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 Abstract 

The aim of this bachelor’s thesis is to determine satellite’s attitude in orbit using sun 

sensors.  

Satellite will be launched into space to take pictures of the Earth. To be able to do it, we 

must know, what is the determination of the satellite. Using sun sensors is one 

possibility to find the determination.  

The thesis provides an overview of the sun sensors on the satellite, different coordinate 

systems and reference frames. In the third chapter, position of the Sun and vector are 

calculated. In the forth and last part, rotating a vector using quaternions is implemented. 

The results are achieved by using Matlab. 

The thesis is in English and contains 39 pages of text, 5 chapters, 15 figures, 3 tables 
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Annotatsioon 

Kuubik-satelliidi asendi määramine päikesesensoritega 

Käesoleva lõputöö eesmärgiks on määrata satelliidi asend orbiidil, kasutades 

päikesesensoreid. Selleks arvutatakse päikesevektor satelliidi suhtes, mis igal ajahetkel 

(0.1s) annab teada, kus asub päike satelliidi kolme telje suhtes. Päikesevektori 

arvutamiseks antakse ette satelliidi koordinaadid orbiidil ning kuupäev ja kellaaeg. 

Tulemusena saadakse päikesevektor.  

Satelliidil asuvad päikesesensorid, mis mõõdavad samuti päikese asendit sensorite  

suhtes.  

Seejärel saab võrrelda arvutatud ja mõõdetud päikesevektoreid omavahel, mille 

tulemusel saame teada, kus asub Maa satelliidi suhtes. Satelliidi eesmärk orbiidil on 

teha Maast pilte, mistõttu peame teadma, millal on satelliit sellises asendis, et sateliidi 

ühel tahul asuv kaamera on suunaga Maa poole. 

Tulemuse täpsuse eesmärgiks on 1°. 

Töö sisaldab teoreetilist ülevaadet sensoritest satelliidil ning täpsemalt kirjeldatakse  

päikesesensoreid. Samuti antakse ülevaade tähtsamatest koordinaat- ja 

taustsüsteemidest, mida on vaja satelliidi asendi määramiseks. Praktiline osa sisaldab 

päikese asendi arvutamist, mille käigus leitakse päikese asukoht kindlal ajal kindla koha 

suhtes. Seejärel saab leida päikesevektori, mida saab kasutada töö viimases praktilises 

osas. Viimane osa sisaldab vektorite pööramist kvaternioonide abil, mille tulemusena 

saab teada, kuidas tuleb satelliiti pöörata, et kaamera oleks suunatud Maa poole. 

Päikese asendi ning teiste arvutuste jaoks on kasutatud Matlab programmi. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 39 leheküljel, 5 peatükki, 15 

joonist, 3 tabelit. 
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List of Abbreviations and Terms 

ADCS    Attitude Determination and Control System 

Altitude  Latitude in horizon coordinate system 

AU   Astronomical Unit, around 1.496*10
11 

metres 

Azimuth  Longitude in horizon coordinate system 

BC   Before Christ 

Cross product  Mathematical operation on two vectors in three-dimensional space.  

   Perpendicular to both vectors 

Declination  Latitude in equatorial coordinate system 

Earth Albedo  The  fraction of solar energy reflected from the Earth back into space 

ECEF   Earth Centered Earth Fixed frame 

ECI   Earth Centered Intertial frame 

Ellipse   Oval in shape, of which a circle is a special case 

Equation of Center The angular difference between true and mean anomaly  

ESTCUBE-2  Estonian satellite project 

Gimbal lock  In three-dimensional system, where two axes align 

Hour angle  The difference between the local sidereal time and the RA 

Julian Date  The number of days elapsed since January 1 4713 BC. 

MATLAB  Mathematical computing software for engineers and scientists 

Mean anomaly  The true anomaly, if the Earth moved along a circular orbit 

NESW   North-East-South-West  

Perihelion  The point in the orbit of a planet nearest to the Sun 

RA   Right ascension, longitude in equatorial coordinate system 

Right-hand system Set of three axes, labelled so that rotates from the positive x-axis 

towards the positive y-axis towards the positive z-axis 

Sidereal time Time measured with respect to the motion of the stars 

Solar transit  The moment at which a celestial body crosses the observer’s meridian 

True anomaly  The angle between the Earth and the perihelion of the orbit of the Earth 

TTÜ   Tallinn University of Technology 

Vernal equinox  The moment at which the Sun crosses the celestial equator (RA=0°) 
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1 Introduction 

Nanosatellites gain more popularity with time around the world.When 10 years ago only 

9 satellites were launched into space, then in 2016 the number of satellites launched into 

space increased to 86 [1]. And in the first 4 months of this year, the number of satellites 

launched to space has exceeded 2016’s total and it’s plan to launch around 500 more 

satellites this year [1]. 

According to the website [2], in the fall semester of 2014, TTÜ Innovation and Business 

Centre Mektory started with a Satellite Programme directed to students and professors 

in collaboration with engineering and space technology industries from Estonia and 

other countries. The mission of the programme is to provide high-quality workforce in 

high-tech companies in Estonia and other countries. The goals of the programme are to 

send reliable cube-satellite into space, that is possible to operate in earth station. Also to 

give students the opportunity to practice themselves in that field. Building and testing 

the satellite takes place in 2016-2017 and launching the satellite most probably in 2018. 

The cube satellite will be built according to CubeSat design. CubeSat is a 10x10x10 cm 

cube shaped satellite having a mass with 1.33 kg [3]. 

The purpose of the satellite in space is to take pictures of Earth while moving in orbit. 

To be able to take pictures, satellite’s camera has to be pointed to Earth.  

As Estonia is turning 100 in 2018, in collaboration with ESTCUBE-2, an Estonian song 

chosen by the people will be saved to the satellite’s memory and along with the satellite, 

will be launched into space [4]. 

1.1 Progress in this work 

The purpose of this work is to determine satellite’s attitude using sun sensors. First, we 

have to calculate the sun vector with respect to the satellite’s position. Then it is 

possible to compare calculated vector and vector from sun sensors and after rotating 
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calculated vector as needed, it is possible to find what is the attitude of the satellite. The 

program’s inputs are timestamp and satellite’s coordinates and the output is a 

quaternion representing the rotation. 

The work is divided into three parts. First part is an overview of sun sensors and their 

working principles. In the second chapter, sun vector is calculated and in the third and 

final part, the position of the Earth as seen from the satellite is calculated. 
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2 Attitude determination and Control System 

To get a satellite’s position in orbit with its rotational speed and attitude, attitude 

determination and control system (ADCS) [5] is used. It means that satellite is equipped 

with sun sensors, magnetometers, and gyroscopes. We get an information from these 

sensors and can make adjustments to get desired attitude and rotational speed.  

2.1 Sensors 

Magnetometer sensors [5] measure the intensity of magnetic field in respect to the three 

axes of the satellite on this basis. The vector gives us an information about the direction 

of the magnetic field in relation to the satellite. Comparing the calculated vector and the 

onboard Earth magnetic field model, it is possible to calculate necessary currents to 

direct the satellite. 

Gyroscopes [5] are important to the satellite to determine the satellite’s rotational speed 

in relation to all three axes. 

2.1.1 Overview of sun sensors 

This work concentrates more on sun sensors, how to determine satellite’s attitude using 

sun sensors.  

Sun sensors determine the Sun’s position in relation to the satellite. We need to find the 

Sun vector in all three axes. The satellite has 6 sun sensors, which means one sensor in 

every side (Figure 1).  There are three types of sun sensors, which are being introduced 

– analog sun sensor, digital sun sensor and sun panels. Every sensor gives us the 

intensity of the light signal. Depending to the angle of the sun ray falling to the sensors, 

it is possible to calculate how much power the sun panels on a satellite can produce. 

There can be a problem when the sensors receive light from the Earth. For that problem, 

Earth Albedo model is used, which will be discussed in the following chapter.  
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Figure 1. Position of the sun sensors [6]. 

2.1.2 Analog sun sensor 

An analog sun sensor measures the sun’s intensity, but not the direction of the Sun. The 

measure is calculated by the energy flux that goes through the surface area of the 

photocell (Figure 2). The angle in analog sun sensor can be calculated from the current: 

Ie = Imaxcos𝜃 

where Imax is the maximum current generate in photocell, Ie is the current from the 

Sun[7]. 

 

Figure 2. Analog sun sensor[7]. 
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2.1.3 Digital sun sensor 

A digital sun sensor measures in addition to the Sun’s intensity, the direction of the Sun. 

The digital sun sensor is built of a pattern of photocells, where the incoming sunlight 

shows from which direction the rays are from (Figure 3) [7]. 

 

Figure 3. Digital sun sensor [7]. 

2.1.4 Sun panels 

Sun panels on the satellite only produce power from the Sun. It is not possible to get the 

Sun’s angle nor direction.  

2.2 Earth Albedo model 

While satellite orbits around the Earth, the sun panels on the satellite might not only get 

light from the Sun, but also from the Earth. That is called Earth Albedo error. 

Depending on the position of the satellite with respect to the Earth, satellite might get 

more or less light reflected from the Earth. For example, sandy and polar areas reflect 

much more sunlight than oceans and forests [8]. This work doesn’t include Earth 

Albedo model, but should be implemented in future work.  
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3 Calculating the sun vector 

3.1 Coordinate systems 

To find a position to any astronomical object, there must be a coordinate system. There 

are many different coordinate systems that differ by the plane of the system. 

Coordinates have two numbers, first of them refers to „how far round“ and the second 

coordinate „how far up“. In the next section, we are going to give a short introduction to 

the three satellite coordinate systems that will be used in calculating the attitude of the 

satellite.  

3.1.1 Horizon coordinates 

The position of the celestial object is relative to the observer’s horizon [9] . The 

observer’s horizon is the circle NESW (North-East-South-West) as seen from Figure 4. 

Azimuth and altitude are in use in horizon coordinate system. Azimuth means „how far 

round“ from 0° to 360° and altitude „how far up“ from 0° to 90° and they are both 

measured in degrees. This system isn’t good for positioning stars because the system 

moves as the Earth rotates and it is hard to fix the star’s position [10]. But finding the 

Sun’s position, this system is suitable, because the coordinates are dependent on the 

observer’s longitude and latitude – that’s exactly what we want.  
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Figure 4. Horizon coordinate system [9]. 

3.1.2 Equatorial coordinates 

In this coordinate system, the coordinates refer to the plane of the celestial equator 

(Figure 4) [11]. The coordinates in the equatorial coordinate system are called right 

ascension, α, and declination, δ. These coordinates are ideal to describe the position of 

the stars and „fixed“ heavenly bodies because declination and right ascension are 

constants [11]. Although, for the Sun, Moon, and planets they change with time. Right 

ascension is measured in hours, minutes and seconds and declination in degrees, where 

positive degree signifies to the north of the equator and negative to the south of the 

equator. The full circle is made in 24 hours of sidereal time. Right ascension is also 

related to hour angle, H, which is as right ascension the coordinate of „how far round“. 

The angle indicates, how far the star has travelled from the south meridian point along 

the equator [14]. As measured right ascension, hour angle is also measured in hours, 

minutes and seconds. They both can also be converted into degrees between 0°-360° by 

multiplying by 15. 1h equals to 15°. This system gives more precise results compared to 

the horizontal coordinate system, because the full circle is one year, where in the 

horizontal coordinate system, it is one day and therefore the results don’t change much 

in time.  
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Figure 5. Equatorial coordinate system [11]. 

3.1.3 Ecliptic coordinates 

The plane in ecliptic coordinate system is Earth’s orbit around the Sun, also called 

ecliptic [11]. When calculating the position of the object in the Solar System, the best 

coordinate system is ecliptic. As with equatorial coordinate system, ecliptic also uses 

vernal equinox as its reference direction, where around on March 21 both ecliptic 

longitude (right ascension in equatorial) and ecliptic latitude (declination in equatorial) 

are 0°. The circle is made in 1 year, as it is in the equatorial coordinate system.  
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Figure 6. Ecliptic coordinate system [12]. 

3.2 Reference frames 

The satellite must be described by reference frame to be able to orient the satellite. 

Reference frame is a three-dimensional coordinate system, which gives an information 

about the position of specific object in the chosen coordinate system. There are several 

reference frames, some of them are described in the following sections. 

3.2.1 Earth Centered Inertial (ECI) frame 

The origin of the frame is at the center of earth, but it doesn’t rotate with the Earth [13].  

As seen from the Figure 7, the coordinates are following:  

 x-axis points to the vernal equinox direction 

 y-axis completes the right-hand system 

 z-axis points upwards to the north pole 
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Figure 7. ECI frame [13]. 

3.2.2 Earth Centered Earth Fixed (ECEF) frame 

It is similar to ECI frame. The only difference is that this is Earth Fixed – means that the 

origin of the frame rotates along the Earth [13]. As seen from Figure 8, the coordinates 

are following:  

 x-axis points from the center of the Earth to the intersection of the meridian and 

equator 

 y-axis completes the right-hand system 

 z-axis points upwards to the north pole  
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Figure 8. ECEF frame [13]. 

3.2.3 Orbit Reference frame 

The origin of the orbit reference frame is the center of the satellite’s mass [13]. As seen 

from Figure 9, the coordinates are following: 

 xR-axis points to the direction of satellite’s motion 

 yR-axis completes the right-hand system 

 zR-axis points to the center of the Earth 
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Figure 9. Orbit frame [13]. 

3.2.4  Satellite Body frame  

The origin of the satellite’s body frame is the center of the satellite’s mass [13]. This 

frame is used to describe the satellite’s attitude. As seen from Figure 10 the coordinates 

are following:  

 x-axis points from the back to the front 

 y-axis completes the right-hand system 

 z-axis points from the top to the bottom 
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Figure 10. Body frame [13]. 

3.3 Calculating the position of the Sun 

Our inputs are date and time, for example, 11/05/2017 18:00:00 and longitude and 

latitude, where we would like to know about the Sun’s position. In the following 

example, our longitude is lon=59.395884 and latitude lat=24.671431 which are the 

coordinates of the Tallinn University of Technology. In the following example, 

Astronomy Answers: Position of the Sun [14] is the main reference for finding the 

position of the Sun.  

As we know, Earth orbits around the Sun, but to find the Sun’s position, it is easier to 

think that the Sun moves around the Earth. 

In astronomy, the date has been converted into Julian Date. The purpose of Julian 

Calendar is to make easy calculations between dates in different calendars [15]. Julian 

Day started on January 1 4713 BC at noon and will end January 22 3268 [10]. The 

formula for calculating a Julian Date at a specific date and time will be 

year = 2017 

month = 05 

day = 11 

hour = 18 

minute = 00 

second = 00 

a = 
14−𝑚𝑜𝑛𝑡ℎ

12
 

y = year + 4800 – a 

m = month + 12*a – 3 

J = day + 
153∗𝑚+2

5
 + 365*y + 

𝑦

4
 - 

𝑦

100
 + 

𝑦

400
 – 32045 
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Rounding is down in calculating Julian Date 

To want to add a time then  

JD = J + 
ℎ𝑜𝑢𝑟−12

24
 + 

𝑚𝑖𝑛𝑢𝑡𝑒

1440
 + 

𝑠𝑒𝑐𝑜𝑛𝑑

86400
 

For our date and time, the Julian Day will be 

a = 0 

y = 6817 

m = 2 

J = 2457886 

JD = 2357886.25 

If the orbit were a perfect circle, then the Sun would move constantly around the Earth 

and it would be much easier to calculate the Sun’s position. But we are going to imagine 

that it does move around the Earth in a circle rather than along the ellipse. The angle 

relative to perihelion (closest point to Earth) is called mean anomaly, M, and can be 

found  

M = M0 + M1*(JD-J2000) 

As the mean anomaly is an angle, we have to take modulo of 360° 

M0 and M1 are constants and for the Earth, they can be found from Table 1 

J2000 is an epoch that is a moment in time used as a reference point 

J2000 = 2451545 

M = 126.48° 

We actually need to find the true anomaly, v, which is the motion of the Sun in an 

ellipse. The difference between true anomaly and mean anomaly is called the Equation 

of Center, C, and for the Earth it can be calculated 
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C ≈ C1*sin(M) + C2*sin(2*M) + C3*sin(3*M) 

where C1, C2 and C3 are constants and for the Earth they can be found from Table 1 

C ≈ 1.5208° 

As we can see, the difference isn’t much between a circular and an elliptic orbit. 

Now we can calculate the true anomaly 

v = C + M 

v = 128° 

We are now able to calculate planet’s ecliptical longitude λ seen from the sun. But first, 

as for finding a true anomaly, we have to find a longitude L for the circular orbit and it 

can be found  

L = M + Π 

Π is an ecliptic longitude of the planet and for the Earth, it can be found from Table 2. 

L = 230.4° 

And now we can find a longitude for the elliptic orbit 

λ = L + C 

λ = 231.9° 

Whether we’re looking Sun from Earth or Earth from the Sun, the difference is 180° 

which means that we have to add 180° to ecliptic longitude to get the Sun’s longitude 

and it has to be between 0 and 360°. 

λ sun = λ + 180° % 360 

λ sun = 50.939° 
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We now go to equatorial coordinate system to get right ascension α and declination δ.  

α = λsun + A2*sin(2*λsun) + A4*sin(4*λsun) + A6*sin(6*λsun) 

δ = D1*sin(λsun) + D3*sin
3
(λsun) + D5*sin

5
(λsun) 

A1, A3, A5, D1, D3 and D5 are constants and for the Earth they can be found from Table 

2 

α = 49.487  

δ = 18.243 

Right ascension is usually converted into hours, minutes and seconds so we have to 

divide it by 15 and get 

α = 3h 17min 57s 

Next, we have to find, is sidereal time. Sidereal time is a time-keeping system to locate 

celestial objects. Sidereal time is a little faster than solar time. 24h sidereal time is equal 

to 23h 56min 4s of solar time. Formula for calculating sidereal time is 

Φ = (Φ0 + Φ1*(JD-J2000) – lon) 

where Φ0 and Φ1 are constants and for the Earth can be found from Table 2  

As for previous calculations, we have to get modular of 360° 

Φ = 115.56° 

Hour angle, H,  is the difference between sidereal time and right ascension.  

H = Φ – α 

Hour angle is also expressed in hours, minutes and second as it was for right ascension 

H = 4h 24min 18s 
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We have now found everything to find the Sun’s ecliptic coordinates altitude, alt, and 

azimuth, az. The formulas are based on  The formula for calculating altitude and 

azimuth are following 

alt = arcsin(sin(δ)*sin(lat)+cos(δ)*cos(lat)*cos(H)) 

az = arccos
sin(𝛿)−sin(𝑙𝑎𝑡)∗sin(𝑎𝑙𝑡)

cos(𝑙𝑎𝑡)∗cos(𝑎𝑙𝑡)
 

To get the correct angle of the azimuth, then we have to find a solar transit.Right now, 

when the azimuth angle reaches to 180°, to the meridian, then the angle starts 

descending. So we have to find, when is the solar transit to keep the angle rising.  

The formula for solar transit is 

Jtransit = Jx + J1*sin(M) + J2*sin(2*λsun) 

where J1 and J2 are constants and for the Earth can be found from Table 1, M and λsun 

can be found from previous calculations. Jx is an estimated solar transit and can be 

calculated 

Jx = JD + J3*(n-nx) 

J3 is a constant and for the Earth can be found from Table 1. JD can be found from 

previous calculations. nx can be calculated 

nx = 
𝐽𝐷−𝐽2000−𝐽0

𝐽3
 - 

𝑙𝑜𝑛

360
 

J0 is a constant and can for the Earth be found from Table 1. To get n, nx has to be 

rounded to the nearest number. Now we can calculate solar transit. 

Jtransit = 2357886.06703 

In May 11 2017 18:00:00 the altitude and azimuth of the Sun are 

alt = 27.44° 
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az = 258.78° 

 M0 M1 C1 C2 C3 Π J0 J1 J2 J3 

Earth 357.5291 0.98560028 1.9148 0.0200 0.0003 102.9373 0.0009 0.0053 -0.0068 1.00 

Table 1. Constants. 

 A2 A4 A6 D1 D3 D5 Π θ0 θ1 

Earth -2.4657 0.0529 -0.0014 22.7908 0.5991 0.0492 102.9373 280.1470 360.9856235 

Table 2. Constants. 

Knowing the Sun’s altitude and azimuth, it is now possible to find the Sun vector.  

3.4 Sun vector 

 

Figure 11. Vector in coordinate system [16]. 

r is desired vector with a distance, r, between Earth and the Sun. φ is the azimuth of the 

Sun and θ polar angle. As the distance between Earth and the Sun is close to 1 (r = 

1.01AU), it’s easier to leave r out. And for three-dimensional space, we get the sun 

vector [16] 

r = (
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑
𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑
𝑐𝑜𝑠𝜃

) 
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For our date and time used in finding the Sun’s position, the Sun vector would be 

r=(
−0.017482
−0.86934
0.46226

) 

3.5 Comparison 

The comparisons are made for right ascension, declination, azimuth and altitude. Matlab 

result has been compared with different websites, which were: 

Solar – Solar System Calculator [17]. It was able to get information about all of the 

compared angles.  

SkyLive – The Sky Live [18]. It was able to get information about right ascension, 

declination, and altitude. 

Wolfram – Wolfram Alpha [19]. It was able to get information about all of the 

compared angles. To find an information, there must be written: „sun position in 

[location] [time]“ 

SunCalc – Sun Calc [20]. It was able to get information about altitude and azimuth.  

Spa – Spa [21]. It was able to get information about azimuth 

The measurements are made on May 07 2017 from 15.45 to 16.15 with intervals of 15 

minutes. As seen from the following figures, the results change constantly in time, so 

the result is taken at 15.45 in the following comparisons. 
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Figure 12. RA comparison. 

As seen from Figure 12, the result of Matlab is about 2.968h. In comparison with other 

sources, the difference isn’t much. Solar and Wolfram results are little less than 2.98. 

The difference with Matlab is 0.012h (0.18°). SkyLive result is less than Matlab’s – 

2.963 and the difference with Matlab is only 0.005h.  

The difference between Matlab and other sources are very small. We can say that right 

ascension calculation is suitable and we can use it in other calculations. 

 

Figure 13. Declination comparison. 

As seen from Figure 13, the Matlab result is about 16.91°. SkyLive gives about 16.882°, 

Solar 16.958° and Wolfram 16.96°. As seen from the Figure, the biggest difference 

comes to Wolfram – 0.05°.  

The difference between Matlab and other sources is very small. We can say that 

declination is suitable. 
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Figure 14. Altitude comparison. 

As seen from Figure 14, Matlab gives a result of the biggest angle compared to other 

sources. It gives little less than 42°, around 41.6°. Wolfram and SunCalc have similar 

results - 40°. Solar and SkyLive give around 39°.  

The difference between Matlab and other sources are about 2-3°. As the altitude 

changes quickly in one full day (in chapter 3.1.2), then this difference isn’t much and 

Matlab result is suitable. 

 

Figure 15. Azimuth comparison. 

As seen from Figure 15, Matlab gives the smallest azimuthal angle – around 223°. 

Wolfram, SunCalc, and Spa all give almost the same result – around 228°. Solar gives 

around 231°.  

The difference between Matlab and other sources is 5-8°. But as the azimuth changes 

quickly in one day, then the difference isn’t much and the Matlab result is suitable. 
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The Matlab results with other sources are almost the same and the difference isn’t 

much. The difference  in right ascension is 0.2%, in declination 0.15%, in altitude 5% 

and in azimuth 2.5%. 
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4 Attitude determination 

Calculated from the previous chapter, we know what is the position of the Sun in 

relation to the center of the satellite. In addition, we get information about satellite’s 

three axes from the sun sensors as introduced in chapter 2.2. The final step is to find out 

where is Earth with respect to the satellite. For finding the vector, we have to compare 

two given vectors and using quaternions, can calculate the third vector which represents 

the position of the satellite in relation to Earth.  

4.1 Quaternions 

Quaternions are used to rotate satellite’s attitude and to convert vector from one 

reference frame to another, for example from body frame to orbit frame [22].  

Quaternion is the best orientation formation to determine satellite’s attitude, because 

there might be situations, where the sunlight doesn’t fall to the satellite appointed and 

there might be gimbal lock. Gimbal lock happens, when two axes in three-dimensional 

system coincide [23]. Gimbal locks appear in other orientation formation, for example 

in Euler angles, but not in quaternion.  

Quaternions in this work are used to rotate one vector to desired position using the other 

vector.  

One vector in quaternion computation is a vector measured from sun sensors. But we 

don’t have real measurements, so in the following example, two vectors has been taken 

just to find out if the computations in finding quaternion are acceptable and can be used 

in real system.  

In this example, the two vectors are:  

p1 = (
−0.17482
−0.86934
0.46226

) 
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p2 = (
−0.86934
−0.17482
0.46226

) 

 

p1 is a sun vector calculated 11/05/2017 18:00. 

Next, we have to find an angle between these vectors. It can be found:  

α = arccos
𝑝1∗𝑝2

|𝑝1|∗|𝑝2|
 

The angle between these vectors is  

α = 58.826° 

Then we have to find cross product between the vectors. It can be found 

v = p1 x p2 = (|
𝑝1(2) 𝑝1(3)

𝑝2(2) 𝑝2(3)
| , − |

𝑝1(1) 𝑝1(3)

𝑝2(1) 𝑝2(3)
| , |

𝑝1(1) 𝑝1(2)

𝑝2(1) 𝑝2(2)
|) 

p1 x p2 is perpendicular to both vectors. 

v = (
−0.32105
−0.32105
−0.72519

) 

It has to be taken norm of v, which means  

v = 
𝑝1x𝑝2

|𝑝1|∗|𝑝2|
 

The result of v is then 

v = (
−0.37523
−0.37523
−0.84759

) 

v shows, how much we have to rotate a vector in all three axes 

It is now possible to find a quaternion. It can be computed: 
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q= (
𝑐𝑜𝑠

𝛼

2

𝑣 ∗ 𝑠𝑖𝑛
𝛼

2

) 

q = (

0.8711
−0.19144
−0.19144
−0.42151

) 

Inversion of q is  

q
-1

= (
𝑐𝑜𝑠

𝛼

2

−𝑣 ∗ 𝑠𝑖𝑛
𝛼

2

) 

q
-1

 = (

0.8711
0.19144
0.19144
0.42151

) 

q and q
-1 

can be rewritten 

q = 0.8711 - 0.19144i – 0.19144j – 0.42151k 

q
-1

 = 0.8711 + 0.19144i + 0.19144j + 0.42151k 

Now that we have found quaternion and inversion of quaternion, it is now possible to 

find the rotated vector, p’, that can be found 

p’ = q*p1*q
-1

 

When using quaternions in computations, it is important to keep in mind that they are 

noncommutative, which means q*q
-1

 ≠ q
-1

*q.  

In the next computation, i, j, k, are included, so we have to know, that 
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* i j k 

i -1 k -j 

j -k -1 i 

k j -i -1 

Table 3 Quaternion multiplication 

p’ = (0.8711 - 0.19144i – 0.19144j – 0.42151k)(-0.17482i – 0.86934j + 

0.46226k)(0.8711 + 0.19144i + 0.19144j + 0.42151k)  

The same result can be found and in this example, using rotation matrix,R 

R= (

𝑎2 +𝑏2 − 𝑐2 − 𝑑2 2(−𝑎𝑑 + 𝑏𝑐) 2(𝑎𝑐 + 𝑏𝑑)

2(𝑎𝑑 + 𝑏𝑐) 𝑎2 −𝑏2 + 𝑐2 − 𝑑2 2(−𝑎𝑏 + 𝑐𝑑)

2(−𝑎𝑐 + 𝑏𝑑) 2(𝑎𝑏 + 𝑐𝑑) 𝑎2 −𝑏2 − 𝑐2 + 𝑑2
) 

where a,b,c,d are components of v vector.  

So we get 

p’ = R = (
−0.8833
−0.16087
0.46214

) 

The desired vector is p2 = (
−0.86934
−0.17482
0.46226

) 

p2 and p’ are supposed to be equal. They are almost the same, but still differ little bit. 

The code in Matlab might have rounded results a little much. But these equations are 

suitable for rotating a vector to desired position.  

4.2 Future work 

As we have two vectors, measured from the sun sensors and calculated from the sun 

vector equations, it is possible to rotate a desired vector to desired position using 

quaternions. It is implemented in previous section. If we now have desired vector in 
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desired position,we know, where is Earth with respect to the satellite and it is possible 

to determine satellite’s attitude. For the final satellite rotation, we must do the 

following: firstly, the satellite must be moved to the center of the Earth. Then it is 

possible to rotate satellite and then satellite has to be moved back to the origin position. 

To get even more accurate results in satellite’s attitude, Earth Albedo model has to be 

implemented. It eliminates the sunlight reflected from Earth. 
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5 Summary 

The purpose of this work was to determine satellite’s attitude in orbit using sun sensors. 

This work provides sun position calculations, where the inputs are location (latitude and 

longitude) and timestamp. The output is the position of the Sun in horizontal and 

equatorial coordinate system. The coordinates were validated and compared using other 

sources, where the angles were computed.  

Using the coordinates of the Sun , it was possible to calculate the sun vector, that gave 

the position of the Sun with respect to all three axes. 

Having calculated the sun vector, the main goal – attitude of the satellite – was possible 

to calculate. In this work, quaternions were used to represent vector rotation. As we 

have two vectors, we have to rotate one vector toward the other to find out, where is 

Earth with respect to the satellite.  

The calculations were implemented in Matlab. The code provides the calculations for 

finding the position of the sun horizontal and equatorial coordinates. Also, the sun 

vector calculation. And finally, the vector rotation using quaternions. 

The main goal of this work is solved and formulas to determine satellite’s attitude are 

accurate. There were slight differences in calculations,  for example, finding the angles 

in equatorial coordinates. There was a slight difference in vector rotation. But they were 

still close to the real answers.  

It is possible to develop this work. For example, adding the Earth Albedo model, which 

gives even more accurate answers.  



38 

References 

[1] E. Kulu, “Nanosatellite & CubeSat Database,” Nanosatellite & CubeSat Database. 

[Online]. Available: http://www.nanosats.eu/index.html. [Accessed: 24-Mar-2017]. 

[2] T. MEKTORY, “MEKTORY > Tutvustus.” [Online]. Available: 

https://www.ttu.ee/projektid/mektory-est/satelliidiprogramm-4/satelliidiprogramm/. 

[Accessed: 24-Mar-2017]. 

[3] California Polytechnic State University, “CubeSat Design Specification.” 

[Online].Available: 

https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/56e9b62337013b6c063

a655a/1458157095454/cds_rev13_final2.pdf [Accessed 20-May-2017] 

[4] T. Tehnikaülikool, “Kosmosesatelliit TTÜ100 viib laulupeolaulu kosmosesse.” [Online]. 

Available: https://www.ttu.ee/ttu-uudised/uudised/ulikool-5/kosmosesatelliit-ttu100-viib-

laulupeolaulu-kosmosesse/. [Accessed: 16-May-2017]. 

[5] ESTCube-1,“ESTCube-1.” [Online]. Available: https://www.estcube.eu/en/estcube-1. 

[Accessed: 25-Mar-2017]. 

[6] Unhelkar V., Hablani H.“Spacecraft Attitude Determination with Sun Sensors, Horizon 

Sensors and Gyros: Comparison of Steady-State Kalman Filter and Extended Kalman 

Filter.”.Available: 
https://pdfs.semanticscholar.org/96fa/877c6ba82ead7ce844013b361899d270453e.pdf . 

[7] Brembo S., “Sensor modeling, attitude determination and control for micro-satellite.”. 

Available: http://folk.ntnu.no/tomgra/Diplomer/Brembo.pdf 

[8] Svartveit K., "Attitude determination of the NCUBE satellite". Available: 

http://folk.ntnu.no/tomgra/Diplomer/Svartveit.pdf 

[9] Auger P.,“Sky Maps with Pierre Auger Data #define KEYWORDS Pierre Auger Project.” 

[Online]. Available: http://auger.org/education/Auger_Education/celestialcoordinates.html. 

[Accessed: 12-May-2017]. 

[10] Duffett-Smith P., Zwart J., Practical Astronomy with your Calculator or Sreadsheet. . 

[11] Cosmos - The SAO Encyclopedia of Astronomy, “Equatorial Coordinate System | 

COSMOS.” [Online]. Available: 

http://astronomy.swin.edu.au/cosmos/E/Equatorial+Coordinate+System. [Accessed: 13-

May-2017]. 

[12] Wikipedia,“Ecliptic coordinate system,” 20-Nov-2016. 

[13] ADCS for Beginners, “orbit reference frame – ADCS For Beginners.”. Available: 

https://adcsforbeginners.wordpress.com/tag/orbit-reference-frame/ 

[14] Astronomy Answers, “Astronomy Answers: Position of the Sun.” [Online]. Available: 

http://aa.quae.nl/en/reken/zonpositie.html. [Accessed: 03-May-2017]. 

[15] U.S. Naval Observatory website, “Julian Date Converter.” [Online]. Available: 

http://aa.usno.navy.mil/data/docs/JulianDate.php. [Accessed: 05-May-2017]. 

[16] Jenkins A., “The Sun’s position in the sky,” Eur. J. Phys., vol. 34, no. 3, pp. 633–652, May 

2013. 

[17] Cross D.,“Solar System Calculator - by Don Cross.” [Online]. Available: 

http://cosinekitty.com/solar_system.html. [Accessed: 20-May-2017]. 

[18] The Sky Live, “Locate The Sun in the Sky - Online Planetarium.” [Online]. Available: 

https://theskylive.com/planetarium?obj=sun. [Accessed: 20-May-2017]. 

[19] Wolfram Alpha, “Wolfram|Alpha: Computational Knowledge Engine.” [Online]. 

Available: http://www.wolframalpha.com/. [Accessed: 20-May-2017]. 

[20] Sun Calc, “SunCalc sun position- und sun phases calculator.” [Online]. Available: 

http://www.suncalc.org. [Accessed: 20-May-2017]. 



39 

[21] Mahooti M.,“NREL’s Solar Position Algorithm (SPA) - File Exchange - MATLAB 

Central.” [Online]. Available: http://se.mathworks.com/matlabcentral/fileexchange/59903-

nrel-s-solar-position-algorithm--spa-. [Accessed: 22-May-2017]. 

[22] Groÿekatthöfer K., Yoon Z.,“Introduction into quaternions for spacecraft attitude 

representation”. Available: http://www.tu-

berlin.de/fileadmin/fg169/miscellaneous/Quaternions.pdf 

[23] How Stuff Works, “What is a gimbal -- and what does it have to do with NASA?,” 20-May-

2008. [Online]. Available: http://science.howstuffworks.com/gimbal.htm. [Accessed: 22-

May-2017]. 

 


