions, capturing disruptions such as material shortages, operator delays, and 
micro-batch effects. 
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The comparison demonstrates that: 

• Production feedback underestimates inefficiencies,
• simulation overestimates stability,
• Real-time monitoring exposes full variability.

These insights emphasize the need to combine digital-twin simulations with 
sensor-based measurements to get accurate and useful performance evaluations. 

Simulation Tools and KPI Architecture 

The simulation platform was implemented using a combination of specialized factory 
modeling tools and custom-developed agent modules. Visual Components and Siemens 
Plant Simulation were utilized to develop 3D layouts and replicate process flows. 
Meanwhile, Python-based agent logic controls AMRs, buffers, and workstations in 
real-time (Publications IV, VI, VII). The platform incorporated OEE emulation and 
transport event logging, enabling direct linkage between agent decisions and measurable 
performance indicators. To ensure consistency in evaluation, a set of KPIs was defined 
based on the information in  Table 9. These KPIs enabled systematic comparison between 
baseline (manual/centralized) and decentralized (AI-controlled) logistics coordination. 
The framework included workstation availability, throughput time, OEE components, and 
AMR utilization, providing both efficiency and resilience measures for validation. 

Table 9. KPI framework for validating decentralized intralogistics coordination (adapted from 
Publication II). 
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To ensure realism, industrial datasets from Case B (Food industry) and Case C (Metal 
industry) were integrated into the simulation environment. 

These datasets included workstation cycle times, buffer capacities, and transport lead 
times, reflecting real production behavior and thereby strengthening the credibility and 
practical relevance of the results. 

The digital twin models reproduced essential elements of factory operation, including 
the spatial layout of production cells, workstation operating cycles, and material flows 
coordinated by AMRs. Dynamic disturbances, such as delayed deliveries, AMR congestion, 
or temporary failures, were systematically introduced to test the system’s resilience. This 
hybrid simulation environment combined industrial realism with experimental flexibility, 
providing a robust testbed for validating the decentralized control framework under both 
standard and extreme operating conditions. 

Validation Scenarios 

To systematically test the proposed control system, a set of validation scenarios was 
developed and applied in both simulation and industrial case studies. The validation 
combined virtual factory simulations, production order feedback, and real-time 
monitoring through the DIMUSA system to ensure that the decentralized model was 
robust under both controlled and real operating conditions. 

1. Baseline vs. AI-controlled operation: Centralized/manual transport dispatching
was compared with the decentralized agent-based model. Key metrics included
workstation idle time, throughput time, OEE evolution, and AMR utilization.
Results consistently showed that the decentralized approach reduced
workstation idle periods and improved flow stability (Publications II, IV, VI).
Simulation outputs at the system level provided an idealized performance
baseline, while detailed comparisons against production feedback and DIMUSA
data (Figure 24) confirmed that real-world variability was successfully addressed.

2. High-density load conditions: The system behavior was assessed under
conditions of increased material flow and limited AMR availability. Simulation
results demonstrated that decentralized agents dynamically reprioritized
transport missions to mitigate congestion effects and sustain stable throughput 
under constrained conditions (Publication VI).

3. Disturbance and constraint scenarios: Disturbances such as limited AMR
availability and temporary buffer saturation were introduced in simulation to
examine system behavior under non-ideal conditions. The decentralized control 
logic dynamically reassigned transport tasks and adapted buffer interactions,
reducing the impact of disturbances without reliance on centralized supervision
(Publications IV, VI).

4. Layout sensitivity analysis: Using the virtual factory in the wood industry, the
effects of workstation and buffer configurations on flow efficiency were
examined. Clustering analysis of OEE data highlighted spatial inefficiencies and
underutilized areas, providing insights for redesign and routing optimization
(Publication VII).

5. Cross-validation of simulation and real data: A layered validation approach was 
employed to compare workstation-level OEE indicators derived from the
virtual factory (Table 7) with production order feedback and DIMUSA sensor
measurements (Table 8). The comparison showed that simulation-based models 
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offer valuable baseline estimates but tend to overestimate availability and 
performance by ignoring waiting times, operator-induced variability, and 
micro-batch sequencing effects. Real-time data uncovered these hidden 
inefficiencies and emphasized the limits of purely simulation-driven analysis. 
Together, these validation scenarios demonstrate that decentralized, real-time 
data–driven control is more effective at handling variability and disruptions than 
static simulation models alone. 

Key Outcomes 

Across the validation scenarios, the decentralized control system consistently showed 
measurable improvements in production logistics. In Publication II, the focus was on 
comparing manual transportation with automated AMR-based transportation (before 
integrating the AI functionality). As shown in Table 9, the automation scenario was 
estimated to reduce transportation defects by about 10%, improve on-time delivery by 
about 5%, increase inventory turnover by about 5%, and reduce labour costs by about 
15%. This set the initial benchmark for potential advantages of adopting digital and 
autonomous coordination. These baseline effects of automation are explained in more 
detail in Section 4.2 and Publication II. In Publication VIII, validation was extended by 
combining virtual factory simulations with real production data. Table 7 presents results 
from the DIMUSA virtual model, assuming workstations operating at 100% performance. 
These results were then compared to real-time measurements from two selected 
workstations (Plotter and Press) in Table 8. The comparison revealed that simulations 
tend to overestimate stability, whereas real data exhibited greater variability due to 
operator behavior, micro-stoppages, and manual interventions. A detailed explanation 
of this comparison and its implications is provided in Section 4.3 and Publication VIII. 
However, the actual measurements revealed idle time patterns and throughput losses 
that were not captured by simulation alone, thereby supporting the model’s relevance 
and applicability in SMEs conditions. 

It is important to note that the direct implementation of AI-generated 
recommendations into production processes has not yet been tested in Publication VIII. 
This highlights a clear direction for future research: the next step will be to assess how 
AI-driven decision support can further improve logistics coordination beyond baseline 
automation results (discussed in Chapter 5). 

Overall, these findings confirm that the proposed decentralized system is both 
feasible and scalable. By integrating real-time OEE monitoring, agent-based AMR mission 
generation, and clustering-based performance analysis, the framework demonstrated 
measurable improvements in efficiency and resilience compared to manual or centrally 
coordinated approaches. These outcomes are discussed in detail in Chapters 4.2–4.5, 
where each validation scenario and industrial case is linked back to the decentralized 
control model. 
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4 Discussion and Synthesis 
This chapter integrates the findings from the eight scientific publications and presents a 
unified analysis of the decentralized optimization model developed. While individual 
studies explored various aspects, including simulation, real-time feedback, AI-based 
control, and industrial implementation, this section brings them together to address the 
research problem holistically.  

The synthesis focuses on identifying common threads and evaluating how the 
proposed model aligns with the goals of Industry 5.0, specifically in terms of novelty, 
including adaptability, human-centric design, and intelligent automation. Insights gained 
from simulation environments and industrial case studies are used to refine the 
conceptual model and validate its applicability in real-world production systems. 

This chapter is structured into five main parts, covering a cross-publication analysis, 
the integration of digital twin and AI technologies, key lessons learned from the case 
studies, the final version of the proposed model, and the identified limitations and open 
research challenges. Together, these discussions provide the analytical foundation for 
the thesis, demonstrating how the developed model advances intelligent manufacturing 
systems. 

4.1 Cross-Publication Analysis 
The eight publications forming the foundation of this dissertation address the central 
research question from complementary technical and industrial perspectives. 
Together, they demonstrate how a decentralized, AI-driven control and optimization 
model can be designed, simulated, and validated across multiple industrial contexts. 
The contributions are grouped into three thematic clusters, summarized in Table 10.  

The first cluster, represented by Publications I and VI, established the system’s 
architectural and conceptual foundations. These studies define the layered control 
model and introduce the digital twin infrastructure as a framework for decentralized 
decision-making and feedback integration. 

 The second cluster (Publications II–V) concentrates on simulation-based design and 
optimization, where workstation agents, AMR agents, and buffer agents—along with 
their OEE-based decision signals—are used in controlled simulation environments. These 
studies confirmed the functional feasibility of the proposed model and its ability to adapt 
to dynamic production conditions. 

The third cluster, consisting of (Publications VII and VIII), presents the industrial 
validation by applying the model in the wood and apparel industries. The results confirm 
the model’s scalability, adaptability, and efficiency improvements in real production 
settings, thereby demonstrating its practical applicability. Across all clusters, the studies 
converge on shared principles: agent-based autonomy, real-time feedback loops, and 
the integration of digital twins and AI to enhance transparency and responsiveness. 
Together, these publications form a coherent progression from conceptual formulation 
to simulation testing and industrial validation, thus reinforcing the scientific and practical 
foundation of the thesis.  
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Table 10. Thematic clusters of publications and their main contributions. 

Thematic cluster Publications Main contribution 

Conceptual and system 
architecture 
foundations 

I, VI 

Defined the decentralized architecture 
and digital twin infrastructure; 

established the layered control model as 
a blueprint for agent-based optimization. 

 

Simulation-based 
design and 

optimization 
II, III, IV, V 

Developed and tested intralogistics 
coordination models with AMRs; validated 

agent logic using OEE, idle time, and 
transport delays under controlled 

simulation environments. 

Industrial application 
and validation VII, VIII 

Applied the model in the wood and 
apparel industries; demonstrated 

scalability, adaptability, and measurable 
efficiency gains in real production 

settings. 

Across the eight publications, the research questions, industrial use cases, and 
methodological foundations are covered in a complementary way. Publications I and VI 
provide the conceptual and system-architecture foundations supporting RQ1 and RQ3. 
Publications II–V primarily address RQ1–RQ3 through simulation-based design, AMR 
coordination, and OEE-driven performance analysis in the food, chemical, and metal 
industry cases. Publications VII and VIII address RQ2–RQ4 through industry validation in 
the wood and apparel sectors, demonstrating alignment with Lean and DMAIC principles 
as well as Industry 5.0 goals such as human-centricity, transparency, and resilience. 
The alignment between research tasks, research questions, and publications is summarized 
in Table 1 for clarity. Together, these studies form a clear progression from theoretical 
basis to simulation testing and real-world application. 

4.2 Integration of Digital Twin and AI-Driven Control 
The integration of digital twins and artificial intelligence (AI) is a core innovation of this 
dissertation. Together, these technologies enable a decentralized production control 
model that is adaptive, self-regulating, and aligned with Industry 5.0's guiding principles. 
This integration builds on the digital twin architecture introduced in Section 3.2 and the 
AMR decision logic developed in Section 3.4 and corresponds to the overall system 
architecture illustrated in  Figure 10.  

 The digital twin functions as a dynamic, real-time virtual representation of the 
physical production system. It mirrors the state of workstations, buffers, AMRs, and 
material flows, and incorporates production orders and inventory levels. Beyond serving 
as a simulation sandbox for testing alternative logistics scenarios, the twin continuously 
synchronizes virtual planning with physical execution. Publications I, VI, and VII 
developed and validated digital twin environments using platforms such as Siemens Plant 
Simulation and custom data acquisition pipelines, which together provided the backbone 
for responsive control logic. 

 Artificial intelligence enhances decision-making at the local agent level. Clustering 
algorithms, such as k-means, were used to classify workstation behavior and detect 
performance deviations, while rule-based agents made real-time logistics decisions 
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based on OEE trends, buffer levels, and task priorities. Predictive analytics anticipated 
material shortages and bottlenecks, and feedback control logic employed threshold 
values and historical data to guide adaptive responses. This integration enabled 
autonomous agents to adjust their behavior to local conditions while contributing to the 
overall efficiency of the production system. 

 Decentralization is paramount to this model. Unlike traditional centralized systems 
such as MES or ERP, intelligence is distributed across the production network. Each 
component—workstation, buffer, or AMR—operates independently, but coordination is 
achieved through lightweight data exchange protocols. This architecture ensures 
scalability across factory sizes, fault tolerance in the event of local failures, and faster 
response times to disruptions without relying on central schedulers. 

 Ultimately, the model embodies a human-in-the-loop philosophy that aligns with 
Industry 5.0 values. AI does not replace operators but supports them by surfacing 
actionable insights and providing decision transparency. Real-time dashboards and 
simulation interfaces allow supervisors to track system behavior, validate agent 
decisions, and intervene when strategic judgment is required. In this way, digital twin 
and AI integration not only improve efficiency and resilience but also reinforce 
collaboration between autonomous systems and human expertise. 

4.3 Lessons Learned from Industrial Case Studies 
The decentralized optimization model was validated across five distinct industrial 
domains: chemical, food, metal, wood, and apparel manufacturing. Each case study 
offered unique insights into the adaptability, scalability, and performance of the system, 
while collectively confirming that AI-driven decentralized control and digital twin 
technology can be applied in both highly automated and human-centric environments. 
In the chemical industry case (Publication I), the focus was on developing a virtual factory 
that integrated heterogeneous sensor data for real-time monitoring. By coupling the 
digital twin with legacy systems through custom middleware, it became possible to 
translate between modern monitoring tools and existing PLC-based infrastructure. Even 
in this highly regulated sector, the introduction of decentralized agent logic reduced idle 
times at critical workstations and improved overall responsiveness, demonstrating that 
decentralized control can complement rigid infrastructures without requiring major 
overhauls. 

 The food industry studies (Publications II, IV, VI) focused on simulation-driven 
intralogistics optimization using AMRs and decentralized task allocation strategies. Idle 
times were primarily traced back to desynchronized transport cycles and limited 
coordination between material flow and workstation demand. These effects were 
mitigated when AMRs were deployed under decentralized control logic, enabling 
dynamic mission reassignment and improved flow synchronization. Digital twin–based 
simulation models provided a virtual environment for evaluating routing strategies, 
buffer sizing, and workstation coordination prior to physical implementation. The results 
demonstrate that decentralized, agent-based control can enhance throughput and flow 
stability in repetitive, high-frequency manufacturing environments. 

 In the metal industry case (Publication V), the emphasis was on industrial data 
analytics to improve shop floor transparency. Fine-grained OEE monitoring at the 
workstation level revealed inefficiencies that were hidden in aggregated, line-level 
indicators. Data analytics revealed micro-stoppages and hidden idle periods, providing 
managers with actionable insights to optimize resource allocation without requiring 
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major workflow redesigns. Real-time visualization dashboards integrated with data 
collection enhanced both operator awareness and supervisory decision-making. This 
case validated the role of data transparency as a prerequisite for adaptive logistics and 
production coordination. 

 The wood industry case (Publication VII) focused on the application of virtual factory 
modeling in combination with AI-based clustering for OEE optimization. The virtual twin 
environment enabled experimentation with alternative layouts and process configurations, 
providing low-risk validation before making physical investments. Clustering techniques 
allowed proactive bottleneck identification and improved predictability in resource 
allocation, reducing reliance on trial-and-error planning. This case demonstrated the 
importance of simulation as a safe and effective environment for validating decentralized 
control strategies. 

 Finally, the apparel industry pilot (Publication VIII) evaluated the proposed model 
within a highly variable SME environment characterized by manual processes, small 
batch production, and operator-driven scheduling. The DIMUSA system integrated digital 
twin modeling, clustering-based performance analysis, and AI-supported logistics 
decision logic into a unified platform. Decentralized control concepts were adapted to 
accommodate human variability and unpredictable takt times, supported by the 
combined use of Lean principles and the DMAIC methodology. Although AMR-based 
logistics were not implemented in practice, the model conceptually included logistics 
agents to analyze and simulate material-flow coordination. Real-time system feedback 
provided human-centered decision support by uncovering hidden inefficiencies, aiding 
in intervention prioritization, and illustrating how decentralized AI-based control 
principles can be applied in resource-constrained SMEs environments. 

Each industrial case study addressed a distinct set of operational challenges, and the 
decentralized model implemented provided case-specific solutions. In Case A (chemical), 
limited visibility of line events and buffer statuses was resolved through continuous data 
acquisition and digital twin-based monitoring. In Case B (food), transport delays and 
unbalanced buffers were mitigated by AMR task prioritization driven by real-time OEE 
and buffer conditions. In Case C (metal), fragmented machine data and micro-stoppages 
were clarified through integrated OEE tracking and workstation-level transparency. Case 
D (wood) benefited from early detection of layout bottlenecks through simulation-driven 
routing analysis, while Case E (apparel) saw improved takt stability and reduced idle time 
due to real-time task queue visualization and operator feedback integration (see Table 8). 
These cases collectively demonstrate how the proposed model addresses the practical 
inefficiencies identified in Section 3.2. 

Across these cases, several overarching themes emerged (Table 11). A summarized 
view of the quantitative performance improvements in the industrial case studies is 
shown in Tables 7–10, which highlight the key KPIs, validation scenarios, adopted 
technologies, and links to relevant publications. These numerical results provide an 
integrated KPI summary for all industrial validations and support the qualitative lessons 
learned discussed in this section. Additional dataset examples used in the analyses—
including AMR simulation outputs, real AMR movement logs, and workstation-level 
DIMUSA measurements—are included in Appendices 9–11, offering further transparency 
into the evidence base. The model proved scalable, with modular deployment strategies 
that began with OEE tracking and gradually expanded to full logistics integration.  

It increased transparency, as real-time monitoring through digital twins improved 
operator trust and engagement. The system also enhanced resilience, with decentralized 



68 

decision-making reducing vulnerability to delays, disruptions, and human error. Finally, 
the integration of Lean and DMAIC frameworks ensured that improvements were 
systematic, measurable, and sustainable. Across all pilots, measurable performance 
gains were observed in throughput time, workstation utilization, and reductions in idle 
periods, confirming the generalizability of the proposed model while underscoring the 
need to tailor solutions to sector-specific contexts. 

Table 11. Cross-case synthesis: focus, key findings, applicability. 

Sector Focus Key findings Applicability of the 
model 

Case A – 
Chemical 
industry 

Real-time data, 
sensors, virtual 

factory 

Middleware bridged PLC 
legacy, improving 

visibility; local agents 
reduced idle time at 

bottlenecks. 

Fits regulated, process-
centric contexts with 

strict data flows. 

Case B – 
Food 

industry 

AMR 
coordination, 

simulation, 
clustering 

Decentralized AMR 
dispatch reduced idle; 

twins enabled 
routing/buffer tests pre-

deployment 

Strong where 
intralogistics dictates 

throughput 

Case C –
Metal 

industry 

Data analytics, 
OEE 

transparency 

Granular OEE revealed 
micro-stops; dashboards 

improved decisions 

Effective even with 
fragmented data 

landscapes 

Case D – 
Wood 

industry 

Virtual factory + 
AI clustering 

Early detection of layout 
bottlenecks; more 

predictable allocation 

Scalable, supports 
proactive design 

changes 

Case E – 
Apparel 
industry 

DIMUSA twin, 
decentralized 

control 

Handled human 
variability; synchronized 

flows; human-in-the-loop 
dashboards 

Suits high-mix, manual, 
resource-constrained 

SMEs 

4.4 Methodological Framework Based on Lean and DMAIC Principles 
The development and implementation of the decentralized digital optimization and 
control model followed a structured DMAIC-inspired approach combined with Lean 
principles, ensuring that improvements were measurable, iterative, and grounded in real 
industrial data—the use of quantifiable indicators allowed for systematic validation of 
efficiency gains across the industrial cases. 

From a Lean perspective, the main goal was to eliminate waste—especially waiting 
times, unnecessary transportation, and workstation idleness. The relationship between 
Lean principles and the digital optimization model is summarized earlier in Table 4. 
The KPI results, summarized in Table 9, demonstrate these improvements. For example, 
automation and decentralized logistics control reduced transportation defects by about 
10%, improved on-time delivery by 5%, increased inventory turnover by 5%, and reduced 
transportation labor costs by 15%. These gains directly indicate reductions in waste and 
better flow efficiency. 
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The digital twin architecture further supported Lean implementation by offering 
real-time visibility into material flows, buffer states, and workstation utilization. This 
transparency enabled continuous detection of bottlenecks and idle periods, contributing 
to observable reductions in non-productive time across the food, apparel, and metal 
industries. OEE-based measurements also provided a consistent metric for identifying 
performance losses: in several cases, workstation idle time was reduced by 8–12%, 
while AMR-assisted operations ensured a more stable material supply and minimized 
logistics-induced downtime. 

AMRs, functioning as intelligent agents, strengthened just-in-time delivery by reducing 
unnecessary transport movements and aligning material flow with actual production 
demands. As a result, takt flow became smoother, and disruptions caused by missing or 
delayed materials were significantly reduced—directly supporting Lean waste-reduction 
goals. 

Overall, integrating Lean and DMAIC methodologies resulted in a more resilient, 
scalable, and human-centric optimization framework. The numerical results derived from 
KPI monitoring confirm that the proposed approach not only aligns with Industry 5.0 
principles but also delivers measurable value by improving flow stability, reducing waste, 
and enhancing the adaptability of production logistics across diverse industrial contexts. 

4.5 Proposed Model for Decentralized Optimization 
The main result of this dissertation is a decentralized, AI-powered optimization and 
control model integrating production and logistics processes. The model integrates 
digital twin technology, autonomous decision-making agents, and real-time production 
data to enable dynamic coordination and maintain workstation efficiency. The proposed 
decentralized model consolidates the components introduced in Sections 3.3 and 3.4 and 
corresponds to the integrated architecture shown in Figure 10, which illustrates the 
system architecture and interaction between the digital twin and decentralized control 
agents. The model’s architecture is modular, comprising four interactive layers. 
The physical layer includes production units, buffers, conveyors, AMRs, sensors, and 
human operators who interact within the production environment. Above this, the digital 
twin layer offers real-time virtual representations of all entities, continuously updated 
via IoT connections and PLC interfaces. This layer not only reflects the factory’s current 
state but also simulates workflows, tests different control strategies, and stores historical 
data for ongoing learning. The third component is the agent layer, where each key node, 
such as a workstation, AMR, or buffer, is represented by a local agent. These agents 
monitor local status indicators, such as buffer levels, task completion, or OEE trends, and 
exchange data with neighboring agents through lightweight communication protocols. 
Based on predefined rules and AI algorithms, agents make local decisions that contribute 
to overall system efficiency. Ultimately, the coordination and feedback layer ensures 
that decentralized actions are aligned with global objectives. It incorporates system-level 
KPIs, such as throughput and WIP levels, applies clustering-based behavior analysis, and 
enables alerting and override mechanisms to keep human supervisors informed.  

The model’s operational flow begins with initialization, during which the digital twin 
receives production orders and resource states, while workstations register their 
readiness and buffer levels. During task assignment, workstations request material 
delivery from AMRs when buffers are low. AMR agents then negotiate tasks based on 
urgency, proximity, and historical performance. As tasks are executed, all system 
components log their states, and deviations from expected timing trigger local or global 
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adjustments. Over time, performance data—such as OEE trends, idle periods, and 
bottlenecks—are analyzed to refine agent behavior and task-routing logic. 

A practical example can be illustrated in the context of Case B – the food industry. 
When a production unit detects that its material buffer is nearly empty, its local agent 
issues a task request that indicates the urgency and buffer status. AMR agents evaluate 
requests from multiple workstations, consider their own location and battery levels, and 
choose the most efficient delivery path. If OEE for the workstation cluster drops below a 
critical threshold, the system issues an alert to a supervisor via the dashboard interface, 
allowing human intervention if needed. The proposed model offers several key 
advantages. It is modular and scalable, making it suitable for production environments 
of varying sizes and complexity, especially in small and medium-sized manufacturing 
settings. It is fault-tolerant because the modular structure enables automatic reallocation 
of tasks when a component fails. It involves human decision-makers in the process by 
making agent decisions transparent and overrideable. Finally, the model is adaptive by 
design: AI algorithms currently use data patterns to support decision-making, and the 
system architecture enables future extensions toward continuous self-learning and 
automated optimization. 

4.6 Limitations and Risks 
While the proposed decentralized optimization model has demonstrated clear benefits 
across multiple industrial contexts, several limitations and risks must be acknowledged 
to maintain realistic expectations for adoption and future development: 

• From a technical perspective, one of the primary challenges is ensuring
compatibility with legacy systems. Many existing manufacturing systems lack
standardized interfaces or structured data formats, making it challenging to
integrate the sensors and real-time pipelines required for digital twin operation.

• In addition, although the model is modular, large-scale deployments may face
scalability constraints, as computational and communication loads increase
with the number of agents. Without efficient synchronization, such systems risk
delays or suboptimal decision-making due to data latency.

• A further challenge concerns data quality and availability: missing or noisy data
from aging sensors or unstable connections can degrade the accuracy of AI
predictions and weaken agent decisions.

• Finally, the well-known simulation–reality gap poses limitations: while digital
twins are powerful for testing, they may oversimplify human behavior, equipment 
wear, or unpredictable events, reducing their predictive fidelity in real production.

The second category of risks is organizational and human-centric. Operator acceptance 
cannot be taken for granted, as workers may resist AI-driven task delegation or fear job 
displacement. A lack of transparency in agent decision-making may also generate 
mistrust and frequent process overrides. Additionally, concerns about data privacy—
particularly regarding the monitoring of individual performance or workstation behavior—
can further reduce acceptance unless clear safeguards and governance measures 
are in place. Moreover, decentralized systems require new competencies for setup, 
maintenance, and troubleshooting—both on the shop floor and in IT departments—which 
increase training demands. In specific regulated industries, process rigidity may also limit 
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the scope of autonomy, since fully decentralized decision-making can conflict with strict 
quality assurance or safety requirements. 

At the implementation level, several risks must be addressed. Initial setup is inherently 
complex, requiring the development of digital twins, configuring agents, and tuning 
decision thresholds. Of these, building the digital twin is generally the most time- and 
cost-intensive, as it demands detailed data integration and validation, whereas agent 
configuration and threshold tuning require less effort but still rely on expert input. 
Furthermore, cybersecurity is a growing concern: increased system connectivity and 
decentralized communication raise the risk of unauthorized access or data manipulation, 
particularly when cloud platforms are involved. Finally, the cost–benefit ratio of adopting 
decentralized optimization may vary. While the model offers clear advantages in 
high-volume or variable environments, its added value in low-volume or stable production 
settings may be less pronounced, where simpler coordination mechanisms may suffice. 

 To mitigate these risks, several strategies are recommended: 

• A phased approach should be adopted, starting with hybrid models that
combine human oversight with autonomous decision-making.

• Simulation and digital twin environments can be used not only for technical
testing but also as training tools to familiarize operators with agent behavior.
Deployment should start with non-critical workflows, gradually expanding as
confidence in the system grows.

• Transparency should be supported through clear dashboards that explain and
justify agent decisions, building trust among operators.

• Finally, cybersecurity protocols must be integrated from the planning phase,
ensuring that resilience against external threats becomes an inherent property
of the system.

Overall, recognizing these limitations and risks is essential for a balanced view of the 
model’s potential. By proactively addressing them, the decentralized control framework 
can evolve into a more resilient, scalable, and human-centric solution that is better 
aligned with the strategic goals of Industry 5.0. 
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5 Conclusions and Future Work 
This chapter concludes the doctoral thesis by summarizing the main contributions, 
discussing the broader implications for both research and industrial practice, and 
outlining avenues for future development. The work has centered on the design, 
implementation, and validation of a decentralized optimization and control model for 
production logistics. Through a synthesis of eight scientific publications, the research has 
advanced the integration of digital twins, AI-driven agents, and real-time performance 
data into a unified simulation-based control model. This model operates alongside the 
dissertation’s methodological foundation, which builds on Lean principles and the DMAIC 
cycle, ensuring that the practical implementation and the theoretical approach remain 
clearly distinguished. Validation across both simulation and real industrial contexts 
confirmed the model's potential to increase throughput, reduce idle time, and support 
human-centric decision-making aligned with Industry 5.0 principles. 

5.1 Summary of Contributions 
This thesis contributes both theoretically and practically. The research strengthens the 
foundations of decentralized control theory and introduces methods for integrating 
artificial intelligence and digital twins into adaptive production systems. It employs a 
design science approach, structured around the DMAIC cycle to ensure measurable 
progress and iterative refinement during system development. Supported by digital twin 
modeling, simulation-based testing, and industrial validation across five sectors-Case A: 
Chemical industry, Case B: Food industry, Case C: Metal industry, Case D: Wood industry, 
and Case E: Apparel the research demonstrates how decentralized, AI-driven agents can 
enhance production efficiency, responsiveness, and transparency.  

Theoretical contributions include: 

• Decentralized optimization model: A system-level architecture in which
workstations, buffers, and AMRs function as autonomous agents with local
decision-making capability. Their actions are coordinated through shared
performance indicators, enabling the system to optimize material flow and
responsiveness without relying on a centralized dispatcher.

• Integration of AI and digital twins: Synchronization of real-time data streams
with virtual factory models to enhance predictive capability and enable
continuous feedback between physical and digital layers.

• Agent-based decision logic: Validation of rule-based and AI-assisted algorithms
for dynamic task allocation and coordination, incorporating OEE indicators and
flow constraints. The decision logic was implemented and tested across the
different agent types introduced earlier in the architecture—workstation
agents, AMR agents, and buffer agents—each operating with local information
and lightweight communication to support decentralized control.

• Clustering-based performance feedback: Application of clustering to classify
workstation behavior, supporting diagnostics, prioritization, and long-term
system optimization.
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Practical contributions include: 

• Industrial validation across diverse domains: Demonstration of the model’s 
benefits in Case A – Chemical industry, Case B – Food industry, Case C – Metal 
industry, Case D – Wood industry, and Case E – Apparel industry, showing 
measurable improvements in throughput, buffer utilization, and idle-time 
reduction. 

• Reusable simulation scenarios and models: Creation of modular simulation 
environments adaptable for different layouts and transport setups, serving both 
research and industrial planning needs. 

• Implementation guidelines and risk insights: Identification of practical barriers 
such as legacy integration, scalability, and operator acceptance, together with 
strategies for mitigation. 

• Open collaboration with industry: Execution of research in cooperation with 
Estonian and international manufacturing firms, ensuring real-world relevance 
and facilitating knowledge transfer. 

Answers to the research questions: 

• RQ1: How can a decentralized, AI-driven control model improve the 
coordination between production logistics and shop floor operations in 
dynamic manufacturing environments? 
 

By distributing decision-making to local agents that respond directly to real-time 
OEE signals and buffer conditions, the model reduces waiting caused by material 
shortages or blocked outputs. This ensures that logistics missions are 
dynamically launched when needed, keeping workstations supplied and outputs 
cleared. Simulation and industrial cases confirmed that this synchronization 
reduced idle periods and maintained smoother production flow without relying 
on central scheduling (Publications II–IV, VI–VIII). 
 

• RQ2: What impact does such a model have on workstation efficiency, OEE, and 
overall throughput time? 
 

The model improves workstation availability by ensuring timely material supply 
and removal, thereby directly enhancing OEE performance. Across simulation 
scenarios, throughput time was reduced by up to 15% in high-variance task 
sequences, and workstation idle times decreased significantly. Industrial pilots 
further confirmed measurable improvements in workstation utilization and 
overall flow efficiency (Publications II, III, VI, VIII). 
 

• RQ3: How can real-time data from digital twins be used to assign logistics tasks 
to a mobile robot dynamically? 
 

Digital twins provide the live data backbone for task allocation, continuously 
synchronizing the state of workstations, buffers, and AMRs. Agents use this 
information to dynamically generate and negotiate logistics missions, combining 
urgency (OEE thresholds and buffer fill levels), proximity, and historical task 
durations. In practice, this enabled adaptive routing, congestion avoidance, and 
faster response to disruptions, thereby improving coordination between 
production and intralogistics (Publications I, VI, VII, VIII). 



74 

• RQ4 (quantitative): To what extent can the proposed system reduce
workstation idle time (%) and improve average throughput time (min)
compared to baseline logistics coordination?

Quantitative validation shows measurable effects at various stages of the
research. In the food industry case (Publication II), replacing manual transport
with automated AMR-based logistics resulted in improvements across several
KPIs, including fewer transport errors, better on-time delivery, higher inventory
turnover, and reduced labor costs. The transport-event and AMR movement
datasets supporting this analysis are documented in Appendix 9, which relates
to Publications II and III.

Further validation of decentralized control concepts was conducted in
Publications IV and VI. The associated datasets for AMR coordination logic, task
allocation, and system-level performance metrics under different load
conditions are included in Appendix 10.

In the apparel industry pilot (Publication VIII), validation was based on a
combination of virtual factory simulations and real-time production data
collected through the DIMUSA platform. Unlike the earlier simulation-focused
studies, the key quantitative results for this case are reported directly in the
main text (Table 8), where simulation-based OEE estimates are compared with
real workstation measurements. This layered comparison revealed the
limitations of purely simulation-driven assumptions and highlighted the
importance of real-time data in capturing operator-induced variability and
micro-batch effects.

Together, these findings confirm that the decentralized model delivers measurable 
reductions in idle time and throughput across different industries, from controlled 
simulations to SME pilots, while the integration of AI-generated logistics 
recommendations remains an open opportunity for future work. 

5.2 Implications for Research and Practice 
The results of this research extend beyond the specific industrial cases and carry 
significant implications for both academic inquiry and industrial digitalization strategies. 
Several notable contributions can be highlighted in academic research. The work 
advances decentralized control theory by providing an empirically validated architecture 
for distributed decision-making in complex production systems. Methodologically, 
it introduces a holistic research framework that integrates real-time data acquisition, 
clustering-based feedback mechanisms, and simulation-based validation, which can be 
applied in other domains of engineering and operations management. The research also 
reinforces the concept of human-centric manufacturing models, illustrating how 
adaptability, transparency, and AI support can be integrated into Industry 5.0 systems. 
Finally, the developed digital twin and agent-based models provide a reusable research 
platform for future studies, enabling the exploration of more advanced AI methods such 
as reinforcement learning, federated learning, or trust-aware agent systems. 

For industrial practice, the findings provide clear directions for digital transformation. 
The proposed decentralized model contributes to operational efficiency, helping 
companies reduce throughput times and increase OEE, particularly in high-mix, low-volume 
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environments where traditional centralized systems struggle. The modularity of the 
approach enables flexible logistics and layout planning, as factories can reconfigure 
workflows with minimal disruption. Notably, the model emphasizes workforce 
empowerment, augmenting operators rather than replacing them, with AI acting as a 
co-pilot that enhances transparency and acceptance. Ultimately, the work provides a 
strategic roadmap for digitalization, demonstrating how firms can gradually transition 
from ERP/MES-driven logistics to more autonomous and adaptive infrastructures. 

5.3 Future Research Directions 
While the research has demonstrated promising results, several avenues remain open 
for enhancing the adaptability, intelligence, and scalability of decentralized control 
systems. 

• AI learning and adaptation: Future work should integrate reinforcement
learning, online learning, or hybrid AI approaches, enabling agents to
continuously refine task allocation based on historical performance,
environmental variability, and operator feedback.

• Inter-agent collaboration and communication: Research is needed on
negotiation protocols, decentralized consensus mechanisms, and conflict
resolution strategies to strengthen coordination in highly dynamic production
settings.

• Scalability in large-scale production: Expanding the architecture to hundreds of 
agents and thousands of tasks will require addressing latency, computational
overhead, and emergent behaviors. This is particularly critical for complex
factory layouts.

• Cross-sector validation and transferability: Further studies should expand
testing across additional industrial sectors to confirm the model’s adaptability,
interoperability, and robustness under varying production constraints and
automation levels.

• Cybersecurity and trust in AI-driven control: As systems become more
autonomous and interconnected, ensuring secure agent communication, trust
verification, and resilient failure recovery mechanisms will be essential for
industrial adoption.

• Human–AI collaboration interfaces: Future studies should explore how
explainable AI, intuitive dashboards, and shared-control paradigms can
strengthen human trust and support decision-making in decentralized
systems.

• Integration with sustainability goals: The model can be extended to
incorporate environmental KPIs, optimizing for energy use, waste reduction,
and material efficiency. AI-based control could thus strike a balance between
productivity and ecological responsibility.

• Cross-domain applications: Beyond manufacturing, the principles developed
here have potential in warehouse automation, healthcare logistics, and
innovative infrastructure, where decentralized and adaptive coordination is
equally relevant.

In conclusion, the research presented in this dissertation demonstrates that 
decentralized AI-based control can significantly enhance production logistics by 
increasing adaptability, resilience, and human-centered collaboration. At the same time, 
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it opens new research opportunities at the intersection of digital twins, AI, and Industry 
5.0. The future challenge and opportunity lie in scaling these solutions, securing their 
operation, and extending their benefits across both industrial and societal domains. 
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Abstract 

Development and Implementation of a Decentralized 
AI-Driven Control Model for Production Processes 
This doctoral thesis focuses on developing and implementing a decentralized, AI-driven 
digital optimization and control model for manufacturing processes within the 
framework of Industry 5.0. The work addresses a common challenge in modern 
manufacturing: the misalignment between material flows and workstation needs, which 
often leads to idle times, bottlenecks, and delays in throughput. Unlike traditional 
centralized Manufacturing Execution Systems (MES), which impose rigid schedules, the 
proposed system empowers workstations, buffers, and autonomous mobile robots 
(AMRs) to operate as independent agents. Each agent makes local decisions 
independently but can share information with other agents when needed, ensuring 
coordinated material flows and better overall system efficiency. 

The research builds on digital twin technology, Overall Equipment Effectiveness (OEE) 
monitoring, clustering analysis, and agent-based decision logic to develop a modular 
architecture that can adapt to changing shop floor conditions. The methodological 
foundation is the DMAIC cycle (Define, Measure, Analyze, Improve, Control), which 
guides systematic progress from problem identification to simulation and industrial 
validation. The dissertation is based on eight peer-reviewed publications, which cover 
conceptual design, simulation testing, and case studies across the chemical, food, metal, 
wood, and apparel industries. 

Empirical validation shows measurable improvements in workstation availability, 
throughput time, and OEE. For example, replacing manual transport with AMR-based 
logistics reduced transport errors and labor costs, while AI-enhanced decision logic 
further improved responsiveness and workload balancing. Industrial pilots confirmed 
that even resource-constrained SMEs benefit from a lightweight digital twin, combined 
with clustering-based performance analysis, which increases transparency, reduces idle 
time, and provides insights for more informed production decisions. 

The scientific innovation of this research lies in integrating decentralized AI logic with 
production logistics and embedding OEE as a real-time control signal. The practical 
innovation is demonstrated through industrial deployment, showing that independent 
agents, capable of exchanging information when necessary, can collectively improve flow 
stability, increase resilience, and support human-machine collaboration without 
replacing existing control systems. 

In conclusion, the thesis offers both theoretical insights and practical tools for Industry 
5.0. It shows that decentralized AI-supported control can reduce inefficiencies, enhance 
production flow, and promote a human-centric, adaptable, and sustainable manufacturing 
approach. Overall, the research contributes to the growing body of Industry 5.0 studies 
by demonstrating how decentralized AI-based control can bridge the gap between digital 
innovation and operational feasibility. 
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Lühikokkuvõte 
 

Detsentraliseeritud tehisintellektipõhise juhtimismudeli 
väljatöötamine ja rakendamine tootmisprotsessides 

 

See doktoritöö keskendub detsentraliseeritud, tehisintellektil põhineva digitaalse 
optimeerimis- ja juhtimismudeli väljatöötamisele ja rakendamisele tootmisprotsesside 
jaoks Tööstus 5.0 raamistikus. Töö käsitleb tänapäeva tootmises levinud probleemi: 
materjalivoogude ja tööjaamade vajaduste vaheline ebakõla, mis sageli põhjustab 
seisakuid, kitsaskohti ja viivitusi läbilaskevõimes. Erinevalt traditsioonilistest 
tsentraliseeritud tootmise juhtimissüsteemidest (MES), mis kehtestavad jäigad ajakavad, 
annab kavandatud süsteem tööjaamadele, puhvermäludele ja autonoomsetele 
mobiilrobotitele (AMR) võimaluse tegutseda iseseisvate agentidena. Iga agent teeb 
kohalikke otsuseid iseseisvalt, kuid saab vajadusel jagada teavet teiste agentidega, 
tagades koordineeritud materjalivood ja parema üldise süsteemi efektiivsuse. 

Doktoritöö tugineb digitaalse kaksiku tehnoloogiale, seadmete üldise efektiivsuse 
(OEE) jälgimisele, klastrianalüüsile ja agentide põhisele otsustusloogikale, et arendada 
modulaarset arhitektuuri, mis suudab kohaneda muutuvate tootmispõranda 
tingimustega. Metodoloogiliseks aluseks on DMAIC tsükkel (Define, Measure, Analyze, 
Improve, Control), mis juhib süstemaatilist edasiminekut probleemide tuvastamisest 
simulatsiooni ja tööstusliku valideerimiseni. Doktoritöö põhineb kaheksal eelretsenseeritud 
publikatsioonil, mis hõlmavad kontseptuaalset disaini, simulatsioonitestimist ja 
juhtumiuuringuid keemia-, toidu-, metalli-, puidu- ja rõivatööstuses. 

Praktiliste katsete tulemused näitasid mõõdetavaid paranemisi tööjaamade 
töövalmiduses, läbilaskevõimes ja OEE-s. Näiteks käsitsi transpordi asendamine  
AMR-põhise logistikaga vähendas transpordivigu ja tööjõukulusid, samas kui 
tehisintellektiga täiustatud otsustusloogika parandas veelgi reageerimisvõimet ja 
töökoormuse tasakaalustamist. Tööstuslikud katseprojektid kinnitasid, et isegi 
ressursipiiranguga VKEd saavad kasu lihtsustatud digitaalsest kaksikust koos klastrite 
loomisel põhineva jõudlusanalüüsiga, mis suurendab läbipaistvust, vähendab jõudeaega 
ja annab teavet teadlikumate tootmisotsuste tegemiseks. 

Selle uurimistöö teaduslik innovatsioon seisneb detsentraliseeritud tehisintellekti 
loogika integreerimises tootmislogistikaga ning OEE sidumises reaalajas juhtimissignaalina. 
Praktilist innovatsiooni demonstreeritakse tööstusliku juurutamise kaudu, näidates, et 
sõltumatud agendid, kes on võimelised vajadusel teavet vahetama, saavad ühiselt 
parandada voolu stabiilsust, suurendada vastupidavust ja toetada inimese ja masina 
koostööd ilma olemasolevaid juhtimissüsteeme asendamata. 

Kokkuvõtteks pakub väitekiri nii teoreetilisi teadmisi kui ka praktilisi tööriistu  
Tööstus 5.0 jaoks. See näitab, et detsentraliseeritud tehisintellektil põhinev juhtimine 
saab vähendada ebatõhusust, parandada tootmisvoogu ning edendada inimkeskset, 
kohanemisvõimelist ja jätkusuutlikku tootmisviisi.  Üldjoontes annab see uurimistöö oma 
panuse Tööstus 5.0 valdkonna kasvavasse teadustöösse, näidates, kuidas hajutatud 
tehisintellektil põhinev juhtimine suudab ületada lõhe digitaalse innovatsiooni ja 
praktilise rakendatavuse vahel. 
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ABSTRACT 

The various production problems that have arisen are closely 
linked to the need of the digitize products, production equipment, 
and their processes. With the increasing use of innovative 
software and hardware solutions, it is possible to monitor 
production processes accurately in the real-time and to manage 
various planning decisions according to these digital models. 
Such digital models allow us to react quickly to the physical 
production problems and to solve and also predict them. 
Furthermore, the virtual factory as an integrated simulation 
model of production units, provides an advanced decision 
support capability. On the other hand, Industry 4.0, the new 
industrial revolution has increasingly been used in the industrial 
sector and its development has grown exponentially in recent 
years. Various production equipment and activities are 
connected via network sensors to the Internet, where a huge 
amount of data is generated, stored, and analyzed. Industrial 
Artificial Intelligence (AI) algorithms are being used to evaluate 
the collected data and to provide valuable information for 
planning operations. This new industrial age presents new trends 
and challenges in the data context, such as scalability, cyber-
security, and big data.  
Therefore, when it comes to collecting data from devices and 
workplaces in real time, it is also wise to analyze the necessity 
and efficiency of this data, using different artificial intelligence 
algorithms. Clean data generally enables to make efficient and 
effective management decisions in the future based, to ensure the 
highest possible efficiency in the production unit. This article 
outlines the principles of Industry 4.0, emphasizing the features, 
requirements, and challenges of Industry 4.0. Besides, a 

development of the virtual model of the production line, there is 
also developed virtual model of the Autonomous Mobile Robots 
(AMR). This gives a good opportunity to monitor and analyze the 
entire production cycle, including the throughput, lead time, and 
utilization of resources in a 3D simulation production 
environment. Moreover, the article focuses on collecting real-
time data from the virtual production unit to analyze the methods 
and locations of data collection, which would provide the most 
valuable information about production data. Finally, based on 
the results of the collected data, the authors present and discuss 
the challenges and trends that lie ahead when the same data 
collection methods are being used for physical production units. 
A case study approach is used to demonstrate the relevance and 
feasibility of the proposed methods for real-time data acquisition 
in production, which uses the concept of internet of things 
technologies and 3D visualization.  

Keywords: real-time monitoring, virtual factory, process 
digitalization, Autonomous Mobile Robots, 3D visualization

1. INTRODUCTION

Today's manufacturing companies are exposed to increasing 
competition in a globalizing economy, which places higher 
demands on the product price, quality, and delivery time. 
Consumer expectations for new goods are also growing, where 
the important focus is on manufacturing customer-based 
products [1]. Traditional approaches are difficult and 
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economically detrimental to deal with such situations, which in 
turn leads manufacturing companies to adopt entirely new 
technologies to meet the growing demands of end-users and to 
remain competitive in a very short time front [2, 3]. This market 
pressure is mainly on small and medium-sized enterprises 
operating in a specific sector or with small production volumes. 
With the rapid development of various recent software and 
hardware solutions, it is possible to plan production processes 
and products on virtual models. It is not necessary to use the 
company's physical resources such as energy, materials, physical 
space, etc. for preplanning. Production processes can be 
simulated using existing data and varied to achieve the best 
output [4]. 
The Internet of Things (IoT), which connects the physical 
environment to cyberspace, has increasingly been used to collect 
data in real-time from the physical world. It enables us to 
perform detection, identification, and operation through various 
electronic components, distributed in the environment and 
connected to the network, resulting in a cyber-physical 
infrastructure [5]. 
This combination enables us to integrate the company's 
Enterprise Resource Planning (ERP) systems, warehouse 
systems, and production equipment into one united management 
system and allows them to automatically exchange data between 
each other [6]. 
However, due to the diverse and large amount of data in the IoT 
systems described, it is necessary to test the virtual models in 
advance and then place these components in a real production 
environment. After that, there can get proper locations of the 
equipment and workplaces, which gives the most accurate and 
understandable picture of production processes [3]. 
The analyzed virtual model of the factory is based on theoretical 
assumptions and the concept of virtual production is adapted to 
a specific type of production. For example, we took a unit of a 
chemical plant and  use the company's actual production data to 
build a virtual model. The company is a Small and Medium-sized 
Enterprises (SMEs) with a large product nomenclature and a 
small production volume.  Simulation models need to be 
validated before their results can be used [7]. In the simplified 
production model, the production process data has been used to 
make sensor location selections. Therefore, the data obtained are 
indicative and not subject to validation. 

2. VIRTUAL FACTORY

The concept of Virtual Factory (VF) has been used to plan, 
analyze and optimize the production processes and activities that 
are conducted on a factory floor. In many kinds of literature, a 
virtual factory is defined as a reliable and detailed simulation of 
a manufactory factory, such as VF describes an integrated 
simulation model of a factory floor that represent the major 
processes and sub-systems in the factory, and enhanced the 
decision support capability [8]. VF with the help of digital tools 
simulates the production process planning and control, which 
facilitates to optimize of production systems and provides 

flexibility in the process design before its real implementation 
[9]. VF is tightly connected with the production processes 
analyze and technical Key Performance Indicators (KPI) 
definition [10]. From one side it is important to analyze the 
production processes (productivity, working times, set-up times, 
quality, OEE) and prioritize the important KPI’s dependent on 
the actual processes. From the other side there can be used this 
information as an input for real factory simulation [11]. 
Moreover, the VF environment also simultaneously  supports the 
performance evaluation of production systems found on a 
factory floor, allows configuration and re-configuration of 
systems for testing different scenarios, and enables the ramp-up 
phase of production systems to be less time-consuming [12]. 

2.1 Real Factory Simulation 

Digitalization, virtual modelling, and simulation of physical 
production systems have changed the thinking in different 
manufacturing companies, and this was the force to implement 
the virtual factory concept in their factory operations. Ford 
Motor Company has been using 3D virtual technology for the 
process simulation to evaluate the ergonomics, performance of 
work-cells, and cycle time prior to implementing a physical 
system into the production floor [13]. The same way simulation 
and virtual environment facilitate the Volvo Group to improve 
and optimizing their production plants. They create virtual model 
of the production environment in order to test changes like 
configuration and re-configurations before implementing the 
changes into the real plant [14]. Furthermore, many commercial 
software providers have introduced the solution for 3D design, 
simulation, and visualization of production plants, which enables 
the implementation of the VF concept.   

2.2 Virtual Factory Model

The model of virtual production in a computer environment can 
be either a digital twin of the whole factory or a single production 
unit, where it is possible to design production processes as in a 
real physical production environment [15]. In the case of a 
virtual model, it is important to present the behavior of a real 
production system in a realistic and equally dynamic way, using 
physical factory data and defined KPI’s. Based on this computer 
simulation, it is possible to modify different input and output 
data in the creation, evaluation, optimization, and selection of 
alternatives to existing production plans. Today, different 
software solutions for creating virtual models are available that 
allow to create of 3D realistic models and simulate production 
processes. 
The model of the 3D virtual factory to be analyzed FIGURE 1 is 
a subdivision of the chemical industry, where mainly 
disinfectants and personal hygiene products are produced [16]. 
The factory 2D floor plan is modelled using 3D visualization 
software (Visual Components 4.2) on a 1: 1 scale virtual model 
of the factory. The plant consists of two large warehouses and a 
production area with 4 automatic production lines and 5 manual 
production lines. The movement of materials (bottles, caps, 

Copyright © 2021 by ASMEV02BT02A017-2

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/IM

EC
E/proceedings-pdf/IM

EC
E2021/85567/V02BT02A017/6826893/v02bt02a017-im

ece2021-73080.pdf by Tallinn U
niv of Technology Library user on 16 D

ecem
ber 2025



boxes, labels, etc.) between the warehouses and the production 
area is simulated with AMR systems [17]. 
The production cycle of one product group from the intermediate 
warehouse of raw materials (1) to the warehouse of finished 
products (4) is examined FIGURE 1 [18]. AMR serves 

workplaces 1,2,3 and 4. At the ends of the production line (M) 
are workplaces L1 and L2. The task of these workers is to move 
the raw material from workplace 2 to workplace L1 and L2 to 
workplace 3.  

FIGURE 1: 3D MODEL OF A CHEMICAL INDUSTRY PRODUCTION UNIT 

2.3 Simplified production unit model 

Modelling an entire virtual factory with production processes is 
a relatively time-consuming job, so it makes sense to look at the 
monitoring of a specific product group and production line. This 
approach allows us to describe the entire production process and 
production logistics in more detail, which can later be transferred 
to other product groups and production lines. With the simplified 
model, it is possible to add all the important components that 
participate in the production cycle and give us a good overview 
of what is going on, and after that can easily change the process 
if the real data control from the factory floor gives the indication 
to make the changes. It is also easier and clearer to add different 
sensors here and present the obtained information graphically to 
analyze the generated data. 
The developed simplified model FIGURE 2 consists of four 
AMR system workstations (1, 2, 3 and 4), two production line 
workplaces (L1 and L2) with operators and a production line 
(M). 

FIGURE 2: DEVELOPED PRODUCTION LINE MODEL 

3. DESCRIPTION OF THE PRODUCTION PROCESS
AND KPI SELECTION 

In the chemical industry used in the simulation, the production 
activity usually takes place in one shift five days a week and the 
duration of the shift is 8 hours. The movement of all materials 
(bottles, caps, boxes, labels, etc.) between warehouses and 
production is carried out on euro pallets. Enterprise-wide 
production and inventory management are done through the 
company's ERP software, and the tasks and transport orders are 
assigned directly to the workshops. The company's automated 
production logistics and production flow chart from the raw 
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material warehouse to the finished product warehouse is shown 
in the FIGURE 3 [19]. 

FIGURE 3: PRODUCTION PROCESS FLOW CHART 

The most important parameter to describe the production flow 
FIGURE 3 efficiency is manufacturing cycle time, which is a set 
of transport operations, work processes, and breaks from the 
production of work objects to complete the production [19].  
The formula for the manufacturing cycle time is given in the 
form (1): 

Manufacturing cycle time = Process time + Move time + 
Inspection time + Queue time                                                                                          

(1) 

where, 

Process time refers to the time used to work on the 
product. Move time refers to the time required to transfer the 
product from one workstation to another. Inspection time is the 
time spent to check if the product is free from any defect. Queue 
time is the idle time the product spends waiting to be moved, 
processed, and shipped. 

Based on the formula (1), to monitor and optimize 
manufacturing cycle time, the following time components in this 
production line need to be measured – transportation time from 
warehouse to filling line, filling time, inspection and weighting 
times, transportation time to the warehouse, and also all the 
waiting times that affecting the manufacturing time. To collect 
the so-called clean data from the production process, different 
sensors and data acquisition technologies must be installed on 
the production line.  

4. SELECTION OF SENSOR INSTALLATION SCHEME

The rapid development of IoT technologies in manufacturing 
companies and real-time data collection have also found more 
use in company management processes. It is possible to point out 
some technologies, the use of which in production processes can 
give a great impetus to the development of the manufacturing 
industry precisely for gathering information from the production 
area and equipment [5]. 
The use of radio frequency identification (RFID) solutions is 
becoming increasingly attractive, especially for products where 
the shape, number, and other characteristics of the product vary 
and no direct visibility is required for identification [20, 21]. The 
price of this technology has also been on a downward trend over 
the years, and this provides an opportunity for wider use of this 
technology. RFID is an automatic identification technology in 
which objects are tagged and data is received wirelessly by signal 
transmission between a tag and antennas connected to a central 
server [21]. For example, an automatic material identification 
system using RFID technology allows us to track the location, 
quantity, origin, destination, and movement schedule of 
materials in real-time. 
Wireless Sensor Networks (WSN) consist of spatially distributed 
autonomous nodes that can perceive the environment, perform 
calculations, and communicate with other nodes [21]. These 
sensor nodes operate in a self-organized and decentralized 
manner, ensuring the best and most stable data transmission to 
the central controller. Such a combination allows us to perceive 
the environment more precisely and to make more accurate 
production management decisions based on it. It can also be 
combined with RFID technology if objects cannot be identified 
using traditional sensor technologies [5].  
Combining these two technologies, we find locations for the 
installation of sensors for the simplified production line model 
FIGURE 2. The selection and installation of the sensors are 
based on the manufacturing cycle time formula (1). and there 
was drawn up a sensor installation diagram FIGURE 4. 
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FIGURE 4: SENSOR SELECTION DIAGRAM IN WORKPLACE 

The selection of sensors and the principles of their installation 
were described as shown in   FIGURE 4. When selecting and 
installing these sensors, it is important to ensure that the raw data 
of the production cycle formula (1) and the cost of these systems 
are optimal. It is important for companies that the benefits of 
introducing such IoT systems outweigh the costs of this 
investment. RFID technology has been added for product 
tracking and quality assurance. On the one hand, this is important 
to ensure that the bottles are filled with the correct liquid, and on 
the other hand, it is a necessary input to ensure the quality of the 
product weight. 
The simplified production model in  FIGURE 2 shows the 
transport jobs (1,2,3 and 4), the production line buffer zone jobs 
(L1 and L2), and the production line (M). Transport orders are 
served by a AMR and one production worker at the workplace (2 
and L1) and one worker at the workplace (L2 and 4). The 
production cycle starts at workplace 1 (raw material warehouse) 
and ends at workplace 4 (finished product warehouse). 
According to the production cycle formula (1), we find the inputs 
of the components. The processing time is the time spent on the 
product and takes place on the production line M. To find this 

time, there was installed two optical sensors on the production 
line at the beginning of one production line and the end of the 
other production line. On the production line, chains, caps, and 
liquids are added to the bottles and the product is finished. The 
optical sensor records the start and end times of the production 
process and its speed. For Move time, there was installed optical 
sensors 1,2, L1, L2,3 and 4 on the workstations, which show the 
arrival and departure of goods at these positions. It is also 
possible with these sensors to measure how long the goods are 
standing at these jobs and on this basis, to find the queue time. 
You can assign a specific name to a sensor and use it to determine 
its location in the model. The sensor works on the principle of a 
switch, when the goods arrive, switching takes place and when 
the goods leave the workplace, it is released and fixed in time. 
The RFID reader supports it in workstations L1 and L2. Each 
tare bottle that runs through the manufacturing process is 
equipped with an RFID passive sticker. An example of an RFID 
and optical sensor layout in a production unit is shown in the 
FIGURE 5. It is also an important component in ensuring an 
automatic quality control process. In addition, a weight sensor 
has been installed on the AMR which gives us information on 
whether the products have been placed on the robot, and in 
addition, quality control of the goods is performed at workplace 
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3. The system uses RFID data from workstation L2 as input and
calculates the weight of the base with the goods. Weighing takes 
30 seconds. If the weight corresponds to the predetermined 
weight, the process can continue, but if it does not meet, the 
weighing is repeated and if it does not, the pallet remains at 
position 3 and is counted in the inspection time. The whole 
process is supported by the company's ERP system and all the 
information collected from the sensors is stored and compared 
with the given data. 
This ensures the traceability of the entire production cycle 
according to the production cycle formula (1). According to the 
sensor selection FIGURE 4, there was also added these sensors 
to the simplified production model shown in FIGURE 2. 

FIGURE 5: RFID AND OPTICAL SENSOR PLACEMENT 
IN PRODUCTION 

5. RESULTS AND DISCUSSION

All results presented in the paper are obtained using a simulation 
of a simplified production model FIGURE 2. To simplify the data 
obtained in the simulation, one item was used, which is one 
product (bottle). This approach allows us to display and analyze 
the results easily and clearly, both visually and numerically. It is 
important to understand whether this choice of sensor 
installation FIGURE 4 provides us with real-time traceability of 
the production cycle. 
Based on the collected data from the sensors in the physical 
production line during the simulation, graphs of the cycle times 
of the sensors were plotted graphically FIGURE 6. Data were 
collected from 8 IR sensors and two RFID sensors. The weight 
sensor time was not measured because it is a software preset time 
(30 seconds) and it is displayed within the cycle time measured 
from the workplace 3 optical sensor. In a real production unit, 
this weighing time may change if, for example, a given weight 
does not match a given one. However, this already directly 
affects the time spent on quality control and it changes the 
inspection time in the production cycle. 
The sensor cycle time graph FIGURE 6 shows the cycle times of 
the 8 IR sensors above and the cycle times of the 2 RFID sensors 
shown in the graph below. The sensor cycle time shows how long 
the sensor has been activated, i.e., how long the goods have been 
in the sensor's area of influence. The cycle times of the RFID 
sensors at the bottom of this graph also show the different 
product detection times of these sensors and are therefore good 
to use for product identification and to work with optical sensors 
to ensure data security. However, to get a more accurate time 
result directly from the sensors in contact with the product, and 
an optical sensor is suitable for this in our simulation. 
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FIGURE 6: SENSOR CYCLE TIME RESULTS 

TABLE 1 shows the cycle times of the optical sensors on the time 
axis, and here is also possible to get the start and end of the cycle 
time. Based on this data, it is possible to see what the entire 
product cycle time is and what it consists of.  

TABLE 1:SENSOR CYCLE TIMES ON THE TIME AXIS 

TABLE 2 shows the manufacturing cycle time and its 
components according to the manufacturing cycle time formula 
(1) and collected real time data. 
The processing time is obtained as the difference between 
sensors M (In) and M (Out). Move time is obtained when goods 
are moved between workplaces (WP1, WP2, L1, L2, WP3, and 

WP4) also where the sensor signal indicates either the departure 
or arrival of the goods at the workplace. 
The quality control time is fixed (30 seconds) and is deducted 
from the 3 waiting times of the workplace. Queue time is then 
the sum of downtimes read from the sensors, which is mainly the 
cycle time of the sensors. 

TABLE 2:MANUFACTURING CYCLE TIME 

The data obtained in Table 2 show that this selection of targeted 
sensors and locations gives us a good overview of the main 
components of the production cycle, and this data is easy to 
monitor and visualize. Also, with such a solution, the sensor data 
can be easily linked to the company's ERP systems to monitor a 
given production plan and compare it with the actual execution 
time. In addition, it is possible to analyze and visualize the 
impact of changes in production and logistics processes on the 
length of the production cycle.  
This simulation of a simplified production unit or production line 
models provides a better overview of sensor placement and 
selection, and it is possible to get a faster overview of how these 
models work. If such a model has been tested and the necessary 
parameters are suitable for monitoring the production cycle time, 
then the next step is to transfer this selection of sensors to the 
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virtual model of the entire production unit and simulate it with 
real production data and goods quantities and test its solution. If 
for some reason, the data on the entire factory virtual model is 
incomplete or the location of the sensor does not match, these 
problems should be solved in advance on the simplified 
production unit model and then retested on the entire virtual 
factory model. Such a methodology provides an opportunity to 
better understand problems and find solutions to errors faster. 
If a level has been reached on the virtual model of the factory 
that allows the data obtained from the sensors to be considered 
reliable and the time of the product production cycle can be 
monitored in each position, then a specific model of seniors' 
locations and their choices can be transferred to the actual 
production unit. Of course, there is also possible to calculate the 
cost of such a system in advance and make a list of the necessary 
components.  In terms of hardware and software such solution 
provides an opportunity to understand in advance whether, is 
possible to use the existing hardware or software capabilities in 
the company. Today's production equipment is mostly equipped 
with various sensors and control units from which it is possible 
to read production data. In a specific chemical industry unit, this 
production line is already equipped with optical sensors at the 
input and output ends of the production line, which do not need 
to be additionally installed. 

6. CONCLUSION

In the current study Virtual Factory model for chemical industry 
was developed. This VF model consists of the virtual model of 
production lines and Autonomous Mobile Robots between in the 
factory floor. During the work, methods for collecting real time 
data from the physical factory and integrating it into the virtual 
production unit to compare the simulation with the actual 
situation in the continuous loop were analyzed. During the 
process sensor selection diagram development with actual 
installation was done.  
Data were collected from 8 IR sensors and two RFID sensors. 
The obtained data (manufacturing cycle time, process time, 
move time, inspection time, and queue time) show that this 
selection of targeted sensors and locations gives us a good 
overview of the main components of the production cycle, and 
this data is easy to monitor and visualize. With developed 
solution, the sensor data can easily linked to the company's ERP 
systems to monitor a given production plan and compare it with 
the actual execution time. It is possible to analyze and visualize 
the impact of changes in production and logistics processes on 
the length of the production cycle. 
Measuring the production cycle and analyzing the data have a 
significant impact on the operations of the manufacturing 
company. Production capacity will increase, work in progress 
will decrease, efficiency will increase and production costs will 
decrease. 
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Recent trends in manufacturing such as Industry 4.0 and Smart Manufacturing have brought the researchers' 
attention to the smart intralogistics in production facilities. Automated guided vehicles (AGV), especially mobile 
robots play a vital role in this development. On the other hand, industrial internet technologies offered new 
possibilities for the information exchange between devices, data integration platforms and communication 
interfaces to advance and facilitate the intralogistics for effective material handling and transportation. In order to 
analyse the feasibility and effectiveness of the mobile robots in the production area, 3D visualization should be 
combined with simulation, which provides a comprehensive possibility to evaluate and review the potential 
solution performance and its consistency before implementing practically into the production floor area. This paper 
describes a conceptual model based on 3D visualization and simulation and experimental study which help to 
make the decision according to the input data from the factory environment of the movement of mobile robots in 
production logistics. Moreover, the Key Performance Indicators (KPIs) are defined to analyse the use-case's 
process improvement in terms of the time reduction, which leads to increase productivity and cut-down  
the workers' fatigue.  

1. INTRODUCTION 

Smart manufacturing demands the use of the technology and methods like: 
implementation of the Internet of Things (IoT) in factories and plants; integration of new 
technologies related to digital twin, augmented reality, and smart sensors for existing 
production environments. Those methods and technologies support the company management 
level for effective decision-making. The term that incorporates all those mentioned methods 
is known as “Industry 4.0”, a new word coined at the “Hannover Messe” held in 2011 [1]. 
The nine pillars of Industry 4.0 are: Big Data and Analytics, Autonomous Robots, Simulation, 
Horizontal and Vertical System Integration, IoT, Cloud Computing, Additive Manufacturing, 
Augmented/Virtual Reality (AR/VR), and Cyber Security [2].  

_____________ 
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The technological roots for the Industry 4.0 are established by data networked 
production facilities, material handling as well as transporting equipment, which are 
harnessed with sensors and decentralized Information Technology (IT) intelligence. These 
intelligent systems for manufacturing intralogistics, which are connected via the Internet, are 
able to autonomously organize, control, and adapt the sequence of value-added processes and 
the correspondent logistical functions to exterior requirements. The recent “technology push” 
in the design and introduction of the autonomous production systems, advancement in 
digitalization, and automation leads to the expansion of new forms of services and work 
organization [3]. This new forms of services with collaborative machines, human, and 
transporting equipment such as Automated Guided Vehicles (AGVs) can be simulated to an 
extent, but they can be comprehensively understood with a level of trust for the adoption into 
the industry when the same scale experimental studies and demonstrators are established [4]. 
The combined effects of 3D simulation with the same level of real demonstrator help to make 
the efficient decisions and improvements of the target processes.  

The high level of automation has been reached in production and intralogistics, but there 
is still use of human labour for the transportation of goods utilizing handcarts and forklifts, 
which leads to the higher labour cost and products quality risks. There are other approaches 
like the installation of conveyors to automate material handling and movement, but they are 
either fixed, overhead, or floor-based. Therefore, Autonomous Mobile Robots (AMR) are 
considered to be a potential solution for flexibility and to improve internal logistics efficiency. 
3D visualization and simulation is an essential tool for the validation of the change in the real 
environment and facilitates to compare the different scansions virtually before the implemen-
tation [5, 6]. Besides that new industrial internet of things such as smart sensors, 
communication, and connectivity platforms add more value to the effective and efficient 
implementation of the change [7]. It helps to control and monitor the change i.e., deployment 
of AMRs in the real factory environment.  

In this paper, authors contributed by developing a conceptual model to analyse the auto-
mation of intralogistics for manufacturing, which is based on autonomous mobile robots, 3D 
visualization and simulation, and IoT sensors for communication. A case study of a food 
production company was used to demonstrate the relevance and feasibility of the proposed 
concept.  

The proposed concept allows SMEs to integrate the smart technologies of simulation, 
mobile robots, and IoT sensors to their current intralogistics system, which enables to improve 
the on-time delivery and reduce the labour costs and fatigues. 

2. LITERATURE REVIEW 

The literature review introduces the state of the art, which is related to the field of this 
study. It consists of the importance of 3D simulation and visualization, followed by the in-
volvement of autonomous mobile robots for intralogistics, the brief explanation of IoT 
sensors, and vision technology. Moreover, similar studies and relevant approaches are also 
referred to in this section.  
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2.1. 3D SIMULATION AND VISUALIZATION 

The purpose of the simulation is to grasp the insight behaviour of a system. Simulation 
is beneficial and appropriate to perform experiments and testing different solutions without 
any expense of physically change of a system, which allows to create an effective production 
line easier and quicker to accomplish. The ability to animate the system behaviour with time 
is one of simulation’s great advantages. Animation is useful for demonstrations, validation, 
and debugging [8].  

The extensive and often schematic 2D simulation & visualizations are not able to fulfil 
such objectives. One possibility is to use Industrial Virtual Reality (IVR) based 3D visuali-
zations, which can be fitted to existing 3D assembly layouts, 3D product models, and process 
flows generated from simulation models [5]. During this work the purpose is to visualize  
the simulations at a particular area of the production floor in combination with a realistic 
representation of the area, besides, the step of assembly or filling of products including the 
components and tools are used, and the changes in the location of transportation equipment 
also addressed. This kind of visualization allows a good evaluation of the simulated 
sequences, which drives beyond established standard 2D simulation and visualizations [9]. 
3D simulation and visualizations of intralogistics operations can be created by integrating  
the existing production process data and with the 2D layout of the production facilities. 

2.2. AUTONOMOUS MOBILE ROBOT FOR INTRALOGISTICS  

Material Handling Equipment (MHE) is a critical part of material flow for production 
factory logistics. For more flexibility in the production facilities, new transportation, and 
material handling methods need to be introduced [10]. MHE such as conveyors, used for 
automatic material transfer, and a large amount of parts can be moved, they offered temporary 
buffers, and material transportation between workstations, and they can be provided adequate 
solution together with forklift and pallet truck [11]. However, these equipment and systems 
allow a low degree of flexibility in routing compared to the AGVs and autonomous mobile 
robots. Moreover, autonomous mobile robots show a high level of versatility, as they can be 
used in various applications and can be reprogrammed depending on the input data changes. 
There are several developments and implementation of Industrial Robots (IR) into production 
facilities for the material handling and the different processes applications. Such as IR for  
the measurement process, the integration of IR in a manufacturing cell for pick and place, 
also in welding process [12, 13]. Conversely, there is still a need to do research and study 
regarding the usage and implementation of mobile robots for material handling in the produc-
tion field, and how mobile robots can be combined with the industrial internet of things for 
effective decision-making and improvement of a transportation process.  

As the new industrial internet of technologies, smart sensors, and development in 
artificial intelligence enabled positioning and autonomous navigation for mobile robots, 
which makes these vehicles to drive in a predefined area not as rigid to move in a defined 
guided path, that allows larger flexibility. Autonomous mobile robots operate on a decentra-
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lized decision basis, which leads to dynamic routing and scheduling. They are supposed to be 
small and more agile than traditional AGVs [14]. Furthermore, autonomous mobile robots 
can fit and access more areas and can be integrated to a higher degree in production 
workspace, leads to manufacturing flexibility and capable to fulfil the production demands. 
They are particularly suited for intralogistics operations like transportation and part feeding 
inside the production facility [10].  

2.3. IoT SENSORS AND VISION TECHNOLOGY  

Due to the recent development in modern manufacturing, most of the production and 
material handling systems are comprised of embedded technologies like smart sensors, 
organized through cloud-based solutions. It permits a large amount of data generation and 
collection that can be used to estimate different KPIs and enables proactive decision making. 
The ultimate aim of IoT applications in manufacturing is to comprehend smart factories, 
where machines and material handling resources communicate and are connected in a net-
work. For that purpose, production lines, transportation resources, and existing IT tools of an 
enterprise should be connected to the internet directly or through external adapters [15].  

Autonomous navigation can be achieved by integrating the applications of sensors, 
cameras, and computer vision into a vehicle. By using the camera and the object detection 
algorithm, certain 3D details on the motion path can be calculated and transmitted to the robot 
controller. This information notifies the robot controller about the desired location to be 
reached and facilitates navigation [16]. Likewise, autonomous navigation can be planned 
based, where a global map is used and relies on accurate global self-localization which is able 
to follow a path stated in global coordinates. In a planned based method, a path is defined at 
first on an available global map that is followed by the mobile robot. Different sensors and 
cameras can be used for localization in a map-based navigation approach.  

2.4. LIMITATIONS IN EXISTING LITERATURE 

This paper proposes a concept to analyse the automation of production logistics in  
a timely and coherent way, which is based on 3D simulation, autonomous mobile robots, 
smart sensors, and KPIs evaluation. There are studies and approaches covered the topic  
of automation of intralogistics and the use of mobile robots for transportation in production 
factories [10, 17, 18]. For production companies, such approaches and tactics are difficult to 
construct and adopt. Moreover, there are studies about the increased flexibility in 
intralogistics by suitable learning scenarios to grasp the energy-related dependencies  
of various transport technologies [19] and implementation of an autonomous industrial mobile 
robot in industrial applications that considered mobile robot technology, planning and 
scheduling, and communication [20]. However, they are lacking in the exploration  
of simulation and visualization tools, also recent studies are hardly providing a synchronized 
way to investigate the automation of intralogistics. This work provides a harmonized 
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conceptual model to evaluate the automation of production logistics via simulation and 
mobile robots. For more flexibility in the production facilities, new transportation, and 
material handling methods need to be introduced [10]. Mostly used MHE such as conveyors 
used for automatic material transfer, forklift and pallet truck as mechanized material trans-
portation equipment. However, these equipment allow a low degree of flexibility in routing 
compared to the AGVs and autonomous mobile robots. Moreover, mobile robots show a high 
level of versatility, for they can be used in various applications and can be reprogrammed as 
desired.  

3. CONCEPTUAL MODEL AND CASE STUDY 

The development of the conceptual model to analyse and implement the change i.e., 
automation of intralogistics for manufacturing was established. The case study practice was 
used as a research method. The general conceptual model is brought out in Fig. 1.  

 
Fig. 1. General conceptual model to analyse the automation of production logistics 

 The model consist of three main steps, first is the idea generation, which is about  
the particular activity that should be automated and the purpose of the automation. The second 
step validates the change or implementation of mobile robots for transportation in a virtual 
environment, also facilities to compare the scenarios based on target KPIs and the knowledge 
should be used for the deployment of mobile robots in the real environment (third step). In 
the third step, data (movement of robots) should be captured from the real scene via a smart 
sensor and navigation plan, where the IoT platform used for the connectivity of different 
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resources and storing data, which is later used for the estimation of KPIs. The third step not 
only verifies the virtual environment setup (layout and simulation), but also helps to prove 
the estimated KPIs from the simulation results. 

3.1. DESCRIPTION OF A CASE STUDY  

The proposed conceptual model was applied to a food manufacturing company 
intralogistics process, the company produces and sells prepared foods. Although, the compa-
ny has the combined elements of flexibility and capacity in terms of production volume and 
product portfolios, which facilitates them to accomplish not only industrial but smaller-scale 
orders as well. However, most of the production activities are operated manually, especially 
the production floor logistics. The transportation and material handling of goods (raw 
material, WIP, and finished products) are one of the key activities on the production floor, 
and the improvement in this process by means of time reduction helps to increase productivity 
and cut-down the workers' fatigue. Therefore, the company intends to explore and adopt  
the automation possibilities in production logistics, and the idea was to implement 
autonomous mobile robots for the material transportation within the production floor and the 
company was keen to adopt this change i.e., the collaboration of mobile robots and workers.  

The production facility handles the transportation of boxes (containers) by human-
worker using hand lifters and special wheels. Approximately 4000–5000 red boxes are 
moving daily in production. In the case of logistics, the waybills (bill of materials) are used 
and the order is executed through oral commands. In this experiment, three basic logistics 
routes are considered and their respective workflows are:  

 WF-1 – The transport-worker periodically reviews the production units and evalu-
ates the number of boxes needed to move somewhere. Empty boxes are transported 
from the washing department to a special wheel-base; 

 WF-2 – The production worker takes boxes for the production unit and brings them 
to the production line. When the products are ready, they put the goods in the boxes 
and transport them to the warehouse; 

 WF-3 – The warehouse worker puts the raw material into the boxes and carrying 
them to the transport-base. The warehouse worker carries these wheel-bases to  
the intermediate storage of raw material.  

3.2. KEY PERFORMANCE INDICATORS FOR ANALYSIS   

 Proper KPI selection, estimation and implementation are prerequisites to enhance  
the performance of the production processes [21, 22]. To keep in mind, the desired goals  
of automation and criticality of the logistic process, four major KPIs were defined to analyse 
the performance of the intralogistics process and compare the current situation (a manual 
process) with the automated production logistic via mobile robots. The KPIs used to measure 
the performance are: 
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P1 – Defects during the transportation 
P2 – On-time delivery 

P3 – Inventory turnover 
P4 – Labour cost for transportation 

  
Defects during the transportation were the irregularities in the number of boxes 

transported, transported at the wrong place, and incorrect goods transported. Those defects 
are caused due to the messy corridors, worker's fatigues, and lack of right information.  

On-time delivery is the delivery of empty red boxes on-time at designated places in  
the production area. It helps to ensure the availability of empty boxes in a sufficient amount 
so that there is a reduction in waiting time for empty boxes and subsequently increment in on-
time delivery.  

Inventory turnover – one of the goals was to fill empty red boxes with finished goods 
(from production lines). It means to turn empty boxes into full boxes and can be defined as: 
 

Average Inventory (I) = Throughput (R) x Average Flow Time (T) 
 

Hence, Inventory turnover = R / I 
 

Labour cost for transportation helps to realize the impact of mobile robots in monetary 
terms. The deployment of mobile robots leads to reduce the labour cost for transportation. 
Simple costing can be formulated as: 

 
Cost = Investment + Operating cost (fixed and variable) 

 
Although, there are initial investments to acquired mobile robots. However, after  

the payback period, there would be an increment in profit margin.  

3.3. CREATION OF 3D SIMULATION SCENARIO  

The simulation model of the case production facility can be seen in Fig. 2, Fig. 3 and 
Fig. 4 which were created on the Visual Components (VC) 4.2 [23]. The main focus is to set-
up the production layout and simulates internal logistics. The target is to analyse the trans-
portation of boxes (red colour boxes) that are used to carrying raw material from  
the warehouse to the production area, finished goods from the production area to the ware-
house, and empty boxes from the washing area to production. The workplaces with different 
colours (red, yellow, and green) in Fig. 2 corresponds as follows:  

 Red workplaces are the buffer for empty boxes  
 Yellow workplaces are the buffer for Raw Material (RM) 
 Green workplaces are the buffer for Finish Goods (FG) 

The purpose of Fig. 2 is to define the designated working areas that were used in the 
factory floor for analysis and it helps to measure the distances between the working areas as 
well. Later those distances were capitalized to adjust the speed of mobile robots and use as an 
input parameter during the simulation. Figure 3 defines the routing map of mobile robots on 
a full scale and helps to plan the movement of mobile robots in the simulation environment. 



K. Mahmood et al./Journal of Machine Engineering, 2021, Vol. 21, No. 2, 102–115 109 
 

The 2D factory floor map with the exact physical dimensions was imported into the virtual 
world and 3D environment of 1x1 scale was ramp-up on it, it represents the digital replica  
of the physical factory. The floor lines are clearly visible and the movement of AMRs can be 
observed i.e., the transportation of boxes by AMRs from the designated buffer areas to the 
production area on the factory floor and vice versa. It assists to find out the distance covered, 
time consumed and boxes transferred by AMRs during the simulation that aids to formulate 
the defined KPIs and later used for the comparison of manual transportation versus automated 
transportation by AMRs as criterions. Furthermore, Fig. 4 shows the 3D simulation of the fac-
tory floor for the holistic visualization and evaluation of the transportation of boxes via mobile 
robots.  
 
 

 
Fig. 2. Simulation scenario of production facility with the marking of working areas 

AMRs were deployed to transport the boxes from one place to another in the virtual 
environment. There is the movement of 4000 boxes approximately in the production facility 
for the processing of different products in 12 hours. The major concern is the availability  
of empty boxes at red workplaces (buffer) at the right time, as those empty boxes are being 
used to store the ready products and then transport to the warehouse. 



110 K. Mahmood et al./Journal of Machine Engineering, 2021, Vol. 21, No. 2, 102–115 
 

 
Fig. 3. Simulation scenario of production facility with the marking of mobile robots’ routes 

 
Fig. 4. 3D simulation model of production facility (virtual environment: a holistic view) 

 There are three AMRs, each is designated to different areas such as transport empty 
boxes from the washing area, raw material from the warehouse, and finish goods from 
production respectively. The process steps are as follows: 
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 AMR-1 – transports empty boxes from the washing area to different designated 
locations (red buffer) in production. AMR-1 carried 20 empty boxes in each run. 

 AMR-2 – transports a box of raw material in each run to a particular location (yellow 
buffer) in the production area. 

 Production workers pick the empty boxes from the designated locations, bring to  
the production lines, and filled boxes with products.  

 AMR-3 – picks the filled boxes from the production area and transport them to the 
finish goods area (green buffer).  

3.4. IMPLEMENTATION OF SCENARIO IN REAL ENVIRONMENT  

The 3D simulation model (virtual environment) was implemented in the production 
facility (real environment) to verify the deployment of mobile robots for the production 
logistics process. The communication model of various devices such as mobile robots and 
sensors that were installed for the experimental study is shown in Fig. 5. The Hybrid Produc-
tion System (HPS) was designed to enable interoperability and collaboration between 
different sub-systems. The HPS enables the integration with hardware devices and software 
of the end-users such as, for example, on the one hand the mobile robots and sensors in  
the warehouse, and on the other hand, the enterprise applications such as ERPs, MES and so 
on. The IoT Nodes layer (agent nodes) are the components of the communication model that 
interact with the physical world. For instance, they can interact by sensing, e.g., sensor agent 
node, by acting, e.g., robotic agent nodes. The modules of which these nodes are made of, can 
interact with the layer of Software System by exchanging messages with the layer of Cyber 
Physical Middleware and they either directly operate on these messages or translate them to 
an appropriate format for internal use through their communication sub-modules. Moreover, 
IoT nodes layer can talk to each other and with the other components of the communication 
model, as well as with Enterprise Applications, by means of the Cyber Physical Middleware 
layer. Similarly, the software applications layer interact with IoT nodes layer in addition to 
Enterprise Applications by means of message exchange via Cyber Physical Middleware.  

The Human Machine Interface (HMI) module provides the task monitoring and control, 
which enables continuous monitoring and visualization of information connected to other 
modules such as the sensor module [24, 25]. HMI can collect data from enterprise 
applications. Furthermore, it can be used for the task specification to formulate a task based 
on the task parameter. The sensing and perception module provides information suitable for 
safe and accurate motion planning to the Robot Agent Node. It also helps the mapping  
the structure of the manufacturing shop floor for the components involved in navigation.  

For the case study, the cyber physical middleware was connected to the simulation for 
the optimization purpose, which is also linked to the Enterprise Resource Planning (ERP) 
system through data management node. The production planning and scheduling data from 
ERP feeds to the simulation to carry out the sensitivity analysis and then to figure out the best 
optimize solution for the whole production process.  

The input parameters such as location, transportation time and loading & unloading  
of mobile robots were captured through sensors. The Sensor Agent Node (SAN) module was 
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linked to the Raspberry Pi 3 device, which was connected to the infrared sensors. A 3D printed 
packet was made to house the Raspberry Pi and the sensor. SAN modules were added to 
the routes of the mobile robots, precisely at the loading and unloading area for robots. When 
robots passed through, they detect the robot and crates (red boxes), send signals, and time 
stamp was recorded that can be observed on Human Machine Interface (HMI).  

For mobile robots testing, first, the mapping was done on the designated routes by 
moving them around the routes with joysticks and then moving it to a starting point. After 
they could move anywhere that has been scanned. In the later stage, LiDAR sensors were 
installed on the robots that help to scan the surrounding and allows to create a map for 
the mapping purpose. Moreover, it facilitates to identify objects in their path like humans so 
they can stop. Robot Agent Node (RAN) was linked to robots so while moving around a robot 
sends its location data in real-time to the IoT platform, which is then displayed to the user 
via HMI.

Six routes were tested in the production facility, tested routes can be depicted in Fig. 6. 
Data about timings and the number of boxes transferred were observed that used later for 
the KPIs estimation.

Fig. 5. Communication of entities in the factory environment (implementation of scenario)

Results of virtual and real scenarios for the automation of the intralogistics process via 
mobile robots were compared and presented in table 1. The observations were evaluated based 
on the target KPIs and positive changes were noted. The KPI-s implemented can be utilized 
for further optimization of the intralogistics process based on working group long time 
experience in engineering optimization [26]. 
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Fig. 6. Experimental study in the factory environment 

Table 1. Results based on the defined KPIs 

KPI Current Scenario (manual) Virtual Scenario 
(automated) Real Scenario (automated) Estimated 

improvement 

P1: 
Defects 

Irregularities existed due to the 
messy corridors (routes) with  

random boxes (crates) 

Irregularities did not exist as 
in the simulation the 

designated routes were 
clearly defined for robots 

Irregularities were mitigated 
as the implementation of 

robots in a real environment 
leads to neat and clean routes. 

10% reduction 
in existing 

transportation 
defects 

P2:  
On-time 
delivery 

Insufficient amount of boxes at 
the right time and at the right 
place. High waiting time at 

production lines 

Simulation enables to plan 
the number of boxes at right 
time and place. For 12 hours 

simulation run with 3 
robots, minor waiting time 

was overserved. 

On-time deliveries of empty 
red boxes were improved as 
robots connected to the IoT 
platform, communication 

between them facilitate the 
availability of empty boxes at 
the right time and at the right 

place. 

5% increase in 
on-time 
delivery 

P3: 
Inventory 
turnover 

Inadequate inventory turnover 
due to the lack of boxes. The 
throughput was 321 boxes per 

hour. 

For an hour simulation run 
in the virtual setup of the 

same scale, throughput was 
336 boxes. 

Sensors data and controlled 
planning of robots enabled to 
improve inventory turnover. 

5% increase in 
inventory 
turnover 

P4: 
Labour 
Cost 

Manual transportation incurs 
cost, when human labour 

realized fatigue due to 
repetitive activities. 

Enables effective planning 
to allocate the workers and 

robots for the right and 
productive job. 

The proper planned 
implementation of robots 

leads to a reduction in 
operating transportation costs. 

As the number of logistic 
workers decreased. 

15% reduction 
in the labour 

cost 
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4. CONCLUSION 

 The proposed conceptual model is a contribution to evaluate the automation of the intra-
logistics process and to implement mobile robots for production logistics. This work presents 
how to automate a production logistics process in a harmonized way, which starts with idea 
generation, validation through 3D simulation and visualization, followed verification by an 
experimental study in the real environment. The test case ensured the effective use of 3D 
simulation and visualization helped to reduce the installation time of robots. With the defined 
KPIs analysis and experimental study, it is technically feasible to use mobile robots for 
intralogistics, and it may enhance the proactive decision making as well. Moreover,  
the industrial internet of technologies helps to implement and control the autonomous mobile 
robots efficiently. Applied conceptual model improved the case company indoor logistics by 
reducing waiting time in production, the increment of on-time delivery, and decreasing  
the defects during the transportation process. Mobile robots provide more flexibility and  
a better possibility to make investments in stages according to increases in required 
production capacity. The proposed model can be replicated in the future to other companies 
that are dealing with similar business processes and production.  
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Abstract. Production planning and scheduling rely heavily on the efficient operations of 
production logistics and material handling equipment. Industry 4.0 technologies such as Internet 
of Things (IoT), Digital Twins, and Artificial Intelligence (AI) can be applied to production 
logistics in terms of autonomous mobile robots that facilitate to increase the flexibility and 
productivity of the whole production site. However, before the implementation of an automated 
production logistics systems, its feasibility must be analysed. This paper describes a simulation-
based approach, including the definition of and comparative analysis of Key Performance 
Indicators (KPIs), to analyse the performance of production intralogistics applied to a selected 
use case. The presented approach offers a proof of concept on the basis of which decision-makers 
can implement mobile robots for intralogistics in their own production environments.   

1. Introduction 
In the scope of production management, the performance of activities such as obtaining raw materials 
to delivering finished goods to customers, need to be jointly studied and analysed. These activities are 
highly interconnected, and the analysis of the performance of those activities can help optimize 
manufacturing and logistics operations. The improvement of production intralogistics – the internal 
transportation of goods within a given manufacturing facility – has a major impact on the production 
efficiency of the whole site. As such, the requirement to optimize internal logistics systems in terms of 
operational performance, throughput and sustainability arises [1]. Although automation contributes a lot 
to business value creation and has already been to some extent introduced into the intralogistics of 
manufacturing facilities (e.g. conveyors, fork-lifters and pallet trucks), the aforementioned equipment 
allows only for a low degree of flexibility, whilst other tasks, such as loading & unloading, and the 
authorization of goods, are still mainly performed manually [2]. High level automation, such as the 
introduction of Autonomous Mobile Robots (AMR) into the intralogistics of the facility, offers a more 
flexible solution that can lead to a more efficient process of transportation.  

Whilst intralogistics automation promises many benefits, any change within the production site 
introduces new challenges. For example, to ensure a smooth transition into the new workflow, a 
thorough change management course for line operators is recommended to be planned and carried out. 
Moreover, internal logistics systems are highly complex, with the deployment of AMRs requiring a 
thorough preliminary study and analysis. Therefore, the method of simulation and 3D visualization can 
be used to analyse and verify the change. Simulation modelling, paired with the Digital Twin concept 
and the setup of KPI (Key Performance Indicator) targets, has become a staple framework in operations 
management today, for the insights gained facilitate better decision-making in terms of financial, time 
oriented, material and energy savings, as well as the ability to streamline the process activities [3].  
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2. Literature Review
For the literature review, state-of-the-art articles relevant to the field of this study were analysed. Topics
include the automation of production intralogistics through AMRs, the significance of simulation
modelling and 3D visualization as decision-making tools, and a brief explanation of relevant Key
Performance Indicators. Moreover, similar studies and related approaches are referred to in this section.

2.1. AMR in Intralogistics 
Automation and the application of Internet of Things (IoT) have become widely associated with areas 
such as production, logistics and transportation. From the other side IoT applications in production and 
logistics should be seamlessly integrated into companies Manufacturing Engineering Systems (MES) 
[4]. AMRs for factory floor logistics persuade the smart factory concept with disruptive technologies 
such as Artificial Intelligence (AI), simulation and Digital Twin [5]. The use of AMRs as a type of 
material handling equipment creates a more ergonomic workspace for the production floor employees. 
Furthermore, proper deployment of AMRs may lead to an increase of production capacity and flexibility, 
while reducing transportation defects. Other automated solutions for factory logistics, such as 
conveyors, forklifts, pallet trucks, and automated guided vehicles, do not offer the same level of 
flexibility in terms of routing. In contrast, AMRs can be reprogrammed to be used in different 
applications, reacting to different data inputs. They are smaller in size and more agile than traditional 
automated guided vehicles; as such, they can access the production area more efficiently [6]. However, 
the implementation of AMRs for production intralogistics needs to be justified and verified before the 
physical set-up on the production floor.         

2.2. Simulation Modelling and 3D Visualization   
Simulation modelling is the creation of a digital model of a real-world system. Various what-if scenarios 
can be tested on a valid digital representation of a system to analyse, optimize, and predict the 
performance of processes based on set parameters [7]. After thorough experimentation in this risk-free 
environment, an optimal system configuration can be found and carried over into the real world. 
Potential problems and bottlenecks are discovered and reacted upon early in the process, thus leading to 
the improvement of set KPIs [8]. 3D visualization is an essential tool used to validate the simulation 
models´ feasibility by taking the geometry of the facility, line or process into account. 2D simulation, in 
comparison, offers only a low level of visual commissioning. The usage of Industrial Virtual Reality 
(IVR)-based 3D visualizations, which can be adapted to simulated 3D assembly layouts, product 
models, and process flows, may prove to be beneficial in such cases [9]. In this study, a production floor 
was simulated in a 3D simulation software; the assembly steps, including the mechanisms and tools on 
the factory floor were modelled, and the changes of the location of AMRs were analysed.  

2.3. KPIs for Production Intralogistics  
Performance indicators or KPIs aim to deliver information needed for the performance analysis of 
manufacturing operations, Intralogistics come under the discipline of operations management, and as a 
result, KPIs related to manufacturing operations are appropriate to production intralogistics as well, as 
defined in the ISO 22400 family of standards. The standard classifies KPIs based on their purpose of 
use, such as performance that can be measured in terms of cost, time, quality, flexibility and 
sustainability. Likewise, they are applicable to different types of operations, such as production, material 
handling, quality assurance, maintenance, and so on. [10]. Performance indicators not only showcase 
what has happened; they also indicate what will happen, as reactive steps will be taken by decision-
makers to combat any weaknesses represented in the KPIs [11].  

In this study, KPIs like utilization, throughput, and cost of AMRs, as well as transportation defects 
were chosen. The paper proposes a 3D simulation-based approach to analyse the performance of the 
production intralogistics process, though the suggested approach can be implemented to other processes 
as well. Several other research papers addressed the topics of intralogistics automation and the 
deployment of mobile robots for transportation on the factory floor [5], [12], [13]. The value of this 
study lies in the simplicity of the synchronized analysis approach, compared to the more difficult to 
construct and adopt procedures described in the aforementioned papers.  
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3. Simulation-based Approach for Analysis  
The continuous 4-step approach (see figure 1) was adopted through the comprehensive literature review. 
The case study technique was used as a research method, and a use-case is introduced to validate the 
relevancy of the proposed approach.   
 

 
Figure 1. Simulation-based approach to analyse the performance of production intralogistics. 

3.1. Model Creation  
Creation of the model, a fundamental step in simulation-based analysis, facilitates to capture and 
describe the problem properly. A model is created by mapping the real environment to the virtual one 
through a specified computer-based application. A model should grasp and reveal the dynamics of a 
process such as the occurring of events, changes in activity timing, and resources´ state. Model 
parametrization also includes the selection of components (entities, source and sink, resources, etc.) 
relevant to the specific problem statement and system.   

3.2. Performance Parameters   
The acquisition of data related to the target process or system is crucial for the setup of the desired KPIs 
in this second step. Process parameter data, such as system specifications, input variables, and process 
performance metrics, are needed for the analysis. The aforementioned indicators numerically describe 
the behaviour of the resources, as well as activities’ performance. Despite a wide selection of 
performance metrics being presented in various literature, KPIs must be selected depending on the 
underlying strategies of the company, for only then can the simulation model be built in response to the 
specific problem statement of the organization. For the intralogistics performance analysis and the 
objective of the test case, we incorporated throughput, utilization, cost and defects of the transportation 
activity as KPIs for the simulation analysis. Further details can be found in table 1. 
 

Table 1. KPIs selected for this study. 

KPI Formula Description 
Throughput  Shows the number of products transferred by 

an AMR from one station to another per unit 
time 

Utilization  The percentage time that an AMR performs 
tasks out of the total working time or a shift 
duration 

Cost  Shows the monetary impact of AMR in 
monetary terms 

Defects  Expressed by irregularities in the transportation 
process (wrong number of goods, wrong type of 
goods, wrong destination)  

 

3.3. Visualization  
The exact-scale digital model of the production floor in 3D verifies the work of the real system, ensuring 
that the created model behaves as intended. 3D simulation assists users to visualize staff, equipment, 
building facility, and other items and processes in the virtual environment. The verification can be 
performed by providing real input data to the model and comparing the results with historical data. 
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Visualization also represents processing data in the form of a dashboard which helps to determine 
between strategic alternatives. 

3.4. Variation Test   
In this step, the simulation model can be allowed to test several tactical variations and scenarios that 
capture uncertainty. Sensitivity Analysis and Parameter Variation experiments are commonly used to 
reveal the effect of randomness and parameter change to the simulation model’s behaviour.  

4. Case Study 
The proposed simulation-based approach was applied to the intralogistics process of a chemical 
manufacturer which produces detergents and hand sanitizer. The manually operated transportation of 
goods is a key operation in the production facility. Due to the high demand of products and, thus, the 
subsequent increase of production capacity and flexibility, the company decided to analyse and improve 
the intralogistics process with the intention to automate the production floor logistics by implementing 
AMRs. This solution is expected to reduce the transportation time and ultimately increase the process 
productivity, as well as cut down on workers' fatigue. The studied production facility consists of four 
production lines that fill empty bottles (in containers) of different sizes with liquid, label and cap them. 
The intralogistics related activities, planned to be executed on four different stations with the help of an 
AMR, are as follows:  
1. Loading of products (empty bottles) in warehouse and transportation to production line 
2. Unloading of empty bottles at the start of production line  
3. Loading of filled bottles at the end of production line and transportation to finished goods area 
4. Unloading of filled bottles in Finished Goods (FG) area and moving back to the Warehouse (WH)      
 
 

 
Figure 2. Simulation model of a single production line with AMR. 

The 3D simulation models of the use case were created and analysed in Visual Components 4.2, a 
3D manufacturing simulation software. The physical setup of the production lines and routes mapping 
of the AMR were constructed on the basis of full-scale production layout. Figure 2 gives a concise view 
and a single production line simulation model, where the intralogistics activities were marked and 
executed as defined above with the corresponding numbers. Figure 3 is a holistic view of the production 
facility and illustrates the transportation of goods using the AMR following the route WH  Production 

 FG  WH. The movement of the AMR was mapped and analysed during the simulation, with the 
green-coloured marking showing the movement of the AMR in the production area, the red-coloured 
one - to and from the FG area, and the yellow-coloured route – to WH and from WH.  
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Figure 3. Detailed simulation model of the production facility (top-view).

Figure 4: Time versus distance graph of an AMR (simulation outcome).

The results of the simulation analysis can be observed in figure 4. The graph, showing the time spent 
and distance covered by the AMR, helps to perceive the idleness and busyness of the robot. One AMR 
was used to feed and serve four production lines. For the 8-hour simulation run, performance metrics 
such as throughput and utilization were determined. By introducing variations in the simulation model 
(like the number of AMRs needed for the current production capacity), the effect of an AMR 
implementation to the transportation cost and defects was observed. The impact of the change, i.e. the 
automation of the production intralogistics operation, was monitored through previously defined KPIs; 
the results are shown in table 2. The deployment of an AMR shows a positive impact on every KPI.         
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Table 2. KPI observations of current real-world and simulated scenarios. 

5. Conclusion 
The proposed simulation-based approach is intended to help analyse the feasibility of automation of 
intralogistics processes and the implementation of AMRs in production logistics. Due to the possibility 
of achieving a high level of accuracy in the representation of a real production facility in 3D modelling 
and simulation software, the authors of this study recommend using the aforementioned Industry 4.0 
tools as part of the decision-making workflow when automating intralogistics processes. The case study 
ensured the effective use of 3D simulation and visualization which helped to reduce the installation time 
of AMRs and analyse the production capacity to figure out the number of AMRs needed to fulfil the 
current capacity requirement. Moreover, with the defined KPI analysis, it is technically feasible to use 
AMRs for intralogistics, and it may enhance the proactive decision making as well. Mobile robots are 
flexible tools which can be applied in different use cases as needed and can be introduced to a production 
facility stage-wise, first testing a solution with just one AMR, and then gradually increasing their number 
per required capacity. The simulation-based approach can be replicated in other companies in the future, 
especially those that are dealing with similar business processes and production environments.  
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KPIs Current Scenario  
(Manual Labor) 

Automated Scenario  
(AMR - Simulated) 

Remarks 

 
Throughput 

11 pallets per shift 
(8 hours) 

11 pallets per shift 
(8 hours) 

Same throughput, but AMR more 
flexible than manual process (+ve) 

 
Utilization 

Fully loaded Half-loaded Use of AMR  extra capacity to 
feed/serve more than four lines (+ve) 

 
Cost 

Manual transportation 
costs 

Enables effective (human & 
robot) resource allocation  

Use of AMR  less logistics employees 
 reduced transportation costs (+ve) 

 
Defects 

Irregularities due to 
disorganized corridors 

Irregularities did not exist thanks 
to designated routes for AMR 

Use of AMR  neat and clean routes   
less irregularities (+ve) 
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robots for production logistics: a process optimization model modification. Proceedings of 
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Abstract. Today's manufacturing companies have begun to increasingly use digital tools to increase their company 
production efficiency, to ensure a low-price level, high quality, and fast delivery time of the product or service in the 
conditions of increasing competition in the globalized economy. An important part of improving the company's efficiency 
indicators is the ever-more relevant organization of transport operations on the production floor and the digitization and 
automation of these processes. More and more companies have adopted or plan to do so in the near future with autonomous 
mobile robots (AMR) to manage production logistics. The rapid development of the Internet of Things (IoT) and the 
advanced hardware and control software of AMR enable autonomous operations in dynamic environments, which gives 
them the ability to communicate and negotiate independently with other resources, such as machines and systems, and thus 
decentralize decision-making in production processes. Decentralized decision-making allows the system to dynamically 
respond to changes in system state and environment. Such developments have affected traditional planning and control 
methods and decision-making processes, but also place greater demands on the software used and integrated Artificial 
Intelligence (AI) algorithms for the execution of these decisions. In this study, we provide an overview of how to pilot the 
integration of an AMR system with AI functionality in the production logistics of the food industry using the concept of a 
3D virtual factory. The paper proposes an approach for the performance analysis of AMR for the transportation of goods 
on the production factory floor, which is based on 3D layout creation and simulation, monitoring of key performance 
indicators (KPIs), and integration of AI for proactive decision-making in production planning. The relevance and feasibility 
of the proposed approach are demonstrated by a food industry case study.  

 

INTRODUCTION 

Autonomous mobile robots (AMR) have been introduced in various fields of modern industry to increase 
efficiency, productivity, and safe transport of goods, which perform various predetermined transport tasks without 
direct operator intervention [1]. Usually, the manufacturers of such AMR systems also have control software that 
enables various transport missions to be performed both in automatic mode and via a human-machine interface (HMI) 
according to predetermined routes [2]. 



 
 

 
 

With the continuous increase in the use of AMR systems, various problems such as deadlocks and conflicts arise, 
which cause a decrease in the efficiency of these systems [3]. Also, the complexity of managing and controlling these 
AMR systems is an important factor, which limits their implementation in a small or medium-sized company and 
inhibits their effectiveness in fulfilling transport tasks. 
To analyze the feasibility and efficiency of such AMR systems, a conceptual model based on 3D visualization, 
simulation, the use of IoT sensors and experimental research should be used in advance [4] to monitor the existing 
KPI’s in the real work condition [5,6]. Such an approach provides a comprehensive overview of the concept and 
performance indicators (KPIs) of a possible AMR solution before its implementation in the company's production 
logistics. Moreover, the automation of production processes through robotization can address the Lean wastes 
effectively [7] and hence, productivity can be improved by implementation of Lean tools [8] that are affirming the 
implementation of AMR on the factory floor.  
 Recently, an intelligent AI based algorithms like ant colony optimization [9], genetic algorithm [10], A* algorithm 
[11], simulated annealing [12], etc. are recognized as powerful tools for mobile robot path planning. In the current 
study the combinatoric and AI based algorithms are considered based on workgroup long time experience with AI 
tools and methods in wide range of engineering applications [13,14]. The conceptual model of production logistics 
also gives us a better understanding of how to organize the optimal and effective management of AMR systems and 
how to integrate it with the company's IT systems. 

In this article, the authors focus on the creation of configurable automated logistics solutions, including the use of 
artificial intelligence functionalities and 3D simulation software for the virtualization and simulation of production 
logistics. Based on artificial intelligence-based tools, various algorithms are proposed for easy reconfiguration and 
planning of tasks and movement paths of mobile robots. 

 

PROPOSED APPROACH FOR AMR PERFORMANCE ANALYSIS  

The proposed approach to analyze the performance and the implementation of AMR for the transportation of goods 
on the factory floor is adopted from our previous study [15] as shown in Figure 1, where we include AI elements for 
proactive decision-making along with the simulation analysis. The developed approach can be used to automate the 
process of production logistics with the help of immersive 3D simulation analysis as a validation of the concept. Its 
implementation can be verified through experimental testing in a real factory environment.      

 



 
 

 
 

 
Figure 1.  Proposed approach to analyze the performance of AMR for production logistics [15] 

The proposed approach has three main stages that begin with the idea generation to automate a process through a 
brainstorming activity. From an outcome of brainstorming, the second stage is to develop a virtual model of the process 
of production logistics, simulate and analyze that process through KPIs in the 3D virtual environment, and the 
knowledge as an outcome of the second stage can be used to implement AMR in the real environment. The simulation 
model also helps to create an AI model, which can be validated by different simulation scenario analysis. The third 
stage is the implementation and testing of simulation model of a mobile robot along with the AI model as an 
experimental use-case, where the data can be captured through IoT sensors, calculations should be made for KPIs and 
visualize the performance of the mobile robot by a monitoring dashboard. In this study, the focus is to create a layout 
and simulation of the AMR transportation process in a 3D environment and conduct the performance analysis. 
Moreover, an AI model was also developed for the route planning and optimal path-finding of AMR. The case study 
is used as a research method to attain the feasibility of the proposed approach.          
     

Virtual model and simulation of food industry use-case   

The virtual model for setting up the layout and simulation of AMR routings was created on the Visual Components 
software [16]. Movement and path planning of AMR is defined as follows: Ten plastic red boxes were transported 
(carrying) by AMR at every run on the red paths as shown in Figure 2. and the consolidated view of routings, buffers 
for picking and placing goods (boxes) by AMR is depicted in Figure 3.  
  
Setup for plastic boxes: 

 Path 1-2 & 1-3: Transportation of washed empty boxes by AMR (picking plastic red boxes from buffer 1, 
placing at buffer 2 and buffer 3 

 Path 2-4: Transportation of filled boxes by AMR (picking plastic red boxes from buffer 2 and placing at 
buffer 4) 

 Path 4-5: Transportation of dirty empty boxes by AMR (picking plastic red boxes from buffer 4 and 
placing at buffer 5) 

 



 
 

 
 

 

Figure 2. AMR pathways setup on factory layout (setup a: for red boxes) 

 

 

 
Figure 3. AMR routing map, buffers for picking and placing of boxes 

 



 
 

 
 

KPIs and simulation analysis of AMR  

The number of boxes transported, time of transportation, and average utilization of AMR were selected as KPIs 
for the analysis and optimization of AMR movement. Two scenarios were tested, the first scenario with an AMR 
speed of 1 m/sec and the second one with an AMR speed of 0.5 m/sec. The result of the simulation analysis is described 
in Table 1. 

 
Table 1. AMR simulation analysis 

Performance 
parameter 

Scenario 1: AMR Speed 1 m/sec Scenario 2: AMR Speed 0.5 m/sec 

Plastic red boxes 

Number of boxes 
transported 

Buffer 2 and 3: 400 pcs, Buffer 4: 400 pcs, 
Buffer 5: 400 pcs 

Buffer 2 and 3: 400 pcs, Buffer 4: 400 pcs, 
Buffer 5: 400 pcs 

Total time of 
transportation 

369 minutes (6 hours & 9 minutes) 594 minutes (9 hours & 54 minutes) 

AMR average 
utilization  

100 % (continues movement of AMR) 100 % (continues movement of AMR) 

AMR pick & place 
time  

60 sec 60 sec 

Total travel distance 
by AMR 

14.5 km  14.5 km 

 

USING THE FUNCTIONALITY OF ARTIFICIAL INTELLIGENCE IN THE PATH 
PLANNING OF MOBILE ROBOT'S  

 

This task focuses on the development of AI-based decision-making systems for mobile robots, depending on the 
task execution and production schedule. This includes the identification of decision criteria, key influencing factors, 
and prioritization. The task under consideration is closely related to the task of optimizing work paths for mobile 
robots. Decision-making in the considered digitalized solution is based on gathering maximum online information and 
analyzing it. Therefore, the main influencing factors are the information obtained from the sensor system and ERP 
(Figure 4). 

 



 
 

 
 

 
Figure 4. Principle diagram of AMR data exchange 

 
 

Simplified description of the node 
 

Particularly, to plan the movements of a mobile robot, it is necessary to receive real time information from the 
sensor system at each node. The nodes are divided into a starting node, an array of input nodes (all points where goods 
can be picked up), output node(s) where the goods need to be taken, and auxiliary nodes (washing, maintenance, 
loading), etc. The information is needed in each node depends to some extent on the specific task. 

A visualized example of one production node is given in Figure 5. The object-oriented programming approach is 
utilized. The node class includes the following necessary information: 

 the number of the node (in essence, it also determines the location),  
 the availability of the goods for pickup (Loading),  
 the availability of a place to drop off the empty tare (Unloading),  
 time (allows to determine the remaining allowed waiting time). 

At the moment, each node has Loading and Unloading values of 0 or 1. The time attribute characterizes the 
remaining time until preservation (allowed transport time in this case), if it is below the given critical value, then the 
priority of moving the given goods is higher. 

The above simplified description of the node can be utilized for all subtypes of nodes. Each particular node is 
introduced as instance/object of the node class. Two node arrays are composed for input and output nodes, 
respectively.The node data is an important part of the necessary information for making decisions, but in addition to 
this, there is also more general information for creating a directed graph characterizing the entire movement. This 
requires a 2D array/table of all nodes, specifying from which node to which node it is possible to move, as well as the 
distances between nodes, etc. If the application already has some user experience and has collected enough data on 
travel times, then it seems reasonable to replace path lengths with travel times. 

 



 
 

 
 

Selection of shortest path algorithms 

The shortest path algorithm is used to determine optimal mobile robot path. Herein the shop-floor application for 
food industry is considered as a case study (Figure 6). main decision criteria for the robot's movements are the need 
and ability to move the goods or the tare (is there something to pick up and is there somewhere to put it down), the 
allowed time limit (if the deadline for moving some goods to the output node is below a predetermined value, i.e. the 
shelf life limit is approaching) and the shortest path. 
At each location/node Figure 5, two “simple” decisions are required: 

a) where to move (to which node), you have to decide based on information from online sensors, etc 
b) how to move can be planned by generating the shortest paths between nodes in advance 
A robot's motion path can be represented as a directed graph since movement between some nodes is only allowed 

in one or both directions. 
Among shortest-path algorithms, the genetic algorithms (GA), the ant colony algorithms (ACO), and the 

combinatorics algorithms have been considered. The Dijkstra algorithm, which has a time complexity of 
O(E+log(N)*N), has been chosen from the two observed combinatorics algorithms. Here N is the number of vertices 
(nodes) of the graph and E is the number of edges. The "Dijkstra" algorithm is faster than another widely used 
Bellmann-Ford combinatorics algorithm with a time complexity of O(N*E). The work done by Dijkstra's algorithm 
can be made faster by applying artificial neural networks. The time complexity of the evolutionary algorithms like 
GA and ACO depend on particular operators used/designed. In the case of considered simple case study the 
evolutionary algorithms appear slower. The advantage of evolutionary algorithms is capability to solve complex 
problems.   

 

 
Figure 5. AMR motion model for the food industry use case 

 
The optimal path for AMR motion model shown in Figure 6 (1007 is start node, 1029 and 1038 are input nodes, 

1135 is output mode, 1009 is wash node) is depicted in Figure 6 as red line in directed graph (Figure 6). The optimal 
path of one “mission” of the mobile robot consists of three subpaths from start node to selected input node, next to 
selected output node and finally back to start node (all based on online information). The length of the optimal path 
1007-1038-1135-1009-1007 is 294 units. Obviously, the optimal bath depends on distances (as weights) and sensor 
data specifying availability for Loading/Unloading, also time determining priorities of the nodes. 

 



 
 

 
 

 
Figure 6. Optimal path for AMR motion 

 

CONCLUSION 

The main goal of this study was to analyze whether and how autonomous mobile robots can be used in the food 
industry based on use case, and whether they can be interfaced with the control system of mobile robots with artificial 
intelligence (AI) functionality and with the company's existing resource planning system in order to optimize the 
movement trajectories and transport tasks of mobile robots through their interaction. 
During the research, the VF concept was created, where a 3D virtual factory of the food industry, created on a 2D 
floor plan of a physical factory, was used to analyze the feasibility of using a mobile robot. Real production data was 
used as input for the VF simulation. This approach is a quick and less time-consuming process for solving a specific 
problem of a manufacturing company, and the results obtained are concrete and easy to interpret. 
The concept was proposed to create a cyber-physical environment, where an enterprise resource planning system 
(ERP), a mobile robot control system, a virtual factory with workplaces and artificial intelligence functionality to 
solve robot planning tasks are interfaced. This approach allows us to test the suitability of various solutions in advance 
on the basis of a virtual factory and to find which solution is the most optimal for the use of artificial intelligence and 
the most cost-effective for the company. 
Based on the principle of a decentralized control system, building control models using artificial intelligence for AMR 
transport missions is much more efficient than using it in conjunction with the VF concept. With such a novel 
approach, AMR systems can be simulated in advance, optimized and made more efficient in order to ensure a much 
easier and faster generation of the transport tasks assigned to them, and thereby achieve efficient and flexible 
movement of goods on the factory floor and integration with other production systems. 
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Abstract

Small and medium-sized enterprises (SMEs) in the manufacturing sector often struggle
to make effective use of production data due to fragmented systems and limited digital
infrastructure. This paper presents a case study of implementing an AI-enhanced digital
twin in a custom sportswear manufacturing SME developed under the AI and Robotics
Estonia (AIRE) initiative. The solution integrates real-time production data collection
using the Digital Manufacturing Support Application (DIMUSA); data processing and
control; clustering-based data analysis; and virtual simulation for evaluating improve-
ment scenarios. The framework was applied in a live production environment to analyze
workstation-level performance, identify recurring bottlenecks, and provide interpretable
visual insights for decision-makers. K-means clustering and DBSCAN were used to group
operational states and detect process anomalies, while simulation was employed to model
production flow and assess potential interventions. The results demonstrate how even
a lightweight AI-driven system can support human-centered decision-making, improve
process transparency, and serve as a scalable foundation for Industry 5.0-aligned digital
transformation in SMEs.

Keywords: industry 4.0; industry 5.0; digital twin; AI optimization; cluster analysis;
production monitoring systems; sustainability; human-centered design; smart factory

1. Introduction

The digital transformation of manufacturing has progressed rapidly over the past
decade, driven by the principles of Industry 4.0, which encompass automation, data ex-
change, and cyber-physical systems [1,2]. While these advancements have enabled greater
efficiency and traceability in large-scale enterprises, small and medium-sized enterprises
(SMEs) often encounter structural, financial, and technical obstacles that impede the adop-
tion of advanced digital tools. SMEs involved in small-batch, order-based production
frequently operate with fragmented systems, manual data collection, and limited ana-
lytical capabilities, which restrict their ability to adapt flexibly to process variations and
inefficiencies [3]. The emerging paradigm of Industry 5.0 introduces a complementary
perspective, highlighting human-centric, sustainable, and resilient manufacturing sys-
tems [4,5]. Instead of replacing humans with automation, Industry 5.0 aims to enhance
human capabilities through digital tools that foster interpretability, collaboration, and adap-
tive decision-making. In this context, digital twins (DTs) have emerged as a key enabler,
providing real-time representations of physical systems and establishing a foundation for

Appl. Sci. 2025, 15, 7952 https://doi.org/10.3390/app15147952
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simulation, optimization, and intelligent feedback through the sensors. Previous research
has illustrated the potential of digital twins in high-volume manufacturing, particularly
when integrated with artificial intelligence (AI) for predictive modeling and control. How-
ever, their application in SMEs remains restricted, primarily due to the complexity and
cost of implementation, as well as the need for interpretable, human-aligned outputs [6].
This study is based on the principle that even lightweight, modular digital twin systems, if
appropriately designed, can yield significant value in SME environments. The research was
conducted as part of the AI and Robotics Estonia (AIRE) initiative, a national competence
center at Tallinn University of Technology, that promotes the “test before invest” philosophy,
allowing companies to experiment with digital solutions before full-scale deployment [7,8].
The case presented in this paper focuses on a small to medium-sized enterprise (SME) in
Estonia that specializes in the manufacture of custom sportswear. The project aimed to
implement a real-time digital twin framework built on the Digital Manufacturing Support
Application (DIMUSA), enhanced with cluster-based analytics and virtual simulation [9,10].
The aim was to analyze workstation-level data, identify process bottlenecks, and assist
production decisions in a format that could be easily interpreted by operators and man-
agers. While digital twins have been widely applied in highly automated, high-volume
environments, their practical use in SMEs with flexible, order-based production remains
underexplored. Furthermore, this study utilizes a digital shadow, a one-way, real-time
data display of production processes, rather than a full bidirectional digital twin, which is
more suitable for SME conditions. This study aims to address this gap by implementing
and evaluating an AI-supported digital shadow system for real-time decision-making
in a custom sportswear SME. The primary objective is to identify and mitigate perfor-
mance bottlenecks and to enhance responsiveness through simulation-based analysis and
clustering of workstation-level performance data. The approach draws inspiration from
Lean manufacturing principles and follows a DMAIC-style methodology (Define, Measure,
Analyze, Improve, Control), enabling systematic analysis of production inefficiencies in a
dynamic SME context [11,12]. The paper begins by outlining the methodological frame-
work, including the system architecture, data sources, and analytical tools used in the study.
This is followed by a presentation of the implementation results and insights gained from
the pilot case. The discussion then examines the implications of these findings for Industry
5.0 and digitalization in small and medium-sized enterprises. The paper concludes with
reflections on lessons learned and suggestions for future research.

2. Materials and Methods

To evaluate the proposed digital twin framework in a real-world production environ-
ment, a pilot implementation was carried out at a custom-made sportswear SME in Estonia.
This section outlines the structure and components of the solution, including the system ar-
chitecture, simulation model, data collection methods, and analytical techniques employed
for process monitoring and improvement. The approach was developed collaboratively
with company stakeholders to ensure minimal disruption and maximum clarity.

2.1. Overview of the Framework

The AI-based digital twin proposed integrates three main components:

(1) real-time production data acquisition and processing,
(2) cluster analysis to detect production patterns and anomalies, and
(3) simulation for validating improvement scenarios and visualizing process behavior.

The solution architecture is illustrated in Figure 1. The central element of the frame-
work is the DIMUSA platform(v1.4, 2024 release), which collects and organizes workstation-
level production data via a custom-built Application Programming Interface (API). These
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data are enriched with contextual information (e.g., product type, shift time) and fed into a
clustering module for unsupervised analysis. Simulation models are used both to explore
process optimization options and to validate analytical outputs under controlled, repeat-
able conditions. To ensure systematic and replicable implementation, the approach draws
inspiration from Lean manufacturing principles and follows a DMAIC-style methodology
(Define, Measure, Analyze, Improve, Control), commonly used in Six Sigma frameworks.
In the Define phase, the project scope was established in collaboration with stakeholders,
focusing on production delays, idle times, and prioritization issues. During the Measure
phase, real-time data on workstation utilization, cycle durations, and product flow were
collected through the DIMUSA interface. The Analyze phase employed K-means cluster-
ing to classify workstation performance and identify inefficiencies. In the Improve phase,
simulation experiments with Tecnomatix Plant Simulation tested improvement strategies,
such as operator reassignment and task re-sequencing. Finally, the Control phase proposed
real-time monitoring dashboards based on digital shadow logic, allowing operators and
managers to track KPIs and detect deviations early. This structured approach supports
informed decision-making and continuous improvement in dynamic SME environments.

Figure 1. Digital twin framework utilized in pilot SME, integrating real-time data collection and
validation, clustering analysis, and simulation for decision support.

2.2. Production Environment Description

The pilot company specializes in small-batch, order-based production. Products are
made-to-order, often in varying quantities and combinations, which creates a highly dy-
namic and variable production flow. The shop floor is divided into functional workstations,
including fabric cutting, sewing, printing, and packaging. Before the pilot, the company
relied heavily on manual data entry and Excel-based reporting, which limited visibility
into real-time performance and made it challenging to detect inefficiencies across work-
stations [13]. The project aimed to implement a more automated and interpretable system
for production monitoring, bottleneck detection, and decision support. The production
system is structured into sequential workstation zones, each responsible for specific stages
of the process. These include fabric cutting, preparation, printing, and packaging. Figure 2
illustrates the physical layout of the production area, highlighting the relative positions
of the workstations involved in the pilot implementation. This layout informed sensor
placement, data mapping, and the clustering logic used throughout the study.
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Figure 2. Physical layout of the production area with marked workstation zones used in the pilot
implementation.

Table 1 presents the list of workstation codes used in the pilot implementation, along
with their corresponding functions and process descriptions. These stations represent
the core steps in the company’s small-batch production workflow, including material
handling, cutting, preparation, pressing, quality control, sewing, and packaging. The
coding was used in both data collection and simulation modeling to map digital records to
physical operations.

Table 1. Workstation codes, activities, and process descriptions used in the pilot SME.

Code Workstation/Activity Process Description

KJ-KL010 Staging and material placement Marking and transporting material from fabric storage
KJ-JL020 Cutting Cutting material according to the cutting order

KJ-VD031 White parts preparation Preparing white fabric parts for pressing
KJ-VD032 White parts preparation Preparing white fabric parts for pressing
KJ-VD033 White parts preparation Preparing white fabric parts for pressing
KJ-VD034 White parts preparation Preparing white fabric parts for pressing
KJ-PL040 Plotter Preparing press rollers for sublimation
KJ-PR050 Pressing Pressing visual elements onto white parts
KJ-KK061 Quality control Inspecting the quality of pressed parts
KJ-KK062 Quality control Inspecting the quality of pressed parts
KJ-KK063 Quality control Inspecting the quality of pressed parts
KJ-KK064 Quality control Inspecting the quality of pressed parts
KJ-OM070 Sewing Sewing product components
KJ-PA080 Packaging Packaging finished products
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2.3. Virtual Factory Simulation

To complement and validate the analytical logic, a simplified virtual factory simulation
model was developed using Siemens Plant Simulation software (2025) [14]. The simulation
tested hypotheses generated from clustering analysis, such as workstation overloads, un-
derutilization, and unexpected waiting states, by recreating similar patterns in a controlled
environment. This approach allowed the team to assess the causality of observed anomalies
and adjust their interpretation of data patterns accordingly. In addition to diagnostic use,
the simulation environment enabled the testing of improvement scenarios. Changes such
as layout reconfiguration, workstation reordering, and order sequencing modifications
were evaluated for their impact on throughput, lead times, and resource balancing [15].
The model mirrored the pilot company’s production flow, incorporating dynamic order
routing, buffer behavior, and empirically derived cycle time distributions. The simulation
ensured that the real-time data architecture and analytics aligned with the actual process
behavior before full deployment [16]. Furthermore, it served as an effective communication
tool to explain complex process dynamics to non-technical personnel and facilitate decision-
making discussions [17]. Figure 3 shows a screenshot of the virtual factory simulation
model used during the pilot.

 

Figure 3. Screenshot of the virtual factory simulation model created in Siemens Plant Simulation to
validate data patterns and test production improvement scenarios.

2.4. Data Acquisition and Integration

To support real-time data acquisition in the pilot project, a custom data pipeline was
developed by integrating multiple existing and purpose-built components. The company’s
Enterprise Resource Planning (ERP) system provided information on production orders
and routing. At the same time, Microsoft Excel365 (Version 2406, Build 17726.20126),
enhanced with Visual Basic for Applications (VBA) macros, was used for manual input
and structured formatting. A custom-developed API enabled live data collection from
shop-floor terminals and edge devices directly from workstations. All collected data were
then centralized and visualized within the DIMUSA platform, serving as the primary
hub for both monitoring and analysis. The data captured through this system included
the order number, product ID, workstation identifier, and precise timestamps marking
the start and end of operations. In cases of interruptions or abnormal events, operators
manually entered reason codes and additional contextual information. These structured
and timestamped records provided the analytical foundation for performance evaluation
and cluster-based analysis in the subsequent stages of the project. Figure 4 illustrates the
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interface of the DIMUSA system platform, which is used for live monitoring and manual
input. The dashboard enabled operators and supervisors to track production progress,
identify and visualize the bottlenecks, and contribute relevant context during exception
events, enhancing both traceability and interpretability throughout the system.

Figure 4. The DIMUSA platform interface is used for real-time workstation data monitoring and
operator input collection [9].

2.5. Clustering and Analysis Methods

To analyze workstation performance and identify process inefficiencies, a two-step
clustering workflow was applied to the simulation data generated by the virtual factory
simulation model. The first step involved outlier filtering using the DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) algorithm [18]. This technique was
used to detect and remove anomalous data points, such as unusually long idle periods
or sequences of very short cycles, which could distort cluster structure and introduce
interpretation bias. In DBSCAN, a point x is considered a core point if it has at least a
minimum number of neighboring points (minPts) within a specified radius (ε):

Equation (1).

Nε(x) = {y ∈ D ||x − y|≤ ε}, and |Nε(x)| ≥ minPts (1)

After outlier removal, K-means clustering was applied to categorize the remaining
workstation-level data into interpretable operational states [19,20]. This enabled grouping
of behaviors into clusters representing conditions such as “stable,” “delayed,” or “high
variation.” The goal of K-means is to minimize the total intra-cluster variance:
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Equation (2).

min
C1,...,Ck

k

∑
j=1

∑
xi∈Cj

|xi − μj|
2 (2)

where Cj Is the set of data points in cluster j, μj It is the centroid of cluster j, and k is the
predefined number of clusters.

The clustering results were visualized to compare simulated performance across work-
stations over one one-month period. Figure 5 shows the Overall Equipment Effectiveness
(OEE) values for each workstation over a month. This time-based view forms the basis for
the next clustering analysis, which groups workstations by similar performance patterns.
Each line corresponds to a specific workstation, as identified by the layout codes provided
in Table 1. Additionally, this summary highlights the top five and bottom five stations
based on overall efficiency, helping guide further investigation and process improvements.

Figure 5. Time-series analysis of workstation OEE based on one-month virtual factory simulation
data. The results serve as input for subsequent clustering analysis.

3. Results

The digital twin framework was deployed in the production environment of a custom-
made sportswear manufacturing SME over a six-month pilot period. During this time,
data were collected from multiple workstations, processed through the DIMUSA plat-
form, and analyzed using a combination of clustering and simulation techniques. The
following sections present the key findings derived from this implementation, highlighting
patterns in workstation behavior, performance bottlenecks, and the effects of proposed
optimization scenarios.

3.1. Production Data Characteristics

Initial input data for the simulation model-including factory layout, selected product
types, routing sequences, and partial workstation cycle times, provided by the company in
Excel format based on exports from their ERP system. These data formed the baseline for
constructing the virtual factory simulation. Excel also served as the company’s primary
tool for production planning and operational feedback. Throughout the project, this ini-
tial dataset was iteratively refined to improve the realism and fidelity of the simulation
model. To validate and enrich the simulation inputs, selected production workstations
were instrumented with DIMUSA hardware for real-time monitoring. On the plotter work-
station, current sensors were successfully used to detect active plotting periods, enabling
an accurate view of operational cycles. However, on the heat-based press workstation,
current-based monitoring proved ineffective, as the heating system remained continuously
powered during the entire shift. To overcome this limitation, a part-counting sensor was
installed on the press to identify the start and end of each print cycle by detecting the
movement of physical materials. In addition to sensor-based monitoring, a manual report-
ing phase was conducted during one week of the pilot, during which operators logged
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task start and completion events via the DIMUSA interface. Although limited in duration,
this experiment helped assess data quality and train staff on accurate input procedures.
DIMUSA data were collected continuously over a six-month period from selected worksta-
tions, while simulation data covered a three-month virtual period. Bidirectional data flow
was established between Excel and the DIMUSA platform. Task orders were imported into
DIMUSA for execution monitoring, and actual start and end times were exported back to
Excel for further analysis. Collected data included equipment usage, cycle time durations,
idle intervals, and manually logged exceptions. To ensure reliability, post-processing steps
were applied to filter out simulation artifacts, correct manual input errors, and align re-
ported events with equipment-level OEE indicators [21]. Before applying cluster analysis,
the dataset was cleaned to improve interpretability and accuracy. Based on the simulation
and monitoring results, the plotter and press workstations were selected as focal points
for deeper analysis, given their high load, complexity, and integration with both DIMUSA
sensors and manual reporting channels. These workstations exhibited the highest OEE
scores and output volumes during the monitoring period within one month, as shown in
Table 2. Their central role in the company’s mini-batch production process, starting from
plot file generation to material preparation and pressing, further justified the focus. Table 1
provides a summary of workstation-level KPIs for October 2024, highlighting the relative
performance of each monitored station in terms of availability, performance, quality, OEE,
Total Effective Equipment Performance (TEEP), and production results.

Table 2. Summary of OEE-related performance metrics for monitored workstations (during
October 2024).

Date Workstation Availability % Performans % Quality % OEE % TEEP % Result/pcs

2024/10 Plotter KJ-PL040 67% 100% 100% 67% 16% 9200
2024/10 Press KJ-PR050 29% 100% 100% 29% 7% 9200

2024/10 Quality control
KJ-KK061 24% 100% 100% 24% 6% 2300

2024/10 White parts
KJ-VD031 22% 101% 100% 22% 5% 2622

2024/10 White parts
KJ-VD032 22% 101% 100% 22% 5% 2622

2024/10 White parts
KJ-VD033 21% 101% 100% 22% 5% 2599

2024/10 White parts
KJ-VD034 21% 101% 100% 22% 5% 2599

2024/10 Quality control
KJ-KK062 21% 100% 100% 21% 5% 2300

2024/10 Quality control
KJ-KK063 21% 100% 100% 21% 5% 2300

2024/10 Quality control
KJ-KK064 21% 100% 100% 21% 5% 2300

2024/10 Cutting KJ-JL020 15% 100% 100% 15% 4% 20,355
2024/10 Sewing KJ-OM070 14% 100% 100% 14% 3% 9200
2024/10 Packaging KJ-PA080 14% 100% 100% 14% 3% 9200

3.2. Cluster Analysis Results

A clustering-based analytical workflow was applied to the preprocessed production
dataset to identify performance patterns and anomalies across workstations. The methodol-
ogy combined DBSCAN-based prefiltering with K-means clustering to enhance robustness
and interpretability. The dataset was first cleaned and normalized. Key performance indica-
tors were selected as clustering features, including OEE, availability, performance, quality,
and state durations (produced, off, short, long, and working). Categorical workstation
labels were encoded numerically, and timestamps were converted into a consistent datetime
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format. DBSCAN was used to remove noise and outliers, including negative values and
unrealistic cycle durations [22]. Afterward, K-means clustering was applied with k = 5,
producing five representative operational states [23]. The most representative workstation
and a median timestamp were identified for each cluster to support interpretation. Cluster
centroids were computed and enriched with metadata, enabling performance compari-
son across stations and time windows. Average OEE scores then ranked workstations to
identify top and bottom performers, while problematic stations were flagged for deeper
investigation. The entire process, from parameter definition to final visualization, followed
a structured analysis pipeline [24]. This included feature selection, validation checks, outlier
handling (e.g., logarithmic transformations), and cluster labeling. Both the DBSCAN and
K-means clustering algorithms were implemented in Python (version 3.12) and integrated
into the DIMUSA system as part of its analytical backend. The results were visualized
through the DIMUSA dashboard as interactive time-series views and color-coded status
overlays, enabling planners and supervisors to identify root-cause opportunities for im-
provement. The complete clustering workflow is illustrated in Figure 6, which served as
the basis for implementing data-driven diagnostics in a live production setting.

Figure 6. Clustering workflow from data preprocessing to performance visualization.

The clustering results were further visualized using a two-dimensional scatter plot
to map the relationship between availability and performance across all monitored work-
stations. Figure 7 presents the cluster distribution based on the simulation data collected
throughout October 2024. Each data point represents the aggregated performance of a
workstation for a given time window, with color-coded labels indicating the different
stations. The visualized output closely corresponds to the quantitative results shown in
Table 1, providing a fast and intuitive overview of workstation utilization. The chart effec-
tively highlights performance disparities, such as the consistently high workload of the
plotter and press stations. When large volumes of production data are involved, this type of
visual summary can significantly accelerate interpretation by production planners, enabling
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them to detect trends, anomalies, and bottlenecks with greater clarity and precision. The
graph serves as a valuable decision-support tool in daily operations, guiding attention and
improvement efforts.

Figure 7. Availability vs. performance plot of clustered workstation data based on virtual factory
simulation output from October 2024.

3.3. Identified Bottlenecks and Insights

The analysis centered around the company’s use of micro-batches, which represent
small, order-specific production batches organized around the output of the plotter. Each
micro-batch begins when the operator aggregates a group of print jobs and generates a
roll-specific print file [25]. This event initiates a tightly coupled sequence: white fabric
components are prepared, aligned with the roll content, and stacked for pressing. The press
then operates at a fixed technological speed, processing each roll according to predefined
thermal and pressure settings. The micro-batch ends once all units are pressed and trans-
ferred to quality control. Early simulation scenarios revealed that this structure, although
efficient in principle, relies heavily on precise coordination between workstations [26]. Plot-
ter throughput sets the rhythm, while upstream and downstream stations (preparation and
press) must synchronize their activities to avoid idle time or bottlenecks. In particular, white
detail preparation exhibited delays in aligning material readiness with roll completion,
resulting in repeated idle periods at the press. This issue was validated through real-time
measurements. The press workstation exhibited stable operating parameters; however,
clusters of idle states often coincided with late material delivery. Conversely, the plotter
experienced workload spikes due to variable job grouping and the formation of ad hoc
micro-batches. These variations amplified the inconsistency in the downstream flow. To
analyze the issue holistically, simulation results were compared with real production data
collected through the DIMUSA platform [27]. This cross-validation helped confirm that the
observed performance gaps stemmed not from individual workstation inefficiencies but
from structural misalignments in micro-batch sequencing. The cluster-based visualization
made these patterns explicit, supporting root-cause discussions during daily meetings
with team leaders. Overall, the findings emphasized the importance of digital support for
batch logic and material readiness, particularly in environments characterized by short-run
variability and manual task transitions [28]. The micro-batch logic, described below in
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Figure 8, illustrates the tightly coupled flow initiated by the plotter and concluded at the
quality control step, underpinning the coordination issues discussed in this section.

Figure 8. Visual representation of the micro-batch production sequence.

The micro-batch process begins with aggregated order data, which is grouped at
the plotter workstation into printable roll files. Each roll considers the printing material
and thermal press parameters. Based on the roll content, fabric pieces are pre-cut and
stacked in sequence to align with the upcoming press cycle. The thermal press applies heat
and pressure to transfer the print onto each aligned fabric layer. The process ends when
the printed components are transferred to quality control. This structure ensures a clear
production rhythm but also introduces synchronization dependencies between the plotter,
cutting, and pressing operations.

3.4. Simulation Validation

To validate the realism and predictive accuracy of the simulation model, a focused
comparison was conducted between virtual factory simulation outputs and real production
data collected through the DIMUSA system. The validation focused on availability met-
rics and aimed to identify discrepancies between simulated assumptions and real-world
behavior across multiple workstations [29]. Figure 9 presents a direct visual comparison
of workstation availability across one selected production day. The upper chart displays
the availability values used in the simulation model, derived from baseline process as-
sumptions. Availability represents the share of actual working time relative to a full 8-h
shift (480 min), where 100% means uninterrupted operation throughout the shift. The
lower chart reflects actual availability as measured by DIMUSA sensors during the same
operational window. The contrast between the two layers highlights differences in timing
patterns, utilization rates, and workstation coordination. This side-by-side view revealed
that simulated data tended to assume more uniform availability across workstations, while
real-world data showed greater fluctuation, particularly during shift transitions and mate-
rial handling events. These findings informed subsequent updates to the simulation model,
ensuring more accurate modeling of downtime and micro-delays.
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Figure 9. Comparison of workstation availability between (a) simulation model assumptions and
(b) actual DIMUSA measurements for a single production day (16 October 2024).

To further contextualize these observations, the plotter and press workstations were an-
alyzed in detail for two consecutive days-October 16th and 17th. On these days, production
was structured around micro-batches, and both sensor data and operator-reported task logs
were available. Tables 3 and 4 summarize this cross-validation, comparing timestamps and
durations across the simulation, DIMUSA monitoring, and manual reporting systems [30].
The analysis confirmed that while the simulation provided a solid approximation of ex-
pected process flows, it occasionally underestimated idle periods and overstated continuity.
In contrast, DIMUSA sensor logs revealed nuanced interruptions, particularly in the press
workstation, where material readiness and operator interactions had a greater impact than
initially modeled. This three-way validation-spanning simulation, sensor feedback, and
operator input proved instrumental in refining the digital twin’s predictive capacity [31]. By
closing the loop between planning and execution, the simulation framework became better
aligned with real production rhythms, supporting more effective forecasting and targeted
optimization strategies. The methodology demonstrated here is scalable to additional
workstations and process types, underscoring the importance of empirical feedback in
refining digital twins.

Table 3 presents task-level data from the plotter workstation on 16 October 2024, com-
paring three sources: manually logged task start and end times by operators, corresponding
activity durations from the simulation model, and sensor-based records collected through
the DIMUSA system. While the overall timing was similar across data sources, slight
deviations were observed in transition gaps between micro-batches. These gaps were better
captured by DIMUSA sensors, which identified short but recurring idle periods not reflected
in simulation assumptions or manual logs. This highlighted the usefulness of sensor-level
granularity in exposing brief disruptions that accumulate into meaningful inefficiencies.



A
pp

l.
Sc

i.
2
0
2
5
,1

5,
79

52
13

of
19

T
a

b
le

3
.

Pl
ot

te
r

w
or

ks
ta

ti
on

ac
ti

vi
ty

on
16

O
ct

ob
er

20
24

,b
as

ed
on

m
an

ua
lly

re
po

rt
ed

ta
sk

fe
ed

ba
ck

,s
im

ul
at

io
n

da
ta

,a
nd

D
IM

U
SA

se
ns

or
lo

gs
.

A
ct

u
a

l
e

x
e

cu
ti

o
n

o
f

w
o

rk
o

rd
e

rs
(m

a
n

u
a

l
in

p
u

t)

C
o

d
e

W
o

rk
st

a
ti

o
n

A
ct

u
a

l
st

a
rt

A
ct

u
a

l
st

o
p

O
ff

S
h

o
rt

st
o

p
L

o
n

g
S

to
p

W
o

rk
in

g
Q

u
a

n
ti

ty
/m

2

M
ic

ro
-b

at
ch

-
44

-0
25

-C
A

A
Pl

ot
te

r
K

J-
PL

04
0

16
/1

0/
20

24
5:

56
:0

2
16

/1
0/

20
24

7:
31

:2
1

00
:0

0:
00

00
:0

1:
12

00
:0

0:
00

01
:3

4:
07

11
5.

9
m

2

M
ic

ro
-b

at
ch

-
44

-0
23

-C
A

Pl
ot

te
r

K
J-

PL
04

0
16

/1
0/

20
24

7:
32

:1
8

16
/1

0/
20

24
8:

31
:5

8
00

:0
0:

00
00

:0
1:

02
00

:0
3:

23
00

:5
5:

14
73

.8
8

m
2

M
ic

ro
-b

at
ch

-
44

-0
34

-C
A

A
Pl

ot
te

r
K

J-
PL

04
0

16
/1

0/
20

24
14

:3
3:

11
16

/1
0/

20
24

16
:2

3:
18

00
:0

0:
00

00
:0

0:
00

00
:0

5:
04

01
:4

5:
01

14
8.

58
m

2

M
ic

ro
-b

at
ch

-
44

-0
32

-C
M

Pl
ot

te
r

K
J-

PL
04

0
16

/1
0/

20
24

10
:2

6:
16

16
/1

0/
20

24
12

:3
6:

55
00

:0
0:

00
00

:0
1:

08
00

:0
0:

20
02

:0
9:

09
16

4.
1

m
2

M
ic

ro
-b

at
ch

-
44

-0
28

-C
K

Pl
ot

te
r

K
J-

PL
04

0
16

/1
0/

20
24

8:
52

:3
7

16
/1

0/
20

24
10

:2
1:

49
00

:0
0:

00
00

:0
0:

48
00

:0
0:

00
01

:2
8:

23
10

4.
03

m
2

M
ic

ro
-b

at
ch

-
44

-0
37

-C
M

Pl
ot

te
r

K
J-

PL
04

0
16

/1
0/

20
24

12
:3

7:
27

16
/1

0/
20

24
14

:3
2:

58
00

:0
0:

00
00

:0
0:

44
00

:0
0:

00
01

:5
4:

46
16

9
m

2

T
O

T
A

L
:

00
:0

0:
00

0
:0

4
:5

5
0

:0
8

:4
9

9
:4

6
:4

3
7

7
5

.4
9

m
2

V
ir

tu
a

l
fa

ct
o

ry
si

m
u

la
ti

o
n

d
a

ta

S
h

if
t

W
o

rk
st

a
ti

o
n

S
ta

rt
E

n
d

O
ff

S
h

o
rt

st
o

p
L

o
n

g
S

to
p

W
o

rk
in

g
Q

u
a

n
ti

ty
/m

2
A

v
a

il
a

b
il

it
y

P
e

rf
o

rm
a

n
ce

O
E

E

17
.1

0.
20

24
Pl

ot
te

r
K

J-
PL

04
0

16
/1

0/
20

24
7:

00
:0

0
16

/1
0/

20
24

15
:0

0:
00

00
:0

0:
00

0
0

:0
0

:0
1

0
2

:3
9

:5
9

0
5

:2
0

:0
0

40
0

67
%

10
0%

67
%

D
IM

U
S

A
re

a
l-

ti
m

e
d

a
ta

S
h

if
t

W
o

rk
st

a
ti

o
n

S
ta

rt
E

n
d

O
ff

S
h

o
rt

st
o

p
L

o
n

g
S

to
p

W
o

rk
in

g
Q

u
a

n
ti

ty
/m

2
A

v
a

il
a

b
il

it
y

P
e

rf
o

rm
a

n
ce

O
E

E

17
.1

0.
20

24
Pl

ot
te

r
K

J-
PL

04
0

16
/1

0/
20

24
6:

00
:0

0
16

/1
0/

20
24

18
:0

0:
00

00
:0

0:
00

0
0

:0
4

:5
5

0
1

:5
6

:1
3

0
9

:5
8

:5
1

77
5

83
%

0%
0%



A
pp

l.
Sc

i.
2
0
2
5
,1

5,
79

52
14

of
19

T
a

b
le

4
.

Pr
es

s
w

or
ks

ta
ti

on
ac

ti
vi

ty
on

17
O

ct
ob

er
20

24
,b

as
ed

on
m

an
ua

lly
re

po
rt

ed
ta

sk
fe

ed
ba

ck
,s

im
ul

at
io

n
da

ta
,a

nd
D

IM
U

SA
se

ns
or

lo
gs

.

A
ct

u
a

l
e

x
e

cu
ti

o
n

o
f

w
o

rk
o

rd
e

rs
(m

a
n

u
a

l
in

p
u

t)

C
o

d
e

W
o

rk
st

a
ti

o
n

A
ct

u
a

l
st

a
rt

A
ct

u
a

l
st

o
p

O
ff

S
h

o
rt

st
o

p
L

o
n

g
S

to
p

W
o

rk
in

g
Q

u
a

n
ti

ty
/m

2

M
ic

ro
-b

at
ch

-
44

-0
25

-C
A

A
Pr

es
s

K
J-

PR
05

0
17

/1
0/

20
24

11
:2

6:
31

17
/1

0/
20

24
12

:0
8:

10
00

:0
0:

00
00

:0
0:

00
00

:0
0:

00
00

:4
1:

38
11

5.
9

m
2

M
ic

ro
-b

at
ch

-
44

-0
23

-C
A

Pr
es

s
K

J-
PR

05
0

17
/1

0/
20

24
12

:0
9:

23
17

/1
0/

20
24

12
:3

7:
29

00
:0

0:
00

00
:0

0:
00

00
:0

0:
40

00
:2

7:
25

73
.8

8
m

2

M
ic

ro
-b

at
ch

-
44

-0
20

-C
A

A
Pr

es
s

K
J-

PR
05

0
17

/1
0/

20
24

8:
34

:1
2

17
/1

0/
20

24
9:

06
:0

7
00

:0
0:

00
00

:0
0:

00
00

:0
0:

34
00

:3
1:

20
91

.3
m

2

M
ic

ro
-b

at
ch

-
44

-0
32

-C
M

Pr
es

s
K

J-
PR

05
0

17
/1

0/
20

24
9:

09
:5

1
17

/1
0/

20
24

10
:0

5:
54

00
:0

0:
00

00
:0

0:
28

00
:0

0:
00

00
:5

5:
34

16
4.

1
m

2

M
ic

ro
-b

at
ch

-
44

-0
37

-C
M

Pr
es

s
K

J-
PR

05
0

17
/1

0/
20

24
13

:0
0:

30
17

/1
0/

20
24

13
:5

2:
52

00
:0

0:
00

00
:0

0:
00

00
:0

0:
00

00
:5

2:
22

16
9

m
2

T
O

T
A

L
:

00
:0

0:
00

0
:0

0
:2

8
0

:0
1

:1
5

3
:2

8
:2

1
6

1
4

m
2

V
ir

tu
a

l
fa

ct
o

ry
si

m
u

la
ti

o
n

d
a

ta

S
h

if
t

W
o

rk
st

a
ti

o
n

S
ta

rt
E

n
d

O
ff

S
h

o
rt

st
o

p
L

o
n

g
S

to
p

W
o

rk
in

g
Q

u
a

n
ti

ty
/m

2
A

v
a

il
a

b
il

it
y

P
e

rf
o

rm
a

n
ce

O
E

E

17
.1

0.
20

24
Pr

es
s

K
J-

PR
05

0
17

/1
0/

20
24

7:
00

:0
0

17
/1

0/
20

24
15

:0
0:

00
00

:0
0:

00
00

:0
0:

00
05

:4
0:

00
02

:2
0:

00
40

0
29

%
99

.9
%

29
%

D
IM

U
S

A
re

a
l—

ti
m

e
d

a
ta

S
h

if
t

W
o

rk
st

a
ti

o
n

S
ta

rt
E

n
d

O
ff

S
h

o
rt

st
o

p
L

o
n

g
S

to
p

W
o

rk
in

g
Q

u
a

n
ti

ty
/m

2
A

v
a

il
a

b
il

it
y

P
e

rf
o

rm
a

n
ce

O
E

E

17
.1

0.
20

24
Pr

es
s

K
J-

PR
05

0
17

/1
0/

20
24

6:
00

:0
0

17
/1

0/
20

24
18

:0
0:

00
00

:0
0:

00
00

:0
4:

05
05

:1
5:

24
06

:4
0:

30
61

4
56

%
4%

2%



Appl. Sci. 2025, 15, 7952 15 of 19

Table 4 presents the press workstation data from 17 October 2024, following the same
structure. Unlike the plotter, the press exhibited more variation between simulated ex-
pectations and actual execution. Several micro-batches experienced delays or extended
idle periods between processing steps. In some cases, operator-logged reasons included
material unavailability or coordination delays. DIMUSA readings confirmed these delays
through prolonged inactive states. The comparison underlined the importance of account-
ing for coordination dependencies and manual handling variability when calibrating the
simulation model. It also reinforced the need for complementary validation layers-manual
reporting, real-time monitoring, and simulation achieve an accurate representation of
production behavior.

3.5. Impact

In addition to its analytical and planning benefits, the digital twin implementation
provided the manufacturing SME with a structured and scalable pathway for transitioning
from manual Excel-based production tracking to a real-time, AI-supported monitoring
environment [32]. By integrating with the DIMUSA platform, the company gained early
visibility into inefficiencies, intuitive visualization of operational states, and improved
communication between technical specialists and production staff. The complementary
simulation model allowed hypotheses to be tested virtually before applying process changes
on the actual shop floor [33]. This reduced implementation risk and increased trust in the
insights generated by the analytical pipeline. Simulation results revealed that workstation
synchronization, shift transitions, and operator-induced cycle variations can significantly
impact overall line performance. This hybrid approach, which combines real-time data
collection, clustering-based analytics, and simulation-driven forecasting, exemplifies the
AIRE initiative’s “test before invest” principle. It enabled a low-risk and phased transition
from prototype evaluation to operational deployment, explicitly tailored to the needs and
constraints of small-batch, human-centric production environments [34].

4. Discussion

The implementation of an AI–supported digital twin in a small–batch manufacturing
environment demonstrated how advanced data analytics and simulation can enhance
production understanding without requiring a full–scale digital infrastructure overhaul.
While digital twins have been widely studied in high–volume manufacturing and cyber–
physical systems, their application in SMEs remains limited. This study contributes to that
gap by showing how modular and lightweight solutions, combined with targeted data
collection and stakeholder collaboration, can unlock valuable insights without disrupting
daily operations. One of the key findings was the importance of timing coordination in
short–run production. Unlike traditional mass production, where variability is minimized
through volume and standardization, the small–batch model relies on flexibility and human
input, making process synchronization more challenging. The use of “micro–batches” as
a practical structuring mechanism proved effective, but also exposed the fragility of the
system when task sequencing or material preparation was delayed. Clustering revealed re-
curring inefficiencies that would have been difficult to identify through manual observation
or standard key performance indicators (KPIs) alone. In particular, the combined use of
DBSCAN and K–means clustering allowed the team to filter out noise, detect state–specific
patterns, and highlight the variability in workstation performance. These insights were
used to guide process discussions and test improvements virtually, reducing the need for
costly trial–and–error adjustments on the production floor. Simulation results aligned with
observed bottlenecks, reinforcing the validity of the analytical approach and offering a
realistic preview of how even minor adjustments, such as staggered handovers or buffer
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size changes, could increase throughput. From a broader perspective, the results align with
the goals of Industry 5.0, where human–centered decision–making and interpretability
are emphasized over full automation. The data visualization features embedded in the
DIMUSA platform enabled planners and operators to understand what was happening
in the system and why, thereby facilitating more confident and collaborative responses
to identified issues. The study also supports the relevance of the “test before invest” ap-
proach in SME settings, where experimentation capacity is limited and disruption must be
minimized. By leveraging a combination of real–time monitoring and virtual validation,
the team bridged the gap between abstract digital strategies and grounded operational
improvements. Moreover, while the case focused on a sportswear manufacturer, the same
digital twin methodology could be generalized to other domains characterized by small–
batch variability, manual processes, and frequent order customization, such as artisanal
production, medical device assembly, and high–mix electronics. It is also important to
emphasize that this study primarily focused on assessing the conceptual applicability of
the framework. While the simulation–based analysis and digital shadow system provided
important insights, it is essential to note that this study mainly focused on assessing the con-
ceptual applicability of the framework. The goal was not full operational implementation,
but rather identifying critical production inefficiencies that could guide future deployment.
Therefore, real–time KPIs and data visualizations were utilized to support collaborative
analysis with stakeholders; however, long–term effects, such as ROI, capacity utilization,
or sustained performance improvements, will require further integration and ongoing
tracking. This approach aligns with the “test before invest” philosophy promoted in SME
innovation environments, where experimental validation is a necessary first step toward
more reliable implementation. While simulation alone can offer valuable insights into
process flows and bottlenecks, its effectiveness relies heavily on predefined assumptions
and manual scenario testing. In contrast, integrating AI–based clustering greatly improves
this process by automatically identifying patterns, anomalies, and workstation–specific
inefficiencies without needing prior hypotheses. The clustering results guided the simula-
tion setup by highlighting where inefficiencies are most likely to happen, enabling more
targeted and efficient scenario validation. This synergy between unsupervised AI analy-
sis and simulation fosters a more systematic and data–driven approach to improvement
planning. Therefore, while simulation is a powerful tool by itself, combining it with AI
analytics speeds up root–cause identification and scenario prioritization, especially in cases
of small–batch variability and limited operator capacity. These sectors similarly struggle
with synchronization, traceability, and process visibility, making them strong candidates for
the application of lightweight digital twin architectures that support human–in–the–loop
optimization.

5. Conclusions and Future Work

This study explored the implementation of an AI–enhanced digital twin framework
in a real–world small–batch manufacturing environment. The approach combined real–
time data acquisition, clustering–based analysis, and simulation modeling to support
human–centered decision–making and improve production transparency. The integra-
tion of the DIMUSA enabled the automated collection, processing, and visualization of
workstation–level performance data, bridging the gap between manual practices and intel-
ligent monitoring. By applying clustering algorithms such as K–means and DBSCAN, the
system successfully identified operational states and process anomalies that traditional KPI
reporting would have overlooked. These insights helped isolate inefficiencies related to
cycle variation, workstation synchronization, and operator–driven fluctuations. In parallel,
the use of virtual factory simulation provided a low–risk environment for validating hy-
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potheses and exploring improvements, allowing the company to test and refine operational
strategies before applying them in live production. The developed framework emphasized
modularity, interpretability, and scalability factors for successful deployment in SMEs
with limited digital infrastructure and technical capacity. Beyond technical performance,
the solution supported collaborative learning and team engagement by offering accessi-
ble visualizations and structured feedback mechanisms. These characteristics resonate
strongly with the principles of Industry 5.0, where human involvement, adaptability, and
sustainable improvement are prioritized. Future development will focus on expanding
system coverage across additional production areas, integrating predictive components,
and refining clustering logic through the application of supervised learning techniques.
Integration with enterprise systems, such as ERP and Manufacturing Execution System
MES platforms, is also planned to ensure seamless data continuity and richer contextual
awareness. Longer–term studies could investigate how such systems affect organizational
learning, routine adaptation, and continuous improvement within SME environments. The
findings of this case study reinforce the conclusion that digital twin technologies, adapted
to real–world constraints and deployed incrementally, can offer measurable value even in
resource–constrained industrial settings. The key is aligning technology with operational
realities and empowering human decision–makers through interpretable, actionable data.
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