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1 Introduction

Modern manufacturing systems continue to face persistent inefficiencies due to
misalignment between production logistics and real-time workstation needs. Although
Industry 4.0 has introduced digital tools such as manufacturing execution systems (MES),
Internet of Things (loT) sensors, and digital twins (DT), their industrial use often remains
limited to monitoring or offline analysis rather than real-time control. Many factories,
therefore, struggle with issues such as delayed material delivery, unstable buffer levels,
frequent micro-stoppages, and unpredictable throughput. These challenges were
consistently observed across the industrial use cases addressed in this dissertation,
including chemical, food, metal, wood, and apparel manufacturing. As companies move
toward Industry 5.0, the need for adaptive, autonomous, and human-centric coordination
mechanisms becomes even more critical. This context provides the foundation for the
decentralized Al-driven control model developed in this research.

The motivation for addressing these challenges also stems from the author’s extensive
hands-on experience with industrial digitalization projects, where recurring inefficiencies—
such as materials and intermediate products failing to reach workstations on time—
regularly caused delays and performance bottlenecks [1]. Observing these patterns in
practice revealed the gap between available digital technologies and their actual use in
production control, emphasizing the need for a more adaptive and intelligent system that
can respond to real-time shop-floor conditions. This practical perspective directly
inspired the development of a control approach that combines digital optimization
methods with real-time performance signals through decentralized, Al-enhanced
decision-making.

The integration of intelligent digital control systems into modern manufacturing has
become a strategic focus under the Industry 5.0 framework [2]. Unlike Industry 4.0,
which mainly emphasizes automation and data sharing, Industry 5.0 prioritizes
human-centricity, flexibility, and the use of artificial intelligence (Al) to support both
machine and human decision-making [3,4]. One of the primary operational challenges in
industrial settings is inefficient coordination between production logistics and real-time
shop-floor operations, which often results in workstation downtime, uneven workloads,
and reduced throughput [5,6]. These coordination issues are frequently caused by rigid,
top-down scheduling systems that fail to accommodate the dynamic nature of actual
production environments. To overcome these challenges, lean manufacturing principles—
such as waste reduction, flow enhancement, and standardization-provide a core
philosophy for identifying and eliminating inefficiencies in logistics and production
alignment [7,8].

To effectively address these inefficiencies, it is crucial to understand the complex
interactions between logistics scheduling, real-time decision-making, and production
system responsiveness. Figure 1 positions this research within the Industry 5.0 landscape
by demonstrating how digital twins serve as the real-time data backbone, how
decentralized control enables autonomous local decision-making, and how Al-powered
reasoning links these elements into an adaptive, responsive production system.

11
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The development process for this research was systematically organized using the
Define, Measure, Analyze, Improve, and Control (DMAIC) methodology, a fundamental
part of the Lean Six Sigma approach, which provides a structured, data-driven
improvement cycle applied throughout this work [9]. Applying DMAIC during the design
and validation phases kept a consistent cycle of problem identification, solution
development, and empirical feedback. This method ensured that each step, from data
collection to system testing, was based on real operational needs and performance
analysis [10].

The primary goal of this doctoral research is to develop and implement a decentralized,
Al-driven control model for production processes that enables adaptive, autonomous
coordination between production logistics and shop-floor operations. The proposed
model incorporates digital twin technology, real-time data analytics, and autonomous
agent-based decision logic to ensure continuous material flow and balanced workstation
performance. By synchronizing logistics operations with the dynamic needs of production,
the system improves Overall Equipment Effectiveness (OEE), reduces throughput time,
and enhances flexibility and resilience across the manufacturing network [11]. This
approach aligns with Industry 5.0’s strategic goals by focusing on human-centricity
through real-time decision support for operators, coupled with intelligent automation
and sustainable productivity in industrial settings.

The main tasks of the thesis are as follows:

e To design a modular, distributed architecture in which each production
entity (workstation, buffer, or transport unit) functions as an autonomous
decision-making agent within the production network.

e To employ real-time production data and Al algorithms for analyzing material
flow, detecting bottlenecks, and optimizing task allocation through decentralized
control logic.

e To integrate and validate the developed model in both simulation and
industrial environments through digital-twin-based case studies, demonstrating
its effectiveness in improving OEE and production flow stability.

The research methodology encompasses digital twin modeling [12], OEE-based
performance tracking [13], agent-based and clustering analysis [14], and simulation of
intralogistics using autonomous mobile robots (AMRs) [15]. A data-driven approach
is applied throughout the work, using real-world production data collected from
collaborating industrial companies. The model is validated using both virtual simulations
and real-life factory applications. Both Lean principles and the DMAIC cycle were directly
integrated into the model design and evaluation criteria. For instance, the system aims
to reduce waste by decreasing workstation idle times, preventing overproduction
through just-in-time material supply, and standardizing logistics operations using
autonomous mobile robots guided by real-time data and Al logic.

The thesis’s theoretical novelty lies in the concept of integrating decentralized Al with
logistics and production control logic. Unlike traditional MES, which enforces fixed
production routing and restricts decision-making to a central authority, the proposed
system uses autonomous decentralized control, allowing each node (workstation, buffer,
or transport unit) to operate independently with local information, while still ensuring
coordinated flow throughout the network system [16]. The practical innovation is
demonstrated through five industrial use case studies (chemical, food, metal, wood,
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apparel), showing that Al-supported autonomous agents can collectively enhance flow
stability, decrease idle time, and deliver actionable performance feedback [17]. Early
research established the virtual factory and data-acquisition backbone (Publications |
and V), providing the foundation for Task 1 — Designing the digital twin model. Mid-phase
studies validated AMR coordination and KPI-driven control in simulation (Publications I,
11, and V1), directly supporting Task 3 —Simulating with AMRs. Publication IV contributed
to Task 2 — Developing Al-based control logic by refining the decentralized optimization
model. Late-stage work deployed the DIMUSA platform in SMEs (Publications VIl and VIII),
completing Task 4 — Validating in production through real industrial implementation.
Together, these publications create a coherent progression from architectural
development to simulation and industrial validation, fulfilling the thesis research tasks
and anchoring the contribution in real operational settings.

The results of this research show that the proposed decentralized model successfully
decreased workstation idle time, stabilized overall equipment effectiveness (OEE), and
improved responsiveness across all tested cases. The research questions were explored
through both simulation and industrial validation, confirming the approach's practical
viability. At the same time, the work recognizes limitations related to data quality, legacy
system integration, and the gap between simulation and real-world implementation,
which provide clear directions for future research.

The results of this research have been shared at international conferences and
published in peer-reviewed scientific journals. This thesis is based on eight publications.
Together, these publications provide the scientific and empirical foundation for the
proposed system.

1.1 Motivation and Significance

The manufacturing industry is undergoing a significant transformation, increasingly
influenced by the Industry 5.0 paradigm- a human-centric, sustainable, and resilient
approach to industrial development. Unlike its predecessor, Industry 4.0, which focused
on automation and connectivity, Industry 5.0 shifts the industrial strategy to prioritize
people and the planet in innovation, integrating advanced technologies with societal
purpose [18,19]. This represents a strategic transition within the Industry 5.0 framework,
aiming to align industrial competitiveness with long-term goals such as ecological
balance, inclusive economic growth, and quality employment, thereby redefining
technology's role as a means to achieve sustainable societal value. To operationalize this
vision, manufacturing systems must evolve from centralized automation toward
intelligent, adaptive networks of interconnected agents. Figure 1 illustrates the key
enabling technologies that support this transformation, including Al, digital twins,
collaborative robots (cobots), and edge computing. These technologies enable production
systems to become more autonomous, context-aware, and human-aligned.

However, despite this paradigm shift, recent analysis shows that the European Union
is currently trailing behind global competitors, such as the United States and China, in
developing and deploying many of these critical technologies. As illustrated in Figure 2,
the EU holds comparatively lower leadership shares in fields such as artificial intelligence
(Al), cybersecurity, and innovative manufacturing technologies. This technological gap
presents a clear call to action: for Europe to secure its industrial future and ensure quality
employment, targeted innovation in Industry 5.0 enablers must become a strategic
priority [18].
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Despite advances in digitalization, many factories continue to suffer from a persistent
bottleneck: the misalignment between logistics flows and the dynamic needs of
workstations. Material shortages, transportation delays, and unbalanced workflows
often result in idle time and reduced operational efficiency. Traditional centralized
control systems frequently lack the responsiveness to manage these real-time
fluctuations effectively [20,21]. This challenge highlights the need for more flexible and
responsive coordination mechanisms that can maintain stable production flow and
minimize the impact of real-time disruptions on throughput and workstation performance.
The research draws upon the author’s practical experience in industrial digitalization
projects, where recurring inefficiencies in material flow and production coordination
were observed. The research draws on the author’s practical experience in industrial
digitalization projects, where ongoing inefficiencies in material flow and production
coordination were observed. While individual technological components—such as AMRs,
Al-based decision support, real-time OEE monitoring, and digital twins—exist, their
isolated use has been insufficient to achieve a stable, adaptive production flow. What
remains missing, and what this thesis addresses, is an integrated approach where these
components work together within a coherent decentralized control model supported by
real-time digital twins, Industry 5.0 principles, and the structured DMAIC improvement
cycle.

The proposed approach is especially relevant today as manufacturers look for
solutions that go beyond basic automation. It enables systems to adapt in real time,
operate autonomously, and improve sustainability and resilience. By treating each
production component—workstations, buffers, and transport units—as an autonomous
decision-making agent connected through a digital twin and guided by OEE-based
feedback, the model supports a flexible and resilient production environment aligned
with the main goals of Industry 5.0.

1.2 Research Objectives and Questions

The main goal of this doctoral research is to develop and implement a decentralized,
Al-driven control model for production processes that enables adaptive, autonomous
coordination between production logistics and shop-floor operations. The proposed
system combines digital twin technology, real-time performance data, and Al to ensure
continuous material flow and balanced workstation performance. By synchronizing
inbound and outbound logistics with evolving production needs, the model aims to
enhance throughput, improve OEE, and increase system-wide flexibility and resilience in
modern manufacturing environments. This overarching goal aligns with the vision of
Industry 5.0, which integrates intelligent automation with human-centricity, sustainability,
and adaptive decision-making.

Based on this research aim, the following research questions are formulated:

e RQ1: How can a decentralized, Al-driven control model improve the coordination
between production logistics and shop floor operations in dynamic manufacturing
environments?

e RQ2: What impact does such a model have on workstation efficiency, OEE, and
overall throughput time?

e RQ3: How can real-time data from digital twins be used to assign logistics tasks
to a mobile robot dynamically?
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In support of validation and performance measurement, a quantitative research
question is also introduced:

e RQ4 (quantitative): To what extent can the proposed system reduce
workstation idle time (%) and improve average throughput time (min)
compared to baseline logistics coordination?

To address these questions, the thesis defines the following research tasks:

e Task 1 — Design a digital twin model of a production system with modular and
real-time data interfaces.

e Task 2 — Develop Al-based decentralized control logic enabling autonomous
decision-making based on local contextual data.

e Task 3 — Simulate and test logistics scenarios using AMRs, allowing evaluation
of alternative coordination strategies under controlled conditions.

e Task 4 — Validate the model in real industrial environments and evaluate its
impact on throughput and workstation-level OEE.

e Task 5 — Synthesize results into a generalized framework for adaptive and
scalable production logistics control.

The relationship between the research questions (RQ) and the defined research tasks
is summarized in Table 1, and further elaborated in Chapter 4 through cross-publication
analysis. Each task contributes to answering one or more research questions, ensuring
comprehensive coverage of both conceptual and practical aspects of the proposed system.

Table 1. Mapping of research tasks to research questions.

RESEARCH TASK RQ1 RQ2 RQ3 RQ4 PUBLICATION
TASK 1: DESIGN A DIGITAL TWIN MODEL ‘ v v I,V
TASK 2: DEVELOP Al-BASED CONTROL LOGIC ‘ v v IV, VI
TASK 3: SIMULATE WITH AMRs \ v v v I, 11, VI
TASK 4: VALIDATE IN PRODUCTION v v v VI, Vil
TASK 5: SYNTHESIZE INTO A MODEL v -

By organizing the research around these objectives, questions, and tasks, the thesis
guarantees a systematic approach to creating and assessing a decentralized production
digital optimization and control model system.

1.3 Scope and Limitations

This doctoral research focuses on integrating intelligent digital optimization and control
models with production optimization in discrete manufacturing settings. The study
emphasizes shop-floor operations, where coordinating material transport with workstation
readiness is crucial to maintaining continuous flow and high operational efficiency.

Four key elements define the thesis:

e Development of a decentralized control architecture based on digital twins
and Al.

e Application of autonomous mobile robots (AMRs) to manage intralogistics
tasks at the workstation level.
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e Performance assessment through indicators such as OEE, workstation idle
time, and throughput time.

e Validation across real-world use cases and industrial pilots across the
chemical, food, wood, apparel, and metalworking industries.

Several limitations are also acknowledged. The proposed model is specifically designed
for discrete manufacturing and may not be suitable for continuous or batch processing
industries. Successful implementation depends on structured, real-time production data,
which is often lacking in legacy systems. The research does not address enterprise-wide
planning tools, such as Enterprise Resource Planning (ERP) or MES, beyond their role as
interfaces with the digital twin infrastructure. Moreover, while the model supports Al-
based local decision-making, global system-wide optimization across multiple factories
is outside its scope. Lastly, the validation scenarios involve only a few partner companies
and may not fully represent the diversity of the entire manufacturing sector.

To provide clarity, the main boundaries of the study are summarized in Table 2, which
highlights the areas included in the scope and those explicitly excluded.

Table 2. Scope and limitations of the research.

In Scope Out of Scope

Decentralized control model Enterprise-wide ERP/MES

Al-based local decision-making Global optimization across factories

AMRs for intralogistics

Digital twins for real-time data ‘ Process industry applications
‘ Legacy data integration challenges

Validation in real factories Large-scale generalization

This focused scope enables an in-depth investigation of decentralized, Al-driven
production control and its practical feasibility. At the same time, it outlines clear
boundaries for the model's applicability and identifies areas where future research is
needed, particularly in extending scalability and interoperability to broader industrial
domains and multi-line production systems.

1.4 Research Methodology Overview

This doctoral research employs a mixed-method approach that combines design science,
simulation modeling, and empirical validation in industrial settings. The main goal is not
only to develop a theoretical framework but also to iteratively design, implement, and
evaluate a decentralized control model that enhances synchronization between
production logistics and shop floor operations. To accomplish this, the research utilizes
a set of complementary methodological components, each addressing a key aspect of
the development process. These components ensure that the proposed model is both
conceptually rigorous and practically applicable.

The methodology consists of the following key elements:

e Digital Twin Modeling: Virtual replicas of the production environment are
created to reflect real-time operational conditions, including workstation
statuses, buffer levels, and material routes. These models are constructed using
3D simulation tools and factory-specific data inputs.
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e Data Acquisition and OEE Tracking: Real-time data is collected from production
systems to calculate key performance indicators (KPIs) such as availability,
performance, and quality. Besides supporting continuous performance
monitoring and OEE-based decision-making, this real-time data stream also
constantly updates and strengthens the digital twin, ensuring its virtual state
accurately reflects the physical production environment.

e Al-Based Decentralized Control: Autonomous agents-representing machines,
buffers, or mobile robots-make localized decisions based on Al logic. These
include rule-based heuristics, clustering algorithms, and feedback loops to
support adaptive coordination.

e Simulation-Based Testing: Various logistics scenarios are tested in a controlled
simulation environment to explore system behavior under different workloads,
identify bottlenecks, and optimize task allocation strategies.

e Validation in Industrial Case Studies: The proposed model is tested and
evaluated in real-world manufacturing settings, encompassing the chemical,
food, wood, apparel, and metalworking industries. Performance improvements
are quantified by comparing baseline results (manual or centralized
coordination) with those of the Al-based system.

e Cross-Publication Synthesis: Insights from 8 peer-reviewed scientific publications
are consolidated into a validated framework. Each article addresses specific
elements of the architecture, including model design, algorithm development,
and industrial deployment.

Each of these elements serves a specific purpose in the research process: digital twins
act as a testing environment for model design, data collection ensures decisions are
based on evidence, Al logic enables autonomy and flexibility, simulation provides a
controlled setting for evaluation, and industrial validation connects the results to
real-world practice.

The research methodology follows an iterative and practice-oriented cycle, as
illustrated in Figure 3.
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Figure 3. The research methodology cycle and DMAIC integration were employed in the dissertation
(T. Raamets).

In addition to the core methodological elements, the research process is structured
around the DMAIC cycle, which provides a systematic framework for iterative
development and validation. Originating from Six Sigma, DMAIC ensures that problem
identification, solution development, and empirical testing follow a disciplined and
repeatable process [22,23]. Applying this cycle kept the research closely aligned with
both industrial needs and academic rigor, ensuring that improvements remained
continuously grounded in measurable results. In the Define phase, the primary
challenges in production logistics were identified, including material shortages, idle time,
and unbalanced workflows. This was followed by establishing clear transformation
objectives in collaboration with industrial partners. The Measure phase focused on
collecting real-time production data—such as workstation idle times, transport delays,
and OEE losses—to establish a quantitative baseline of existing inefficiencies. During the
Analyze phase, simulation experiments and clustering techniques were used to identify
bottlenecks, systemic weaknesses, and opportunities for improvement within the
production process. The Improve phase involved designing and refining Al-based
decentralized control logic, testing alternative coordination strategies in digital twin
environments, and selecting the most effective solutions for deployment. Finally,
the Control phase validated the improved system in industrial pilot studies, ensuring
sustained performance improvements through continuous monitoring, feedback loops,
and adaptive reconfiguration. By embedding DMAIC into the research methodology,
the work ensures that each stage of system development—from conceptualization
to industrial validation—follows a structured improvement cycle. This enhances both
the credibility of the research findings and their practical applicability in real-world
manufacturing environments.
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1.5 Scientific and Practical Novelty

The novelty of this doctoral research lies in the design and implementation of a
decentralized, Al-driven control architecture that integrates digital twin technology with
real-time production logistics, enabling more adaptive, efficient, and resilient
manufacturing processes. Unlike conventional centralized systems, the proposed
approach empowers each production element-such as workstations, buffers, and
autonomous transport units-to act as an autonomous decision-making agent while still
contributing to system-wide efficiency [24,25]. A further contribution lies in transforming
extended OEE from a retrospective performance indicator into a real-time control signal
that dynamically triggers decentralized logistics actions, providing a new mechanism for
synchronizing production flow with actual workstation conditions.

From a scientific perspective, this work makes several distinct contributions to the
academic field:

¢ Integration of digital twins with mobile robots — enabling dynamic adaptation
to local production conditions, a capability that remains underexplored in previous
research and broadens current understanding of cyber-physical logistics systems.
¢ Clustering analysis combined with real-time OEE tracking — Introducing an
interpretable, data-driven system for detecting bottlenecks, optimizing workstation
flow, and guiding decentralized operations decision-making.

¢ A modular simulation model — Combining digital twin modeling with Al-based
control logic to assess decentralized logistics scenarios before physical deployment,
thereby enhancing design science methodology in manufacturing research.

¢ Integration of Design Science, digital twin simulation, DMAIC structuring, and
industrial validation into a unified methodological framework — creates a clear,
iterative process for developing, testing, and refining decentralized Al-driven
control systems. This combined approach has not been previously applied in
research on autonomous production logistics, making it a novel methodological
contribution of this dissertation.

¢ A theoretical contribution to distributed manufacturing control — aligning
decentralized system design with the principles of Industry 5.0, including resilience,
adaptability, and human—machine collaboration.

In addition to these scientific advances, the integration of the proposed DMAIC- and
Industry 5.0-based technological backbone into real-world production environments
enables several practical benefits and innovations:

¢ Industrial validation across multiple domains — including chemical, food, wood,
apparel, and metalworking industries, demonstrating robustness and adaptability
under heterogeneous operational conditions.

¢ Improved operational performance — including measurable reductions in idle
time, improved workstation uptime, increased throughput consistency, and
smoother logistics—production synchronization supported by AMR coordination.
¢ Real-time decision support for operators — delivering interpretable insights
through OEE-driven triggers, clustering-based diagnostics, and digital twin
visualizations that enhance human decision-making consistent with Industry 5.0’s
human-centric principles.
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¢ A scalable and cost-efficient pathway for SMEs — enabling gradual digitalization
without demanding replacement of existing MES or ERP systems, thereby
supporting wider industry adoption of intelligent decentralized control.

The technical implementation details behind these contributions are presented in
Chapters 3 and 4, where the digital twin architecture, DIMUSA data pipeline [26],
clustering workflow, and Al-based decision logic are described in depth. Their practical
application and validation are further demonstrated in Publications I-VIII. Specifically,
the digital twin and data-acquisition architecture are detailed in Publications | and V, the
simulation and AMR intralogistics analysis in Publications Il, Ill, and VI, the Al-based
control logic in Publication IV, and the full industrial validation in Publications VIl and VIII.
The combination of these scientific and practical contributions demonstrates that the
research is not only conceptually novel but also relevant for real-world manufacturing.
The results show that decentralized, Al-enhanced decision-making can simultaneously
advance theoretical knowledge and deliver tangible benefits in industrial environments.
A summary of the key scientific and practical novelties is provided in Table 3.

Table 3. Summary of scientific and practical novelties.

Scientific Novelty

Practical Novelty

Integration of digital twins with a mobile
robot for localized adaptation

Use of clustering and real-time OEE
tracking for decision-making

Modular simulation combining digital
twins and Al control logic

Integration of Design Science, digital
twin simulation, DMAIC structuring, and
industrial validation into a unified
methodological framework

Theoretical contribution to distributed
control in Industry 5.0 context

Validated in apparel and wood industry
use cases

Improved workstation uptime and
throughput time using AMR coordination
Real-time feedback for human decision-
makers

Provides a structured and scalable
implementation pathway that supports
incremental adoption in real factories

Scalable solution suitable for SME

implementation

The proposed method enhances theoretical understanding of decentralized, Al-driven
production control and demonstrates tangible benefits in industrial settings. This dual
focus highlights the dissertation's substantial contribution to advancing intelligent
manufacturing systems, aligning with the broader objectives of sustainable, resilient, and
human-centered production within the Industry 5.0 framework.

1.6 Structure of the Thesis

This doctoral thesis is organized into five main chapters, each contributing to the
development, validation, and synthesis of a decentralized digital control model for
production logistics within the Industry 5.0 framework. The structure follows a logical
progression from problem definition and theoretical grounding to methodological
design, empirical validation, and synthesis of findings.
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The thesis is based on eight scientific publications organized into three thematic clusters:
(1) conceptual and architectural foundations—Publications | and V; (2) simulation-based
design and optimization—Publications Il, Ill, and VI; and (3) industrial validation—
Publications IV, VII, and VIII. Together, these works create a comprehensive foundation
that connects theory, simulation, and practice, thereby supporting the overall research
framework presented in this dissertation.

The structure of the thesis is illustrated in Figure 4, showing the progression from
conceptual foundations through methodology and case-based validation to a generalized
model and conclusions.

Introduction
Motivation, objectives, research questions, methodology, novelty, structure

Theoretical Background
Industry 5.0, logistics, Al, AMRs, OEE, digital twins

Development and Implementation of a Decentralized Al-

Driven Control Model for Production Processes
Design science, simulation, validation

Discussion and Synthesis
Cross-publication analysis, Integration, findings, proposed model

Conclusions and Future Work
Contributions, future research

Publications

Figure 4. Structure of the doctoral thesis.

Additionally, the thesis includes a list of publications, a statement of the author’s
contributions, abbreviations, references, and an Estonian-language summary. The chosen
structure provides a coherent narrative flow: it begins with the identification of research
problems and theoretical foundations, progresses through the systematic development
and validation of the proposed model, and concludes with its broader implications. This
organization guarantees both conceptual rigor and practical relevance, while providing
readers with a clear overview of how the research objectives are consistently met.
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2 Theoretical Background

The development of a decentralized, Al-supported digital optimization and control model
for innovative manufacturing environments necessitates a multidisciplinary theoretical
foundation. This chapter outlines the key concepts, technologies, and frameworks that
inform and support the approach proposed in this dissertation. It begins with an
exploration of the Industry 5.0 paradigm, which redefines industrial progress by shifting
focus from automation and efficiency alone toward human-centricity, resilience, and
sustainability [27]. Within this context, smart manufacturing emerges as a response to
the growing demand for production systems that are flexible, adaptable, and aligned
with societal objectives. Subsequent sections introduce the core technological and
methodological building blocks relevant to modern manufacturing research: production
logistics and throughput time management, OEE, the role of AMRs in distributed logistics,
the use of DT for real-time monitoring and simulation, and Al techniques used for
dynamic decision-making and optimization. Each subchapter outlines the operational
challenges faced by contemporary factories and summarizes how existing research
addresses these issues through distributed intelligence, autonomous systems, and
real-time data integration.

The application of these technologies within the specific decentralized control model
developed in this dissertation is described later in Chapters 3 and 4, ensuring that the
present chapter focuses solely on the theoretical background and state of the art.

2.1 Industry 5.0 and Smart Manufacturing

Industry 5.0 represents the next evolution of industrial development, building on the
technological foundations of Industry 4.0 while reintroducing the human element into
advanced manufacturing. While Industry 4.0 emphasized automation, digitization, and
cyber-physical systems, Industry 5.0 seeks to establish systems that are not only efficient
and data-driven but also sustainable, resilient, and human-centric [28,29]. Whereas
Industry 4.0 primarily focused on cyber-physical integration, automation, and data-driven
optimization, Industry 5.0 extends this paradigm by explicitly addressing societal and
human-oriented goals. It marks a shift from technology-driven transformation toward
purpose-driven industrial ecosystems, where resilience, sustainability, and human
empowerment become equally important alongside productivity. This evolution highlights
not only technological advancement but also the strategic reorientation of manufacturing
toward long-term societal value. The European Commission defines Industry 5.0 as a
vision in which technological advancements serve broader societal goals, aligning
productivity with worker well-being and environmental responsibility [30]. This
encompasses integrating technologies such as artificial intelligence (Al), digital twins,
and collaborative robotics, which not only optimize production but also foster adaptable
processes that empower human workers to be more effective. The three foundational
principles of Industry 5.0 are human-centricity, resilience, and sustainability [31].
As illustrated in Figure 5, Industry 5.0 promotes talent and empowerment, ensures
adaptability and robustness through flexible technologies, and respects environmental
limits while advancing sustainability.
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Key principles of Industry 5.0 include:

e Human-centricity: Systems are designed to support human workers, providing
decision support, customization, and ergonomic features that enhance user
experience.

e Resilience: Production systems must be able to adapt to disruptions, such as
supply chain volatility or rapid market changes.

e Sustainability: Emphasis is placed on reducing waste, improving energy efficiency,
and designing circular production models that minimize environmental impact.

The human-centric dimension of Industry 5.0 goes beyond ensuring worker safety and
well-being. It emphasizes co-creation of value, where human operators and intelligent
systems collaborate in decision-making. In this context, artificial intelligence functions as
a co-pilot rather than a replacement, augmenting human skills with predictive insights
and adaptive support. This principle ensures that technological development empowers
rather than displaces the workforce, thereby reinforcing the human role in smart
factories.

Industry 5.0

.. promotes talents, diversity
and empowerment

«
SUSTAINABLE
... is agile and resilient with flexible ... leads action on sustainability
and adaptable technologies and respects planetary boundaries

Figure 5. Core values of Industry 5.0 [31].

In the context of smart manufacturing, these principles are operationalized through
the collection of real-time data, predictive analytics, and autonomous systems that
respond to dynamic conditions. Innovative manufacturing environments rely heavily on
intelligent control systems that integrate information from various sources—machines,
sensors, and humans—and act upon it in near real-time [32].
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Figure 6. Schematic diagram of the components of a smart factory [32].

The principles of Industry 5.0 are clearly reflected in the model presented in this
dissertation. Resilience is achieved through decentralized, agent-based decision-making
that enables production systems to respond quickly to disruptions. Sustainability is
emphasized by optimizing resource use, reducing idle time, and minimizing unnecessary
transportation through Al-driven logistics coordination. Human-centricity is supported
via the system’s Smart Services layer (as shown in Figure 6), which offers operators
real-time performance feedback, visual analytics, and decision support tools. This approach
ensures that humans remain central to supervision, interpretation, and strategic
management. Therefore, the dissertation advances not only the technological foundation
of Industry 5.0 but also its broader societal objectives.

The contribution to Industry 5.0 involves demonstrating how digital twins and Al can
be used to implement decentralized, disturbance-responsive control on real shop floors.
This is illustrated through tangible improvements in material flow synchronization across
the industrial use cases.

2.2 Lean Manufacturing Principles

Lean manufacturing is a philosophy and systematic approach to improving production
efficiency by eliminating waste, optimizing value streams, and continuously improving
work processes [33]. Originating from the Toyota Production System, Lean principles
have become a foundational framework for operational excellence across various
manufacturing sectors [34]. Lean manufacturing provides not only a philosophy of
efficiency but also a structured set of principles that directly address inefficiencies in
production and logistics. For this research, Lean principles are not considered in isolation,
but as a framework that can be integrated with digital technologies such as DT, OEE, and
AMRs. This integration allows Lean thinking to evolve from a primarily organizational
philosophy into a digitally supported, data-driven methodology that supports real-time
decision-making and decentralized logistics control [35]. In particular, five core Lean
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principles form the foundation for structuring the proposed model, including: value
identification, which defines what truly creates value from the customer’s perspective;
value stream mapping, which analyzes and visualizes every step of the production
process to eliminate non-value-adding activities; flow optimization, aimed at ensuring a
smooth and continuous production flow by reducing waiting times and bottlenecks;
pull-based systems, which focus on producing only what is needed, when it is needed,
thereby minimizing inventory and overproduction; and finally, the pursuit of perfection,
which establishes a culture of continuous improvement (Kaizen) across all organizational
levels. Central to Lean manufacturing is the reduction of waste, which is classified into
eight categories: defects, overproduction, waiting, non-utilized talent, transportation,
inventory, motion, and extra processing.

In the context of this research, several Lean principles are embedded within the
decentralized digital logistics system through the integration of AMRs, digital twins, and
OEE-based monitoring. Within the proposed model, waste reduction is achieved by
minimizing idle time and unnecessary transport movements, which are automatically
detected and addressed through real-time feedback from the digital twin; flow
optimization is supported by AMRs that dynamically respond to production needs,
ensuring just-in-time material delivery and minimizing workstation waiting times;
standardization is established via agent-based digital twins, which apply consistent logic
in requesting and executing logistics tasks; and continuous improvement is sustained
through OEE tracking, which highlights losses in availability, performance, and quality,
providing data for iterative process optimization and enhancement.

Table 4 illustrates how key Lean principles are mapped to elements of the proposed
digital optimization and control system.

Table 4. Mapping of Lean principles to the optimization and control model.

Lean Principle Digital Logistics Implementation
Waste reduction Real-time identification of transport and idle-time

inefficiencies via OEE and digital twin monitoring

Flow optimization AMRs autonomously coordinate material delivery to
ensure uninterrupted production flow.
Standardization Digital twin agents use predefined control logic and
communication protocols.

Pull-based operations Workstations initiate logistics requests based on real-
time production needs.

Continuous improvement | OEE-based analytics provide feedback loops for system

tuning and improvement.

While Lean principles have been applied in digital manufacturing contexts before,
previous research has typically focused on centralized scheduling, predefined rules,
or standalone analytics tools [36]. Few studies combine Lean flow principles with a
decentralized, agent-based logistics system that responds to real-time OEE signals and
digital twin feedback. The innovation in this dissertation is operationalizing Lean
principles—such as waste reduction, pull-based flow, and continuous improvement—
within a distributed, Al-supported control model in which workstations and logistics units
function as autonomous agents. This approach extends traditional Lean methods by
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enabling real-time, data-driven responses that adapt dynamically to disruptions and
variability on the shop floor.

By integrating Lean principles into the digital optimization and control model,
the research ensures that the system stays focused on value creation, continuous flow,
and waste reduction, even as new technologies are introduced. The synergy between
Lean thinking and digital tools, such as AMRs, digital twins, and Al-based decision logic,
enables production systems to respond more quickly, manage resources more effectively,
and sustain long-term improvements [37]. Therefore, the Lean framework is not only
aligned with the goals of Industry 5.0 but also offers a practical structure for embedding
waste reduction, flow optimization, and continuous improvement into the proposed

decentralized control system.

2.3 Production Logistics and Throughput Time

Production logistics plays a critical role in ensuring the smooth, continuous flow of
materials, components, and finished goods throughout the manufacturing process.
Itinvolves the planning, execution, and control of all intralogistics activities, including the
supply of raw materials to workstations, handling of intermediate products, and movement
of finished goods within the factory [38,39].

One of the key performance indicators in production logistics is throughput time, the
total time it takes a product to move through the entire production process, from the
release of raw materials to the completion of the final product. Throughput time is
directly influenced by factors such as material availability, workstation readiness,
transport system responsiveness, and task coordination [40,41].

To precisely analyze and improve production logistics efficiency, throughput time (TT)
must be clearly defined and monitored. Throughput time is the total elapsed time
required for a product to pass through the entire production system—from the release
of raw materials to the completion of the finished product. This metric is crucial for
identifying bottlenecks and inefficiencies in both production and intralogistics flow[42].

Throughput can be expressed with the following formula:

IT = Tpmcess + Tqua/ity + Ttransport + Twaiting (21)

In Equation (2.1) [43] T, Is process time, T, Is quality inspection time,
T; Is transportation time, and T,, It is the waiting time.

This decomposition enables more targeted analysis and optimization of each
component in the total time.

In traditional production systems, logistics planning is often centralized and
prescheduled, resulting in inflexible operations that struggle to adapt to disturbances on
the shop floor [44].

Common issues in traditional production systems include delayed material delivery
or removal, which leads to idle workstations; overloaded buffers, which obstruct
transport systems and reduce process visibility; and bottlenecks arising from misaligned
timing between production and logistics activities [45,46].

These inefficiencies not only increase throughput time but also negatively impact OEE,
which reflects how well a manufacturing system utilizes its resources in terms of
availability, performance, and quality.
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To address these challenges, modern production systems increasingly adopt real-time,
decentralized logistics control, where decisions about material flow are made dynamically
based on current conditions. In such systems, each production unit (such as a workstation
or AMR) functions as an intelligent agent capable of communicating its needs, monitoring
local status, and independently requesting or executing logistics actions [47].

This thesis builds on this concept by proposing a decentralized digital optimization and
control model supported by digital twins and artificial intelligence [48]. The goal is to
reduce idle time at workstations, minimize transport delays, and ultimately improve
throughput time. By combining real-time data with autonomous control, the system
enables more responsive and balanced production flows, which are essential for
high-performance Industry 5.0 environments.

2.4 Overall Equipment Effectiveness (OEE)

OEE is one of the most widely recognized performance indicators in manufacturing,
providing a quantitative measure of how effectively a production system utilizes its
resources [49]. Initially introduced by Seiichi Nakajima as part of the Total Productive
Maintenance (TPM) framework in the 1980s, OEE has since evolved into a global
benchmark for assessing production efficiency across industries [50,51]. The metric
combines three dimensions-availability, performance, and quality-into a single index that
highlights both technical and organizational losses. Availability reflects the proportion of
scheduled time the equipment is operational; performance measures the actual output
speed relative to the designed capacity; and quality accounts for the ratio of good units
produced relative to the total [52]. By capturing these aspects simultaneously, OEE
provides a comprehensive view of equipment utilization and productivity bottlenecks
[53,54].

It is calculated as the product of three core components:

e Availability: The percentage of scheduled time that the equipment is
available for production (i.e., no breakdowns or waiting for materials).

e Performance: The speed at which the process operates as a percentage of its
designed capacity.

e Quality: The proportion of good units produced out of the total output.

Equation (2.2) [55] is typically expressed as:

OEE = (A) x (P) x (@) (2.2)
Where,

Availability(A) = Planned production time — unplanned downtime 23
varasiity\al) = Planned Production Time (23)
Perf Py = Actual amount of production (2.4)

erformance(P) = Planned amount of production '
. Actual amount of production — non acepted amount

Quality(Q) = (2.5)

Actual Amount
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It is particularly relevant in high-mix, low-volume environments, where frequent
changeovers and material-handling disruptions significantly affect productivity [56,57].
Traditional OEE implementations, however, focus mainly on machines or production
lines and often overlook logistics-induced downtime [58].

In the proposed control model, OEE values are calculated in real time at the
workstation level and used as an active control signal. For example, when availability
drops due to missing input materials, an urgent transport request can be triggered to an
AMR. Similarly, if buffers are full, OEE feedback can reprioritize AMR tasks to remove
excess items. By embedding OEE into the decision-making loop, the system transforms
the metric from a retrospective performance measure into a dynamic driver of
decentralized optimization.

The application of dynamic, data-driven OEE calculations facilitates intelligent
decision-making and adaptive logistics flow control, aligning with the decentralized
architecture advocated in Industry 5.0 systems. Moreover, by integrating OEE feedback
directly into the control loop, the system can continuously self-optimize, proactively
address bottlenecks, and maximize workstation utilization.

To highlight the conceptual differences, Table 5 compares the traditional OEE
calculation with the extended OEE approach developed in this research, which explicitly
integrates logistics-related downtime and real-time data into the metric.

Table 5. Comparison of Traditional OEE and Extended OEE (logistics-inclusive).

Aspect Traditional OEE Extended OEE in this research
Workstation + logistics units
Scope Machine or production line
P P (AMRs, buffers)
Equipmen ime an li Real-time OEE + transpor +
Data basis quipment upti .e and quality eal-time O tra .s.po t status
metrics buffer conditions
Focus Retrospective efficiency Proactive logistics-driven control
analysis signal
Bottleneck Breakdowns, speed losses, Includes logistics delays, waiting,
coverage quality defects and congestion
. KPI for monitoring and Real-time optimization of
Application . . -
improvement programs intralogistics and flow

As shown in Table 5, the extended OEE not only measures equipment efficiency but
also functions as a control signal for decentralized logistics coordination, making it a
cornerstone of the proposed optimization model. OEE decomposes losses into availability,
performance, and quality. In discrete manufacturing, the largest share of availability loss
frequently originates from logistics-induced starvation and blocking (i.e., empty input
buffers and full output buffers). Treating OEE as a live signal, therefore, provides a direct
control handle for intralogistics: when availability drops due to input starvation, an AMR
mission is triggered; when blocking is detected, it is removed as a priority. In this way,
OEE ceases to be a retrospective KPI and becomes a proactive driver for AMR task
generation and routing.

By integrating OEE into the digital twin and Al-driven architecture, the research aligns
with Industry 5.0 principles of adaptability, resilience, and human-centricity. The dynamic
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application of OEE not only improves equipment utilization but also enhances material
flow coordination, making it a cornerstone of decentralized production control and a
practical enabler for Industry 5.0 logistics optimization.

2.5 Autonomous Mobile Robots (AMRs) in Manufacturing

AMRs have emerged as a key enabler of flexible and intelligent material handling in
modern manufacturing environments [59]. Unlike Automated Guided Vehicles (AGVs),
which follow predefined paths, AMRs use onboard sensors, cameras, and Al algorithms
to dynamically navigate factory floors, avoid obstacles, and make autonomous routing
decisions [60]. These features make them well-suited to modern manufacturing
environments characterized by frequent layout changes and variable tasks.

Figure 7 shows the AMRs applied in this research for simulation and experimental
validation.

b)

Figure 7. Examples of Autonomous Mobile Robots (AMRs) used in research and industrial case
studies: a) Boxbot (TalTech prototype), b) MiR100, c) Robotnik RB-2, d) Robotino.

The adoption of AMRs is particularly relevant in discrete manufacturing, where
production volumes, product variants, and layout configurations change frequently.
AMRs offer a scalable, adaptable alternative to traditional conveyor systems or manual
transport, enabling just-in-time (JIT) delivery of materials and parts without extensive
infrastructure [61].
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Key benefits of AMRs in production logistics include:

e Decentralized decision-making: AMRs can assess their current environment
and make routing or task decisions independently,

e Real-time responsiveness: They can reprioritize tasks or reroute based on
live conditions (e.g., workstation status or transport congestion),

e Flexible task allocation: AMRs can be assigned dynamically to pick up, deliver,
or transfer goods as needed,

e Reduced downtime: Intelligent coordination between AMRs and workstations
can help minimize idle time due to delayed deliveries or full buffers.

In this research, AMRs are used as mobile agents within a decentralized digital control
system. Each AMR functions as both an executor and a decision-maker, receiving input
from digital twins and OEE monitoring to determine where and when to deliver or pick
up materials. Unlike traditional centralized dispatching, the agent-based approach
enables each AMR to evaluate multiple requests simultaneously, negotiate task priorities,
and independently adapt to changing shop floor conditions [62]. Several of the industrial
case studies presented in this dissertation, especially those in the food manufacturing
sector, demonstrate how AMRs contribute to notable improvements in throughput,
workstation availability, and resource efficiency [63,64]. Integrating AMRs with lean-
inspired scheduling reduced idle time and improved the balance between material inflow
and outflow, confirming their effectiveness in high-variance production environments
[65]. An additional example of the simulation data used in this research is provided in
Appendix 9. The proposed system extends beyond simple dispatching by incorporating
Al-based coordination logic that enables AMRs to dynamically adjust their routes,
reprioritize deliveries, and share real-time status information with workstations. This
capability is strengthened by their integration with digital twin platforms, which simulate
congestion risks, buffer status, and material demand in advance, allowing for predictive
rather than purely reactive decision-making [66].

Furthermore, simulation environments were created to assess AMR performance
under different load conditions, energy limits, and control strategies. These simulations
not only guided model adjustments but also provided insights into safety issues, task
allocation efficiency, and resilience in the face of unexpected disturbances [67]. Such
testing confirmed that decentralized coordination enhances scalability and decreases
dependence on rigid pre-planned schedules. The integration of AMRs as autonomous
control units within the digital twin architecture enables decentralized task execution
and real-time coordination across the production system. Their behavior is synchronized
with the digital twin, ensuring that transport tasks are assigned based on current system
conditions without relying on centralized scheduling. The practical application of these
principles in the industrial case studies of this dissertation is presented in Chapters 3 and 4.

2.6 Digital Twins and Simulation-Based Optimization

DTs are virtual representations of physical assets, systems, or processes that are
continuously synchronized with real-world data. Unlike traditional simulation models,
which are static and primarily used for offline analysis, modern DTs are dynamic,
predictive, and adaptive, enabling real-time closed-loop optimization of manufacturing
processes [68].
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In manufacturing, DTs serve multiple roles: they enable scenario testing without
disrupting actual production, provide real-time transparency into machine and logistics
states, and support predictive decision-making [69]. When combined with advanced Al
algorithms, DTs evolve from passive replicas into active decision-support systems,
capable of optimizing resource allocation, scheduling, and flow control [70,71].

The digital twin concept enables simulation and forecasting, allowing virtual models to
test alternative scenarios and predict the impact of changes without disrupting real
production. Through real-time synchronization, the digital twin continuously receives live
data from the shop floor, accurately reflecting the current state of machines, workstations,
and logistics flows. This integration supports closed-loop optimization, enabling
control systems to act on insights from the digital twin to dynamically adjust and
improve operations in real time. As illustrated in Figure 8, the Deloitte Digital Twin [72]
model conceptualizes the bidirectional interaction between the physical and digital
environments, emphasizing continuous data exchange and analytics-driven optimization.
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Figure 8. Deloitte Digital Twin model [72].

In this research, DTs were developed to model workstations, buffers, and autonomous
mobile robots (AMRs) as intelligent agents, each with local control logic. This agent-based
representation contrasts with traditional hierarchical MES, enabling decentralized
decision-making that improves responsiveness, scalability, and fault tolerance.
The simulation-based optimization framework further enables the evaluation of
logistics strategies, buffer sizing, and AMR routing under varying workloads, before
implementation in real factories. Each element in the production system-whether
a machine, workstation, or robot-is modeled as an autonomous agent within a digital
twin framework. These agents operate under agent-based control logic, allowing them
to make local decisions based on real-time status and input. They communicate and
coordinate with other agents—for example, by requesting material delivery or reporting
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idle time—and collectively enhance overall system efficiency through distributed
intelligence and adaptive interaction.

The digital twin platform developed in this research serves both as a monitoring tool
and a simulation environment for validating logistics coordination strategies. Combined
with real-time OEE tracking and Al algorithms, it forms the technological backbone of the
decentralized production control system proposed in this dissertation. Beyond monitoring,
the platform embodies the evolution of digital twins into adaptive and predictive
systems. It enables proactive logistics planning, energy-efficient scheduling, and
continuous flow optimization, while also supporting operators through improved
transparency and decision support. The integration of digital twins and agent-based
control enables the creation of intelligent production systems that can autonomously
respond to unexpected events like machine failures or material delays, continuously
optimize operations with live data, and reduce the need for human intervention in
routine tasks decision-making.

In this way, the platform not only enhances decentralized coordination but also
demonstrates the principles of Industry 5.0, such as adaptability, resilience, and
human-machine collaboration.

2.7 Artificial Intelligence in Decentralized Control

Artificial Intelligence (Al) has become a central enabler of the evolution of modern
manufacturing systems. In production control, Al enhances decision-making, automates
complex tasks, and enables systems to learn and adapt based on both historical and
real-time data [73]. Compared to rule-based or deterministic systems, Al-driven control
enables the prediction of bottlenecks before they occur, optimizes scheduling and task
allocation, learns from historical performance, and allows for localized, autonomous
decisions even under uncertain or incomplete information [74]. In recent years, several
dominant trends have shaped the application of Al in manufacturing [75]. Predictive
analytics and anomaly detection are increasingly used to anticipate disturbances and
improve system resilience [76,77]. Optimization techniques, including combinatorial
Dijkstra’s algorithm, heuristic and metaheuristic methods such as genetic algorithms
(GAs), and ant colony optimization (ACO), are applied to material flow and AMR routing
problems [78,79]. Meanwhile, clustering and classification approaches, such as k-means
and DBSCAN, support interpretable diagnostics by identifying patterns in systemic
inefficiencies [80,81]. In addition, recent studies emphasize that modern production
environments increasingly rely on heterogeneous, distributed data sources, which must
be integrated into a unified decision-making framework to enable decentralized
intelligence [82]. Such findings reinforce the need for Al-driven control architectures
capable of operating on fragmented, multi-layered, and dynamically changing datasets.
These trends provide the theoretical foundation for this research, in which Al is
embedded not as a centralized optimizer but as independent agents operating within a
decentralized control architecture.

Logistics Agents

Logistics agents are responsible for coordinating material flow using AMRs. Each agent
evaluates local conditions: task urgency, workstation buffer status, and AMR availability.
It assigns missions according to a weighted cost function in Equation (2.6) [83]:

fGQ,j) = o-d(,j) +B-t;+v- o (2.6)
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Where d(i, ) is the travel distance of the AMR i to the workstation j, and ¢; is task
urgency derived from idle-time signals, and o; is the operational load of the workstation
j.

To compute the shortest path corresponding to the distance component d(i, ),
a classical Dijkstra algorithm was used. Given a graph G = (V, E) of navigation nodes and
weighted edges, Dijkstra’s method (2.7) [84] determines the minimum-cost path by
iteratively relaxing edges according to:

D(v) = min( D(v), D(u) + w(u, v)) 2.7)

Where D(v) is the shortest known distance from the source node to the node v, w(u, v)
is the weight (time or distance) of the edge (u,v) and u predecessor node currently
under evaluation. The algorithm proceeds by initializing D (source) = 0 and all others
D(v) = oo, then extracting nodes from a priority queue ordered by current distance. All
outgoing edges are relaxed until the shortest path tree is complete. As described in
Publication VI, Dijkstra provides a favourable balance between computational efficiency
and routing accuracy in dynamic factory environments [85]. Its time complexity is
expressed as:

O(E + NlogN) (2.8)

Where N is the number of navigation nodes and E the number of edges in the graph.
Simulation studies demonstrated that a Dijkstra-based path search provided the best
balance between computational efficiency and responsiveness in dynamic factory
environments, outperforming more complex metaheuristics such as GA and ACO in
terms of real-time applicability [86,87].

OEE Monitoring Agents

As introduced in Section 2.4, OEE is a comprehensive measure that combines availability,
performance, and quality. In this research, OEE is extended from a retrospective KPI to
an active control signal. Each workstation agent continuously monitors its OEE,
particularly availability losses related to logistics delays.

To make these signals actionable, clustering methods were applied to both historical
and real-time OEE datasets. Using k-means clustering, workstations were grouped into
categories such as stable, bottleneck-prone, or underutilized:

E = iZ“" — wll’ 2.9)

i=1 x€S;

In Equation (2.9) [88], E denotes the objective function measuring the total
within-cluster variance. S; represents the set of data points belonging to the cluster i,
and y; is the centroid (mean vector) of the cluster i . |S;| indicates the number of data
points in the cluster i, and ||x — ui|| denotes the Euclidean distance between a data

point x and its cluster centroid.
&
. = —_— X .
H 15;1

XES;

In Equation (2.10), the centroid y; of the cluster i is calculated as the mean of all data
points assigned to that cluster.

35



To improve robustness, DBSCAN was used to filter anomalies and irregular downtime
patterns. These clusters provided interpretable triggers for logistics agents-for example,
if a group of stations exhibited recurring availability losses, AMR tasks were reprioritized
accordingly. This transformation of OEE from a monitoring tool to a real-time decision
input was validated in an apparel industry case study [89].

Contribution to Throughput Improvement

As described in Section 2.3, throughput time (TT) is a key metric for evaluating the
efficiency of production flow. The integration of Al-based logistics and OEE agents
contributes directly to TT reduction by:

e decreasing workstation idle time through just-in-time material supply,
e balancing workloads across stations using clustering-based insights,
e reducing transport delays through adaptive AMR task allocation.

The combined effect is improved flow stability and higher overall OEE across the
production network.

Justification of Selected Al Approaches

The chosen algorithms and control strategies were selected according to three main
criteria:

e Industrial feasibility: Computationally efficient and interpretable methods
(Dijkstra for routing, k-means for clustering) were favored over complex black-
box models.

e Adaptability: Weighted cost functions and clustering-based thresholds support
real-time adjustment under variable conditions.

e Transparency: OEE-based triggers and interpretable clusters provide actionable
and explainable feedback to human operators, strengthening trust in Al-driven
decisions.

By integrating Al agents within a decentralized control framework, the system
facilitates real-time coordination between logistics and workstation monitoring. Logistics
agents assign AMR tasks based on local conditions, while OEE agents deliver ongoing
performance signals that guide task prioritization. The selected algorithms—Dijkstra for
routing and k-means for clustering—were chosen for their computational efficiency and
transparency, ensuring appropriateness for real-time industrial applications environments.

36



3 Development and Implementation of a Decentralized
Al-Driven Control Model for Production Processes

The research methodology defines the systematic approach used to design, develop, and
validate the proposed decentralized control model. Since the aim of this dissertation is
not only to advance theoretical understanding but also to demonstrate practical
applicability in industrial environments, the methodology combines design science
research, simulation-based testing, and empirical case studies. The development steps
described in this chapter build directly on the results and methods presented in
Publications I-VIIl, with each subsection clarifying the specific contribution of the
respective papers. This mixed-method approach ensures both conceptual rigor and
industrial relevance.

The design science perspective was chosen because the central contribution of this
work is an artifact—a digital optimization and control model that must be iteratively
developed, implemented, and evaluated. Simulation environments offer a controlled
setting for developing and evaluating alternative coordination strategies, while industrial
case studies facilitate their implementation and validation under real operating conditions.

The methodology is also structured around the DMAIC cycle, which provides a
disciplined framework for iterative improvement. Each phase corresponds to specific
research tasks, from problem definition and data collection to the development of
Al-based decision logic and its validation in real factories. This cyclical structure ensures
that the results are systematically refined based on empirical feedback and industrial
requirements.

By combining these elements-design science, digital twin simulation, DMAIC structuring,
and industrial validation- the research methodology creates a clear foundation for
reaching the main goal of this thesis: to develop and apply a decentralized Al-based
control system that enhances synchronization between production logistics and shop
floor operations.

3.1 Research Design

The research employs a design science methodology supported by empirical case studies
and simulation-based validation. Its goal is to create a decentralized control model for
production logistics and assess its performance in both digital and physical
manufacturing settings. Design science offers the framework for developing and
improving the artifact—integrating digital twins, agent-based logic, and Al-driven
decision support—while the DMAIC cycle ensures a systematic progression from
problem identification to model refinement validation. Requirement analysis in this
research was grounded in real industrial contexts. The system requirements were derived
from discrete manufacturing processes across the chemical, food, wood, apparel, and
metal industries. In these environments, recurring bottlenecks in material supply and
removal were observed, highlighting the need for modular, real-time, and autonomous
control mechanisms to reduce idle time and throughput delays. These requirements
guided the selection of digital twins, autonomous agents, and Al algorithms as the main
enabling technologies for the proposed control model.

As part of the research design, the concept of the Virtual Factory (VF) was applied and
tested in the chemical industry, focusing on real-time data acquisition and planning using
simulation models. The VF represents an early version of the digital twin concept, serving
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as a virtual environment for testing production behaviors, layout choices, and planning
scenarios before implementation in the physical factory. In this study, the VF laid the
groundwork for subsequent digital twin development, enabling integrated monitoring of
production units, evaluating throughput, lead times, and resource use, and guiding
sensor placement and data collection strategies before physical deployment [90]. This
approach demonstrated how digital twins can support the alignment of logistics and
production processes at an early design stage, ensuring that control mechanisms are
virtually validated before deployment in real industrial environments. In addition to the
Virtual Factory concept, the DIMUSA platform is introduced in the methodology as the
primary system for real-time data acquisition, processing, and visualization. While its
technical details are discussed later in Chapters 3.3 and 4, it is mentioned here for clarity,
as DIMUSA served as the main data integration layer across the industrial use cases. This
ensured that machine states, OEE metrics, workstation events, and AMR task logs could
be reliably synchronized with the digital twin models and the decentralized control logic.
The developed production line model, illustrated in Figure 9, shows how AMRs were
integrated into the VF to simulate material flow between workstations and warehouses.
This model provided the first empirical basis for testing data-driven logistics coordination
in a controlled digital environment.

Figure 9. Virtual factory model of a chemical industry production unit, used for real-time data
acquisition and simulation of production logistics (adapted from Publication ).

Each of the eight publications that form the basis of this thesis contributed a specific
perspective, ranging from simulation-based analysis to industrial validation, allowing
both conceptual clarity and practical relevance to emerge from the overall research
process. Together, these publications follow the logic of the DMAIC and design science
methodologies: early papers address the Define, Measure, and Analyze stages through
data acquisition and simulation (Publications I-lll), mid-stage works contribute to
solution development and improvement through the design and refinement of control
logic (Publications IV-VI), and the final papers validate the implemented system in
industrial settings, aligning with the Improve and Control phases (Publications VII-VIII).
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This structured research design ensured that each phase of the study built directly on
the outcomes of the previous one. Problem identification and requirement analysis
grounded the work in real industrial challenges, while model development and
simulation created a safe environment for iterative testing. The subsequent validation in
industrial case studies confirmed the model’s applicability under practical constraints.
Finally, the synthesis phase integrated findings from all case studies, resulting in a
generalized framework for decentralized control.

By combining design science with simulation-driven analysis and empirical validation,
the methodology strikes a balance between scientific rigor and industrial relevance. This
approach not only enabled the creation of a novel decentralized Al-based control system
but also ensured that the solution is transferable, scalable, and aligned with the strategic
principles of Industry 5.0. The following sections (3.2—-3.6) provide a detailed description
of the data sources, modeling tools, validation scenarios, and performance indicators
used to implement this research design.

General System Architecture

Based on this foundation, a general system architecture was developed to support
decentralized, Al-driven production logistics. As illustrated in Figure 10, the architecture
integrates three interconnected layers: (1) the real-time data layer, (2) the Al-based
analysis layer, and (3) the virtual-factory simulation layer. Together, these components
provide a unified digital twin framework for synchronizing physical operations with
analytical and simulation-based decision support.

/ Process Data \
Order Details
Production Quantity
Workstation Cycle Times

[
IMUSA API
(3) (1) . (2)
Virtual Factory Simulations Real-Time Data Layer DIMUSA Al-Based Analysis
Process Logic Validation Timestamped Data Logging K-means Clustering
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+
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Process Transparency
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Operational Improvements
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Figure 10. Developed framework for the agent-based digital twin architecture, combining process
data, virtual factory simulations, and Al-based analysis to support real-time optimization (adapted
from Publication VIlI).

The architecture is organized into three interconnected layers:

e (1) Real-time data layer (DIMUSA). This layer gathers workstation states,
buffer levels, AMR positions, and process events through the DIMUSA
connectors. The resulting data stream ensures synchronization between
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physical and digital assets and supports downstream analytics and simulation
workflows. Interfaces with MES and sensor infrastructures enable seamless
integration into existing industrial systems environments.

e (2) Al-based analysis layer. This layer provides analytical capabilities for
monitoring system conditions and supporting decentralized control decisions.
It includes performance-tracking components, data-driven diagnostic tools
(e.g., clustering), and interfaces to agent-based logic described later in
Section 3.4. Although it does not execute decisions at this level, this layer
provides the information required by the autonomous agents.

e (3) Virtual-factory simulation layer. The virtual factory models workstation
behaviour, buffer dynamics, AMR movements, and material flows. It enables
scenario testing, early validation of design choices, and iterative refinement
of the control logic prior to deployment in real environments.

Through the interaction of these three layers, the system operates as a decentralized
architecture where each production unit can function independently while contributing
to coordinated system-level performance. The virtual-factory pilot developed for the
chemical industry provided an initial environment for testing data-acquisition workflows
and assessing the early versions of the digital-twin components before full deployment.

3.2 Digital Twin Architecture and Modeling Tools

At the core of the proposed system lies a modular digital twin architecture that
represents each physical component of the production system—such as workstations,
buffers, and AMRs—as a virtual agent with embedded logic. This architecture enables
decentralized control and real-time decision-making by combining live data streams with
simulation models and Al-based algorithms. Earlier studies in the chemical industry
demonstrated how the Virtual Factory concept could serve as a foundation for such
modeling (Case A — Chemical industry), while later implementations in the wood and
apparel industries validated its scalability and adaptability (Case D — Wood industry and
Case E — Apparel industry).

The digital twin framework is structured into three layers (Figure 10). The data layer
collects real-time sensor information, including machine states, buffer levels, and AMR
locations. The virtual model layer mirrors the current state of each physical object,
providing a continuously updated representation of the production system. In addition
to these, the control logic layer includes decision-making mechanisms implemented as
rule-based logic or Al algorithms. This separation of concerns provides flexibility, allowing
individual layers to be updated or replaced without disrupting the overall architecture.

Within this framework, different types of agents assume specific roles and
responsibilities. Workstation agents continuously monitor their OEE, detect waiting
states such as material shortages or blocked buffers, and trigger appropriate requests.
AMR agents manage transport tasks by receiving and prioritizing requests, navigating
dynamically based on real-time floor conditions, and reporting their status back to the
system. Buffer agents are responsible for tracking capacity levels and forecasting
potential congestion, coordinating with both upstream and downstream units to
maintain balanced flow. Optionally, a supervisor agent can be introduced to aggregate
system-wide data for visualization and optimization purposes, while still respecting the
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decentralized design by avoiding direct hierarchical control. Each agent operates with
only partial local knowledge yet contributes to global efficiency through lightweight
communication and adaptive behavior. The detailed logic and interaction mechanisms of
these agents are explained in Sections 3.4 and 3.5.

Coordination and communication between agents are achieved via a message-passing
protocol that transmits task requests, status updates, and OEE-triggered alerts.
For example, a workstation agent can issue a request for material delivery, a buffer agent
can report congestion, or an OEE agent can signal idle time caused by missing inputs. This
event-driven communication approach ensures rapid responsiveness while reducing
decision-making latency, particularly in dynamic, variable production environments.

The digital twin and agent system was implemented using a hybrid technology stack.
3D simulation tools, such as Visual Components and Siemens Plant Simulation, were
employed for factory layout and material flow modeling (Case A — Chemical industry;
Case D — Wood industry). Control logic and decision-making algorithms were implemented
in Python-based agent modules, while database interfaces and MQTT communication
protocols enabled real-time data integration with physical systems (Case C — Metal
industry; Case E — Apparel industry). This hybrid setup enabled both offline
simulation-based experimentation and live piloting in industrial environments, ensuring
the robustness, transferability, and scalability of the decentralized control model [91].

3.3 Data Sources and Acquisition from Industrial Use Cases

The empirical foundation of this dissertation is based on industrial data collected through
collaborative digitalization projects conducted with multiple manufacturing companies.
The selected industrial use cases spanned diverse domains, including the chemical, food,
metal, wood, and apparel industries, and were explicitly chosen to capture variations in
workflows, logistics requirements, and levels of automation maturity. This diversity
enabled comprehensive validation of the proposed decentralized digital optimization
and control model across heterogeneous industrial contexts.

Across these use cases, several recurring problems were observed that highlighted
the limitations of existing production logistics coordination. In the chemical industry
(Case A), the main issue was the lack of integrated, real-time data for monitoring material
movement and workstation activity. The food industry (Case B) experienced frequent
transport delays and unbalanced buffer levels due to manual dispatching and limited
synchronization with workstation needs. The metal industry (Case C) exhibited fragmented,
inconsistent machine-level data, making it challenging to identify micro-stoppages and
low-frequency disruptions. The wood industry (Case D) required early detection of
layout bottlenecks during design stages, as physical reconfiguration was costly and
time-consuming. The apparel industry (Case E) struggled with high takt variability,
manual scheduling, and unstable material supply, resulting in frequent idle periods.
These case-specific challenges motivated the development of a decentralized, data-driven
control model capable of addressing variability, improving responsiveness, and enhancing
flow stability across heterogeneous industrial environments.

Primary Data Categories

Several categories of empirical data were gathered and integrated into the research
framework to support modeling, simulation, and evaluation. Real-time shop floor data
were collected from controllers and DIMUSA interfaces, including machine states,
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process parameters, and sensor signals (Table 6). To enable seamless data exchange
between the physical and digital layers, DIMUSA was employed as a middleware and
integration platform, connecting production assets, sensors, and control logic to the
digital twin environment. While the core DIMUSA platform is an existing industrial
system, its capabilities were extended in this research through the integration of
Al-based decision-support components that enable real-time evaluation of workstation
conditions and trigger decentralized logistics actions. This architecture ensured
bidirectional communication, allowing virtual models to receive live process data and
send control commands back to the shop floor (Figure 11).
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Figure 11. DIMUSA architecture for data integration and real-time synchronization (adapted from
Publication V).

Workstation-level OEE metrics-including availability, performance, and quality-were
systematically recorded, along with detailed logs of downtime reasons and production
losses. In parallel, material handling and logistics data were monitored, such as buffer fill
levels, transport lead times, and task queue lengths. To complement quantitative
information, qualitative insights were collected through structured observations and
semi-structured interviews with operators, logistics staff, and supervisors. In addition to
informal feedback collected during pilot stages, formal operator feedback was obtained
in Publication VIII, where the DIMUSA-based digital twin interface was deployed in an
apparel manufacturing SME. Operators provided direct input on task initiation, task
completion logging, and the clarity of workstation status indicators. Their feedback led
to refinements in the visualization, such as more transparent reporting of operation
start/finish events and improved real-time queue displays. These results, summarized in
Table 8, confirm that the user-centric dashboard design supported both operator
awareness and decision-making. Finally, historical performance records were utilized for
clustering analysis, benchmarking, and validation of the simulation model. A representative
example of the collected DIMUSA data structure used in these analyses is presented in
Appendix 11.
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The data collection process combined automated logging from industrial equipment
with manual input in environments with limited digital infrastructure. In several cases,
the author designed and implemented custom data pipelines and visualization dashboards,
providing real-time monitoring interfaces and facilitating integration with digital twin
environments. The feasibility of this approach was first demonstrated in the chemical
industry through the Virtual Factory model, where sensor placement strategies and data-
integration workflows were validated in a 3D simulation environment before
transitioning to fully digital-twin implementation (Publication 1).

Table 6. Overview of data sources and collection by case.

Case & Main data Acquisition
sector types Volume/horizon method Use in thesis
Se(r:‘:; T;‘sées DIMUSA Virtual factory +
Case A—- ! 3 lines, 6-12 connectors OEE monitoring &
. events, buffer . .
Chemical . months + custom AMR simulation (I,
status (units .
middleware 1)
per hour)
Cycle times
(s), AMR task
. Logs + . .
Case B — duration (s), 8 cells, 3-6 manual AMR simulation &
Food buffer levels months . . KPl eval (I1, IV, VI)
. time-studies
(units), OEE
(%)
Workstati
SLES (‘;)'0" DIMUSA
Case C— . ! 5 cells, 3 connectors Data analytics &
micro-stops
Metal . months + transparency (V)
(s), production
. dashboards
orders (units)
Layout
. ’ . . CAD + Plant s
Case D— | routing, buffer | full line, design . . an Layout sensitivity &
. Simulation + .
Wood levels (units), stage samples clustering (V1)
OEE (%) P
Live OEE (%),
Case E — :2:';?;5;:)5 12 stations, 3 22\22?:; Industrial validation
Apparel takt variability months inputs & clustering (VIII)
(s)

Table 6 summarizes the primary data sources used in the five industrial cases (A—E),
covering both simulation and real production environments. Each case contributed
different data types—ranging from workstation OEE and micro-stops to AMR telemetry
and buffer dynamics—which served as the empirical foundation for model development,
simulation, and validation across Publications I-VIIl. Representative data structures
related to these cases are provided in Appendices 9-11:
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e Appendix 9 — Visual Components simulation data used in the Chemical
industry case (Case A), supporting Publications | and Ill. Publication Il also
uses simulation but based on the Food industry model.

e Appendix 10 — DIMUSA AMR telemetry and mission-control data used in
Case B AMR deployment (Publications IV and VI).

e Appendix 11 — DIMUSA workstation-level OEE and flow-monitoring data
used in Case C, Case D, and Case E for clustering and layout analysis
(Publications V, VII, and VIII).

Together, Table 6 and Appendices 9—11 provide a complete overview of the data
landscape supporting the decentralized control model and its industrial validation.

3.4 Simulation and AMR Motion Optimization Development

A central innovation of this research is the use of real-time OEE feedback as a control
signal within the decentralized logistics system. Unlike conventional approaches, where
OEE serves only as a retrospective KPI, it becomes an active input for decision-making by
intelligent agents here. This enables the system to detect performance losses dynamically
and initiate corrective actions in real time. The approach was validated in several
simulation environments and later in industrial pilots (Publications IV, VI, VIII).

Real-Time OEE Monitoring

Each workstation agent continuously monitors its performance using three components:
availability, which indicates downtime caused by material shortages or buffer blockages;
performance, which shows deviations from expected cycle times; and quality, which
measures the percentage of rejected or defective parts. These metrics are calculated
locally and stored in the workstation agent’s status memory. Predefined thresholds turn
OEE deviations into triggers for corrective actions-for example, requesting urgent
material delivery when availability drops, alerting AMR agents to prioritize buffer
removal during congestion, or suggesting diagnostic checks when cycle times increase.
This closed-loop system allows each agent to optimize its own state while also affecting
the behavior of other agents. To enable adaptive decision-making, each workstation
agent continuously monitors its availability, performance, and quality indicators. These
OEE components produce local signals when deviations occur, enabling AMR agents to
prioritize material deliveries or removal tasks accordingly. This way, OEE becomes an
operational control input rather than a retrospective KPl. The implementation of this
mechanism and its use within the simulation and optimization workflow are described
below. A detailed comparison between virtual factory outputs, production-order
feedback, and real-time DIMUSA measurements is presented in Section 3.6, where the
performance of the proposed control model is evaluated under real industrial conditions.

AMR Mission Generation and Optimization

In addition to workstation-level OEE monitoring, the system includes a mechanism that
enables AMR agents to generate and optimize missions. Each mission is defined as a
sequence of pick-up and delivery tasks, determined by real-time workstation requests
and buffer status. The mission generation process relies on two levels of decision-making.
At the upper level, the system selects which nodes (loading/unloading points) to visit in the
next mission based on urgency signals, such as material shortages or buffer congestion.
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At the lower level, the system computes the optimal path through these nodes, ensuring
that the AMR follows the most efficient route while meeting the time constraints and
resource priorities.

Figure 12 illustrates the AMR-based logistics control system, showing how robot
control modules, Al-based path optimization, ERP integration, and efficiency analysis are
connected to OEE-driven decision-making.
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Figure 12. Architecture of the AMR-based logistics control system, integrating robot control, Al-based
path optimization, ERP connectivity, and performance analysis (adapted from Publication IV).

The optimization model is represented as a directed graph, where each node
corresponds to a workstation, buffer, or auxiliary area (e.g., a washing or maintenance
area). Edges between nodes are weighted by distance or estimated travel time, updated
dynamically from sensor data. This representation allows missions to be adapted online
to reflect real factory conditions (Case B - Food industry).

For path optimization, several algorithms were tested, including genetic algorithms
(GA), ant colony optimization (ACO), and classical shortest-path methods such as
Dijkstra’s algorithm. While evolutionary algorithms provided flexibility for complex
layouts, Dijkstra’s method proved most effective for fast recalculation in dynamic
environments, as demonstrated in Case B - Food industry. Figure 13 presents the AMR
motion model, represented as a directed graph of nodes and edges, where each node
corresponds to a loading, unloading, or maintenance point.

45



Unloading 2
Unloading

Loadlng 2 Unloading 2
Loading 1 /m Unloading 1
Unloadlngz Loading 2
Unloadlng Loading 1

Loadl ng 4

| Loading3 Unloading 2
Loadlng 2 Unloading 1|

Loadlng 1

Figure 13. AMR optimization model represented as a directed graph, where nodes correspond to
loading/unloading points and edges are weighted by distance or travel time (adapted from
Publications IV and V).

Once the mission nodes were defined in the motion model, the next step was to
compute the optimal path for the AMR. The optimization considered factors such as
distance, estimated travel time, and workload priorities, ensuring that each route
minimized idle times while meeting workstation demands. This step translated the
abstract graph-based representation into a practical navigation plan for the robot,
balancing efficiency and real-time adaptability. Figure 14 illustrates the result of optimal
path generation for one mission, showing how the selected route passes through
required nodes in the most efficient sequence.
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Figure 14. Example of optimal AMR path (red line) generation, showing the most efficient route
through selected nodes based on real-time mission priorities (adapted from Publications IV and VI).

This optimization logic is detailed in Publication IV.
Clustering Analysis

To identify systemic inefficiencies that extend beyond individual workstations, clustering
techniques were applied to OEE-based datasets in both simulation and real industrial
environments.

In Case D — Wood industry, a virtual factory model was created in Siemens Plant
Simulation, and workstation-level OEE metrics were analyzed over 3 months. A k-means
clustering algorithm (k = 5, using the elbow method) was applied to segment workstations
based on performance patterns. This allowed the identification of the five most efficient
and five least efficient workstations, providing targeted insights for layout redesign,
buffer sizing, and flow balancing. The analysis demonstrated how clustering could be
used proactively during the design stage to prevent bottlenecks before implementation
in a physical facility.

In Case E — Apparel industry, clustering was applied to real-time production data
streams structured via the DIMUSA platform, allowing continuous analysis of workstation
behavior within a digital shadow environment. A two-step approach was used: first,
DBSCAN filtering removed outliers and anomalous data points, such as excessively long
idle times; then, k-means clustering classified operational states into interpretable
groups (e.g., “stable,” “delayed,” “high variation”). This workflow enabled supervisors to
visualize recurring inefficiencies, especially those related to micro-batch sequencing and
workstation synchronization, and to cross-validate them against simulation scenarios.

These provided supervisors with clear, understandable insights into performance
disparities, helping to prioritize interventions such as operator reallocation, buffer
resizing, or maintenance-related actions based on emerging performance data
anomalies.

Figure 15 illustrates the results of clustering OEE metrics, grouping workstations by
availability and performance levels (Case D — Wood industry). Critical bottlenecks can be
identified in the lower-left quadrant (low availability, low performance), while benchmarks
for efficiency are found in the upper-right quadrant (high availability, high performance).
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Figure 15. Clustering of workstation OEE data by availability and performance, identifying efficiency
benchmarks and bottleneck-prone stations (adapted from Publications VII).

Integration into Control Flow

In the decentralized control framework, two complementary mechanisms are combined:
the AMR-based transport system and OEE-based performance monitoring with clustering
analysis.

On the operational side, the AMR agents ensure that workstations are consistently
supplied with raw materials and that finished products are transported to the next
designated buffer or workstation. Each mission originates directly from the shop floor:
when a workstation agent signals a shortage, the AMR delivers the necessary input
materials; when a buffer agent indicates that output is ready for removal, the AMR clears
the workstation. In addition, the AMR system is connected to higher-level planning tools,
including the ERP system and the DIMUSA platform, which provide production plans, task
priorities, and workstation norms. This integration aligns local AMR decisions with global
production objectives, ensuring that logistics respond promptly to real-time shop floor
needs while maintaining consistency with overall schedules. The underlying architecture
for AMR control, including robot navigation, Al-based optimization, and ERP connectivity,
was detailed and validated in earlier work (Case B — Food industry).

On the analytical side, OEE monitoring and clustering provide diagnostic feedback on
workstation efficiency. While AMRs ensure the physical flow of materials, OEE indicators
reveal whether workstations are operating effectively or experiencing losses due to
issues with availability, performance, or quality. Clustering analysis extends this perspective
by uncovering patterns across multiple workstations: identifying bottleneck-prone cells,
recurring inefficiencies, and underutilized resources. These insights do not directly
control AMR behavior but instead guide supervisors and engineers in prioritizing
improvement actions, refining layouts, or reallocating resources. Such applications were
demonstrated in the wood industry case, where k-means clustering was applied to
workstation OEE metrics (Case D — Wood industry), and in the apparel SME case, where
a combination of DBSCAN and k-means clustering in the DIMUSA platform revealed
systemic inefficiencies (Case E — Apparel industry).
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Together, these two layers provide a balanced integration: AMRs secure short-term
adaptability by responding to local signals, while ERP/DIMUSA plans, and OEE clustering
support long-term system improvements by highlighting inefficiencies that require
strategic attention. This dual perspective—operational execution complemented by
analytical feedback—was validated across multiple case studies and resulted in smoother
synchronization between workstations and logistics, reduced idle time, and improved
throughput without relying on centralized scheduling. By embedding both reactivity and
adaptability into the control loop, the framework aligns directly with Industry 5.0’s goals,
emphasizing autonomy, resilience, and human-centric decision support.

3.5 Overview of Industrial Cases

To ensure both generalizability and practical relevance, the research was validated
through five industrial case studies conducted in collaboration with manufacturing
companies across sectors. Each case was carefully selected to represent a distinct
combination of product types, workflow characteristics, logistics requirements, and
levels of automation maturity. The intention was not only to test the decentralized control
model in a narrow context but also to examine its adaptability across heterogeneous
environments, ranging from process-intensive industries to high-variability SMEs. In this
chapter, the overview also explains the origins of the empirical data used for modeling,
simulation, and validation across these cases. In the following subchapters, each use case
is presented with a consistent structure—Problem, Applied Technology, and Contribution—
to clearly show both the initial challenge and the specific role of the methods and tools
used in the research.

Case A — Chemical industry (Publication I, 1ll)

The chemical industry served as the starting point for validating the methodology, as it
provided a structured production environment with well-defined flows and a strong
demand for reliable data acquisition. This context enables testing the feasibility of the
Virtual Factory approach, in which data integration, sensor placement, and intralogistics
processes could be evaluated in a digital environment before implementation in the
physical system.

Publication | introduced the Virtual Factory framework for the chemical industry,
focusing on real-time data acquisition and sensor integration. The model demonstrated
how IR, RFID, and weight sensors could be positioned to monitor AMR activity, loading
platforms, and conveyor flows. This enabled the systematic evaluation of sensor roles in
logistics coordination, ensuring that real-time signals could later be utilized as inputs for
OEE monitoring and informed decision-making. Publication Il further extended this
approach by applying the Virtual Factory to intralogistics analysis in the same industrial
context. Here, 3D simulations were used to model production line operations, material
handling flows, and alternative layout configurations. These studies confirmed that the
Virtual Factory not only supported sensor-strategy validation but also served as a
decision-support tool for optimizing production logistics in process-intensive industries.
Focus: Real-time data acquisition, sensor integration, and intralogistics simulation in the
chemical industry.

Contribution: Development of a Virtual Factory framework that enabled sensor placement
validation and logistics flow analysis, combining simulation-based planning (Publication I)
with intralogistics scenario evaluation (Publication Ill).
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Figure 16 presents the sensor placement diagram showing how IR, RFID, and weight
sensors were integrated with AMR and conveyor systems to support real-time data
collection. Figure 17 shows the physical implementation of RFID and optical sensors in
the production environment, enabling automatic identification and synchronization of
transport tasks with AMRs.
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Figure 16. Virtual Factory sensor placement diagram for the chemical industry case, showing the
integration of IR, RFID, and weight sensors with AMR and conveyor systems to support real-time
data acquisition (adapted from Publication ).

Figure 17. Implementation of RFID and optical sensors in the chemical industry case, enabling
automatic identification and synchronization of transport tasks with AMRs (adapted from
Publication ).
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Case B - Food industry (Publications Il, 1V, Vi)

The food industry represented a domain where intralogistics plays a critical role in
throughput and efficiency, making it an ideal environment for evaluating AMR
coordination and Al-based decision support. Frequent material movements, variable
product flows, and strict hygiene requirements posed a realistic challenge for the
decentralized model.

Focus: Simulation-based intralogistics analysis with AMRs, KPI evaluation, and clustering
of workstation performance.

Contribution: Provided OEE-based workstation modeling, 3D simulation of logistics
flows, and tested Al-enhanced AMR coordination.

Figure 18 illustrates a logistics simulation scenario developed for the food industry
case, where AMRs were tested under varying load conditions. The simulation
environment enabled the evaluation of task allocation strategies, validation of AMR
responsiveness, and identification of potential bottlenecks in intralogistics. By adjusting
workload intensity and transport frequency, the model revealed that decentralized
decision-making improved throughput time and reduced workstation idle time.
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Figure 18. Proposed approach for analyzing the performance of AMRs in production logistics,
integrating simulation, Al-based task allocation, and KPI monitoring (adapted from Publication VI).

Figure 19 presents the AMR loading and unloading station model that was
implemented to represent critical material transfer points in the food industry. This
model served as a basis for analyzing the interactions among AMRs, conveyors, and
buffer areas, and helped quantify the effects of automated transport on OEE. Figure 19
illustrates the arrangement of different buffer areas along the AMR transport paths,
including the empty boxes area (W), filled boxes area (F), dirty boxes area (D), and process
buffers for picking up and placing goods. The unified view shows the loading and unloading
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locations utilized by AMRs for material handling within the production environment.
The combination of Figure 18 and Figure 19 demonstrates how simulation-driven analysis
supports the validation of Al-enhanced intralogistics coordination in environments with
high product variability and strict operational constraints.
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Figure 19. AMR loading and unloading station model in the food industry case (adapted from
Publication IV).

Case C — Metal industry (Publication V)

The metal industry case was used to validate the methodology in a discrete manufacturing
environment, where production data were often fragmented and heterogeneous, and
were generated under highly variable operating conditions. This case highlighted the
practical challenges of acquiring, preprocessing, and visualizing shop floor data as a reliable
basis for advanced analytics.

Focus: Establishing methods for industrial data acquisition and visualization at the
workstation level, enabling consistent and interpretable inputs for Al-based optimization.

Contribution: The study demonstrated how to systematically collect, structure, and
integrate machine logs, downtime records, and sensor readings from different
workstations into dashboards. These visualizations provided both operators and
engineers with clear insights into workstation behavior while ensuring that subsequent
Al applications (e.g., OEE monitoring, decision-support models) were based on accurate,
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consistent data. Figure 20 presents the robotic bending workstation model, which
illustrates the integration of a Yaskawa robot with a sheet-metal bending machine and
associated material-handling stations. This model served as a reference for capturing
operational data and testing the feasibility of implementing a digital twin in a metal
industry environment.

. Yaskawa robot (UP20)
. Table for input sheet

. Repositioning table

. Bending machine

. Pallet for finished product

wmoa W N

Figure 20. Robotic bending workstation model in the metal industry case, showing the integration
of a Yaskawa robot with a bending machine, input/output tables, and palletizing stations (adapted
from Publication V).

Figure 21 shows the DIMUSA dashboard view, where real production data from both
the bending machine and robotic workstation were collected and visualized across a
single shift. Together, the figures demonstrate the complementary role of digital twin
modeling and data analytics in creating a transparent, data-driven decision-support
framework.
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Figure 21. DIMUSA dashboard view from the metal industry case, visualizing bending machine and
robotic workstation data collected during one production shift (adapted from Publication V).

Case D — Wood industry (Publication VII)

The wood industry case provided a context characterized by batch-based variability, long
material flows, and frequent changes in product types. This created an ideal environment
for extending the digital twin methodology by integrating simulation with Al-based
analysis. The case demonstrated how a virtual factory model could be used to represent
complex layouts and evaluate the impact of reconfiguration on throughput and
workstation performance.

Focus: Development of a virtual factory model enhanced with Al-based clustering for OEE
optimization in a batch-production environment.

Contribution: The study demonstrated how Siemens Tecnomatix Plant Simulation can be
integrated with OEE-driven analysis to optimize resource allocation and minimize
bottlenecks in multi-stage processes. Clustering methods were applied to workstation-
level OEE data, providing actionable insights for rebalancing production flows and
improving system utilization. The integration of these techniques validated the scalability
of the decentralized model to production systems with high variability and long cycle
times. Figure 22 illustrates the virtual factory model developed for the wood industry
case, implemented in Siemens Plant Simulation. The model enabled evaluation of
resource utilization, material flow, and production layout efficiency. Resource statistics
were used to identify bottlenecks and idle times, supporting data-driven decisions for
logistics and production optimization.
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Figure 22. Virtual factory model of a wood industry production line in Siemens Plant Simulation,
including resource statistics used for analyzing workstation utilization and bottlenecks (adapted
from Publication ViI).

Case E — Apparel industry (Publication VIII)

The apparel industry case was selected as a particularly demanding validation for the
decentralized model, owing to the high variability of customized products, frequent
changeovers, and limited resources typical of SMEs. This environment provided an
opportunity to test whether the proposed approach could remain scalable and
interpretable under conditions where flexibility and rapid adaptation are crucial.

Focus: Implementation of an Al-driven digital twin for production logistics optimization
in a custom sportswear SME.

Contribution: The case demonstrated the development and deployment of the DIMUSA
system, which integrated digital twin modeling, clustering analysis, and Al-based logistics
decision support. Real-time workstation-level data were collected and visualized in
dashboards, while clustering algorithms (K-means combined with DBSCAN) were used to
detect anomalies and recurring inefficiencies. Simulation models were employed to
validate improvement scenarios and to cross-check analytical insights with real-world
observations. The results confirmed that even a lightweight, modular digital twin system
can enhance transparency, provide interpretable feedback for operators, and support
continuous improvement in SMEs with limited digital infrastructure.

To provide context for the pilot implementation, Figure 23 presents the digital twin
layout of the apparel factory used in the case study. The model illustrates the shop floor
configuration, including workstations, material buffers, and AMR transport routes, which
were digitally replicated to capture the dynamics of production flow. This visualization was
essential for planning the data acquisition strategy and for designing clustering-based
performance analysis. By mapping the genuine factory into a virtual environment, the
research ensured that subsequent DIMUSA implementation and anomaly detection
could be directly validated against actual production conditions.
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Figure 23. Digital twin layout of the apparel factory in the SME case, illustrating workstation
configuration, material buffers, and AMR transport routes (adapted from Publication VIl).

One of the central findings was the discrepancy between simulation assumptions and
actual production behavior. Figure 24 illustrates this by comparing workstation
availability values generated in the virtual factory model (a) with actual measurements
collected via DIMUSA sensors (b). The contrast highlights how simulation tends to
assume more stable availability patterns, whereas real-world SME operations exhibit
greater fluctuation due to manual handling, operator-induced variability, and micro-batch
sequencing dependencies. By visualizing these differences, the system provided
decision-makers with actionable insights into synchronization problems, material
readiness delays, and operator coordination issues, which would have been difficult to
detect with standard KPI reporting alone.

56



a) Simulated Workstation Availability

I Cutting-KJ-JL020 Quality control KJ-KK061 Quality control KJ-KK064 »  White parts KJ-VD032 Packaging KJ-PA080
® Plotter KJ-PL040 Quality control KJ-KK062 B Sewing KJ-OM070 White parts KJ-VD033
cent m Press KJ-PR050 B Quality control KJ-KK063 B White parts KJ-VD031 B White parts KJ-VD034

TERRIEEETEEERRTRLNE -

& & &> & & B R
& & & & & i & & Date
.m.@., .%w .m.w .,a,w .me’ ra% .,oev .,a._w

3 & & K & & ’ & & & &

b) Actual Measured Availability (DIMUSA)
M Cutting-KJ-JL020 Quality control KJ-KK061 B Quality control KJ-KK064 B White parts KJ-VD032 B Packaging KJ-PA080
B Plotter KJ-PL040 B Quality control KJ-KK062 B Sewing KJ-OMO070 “  White parts KJ-VD033

Percent B Press KJ-PRO50 W Quality control KJ-KK063 B White parts KJ-VD031 B White parts KJ-VD034
100 | = °
i

pose]

-

s

-

-

o

-

-

g

s |

pug

-

0% -

-

7 ¥ g ¥ 4 ¥ pate

g & & & & &
& @ & & & &

Figure 24. Comparison of workstation availability in the apparel SME case: (a) simulation model

assumptions vs. (b) actual DIMUSA measurements collected on 16 October 2024 (adapted from

Publication VIII).
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Empirical Contributions

The following section outlines the empirical foundation of this research by summarizing
the industrial case studies, data sources, and observed operational challenges that
informed the development of the proposed digital optimization and control model.
Rather than presenting conclusions, this overview introduces the practical contexts in
which the methodology and technologies were applied. A detailed analysis of the
empirical results and their implications is provided later in the Discussion chapter.

Together, the five case studies provided a comprehensive and robust empirical
foundation for the dissertation. By spanning industries as diverse as chemicals, food,
metals, wood, and apparel, they demonstrated that the proposed decentralized control
system is not limited to a single production type but can be transferred across
heterogeneous contexts. Each case contributed distinct insights: the chemical industry
case highlighted the importance of structured data acquisition and sensor integration;
the food industry emphasized the role of AMRs and intralogistics coordination; the metal
industry provided validation for OEE clustering and data-driven optimization; the wood
industry tested the scalability of virtual factory models in batch production; and the
apparel industry case proved the feasibility of full digital twin implementation in a
high-variability SME setting.

These cases collectively validated the modularity and scalability of the decentralized
architecture. In practice, this meant that new agents could be added without redesigning
the entire system, and that the same core logic functioned effectively in both highly
automated and resource-constrained environments. The diversity of contexts also ensured
that the proposed solution was stress-tested across very different organizational and
technical conditions, including centralized ERP environments, hybrid manual-automated
workflows, and SME-specific constraints such as limited IT infrastructure.

The case studies further enabled the testing of autonomous control algorithms under
realistic conditions. Scenarios such as high-load AMR utilization, workstation bottlenecks,
buffer congestion, and equipment failures were addressed not only in simulation but also
in live production trials. The results confirmed that the system could dynamically
reprioritize tasks, rebalance workloads, and recover from disturbances without central
supervision, demonstrating robustness and adaptability in environments characterized
by uncertainty.

From a performance perspective, the validation showed measurable improvements.
Across different industries, workstation availability increased due to reduced waiting
times, throughput time was shortened thanks to synchronized logistics, and OEE scores
improved as a result of combined gains in availability, performance, and quality. In some
cases, additional benefits such as higher AMR utilization and reduced operator workload
were observed, further strengthening the business case for decentralized logistics
control.

Ultimately, this cross-sector validation confirmed the model’s generalizability. It showed
that decentralized, Al-enhanced agents are not only theoretically viable but also
practically deployable across multiple industries. This scalability positions the proposed
solution as a strong candidate for Industry 5.0 applications, where resilience, adaptability,
and human-centric decision support are increasingly required.
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3.6 Validation and Performance Indicators

To evaluate the performance, scalability, and robustness of the proposed decentralized
production control system, a comprehensive simulation environment was developed and
iteratively refined. This environment replicated real production layouts, workflows, and
logistics interactions by integrating digital twins with agent-based control logic. It enabled
systematic testing under representative operating conditions, while also allowing the
exploration of edge-case scenarios—such as AMR congestion, workstation breakdowns,
or highly variable task sequences —that would be difficult, costly, or risky to reproduce
in physical factories. By combining realism with experimental flexibility, the simulation
framework provided a safe yet reliable foundation for validating the decentralized
architecture before industrial piloting (Case B — Food industry and Case D —Wood industry).

Validation Approach

The validation of the proposed decentralized control model follows a layered strategy
that combines virtual-factory simulations, production-order feedback, and real-time
sensor measurements. This structure allows the model to be evaluated under both
idealized and real operating conditions. Virtual factory simulations provide upper-bound
performance baselines; production records offer historical references of expected
behaviour; and DIMUSA real-time data expose the true variability of the shop floor,
including micro-stoppages, operator-induced delays, and transport disruptions. By
integrating these complementary data sources, the validation process captures the gap
between planned, simulated, and actual performance. The following subsections present
the results of this multi-layered validation in detail.

Virtual Factory Baseline (Case E — Apparel industry)

To evaluate how workstations should perform under ideal conditions, a virtual factory
model was created for Case E. The model offers an optimal performance baseline, while
actual monitoring reflects variability caused by manual handling, operator decisions, and
small-batch sequencing. Table 7 displays workstation-level OEE results produced by the
virtual factory model.

Table 7. Workstation-level OEE values from the virtual factory model in Case E — Apparel industry
(Publication VIII).

Date Workstation Availability %  Performans % Quality % OEE % TEEP % Result/pcs
2024/10 Plotter KJ-PLO40 67% 100% 100% 67%  16% 9200
2024/10 Press KJ-PRO50 29% 100% 100% 29% 7% 9200
2024/10 Quality control KJ-KKO61 24% 100% 100% 24% 6% 2300
2024/10 White parts KJ-VD031 22% 101% 100% 22% 5% 2622
2024/10 White parts KJ-VD032 22% 101% 100% 22% 5% 2622
2024/10 White parts KJ-VD033 21% 101% 100% 22% 5% 2599
2024/10 White parts KJ-VD034 21% 101% 100% 22% 5% 2599
2024/10 Quality control KJ-KK062 21% 100% 100% 21% 5% 2300
2024/10 Quality control KI-KK063 21% 100% 100% 21% 5% 2300
2024/10  Quality control KJ-KKO64 21% 100% 100% 21% 5% 2300
2024/10 Cutting KJ-JLO20 15% 100% 100% 15% 4% 20355
2024/10 Sewing KJ-OMO070 14% 100% 100% 14% 3% 9200
2024/10 Packaging KJ-PA080 14% 100% 100% 14% 3% 9200
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In this simulated environment, availability, performance, and quality metrics were
calculated assuming stable process conditions, synchronized material flow, and minimal
human-related disruptions. Transport tasks are completed on schedule, cycle times stay
consistent, and operator influence is minimal. This model, therefore, represents the
“ideal state” of the apparel production system.

The benefit of using a virtual factory baseline is that it enables performance
benchmarking and scenario testing prior to industrial deployment. However, virtual
models tend to overestimate efficiency, especially workstation availability, because they
do not account for short interruptions, micro-delays, or operator-driven disturbances.

Comparison with Real-Time DIMUSA Measurements

To address these limitations, Table 8 provides a detailed comparative analysis of two
representative workstations (Plotter and Press) based on three complementary data
sources:

e production order feedback (manual input),
e  virtual factory simulation outputs,
e real-time DIMUSA measurements.

Table 8. Comparative analysis of workstation-level performance based on production order feedback,
virtual factory model outputs, and real-time DIMUSA measurements in Case E — Apparel industry
(Publication VIII).

Plotter KJ-PLO40

Actual execution of work orders input)
Code Actual start Actual stop off Shortstop LongStop Working Quantity/m2
Micro-batch-44-025-CAA Plotter KI-PLO40 16/10/2024 5:56:02 16/10/20247:31:21  00:00:00  00:01:12 00:00:00 01:34:07 115.9m2
Micro-batch-44-023-CA Plotter KJ-PLO40 16/10/20247:32:18 16/10/20248:31:58  00:00:00  00:01:02 00:03:23 00:55:14 73.88m2
Micro-batch-44-034-CAA Plotter KJ-PLO40 16/10/2024 14:33:11 16/10/2024 16:23:18  00:00:00  00:00:00 01:45:01 148.58 m2
Micro-batch-44-032-CM Plotter KJ-PLO40 16/10/2024 10:26:16 16/10/202412:36:55  00:00:00  00:01:08 220 02:09:09 164.1m2
Micro-batch-44-028-CK Plotter KI-PLO40 16/10/20248:52:37 16/10/202410:21:49  00:00:00  00:00:48 :00:00 01:28:23 104.03 m2
Micro-batch-44-037-CM Plotter KI-PLO40 16/10/2024 12:37:27 16/10/202414:32:58 00:00:00  00:00:44 00:00:00 01:54:46 169 m2
TOTAL: 00:00:00 0:04:55  0:08:49 9:46:43 775.49m2
Virtual factory simulation data
Shift Start End Off Shortstop LongStop Working Quantity/m2 ility P OEE
17.10.2024 Plotter KJ-PLO40 16/10/2024 7:00:00 16/10/2024 15:00:00 00:00:00  00:00:01 02:39:59 05:20:00 400 67% 100% 67%
DIMUSA real-time data
Shift Workstation Start End off Shortstop LongStop Working Quantity/m2 Availability Performance  OEE
17.10.2024 Plotter KJ-PLO40 16/10/2024 6:00:00 16/10/2024 18:00:00 00:00:00  00:04:55 01:56:13 09:58:51 775 83% 0% 0%
Press KJ-PRO50
Actual execution of work orders (manual input)
Code Actual start Actual stop off Short stop LongStop  Working Quantity/m2
Micro-batch-44-025-CAA PressKJ-PROSO 17/10/202411:26:31 17/10/202412:08:10  00:00:00 00:00:00 00:00:00 00:41:38 115.9m2
Micro-batch-44-023-CA PressKJ-PROSO 17/10/2024 12:09:23 17/10/202412:37:29  00:00:00 00:00:00 00:00:40 00:27:25 73.88m2
Micro-batch-44-020-CAA PressKJ-PROSD  17/10/20248:34:12  17/10/20249:06:07  00:00:00 00:00:00 00:00:34  00:31:20 91.3m2
Micro-batch-44-032-CM PressKJ-PROS0  17/10/2024 9:09:51  17/10/202410:05:54  00:00:00 00:00:28 00:00:00 00:55:34 164.1m2
Micro-batch-44-037-CM PressKJ-PROS0 17/10/2024 13:00:30 17/10/202413:52:52  00:00:00 00:00:00 00:00:00 00:52:22 169 m2
TOTAL: 00:00:00 0:00:28 0:01:15  3:2821  614m2
Virtual factory data
Shift Start End off Short stop LongStop  Working Qu v/ Performance  OEE
17.10.2024 PressKJ-PROS0  17/10/20247:00:00 17/10/202415:00:00  00:00:00 00:00:00 05:40:00 02:20:00 400 29% 99.9% 29%
DIMUSA real-time data
shift Workstation Start End off Shortstop  LongStop Working Quantity/m2 Performance OEE
17.10.2024 PressKJ-PROSO _17/10/2024 6:00:00 17/10/2024 18:00:00 _00:00:00 00:04:05 05:15:24  06:40:30 614 56% 4% 2%

Production order data offer a high-level view of output and downtime but lack the
resolution to detect micro-stops. The virtual factory model provides idealized results,
assuming stable operations. Real-time DIMUSA monitoring shows actual shop-floor
conditions, capturing disruptions such as material shortages, operator delays, and
micro-batch effects.
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The comparison demonstrates that:

e  Production feedback underestimates inefficiencies,
e simulation overestimates stability,
e Real-time monitoring exposes full variability.

These insights emphasize the need to combine digital-twin simulations with
sensor-based measurements to get accurate and useful performance evaluations.

Simulation Tools and KPI Architecture

The simulation platform was implemented using a combination of specialized factory
modeling tools and custom-developed agent modules. Visual Components and Siemens
Plant Simulation were utilized to develop 3D layouts and replicate process flows.
Meanwhile, Python-based agent logic controls AMRs, buffers, and workstations in
real-time (Publications IV, VI, VII). The platform incorporated OEE emulation and
transport event logging, enabling direct linkage between agent decisions and measurable
performance indicators. To ensure consistency in evaluation, a set of KPIs was defined
based on the information in Table 9. These KPIs enabled systematic comparison between
baseline (manual/centralized) and decentralized (Al-controlled) logistics coordination.
The framework included workstation availability, throughput time, OEE components, and
AMR utilization, providing both efficiency and resilience measures for validation.

Table 9. KPI framework for validating decentralized intralogistics coordination (adapted from
Publication Il).

. Virtual Scenario . Estimated
KPI Current Scenario (manual) Real Scenario (automated) | .
(automated) improvement
Irregularitics existed duc to the Inegulantl&?s did not exist as Irregulax?tles were m‘mgated IQ % re'du'cnon
PI: . . in the simulation the as the implementation of in existing
messy corridors (routes) with . . X h
Defects random boxes (crates) designated routes were robots in a real environment transportation
clearly defined for robots leads to neat and clean routes. defects
On-time deliveries of empty
Simulation enables to plan red boxes were improved as
. Insufficient amount of boxes at | the number of boxes at right robots connected to the IoT . .
P2: O . . L 5% increase in
. the right time and at the right | time and place. For 12 hours platform, communication .
On-time - e . : . o on-time
i place. High waiting time at simulation run with 3 between them facilitate the delive
delivery production lines robots, minor waiting time availability of empty boxes at Y
was overserved. the right time and at the right
place.
P3: Inadequate inventory turnover Fpr an hgm simulation run Sensors data and controlled 5% increase in
due to the lack of boxes. The in the virtual setup of the X .
Inventory planning of robots enabled to inventory
throughput was 321 boxes per | same scale, throughput was : :
turnover hour 336 boxes improve inventory turnover. turnover
The proper planned
P4: Manual transportation incurs Enables effective planning implementation otj rob'ots 15% reduction
cost, when human labour to allocate the workers and leads to a reduction in .
Labour . . - . . in the labour
C realized fatigue due to robots for the right and operating transportation costs. cost
ost repetitive activities. productive job. As the number of logistic
workers decreased.
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To ensure realism, industrial datasets from Case B (Food industry) and Case C (Metal
industry) were integrated into the simulation environment.

These datasets included workstation cycle times, buffer capacities, and transport lead
times, reflecting real production behavior and thereby strengthening the credibility and
practical relevance of the results.

The digital twin models reproduced essential elements of factory operation, including
the spatial layout of production cells, workstation operating cycles, and material flows
coordinated by AMRs. Dynamic disturbances, such as delayed deliveries, AMR congestion,
or temporary failures, were systematically introduced to test the system’s resilience. This
hybrid simulation environment combined industrial realism with experimental flexibility,
providing a robust testbed for validating the decentralized control framework under both
standard and extreme operating conditions.

Validation Scenarios

To systematically test the proposed control system, a set of validation scenarios was
developed and applied in both simulation and industrial case studies. The validation
combined virtual factory simulations, production order feedback, and real-time
monitoring through the DIMUSA system to ensure that the decentralized model was
robust under both controlled and real operating conditions.

1. Baseline vs. Al-controlled operation: Centralized/manual transport dispatching
was compared with the decentralized agent-based model. Key metrics included
workstation idle time, throughput time, OEE evolution, and AMR utilization.
Results consistently showed that the decentralized approach reduced
workstation idle periods and improved flow stability (Publications II, IV, VI).
Simulation outputs at the system level provided an idealized performance
baseline, while detailed comparisons against production feedback and DIMUSA
data (Figure 24) confirmed that real-world variability was successfully addressed.

2. High-density load conditions: The system behavior was assessed under
conditions of increased material flow and limited AMR availability. Simulation
results demonstrated that decentralized agents dynamically reprioritized
transport missions to mitigate congestion effects and sustain stable throughput
under constrained conditions (Publication VI).

3. Disturbance and constraint scenarios: Disturbances such as limited AMR
availability and temporary buffer saturation were introduced in simulation to
examine system behavior under non-ideal conditions. The decentralized control
logic dynamically reassigned transport tasks and adapted buffer interactions,
reducing the impact of disturbances without reliance on centralized supervision
(Publications IV, VI).

4. Layout sensitivity analysis: Using the virtual factory in the wood industry, the
effects of workstation and buffer configurations on flow efficiency were
examined. Clustering analysis of OEE data highlighted spatial inefficiencies and
underutilized areas, providing insights for redesign and routing optimization
(Publication V).

5. Cross-validation of simulation and real data: A layered validation approach was
employed to compare workstation-level OEE indicators derived from the
virtual factory (Table 7) with production order feedback and DIMUSA sensor
measurements (Table 8). The comparison showed that simulation-based models
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offer valuable baseline estimates but tend to overestimate availability and
performance by ignoring waiting times, operator-induced variability, and
micro-batch sequencing effects. Real-time data uncovered these hidden
inefficiencies and emphasized the limits of purely simulation-driven analysis.
Together, these validation scenarios demonstrate that decentralized, real-time
data—driven control is more effective at handling variability and disruptions than
static simulation models alone.

Key Outcomes

Across the validation scenarios, the decentralized control system consistently showed
measurable improvements in production logistics. In Publication Il, the focus was on
comparing manual transportation with automated AMR-based transportation (before
integrating the Al functionality). As shown in Table 9, the automation scenario was
estimated to reduce transportation defects by about 10%, improve on-time delivery by
about 5%, increase inventory turnover by about 5%, and reduce labour costs by about
15%. This set the initial benchmark for potential advantages of adopting digital and
autonomous coordination. These baseline effects of automation are explained in more
detail in Section 4.2 and Publication II. In Publication VIII, validation was extended by
combining virtual factory simulations with real production data. Table 7 presents results
from the DIMUSA virtual model, assuming workstations operating at 100% performance.
These results were then compared to real-time measurements from two selected
workstations (Plotter and Press) in Table 8. The comparison revealed that simulations
tend to overestimate stability, whereas real data exhibited greater variability due to
operator behavior, micro-stoppages, and manual interventions. A detailed explanation
of this comparison and its implications is provided in Section 4.3 and Publication VIII.
However, the actual measurements revealed idle time patterns and throughput losses
that were not captured by simulation alone, thereby supporting the model’s relevance
and applicability in SMEs conditions.

It is important to note that the direct implementation of Al-generated
recommendations into production processes has not yet been tested in Publication VIII.
This highlights a clear direction for future research: the next step will be to assess how
Al-driven decision support can further improve logistics coordination beyond baseline
automation results (discussed in Chapter 5).

Overall, these findings confirm that the proposed decentralized system is both
feasible and scalable. By integrating real-time OEE monitoring, agent-based AMR mission
generation, and clustering-based performance analysis, the framework demonstrated
measurable improvements in efficiency and resilience compared to manual or centrally
coordinated approaches. These outcomes are discussed in detail in Chapters 4.2—4.5,
where each validation scenario and industrial case is linked back to the decentralized
control model.
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4 Discussion and Synthesis

This chapter integrates the findings from the eight scientific publications and presents a
unified analysis of the decentralized optimization model developed. While individual
studies explored various aspects, including simulation, real-time feedback, Al-based
control, and industrial implementation, this section brings them together to address the
research problem holistically.

The synthesis focuses on identifying common threads and evaluating how the
proposed model aligns with the goals of Industry 5.0, specifically in terms of novelty,
including adaptability, human-centric design, and intelligent automation. Insights gained
from simulation environments and industrial case studies are used to refine the
conceptual model and validate its applicability in real-world production systems.

This chapter is structured into five main parts, covering a cross-publication analysis,
the integration of digital twin and Al technologies, key lessons learned from the case
studies, the final version of the proposed model, and the identified limitations and open
research challenges. Together, these discussions provide the analytical foundation for
the thesis, demonstrating how the developed model advances intelligent manufacturing
systems.

4.1 Cross-Publication Analysis

The eight publications forming the foundation of this dissertation address the central
research question from complementary technical and industrial perspectives.

Together, they demonstrate how a decentralized, Al-driven control and optimization
model can be designed, simulated, and validated across multiple industrial contexts.
The contributions are grouped into three thematic clusters, summarized in Table 10.

The first cluster, represented by Publications | and VI, established the system’s
architectural and conceptual foundations. These studies define the layered control
model and introduce the digital twin infrastructure as a framework for decentralized
decision-making and feedback integration.

The second cluster (Publications 1I-V) concentrates on simulation-based design and
optimization, where workstation agents, AMR agents, and buffer agents—along with
their OEE-based decision signals—are used in controlled simulation environments. These
studies confirmed the functional feasibility of the proposed model and its ability to adapt
to dynamic production conditions.

The third cluster, consisting of (Publications VII and VIII), presents the industrial
validation by applying the model in the wood and apparel industries. The results confirm
the model’s scalability, adaptability, and efficiency improvements in real production
settings, thereby demonstrating its practical applicability. Across all clusters, the studies
converge on shared principles: agent-based autonomy, real-time feedback loops, and
the integration of digital twins and Al to enhance transparency and responsiveness.
Together, these publications form a coherent progression from conceptual formulation
to simulation testing and industrial validation, thus reinforcing the scientific and practical
foundation of the thesis.
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Table 10. Thematic clusters of publications and their main contributions.

Thematic cluster Publications Main contribution
Defined the decentralized architecture
Conceptual and system . .
. and digital twin infrastructure;
architecture 1, VI .
. established the layered control model as
foundations . s
a blueprint for agent-based optimization.
Developed and tested intralogistics
Simulation-based coordination models with AMRs; validated
design and I, 1, v, v agent logic using OEE, idle time, and
optimization transport delays under controlled

simulation environments.

Applied the model in the wood and
apparel industries; demonstrated
VII, VI scalability, adaptability, and measurable
efficiency gains in real production
settings.

Industrial application
and validation

Across the eight publications, the research questions, industrial use cases, and
methodological foundations are covered in a complementary way. Publications | and VI
provide the conceptual and system-architecture foundations supporting RQ1 and RQ3.
Publications 1I-V primarily address RQ1-RQ3 through simulation-based design, AMR
coordination, and OEE-driven performance analysis in the food, chemical, and metal
industry cases. Publications VIl and VIIl address RQ2—RQ4 through industry validation in
the wood and apparel sectors, demonstrating alignment with Lean and DMAIC principles
as well as Industry 5.0 goals such as human-centricity, transparency, and resilience.
The alignment between research tasks, research questions, and publications is summarized
in Table 1 for clarity. Together, these studies form a clear progression from theoretical
basis to simulation testing and real-world application.

4.2 Integration of Digital Twin and Al-Driven Control

The integration of digital twins and artificial intelligence (Al) is a core innovation of this
dissertation. Together, these technologies enable a decentralized production control
model that is adaptive, self-regulating, and aligned with Industry 5.0's guiding principles.
This integration builds on the digital twin architecture introduced in Section 3.2 and the
AMR decision logic developed in Section 3.4 and corresponds to the overall system
architecture illustrated in Figure 10.

The digital twin functions as a dynamic, real-time virtual representation of the
physical production system. It mirrors the state of workstations, buffers, AMRs, and
material flows, and incorporates production orders and inventory levels. Beyond serving
as a simulation sandbox for testing alternative logistics scenarios, the twin continuously
synchronizes virtual planning with physical execution. Publications [, VI, and VIl
developed and validated digital twin environments using platforms such as Siemens Plant
Simulation and custom data acquisition pipelines, which together provided the backbone
for responsive control logic.

Artificial intelligence enhances decision-making at the local agent level. Clustering
algorithms, such as k-means, were used to classify workstation behavior and detect
performance deviations, while rule-based agents made real-time logistics decisions
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based on OEE trends, buffer levels, and task priorities. Predictive analytics anticipated
material shortages and bottlenecks, and feedback control logic employed threshold
values and historical data to guide adaptive responses. This integration enabled
autonomous agents to adjust their behavior to local conditions while contributing to the
overall efficiency of the production system.

Decentralization is paramount to this model. Unlike traditional centralized systems
such as MES or ERP, intelligence is distributed across the production network. Each
component—workstation, buffer, or AMR—operates independently, but coordination is
achieved through lightweight data exchange protocols. This architecture ensures
scalability across factory sizes, fault tolerance in the event of local failures, and faster
response times to disruptions without relying on central schedulers.

Ultimately, the model embodies a human-in-the-loop philosophy that aligns with
Industry 5.0 values. Al does not replace operators but supports them by surfacing
actionable insights and providing decision transparency. Real-time dashboards and
simulation interfaces allow supervisors to track system behavior, validate agent
decisions, and intervene when strategic judgment is required. In this way, digital twin
and Al integration not only improve efficiency and resilience but also reinforce
collaboration between autonomous systems and human expertise.

4.3 Lessons Learned from Industrial Case Studies

The decentralized optimization model was validated across five distinct industrial
domains: chemical, food, metal, wood, and apparel manufacturing. Each case study
offered unique insights into the adaptability, scalability, and performance of the system,
while collectively confirming that Al-driven decentralized control and digital twin
technology can be applied in both highly automated and human-centric environments.
In the chemical industry case (Publication 1), the focus was on developing a virtual factory
that integrated heterogeneous sensor data for real-time monitoring. By coupling the
digital twin with legacy systems through custom middleware, it became possible to
translate between modern monitoring tools and existing PLC-based infrastructure. Even
in this highly regulated sector, the introduction of decentralized agent logic reduced idle
times at critical workstations and improved overall responsiveness, demonstrating that
decentralized control can complement rigid infrastructures without requiring major
overhauls.

The food industry studies (Publications II, 1V, VI) focused on simulation-driven
intralogistics optimization using AMRs and decentralized task allocation strategies. Idle
times were primarily traced back to desynchronized transport cycles and limited
coordination between material flow and workstation demand. These effects were
mitigated when AMRs were deployed under decentralized control logic, enabling
dynamic mission reassignment and improved flow synchronization. Digital twin—based
simulation models provided a virtual environment for evaluating routing strategies,
buffer sizing, and workstation coordination prior to physical implementation. The results
demonstrate that decentralized, agent-based control can enhance throughput and flow
stability in repetitive, high-frequency manufacturing environments.

In the metal industry case (Publication V), the emphasis was on industrial data
analytics to improve shop floor transparency. Fine-grained OEE monitoring at the
workstation level revealed inefficiencies that were hidden in aggregated, line-level
indicators. Data analytics revealed micro-stoppages and hidden idle periods, providing
managers with actionable insights to optimize resource allocation without requiring
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major workflow redesigns. Real-time visualization dashboards integrated with data
collection enhanced both operator awareness and supervisory decision-making. This
case validated the role of data transparency as a prerequisite for adaptive logistics and
production coordination.

The wood industry case (Publication VII) focused on the application of virtual factory
modeling in combination with Al-based clustering for OEE optimization. The virtual twin
environment enabled experimentation with alternative layouts and process configurations,
providing low-risk validation before making physical investments. Clustering techniques
allowed proactive bottleneck identification and improved predictability in resource
allocation, reducing reliance on trial-and-error planning. This case demonstrated the
importance of simulation as a safe and effective environment for validating decentralized
control strategies.

Finally, the apparel industry pilot (Publication VIII) evaluated the proposed model
within a highly variable SME environment characterized by manual processes, small
batch production, and operator-driven scheduling. The DIMUSA system integrated digital
twin modeling, clustering-based performance analysis, and Al-supported logistics
decision logic into a unified platform. Decentralized control concepts were adapted to
accommodate human variability and unpredictable takt times, supported by the
combined use of Lean principles and the DMAIC methodology. Although AMR-based
logistics were not implemented in practice, the model conceptually included logistics
agents to analyze and simulate material-flow coordination. Real-time system feedback
provided human-centered decision support by uncovering hidden inefficiencies, aiding
in intervention prioritization, and illustrating how decentralized Al-based control
principles can be applied in resource-constrained SMEs environments.

Each industrial case study addressed a distinct set of operational challenges, and the
decentralized model implemented provided case-specific solutions. In Case A (chemical),
limited visibility of line events and buffer statuses was resolved through continuous data
acquisition and digital twin-based monitoring. In Case B (food), transport delays and
unbalanced buffers were mitigated by AMR task prioritization driven by real-time OEE
and buffer conditions. In Case C (metal), fragmented machine data and micro-stoppages
were clarified through integrated OEE tracking and workstation-level transparency. Case
D (wood) benefited from early detection of layout bottlenecks through simulation-driven
routing analysis, while Case E (apparel) saw improved takt stability and reduced idle time
due to real-time task queue visualization and operator feedback integration (see Table 8).
These cases collectively demonstrate how the proposed model addresses the practical
inefficiencies identified in Section 3.2.

Across these cases, several overarching themes emerged (Table 11). A summarized
view of the quantitative performance improvements in the industrial case studies is
shown in Tables 7-10, which highlight the key KPls, validation scenarios, adopted
technologies, and links to relevant publications. These numerical results provide an
integrated KPI summary for all industrial validations and support the qualitative lessons
learned discussed in this section. Additional dataset examples used in the analyses—
including AMR simulation outputs, real AMR movement logs, and workstation-level
DIMUSA measurements—are included in Appendices 9—11, offering further transparency
into the evidence base. The model proved scalable, with modular deployment strategies
that began with OEE tracking and gradually expanded to full logistics integration.

It increased transparency, as real-time monitoring through digital twins improved
operator trust and engagement. The system also enhanced resilience, with decentralized
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decision-making reducing vulnerability to delays, disruptions, and human error. Finally,
the integration of Lean and DMAIC frameworks ensured that improvements were
systematic, measurable, and sustainable. Across all pilots, measurable performance
gains were observed in throughput time, workstation utilization, and reductions in idle
periods, confirming the generalizability of the proposed model while underscoring the
need to tailor solutions to sector-specific contexts.

Table 11. Cross-case synthesis: focus, key findings, applicability.

Applicability of the

Sector Focus Key findings
4 & model
Middleware bridged PLC
Case A — Real-time data, legacy, improving Fits regulated, process-
Chemical sensors, virtual visibility; local agents centric contexts with
industry factory reduced idle time at strict data flows.
bottlenecks.
AMR Decentralized AMR
Case B - . dispatch reduced idle; Strong where
coordination, . . L .
Food . . twins enabled intralogistics dictates
. simulation, .
industry . routing/buffer tests pre- throughput
clustering
deployment
Case C-— Data analytics, Granular OEE revealed Effective even with
Metal OEE micro-stops; dashboards fragmented data
industry transparency improved decisions landscapes
Case D - . Early detection of layout Scalable, supports
Virtual factory + v v . pp'
Wood Al clusterin bottlenecks; more proactive design
industry g predictable allocation changes
Handled human
CaseE - DIMUSA twin, L . Suits high-mix, manual,
. variability; synchronized .
Apparel decentralized . resource-constrained
. flows; human-in-the-loop
industry control SMEs
dashboards

4.4 Methodological Framework Based on Lean and DMAIC Principles

The development and implementation of the decentralized digital optimization and
control model followed a structured DMAIC-inspired approach combined with Lean
principles, ensuring that improvements were measurable, iterative, and grounded in real
industrial data—the use of quantifiable indicators allowed for systematic validation of
efficiency gains across the industrial cases.

From a Lean perspective, the main goal was to eliminate waste—especially waiting
times, unnecessary transportation, and workstation idleness. The relationship between
Lean principles and the digital optimization model is summarized earlier in Table 4.
The KPI results, summarized in Table 9, demonstrate these improvements. For example,
automation and decentralized logistics control reduced transportation defects by about
10%, improved on-time delivery by 5%, increased inventory turnover by 5%, and reduced
transportation labor costs by 15%. These gains directly indicate reductions in waste and
better flow efficiency.
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The digital twin architecture further supported Lean implementation by offering
real-time visibility into material flows, buffer states, and workstation utilization. This
transparency enabled continuous detection of bottlenecks and idle periods, contributing
to observable reductions in non-productive time across the food, apparel, and metal
industries. OEE-based measurements also provided a consistent metric for identifying
performance losses: in several cases, workstation idle time was reduced by 8-12%,
while AMR-assisted operations ensured a more stable material supply and minimized
logistics-induced downtime.

AMRs, functioning as intelligent agents, strengthened just-in-time delivery by reducing
unnecessary transport movements and aligning material flow with actual production
demands. As a result, takt flow became smoother, and disruptions caused by missing or
delayed materials were significantly reduced—directly supporting Lean waste-reduction
goals.

Overall, integrating Lean and DMAIC methodologies resulted in a more resilient,
scalable, and human-centric optimization framework. The numerical results derived from
KPI monitoring confirm that the proposed approach not only aligns with Industry 5.0
principles but also delivers measurable value by improving flow stability, reducing waste,
and enhancing the adaptability of production logistics across diverse industrial contexts.

4.5 Proposed Model for Decentralized Optimization

The main result of this dissertation is a decentralized, Al-powered optimization and
control model integrating production and logistics processes. The model integrates
digital twin technology, autonomous decision-making agents, and real-time production
data to enable dynamic coordination and maintain workstation efficiency. The proposed
decentralized model consolidates the components introduced in Sections 3.3 and 3.4 and
corresponds to the integrated architecture shown in Figure 10, which illustrates the
system architecture and interaction between the digital twin and decentralized control
agents. The model’s architecture is modular, comprising four interactive layers.
The physical layer includes production units, buffers, conveyors, AMRs, sensors, and
human operators who interact within the production environment. Above this, the digital
twin layer offers real-time virtual representations of all entities, continuously updated
via loT connections and PLC interfaces. This layer not only reflects the factory’s current
state but also simulates workflows, tests different control strategies, and stores historical
data for ongoing learning. The third component is the agent layer, where each key node,
such as a workstation, AMR, or buffer, is represented by a local agent. These agents
monitor local status indicators, such as buffer levels, task completion, or OEE trends, and
exchange data with neighboring agents through lightweight communication protocols.
Based on predefined rules and Al algorithms, agents make local decisions that contribute
to overall system efficiency. Ultimately, the coordination and feedback layer ensures
that decentralized actions are aligned with global objectives. It incorporates system-level
KPIs, such as throughput and WIP levels, applies clustering-based behavior analysis, and
enables alerting and override mechanisms to keep human supervisors informed.

The model’s operational flow begins with initialization, during which the digital twin
receives production orders and resource states, while workstations register their
readiness and buffer levels. During task assignment, workstations request material
delivery from AMRs when buffers are low. AMR agents then negotiate tasks based on
urgency, proximity, and historical performance. As tasks are executed, all system
components log their states, and deviations from expected timing trigger local or global

69



adjustments. Over time, performance data—such as OEE trends, idle periods, and
bottlenecks—are analyzed to refine agent behavior and task-routing logic.

A practical example can be illustrated in the context of Case B — the food industry.
When a production unit detects that its material buffer is nearly empty, its local agent
issues a task request that indicates the urgency and buffer status. AMR agents evaluate
requests from multiple workstations, consider their own location and battery levels, and
choose the most efficient delivery path. If OEE for the workstation cluster drops below a
critical threshold, the system issues an alert to a supervisor via the dashboard interface,
allowing human intervention if needed. The proposed model offers several key
advantages. It is modular and scalable, making it suitable for production environments
of varying sizes and complexity, especially in small and medium-sized manufacturing
settings. It is fault-tolerant because the modular structure enables automatic reallocation
of tasks when a component fails. It involves human decision-makers in the process by
making agent decisions transparent and overrideable. Finally, the model is adaptive by
design: Al algorithms currently use data patterns to support decision-making, and the
system architecture enables future extensions toward continuous self-learning and
automated optimization.

4.6 Limitations and Risks

While the proposed decentralized optimization model has demonstrated clear benefits
across multiple industrial contexts, several limitations and risks must be acknowledged
to maintain realistic expectations for adoption and future development:

e From a technical perspective, one of the primary challenges is ensuring
compatibility with legacy systems. Many existing manufacturing systems lack
standardized interfaces or structured data formats, making it challenging to
integrate the sensors and real-time pipelines required for digital twin operation.

e |n addition, although the model is modular, large-scale deployments may face
scalability constraints, as computational and communication loads increase
with the number of agents. Without efficient synchronization, such systems risk
delays or suboptimal decision-making due to data latency.

e Afurther challenge concerns data quality and availability: missing or noisy data
from aging sensors or unstable connections can degrade the accuracy of Al
predictions and weaken agent decisions.

e Finally, the well-known simulation-reality gap poses limitations: while digital
twins are powerful for testing, they may oversimplify human behavior, equipment
wear, or unpredictable events, reducing their predictive fidelity in real production.

The second category of risks is organizational and human-centric. Operator acceptance
cannot be taken for granted, as workers may resist Al-driven task delegation or fear job
displacement. A lack of transparency in agent decision-making may also generate
mistrust and frequent process overrides. Additionally, concerns about data privacy—
particularly regarding the monitoring of individual performance or workstation behavior—
can further reduce acceptance unless clear safeguards and governance measures
are in place. Moreover, decentralized systems require new competencies for setup,
maintenance, and troubleshooting—both on the shop floor and in IT departments—which
increase training demands. In specific regulated industries, process rigidity may also limit
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the scope of autonomy, since fully decentralized decision-making can conflict with strict
quality assurance or safety requirements.

At the implementation level, several risks must be addressed. Initial setup is inherently
complex, requiring the development of digital twins, configuring agents, and tuning
decision thresholds. Of these, building the digital twin is generally the most time- and
cost-intensive, as it demands detailed data integration and validation, whereas agent
configuration and threshold tuning require less effort but still rely on expert input.
Furthermore, cybersecurity is a growing concern: increased system connectivity and
decentralized communication raise the risk of unauthorized access or data manipulation,
particularly when cloud platforms are involved. Finally, the cost—benefit ratio of adopting
decentralized optimization may vary. While the model offers clear advantages in
high-volume or variable environments, its added value in low-volume or stable production
settings may be less pronounced, where simpler coordination mechanisms may suffice.

To mitigate these risks, several strategies are recommended:

e A phased approach should be adopted, starting with hybrid models that
combine human oversight with autonomous decision-making.

e Simulation and digital twin environments can be used not only for technical
testing but also as training tools to familiarize operators with agent behavior.
Deployment should start with non-critical workflows, gradually expanding as
confidence in the system grows.

e Transparency should be supported through clear dashboards that explain and
justify agent decisions, building trust among operators.

e Finally, cybersecurity protocols must be integrated from the planning phase,
ensuring that resilience against external threats becomes an inherent property
of the system.

Overall, recognizing these limitations and risks is essential for a balanced view of the
model’s potential. By proactively addressing them, the decentralized control framework
can evolve into a more resilient, scalable, and human-centric solution that is better
aligned with the strategic goals of Industry 5.0.
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5 Conclusions and Future Work

This chapter concludes the doctoral thesis by summarizing the main contributions,
discussing the broader implications for both research and industrial practice, and
outlining avenues for future development. The work has centered on the design,
implementation, and validation of a decentralized optimization and control model for
production logistics. Through a synthesis of eight scientific publications, the research has
advanced the integration of digital twins, Al-driven agents, and real-time performance
data into a unified simulation-based control model. This model operates alongside the
dissertation’s methodological foundation, which builds on Lean principles and the DMAIC
cycle, ensuring that the practical implementation and the theoretical approach remain
clearly distinguished. Validation across both simulation and real industrial contexts
confirmed the model's potential to increase throughput, reduce idle time, and support
human-centric decision-making aligned with Industry 5.0 principles.

5.1 Summary of Contributions

This thesis contributes both theoretically and practically. The research strengthens the
foundations of decentralized control theory and introduces methods for integrating
artificial intelligence and digital twins into adaptive production systems. It employs a
design science approach, structured around the DMAIC cycle to ensure measurable
progress and iterative refinement during system development. Supported by digital twin
modeling, simulation-based testing, and industrial validation across five sectors-Case A:
Chemical industry, Case B: Food industry, Case C: Metal industry, Case D: Wood industry,
and Case E: Apparel the research demonstrates how decentralized, Al-driven agents can
enhance production efficiency, responsiveness, and transparency.

Theoretical contributions include:

e Decentralized optimization model: A system-level architecture in which
workstations, buffers, and AMRs function as autonomous agents with local
decision-making capability. Their actions are coordinated through shared
performance indicators, enabling the system to optimize material flow and
responsiveness without relying on a centralized dispatcher.

e Integration of Al and digital twins: Synchronization of real-time data streams
with virtual factory models to enhance predictive capability and enable
continuous feedback between physical and digital layers.

e Agent-based decision logic: Validation of rule-based and Al-assisted algorithms
for dynamic task allocation and coordination, incorporating OEE indicators and
flow constraints. The decision logic was implemented and tested across the
different agent types introduced earlier in the architecture—workstation
agents, AMR agents, and buffer agents—each operating with local information
and lightweight communication to support decentralized control.

e Clustering-based performance feedback: Application of clustering to classify
workstation behavior, supporting diagnostics, prioritization, and long-term
system optimization.
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Practical contributions include:

Industrial validation across diverse domains: Demonstration of the model’s
benefits in Case A — Chemical industry, Case B — Food industry, Case C — Metal
industry, Case D — Wood industry, and Case E — Apparel industry, showing
measurable improvements in throughput, buffer utilization, and idle-time
reduction.

Reusable simulation scenarios and models: Creation of modular simulation
environments adaptable for different layouts and transport setups, serving both
research and industrial planning needs.

Implementation guidelines and risk insights: Identification of practical barriers
such as legacy integration, scalability, and operator acceptance, together with
strategies for mitigation.

Open collaboration with industry: Execution of research in cooperation with
Estonian and international manufacturing firms, ensuring real-world relevance
and facilitating knowledge transfer.

Answers to the research questions:

RQl: How can a decentralized, Al-driven control model improve the
coordination between production logistics and shop floor operations in
dynamic manufacturing environments?

By distributing decision-making to local agents that respond directly to real-time
OEE signals and buffer conditions, the model reduces waiting caused by material
shortages or blocked outputs. This ensures that logistics missions are
dynamically launched when needed, keeping workstations supplied and outputs
cleared. Simulation and industrial cases confirmed that this synchronization
reduced idle periods and maintained smoother production flow without relying
on central scheduling (Publications II-1V, VI-VIII).

RQ2: What impact does such a model have on workstation efficiency, OEE, and
overall throughput time?

The model improves workstation availability by ensuring timely material supply
and removal, thereby directly enhancing OEE performance. Across simulation
scenarios, throughput time was reduced by up to 15% in high-variance task
sequences, and workstation idle times decreased significantly. Industrial pilots
further confirmed measurable improvements in workstation utilization and
overall flow efficiency (Publications I, llI, VI, VIII).

RQ3: How can real-time data from digital twins be used to assign logistics tasks
to a mobile robot dynamically?

Digital twins provide the live data backbone for task allocation, continuously
synchronizing the state of workstations, buffers, and AMRs. Agents use this
information to dynamically generate and negotiate logistics missions, combining
urgency (OEE thresholds and buffer fill levels), proximity, and historical task
durations. In practice, this enabled adaptive routing, congestion avoidance, and
faster response to disruptions, thereby improving coordination between
production and intralogistics (Publications I, VI, VII, VIII).
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e RQ4 (quantitative): To what extent can the proposed system reduce
workstation idle time (%) and improve average throughput time (min)
compared to baseline logistics coordination?

Quantitative validation shows measurable effects at various stages of the
research. In the food industry case (Publication Il), replacing manual transport
with automated AMR-based logistics resulted in improvements across several
KPIs, including fewer transport errors, better on-time delivery, higher inventory
turnover, and reduced labor costs. The transport-event and AMR movement
datasets supporting this analysis are documented in Appendix 9, which relates
to Publications Il and III.

Further validation of decentralized control concepts was conducted in
Publications IV and VI. The associated datasets for AMR coordination logic, task
allocation, and system-level performance metrics under different load
conditions are included in Appendix 10.

In the apparel industry pilot (Publication VIII), validation was based on a
combination of virtual factory simulations and real-time production data
collected through the DIMUSA platform. Unlike the earlier simulation-focused
studies, the key quantitative results for this case are reported directly in the
main text (Table 8), where simulation-based OEE estimates are compared with
real workstation measurements. This layered comparison revealed the
limitations of purely simulation-driven assumptions and highlighted the
importance of real-time data in capturing operator-induced variability and
micro-batch effects.

Together, these findings confirm that the decentralized model delivers measurable
reductions in idle time and throughput across different industries, from controlled
simulations to SME pilots, while the integration of Al-generated logistics
recommendations remains an open opportunity for future work.

5.2 Implications for Research and Practice

The results of this research extend beyond the specific industrial cases and carry
significant implications for both academic inquiry and industrial digitalization strategies.
Several notable contributions can be highlighted in academic research. The work
advances decentralized control theory by providing an empirically validated architecture
for distributed decision-making in complex production systems. Methodologically,
it introduces a holistic research framework that integrates real-time data acquisition,
clustering-based feedback mechanisms, and simulation-based validation, which can be
applied in other domains of engineering and operations management. The research also
reinforces the concept of human-centric manufacturing models, illustrating how
adaptability, transparency, and Al support can be integrated into Industry 5.0 systems.
Finally, the developed digital twin and agent-based models provide a reusable research
platform for future studies, enabling the exploration of more advanced Al methods such
as reinforcement learning, federated learning, or trust-aware agent systems.

For industrial practice, the findings provide clear directions for digital transformation.
The proposed decentralized model contributes to operational efficiency, helping
companies reduce throughput times and increase OEE, particularly in high-mix, low-volume
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environments where traditional centralized systems struggle. The modularity of the
approach enables flexible logistics and layout planning, as factories can reconfigure
workflows with minimal disruption. Notably, the model emphasizes workforce
empowerment, augmenting operators rather than replacing them, with Al acting as a
co-pilot that enhances transparency and acceptance. Ultimately, the work provides a
strategic roadmap for digitalization, demonstrating how firms can gradually transition
from ERP/MES-driven logistics to more autonomous and adaptive infrastructures.

5.3 Future Research Directions

While the research has demonstrated promising results, several avenues remain open
for enhancing the adaptability, intelligence, and scalability of decentralized control
systems.

e Al learning and adaptation: Future work should integrate reinforcement
learning, online learning, or hybrid Al approaches, enabling agents to
continuously refine task allocation based on historical performance,
environmental variability, and operator feedback.

e Inter-agent collaboration and communication: Research is needed on
negotiation protocols, decentralized consensus mechanisms, and conflict
resolution strategies to strengthen coordination in highly dynamic production
settings.

e Scalability in large-scale production: Expanding the architecture to hundreds of
agents and thousands of tasks will require addressing latency, computational
overhead, and emergent behaviors. This is particularly critical for complex
factory layouts.

e Cross-sector validation and transferability: Further studies should expand
testing across additional industrial sectors to confirm the model’s adaptability,
interoperability, and robustness under varying production constraints and
automation levels.

e Cybersecurity and trust in Al-driven control: As systems become more
autonomous and interconnected, ensuring secure agent communication, trust
verification, and resilient failure recovery mechanisms will be essential for
industrial adoption.

e Human-Al collaboration interfaces: Future studies should explore how
explainable Al, intuitive dashboards, and shared-control paradigms can
strengthen human trust and support decision-making in decentralized
systems.

e Integration with sustainability goals: The model can be extended to
incorporate environmental KPls, optimizing for energy use, waste reduction,
and material efficiency. Al-based control could thus strike a balance between
productivity and ecological responsibility.

e Cross-domain applications: Beyond manufacturing, the principles developed
here have potential in warehouse automation, healthcare logistics, and
innovative infrastructure, where decentralized and adaptive coordination is
equally relevant.

In conclusion, the research presented in this dissertation demonstrates that
decentralized Al-based control can significantly enhance production logistics by
increasing adaptability, resilience, and human-centered collaboration. At the same time,
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it opens new research opportunities at the intersection of digital twins, Al, and Industry
5.0. The future challenge and opportunity lie in scaling these solutions, securing their
operation, and extending their benefits across both industrial and societal domains.
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Abstract

Development and Implementation of a Decentralized
Al-Driven Control Model for Production Processes

This doctoral thesis focuses on developing and implementing a decentralized, Al-driven
digital optimization and control model for manufacturing processes within the
framework of Industry 5.0. The work addresses a common challenge in modern
manufacturing: the misalignment between material flows and workstation needs, which
often leads to idle times, bottlenecks, and delays in throughput. Unlike traditional
centralized Manufacturing Execution Systems (MES), which impose rigid schedules, the
proposed system empowers workstations, buffers, and autonomous mobile robots
(AMRs) to operate as independent agents. Each agent makes local decisions
independently but can share information with other agents when needed, ensuring
coordinated material flows and better overall system efficiency.

The research builds on digital twin technology, Overall Equipment Effectiveness (OEE)
monitoring, clustering analysis, and agent-based decision logic to develop a modular
architecture that can adapt to changing shop floor conditions. The methodological
foundation is the DMAIC cycle (Define, Measure, Analyze, Improve, Control), which
guides systematic progress from problem identification to simulation and industrial
validation. The dissertation is based on eight peer-reviewed publications, which cover
conceptual design, simulation testing, and case studies across the chemical, food, metal,
wood, and apparel industries.

Empirical validation shows measurable improvements in workstation availability,
throughput time, and OEE. For example, replacing manual transport with AMR-based
logistics reduced transport errors and labor costs, while Al-enhanced decision logic
further improved responsiveness and workload balancing. Industrial pilots confirmed
that even resource-constrained SMEs benefit from a lightweight digital twin, combined
with clustering-based performance analysis, which increases transparency, reduces idle
time, and provides insights for more informed production decisions.

The scientific innovation of this research lies in integrating decentralized Al logic with
production logistics and embedding OEE as a real-time control signal. The practical
innovation is demonstrated through industrial deployment, showing that independent
agents, capable of exchanging information when necessary, can collectively improve flow
stability, increase resilience, and support human-machine collaboration without
replacing existing control systems.

In conclusion, the thesis offers both theoretical insights and practical tools for Industry
5.0. It shows that decentralized Al-supported control can reduce inefficiencies, enhance
production flow, and promote a human-centric, adaptable, and sustainable manufacturing
approach. Overall, the research contributes to the growing body of Industry 5.0 studies
by demonstrating how decentralized Al-based control can bridge the gap between digital
innovation and operational feasibility.
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Lihikokkuvote

Detsentraliseeritud tehisintellektipdhise juhtimismudeli
valjatootamine ja rakendamine tootmisprotsessides

See doktoritoé keskendub detsentraliseeritud, tehisintellektil pShineva digitaalse
optimeerimis- ja juhtimismudeli viljato6tamisele ja rakendamisele tootmisprotsesside
jaoks ToOstus 5.0 raamistikus. T6O kasitleb tdnapdeva tootmises levinud probleemi:
materjalivoogude ja t66jaamade vajaduste vaheline ebakdla, mis sageli p&hjustab
seisakuid, kitsaskohti ja viivitusi ldbilaskevGimes. Erinevalt traditsioonilistest
tsentraliseeritud tootmise juhtimissiisteemidest (MES), mis kehtestavad jdigad ajakavad,
annab kavandatud silisteem td0jaamadele, puhverméludele ja autonoomsetele
mobiilrobotitele (AMR) véimaluse tegutseda iseseisvate agentidena. Iga agent teeb
kohalikke otsuseid iseseisvalt, kuid saab vajadusel jagada teavet teiste agentidega,
tagades koordineeritud materjalivood ja parema Uldise stisteemi efektiivsuse.

Doktorit66 tugineb digitaalse kaksiku tehnoloogiale, seadmete (ldise efektiivsuse
(OEE) jalgimisele, klastrianaliilisile ja agentide pGhisele otsustusloogikale, et arendada
modulaarset arhitektuuri, mis suudab kohaneda muutuvate tootmispdranda
tingimustega. Metodoloogiliseks aluseks on DMAIC tstikkel (Define, Measure, Analyze,
Improve, Control), mis juhib siistemaatilist edasiminekut probleemide tuvastamisest
simulatsiooni ja toostusliku valideerimiseni. Doktoritoo pohineb kaheksal eelretsenseeritud
publikatsioonil, mis hd&lmavad kontseptuaalset disaini, simulatsioonitestimist ja
juhtumiuuringuid keemia-, toidu-, metalli-, puidu- ja rdivatéostuses.

Praktiliste katsete tulemused naitasid moddetavaid paranemisi tddjaamade
toovalmiduses, labilaskevdoimes ja OEE-s. Naiteks kasitsi transpordi asendamine
AMR-pohise logistikaga vdhendas transpordivigu ja too6joukulusid, samas kui
tehisintellektiga tdiustatud otsustusloogika parandas veelgi reageerimisvéimet ja
téokoormuse tasakaalustamist. Toostuslikud katseprojektid kinnitasid, et isegi
ressursipiiranguga VKEd saavad kasu lihtsustatud digitaalsest kaksikust koos klastrite
loomisel pShineva jéudlusanaliilisiga, mis suurendab ldbipaistvust, vahendab joudeaega
ja annab teavet teadlikumate tootmisotsuste tegemiseks.

Selle uurimistdd teaduslik innovatsioon seisneb detsentraliseeritud tehisintellekti
loogika integreerimises tootmislogistikaga ning OEE sidumises reaalajas juhtimissignaalina.
Praktilist innovatsiooni demonstreeritakse t60dstusliku juurutamise kaudu, ndidates, et
s6ltumatud agendid, kes on vGimelised vajadusel teavet vahetama, saavad Uhiselt
parandada voolu stabiilsust, suurendada vastupidavust ja toetada inimese ja masina
koostood ilma olemasolevaid juhtimissiisteeme asendamata.

Kokkuvotteks pakub vaitekiri nii teoreetilisi teadmisi kui ka praktilisi tooriistu
Toostus 5.0 jaoks. See nditab, et detsentraliseeritud tehisintellektil pdhinev juhtimine
saab vahendada ebatdhusust, parandada tootmisvoogu ning edendada inimkeskset,
kohanemisvdimelist ja jatkusuutlikku tootmisviisi. Uldjoontes annab see uurimist6é oma
panuse Toostus 5.0 valdkonna kasvavasse teadustdosse, ndidates, kuidas hajutatud
tehisintellektil pohinev juhtimine suudab lletada I6he digitaalse innovatsiooni ja
praktilise rakendatavuse vahel.
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ABSTRACT

The various production problems that have arisen are closely
linked to the need of the digitize products, production equipment,
and their processes. With the increasing use of innovative
software and hardware solutions, it is possible to monitor
production processes accurately in the real-time and to manage
various planning decisions according to these digital models.
Such digital models allow us to react quickly to the physical
production problems and to solve and also predict them.
Furthermore, the virtual factory as an integrated simulation
model of production units, provides an advanced decision
support capability. On the other hand, Industry 4.0, the new
industrial revolution has increasingly been used in the industrial
sector and its development has grown exponentially in recent
vears. Various production equipment and activities are
connected via network sensors to the Internet, where a huge
amount of data is generated, stored, and analyzed. Industrial
Artificial Intelligence (Al) algorithms are being used to evaluate
the collected data and to provide valuable information for
planning operations. This new industrial age presents new trends
and challenges in the data context, such as scalability, cyber-
security, and big data.

Therefore, when it comes to collecting data from devices and
workplaces in real time, it is also wise to analyze the necessity
and efficiency of this data, using different artificial intelligence
algorithms. Clean data generally enables to make efficient and
effective management decisions in the future based, to ensure the
highest possible efficiency in the production unit. This article
outlines the principles of Industry 4.0, emphasizing the features,
requirements, and challenges of Industry 4.0. Besides, a

V02BT02A017-1
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Tallinn University of Tallinn University of
Technology Technology
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development of the virtual model of the production line, there is
also developed virtual model of the Autonomous Mobile Robots
(AMR). This gives a good opportunity to monitor and analyze the
entire production cycle, including the throughput, lead time, and
utilization of resources in a 3D simulation production
environment. Moreover, the article focuses on collecting real-
time data from the virtual production unit to analyze the methods
and locations of data collection, which would provide the most
valuable information about production data. Finally, based on
the results of the collected data, the authors present and discuss
the challenges and trends that lie ahead when the same data
collection methods are being used for physical production units.
A case study approach is used to demonstrate the relevance and

feasibility of the proposed methods for real-time data acquisition

in production, which uses the concept of internet of things
technologies and 3D visualization.

Keywords: real-time monitoring, virtual factory, process
digitalization, Autonomous Mobile Robots, 3D visualization

1. INTRODUCTION

Today's manufacturing companies are exposed to increasing
competition in a globalizing economy, which places higher
demands on the product price, quality, and delivery time.
Consumer expectations for new goods are also growing, where
the important focus is on manufacturing customer-based
products [1]. Traditional approaches are difficult and
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economically detrimental to deal with such situations, which in
turn leads manufacturing companies to adopt entirely new
technologies to meet the growing demands of end-users and to
remain competitive in a very short time front [2, 3]. This market
pressure is mainly on small and medium-sized enterprises
operating in a specific sector or with small production volumes.
With the rapid development of various recent software and
hardware solutions, it is possible to plan production processes
and products on virtual models. It is not necessary to use the
company's physical resources such as energy, materials, physical
space, etc. for preplanning. Production processes can be
simulated using existing data and varied to achieve the best
output [4].

The Internet of Things (IoT), which connects the physical
environment to cyberspace, has increasingly been used to collect
data in real-time from the physical world. It enables us to
perform detection, identification, and operation through various
electronic components, distributed in the environment and
connected to the network, resulting in a cyber-physical
infrastructure [5].

This combination enables us to integrate the company's
Enterprise Resource Planning (ERP) systems, warehouse
systems, and production equipment into one united management
system and allows them to automatically exchange data between
each other [6].

However, due to the diverse and large amount of data in the IoT
systems described, it is necessary to test the virtual models in
advance and then place these components in a real production
environment. After that, there can get proper locations of the
equipment and workplaces, which gives the most accurate and
understandable picture of production processes [3].

The analyzed virtual model of the factory is based on theoretical
assumptions and the concept of virtual production is adapted to
a specific type of production. For example, we took a unit of a
chemical plant and use the company's actual production data to
build a virtual model. The company is a Small and Medium-sized
Enterprises (SMEs) with a large product nomenclature and a
small production volume. Simulation models need to be
validated before their results can be used [7]. In the simplified
production model, the production process data has been used to
make sensor location selections. Therefore, the data obtained are
indicative and not subject to validation.

2. VIRTUAL FACTORY

The concept of Virtual Factory (VF) has been used to plan,
analyze and optimize the production processes and activities that
are conducted on a factory floor. In many kinds of literature, a
virtual factory is defined as a reliable and detailed simulation of
a manufactory factory, such as VF describes an integrated
simulation model of a factory floor that represent the major
processes and sub-systems in the factory, and enhanced the
decision support capability [8]. VF with the help of digital tools
simulates the production process planning and control, which
facilitates to optimize of production systems and provides
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flexibility in the process design before its real implementation
[9]. VF is tightly connected with the production processes
analyze and technical Key Performance Indicators (KPI)
definition [10]. From one side it is important to analyze the
production processes (productivity, working times, set-up times,
quality, OEE) and prioritize the important KPI’s dependent on
the actual processes. From the other side there can be used this
information as an input for real factory simulation [I1].
Moreover, the VF environment also simultaneously supports the
performance evaluation of production systems found on a
factory floor, allows configuration and re-configuration of
systems for testing different scenarios, and enables the ramp-up
phase of production systems to be less time-consuming [12].

2.1 Real Factory Simulation

Digitalization, virtual modelling, and simulation of physical
production systems have changed the thinking in different
manufacturing companies, and this was the force to implement
the virtual factory concept in their factory operations. Ford
Motor Company has been using 3D virtual technology for the
process simulation to evaluate the ergonomics, performance of
work-cells, and cycle time prior to implementing a physical
system into the production floor [13]. The same way simulation
and virtual environment facilitate the Volvo Group to improve
and optimizing their production plants. They create virtual model
of the production environment in order to test changes like
configuration and re-configurations before implementing the
changes into the real plant [14]. Furthermore, many commercial
software providers have introduced the solution for 3D design,
simulation, and visualization of production plants, which enables
the implementation of the VF concept.

2.2 Virtual Factory Model

The model of virtual production in a computer environment can
be either a digital twin of the whole factory or a single production
unit, where it is possible to design production processes as in a
real physical production environment [15]. In the case of a
virtual model, it is important to present the behavior of a real
production system in a realistic and equally dynamic way, using
physical factory data and defined KPI’s. Based on this computer
simulation, it is possible to modify different input and output
data in the creation, evaluation, optimization, and selection of
alternatives to existing production plans. Today, different
software solutions for creating virtual models are available that
allow to create of 3D realistic models and simulate production
processes.

The model of the 3D virtual factory to be analyzed FIGURE 1 is
a subdivision of the chemical industry, where mainly
disinfectants and personal hygiene products are produced [16].
The factory 2D floor plan is modelled using 3D visualization
software (Visual Components 4.2) on a 1: 1 scale virtual model
of the factory. The plant consists of two large warehouses and a
production area with 4 automatic production lines and 5 manual
production lines. The movement of materials (bottles, caps,
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boxes, labels, etc.) between the warehouses and the production
area is simulated with AMR systems [17].

The production cycle of one product group from the intermediate
warehouse of raw materials (1) to the warehouse of finished
products (4) is examined FIGURE 1 [18]. AMR serves

workplaces 1,2,3 and 4. At the ends of the production line (M)
are workplaces L1 and L2. The task of these workers is to move
the raw material from workplace 2 to workplace L1 and L2 to
workplace 3.

.—ﬁ#u

2.3 Simplified production unit model

Modelling an entire virtual factory with production processes is
a relatively time-consuming job, so it makes sense to look at the
monitoring of a specific product group and production line. This
approach allows us to describe the entire production process and
production logistics in more detail, which can later be transferred
to other product groups and production lines. With the simplified
model, it is possible to add all the important components that
participate in the production cycle and give us a good overview
of what is going on, and after that can easily change the process
if the real data control from the factory floor gives the indication
to make the changes. It is also easier and clearer to add different
sensors here and present the obtained information graphically to
analyze the generated data.

The developed simplified model FIGURE 2 consists of four
AMR system workstations (1, 2, 3 and 4), two production line
workplaces (L1 and L2) with operators and a production line
M).

V02BT02A017-3

FIGURE 1: 3D MODEL OF A CHEMICAL INDUSTRY PRODUCTION u IT_

25 ‘
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FIGURE 2: DEVELOPED PRODUCTION LINE MODEL

3. DESCRIPTION OF THE PRODUCTION PROCESS
AND KPI SELECTION

In the chemical industry used in the simulation, the production
activity usually takes place in one shift five days a week and the
duration of the shift is 8 hours. The movement of all materials
(bottles, caps, boxes, labels, etc.) between warehouses and
production is carried out on euro pallets. Enterprise-wide
production and inventory management are done through the
company's ERP software, and the tasks and transport orders are
assigned directly to the workshops. The company's automated
production logistics and production flow chart from the raw
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material warehouse to the finished product warehouse is shown
in the FIGURE 3 [19].

EURO PALLET

Raw material
warehouse

Transport to the
production line

The raw material on
the euro pallet is lifted
to the production line

Filling line

Finished products are
placed on a euro pallet

Inspection and
weighing of the
finished product

Transport to the
finished product
warehouse

Finished goods
warehouse

FIGURE 3: PRODUCTION PROCESS FLOW CHART

The most important parameter to describe the production flow
FIGURE 3 efficiency is manufacturing cycle time, which is a set
of transport operations, work processes, and breaks from the
production of work objects to complete the production [19].
The formula for the manufacturing cycle time is given in the
form (1):

Manufacturing cycle time = Process time + Move time +
Inspection time + Queue time

(1
where,

Process timerefers to the time used to work on the
product. Move time refers to the time required to transfer the
product from one workstation to another. Inspection time is the
time spent to check if the product is free from any defect. Queue
time is the idle time the product spends waiting to be moved,
processed, and shipped.

V02BT02A017-4

Based on the formula (1), to monitor and optimize
manufacturing cycle time, the following time components in this
production line need to be measured — transportation time from
warehouse to filling line, filling time, inspection and weighting
times, transportation time to the warehouse, and also all the
waiting times that affecting the manufacturing time. To collect
the so-called clean data from the production process, different
sensors and data acquisition technologies must be installed on
the production line.

4. SELECTION OF SENSOR INSTALLATION SCHEME

The rapid development of IoT technologies in manufacturing
companies and real-time data collection have also found more
use in company management processes. It is possible to point out
some technologies, the use of which in production processes can
give a great impetus to the development of the manufacturing
industry precisely for gathering information from the production
area and equipment [5].

The use of radio frequency identification (RFID) solutions is
becoming increasingly attractive, especially for products where
the shape, number, and other characteristics of the product vary
and no direct visibility is required for identification [20, 21]. The
price of this technology has also been on a downward trend over
the years, and this provides an opportunity for wider use of this
technology. RFID is an automatic identification technology in
which objects are tagged and data is received wirelessly by signal
transmission between a tag and antennas connected to a central
server [21]. For example, an automatic material identification
system using RFID technology allows us to track the location,
quantity, origin, destination, and movement schedule of
materials in real-time.

Wireless Sensor Networks (WSN) consist of spatially distributed
autonomous nodes that can perceive the environment, perform
calculations, and communicate with other nodes [21]. These
sensor nodes operate in a self-organized and decentralized
manner, ensuring the best and most stable data transmission to
the central controller. Such a combination allows us to perceive
the environment more precisely and to make more accurate
production management decisions based on it. It can also be
combined with RFID technology if objects cannot be identified
using traditional sensor technologies [5].

Combining these two technologies, we find locations for the
installation of sensors for the simplified production line model
FIGURE 2. The selection and installation of the sensors are
based on the manufacturing cycle time formula (1). and there
was drawn up a sensor installation diagram FIGURE 4.
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FIGURE 4: SENSOR SELECTION DIAGRAM IN WORKPLACE

The selection of sensors and the principles of their installation
were described as shown in  FIGURE 4. When selecting and
installing these sensors, it is important to ensure that the raw data
of the production cycle formula (1) and the cost of these systems
are optimal. It is important for companies that the benefits of
introducing such IoT systems outweigh the costs of this
investment. RFID technology has been added for product
tracking and quality assurance. On the one hand, this is important
to ensure that the bottles are filled with the correct liquid, and on
the other hand, it is a necessary input to ensure the quality of the
product weight.

The simplified production model in FIGURE 2 shows the
transport jobs (1,2,3 and 4), the production line buffer zone jobs
(L1 and L2), and the production line (M). Transport orders are
served by a AMR and one production worker at the workplace (2
and L1) and one worker at the workplace (L2 and 4). The
production cycle starts at workplace 1 (raw material warehouse)
and ends at workplace 4 (finished product warehouse).
According to the production cycle formula (1), we find the inputs
of the components. The processing time is the time spent on the
product and takes place on the production line M. To find this

V02BT02A017-5

time, there was installed two optical sensors on the production
line at the beginning of one production line and the end of the
other production line. On the production line, chains, caps, and
liquids are added to the bottles and the product is finished. The
optical sensor records the start and end times of the production
process and its speed. For Move time, there was installed optical
sensors 1,2, L1, L2,3 and 4 on the workstations, which show the
arrival and departure of goods at these positions. It is also
possible with these sensors to measure how long the goods are
standing at these jobs and on this basis, to find the queue time.
You can assign a specific name to a sensor and use it to determine
its location in the model. The sensor works on the principle of a
switch, when the goods arrive, switching takes place and when
the goods leave the workplace, it is released and fixed in time.
The RFID reader supports it in workstations L1 and L2. Each
tare bottle that runs through the manufacturing process is
equipped with an RFID passive sticker. An example of an RFID
and optical sensor layout in a production unit is shown in the
FIGURE 5. It is also an important component in ensuring an
automatic quality control process. In addition, a weight sensor
has been installed on the AMR which gives us information on
whether the products have been placed on the robot, and in
addition, quality control of the goods is performed at workplace
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3. The system uses RFID data from workstation L2 as input and
calculates the weight of the base with the goods. Weighing takes
30 seconds. If the weight corresponds to the predetermined
weight, the process can continue, but if it does not meet, the
weighing is repeated and if it does not, the pallet remains at
position 3 and is counted in the inspection time. The whole
process is supported by the company's ERP system and all the
information collected from the sensors is stored and compared
with the given data.

This ensures the traceability of the entire production cycle
according to the production cycle formula (1). According to the
sensor selection FIGURE 4, there was also added these sensors
to the simplified production model shown in FIGURE 2.

Y
FIGURE 5: RFID AND OPTICAL SENSOR PLACEMENT
IN PRODUCTION
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5. RESULTS AND DISCUSSION

All results presented in the paper are obtained using a simulation
of a simplified production model FIGURE 2. To simplify the data
obtained in the simulation, one item was used, which is one
product (bottle). This approach allows us to display and analyze
the results easily and clearly, both visually and numerically. It is
important to understand whether this choice of sensor
installation FIGURE 4 provides us with real-time traceability of
the production cycle.

Based on the collected data from the sensors in the physical
production line during the simulation, graphs of the cycle times
of the sensors were plotted graphically FIGURE 6. Data were
collected from 8 IR sensors and two RFID sensors. The weight
sensor time was not measured because it is a software preset time
(30 seconds) and it is displayed within the cycle time measured
from the workplace 3 optical sensor. In a real production unit,
this weighing time may change if, for example, a given weight
does not match a given one. However, this already directly
affects the time spent on quality control and it changes the
inspection time in the production cycle.

The sensor cycle time graph FIGURE 6 shows the cycle times of
the 8 IR sensors above and the cycle times of the 2 RFID sensors
shown in the graph below. The sensor cycle time shows how long
the sensor has been activated, i.e., how long the goods have been
in the sensor's area of influence. The cycle times of the RFID
sensors at the bottom of this graph also show the different
product detection times of these sensors and are therefore good
to use for product identification and to work with optical sensors
to ensure data security. However, to get a more accurate time
result directly from the sensors in contact with the product, and
an optical sensor is suitable for this in our simulation.
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FIGURE 6: SENSOR CYCLE TIME RESULTS

TABLE 1 shows the cycle times of the optical sensors on the time
axis, and here is also possible to get the start and end of the cycle
time. Based on this data, it is possible to see what the entire
product cycle time is and what it consists of.

TABLE 1:SENSOR CYCLE TIMES ON THE TIME AXIS

Simulation Time (s) wp1 wp2
1,0 0,0 0,0
11,3 10,3 0,0
13,5 0,0 0,0
321 0,0 18,6
36,2 0,0 0,0
46,6 0,0 0,0
48,8 0,0 0,0
49,6 0,0 0,0
60,8 0,0 0,0
61,6 0,0 0,0
63,8 0,0 0,0
75,0 0,0 0,0
79,1 0,0 0,0
117,8 0,0 0,0
122,1 0,0 0,0
134,0 0,0 0,0

TABLE 2 shows the manufacturing cycle time and its
components according to the manufacturing cycle time formula
(1) and collected real time data.

The processing time is obtained as the difference between
sensors M (In) and M (Out). Move time is obtained when goods
are moved between workplaces (WP1, WP2, L1, L2, WP3, and

V02BT02A017-7

WP4) also where the sensor signal indicates either the departure
or arrival of the goods at the workplace.

The quality control time is fixed (30 seconds) and is deducted
from the 3 waiting times of the workplace. Queue time is then
the sum of downtimes read from the sensors, which is mainly the
cycle time of the sensors.

TABLE 2:MANUFACTURING CYCLE TIME

1340 128 147 30,0 76,5

The data obtained in Table 2 show that this selection of targeted
sensors and locations gives us a good overview of the main
components of the production cycle, and this data is easy to
monitor and visualize. Also, with such a solution, the sensor data
can be easily linked to the company's ERP systems to monitor a
given production plan and compare it with the actual execution
time. In addition, it is possible to analyze and visualize the
impact of changes in production and logistics processes on the
length of the production cycle.

This simulation of a simplified production unit or production line
models provides a better overview of sensor placement and
selection, and it is possible to get a faster overview of how these
models work. If such a model has been tested and the necessary
parameters are suitable for monitoring the production cycle time,
then the next step is to transfer this selection of sensors to the
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virtual model of the entire production unit and simulate it with
real production data and goods quantities and test its solution. If
for some reason, the data on the entire factory virtual model is
incomplete or the location of the sensor does not match, these
problems should be solved in advance on the simplified
production unit model and then retested on the entire virtual
factory model. Such a methodology provides an opportunity to
better understand problems and find solutions to errors faster.

If a level has been reached on the virtual model of the factory
that allows the data obtained from the sensors to be considered
reliable and the time of the product production cycle can be
monitored in each position, then a specific model of seniors'
locations and their choices can be transferred to the actual
production unit. Of course, there is also possible to calculate the
cost of such a system in advance and make a list of the necessary
components. In terms of hardware and software such solution
provides an opportunity to understand in advance whether, is
possible to use the existing hardware or software capabilities in
the company. Today's production equipment is mostly equipped
with various sensors and control units from which it is possible
to read production data. In a specific chemical industry unit, this
production line is already equipped with optical sensors at the
input and output ends of the production line, which do not need
to be additionally installed.

6. CONCLUSION

In the current study Virtual Factory model for chemical industry
was developed. This VF model consists of the virtual model of
production lines and Autonomous Mobile Robots between in the
factory floor. During the work, methods for collecting real time
data from the physical factory and integrating it into the virtual
production unit to compare the simulation with the actual
situation in the continuous loop were analyzed. During the
process sensor selection diagram development with actual
installation was done.

Data were collected from 8 IR sensors and two RFID sensors.
The obtained data (manufacturing cycle time, process time,
move time, inspection time, and queue time) show that this
selection of targeted sensors and locations gives us a good
overview of the main components of the production cycle, and
this data is easy to monitor and visualize. With developed
solution, the sensor data can easily linked to the company's ERP
systems to monitor a given production plan and compare it with
the actual execution time. It is possible to analyze and visualize
the impact of changes in production and logistics processes on
the length of the production cycle.

Measuring the production cycle and analyzing the data have a
significant impact on the operations of the manufacturing
company. Production capacity will increase, work in progress
will decrease, efficiency will increase and production costs will
decrease.
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PRODUCTION INTRALOGISTICS AUTOMATION BASED ON 3D SIMULATION
ANALYSIS

Recent trends in manufacturing such as Industry 4.0 and Smart Manufacturing have brought the researchers'
attention to the smart intralogistics in production facilities. Automated guided vehicles (AGV), especially mobile
robots play a vital role in this development. On the other hand, industrial internet technologies offered new
possibilities for the information exchange between devices, data integration platforms and communication
interfaces to advance and facilitate the intralogistics for effective material handling and transportation. In order to
analyse the feasibility and effectiveness of the mobile robots in the production area, 3D visualization should be
combined with simulation, which provides a comprehensive possibility to evaluate and review the potential
solution performance and its consistency before implementing practically into the production floor area. This paper
describes a conceptual model based on 3D visualization and simulation and experimental study which help to
make the decision according to the input data from the factory environment of the movement of mobile robots in
production logistics. Moreover, the Key Performance Indicators (KPIs) are defined to analyse the use-case's
process improvement in terms of the time reduction, which leads to increase productivity and cut-down
the workers' fatigue.

1. INTRODUCTION

Smart manufacturing demands the use of the technology and methods like:
implementation of the Internet of Things (IoT) in factories and plants; integration of new
technologies related to digital twin, augmented reality, and smart sensors for existing
production environments. Those methods and technologies support the company management
level for effective decision-making. The term that incorporates all those mentioned methods
is known as “Industry 4.0”, a new word coined at the “Hannover Messe” held in 2011 [1].
The nine pillars of Industry 4.0 are: Big Data and Analytics, Autonomous Robots, Simulation,
Horizontal and Vertical System Integration, loT, Cloud Computing, Additive Manufacturing,
Augmented/Virtual Reality (AR/VR), and Cyber Security [2].
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The technological roots for the Industry 4.0 are established by data networked
production facilities, material handling as well as transporting equipment, which are
harnessed with sensors and decentralized Information Technology (IT) intelligence. These
intelligent systems for manufacturing intralogistics, which are connected via the Internet, are
able to autonomously organize, control, and adapt the sequence of value-added processes and
the correspondent logistical functions to exterior requirements. The recent “technology push”
in the design and introduction of the autonomous production systems, advancement in
digitalization, and automation leads to the expansion of new forms of services and work
organization [3]. This new forms of services with collaborative machines, human, and
transporting equipment such as Automated Guided Vehicles (AGVs) can be simulated to an
extent, but they can be comprehensively understood with a level of trust for the adoption into
the industry when the same scale experimental studies and demonstrators are established [4].
The combined effects of 3D simulation with the same level of real demonstrator help to make
the efficient decisions and improvements of the target processes.

The high level of automation has been reached in production and intralogistics, but there
is still use of human labour for the transportation of goods utilizing handcarts and forklifts,
which leads to the higher labour cost and products quality risks. There are other approaches
like the installation of conveyors to automate material handling and movement, but they are
either fixed, overhead, or floor-based. Therefore, Autonomous Mobile Robots (AMR) are
considered to be a potential solution for flexibility and to improve internal logistics efficiency.
3D visualization and simulation is an essential tool for the validation of the change in the real
environment and facilitates to compare the different scansions virtually before the implemen-
tation [5, 6]. Besides that new industrial internet of things such as smart sensors,
communication, and connectivity platforms add more value to the effective and efficient
implementation of the change [7]. It helps to control and monitor the change i.e., deployment
of AMRs in the real factory environment.

In this paper, authors contributed by developing a conceptual model to analyse the auto-
mation of intralogistics for manufacturing, which is based on autonomous mobile robots, 3D
visualization and simulation, and IoT sensors for communication. A case study of a food
production company was used to demonstrate the relevance and feasibility of the proposed
concept.

The proposed concept allows SMEs to integrate the smart technologies of simulation,
mobile robots, and IoT sensors to their current intralogistics system, which enables to improve
the on-time delivery and reduce the labour costs and fatigues.

2. LITERATURE REVIEW

The literature review introduces the state of the art, which is related to the field of this
study. It consists of the importance of 3D simulation and visualization, followed by the in-
volvement of autonomous mobile robots for intralogistics, the brief explanation of IoT
sensors, and vision technology. Moreover, similar studies and relevant approaches are also
referred to in this section.
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2.1.3D SIMULATION AND VISUALIZATION

The purpose of the simulation is to grasp the insight behaviour of a system. Simulation
is beneficial and appropriate to perform experiments and testing different solutions without
any expense of physically change of a system, which allows to create an effective production
line easier and quicker to accomplish. The ability to animate the system behaviour with time
is one of simulation’s great advantages. Animation is useful for demonstrations, validation,
and debugging [8].

The extensive and often schematic 2D simulation & visualizations are not able to fulfil
such objectives. One possibility is to use Industrial Virtual Reality (IVR) based 3D visuali-
zations, which can be fitted to existing 3D assembly layouts, 3D product models, and process
flows generated from simulation models [5]. During this work the purpose is to visualize
the simulations at a particular area of the production floor in combination with a realistic
representation of the area, besides, the step of assembly or filling of products including the
components and tools are used, and the changes in the location of transportation equipment
also addressed. This kind of visualization allows a good evaluation of the simulated
sequences, which drives beyond established standard 2D simulation and visualizations [9].
3D simulation and visualizations of intralogistics operations can be created by integrating
the existing production process data and with the 2D layout of the production facilities.

2.2. AUTONOMOUS MOBILE ROBOT FOR INTRALOGISTICS

Material Handling Equipment (MHE) is a critical part of material flow for production
factory logistics. For more flexibility in the production facilities, new transportation, and
material handling methods need to be introduced [10]. MHE such as conveyors, used for
automatic material transfer, and a large amount of parts can be moved, they offered temporary
buffers, and material transportation between workstations, and they can be provided adequate
solution together with forklift and pallet truck [11]. However, these equipment and systems
allow a low degree of flexibility in routing compared to the AGVs and autonomous mobile
robots. Moreover, autonomous mobile robots show a high level of versatility, as they can be
used in various applications and can be reprogrammed depending on the input data changes.
There are several developments and implementation of Industrial Robots (IR) into production
facilities for the material handling and the different processes applications. Such as IR for
the measurement process, the integration of IR in a manufacturing cell for pick and place,
also in welding process [12, 13]. Conversely, there is still a need to do research and study
regarding the usage and implementation of mobile robots for material handling in the produc-
tion field, and how mobile robots can be combined with the industrial internet of things for
effective decision-making and improvement of a transportation process.

As the new industrial internet of technologies, smart sensors, and development in
artificial intelligence enabled positioning and autonomous navigation for mobile robots,
which makes these vehicles to drive in a predefined area not as rigid to move in a defined
guided path, that allows larger flexibility. Autonomous mobile robots operate on a decentra-
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lized decision basis, which leads to dynamic routing and scheduling. They are supposed to be
small and more agile than traditional AGVs [14]. Furthermore, autonomous mobile robots
can fit and access more areas and can be integrated to a higher degree in production
workspace, leads to manufacturing flexibility and capable to fulfil the production demands.
They are particularly suited for intralogistics operations like transportation and part feeding
inside the production facility [10].

2.3. IoT SENSORS AND VISION TECHNOLOGY

Due to the recent development in modern manufacturing, most of the production and
material handling systems are comprised of embedded technologies like smart sensors,
organized through cloud-based solutions. It permits a large amount of data generation and
collection that can be used to estimate different KPIs and enables proactive decision making.
The ultimate aim of IoT applications in manufacturing is to comprehend smart factories,
where machines and material handling resources communicate and are connected in a net-
work. For that purpose, production lines, transportation resources, and existing IT tools of an
enterprise should be connected to the internet directly or through external adapters [15].

Autonomous navigation can be achieved by integrating the applications of sensors,
cameras, and computer vision into a vehicle. By using the camera and the object detection
algorithm, certain 3D details on the motion path can be calculated and transmitted to the robot
controller. This information notifies the robot controller about the desired location to be
reached and facilitates navigation [16]. Likewise, autonomous navigation can be planned
based, where a global map is used and relies on accurate global self-localization which is able
to follow a path stated in global coordinates. In a planned based method, a path is defined at
first on an available global map that is followed by the mobile robot. Different sensors and
cameras can be used for localization in a map-based navigation approach.

2.4. LIMITATIONS IN EXISTING LITERATURE

This paper proposes a concept to analyse the automation of production logistics in
a timely and coherent way, which is based on 3D simulation, autonomous mobile robots,
smart sensors, and KPIs evaluation. There are studies and approaches covered the topic
of automation of intralogistics and the use of mobile robots for transportation in production
factories [10, 17, 18]. For production companies, such approaches and tactics are difficult to
construct and adopt. Moreover, there are studies about the increased flexibility in
intralogistics by suitable learning scenarios to grasp the energy-related dependencies
of various transport technologies [ 19] and implementation of an autonomous industrial mobile
robot in industrial applications that considered mobile robot technology, planning and
scheduling, and communication [20]. However, they are lacking in the exploration
of simulation and visualization tools, also recent studies are hardly providing a synchronized
way to investigate the automation of intralogistics. This work provides a harmonized
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conceptual model to evaluate the automation of production logistics via simulation and
mobile robots. For more flexibility in the production facilities, new transportation, and
material handling methods need to be introduced [10]. Mostly used MHE such as conveyors
used for automatic material transfer, forklift and pallet truck as mechanized material trans-
portation equipment. However, these equipment allow a low degree of flexibility in routing
compared to the AGVs and autonomous mobile robots. Moreover, mobile robots show a high
level of versatility, for they can be used in various applications and can be reprogrammed as
desired.

3. CONCEPTUAL MODEL AND CASE STUDY

The development of the conceptual model to analyse and implement the change i.e.,
automation of intralogistics for manufacturing was established. The case study practice was
used as a research method. The general conceptual model is brought out in Fig. 1.
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Fig. 1. General conceptual model to analyse the automation of production logistics

The model consist of three main steps, first is the idea generation, which is about
the particular activity that should be automated and the purpose of the automation. The second
step validates the change or implementation of mobile robots for transportation in a virtual
environment, also facilities to compare the scenarios based on target KPIs and the knowledge
should be used for the deployment of mobile robots in the real environment (third step). In
the third step, data (movement of robots) should be captured from the real scene via a smart
sensor and navigation plan, where the IoT platform used for the connectivity of different
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resources and storing data, which is later used for the estimation of KPIs. The third step not
only verifies the virtual environment setup (layout and simulation), but also helps to prove
the estimated KPIs from the simulation results.

3.1. DESCRIPTION OF A CASE STUDY

The proposed conceptual model was applied to a food manufacturing company
intralogistics process, the company produces and sells prepared foods. Although, the compa-
ny has the combined elements of flexibility and capacity in terms of production volume and
product portfolios, which facilitates them to accomplish not only industrial but smaller-scale
orders as well. However, most of the production activities are operated manually, especially
the production floor logistics. The transportation and material handling of goods (raw
material, WIP, and finished products) are one of the key activities on the production floor,
and the improvement in this process by means of time reduction helps to increase productivity
and cut-down the workers' fatigue. Therefore, the company intends to explore and adopt
the automation possibilities in production logistics, and the idea was to implement
autonomous mobile robots for the material transportation within the production floor and the
company was keen to adopt this change i.e., the collaboration of mobile robots and workers.

The production facility handles the transportation of boxes (containers) by human-
worker using hand lifters and special wheels. Approximately 4000-5000 red boxes are
moving daily in production. In the case of logistics, the waybills (bill of materials) are used
and the order is executed through oral commands. In this experiment, three basic logistics
routes are considered and their respective workflows are:

e  WF-1 — The transport-worker periodically reviews the production units and evalu-
ates the number of boxes needed to move somewhere. Empty boxes are transported
from the washing department to a special wheel-base;

e  WF-2 — The production worker takes boxes for the production unit and brings them
to the production line. When the products are ready, they put the goods in the boxes
and transport them to the warehouse;

e WF-3 — The warehouse worker puts the raw material into the boxes and carrying
them to the transport-base. The warehouse worker carries these wheel-bases to
the intermediate storage of raw material.

3.2. KEY PERFORMANCE INDICATORS FOR ANALYSIS

Proper KPI selection, estimation and implementation are prerequisites to enhance
the performance of the production processes [21, 22]. To keep in mind, the desired goals
of automation and criticality of the logistic process, four major KPIs were defined to analyse
the performance of the intralogistics process and compare the current situation (a manual
process) with the automated production logistic via mobile robots. The KPIs used to measure
the performance are:
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Py — Defects during the transportation P3; — Inventory turnover
P2 — On-time delivery P4 — Labour cost for transportation

Defects during the transportation were the irregularities in the number of boxes
transported, transported at the wrong place, and incorrect goods transported. Those defects
are caused due to the messy corridors, worker's fatigues, and lack of right information.

On-time delivery is the delivery of empty red boxes on-time at designated places in
the production area. It helps to ensure the availability of empty boxes in a sufficient amount
so that there is a reduction in waiting time for empty boxes and subsequently increment in on-
time delivery.

Inventory turnover — one of the goals was to fill empty red boxes with finished goods
(from production lines). It means to turn empty boxes into full boxes and can be defined as:

Average Inventory (I) = Throughput (R) x Average Flow Time (T)
Hence, Inventory turnover =R /1

Labour cost for transportation helps to realize the impact of mobile robots in monetary
terms. The deployment of mobile robots leads to reduce the labour cost for transportation.
Simple costing can be formulated as:

Cost = Investment + Operating cost (fixed and variable)

Although, there are initial investments to acquired mobile robots. However, after
the payback period, there would be an increment in profit margin.

3.3. CREATION OF 3D SIMULATION SCENARIO

The simulation model of the case production facility can be seen in Fig. 2, Fig. 3 and
Fig. 4 which were created on the Visual Components (VC) 4.2 [23]. The main focus is to set-
up the production layout and simulates internal logistics. The target is to analyse the trans-
portation of boxes (red colour boxes) that are used to carrying raw material from
the warehouse to the production area, finished goods from the production area to the ware-
house, and empty boxes from the washing area to production. The workplaces with different
colours (red, yellow, and green) in Fig. 2 corresponds as follows:

e Red workplaces are the buffer for empty boxes

e Yellow workplaces are the buffer for Raw Material (RM)

e Green workplaces are the buffer for Finish Goods (FG)

The purpose of Fig. 2 is to define the designated working areas that were used in the
factory floor for analysis and it helps to measure the distances between the working areas as
well. Later those distances were capitalized to adjust the speed of mobile robots and use as an
input parameter during the simulation. Figure 3 defines the routing map of mobile robots on
a full scale and helps to plan the movement of mobile robots in the simulation environment.
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The 2D factory floor map with the exact physical dimensions was imported into the virtual
world and 3D environment of 1x1 scale was ramp-up on it, it represents the digital replica
of the physical factory. The floor lines are clearly visible and the movement of AMRs can be
observed i.e., the transportation of boxes by AMRs from the designated buffer areas to the
production area on the factory floor and vice versa. It assists to find out the distance covered,
time consumed and boxes transferred by AMRs during the simulation that aids to formulate
the defined KPIs and later used for the comparison of manual transportation versus automated
transportation by AMRs as criterions. Furthermore, Fig. 4 shows the 3D simulation of the fac-
tory floor for the holistic visualization and evaluation of the transportation of boxes via mobile
robots.
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Fig. 2. Simulation scenario of production facility with the marking of working areas

AMRs were deployed to transport the boxes from one place to another in the virtual
environment. There is the movement of 4000 boxes approximately in the production facility
for the processing of different products in 12 hours. The major concern is the availability
of empty boxes at red workplaces (buffer) at the right time, as those empty boxes are being
used to store the ready products and then transport to the warehouse.
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Transportation of empty boxes
Transportation of filled boxes (ready product)
~ Transportation of raw material from storage

Fig. 4. 3D simulation model of production facility (virtual environment: a holistic view)

There are three AMRs, each is designated to different areas such as transport empty
boxes from the washing area, raw material from the warehouse, and finish goods from
production respectively. The process steps are as follows:
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e AMR-1 — transports empty boxes from the washing area to different designated
locations (red buffer) in production. AMR-1 carried 20 empty boxes in each run.

e AMR-2 — transports a box of raw material in each run to a particular location (yellow
bufter) in the production area.

e Production workers pick the empty boxes from the designated locations, bring to
the production lines, and filled boxes with products.

e AMR-3 — picks the filled boxes from the production area and transport them to the
finish goods area (green buffer).

3.4. IMPLEMENTATION OF SCENARIO IN REAL ENVIRONMENT

The 3D simulation model (virtual environment) was implemented in the production
facility (real environment) to verify the deployment of mobile robots for the production
logistics process. The communication model of various devices such as mobile robots and
sensors that were installed for the experimental study is shown in Fig. 5. The Hybrid Produc-
tion System (HPS) was designed to enable interoperability and collaboration between
different sub-systems. The HPS enables the integration with hardware devices and software
of the end-users such as, for example, on the one hand the mobile robots and sensors in
the warehouse, and on the other hand, the enterprise applications such as ERPs, MES and so
on. The IoT Nodes layer (agent nodes) are the components of the communication model that
interact with the physical world. For instance, they can interact by sensing, e.g., sensor agent
node, by acting, e.g., robotic agent nodes. The modules of which these nodes are made of, can
interact with the layer of Software System by exchanging messages with the layer of Cyber
Physical Middleware and they either directly operate on these messages or translate them to
an appropriate format for internal use through their communication sub-modules. Moreover,
IoT nodes layer can talk to each other and with the other components of the communication
model, as well as with Enterprise Applications, by means of the Cyber Physical Middleware
layer. Similarly, the software applications layer interact with IoT nodes layer in addition to
Enterprise Applications by means of message exchange via Cyber Physical Middleware.

The Human Machine Interface (HMI) module provides the task monitoring and control,
which enables continuous monitoring and visualization of information connected to other
modules such as the sensor module [24,25]. HMI can collect data from enterprise
applications. Furthermore, it can be used for the task specification to formulate a task based
on the task parameter. The sensing and perception module provides information suitable for
safe and accurate motion planning to the Robot Agent Node. It also helps the mapping
the structure of the manufacturing shop floor for the components involved in navigation.

For the case study, the cyber physical middleware was connected to the simulation for
the optimization purpose, which is also linked to the Enterprise Resource Planning (ERP)
system through data management node. The production planning and scheduling data from
ERP feeds to the simulation to carry out the sensitivity analysis and then to figure out the best
optimize solution for the whole production process.

The input parameters such as location, transportation time and loading & unloading
of mobile robots were captured through sensors. The Sensor Agent Node (SAN) module was
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linked to the Raspberry Pi 3 device, which was connected to the infrared sensors. A 3D printed
packet was made to house the Raspberry Pi and the sensor. SAN modules were added to
the routes of the mobile robots, precisely at the loading and unloading area for robots. When
robots passed through, they detect the robot and crates (red boxes), send signals, and time
stamp was recorded that can be observed on Human Machine Interface (HMI).

For mobile robots testing, first, the mapping was done on the designated routes by
moving them around the routes with joysticks and then moving it to a starting point. After
they could move anywhere that has been scanned. In the later stage, LIDAR sensors were
installed on the robots that help to scan the surrounding and allows to create a map for
the mapping purpose. Moreover, it facilitates to identify objects in their path like humans so
they can stop. Robot Agent Node (RAN) was linked to robots so while moving around a robot
sends its location data in real-time to the IoT platform, which is then displayed to the user
via HMI.

Six routes were tested in the production facility, tested routes can be depicted in Fig. 6.
Data about timings and the number of boxes transferred were observed that used later for
the KPIs estimation.
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Fig. 5. Communication of entities in the factory environment (implementation of scenario)

Results of virtual and real scenarios for the automation of the intralogistics process via
mobile robots were compared and presented in table 1. The observations were evaluated based
on the target KPIs and positive changes were noted. The KPI-s implemented can be utilized
for further optimization of the intralogistics process based on working group long time
experience in engineering optimization [26].
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Fig. 6. Experimental study in the factory environment

Table 1. Results based on the defined KPIs

. Virtual Scenario . Estimated
KPI Current Scenario (manual) Real Scenario (automated) | .
(automated) improvement
.. . ITrregularities did not exist as | Irregularities were mitigated 10% reduction
Trregularities existed due to the ; . . . . . .
Pl: . . in the simulation the as the implementation of in existing
messy corridors (routes) with . . . :
Defects random boxes (crates) designated routes were robots in a real environment transportation
clearly defined for robots leads to neat and clean routes. defects
On-time deliveries of empty
Simulation enables to plan red boxes were improved as
. Insufficient amount of boxes at | the number of boxes at right robots connected to the [oT . .
P2: . . . . S 5% increase in
. the right time and at the right | time and place. For 12 hours platform, communication .
On-time - N . . . o on-time
deli place. High waiting time at simulation run with 3 between them facilitate the delivery
elivery production lines robots, minor waiting time availability of empty boxes at
was overserved. the right time and at the right
place.
P3: Inadequate inventory turnover Fpr an hgur simulation run Sensors data and controlled 504 increase in
due to the lack of boxes. The in the virtual setup of the . .
Inventory planning of robots enabled to inventory
throughput was 321 boxes per | same scale, throughput was . X
turnover hour 336 boxes improve mventory turnover. turnover
The proper planned
P4: Manual transportation incurs Enables effective planning implementation of robpts 15% reduction
cost, when human labour to allocate the workers and leads to a reduction in )
Labour . . - . . in the labour
c realized fatigue due to robots for the right and operating transportation costs. cost
ost repetitive activities. productive job. As the number of logistic
workers decreased.
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4. CONCLUSION

The proposed conceptual model is a contribution to evaluate the automation of the intra-
logistics process and to implement mobile robots for production logistics. This work presents
how to automate a production logistics process in a harmonized way, which starts with idea
generation, validation through 3D simulation and visualization, followed verification by an
experimental study in the real environment. The test case ensured the effective use of 3D
simulation and visualization helped to reduce the installation time of robots. With the defined
KPIs analysis and experimental study, it is technically feasible to use mobile robots for
intralogistics, and it may enhance the proactive decision making as well. Moreover,
the industrial internet of technologies helps to implement and control the autonomous mobile
robots efficiently. Applied conceptual model improved the case company indoor logistics by
reducing waiting time in production, the increment of on-time delivery, and decreasing
the defects during the transportation process. Mobile robots provide more flexibility and
a better possibility to make investments in stages according to increases in required
production capacity. The proposed model can be replicated in the future to other companies
that are dealing with similar business processes and production.
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Abstract. Production planning and scheduling rely heavily on the efficient operations of
production logistics and material handling equipment. Industry 4.0 technologies such as Internet
of Things (IoT), Digital Twins, and Artificial Intelligence (AI) can be applied to production
logistics in terms of autonomous mobile robots that facilitate to increase the flexibility and
productivity of the whole production site. However, before the implementation of an automated
production logistics systems, its feasibility must be analysed. This paper describes a simulation-
based approach, including the definition of and comparative analysis of Key Performance
Indicators (KPIs), to analyse the performance of production intralogistics applied to a selected
use case. The presented approach offers a proof of concept on the basis of which decision-makers
can implement mobile robots for intralogistics in their own production environments.

1. Introduction

In the scope of production management, the performance of activities such as obtaining raw materials
to delivering finished goods to customers, need to be jointly studied and analysed. These activities are
highly interconnected, and the analysis of the performance of those activities can help optimize
manufacturing and logistics operations. The improvement of production intralogistics — the internal
transportation of goods within a given manufacturing facility — has a major impact on the production
efficiency of the whole site. As such, the requirement to optimize internal logistics systems in terms of
operational performance, throughput and sustainability arises [1]. Although automation contributes a lot
to business value creation and has already been to some extent introduced into the intralogistics of
manufacturing facilities (e.g. conveyors, fork-lifters and pallet trucks), the aforementioned equipment
allows only for a low degree of flexibility, whilst other tasks, such as loading & unloading, and the
authorization of goods, are still mainly performed manually [2]. High level automation, such as the
introduction of Autonomous Mobile Robots (AMR) into the intralogistics of the facility, offers a more
flexible solution that can lead to a more efficient process of transportation.

Whilst intralogistics automation promises many benefits, any change within the production site
introduces new challenges. For example, to ensure a smooth transition into the new workflow, a
thorough change management course for line operators is recommended to be planned and carried out.
Moreover, internal logistics systems are highly complex, with the deployment of AMRs requiring a
thorough preliminary study and analysis. Therefore, the method of simulation and 3D visualization can
be used to analyse and verify the change. Simulation modelling, paired with the Digital Twin concept
and the setup of KPI (Key Performance Indicator) targets, has become a staple framework in operations
management today, for the insights gained facilitate better decision-making in terms of financial, time
oriented, material and energy savings, as well as the ability to streamline the process activities [3].
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2. Literature Review

For the literature review, state-of-the-art articles relevant to the field of this study were analysed. Topics
include the automation of production intralogistics through AMRs, the significance of simulation
modelling and 3D visualization as decision-making tools, and a brief explanation of relevant Key
Performance Indicators. Moreover, similar studies and related approaches are referred to in this section.

2.1. AMR in Intralogistics

Automation and the application of Internet of Things (IoT) have become widely associated with areas
such as production, logistics and transportation. From the other side IoT applications in production and
logistics should be seamlessly integrated into companies Manufacturing Engineering Systems (MES)
[4]. AMRs for factory floor logistics persuade the smart factory concept with disruptive technologies
such as Artificial Intelligence (AI), simulation and Digital Twin [5]. The use of AMRs as a type of
material handling equipment creates a more ergonomic workspace for the production floor employees.
Furthermore, proper deployment of AMRs may lead to an increase of production capacity and flexibility,
while reducing transportation defects. Other automated solutions for factory logistics, such as
conveyors, forklifts, pallet trucks, and automated guided vehicles, do not offer the same level of
flexibility in terms of routing. In contrast, AMRs can be reprogrammed to be used in different
applications, reacting to different data inputs. They are smaller in size and more agile than traditional
automated guided vehicles; as such, they can access the production area more efficiently [6]. However,
the implementation of AMRs for production intralogistics needs to be justified and verified before the
physical set-up on the production floor.

2.2. Simulation Modelling and 3D Visualization

Simulation modelling is the creation of a digital model of a real-world system. Various what-if scenarios
can be tested on a valid digital representation of a system to analyse, optimize, and predict the
performance of processes based on set parameters [7]. After thorough experimentation in this risk-free
environment, an optimal system configuration can be found and carried over into the real world.
Potential problems and bottlenecks are discovered and reacted upon early in the process, thus leading to
the improvement of set KPIs [8]. 3D visualization is an essential tool used to validate the simulation
models” feasibility by taking the geometry of the facility, line or process into account. 2D simulation, in
comparison, offers only a low level of visual commissioning. The usage of Industrial Virtual Reality
(IVR)-based 3D visualizations, which can be adapted to simulated 3D assembly layouts, product
models, and process flows, may prove to be beneficial in such cases [9]. In this study, a production floor
was simulated in a 3D simulation software; the assembly steps, including the mechanisms and tools on
the factory floor were modelled, and the changes of the location of AMRs were analysed.

2.3. KPIs for Production Intralogistics
Performance indicators or KPIs aim to deliver information needed for the performance analysis of
manufacturing operations, Intralogistics come under the discipline of operations management, and as a
result, KPIs related to manufacturing operations are appropriate to production intralogistics as well, as
defined in the ISO 22400 family of standards. The standard classifies KPIs based on their purpose of
use, such as performance that can be measured in terms of cost, time, quality, flexibility and
sustainability. Likewise, they are applicable to different types of operations, such as production, material
handling, quality assurance, maintenance, and so on. [10]. Performance indicators not only showcase
what has happened; they also indicate what will happen, as reactive steps will be taken by decision-
makers to combat any weaknesses represented in the KPIs [11].

In this study, KPIs like utilization, throughput, and cost of AMRs, as well as transportation defects
were chosen. The paper proposes a 3D simulation-based approach to analyse the performance of the
production intralogistics process, though the suggested approach can be implemented to other processes
as well. Several other research papers addressed the topics of intralogistics automation and the
deployment of mobile robots for transportation on the factory floor [5], [12], [13]. The value of this
study lies in the simplicity of the synchronized analysis approach, compared to the more difficult to
construct and adopt procedures described in the aforementioned papers.
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3. Simulation-based Approach for Analysis

The continuous 4-step approach (see figure 1) was adopted through the comprehensive literature review.
The case study technique was used as a research method, and a use-case is introduced to validate the
relevancy of the proposed approach.

" =5 Set up Performance
M Model Creation —> == Parameters

t v

-‘_ @ Visualization

Figure 1. Simulation-based approach to analyse the performance of production intralogistics.

3.1. Model Creation
Creation of the model, a fundamental step in simulation-based analysis, facilitates to capture and
describe the problem properly. A model is created by mapping the real environment to the virtual one
through a specified computer-based application. A model should grasp and reveal the dynamics of a
process such as the occurring of events, changes in activity timing, and resources” state. Model
parametrization also includes the selection of components (entities, source and sink, resources, etc.)
relevant to the specific problem statement and system.

3.2. Performance Parameters

The acquisition of data related to the target process or system is crucial for the setup of the desired KPIs
in this second step. Process parameter data, such as system specifications, input variables, and process
performance metrics, are needed for the analysis. The aforementioned indicators numerically describe
the behaviour of the resources, as well as activities’ performance. Despite a wide selection of
performance metrics being presented in various literature, KPIs must be selected depending on the
underlying strategies of the company, for only then can the simulation model be built in response to the
specific problem statement of the organization. For the intralogistics performance analysis and the
objective of the test case, we incorporated throughput, utilization, cost and defects of the transportation
activity as KPIs for the simulation analysis. Further details can be found in table 1.

Table 1. KPIs selected for this study.

KPI Formula Description
Throughput Throughput (R) = Average Inventflry ) Shows the number of products transferred by
Average Flow Time (T) an AMR from one station to another per unit
time
Utilization Utilization = Task Perforr.ning ?‘ime % 100 The percentage time that an A.MR performs
Total Working Time tasks out of the total working time or a shift
duration
Cost Cost = Initial Investment + Operating Cost Shows the monetary impact of AMR in
monetary terms
Defects Number of irregulaities Expressed by irregularities in the transportation
Defects = - X 100
Number of transportations process (wrong number of goods, wrong type of

goods, wrong destination)

3.3. Visualization
The exact-scale digital model of the production floor in 3D verifies the work of the real system, ensuring
that the created model behaves as intended. 3D simulation assists users to visualize staff, equipment,
building facility, and other items and processes in the virtual environment. The verification can be
performed by providing real input data to the model and comparing the results with historical data.
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Visualization also represents processing data in the form of a dashboard which helps to determine
between strategic alternatives.

3.4. Variation Test
In this step, the simulation model can be allowed to test several tactical variations and scenarios that
capture uncertainty. Sensitivity Analysis and Parameter Variation experiments are commonly used to
reveal the effect of randomness and parameter change to the simulation model’s behaviour.

4. Case Study

The proposed simulation-based approach was applied to the intralogistics process of a chemical
manufacturer which produces detergents and hand sanitizer. The manually operated transportation of
goods is a key operation in the production facility. Due to the high demand of products and, thus, the
subsequent increase of production capacity and flexibility, the company decided to analyse and improve
the intralogistics process with the intention to automate the production floor logistics by implementing
AMRs. This solution is expected to reduce the transportation time and ultimately increase the process
productivity, as well as cut down on workers' fatigue. The studied production facility consists of four
production lines that fill empty bottles (in containers) of different sizes with liquid, label and cap them.
The intralogistics related activities, planned to be executed on four different stations with the help of an
AMR, are as follows:

1. Loading of products (empty bottles) in warehouse and transportation to production line

2. Unloading of empty bottles at the start of production line

3. Loading of filled bottles at the end of production line and transportation to finished goods area

4. Unloading of filled bottles in Finished Goods (FG) area and moving back to the Warehouse (WH)

Figure 2. Simulation model of a single production line with AMR.

The 3D simulation models of the use case were created and analysed in Visual Components 4.2, a
3D manufacturing simulation software. The physical setup of the production lines and routes mapping
of the AMR were constructed on the basis of full-scale production layout. Figure 2 gives a concise view
and a single production line simulation model, where the intralogistics activities were marked and
executed as defined above with the corresponding numbers. Figure 3 is a holistic view of the production
facility and illustrates the transportation of goods using the AMR following the route WH - Production
- FG &> WH. The movement of the AMR was mapped and analysed during the simulation, with the
green-coloured marking showing the movement of the AMR in the production area, the red-coloured
one - to and from the FG area, and the yellow-coloured route — to WH and from WH.
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Figure 3. Detailed simulation model of the production facility (top-view).
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Figure 4: Time versus distance graph of an AMR (simulation outcome).

The results of the simulation analysis can be observed in figure 4. The graph, showing the time spent
and distance covered by the AMR, helps to perceive the idleness and busyness of the robot. One AMR
was used to feed and serve four production lines. For the 8-hour simulation run, performance metrics
such as throughput and utilization were determined. By introducing variations in the simulation model
(like the number of AMRs needed for the current production capacity), the effect of an AMR
implementation to the transportation cost and defects was observed. The impact of the change, i.e. the
automation of the production intralogistics operation, was monitored through previously defined KPIs;
the results are shown in table 2. The deployment of an AMR shows a positive impact on every KPI.
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Table 2. KPI observations of current real-world and simulated scenarios.

KPIs Current Scenario Automated Scenario Remarks
(Manual Labor) (AMR - Simulated)
11 pallets per shift 11 pallets per shift Same throughput, but AMR more
Throughput (8 hours) (8 hours) flexible than manual process (+ve)
Fully loaded Half-loaded Use of AMR = extra capacity to

Utilization feed/serve more than four lines (+ve)

Manual transportation Enables effective (human & Use of AMR - less logistics employees
Cost costs robot) resource allocation - reduced transportation costs (+ve)

Irregularities due to Irregularities did not exist thanks Use of AMR = neat and clean routes >
Defects disorganized corridors to designated routes for AMR less irregularities (+ve)

5. Conclusion

The proposed simulation-based approach is intended to help analyse the feasibility of automation of
intralogistics processes and the implementation of AMRs in production logistics. Due to the possibility
of achieving a high level of accuracy in the representation of a real production facility in 3D modelling
and simulation software, the authors of this study recommend using the aforementioned Industry 4.0
tools as part of the decision-making workflow when automating intralogistics processes. The case study
ensured the effective use of 3D simulation and visualization which helped to reduce the installation time
of AMRs and analyse the production capacity to figure out the number of AMRs needed to fulfil the
current capacity requirement. Moreover, with the defined KPI analysis, it is technically feasible to use
AMRSs for intralogistics, and it may enhance the proactive decision making as well. Mobile robots are
flexible tools which can be applied in different use cases as needed and can be introduced to a production
facility stage-wise, first testing a solution with just one AMR, and then gradually increasing their number
per required capacity. The simulation-based approach can be replicated in other companies in the future,
especially those that are dealing with similar business processes and production environments.
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Abstract. Digital solutions have become increasingly important for manufacturing companies to increase their productivity,
effectiveness, and competitiveness in a global market, which demands low prices, high quality, and fast delivery times. In order to
improve production efficiency, it is also necessary to optimize transportation activities in the production floor via digitization and
automation of those processes. Many companies have already used or are planning to use autonomous mobile robots (AMR) to
manage production logistics more effectively. The rapid development of the Internet of Things (I0T) and the advanced hardware and
software of AMR allow them to perform autonomous tasks in dynamic environments, where they can communicate and independently
coordinate with other resources, such as machines and systems, and thus decentralize the decision-making steps of manufacturing
processes. Decentralized decision making allows the manufacturing system to dynamically adapt to changes in the system state and
environment. Such developments have affected traditional planning and control methods and decision-making processes, but they
also require the software and embedded artificial intelligence (AI) algorithms to be more capable of executing these decisions. In
this study, we describe how to use a 3D virtual factory concept to integrate an AMR system with AI functionality into the production
logistics of the food industry. The paper presents an approach to analyze the performance of AMR in the transportation of goods on
the manufacturing plant floor, based on the creation and simulation of the 3D layout, the monitoring of key performance indicators
(KPI), and the use of Al for proactive decision making in production planning. A case study of the food industry demonstrates the
relevance and feasibility of the proposed approach.

Keywords: autonomous mobile robot, production logistics, Internet of Things, virtual factory, artificial intelligence.

1. INTRODUCTION on the same system. The objective is to provide the
required functionality and capacity precisely when it is
needed.

The AMR have been introduced in various fields of

Nowadays, the main paradigm in manufacturing is based
on the reconfigurable manufacturing and Industry 5.0

(moving towards Industry 6.0), in alignment with the
goals of the EU Green Deal and the digital and green twin
transition. Reconfigurable manufacturing systems (RMS)
is an approach in manufacturing, which is designed for a
rapid adjustment of production capacity and functionality,
in response to new market conditions. Flexible manufac-
turing systems with integrated autonomous mobile robots
(AMR) make it possible to produce a variety of products

* Corresponding author, tonis.raamets@taltech.ce

modern industry to increase efficiency, productivity, and
safe transport of goods and materials, and they perform
various predetermined transport tasks without direct op-
erator intervention [1]. Usually, the manufacturers of such
AMR systems also have control software, which enables
various transport missions to be performed in automatic
mode and via a human-machine interface (HMI) accord-
ing to predetermined routes [2]. The constant increase of
the use of AMR systems will create various problems such
as deadlocks and conflicts between system components,
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which cause a decrease in the efficiency of these systems [3].
The complexity of managing and controlling these AMR
systems is an important factor, which limits their imple-
mentation in a small or medium-sized company and in-
hibits their effectiveness in fulfilling transport tasks. In
addition, most previous studies related to the introduction
of automated production logistics have focused on various
robots’ central control and optimization; however, accord-
ing to our understanding, no sufficiently researched methods
exist for each robot to plan its activities independently.
Only in recent years, more research has begun on de-
centralized control systems, where each robot is assigned
a different task in order to optimize the percentage of on-
time assembly and delivery of goods in various social situ-
ations [4]. To analyze the feasibility and efficiency of such
AMR systems, a case study and advanced simulation
model based on 3D visualization, simulation, the use of
10T sensors, and experimental research should be used in
advance [5] to monitor the existing key performance in-
dicators (KPI) in the real work conditions [6,7]. It is a
holistic method that allows for a more accurate assessment
of the AMR solution design and its impact (KPI) before
implementing it in the company’s production logistics.
Automation of manufacturing processes using robots helps
to reduce Lean waste [8] and thus increase productivity
through Lean methods [9], supporting the adoption of
AMR in the factory. Recently, smart artificial intelligence
(AI) based algorithms, such as ant colony optimization
[10], genetic algorithm [11], A* algorithm [12], simulated
annealing [13], etc., have been proven to be effective tools
for mobile robot trajectory planning. Global optimization
of factory- and warehouse-based AMR is too computa-
tionally complex and time consuming to account for dy-
namically changing obstacles in transportation tasks. In a
dynamic environment, global trajectory planning can result
in potential collisions with other objects because the algo-
rithm does not adapt to changes in the environment [14]
or the AMR must make a sudden stop. However, the prob-
lem with local trajectory planning methods, such as the
artificial potential field method, is that they get stuck in a
local minimum and cause irregularities [15] that increase
energy consumption.

Combinatorial and Al-based algorithms are investi-
gated in this work, based on the long-term experience of
the authors’ working group in the use of Al tools and
methods in various engineering fields [16,17]. The case
study and the advanced simulation model of production
logistics gives us a good visual overview and a precise
understanding of how to optimize and make the manage-
ment of AMR systems more efficient and to interface them
with the company’s various IT systems and fleet of devices.
This paper focuses on the development of configurable
automated logistics solutions, including the use of Al
functions and 3D simulation software to virtualize and
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simulate manufacturing logistics. Derived from Al-based
tools, various algorithms are proposed for easy recon-
figuration and planning of tasks and movement paths of
mobile robots.

2. APPROACH FOR AMR PROCESS ANALYSIS
AND MODIFICATION

The process for the transportation of goods by AMR on
the production floor is analyzed and implemented through
the approach as anticipated in our previous study [18] and
illustrated in Fig. 1. Apart from the 3D simulation and
experimentation of AMR, the proposed approach consists
of an Al model and its testing, which facilitates proactive
decision making besides simulation analysis. This ap-
proach intends to be adopted for the automation of pro-
duction logistic processes using AMR. It is based on
the digital mockup of a production floor and immersive
3D simulation analysis to validate the case study and ad-
vanced simulation model; moreover, the verification can
be performed by implementing the case study and the
advanced simulation model as an experimental testing in
a physical factory environment.

There are three main phases in this approach. The first
one involves conceptualization for the automation of a
particular process and task, for example, generating sev-
eral ideas via brainstorming activity to automate the
transportation task on a production floor. The outcome of
the conceptualization phase unfolds an automation sce-
nario for the transportation process. The second phase is
to create a digital mockup of that transportation process
on a factory floor and conduct simulation analysis through
KPI in the virtual environment. As a result of the second
phase, valuable knowledge is captured and used for the

Conceptualization

- Brainstorming
- Scenarios for automation

AMR for production logistics

A 4

Validation

- 3D simulation of scenario (using AMR)
- Knowledge captured
- Performance measured (using KPI)

Virtual environment
(creation of AI model)

Ve
- Implementation of scenario
- Data captured
- Monitoring of KPI

Real environment
(testing of AI model)

Fig. 1. Proposed approach to analyze the process of AMR for
production logistics [18].
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implementation of AMR in the real (physical) environ-
ment, while an AT model can also be formulated based on
the simulation model. The third phase involves testing the
simulation model and implementing AMR in the real
environment, which serves as an experimental use case.
The data about the movement of AMR, the location, and
distance traveled can be collected via loT sensors.
Furthermore, the KPI can be calculated by the captured
data, and they visualize the performance of AMR by
integrating the data to a monitoring dashboard.

This study emphasized the construction of a process
layout, simulating the AMR transportation on a production
floor by using a 3D virtual environment and executing
performance analysis. An Al model was also created for
the route planning and optimal pathfinding of AMR. In
order to realize the feasibility of the proposed approach,
the case study research method was practiced.

2.1. Digital and simulation model development for
the food industry use case

The 3D layout and simulation of AMR routings were
constructed in the Visual Components software [19].
Different paths and movements of AMR were comprised
as follows: AMR transported ten red plastic boxes with
each running on different paths, which are displayed in
Fig. 2.
AMR path setup and routing:
e Paths 1-2 and 1-3: Transportation of washed empty
boxes with AMR to specific production processes

(picking up red plastic boxes from buffer 1, placing

them in buffer 2 and buffer 3);

e Path 2—4: Transportation of filled boxes (partially
finished goods or finished goods) with AMR to the
warehouse (picking up red plastic boxes from buffer 2
and placing them in buffer 4);

e Path 4-5: Transportation of dirty empty boxes with
AMR to the washing area (picking up red plastic boxes
from buffer 4 and placing them in buffer 5);

o Path 6-9: Transportation of packaging materials to
intermediate warehouses (picking up cardboard boxes
from warehouse 6 and placing them in intermediate
warehouses 7, 8, and 9).

The paths contain various buffers, including the empty
boxes area (buffer W), filled boxes area (buffer F), dirty
boxes area (buffer D), and production processes buffers
area for picking up and placing the goods (boxes) with
AMR. A unified view of buffers for loading and unload-
ing places with AMR is displayed in Fig. 3. The number
of optimized loading and unloading places for buffers
depends on the production volume and product capacity.
Consequently, some buffers have one place for loading
and one place for unloading, but some have two places for
loading and unloading. Moreover, the buffer location
numbers in Fig. 2 correspond to the loading and unload-
ing places in Fig. 3. These two figures are associated
with each other in the way that Fig. 2 shows the paths of
AMR with buffer locations, while Fig. 3 represents the
loading and unloading of boxes by AMR at these loca-
tions.
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6to7:24m
6t08:28m
6t09: 110m

Fig. 2. AMR routing map and buffers for picking up and placing the boxes in the manufacturing area.
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Fig. 3. AMR loading and unloading stations on the production floor.

2.2. AMR process simulation results

The KPI analyzed in the transportation process of AMR
in the food industry use case are the number of trans-
portation boxes, transportation time, and utilization. These
KPI are important because they measure the efficiency
and effectiveness of the AMR transportation process in
the food industry. The number of transport boxes indicates
how many boxes AMR can transport in a given time. Transit
time measures how long it takes for AMR to deliver boxes
from one point to another. Utilization shows how much

of AMR’s capacity is used for transport. These specifically
selected KPI help to optimize the transport process, re-
duce costs, improve customer satisfaction, and increase
productivity. These KPI are also used in the further
optimization of AMR movement in the factory area.
During the analysis, two scenarios were tested based on
the production cycle, production capacity, and the number
of shifts. The first tested scenario was with AMR speed
of 1 m/s and the second one with AMR speed of 0.5 m/s.
The simulation results of the two scenarios are displayed
in Table 1.

Table 1. Summary of AMR simulation analysis

Performance parameter |

Scenario 1: AMR speed 1 m/s

‘ Scenario 2: AMR speed 0.5 m/s

Number of transported boxes [pcs]
Total transportation time [s] 22140s

AMR average utilization [%]
60s
14 500 m

AMR pick up and place time [s]
Total AMR travel distance [m]

400 pcs at each buffer location

100% (continuous movement of AMR)

400 pcs at each buffer location
35640 s

100% (continuous movement of AMR)
60s
14 500 m
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3. AI-BASED DECISION-MAKING SYSTEMS
FOR MOBILE ROBOTS

The decision-making system proposed for the AMR is
focused on the optimal path planning and safety visual-
ization for mobile robots via introducing additional depth
sensors to the work area of robots, calibrating the infor-
mation feed and projections around AMR approaching the
human. On the other hand, the decision-making systems
are linked with the production scheduling via online in-
formation gathering from the manufacturing processes
and positioning of AMR. The information flow between
the mobile robot control system, the company-based en-
terprise resource planning (ERP) system, and the mobile
robot monitoring system is displayed in Fig. 4. It is very
important to integrate with the existing systems also the
system efficiency control system, which helps us to
optimize the existing systems and track the possible faults
and less efficient components/parts.

3.1. Directed graph definition

Below, a directed graph with its nodes and edges is
introduced. The term “node” is utilized for the starting
point, loading and unloading points, and the maintenance
point(s). A sensor system is set up so that information is
acquired from all nodes. The same general design is
applied for all nodes, but some nodes may have extra
specific information (maintenance data, etc.). In Fig. 5,
the directed graph is depicted showing all nodes and edges

Mobile robot BoxBot

Mobile robot control system
- ROS based system
- Optimal movement trajectory

V
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3 Pick-up

6
Mainte-
nance

2 Pick-up

Fig. 5. AMR motion model.

but also distances between the nodes and available
moving directions. It should be noted that Fig. 5 represents
a schematic graph, i.e., distances are not proportional.

The general structure of the node is the following:
Error! Reference source not found., node No., loading
(1 —available, 0 — not available), unloading (1 —available,
0 — not available), priority.

Currently, the priority value is calculated based on the
remaining time until preservation, but there are additional
considerations to take into account. The problem is solved
by using object-oriented programming, considering each
node as an instance of the node class. Nodes provide valu-

Mobile robot Al based path optimization

Company-based ERP system

- Battery charging time (s)
- Work time (s)
- Maintenance time (s)

' -
- Optimal transport work task - Production plan and scheduling
- Optimal cargo loading and unloading - Maintenance plan
- Safety projections around mobile robot
Mobile robot status and efficiency analysis
- Loading and unloading time (s) - Off time (s)

- Movement trajectory length (m)
- Number of loads carried out (pcs)
- Number of transport work tasks (pcs)

Big data analysis and data analytics algorithms for decision-
making at system level (AMR process optimization depending on
the product and processes — specific requirements, production

system efficiency control and analysis)

System efficiency control and analysis

Fig. 4. General framework of the AMR data exchange.
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able information for decision making and, additionally,
some general information, such as all available moves
between nodes together with distances, etc. The latter
information is stored in a table, including node numbers
and the corresponding distances. The distances can be
replaced with travel times if such information is available
from statistics for the current application.

3.2. Optimal path optimization

The optimization approach proposed in the current study
is based on the decomposition method and has a hier-
archical structure. Using the information acquired from
the nodes and all other information available in the upper-
level design, the loading and unloading points to be visited
during the next route are determined. This process can be
called a “mission”. In the lower-level design, it is decided
how to execute the mission, i.e., how to determine the
optimal path from the start point, through the selected
loading and unloading nodes, and back. The latter tasks
are again divided into subtasks. The optimal paths are
determined separately from the start to the loading node(s),
from the loading node(s) to the unloading node(s), and
from the unloading node(s) back to the starting point.
Such an approach ensures the passage of all nodes of the
mission. The information required for the lower-level
design is the location of the nodes, the distances between
nodes and the available moving directions. One can con-
clude that in the upper level, the nodes to be passed during
the next mission are determined, while the path used is
determined in the lower level.

In the case of the considered small application, several
shortest-path algorithms, such as genetic algorithms, par-
ticle swarm algorithms, and ant colony algorithms, are

Fig. 6. The optimal path for AMR movement (mission passing
loading node 2 and unloading node 5).
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applicable due to a limited dataset (both the loading and
unloading node arrays include two nodes). Combinatoric
algorithms such as Dijkstra and Bellmann—Ford are less
time consuming, based on their time complexity estimates
O(E+log(N)*N) and O(N*E), respectively. As expected,
the numerical tests performed in the current case study
show that the population-based algorithms are signifi-
cantly slower. The optimal path indicated by the red line
in Fig. 6 corresponds to the route 1-2-5-6-1 and has the
length of the path equal to 175 units. The most suitable
optimal path algorithm (fast and simple to implement) de-
pends on the particular problem or class of problems con-
sidered. For the problem considered, the Dijkstra algo-
rithm was the best.

4. CONCLUSIONS

The aim of this study was to investigate how mobile
robots in the food industry, which are autonomous and
adaptable to different use cases, can be combined with Al
functions, which control their movements and transport
tasks, and with the company’s existing resource planning
system, which helps to optimize their work processes. To
address this task, a virtual factory (VF) was created using
a 2D drawing of the company’s floor plan, which repre-
sented as accurate a 3D model as possible of what actually
happens in the food industry. The VF simulation used the
company’s real production data to evaluate the suitability
and usefulness of AMR in a given environment and their
integration with existing processes. The proposed holistic
approach using digital solutions is a quick and easy way
to find a solution to a specific problem and analyze and
evaluate the results based on that.

The case study and the advanced simulation model
proposed in the paper create a cyber-physical environment
with an integrated ERP system, a mobile robot control
system as well as a VF with workstations and Al functions
to help solve the problems of planning transport orders
for robots. This makes it possible to test various digital
solutions in advance in a VF and choose the most ef-
fective, simple, and cost-effective of them when using AL

Applying the principles of the decentralized control
system, in cooperation with the VF concept, we can create
simple and understandable Al optimization models for
generating AMR transport missions, which are easier for
system operators to set up and manage according to the
specifics of the company and the existing production plan.
This innovative approach allows AMR systems to be
simulated, optimized, and improved in advance to ensure
easier and faster creation of these transport tasks and
efficient and flexible transport of goods on the factory
floor.
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Autonoomsed mobiilsed robotid tootmislogistikas:
protsessi optimeerimismudeli muutmine

Tdnis Raamets, Jiiri Majak, Kristo Karjust, Kashif Mahmood ja Aigar Hermaste

Digitaalsed lahendused on muutunud tootmisettevotetele tiha olulisemaks, suurendades tootlikkust, tShusust ja konku-
rentsivoimet globaalsel turul, mis nduab madalaid hindu, kdrget kvaliteeti ja kiiret tarneaega. Tootmise efektiivsuse pa-
randamiseks tuleb optimeerida ka tootmisporandal toimuvaid transporditegevusi protsesse digiteerides ja auto-
matiseerides.

Paljud ettevotted juba kasutavad voi plaanivad kasutada autonoomseid mobiilseid roboteid (AMR), et hallata toot-
mislogistikat efektiivsemalt. Asjade interneti (IoT) ja AMRide riist- ja tarkvara kiire areng vdimaldab neil sooritada au-
tonoomseid iilesandeid diinaamilistes keskkondades, kus nad saavad suhelda ja tegevusi iseseisvalt koordineerida teiste
ressurssidega, nagu masinad ja siisteemid. See voimaldab detsentraliseerida tootmisega seotud otsustusprotsessi. De-
tsentraliseeritud otsustamine omakorda vdimaldab tootmissiisteemil diinaamiliselt kohaneda siisteemi oleku ja keskkonna
muutustega. Need arengusuundumused on mdjutanud traditsioonilisi planeerimis- ja kontrollimeetodeid ning otsus-
tusprotsesse, eeldades tarkvara ja sisseehitatud tehisintellekti (Al) algoritme, mis oleksid voimelised neid otsuseid
tditma.

Selles uuringus kirjeldame, kuidas kasutada virtuaalse 3D-tehase kontseptsiooni, et integreerida Al-funktsionaalsu-
sega AMR-siisteem toiduainetodstuse tootmislogistikasse. Artiklis esitatakse ldhenemisviis AMRIi joudluse analiitisiks
tootmistehase pdrandal kaupade transportimisel, mis pdhineb 3D-paigutuse loomisel ja simuleerimisel, peamiste tule-
musnditajate jalgimisel ning tehisintellekti kasutamisel proaktiivseks otsustamiseks tootmisplaneerimises. Toiduaine-
to0stuse juhtumiuuring nditab véljapakutud lahenemisviisi asjakohasust ja teostatavust.
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Abstract. Cloud-based Services and Data Analytics (DA) in manufacturing has an extremely important role. Data itself,
as a source of information and processed data for improvement. The necessity of digitalization on the shop floor enables
different data sources which are key to advanced analytics. To achieve this, various sensors, programmable logic controllers
(PLCs), input/output (I0) devices, etc are used. The objective is that a company controls a process or production, based on
collected data, using data analytics procedures and if needed Al-based decision-making algorithms. In this article, we
provide an example of how a set of production and performance data are gathered in real-time, and an operational data set
is used and analyzed for improvements in the planning and execution phase. The manufacturing data model is based on
specific workplace or operation and describes the activity as a part of process or involves the whole manufacturing process.
The analytics model, based on key-performance indicators (KPIs), provides an opportunity to understand the situation, and
to learn to be able to predict different scenarios with different variables. In this article, some examples of data analytics for
performance improvement are presented.

INTRODUCTION

The last few years have been challenging for the global economy and manufacturing. Manufacturers have been
struggling to recruit and retain workers in the sector. In 2019, according to Eurofound, 39% of European
manufacturing enterprises reported limitations in production due to labor shortages. It is predicted by United Nations
(UN) analysis that Europe will lose 95 million workers between 2015 and 2050 [1]. This is a multi-level problem with
no single solution. The key is to concentrate on strategies that will improve the current situation. Firstly, to attract,
engage and retain the next generation of manufacturing workers. The nature of a specialist in manufacturing has
changed and will be even more. Manufacturing is currently a combination of different fields etc. automation, IT,
mechanics, and electronics. This requires a high level of knowledge. The industry’s priority in this ever-changing
environment is to find effective methods, procedures, and measures that would allow its flexibility to change
conditions [2].

Secondly, to enhance productivity by using digital tools in companies to compensate for the lack of labor.
Entrepreneurs have the technological capabilities in terms of equipment and machinery, but the pressure of lack of
workers is a vital problem. Using various smart sensors and digital tools, it is possible to raise the flexibility and

Modern Materials and Manufacturing 2023
AIP Conf. Proc. 2989, 030006-1-030006-6; https://doi.org/10.1063/5.0189502
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efficiency of a workplace [3]. One thing is to monitor or plan processes and production by ERP or MES, another is to
integrate the data back into the workplace with optimized parameters.

In this article, we discuss and present examples in terms of productivity and digital tools, stated above. The study
is carried out in small and medium-sized enterprises (SMEs), in Estonia. The company is equipped with modern
machinery, based on CNC controlled, etc. bending, turning, milling, and supported by industrial robots (IRs) for
welding, machine tending, and packaging. Common digital tools such as ERP is used to monitor and plan production,
but digital tools are not used to specify what is happening inside one workplace.

LITERATURE REVIEW

Industrial Internet

The industrial internet means digitization on an industrial scale where ICT technologies are used in sectors and
places where they have not been used before. The physical world includes, for example, industrial machines and
devices, their actuators, and sensors. In addition, the physical world is represented by an information network, through
which data can be continuously transmitted to the digital world. The digital world is thus represented by the data itself,
cloud platforms, data analytics, and algorithms. Various software and program-based services serve as the user
interface of the digital world. By continuous data collecting and analysis, the systems of the physical world can be
connected to a larger hyperphysical ecosystem. Through this, companies can create new operating models, products,
and even more autonomous and dynamic solutions [4]. Moreover, the application of industrial internet to digitalize
and evolve manufacturing systems can be perceived as Cyber-Physical Production Systems (CPPS) such systems
represented a physical system in the virtual world and vice-versa. They can be developed and implemented for the
purpose of autonomous decisions in manufacturing processes [5].

Cloud-based services

Cloud computing is the delivery of services such as servers, storage databases, networking, software, or analytics
over the Internet. By using cloud services, users are offered faster innovations, flexible resources, and the ease of use
of the different technologies. Exploiters usually pay for the services they use which helps keep the operating costs
down and the infrastructure can be run more efficiently [6].

Kuzmiakova [7] has listed nine reasons why organizations are turning to cloud computing services:

e Inexpensive: it saves a lot of money as users do not have to invest in physical hardware. Users do not have to

be highly trained in maintaining hardware.

e High speed: the resources needed by the system can be acquired in a shorter time.

e  Back-up and restore data: when data is stored in the cloud, backups and restore tasks can be executed easily

and fast.

e Automatic software integration: normally cloud integrates software automatically. The user is not required to

customize and integrate the applications.

e Reliability: the cloud technologies normally update the users on any occurred alterations immediately.

e Mobility: the user only needs an internet connection to access cloud services.

e  Unlimited storage capacity: in most cases, storage capacity can be extended almost limitless and monthly fees

are typically very low.

e  Collaboration: cloud technology allows users to communicate around the world in a secure way.

e Quick deployment: transferring the service to a cloud platform is usually easy and fast.

REST API

REST is an acronym for Representational State Transfer [8]. In the early days” SOAP (Simple Object Access
Protocol) was mainly used in web services HTTP and SMTP (Simple Mail Transfer Protocol) for transferring data
packages between the same or different platforms. The main difference between these two data transfer methods is
that REST is a hybrid system. When SOAP supports only XML format, REST supports JSON and other formats as
well. This is the main reason why REST has become the most used method for data transfer in web-based applications.
REST is not a protocol; it is rather an architectural principle for managing state information [9].

030006-2
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API is short for Application Programming Interface. It is used to process data inside a closed system. Programmers
can use these APIs to build services that use data and services from external sources. Michel [10] refers to David
Orenstein who describes an API with a metaphor: Imagine that you are building a terrace on your house. You do not
have a hammer though. You know your three neighbors have a hammer. You know that one of the neighbors never
borrows his stuff, so he describes a closed system in this case. The other neighbor, on the other hand, always keeps
the doors of his warehouse open and anyone can pick up goods from his warehouse at any time. This neighbor
represents an open-source system. The third neighbor lends his tools if permission is asked first. So, he is an API
system.

By separating the user interface from the server and data storage, the development of an API is improved. For
example, the portability of the interface to other types of platforms is improved, the project scalability is increased,
and different components can be developed independently. Projects can be easily migrated to other servers or changes
can be made to the database. Therefore, the overall flexibility of the development is increased by the separation [11].

USECASE: DATA COLLECTION AND INTEGRATION

Application of Dimusa system in robot-based workplace

Dimusa is a model-based, real-time production monitoring and prediction system with optimal functionality (with
custom reconfiguration options) with low investment cost and integration time. The production process analyzation
model provides the opportunity to accelerate its application time, together with KPIs specification and the integration
of system procedures. Advanced production monitoring and prediction system are capable of identifying variables
affecting performance, such as measuring and monitoring events and situations that directly affect the reliability of
production systems and processes. An efficient real-time information flow includes data collection in the system:

e the condition of the equipment, e product quality,
e production data, e process data,
e order fulfillment, e error sequence and reason.

e material flow,
The information listed above is essential for making justified and optimal decisions that ensure more efficient:

production planning, use of resources, maintenance of equipment, and planning of it. The working principle of the
Dimusa monitoring system is presented in Figure 1.

-

Figure 1 The principal scheme of Dimusa system
The Dimusa real-time production monitoring and prediction system integrate the following core modules:
e Data collection (process and production). e Analysis of collected data.

030006-3
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e  Process and product-dependent visualization.
e Database.

e Data security and confidentiality.

The sensor system collects various data from the workstations (ambient temperature, pressure, duration, offsets,
and electroluminescence). There are different types of sensors that can be connected to the input terminals of the

Dimusa control unit.

Dimusa system application in a company

The sensors (Figure 3) were installed on CNC bending machine (Amada HFBO 50-20), which is described as a
productive unit, and on the industrial robot (Motoman MRC SK-16), which is described as an operative unit in a robot-
based workplace. The quality of monitored data, for example, the occurrence of errors and machine stops are reported
by the responsible operator who observes the robot-based work cell. If the reason is unknown, it is complicated to

offer a result with the decision algorithm

Opverall, the system measures 5 KPI parameters [12],

e Overall Equipment Effectiveness (OEE)
which is a standard form of measuring
manufacturing productivity.

e Availability which considers unplanned and
planned stops,

Amada HFBO
50-20
L -
SHONCRCONC
Speedipesimin) Speeds(pesimin]  Avail (%) Pert %) Qualityi%) L)

1133pcs

Today Yesteay Thisweek Lastweek Thismonh  Lastmonth  Live view

2410512022 00000 - 2410512022 23

A1 10

800 08:00 10:00 13:00 1400 18:00

Machining time 00:55:16
-

short stop 05:18:42
——
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—
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Figure 2:
e Performance which considers slow cycles and
small stops,
e Quality which considers defects,
e Speed which indicates time per one piece.
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Figure 2 Dimusa monitoring panel
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Figure 3 Example of Amada CNC bending machine sensor activities
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SHOP FLOOR SIMULATION USING COLLECTED DATA

The production and process data, which is measured and collected in previous paragraph, is momentous
information input for running simulations with different scenarios. For the company, a virtual robot-based workplace
model was created, using Visual Components software. It is a tailor-made digital environment and describes the
physical manufacturing unit identically Figure 5.

In the virtual model, it is essential to present the behaviour of a real production system in a realistic and equally
dynamic way by using physical cell data and appropriate KPIs. One of the greatest advantages of simulation is to
animate a system behaviour with time. As manufacturing simulation, a way to analyse and experiment production
processes in a virtual setting which leads to reduce the time and cost requirements associated with physical testing.
Moreover, it assesses inventory, assembly, transportation, and production within a simulation model, resulting
information helps to improve target KPIs.

The bending cell AS-IS activities were observed in the real environment, layout was mapped, resources and buffers
were identified that are executing the whole bending process of sheet metal. Based on that information a process flow
was constructed (Figure 5), where each activity and corresponding resource are marked. The process starts with the
picking of a blank sheet metal by a robotic arm, positioning of the blank at positioning table, followed by loading of
blank in the bending machine, then bending activity, unloading of bended part, and placing the bended part in the
pallet by industrial robot as a finished good. Subsequently, the process flow helps to create the 3D simulation model,
where the analysis was conducted, and knowledge was captured for the improvement in the throughput of the bending
cell.

Industrial
robot

Bending
machine
* Bending
activity

* Unloading
& placing
of bended

* Picking
part

Industrial
robot

* Loading
of part

Industrial
robot

Figure 4 Process flow of robot bending cell

* Positioning
of part

part

Industrial
robot

. Yaskawa robot (UP20)
. Table for input sheet

. Repositioning table
Bending machine

. Pallet for finished product

NA W R

Figure 5 Virtual simulation model of bending cell in 3D environment
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CONCLUSION

In this study, the importance of Cloud-based Services and Data Analytics have been discussed. Connecting the
manufacturing to Industrial Internet gives the ability to the next generation digital tools to support, monitor, and predict
production results in the future. Data exchange through Cloud-based services, such as REST API allows transferring
data to different platforms, using several formats to execute it. There are benefits to gain from these tools: tools are
inexpensive with no necessity of physical hardware, the resources or data can be acquired in a short time, mobility —
user requires only internet access, collaboration — access is enabled securely worldwide.

In the practical Use case, we concentrated on an SME’s robot-based sheet metal production unit, where the robot
fulfills the operative unit, and the bending machine fulfills the production unit. Data collection and integration were
carried out using the Dimusa system, a model-based, real-time production monitoring, and prediction system with
optimal functionality. Sensors were applied to industrial robot and CNC bending press. According to selected KPIs,
we measured: OEE, availability, performance, quality, and speed. The measured process data was input for creating a
simulation model to evaluate the layout of the robot-based workplace. Moreover, in the future, we can carry out
simulations to optimize the working cycle of a robot-based workplace. Also, to build an automatic dataflow between
the real production workplace and virtual model, creating a functional digital twin, where data exchange will work
both ways.
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Abstract. Today's manufacturing companies have begun to increasingly use digital tools to increase their company
production efficiency, to ensure a low-price level, high quality, and fast delivery time of the product or service in the
conditions of increasing competition in the globalized economy. An important part of improving the company's efficiency
indicators is the ever-more relevant organization of transport operations on the production floor and the digitization and
automation of these processes. More and more companies have adopted or plan to do so in the near future with autonomous
mobile robots (AMR) to manage production logistics. The rapid development of the Internet of Things (IoT) and the
advanced hardware and control software of AMR enable autonomous operations in dynamic environments, which gives
them the ability to communicate and negotiate independently with other resources, such as machines and systems, and thus
decentralize decision-making in production processes. Decentralized decision-making allows the system to dynamically
respond to changes in system state and environment. Such developments have affected traditional planning and control
methods and decision-making processes, but also place greater demands on the software used and integrated Artificial
Intelligence (AI) algorithms for the execution of these decisions. In this study, we provide an overview of how to pilot the
integration of an AMR system with Al functionality in the production logistics of the food industry using the concept of a
3D virtual factory. The paper proposes an approach for the performance analysis of AMR for the transportation of goods
on the production factory floor, which is based on 3D layout creation and simulation, monitoring of key performance
indicators (KPIs), and integration of Al for proactive decision-making in production planning. The relevance and feasibility
of the proposed approach are demonstrated by a food industry case study.

INTRODUCTION

Autonomous mobile robots (AMR) have been introduced in various fields of modern industry to increase
efficiency, productivity, and safe transport of goods, which perform various predetermined transport tasks without
direct operator intervention [1]. Usually, the manufacturers of such AMR systems also have control software that
enables various transport missions to be performed both in automatic mode and via a human-machine interface (HMI)
according to predetermined routes [2].



With the continuous increase in the use of AMR systems, various problems such as deadlocks and conflicts arise,
which cause a decrease in the efficiency of these systems [3]. Also, the complexity of managing and controlling these
AMR systems is an important factor, which limits their implementation in a small or medium-sized company and
inhibits their effectiveness in fulfilling transport tasks.

To analyze the feasibility and efficiency of such AMR systems, a conceptual model based on 3D visualization,
simulation, the use of IoT sensors and experimental research should be used in advance [4] to monitor the existing
KPTI’s in the real work condition [5,6]. Such an approach provides a comprehensive overview of the concept and
performance indicators (KPIs) of a possible AMR solution before its implementation in the company's production
logistics. Moreover, the automation of production processes through robotization can address the Lean wastes
effectively [7] and hence, productivity can be improved by implementation of Lean tools [8] that are affirming the
implementation of AMR on the factory floor.

Recently, an intelligent Al based algorithms like ant colony optimization [9], genetic algorithm [10], A* algorithm
[11], simulated annealing [12], etc. are recognized as powerful tools for mobile robot path planning. In the current
study the combinatoric and Al based algorithms are considered based on workgroup long time experience with Al
tools and methods in wide range of engineering applications [13,14]. The conceptual model of production logistics
also gives us a better understanding of how to organize the optimal and effective management of AMR systems and
how to integrate it with the company's IT systems.

In this article, the authors focus on the creation of configurable automated logistics solutions, including the use of
artificial intelligence functionalities and 3D simulation software for the virtualization and simulation of production
logistics. Based on artificial intelligence-based tools, various algorithms are proposed for easy reconfiguration and
planning of tasks and movement paths of mobile robots.

PROPOSED APPROACH FOR AMR PERFORMANCE ANALYSIS

The proposed approach to analyze the performance and the implementation of AMR for the transportation of goods
on the factory floor is adopted from our previous study [15] as shown in Figure 1, where we include Al elements for
proactive decision-making along with the simulation analysis. The developed approach can be used to automate the
process of production logistics with the help of immersive 3D simulation analysis as a validation of the concept. Its
implementation can be verified through experimental testing in a real factory environment.
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Figure 1. Proposed approach to analyze the performance of AMR for production logistics [15]

The proposed approach has three main stages that begin with the idea generation to automate a process through a
brainstorming activity. From an outcome of brainstorming, the second stage is to develop a virtual model of the process
of production logistics, simulate and analyze that process through KPIs in the 3D virtual environment, and the
knowledge as an outcome of the second stage can be used to implement AMR in the real environment. The simulation
model also helps to create an AI model, which can be validated by different simulation scenario analysis. The third
stage is the implementation and testing of simulation model of a mobile robot along with the AI model as an
experimental use-case, where the data can be captured through IoT sensors, calculations should be made for KPIs and
visualize the performance of the mobile robot by a monitoring dashboard. In this study, the focus is to create a layout
and simulation of the AMR transportation process in a 3D environment and conduct the performance analysis.
Moreover, an Al model was also developed for the route planning and optimal path-finding of AMR. The case study
is used as a research method to attain the feasibility of the proposed approach.

Virtual model and simulation of food industry use-case

The virtual model for setting up the layout and simulation of AMR routings was created on the Visual Components
software [16]. Movement and path planning of AMR is defined as follows: Ten plastic red boxes were transported
(carrying) by AMR at every run on the red paths as shown in Figure 2. and the consolidated view of routings, buffers
for picking and placing goods (boxes) by AMR is depicted in Figure 3.

Setup for plastic boxes:
e Path 1-2 & 1-3: Transportation of washed empty boxes by AMR (picking plastic red boxes from buffer 1,
placing at buffer 2 and buffer 3
e Path 2-4: Transportation of filled boxes by AMR (picking plastic red boxes from buffer 2 and placing at
buffer 4)
e Path 4-5: Transportation of dirty empty boxes by AMR (picking plastic red boxes from buffer 4 and
placing at buffer 5)



Figure 2. AMR pathways setup on factory layout (setup a: for red boxes)

Figure 3. AMR routing map, buffers for picking and placing of boxes



KPIs and simulation analysis of AMR

The number of boxes transported, time of transportation, and average utilization of AMR were selected as KPIs
for the analysis and optimization of AMR movement. Two scenarios were tested, the first scenario with an AMR
speed of 1 m/sec and the second one with an AMR speed of 0.5 m/sec. The result of the simulation analysis is described

in Table 1.

Performance
parameter

Plastic red boxes

Number of boxes
transported

Total time of

transportation
AMR average
utilization

AMR pick & place
time

Total travel distance
by AMR

Table 1. AMR simulation analysis

Scenario 1: AMR Speed 1 m/sec

Buffer 2 and 3: 400 pcs, Buffer 4: 400 pcs,
Buffer 5: 400 pcs

369 minutes (6 hours & 9 minutes)

100 % (continues movement of AMR)

60 sec

14.5 km

Scenario 2: AMR Speed 0.5 m/sec

Buffer 2 and 3: 400 pcs, Buffer 4: 400 pcs,
Buffer 5: 400 pcs

594 minutes (9 hours & 54 minutes)

100 % (continues movement of AMR)

60 sec

14.5 km

USING THE FUNCTIONALITY OF ARTIFICIAL INTELLIGENCE IN THE PATH
PLANNING OF MOBILE ROBOT'S

This task focuses on the development of Al-based decision-making systems for mobile robots, depending on the
task execution and production schedule. This includes the identification of decision criteria, key influencing factors,
and prioritization. The task under consideration is closely related to the task of optimizing work paths for mobile
robots. Decision-making in the considered digitalized solution is based on gathering maximum online information and
analyzing it. Therefore, the main influencing factors are the information obtained from the sensor system and ERP

(Figure 4).
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Figure 4. Principle diagram of AMR data exchange

Simplified description of the node

Particularly, to plan the movements of a mobile robot, it is necessary to receive real time information from the
sensor system at each node. The nodes are divided into a starting node, an array of input nodes (all points where goods
can be picked up), output node(s) where the goods need to be taken, and auxiliary nodes (washing, maintenance,
loading), etc. The information is needed in each node depends to some extent on the specific task.

A visualized example of one production node is given in Figure 5. The object-oriented programming approach is
utilized. The node class includes the following necessary information:

e the number of the node (in essence, it also determines the location),
e the availability of the goods for pickup (Loading),

e the availability of a place to drop off the empty tare (Unloading),

e time (allows to determine the remaining allowed waiting time).

At the moment, each node has Loading and Unloading values of 0 or 1. The time attribute characterizes the
remaining time until preservation (allowed transport time in this case), if it is below the given critical value, then the
priority of moving the given goods is higher.

The above simplified description of the node can be utilized for all subtypes of nodes. Each particular node is
introduced as instance/object of the node class. Two node arrays are composed for input and output nodes,
respectively.The node data is an important part of the necessary information for making decisions, but in addition to
this, there is also more general information for creating a directed graph characterizing the entire movement. This
requires a 2D array/table of all nodes, specifying from which node to which node it is possible to move, as well as the
distances between nodes, etc. If the application already has some user experience and has collected enough data on
travel times, then it seems reasonable to replace path lengths with travel times.



Selection of shortest path algorithms

The shortest path algorithm is used to determine optimal mobile robot path. Herein the shop-floor application for
food industry is considered as a case study (Figure 6). main decision criteria for the robot's movements are the need
and ability to move the goods or the tare (is there something to pick up and is there somewhere to put it down), the
allowed time limit (if the deadline for moving some goods to the output node is below a predetermined value, i.e. the
shelf life limit is approaching) and the shortest path.

At each location/node Figure 5, two “simple” decisions are required:

a) where to move (to which node), you have to decide based on information from online sensors, etc

b) how to move can be planned by generating the shortest paths between nodes in advance

A robot's motion path can be represented as a directed graph since movement between some nodes is only allowed
in one or both directions.

Among shortest-path algorithms, the genetic algorithms (GA), the ant colony algorithms (ACO), and the
combinatorics algorithms have been considered. The Dijkstra algorithm, which has a time complexity of
O(E+log(N)*N), has been chosen from the two observed combinatorics algorithms. Here N is the number of vertices
(nodes) of the graph and E is the number of edges. The "Dijkstra" algorithm is faster than another widely used
Bellmann-Ford combinatorics algorithm with a time complexity of O(N*E). The work done by Dijkstra's algorithm
can be made faster by applying artificial neural networks. The time complexity of the evolutionary algorithms like
GA and ACO depend on particular operators used/designed. In the case of considered simple case study the
evolutionary algorithms appear slower. The advantage of evolutionary algorithms is capability to solve complex
problems.
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Figure 5. AMR motion model for the food industry use case

The optimal path for AMR motion model shown in Figure 6 (1007 is start node, 1029 and 1038 are input nodes,
1135 is output mode, 1009 is wash node) is depicted in Figure 6 as red line in directed graph (Figure 6). The optimal
path of one “mission” of the mobile robot consists of three subpaths from start node to selected input node, next to
selected output node and finally back to start node (all based on online information). The length of the optimal path
1007-1038-1135-1009-1007 is 294 units. Obviously, the optimal bath depends on distances (as weights) and sensor
data specifying availability for Loading/Unloading, also time determining priorities of the nodes.
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CONCLUSION

The main goal of this study was to analyze whether and how autonomous mobile robots can be used in the food
industry based on use case, and whether they can be interfaced with the control system of mobile robots with artificial
intelligence (Al) functionality and with the company's existing resource planning system in order to optimize the
movement trajectories and transport tasks of mobile robots through their interaction.

During the research, the VF concept was created, where a 3D virtual factory of the food industry, created on a 2D
floor plan of a physical factory, was used to analyze the feasibility of using a mobile robot. Real production data was
used as input for the VF simulation. This approach is a quick and less time-consuming process for solving a specific
problem of a manufacturing company, and the results obtained are concrete and easy to interpret.

The concept was proposed to create a cyber-physical environment, where an enterprise resource planning system
(ERP), a mobile robot control system, a virtual factory with workplaces and artificial intelligence functionality to
solve robot planning tasks are interfaced. This approach allows us to test the suitability of various solutions in advance
on the basis of a virtual factory and to find which solution is the most optimal for the use of artificial intelligence and
the most cost-effective for the company.

Based on the principle of a decentralized control system, building control models using artificial intelligence for AMR
transport missions is much more efficient than using it in conjunction with the VF concept. With such a novel
approach, AMR systems can be simulated in advance, optimized and made more efficient in order to ensure a much
easier and faster generation of the transport tasks assigned to them, and thereby achieve efficient and flexible
movement of goods on the factory floor and integration with other production systems.
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ABSTRACT

This paper examines the development of a virtual factory model to optimize overall equipment
effectiveness (OEE) in a planned manufacturing facility. Using digital simulations based on a
wood manufacturing setup, Al-driven models can be applied to analyze specific OEE metrics,
allowing for targeted identification of production bottlenecks and efficiency improvements.
The virtual factory enabled scenario testing for the proposed facility, providing actionable
insights without impacting current operations. The preliminary results indicate that Al in-
tegration within a virtual factory can significantly enhance planning and decision-making for
future production investments.

Introduction

Enhancing competitiveness and efficiency in manufacturing processes is a key
priority in modern industry [1]. The optimization of production workflows through
advanced technologies such as artificial intelligence (Al) and virtual factories offers
innovative solutions for addressing bottlenecks and improving overall operational
performance [2]. This study focuses on analyzing and optimizing the production
processes of a wood manufacturing company by employing a virtual factory model
augmented with Al-based tools [3]. In this study, the virtual factory evaluates a new
manufacturing facility layout and production flows at the early design stage. Unlike
previous studies that broadly explore Al applications in manufacturing [4], this
research explicitly applies Al-driven clustering for real-time overall equipment ef-
fectiveness (OEE) optimization in wood manufacturing. The novelty of this approach
lies in proactively integrating Al clustering techniques to detect and mitigate bottle-
necks in a virtual factory environment. This allows manufacturers to simulate and re-
fine production strategies before implementation, ensuring data-driven improvements
in efficiency and cost reduction. The research investigates the production process
of wooden window frames and doors, encompassing computer numerical control
(CNC)-based machining and assembly tasks, material impregnation, and painting
workflows. The primary challenges include balancing production flows, optimizing
equipment utilization, and enhancing quality control. Using the Siemens Tecnomatix
Plant Simulation (STPS) platform, the production flows of the new facility were
modeled, and the optimal allocation of workstations and production resources was
assessed [5]. The findings demonstrate that the virtual factory model, combined with
the Al-driven analysis, is an effective tool for optimizing manufacturing processes.

Proposed approach for production process optimization and
analysis

Optimizing production processes in wood manufacturing has become a critical re-
quirement for ensuring competitiveness, operational efficiency, and adaptability to
evolving demands. In the wood manufacturing industry, unique challenges arise due
to the complexity of workflows, resource dependencies, and variability in product
specifications. Addressing these challenges requires a systematic approach that com-
bines cutting-edge tools and data-driven strategies. This study proposes a multi-
faceted methodology to tackle inefficiencies and enhance productivity within the



wood manufacturing company’s operations. The proposed
approach consists of three key components: (1) virtual factory
modeling, (2) real-time data collection, and (3) Al-based
analysis. STPS was used to create a digital twin of a wood
manufacturing facility, including CNC machining, material
handling, and finishing workflows. The model was built using
real-world production data provided by the company. We
applied k-means clustering (k= 5, determined using the elbow
method) to OEE data collected over three months to analyze
production inefficiencies. The clustering algorithm segmented
inefficiencies into meaningful categories, identifying under-
performing workstations and recurring bottlenecks. The cluster
validity was assessed based on the stability of identified
workstation groups and their correlation with real production
inefficiencies observed in the factory. As part of the Al-driven
analysis, we identified the five worst-performing (bottleneck)
workstations and the five best-performing workstations based
on the OEE metrics. These insights were visualized to high-
light key areas for process optimization and efficiency im-
provements. The identified bottleneck workstations exhibited
higher idle times and lower throughput, whereas the best-
performing workstations demonstrated stable efficiency with
minimal downtime. The proposed framework builds upon
prior research into the integration of virtual factory environ-
ments with autonomous systems for production logistics
optimization [6]. Unlike previous approaches, this study fo-
cuses specifically on Al-assisted decision-making within a
virtual factory environment in the wood manufacturing
sector. The combination of real-time monitoring and Al-
driven clustering analysis enables manufacturers to pre-
emptively adjust workflows, enhancing production efficiency
and flexibility.

Figure 1 illustrates a systematic approach to optimizing
production processes in the wood manufacturing industry.
It highlights three key components: virtual factory, which
enables the simulation and analysis of workflows; real-time
data collection, which gathers operational data from the manu-
facturing floor; and Al-based analysis, which processes data
to identify bottlenecks, predict inefficiencies, and provide
actionable insights. Inputs such as machine specifications,
workflow details, and production goals feed into the system,
while outputs include optimized workflows, balanced re-
sources, and improved quality control. These elements create
a scalable and cost-efficient framework for addressing inef-
ficiencies and enhancing productivity.

Integration of the virtual factory environments

(case study)

Virtual factories, developed like digital twins, are digital rep-
resentations of physical manufacturing systems that enable
detailed modeling, simulation, and optimization of production
processes without disrupting real-world operations. These en-
vironments allow manufacturers to analyze workflows, ma-
chine interactions, material handling, and human resource
allocation within the production line, facilitating informed
decision-making and process improvements [7]. In this study,
a comprehensive virtual factory model was developed for a
wood manufacturing company. This tool enables the creation
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Fig. 1. Proposed framework for production process optimization.

of a digital twin that replicates the physical production en-
vironment, allowing for a detailed analysis and testing of
workflows without interfering with actual operations. The
virtual factory model integrates essential production pro-
cesses, including CNC machining, assembly, material han-
dling, and finishing workflows. Key inputs, such as machine
specifications, cycle times, and production targets, were pro-
vided by the company and integrated into the model to
accurately replicate real-world conditions. Through this vir-
tual representation, various production scenarios were simu-
lated to predict potential inefficiencies, identify bottlenecks,
and assess the impact of proposed changes on system per-
formance. For instance, layout adjustments and transport flow
optimization scenarios were tested to improve throughput and
reduce idle time. Such applications of virtual factories enable
manufacturers to experiment with process designs, resource
allocations, and operational strategies without the risks and
costs of physical trials. The effectiveness of virtual factories
in manufacturing optimization has been extensively demon-
strated in recent studies. Digital twin systems have been
shown to enhance production efficiency by enabling real-time
monitoring and predictive analytics, leading to significant
reductions in downtime and improved resource utilization [8].
Additionally, virtual factory models have proven effective in
streamlining workflows and optimizing resource allocation,
resulting in lower operational costs and higher throughput [9].

Figure 2 presents the virtual factory model created for the
wood manufacturing company using the STPS software. The
layout depicts the production flow, encompassing CNC ma-
chining, assembly, material handling, and finishing work-
flows. Accompanying the model is a “Resource Statistics”
chart, which provides insights into key performance indi-
cators (KPI) such as resource utilization, working times, idle
times, and bottlenecks across various stations. This virtual
factory model facilitated the simulation of production sce-
narios, including layout optimization and transport flow im-
provements, identifying inefficiencies, and the development
of actionable strategies to enhance overall throughput and
reduce idle time.
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Real-time data collection for enhanced accuracy
Real-time data collection, enabled by manufacturing ex-
ecution systems (MES), provides critical metrics such as
machine availability, cycle times, resource utilization, and
defect rates. These metrics are integrated into the virtual fac-
tory model to ensure that it remains an accurate and dynamic
representation of the physical production environment. Con-
tinuous monitoring supports effective simulations and data-
driven workflow optimization [10]. MES with real-time data
collection capabilities ensure operational transparency, en-
abling real-time adjustments to workflows and enhancing
production efficiency. Integration with digital twin tech-
nology has been shown to improve OEE through enhanced
scheduling accuracy and predictive maintenance [11]. This
capability is essential in dynamic manufacturing environ-
ments, where agility and responsiveness are critical for adapt-
ing to fluctuating production demands. The DIMUSA MES
interface, as shown in Fig. 3, visualizes critical production
metrics for specific machines, such as a crosscut saw and a
four-sided planer. These dashboards display KPIs [12,13],
including availability, performance, quality, and OEE. The
system tracks real-time working hours, short stops, long stops,
and off times, providing a clear overview of machine per-
formance and utilization.

This visualization enables factory operators to monitor
production in real-time, identify inefficiencies, and make im-
mediate adjustments to workflows. By integrating this data
into the virtual factory model, decision-makers can enhance
process accuracy and efficiency. Real-time data collection
aligns with Industry 4.0 principles, facilitating automation,
connectivity, and the use of advanced analytics. These sys-
tems enable factories to transition seamlessly between pro-
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duction scenarios, reducing downtime and improving re-
source allocation.

Al-based analysis for data-driven optimization

Al plays a pivotal role in the proposed methodology by
analyzing the collected data and generating actionable in-
sights. By leveraging Al-driven clustering techniques, pro-
duction inefficiencies can be identified more effectively,
allowing manufacturers to address systemic bottlenecks be-
fore they escalate into major disruptions. This study applied
clustering methods to OEE metrics to identify patterns and
segment production data into meaningful groups. K-means
clustering (k = 5, determined using the elbow method) was
selected as the primary approach due to its efficiency in han-
dling large industrial datasets and its ability to create clearly
defined clusters based on similarity measures. K-means clus-
tering was chosen over other machine learning approaches,
such as hierarchical clustering or Gaussian mixture models,
due to its efficiency, scalability, and adaptability to manu-
facturing environments. The time complexities of the k-means
clustering, hierarchical clustering and Gaussian mixture
models are given in Table 1 [14].

It can be observed from Table 1 that in the case of large
dataset capacity, the time complexity of the k-means cluster-
ing is substantially lower than that of hierarchical clustering.
The Gaussian mixture models complexity is higher due to
covariance computations. Unlike deep learning methods,
k-means provides interpretable cluster assignments, enabling
engineers to quickly identify underperforming machines or
processes. Since OEE metrics fluctuate based on production
schedules, k-means effectively groups machines by perform-
ance trends, making it easier to track changes over time and
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Table 1. Comparison of time complexities
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n — number of data points,
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d — number of dimensions

implement data-driven optimizations. The proposed approach
enables a deeper understanding of the factors affecting avail-
ability, performance, and quality within the manufacturing
process. By applying clustering algorithms to OEE metrics,
specific production bottlenecks and inefficiencies were iden-
tified. These insights were used to optimize resource allo-
cation, balance workflows across the production line, and
implement targeted predictive maintenance strategies, reduc-
ing downtime and improving overall system performance.
The clustering-based analysis has proven effective in manu-
facturing, offering precise optimization strategies that en-
hance production efficiency and resource utilization [15].
By incorporating these methods, this approach ensures a pro-
active and data-driven framework for optimizing manufactur-
ing operations.

Figure 4 presents the results of the clustering analysis
applied to the OEE metrics, visualized as a scatter plot. The
x-axis represents availability (%), while the y-axis represents
performance (%). Each point in the plot represents an indi-
vidual workstation, and different colors indicate the cluster
to which each workstation belongs based on its operational
characteristics. The clustering analysis effectively groups
workstations according to their efficiency levels, revealing
patterns across the production environment. Workstations
located in the lower-left quadrant exhibit both low availability
and low performance, identifying them as critical bottlenecks

n — number of data points

n — number of data points,
k — number of Gaussian components,
d — number of dimensions

that require intervention. In contrast, workstations in the
upper-right quadrant maintain high availability and high per-
formance, serving as benchmarks for optimal efficiency. This
visualization provides a clear overview of production imbal-
ances, helping manufacturers pinpoint underperforming work-
stations and analyze the causes of their underperformance.
Workstations within the lowest-performing clusters often
suffer from frequent downtime, suboptimal scheduling, or in-
efficient resource utilization. By leveraging these insights,
targeted actions such as redistributing workloads, adjusting
production schedules, or implementing predictive mainte-
nance strategies can be taken to enhance efficiency. The abil-
ity to visually segment workstations based on OEE data en-
sures that production optimizations are data-driven rather
than reactive. This approach allows for proactive decision-
making, leading to more balanced workloads, minimized
downtime, and improved overall production performance.

A scalable and cost-efficient framework

The key advantages of the proposed methodology are its scal-
ability and cost efficiency. Unlike traditional trial-and-error
approaches, which require significant time and resources, this
integrated framework minimizes risks and provides imme-
diate feedback on the feasibility of proposed changes. It is
particularly well suited for dynamic manufacturing environ-
ments, where adaptability and responsiveness are crucial.
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By combining the predictive power of virtual factory models,
the accuracy of real-time data collection, and the analytical
depth of Al-based techniques, this methodology enables
manufacturers to achieve continuous improvement and
maintain a competitive edge in their industries.

Conclusion

The proposed approach presents a comprehensive framework
for identifying inefficiencies and optimizing workflows in the
wood manufacturing company. By combining advanced si-
mulation tools, real-time monitoring systems, and Al-driven
analysis, this methodology enables a deeper understanding of
production processes and their performance. Simulation tools
allow manufacturers to create a digital twin of the production
environment, where different scenarios can be tested without
disrupting actual operations. Real-time monitoring systems
continuously collect production data, tracking machine avail-
ability, performance metrics, and potential bottlenecks. The Al-
driven analysis processes this data, detecting patterns and
inefficiencies that may not be immediately visible through
traditional monitoring methods. By integrating these compo-
nents, the proposed framework not only identifies operational
weaknesses but also provides data-driven recommendations
for improvements. This enables proactive decision-making,
allowing managers to anticipate and address production chal-
lenges before they escalate. The result is a more efficient, re-
silient, and optimized manufacturing process, where resources
are utilized effectively, workflows are balanced, and pro-
ductivity is maximized.
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Virtuaaltehase mudeli arendamine tehisintellektil pdhinevaks tootmise

optimeerimiseks

Tonis Raamets, Kristo Karjust, Aigar Hermaste ja Karolin Kelpman

Uuringus késitletakse tehisintellektil pdhineva anallilisi rakendamist virtuaaltehase mudeli arendamisel ees-
margiga optimeerida tootmisseadmete lldist t6husust puidutddstusettevottes. Uuringus kasutati Siemens
Plant Simulationi tarkvara, et luua digitaalne kaksik, mis véimaldab tootmisvoogude simulatsiooni ja anallisi.
Lisaks koguti reaalajas andmeid tootmisjuhtimissiisteemi abil, et mudelit tdpsustada ja pakkuda diinaamilist
llevaadet tootmisprotsessidest. Kogutud andmete analiilisimiseks rakendati klastrianallitisi, mis véimaldas
tuvastada kitsaskohti ja ressursikasutuse ebatdhusust. Simulatsioonide ja andmep®dhiste soovituste pohjal
optimeeriti td6jaamade paigutust ja ressursijaotust, mis parandas tootmisvoogude tasakaalu ja véhendas
kitsaskohtade esinemist. Tulemused néitavad, et virtuaaltehase mudelite ja tehisintellekti integreerimine aitab
tosta tootmisvoogude tdhusust, véhendada seisakuid ja suurendada investeeringute planeerimise tapsust.
Pakutud ldhenemine toetab tdnapdevase puidutddstuse vajadust paindlike, skaleeritavate ja kuluthusate

lahenduste jarele, jargides Industry 5.0 pdhimdtteid.
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Abstract

Small and medium-sized enterprises (SMEs) in the manufacturing sector often struggle
to make effective use of production data due to fragmented systems and limited digital
infrastructure. This paper presents a case study of implementing an Al-enhanced digital
twin in a custom sportswear manufacturing SME developed under the AI and Robotics
Estonia (AIRE) initiative. The solution integrates real-time production data collection
using the Digital Manufacturing Support Application (DIMUSA); data processing and
control; clustering-based data analysis; and virtual simulation for evaluating improve-
ment scenarios. The framework was applied in a live production environment to analyze
workstation-level performance, identify recurring bottlenecks, and provide interpretable
visual insights for decision-makers. K-means clustering and DBSCAN were used to group
operational states and detect process anomalies, while simulation was employed to model
production flow and assess potential interventions. The results demonstrate how even
a lightweight Al-driven system can support human-centered decision-making, improve
process transparency, and serve as a scalable foundation for Industry 5.0-aligned digital
transformation in SMEs.

Keywords: industry 4.0; industry 5.0; digital twin; Al optimization; cluster analysis;
production monitoring systems; sustainability; human-centered design; smart factory

1. Introduction

The digital transformation of manufacturing has progressed rapidly over the past
decade, driven by the principles of Industry 4.0, which encompass automation, data ex-
change, and cyber-physical systems [1,2]. While these advancements have enabled greater
efficiency and traceability in large-scale enterprises, small and medium-sized enterprises
(SMEs) often encounter structural, financial, and technical obstacles that impede the adop-
tion of advanced digital tools. SMEs involved in small-batch, order-based production
frequently operate with fragmented systems, manual data collection, and limited ana-
lytical capabilities, which restrict their ability to adapt flexibly to process variations and
inefficiencies [3]. The emerging paradigm of Industry 5.0 introduces a complementary
perspective, highlighting human-centric, sustainable, and resilient manufacturing sys-
tems [4,5]. Instead of replacing humans with automation, Industry 5.0 aims to enhance
human capabilities through digital tools that foster interpretability, collaboration, and adap-
tive decision-making. In this context, digital twins (DTs) have emerged as a key enabler,
providing real-time representations of physical systems and establishing a foundation for
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simulation, optimization, and intelligent feedback through the sensors. Previous research
has illustrated the potential of digital twins in high-volume manufacturing, particularly
when integrated with artificial intelligence (AI) for predictive modeling and control. How-
ever, their application in SMEs remains restricted, primarily due to the complexity and
cost of implementation, as well as the need for interpretable, human-aligned outputs [6].
This study is based on the principle that even lightweight, modular digital twin systems, if
appropriately designed, can yield significant value in SME environments. The research was
conducted as part of the Al and Robotics Estonia (AIRE) initiative, a national competence
center at Tallinn University of Technology, that promotes the “test before invest” philosophy,
allowing companies to experiment with digital solutions before full-scale deployment [7,8].
The case presented in this paper focuses on a small to medium-sized enterprise (SME) in
Estonia that specializes in the manufacture of custom sportswear. The project aimed to
implement a real-time digital twin framework built on the Digital Manufacturing Support
Application (DIMUSA), enhanced with cluster-based analytics and virtual simulation [9,10].
The aim was to analyze workstation-level data, identify process bottlenecks, and assist
production decisions in a format that could be easily interpreted by operators and man-
agers. While digital twins have been widely applied in highly automated, high-volume
environments, their practical use in SMEs with flexible, order-based production remains
underexplored. Furthermore, this study utilizes a digital shadow, a one-way, real-time
data display of production processes, rather than a full bidirectional digital twin, which is
more suitable for SME conditions. This study aims to address this gap by implementing
and evaluating an Al-supported digital shadow system for real-time decision-making
in a custom sportswear SME. The primary objective is to identify and mitigate perfor-
mance bottlenecks and to enhance responsiveness through simulation-based analysis and
clustering of workstation-level performance data. The approach draws inspiration from
Lean manufacturing principles and follows a DMAIC-style methodology (Define, Measure,
Analyze, Improve, Control), enabling systematic analysis of production inefficiencies in a
dynamic SME context [11,12]. The paper begins by outlining the methodological frame-
work, including the system architecture, data sources, and analytical tools used in the study.
This is followed by a presentation of the implementation results and insights gained from
the pilot case. The discussion then examines the implications of these findings for Industry
5.0 and digitalization in small and medium-sized enterprises. The paper concludes with
reflections on lessons learned and suggestions for future research.

2. Materials and Methods

To evaluate the proposed digital twin framework in a real-world production environ-
ment, a pilot implementation was carried out at a custom-made sportswear SME in Estonia.
This section outlines the structure and components of the solution, including the system ar-
chitecture, simulation model, data collection methods, and analytical techniques employed
for process monitoring and improvement. The approach was developed collaboratively
with company stakeholders to ensure minimal disruption and maximum clarity.

2.1. Overview of the Framework
The Al-based digital twin proposed integrates three main components:
(1) real-time production data acquisition and processing,
(2)  cluster analysis to detect production patterns and anomalies, and
(3) simulation for validating improvement scenarios and visualizing process behavior.
The solution architecture is illustrated in Figure 1. The central element of the frame-
work is the DIMUSA platform(v1.4, 2024 release), which collects and organizes workstation-
level production data via a custom-built Application Programming Interface (API). These



Appl. Sci. 2025, 15, 7952

30f19

data are enriched with contextual information (e.g., product type, shift time) and fed into a
clustering module for unsupervised analysis. Simulation models are used both to explore
process optimization options and to validate analytical outputs under controlled, repeat-
able conditions. To ensure systematic and replicable implementation, the approach draws
inspiration from Lean manufacturing principles and follows a DMAIC-style methodology
(Define, Measure, Analyze, Improve, Control), commonly used in Six Sigma frameworks.
In the Define phase, the project scope was established in collaboration with stakeholders,
focusing on production delays, idle times, and prioritization issues. During the Measure
phase, real-time data on workstation utilization, cycle durations, and product flow were
collected through the DIMUSA interface. The Analyze phase employed K-means cluster-
ing to classify workstation performance and identify inefficiencies. In the Improve phase,
simulation experiments with Tecnomatix Plant Simulation tested improvement strategies,
such as operator reassignment and task re-sequencing. Finally, the Control phase proposed
real-time monitoring dashboards based on digital shadow logic, allowing operators and
managers to track KPIs and detect deviations early. This structured approach supports
informed decision-making and continuous improvement in dynamic SME environments.

/ Process Data
Order details
Production quantity
Workstation cycle times

DIMUSA API
(3) (1) (2)

Virtual Factory Simulations Real-Time Data Layer DIMUSA
Process logic validation Timestamped data logging
Scenario testing ERP integration

Al-Based Analysis
K-means clustering
DBSCAN anomaly detection

Optimized workflows
Process transparency
Human-centered decision support
Operational improvements

PROPOSED FRAMEWORK

Figure 1. Digital twin framework utilized in pilot SME, integrating real-time data collection and
validation, clustering analysis, and simulation for decision support.

2.2. Production Environment Description

The pilot company specializes in small-batch, order-based production. Products are
made-to-order, often in varying quantities and combinations, which creates a highly dy-
namic and variable production flow. The shop floor is divided into functional workstations,
including fabric cutting, sewing, printing, and packaging. Before the pilot, the company
relied heavily on manual data entry and Excel-based reporting, which limited visibility
into real-time performance and made it challenging to detect inefficiencies across work-
stations [13]. The project aimed to implement a more automated and interpretable system
for production monitoring, bottleneck detection, and decision support. The production
system is structured into sequential workstation zones, each responsible for specific stages
of the process. These include fabric cutting, preparation, printing, and packaging. Figure 2
illustrates the physical layout of the production area, highlighting the relative positions
of the workstations involved in the pilot implementation. This layout informed sensor
placement, data mapping, and the clustering logic used throughout the study.
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Figure 2. Physical layout of the production area with marked workstation zones used in the pilot
implementation.

Table 1 presents the list of workstation codes used in the pilot implementation, along
with their corresponding functions and process descriptions. These stations represent
the core steps in the company’s small-batch production workflow, including material
handling, cutting, preparation, pressing, quality control, sewing, and packaging. The
coding was used in both data collection and simulation modeling to map digital records to
physical operations.

Table 1. Workstation codes, activities, and process descriptions used in the pilot SME.

Code Workstation/Activity Process Description

KJ-KLO010 Staging and material placement Marking and transporting material from fabric storage
KJ-JL020 Cutting Cutting material according to the cutting order
KJ-VDO031 White parts preparation Preparing white fabric parts for pressing
KJ-VD032 White parts preparation Preparing white fabric parts for pressing
KJ-vDO033 White parts preparation Preparing white fabric parts for pressing
KJ-VD034 White parts preparation Preparing white fabric parts for pressing
KJ-PL040 Plotter Preparing press rollers for sublimation
KJ-PR050 Pressing Pressing visual elements onto white parts
KJ-KK061 Quality control Inspecting the quality of pressed parts
KJ-KK062 Quality control Inspecting the quality of pressed parts
KJ-KK063 Quality control Inspecting the quality of pressed parts
KJ-KK064 Quality control Inspecting the quality of pressed parts
KJ-OMO070 Sewing Sewing product components

KJ-PA080 Packaging Packaging finished products
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2.3. Virtual Factory Simulation

To complement and validate the analytical logic, a simplified virtual factory simulation
model was developed using Siemens Plant Simulation software (2025) [14]. The simulation
tested hypotheses generated from clustering analysis, such as workstation overloads, un-
derutilization, and unexpected waiting states, by recreating similar patterns in a controlled
environment. This approach allowed the team to assess the causality of observed anomalies
and adjust their interpretation of data patterns accordingly. In addition to diagnostic use,
the simulation environment enabled the testing of improvement scenarios. Changes such
as layout reconfiguration, workstation reordering, and order sequencing modifications
were evaluated for their impact on throughput, lead times, and resource balancing [15].
The model mirrored the pilot company’s production flow, incorporating dynamic order
routing, buffer behavior, and empirically derived cycle time distributions. The simulation
ensured that the real-time data architecture and analytics aligned with the actual process
behavior before full deployment [16]. Furthermore, it served as an effective communication
tool to explain complex process dynamics to non-technical personnel and facilitate decision-
making discussions [17]. Figure 3 shows a screenshot of the virtual factory simulation
model used during the pilot.

Figure 3. Screenshot of the virtual factory simulation model created in Siemens Plant Simulation to
validate data patterns and test production improvement scenarios.

2.4. Data Acquisition and Integration

To support real-time data acquisition in the pilot project, a custom data pipeline was
developed by integrating multiple existing and purpose-built components. The company’s
Enterprise Resource Planning (ERP) system provided information on production orders
and routing. At the same time, Microsoft Excel365 (Version 2406, Build 17726.20126),
enhanced with Visual Basic for Applications (VBA) macros, was used for manual input
and structured formatting. A custom-developed API enabled live data collection from
shop-floor terminals and edge devices directly from workstations. All collected data were
then centralized and visualized within the DIMUSA platform, serving as the primary
hub for both monitoring and analysis. The data captured through this system included
the order number, product ID, workstation identifier, and precise timestamps marking
the start and end of operations. In cases of interruptions or abnormal events, operators
manually entered reason codes and additional contextual information. These structured
and timestamped records provided the analytical foundation for performance evaluation
and cluster-based analysis in the subsequent stages of the project. Figure 4 illustrates the
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interface of the DIMUSA system platform, which is used for live monitoring and manual
input. The dashboard enabled operators and supervisors to track production progress,
identify and visualize the bottlenecks, and contribute relevant context during exception
events, enhancing both traceability and interpretability throughout the system.

Press KJ-PR050 -
\ !
0 1] 27.8 1.8
Spd.(pcs/min) Spd.5(pcs/min)  Availability  Performance

Today  VYesterday Thisweek Lastweek  This month Last month Live view

17/10/2024 0:00:00 - 17/10/2024 23

:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00
Working time 06:40:32
I
Short stop 00:04:05
I
Long stop 17:15:22
. __________________________________________________________________]}
Off time 00:00:00
= = F
Work Orders
Search

Figure 4. The DIMUSA platform interface is used for real-time workstation data monitoring and
operator input collection [9].

2.5. Clustering and Analysis Methods

To analyze workstation performance and identify process inefficiencies, a two-step
clustering workflow was applied to the simulation data generated by the virtual factory
simulation model. The first step involved outlier filtering using the DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) algorithm [18]. This technique was
used to detect and remove anomalous data points, such as unusually long idle periods
or sequences of very short cycles, which could distort cluster structure and introduce
interpretation bias. In DBSCAN, a point x is considered a core point if it has at least a
minimum number of neighboring points (minPts) within a specified radius (e):

Equation (1).

Ne(x) ={y € D ||[x —y|< ¢}, and |N¢(x)| > minPts 1)

After outlier removal, K-means clustering was applied to categorize the remaining
workstation-level data into interpretable operational states [19,20]. This enabled grouping
of behaviors into clusters representing conditions such as “stable,” “delayed,” or “high
variation.” The goal of K-means is to minimize the total intra-cluster variance:
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Equation (2).

k
i R 2
Cff}_}%kz PBREAETH )

j=1x,€C;
where Cj Is the set of data points in cluster j, Hj It is the centroid of cluster j, and k is the
predefined number of clusters.

The clustering results were visualized to compare simulated performance across work-
stations over one one-month period. Figure 5 shows the Overall Equipment Effectiveness
(OEE) values for each workstation over a month. This time-based view forms the basis for
the next clustering analysis, which groups workstations by similar performance patterns.
Each line corresponds to a specific workstation, as identified by the layout codes provided
in Table 1. Additionally, this summary highlights the top five and bottom five stations
based on overall efficiency, helping guide further investigation and process improvements.

m Cutting-KJ-JL020 W Quality control KJ-KK061 W Quality control KJ-KK064 White parts KJ-VD032 W Packaging KJ-PA080
W Plotter KJ-PL040 W Quality control KJ-KK062 u  Sewing KJ-OM070 B White parts KJ-VD033
W Press KJ-PRO50 W Quality control KJ-KK063 W White parts KJ-VD031 W White parts KJ-VD034
percent
= )\ / ) = 4 ) A
- A\ W N\ /A N\ /A A\ /
&4 s 5 K4 4 ¢ ¢ K4 c4 & &4 &4 4 & K4 ) ™
& & ¢ & & S ¢ € IS & & @ & & @ &

Figure 5. Time-series analysis of workstation OEE based on one-month virtual factory simulation
data. The results serve as input for subsequent clustering analysis.

3. Results

The digital twin framework was deployed in the production environment of a custom-
made sportswear manufacturing SME over a six-month pilot period. During this time,
data were collected from multiple workstations, processed through the DIMUSA plat-
form, and analyzed using a combination of clustering and simulation techniques. The
following sections present the key findings derived from this implementation, highlighting

patterns in workstation behavior, performance bottlenecks, and the effects of proposed
optimization scenarios.

3.1. Production Data Characteristics

Initial input data for the simulation model-including factory layout, selected product
types, routing sequences, and partial workstation cycle times, provided by the company in
Excel format based on exports from their ERP system. These data formed the baseline for
constructing the virtual factory simulation. Excel also served as the company’s primary
tool for production planning and operational feedback. Throughout the project, this ini-
tial dataset was iteratively refined to improve the realism and fidelity of the simulation
model. To validate and enrich the simulation inputs, selected production workstations
were instrumented with DIMUSA hardware for real-time monitoring. On the plotter work-
station, current sensors were successfully used to detect active plotting periods, enabling
an accurate view of operational cycles. However, on the heat-based press workstation,
current-based monitoring proved ineffective, as the heating system remained continuously
powered during the entire shift. To overcome this limitation, a part-counting sensor was
installed on the press to identify the start and end of each print cycle by detecting the
movement of physical materials. In addition to sensor-based monitoring, a manual report-
ing phase was conducted during one week of the pilot, during which operators logged
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task start and completion events via the DIMUSA interface. Although limited in duration,
this experiment helped assess data quality and train staff on accurate input procedures.
DIMUSA data were collected continuously over a six-month period from selected worksta-
tions, while simulation data covered a three-month virtual period. Bidirectional data flow
was established between Excel and the DIMUSA platform. Task orders were imported into
DIMUSA for execution monitoring, and actual start and end times were exported back to
Excel for further analysis. Collected data included equipment usage, cycle time durations,
idle intervals, and manually logged exceptions. To ensure reliability, post-processing steps
were applied to filter out simulation artifacts, correct manual input errors, and align re-
ported events with equipment-level OEE indicators [21]. Before applying cluster analysis,
the dataset was cleaned to improve interpretability and accuracy. Based on the simulation
and monitoring results, the plotter and press workstations were selected as focal points
for deeper analysis, given their high load, complexity, and integration with both DIMUSA
sensors and manual reporting channels. These workstations exhibited the highest OEE
scores and output volumes during the monitoring period within one month, as shown in
Table 2. Their central role in the company’s mini-batch production process, starting from
plot file generation to material preparation and pressing, further justified the focus. Table 1
provides a summary of workstation-level KPIs for October 2024, highlighting the relative
performance of each monitored station in terms of availability, performance, quality, OEE,
Total Effective Equipment Performance (TEEP), and production results.

Table 2. Summary of OEE-related performance metrics for monitored workstations (during
October 2024).

Date Workstation Availability %  Performans %  Quality % OEE % TEEP % Result/pcs
2024/10 Plotter KJ-PL040 67% 100% 100% 67% 16% 9200
2024/10 Press KJ-PR050 29% 100% 100% 29% 7% 9200

Quality control o o o o o
2024/10 KJ-KK061 24% 100% 100% 24% 6% 2300
White parts o o o o o
2024/10 KJ-VD031 22% 101% 100% 22% 5% 2622
White parts o o o o o
2024/10 KJ-VD032 22% 101% 100% 22% 5% 2622
White parts o o o o o
2024/10 KJ-VD033 21% 101% 100% 22% 5% 2599
White parts o o o o o
2024/10 KJ-VD034 21% 101% 100% 22% 5% 2599
Quality control o o o o o
2024/10 KJ-KK062 21% 100% 100% 21% 5% 2300
Quality control o o o o o
2024/10 KJ-KK063 21% 100% 100% 21% 5% 2300
Quality control o o o o o
2024/10 KJ-KK064 21% 100% 100% 21% 5% 2300
2024/10 Cutting KJ-JL020 15% 100% 100% 15% 4% 20,355
2024/10 Sewing KJ-OMO070 14% 100% 100% 14% 3% 9200
2024/10  Packaging KJ-PA08O 14% 100% 100% 14% 3% 9200

3.2. Cluster Analysis Results

A clustering-based analytical workflow was applied to the preprocessed production
dataset to identify performance patterns and anomalies across workstations. The methodol-
ogy combined DBSCAN-based prefiltering with K-means clustering to enhance robustness
and interpretability. The dataset was first cleaned and normalized. Key performance indica-
tors were selected as clustering features, including OEE, availability, performance, quality,
and state durations (produced, off, short, long, and working). Categorical workstation
labels were encoded numerically, and timestamps were converted into a consistent datetime
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format. DBSCAN was used to remove noise and outliers, including negative values and
unrealistic cycle durations [22]. Afterward, K-means clustering was applied with k = 5,
producing five representative operational states [23]. The most representative workstation
and a median timestamp were identified for each cluster to support interpretation. Cluster
centroids were computed and enriched with metadata, enabling performance compari-
son across stations and time windows. Average OEE scores then ranked workstations to
identify top and bottom performers, while problematic stations were flagged for deeper
investigation. The entire process, from parameter definition to final visualization, followed
a structured analysis pipeline [24]. This included feature selection, validation checks, outlier
handling (e.g., logarithmic transformations), and cluster labeling. Both the DBSCAN and
K-means clustering algorithms were implemented in Python (version 3.12) and integrated
into the DIMUSA system as part of its analytical backend. The results were visualized
through the DIMUSA dashboard as interactive time-series views and color-coded status
overlays, enabling planners and supervisors to identify root-cause opportunities for im-
provement. The complete clustering workflow is illustrated in Figure 6, which served as
the basis for implementing data-driven diagnostics in a live production setting.

Is data
clean?

)
Preporocess Compute
and clean data cluster centers
Assign data points
to cluster

Identify best and worst
workstations

!

Select problematic
workstations

!

Visualize results in
DIMUSA dashboard

Figure 6. Clustering workflow from data preprocessing to performance visualization.

The clustering results were further visualized using a two-dimensional scatter plot
to map the relationship between availability and performance across all monitored work-
stations. Figure 7 presents the cluster distribution based on the simulation data collected
throughout October 2024. Each data point represents the aggregated performance of a
workstation for a given time window, with color-coded labels indicating the different
stations. The visualized output closely corresponds to the quantitative results shown in
Table 1, providing a fast and intuitive overview of workstation utilization. The chart effec-
tively highlights performance disparities, such as the consistently high workload of the
plotter and press stations. When large volumes of production data are involved, this type of
visual summary can significantly accelerate interpretation by production planners, enabling
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them to detect trends, anomalies, and bottlenecks with greater clarity and precision. The
graph serves as a valuable decision-support tool in daily operations, guiding attention and
improvement efforts.

Workstation Performance vs. Availability
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Figure 7. Availability vs. performance plot of clustered workstation data based on virtual factory
simulation output from October 2024.

3.3. Identified Bottlenecks and Insights

The analysis centered around the company’s use of micro-batches, which represent
small, order-specific production batches organized around the output of the plotter. Each
micro-batch begins when the operator aggregates a group of print jobs and generates a
roll-specific print file [25]. This event initiates a tightly coupled sequence: white fabric
components are prepared, aligned with the roll content, and stacked for pressing. The press
then operates at a fixed technological speed, processing each roll according to predefined
thermal and pressure settings. The micro-batch ends once all units are pressed and trans-
ferred to quality control. Early simulation scenarios revealed that this structure, although
efficient in principle, relies heavily on precise coordination between workstations [26]. Plot-
ter throughput sets the rhythm, while upstream and downstream stations (preparation and
press) must synchronize their activities to avoid idle time or bottlenecks. In particular, white
detail preparation exhibited delays in aligning material readiness with roll completion,
resulting in repeated idle periods at the press. This issue was validated through real-time
measurements. The press workstation exhibited stable operating parameters; however,
clusters of idle states often coincided with late material delivery. Conversely, the plotter
experienced workload spikes due to variable job grouping and the formation of ad hoc
micro-batches. These variations amplified the inconsistency in the downstream flow. To
analyze the issue holistically, simulation results were compared with real production data
collected through the DIMUSA platform [27]. This cross-validation helped confirm that the
observed performance gaps stemmed not from individual workstation inefficiencies but
from structural misalignments in micro-batch sequencing. The cluster-based visualization
made these patterns explicit, supporting root-cause discussions during daily meetings
with team leaders. Overall, the findings emphasized the importance of digital support for
batch logic and material readiness, particularly in environments characterized by short-run
variability and manual task transitions [28]. The micro-batch logic, described below in
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Figure 8, illustrates the tightly coupled flow initiated by the plotter and concluded at the
quality control step, underpinning the coordination issues discussed in this section.

Micro-batch Execution Logic

Plotter Stacking Heat Press Quality Control
L <2 L S
-7
e (V34
Generate Arrange Press Inspect
print file pre-cut textile and heat output
pieces

Figure 8. Visual representation of the micro-batch production sequence.

The micro-batch process begins with aggregated order data, which is grouped at
the plotter workstation into printable roll files. Each roll considers the printing material
and thermal press parameters. Based on the roll content, fabric pieces are pre-cut and
stacked in sequence to align with the upcoming press cycle. The thermal press applies heat
and pressure to transfer the print onto each aligned fabric layer. The process ends when
the printed components are transferred to quality control. This structure ensures a clear
production rhythm but also introduces synchronization dependencies between the plotter,
cutting, and pressing operations.

3.4. Simulation Validation

To validate the realism and predictive accuracy of the simulation model, a focused
comparison was conducted between virtual factory simulation outputs and real production
data collected through the DIMUSA system. The validation focused on availability met-
rics and aimed to identify discrepancies between simulated assumptions and real-world
behavior across multiple workstations [29]. Figure 9 presents a direct visual comparison
of workstation availability across one selected production day. The upper chart displays
the availability values used in the simulation model, derived from baseline process as-
sumptions. Availability represents the share of actual working time relative to a full 8-h
shift (480 min), where 100% means uninterrupted operation throughout the shift. The
lower chart reflects actual availability as measured by DIMUSA sensors during the same
operational window. The contrast between the two layers highlights differences in timing
patterns, utilization rates, and workstation coordination. This side-by-side view revealed
that simulated data tended to assume more uniform availability across workstations, while
real-world data showed greater fluctuation, particularly during shift transitions and mate-
rial handling events. These findings informed subsequent updates to the simulation model,
ensuring more accurate modeling of downtime and micro-delays.
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Figure 9. Comparison of workstation availability between (a) simulation model assumptions and
(b) actual DIMUSA measurements for a single production day (16 October 2024).

To further contextualize these observations, the plotter and press workstations were an-
alyzed in detail for two consecutive days-October 16th and 17th. On these days, production
was structured around micro-batches, and both sensor data and operator-reported task logs
were available. Tables 3 and 4 summarize this cross-validation, comparing timestamps and
durations across the simulation, DIMUSA monitoring, and manual reporting systems [30].
The analysis confirmed that while the simulation provided a solid approximation of ex-
pected process flows, it occasionally underestimated idle periods and overstated continuity.
In contrast, DIMUSA sensor logs revealed nuanced interruptions, particularly in the press
workstation, where material readiness and operator interactions had a greater impact than
initially modeled. This three-way validation-spanning simulation, sensor feedback, and
operator input proved instrumental in refining the digital twin’s predictive capacity [31]. By
closing the loop between planning and execution, the simulation framework became better
aligned with real production rhythms, supporting more effective forecasting and targeted
optimization strategies. The methodology demonstrated here is scalable to additional
workstations and process types, underscoring the importance of empirical feedback in
refining digital twins.

Table 3 presents task-level data from the plotter workstation on 16 October 2024, com-
paring three sources: manually logged task start and end times by operators, corresponding
activity durations from the simulation model, and sensor-based records collected through
the DIMUSA system. While the overall timing was similar across data sources, slight
deviations were observed in transition gaps between micro-batches. These gaps were better
captured by DIMUSA sensors, which identified short but recurring idle periods not reflected
in simulation assumptions or manual logs. This highlighted the usefulness of sensor-level
granularity in exposing brief disruptions that accumulate into meaningful inefficiencies.
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Table 4 presents the press workstation data from 17 October 2024, following the same
structure. Unlike the plotter, the press exhibited more variation between simulated ex-
pectations and actual execution. Several micro-batches experienced delays or extended
idle periods between processing steps. In some cases, operator-logged reasons included
material unavailability or coordination delays. DIMUSA readings confirmed these delays
through prolonged inactive states. The comparison underlined the importance of account-
ing for coordination dependencies and manual handling variability when calibrating the
simulation model. It also reinforced the need for complementary validation layers-manual
reporting, real-time monitoring, and simulation achieve an accurate representation of
production behavior.

3.5. Impact

In addition to its analytical and planning benefits, the digital twin implementation
provided the manufacturing SME with a structured and scalable pathway for transitioning
from manual Excel-based production tracking to a real-time, Al-supported monitoring
environment [32]. By integrating with the DIMUSA platform, the company gained early
visibility into inefficiencies, intuitive visualization of operational states, and improved
communication between technical specialists and production staff. The complementary
simulation model allowed hypotheses to be tested virtually before applying process changes
on the actual shop floor [33]. This reduced implementation risk and increased trust in the
insights generated by the analytical pipeline. Simulation results revealed that workstation
synchronization, shift transitions, and operator-induced cycle variations can significantly
impact overall line performance. This hybrid approach, which combines real-time data
collection, clustering-based analytics, and simulation-driven forecasting, exemplifies the
AIRE initiative’s “test before invest” principle. It enabled a low-risk and phased transition
from prototype evaluation to operational deployment, explicitly tailored to the needs and
constraints of small-batch, human-centric production environments [34].

4. Discussion

The implementation of an Al-supported digital twin in a small-batch manufacturing
environment demonstrated how advanced data analytics and simulation can enhance
production understanding without requiring a full-scale digital infrastructure overhaul.
While digital twins have been widely studied in high-volume manufacturing and cyber—
physical systems, their application in SMEs remains limited. This study contributes to that
gap by showing how modular and lightweight solutions, combined with targeted data
collection and stakeholder collaboration, can unlock valuable insights without disrupting
daily operations. One of the key findings was the importance of timing coordination in
short-run production. Unlike traditional mass production, where variability is minimized
through volume and standardization, the small-batch model relies on flexibility and human
input, making process synchronization more challenging. The use of “micro-batches” as
a practical structuring mechanism proved effective, but also exposed the fragility of the
system when task sequencing or material preparation was delayed. Clustering revealed re-
curring inefficiencies that would have been difficult to identify through manual observation
or standard key performance indicators (KPIs) alone. In particular, the combined use of
DBSCAN and K-means clustering allowed the team to filter out noise, detect state-specific
patterns, and highlight the variability in workstation performance. These insights were
used to guide process discussions and test improvements virtually, reducing the need for
costly trial-and-error adjustments on the production floor. Simulation results aligned with
observed bottlenecks, reinforcing the validity of the analytical approach and offering a
realistic preview of how even minor adjustments, such as staggered handovers or buffer
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size changes, could increase throughput. From a broader perspective, the results align with
the goals of Industry 5.0, where human—centered decision-making and interpretability
are emphasized over full automation. The data visualization features embedded in the
DIMUSA platform enabled planners and operators to understand what was happening
in the system and why, thereby facilitating more confident and collaborative responses
to identified issues. The study also supports the relevance of the “test before invest” ap-
proach in SME settings, where experimentation capacity is limited and disruption must be
minimized. By leveraging a combination of real-time monitoring and virtual validation,
the team bridged the gap between abstract digital strategies and grounded operational
improvements. Moreover, while the case focused on a sportswear manufacturer, the same
digital twin methodology could be generalized to other domains characterized by small—-
batch variability, manual processes, and frequent order customization, such as artisanal
production, medical device assembly, and high-mix electronics. It is also important to
emphasize that this study primarily focused on assessing the conceptual applicability of
the framework. While the simulation-based analysis and digital shadow system provided
important insights, it is essential to note that this study mainly focused on assessing the con-
ceptual applicability of the framework. The goal was not full operational implementation,
but rather identifying critical production inefficiencies that could guide future deployment.
Therefore, real-time KPIs and data visualizations were utilized to support collaborative
analysis with stakeholders; however, long—term effects, such as ROI, capacity utilization,
or sustained performance improvements, will require further integration and ongoing
tracking. This approach aligns with the “test before invest” philosophy promoted in SME
innovation environments, where experimental validation is a necessary first step toward
more reliable implementation. While simulation alone can offer valuable insights into
process flows and bottlenecks, its effectiveness relies heavily on predefined assumptions
and manual scenario testing. In contrast, integrating Al-based clustering greatly improves
this process by automatically identifying patterns, anomalies, and workstation—specific
inefficiencies without needing prior hypotheses. The clustering results guided the simula-
tion setup by highlighting where inefficiencies are most likely to happen, enabling more
targeted and efficient scenario validation. This synergy between unsupervised Al analy-
sis and simulation fosters a more systematic and data-driven approach to improvement
planning. Therefore, while simulation is a powerful tool by itself, combining it with AI
analytics speeds up root—cause identification and scenario prioritization, especially in cases
of small-batch variability and limited operator capacity. These sectors similarly struggle
with synchronization, traceability, and process visibility, making them strong candidates for
the application of lightweight digital twin architectures that support human—in-the-loop
optimization.

5. Conclusions and Future Work

This study explored the implementation of an Al-enhanced digital twin framework
in a real-world small-batch manufacturing environment. The approach combined real-
time data acquisition, clustering-based analysis, and simulation modeling to support
human-centered decision-making and improve production transparency. The integra-
tion of the DIMUSA enabled the automated collection, processing, and visualization of
workstation-level performance data, bridging the gap between manual practices and intel-
ligent monitoring. By applying clustering algorithms such as K-means and DBSCAN, the
system successfully identified operational states and process anomalies that traditional KPI
reporting would have overlooked. These insights helped isolate inefficiencies related to
cycle variation, workstation synchronization, and operator—driven fluctuations. In parallel,
the use of virtual factory simulation provided a low-risk environment for validating hy-
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potheses and exploring improvements, allowing the company to test and refine operational
strategies before applying them in live production. The developed framework emphasized
modularity, interpretability, and scalability factors for successful deployment in SMEs
with limited digital infrastructure and technical capacity. Beyond technical performance,
the solution supported collaborative learning and team engagement by offering accessi-
ble visualizations and structured feedback mechanisms. These characteristics resonate
strongly with the principles of Industry 5.0, where human involvement, adaptability, and
sustainable improvement are prioritized. Future development will focus on expanding
system coverage across additional production areas, integrating predictive components,
and refining clustering logic through the application of supervised learning techniques.
Integration with enterprise systems, such as ERP and Manufacturing Execution System
MES platforms, is also planned to ensure seamless data continuity and richer contextual
awareness. Longer-term studies could investigate how such systems affect organizational
learning, routine adaptation, and continuous improvement within SME environments. The
findings of this case study reinforce the conclusion that digital twin technologies, adapted
to real-world constraints and deployed incrementally, can offer measurable value even in
resource—constrained industrial settings. The key is aligning technology with operational
realities and empowering human decision—makers through interpretable, actionable data.
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