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1 Introduction

Oceans and marginal seas constitute the domains of the Earth System with increasing
societal significance, as defined by a number of global and European policy documents,
such as the UN Sustainable Development Goals, Paris Climate Agreement, and the EU
Green Deal. Improved ocean governance necessitates that present marine information
systems, based on in situ observations, remote sensing, and numerical modelling (both
in operational forecasting and in climate projection modes) would undergo fast
development, in order to provide timely, more detailed, and more accurate information
products.

When making numerical forecasts using models, improved accuracy in relation to
observations is usually achieved by data assimilation (DA), which includes interpolation
or reconstruction of observations and/or model errors, both in meteorology and
oceanography (Ghil and Malanotte-Rizzoli, 1991; Ide et al., 1997). Oceanographic data
assimilation has specific features (Ghil, 1989), owing to the nature of governing processes
(landlocked basins, shallow areas, and wind driving characterized oceans; the atmosphere
is unbounded, “deep”, and self-driving by polar-tropical gradients), but also of methods
and observation coverage.

In the Baltic Sea data assimilation tests started in 2000s. Studies on sea level
assimilation have been performed by a number of research groups (Canizares et al.,
2001; Sgrensen and Madsen, 2004, Ivanov et al., 2012), based on the different variations
of Kalman filter. Assimilation of scalar variables like temperature and salinity has been
tested by Funkquist (2006) who used 3D optimal interpolation (3D Ol) for satellite and
profile data. The Ol method needs prescription of correlation functions which were
estimated by Hgyer and She (2007), She et al. (2007) and Fu et al. (2011a). Cressman
method of successive corrections (SC) for satellite-based SST data was used by Nowicki
et al. (2015). Regarding operational forecasts, several experiments have been performed
to test the results of DA methods: 3DVAR with isotropic (Zhuang et al.,, 2011) and
anisotropic (Liu et al., 2009) recursive filters to estimate covariance functions, Ensemble
Optimal Interpolation (Fu et al., 2011b) and Singular Evolutive Interpolated Kalman Filter
(Losa et al., 2012, 2014). In long-term studies, reanalysis has been made using 3DVAR
(Fu et al, 2012; Fu, 2016), SC (Axell, 2013), Ensemble Optimal Interpolation (Liu et al.,
2013; 2014) and Ensemble 3DVAR (Axell and Liu, 2016). (Paper I)

In optimal interpolation (OI) (Gandin, 1963) it is usually assumed that local covariance
decreases with a distance between the points by some fading functions, like Gaussian,
damped cosine or exponential decay. In the open sea where observations are dense (e.g.,
satellite SST in cloud-free conditions), the Ol is sufficiently good (Hgyer and She, 2007).
For cases with sparse observations or in coastal areas with complicated covariance
patterns, a more comprehensive reconstruction method should be needed. (Paper Il)

In relation to improvements of DA, several statistical methods have been developed
for the data reconstruction, like various options of regression, optimal interpolation and
Empirical Orthogonal Functions (EOFs). Reconstruction of acceptable quality (in terms of
statistics) should account for the multiscale spatial and temporal covariance. There is a
number of processes that cause significant covariance over large distance, for example,
warm and cold weather events, occurrence of storms, differential heating or cooling of
shallow coastal areas compared to the deeper offshore regions (Legrand et al., 2015),
patterns of freshwater plumes from rivers (Soosaar et al., 2016). Covariance patterns



have geometrically often elliptical form, that are stretched along the coasts or isobaths
(Fu et al., 2011a).
Complementary to the classical Ol, methods based on the EOF have been developed
and applied. The methods have produced reliable large-scale patterns, which were
approximated by dominant EOFs (Kaplan et al., 1997; Kim, 1997; Menemenlis et al., 1997;
Beckers and Rixen, 2003); in the regions of dense sampling multivariate approach can be
applied, and the anomalies from large-scale fields are interpolated using Ol or some of
its variations. (Paper Il)
The novelty of this research is developing and testing a new statistical data
assimilation algorithm. Testing the traditional assimilation methods with new sea surface
temperature data sets from satellite remote sensing (Paper I) pointed to the need for a
more detailed evaluation of spatial covariance statistics of the assimilated variable.
A new EOF-based method for the reconstruction of gridded data fields of sea surface
temperature and salinity was developed in the course of these covariance studies
(Paper Il). The new reconstruction method was applied in the new data assimilation
algorithm (Paper Ill) that revealed a significant reduction of forecast errors, compared to
the control run without data assimilation.
Surface temperature and salinity were chosen as variables for DA in the present study
since they are important parameters for the modelling of the hydrodynamics, and there
are abundant observational datasets available. DA of subsurface data was not included
in the present study because of a much smaller amount of data, and will be considered
in the future.
The thesis has the following specific objectives:
e to test marine data assimilation into the model of the northeastern Baltic using
satellite SST products from CMEMS and FerryBox observations (Paper I),

e to develop and test the method for large-scale EOF analysis of sub-regional
time-dependent SST and SSS data, based on the covariance estimates from the
model results (Paper Il),

e toimplement this statistical reconstruction technique into the DA of the forecast
model (Paper lll),

e to study the feasibility of this assimilation method (Paper IlI),

e to assess the performance of the model with DA (Papers | and lil).
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2 Materials and methods

2.1 Description of the study area

The study was conducted in the northeastern part of the Baltic Sea (Fig. 1), between 21°E
and 30°E from west to east and between 57°N to 61°N from south to north. The region
includes the Gulf of Finland, the Gulf of Riga, and the northeastern Baltic Proper.

The topography of the Baltic Sea is irregular with variable depths. There are narrow
and shallow straits (Skagerrak, Kattegat, Belts and Oresund), deep basins (Arkona basin,
Gotland deep) and several large gulfs (the Gulf of Finland, the Gulf of Riga, the Bothnian
sea). Some sub-basins have sills (Bothnian Bay, the Gulf of Riga) restricting the inflow
of bottom water from the Baltic Proper. The entire sea is regarded as a brackish
estuarine-type multi-basin water body (Elken and Matth&dus, 2008; Leppéaranta and
Myrberg, 2009).

The coastline of the region is very diverse. There is the Aland archipelago in the NW
part and many small islands along the southern shore of Finland. Neva Bay in the NE has
a triangular shape and smooth forms. The Estonian coast of the Gulf of Finland has
interchanging sections of rocky and sandy beaches and a few islands. In the W there are
two large islands (Saaremaa and Hiiumaa) with narrow straits connecting enclosed
Vainameri with Baltic Proper, the Gulf of Riga, and the Gulf of Finland. There is a smooth
coastline along the Gulf of Riga that has a partly elliptical shape.

The region lies in the temperate climatic zone. In the summer, SST maximum usually
exceeds 15 °Cin July or August (Alenius et al., 1998), whereas temperatures up to 25 °C
can occur in the shallow coastal zones (Stramska and Biatogrodzka, 2015). Almost every
winter, sea ice forms with variable extent and thickness; during severe winters (Vihma
and Haapala, 2009), the Gulf of Finland and the Gulf of Riga are fully ice-covered
(Jevrejeva et al., 2004).

The wind regime is anisotropic, with dominant SW winds (Soomere, 2003; Soomere
and Keevallik, 2003). During a period covered in this study, five storms were observed in
the Baltic Proper at Ut station (Arra, 2018).

The river discharge impacts the basin in different ways. The Gulf of Finland and the
Gulf of Riga together receive 34% of the total freshwater discharge to the Baltic Sea as
can be calculated from the data by Bergstrom (1994) and Johansson (2017). This
increases SSS values from east to west, characteristic to estuarine areas (Yurkovskis
et al., 1993; Alenius et al., 1998), reaching 7-8 g kg in the Baltic Proper (Kduts and
Omstedt, 1993). SSS has numerous high-gradient frontal regions influenced by
fragmented coastline and multiple rivers entering the basin. Large-scale SSS patterns are
guided by unsteady circulation that depends on the climatic variations of atmospheric
forcing (Alenius et al., 1998).

The thermal regime is dominated by a seasonal heat cycle and modified by differential
heating and cooling at variable depths in coastal and offshore areas. The warm upper
layer of 10—-20 m thickness is well mixed down to the thermocline or to the bottom,
depending on which of them is shallower. Occasionally, wind-driven coastal upwelling
processes disrupt this warm layer (e.g., Uiboupin and Laanemets, 2009). Upwelling and
downwelling patterns induced by the transient wind fields have strong impact on SST
(e.g., Laanemets et al., 2011).

The salinity distribution varies in different sub-basins of the region. Water exchange
of the Gulf of Finland (Maljutenko and Raudsepp, 2019) and the Gulf of Riga (Lips et al,
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2016; Maljutenko, 2019) is governed by an inflow of more saline waters in the deep
layers and outflow of less saline waters in the surface layers. During stronger winds with
easterly directions, this estuarine circulation may be temporarily reversed (Elken et al.
2003; Liblik et al., 2013). The Gulf of Finland waters have lower salinity as of those in the
Baltic Proper, and there is no barrier between them, so saline waters can freely enter the
Gulf of Finland and create an estuarine halocline there (Elken et al., 2003; Liblik et al.,
2013). In the Gulf of Riga situation is different: only surface waters from the Baltic Proper
can overpass the sill between two sub-basins (Lilover et al., 1998).

The surface circulation in the Baltic Proper is cyclonic (Lehmann and Hinrichsen,
2000), unlike the Gulf of Riga where clockwise circulation may also occur (Maljutenko,
2019). Depending on the time scale, season, period, method of calculation, and depth
there are various estimates of gyres in the Gulf of Finland according to different studies.
Surface circulation in the Gulf of Finland near the coast of Finland has a weak eastward
component and strong westward flow in Neva Bay and along the Estonian coast
(Soomere et al.,, 2011). While horizontal circulation in both of the gulfs has been
historically considered cyclonic, anticyclonic gyres occur as well. Mesoscale variability
has rather short spatial scales; the Rossby deformation radius (R;) values are from a few
km to about seven km (Alenius et al., 2003).

Finland

Helsinki

QUL 5T
&7 "Gulf of Finland 5,

. : ° .
O
|-NE Baltic_. .~ &
Proper >~ 1
R~y

e

Latitude N

Longitude E

Figure 1. Map of the study area in the northeastern Baltic with depth contours. Shown are the sea
areas of the Gulf of Finland, Gulf of Riga and part of the northeastern Baltic Proper. Insert presents
the map of surface salinity of the Baltic and North seas by Rodhe (1998). The arrows present the
mean basin-wide river discharges in 1000 m3 s, The location of our study area is given on the insert
by a red box. (Paper Ill)

2.2 Model description

The HBM model (Berg and Poulsen, 2012) originates from the BSHcmod model (Kleine,
1994) initially developed by the Federal Maritime and Hydrographic Agency at the
beginning of the 1990s. Later it was modified and used by a variety of institutions within
the HIROMB cooperation.
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The model was chosen for the present research since it was routinely used for
operational forecast in Estonia.

HBM uses the Arakawa C-grid, and produces a forecast for 16 ocean variables
including temperature, salinity (which were studied in this research), current speed, ice
concentration and others. More information is given in the report by Berg and Poulsen
(2012) which has full description of the model and its validation.

The larger domain of the model covers the entire Baltic Sea including Danish straits
with a portion of the southern part of the North Sea. For smaller areas, there are setups
with finer resolution; one of them covers the northeastern Baltic, it has been used in the
present research.

The HBM-EST setup has a 0.5’ N x 1’ E resolution containing the Gulf of Finland, the
Gulf of Riga and the northeastern portion of the Baltic Proper (Lagemaa, 2012).
The model fields are three-dimensional having 455 x 529 x 39 points (by latitude,
longitude and depth correspondingly) with 750 088 wet-points, and 71 986 of them on
the surface. Data for the western open boundary originate from the Baltic-wide HBM
model, provided by the Copernicus Marine Environment Monitoring Service (CMEMS,
https://marine.copernicus.eu/, last access: 2 May 2020). Atmospheric forcing is provided
by the Estonian implementation of HIRLAM (Mannik and Merilain, 2007). Forecasts can
be made up to 48 hours with a time step of one hour. In this research 24 hour forecast
was used.

For DA experiments, the model was run with data from the 1% of May until the 31 of
December 2015. This short period was chosen due to computational reasons, since the
aim was to keep the high resolution needed for the operational forecasts, which are
made routinely by the Estonian Weather Service. Model data from the control run (free
run) without DA were available in the archive for all the DA experiments. For the
calculation of EOF modes, model data for the longer period were used, as will be
described in Sect. 2.3.3.

2.3 Assimilation algorithms

2.3.1 General approach

All assimilation methods were performed in the two-dimensional surface layer for
computational efficiency; there were no observations on deeper model levels. In the
model results, vertical profiles did not have distinctive graphical signatures of
assimilation (abrupt steps or jumps) since vertical mixing dominated over introduced
innovations, as the observations were assimilated every day.

2.3.2 Optimal interpolation
Ol was developed by Gandin (1963), and in this research it was used for assimilation
(Paper I). The algorithm uses the least-square minimization of analysis errors to calculate
the weight coefficients. The preparation of data and the algorithm itself are described
below.

Preparation includes the filtering and averaging of observational data. Irregular
satellite observations were averaged in each wet-point of the 455x529 grid.

Existing values were then averaged again for the coarse grid 45x53, leaving 744
wet-points.

The algorithm has three steps.

13
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1) The first step is to derive the equations, based on the minimization of function

2
n
Q= [fo —z w/-(f/-+ sj)] = min. It is minimized with respect to interpolation
j=1
weights w;, where f, = X, — x;,, which is the difference between the unknown “true”
state (¥,) and background (x;) in the model point i; f; = y; — J; is the difference
between observed values (y;) and modelled values (§;) taken at the observation points;

& - random errors of observations.

a
Minimization is done by setting the n constraints for the derivatives % = 0 using
_ _ - _ J
the conditionsf]- =0,f, =0, §=0, s/-f]- =0, &y fy = 0. As aresult we obtain for the i-th
model point the system of n linear equations regarding w;

Z. 11Tﬂwj+03kwj = fifo (1)
i

where k = 1 ...n is a number of equation.
By dividing Eq. (1) with the variance afz = f_kz, we obtain correlation instead of spatial
covariance.
2) The second step is calculating the vector of weights w = b(B + 12I)™%, based on

Eq. (1) divided by variance. Hereb = fkfo is correlation vector between the observation
75
point and the i-th model point, B = {fszfj} — correlation matrix between the individual
f

observation points, I —a unit matrix, 172 —relative noise variance.
3) The third step is a calculation of the assimilated value

Xqg =%y WY —Y) =x, + Xjoq Wj(Yj - 5’1‘) : (2)

Correlations B and b were approximated by the Gaussian function from the distance
r between the correlated points. Anisotropic correlation features were taken into
account by the directional distribution of the correlation scale from the angle 0 in the
form of ellipse dependence D = a sin(6 — 6,) + b cos(8 — 0,) relative to the reference
angle 6,. Ellipse semi-axes are designated as a and b.This way the correlation has been

.2
adopted in the form B(r,8) = exp (DZ_TEOU)' where D = D(0) was pre-calculated in the

each model grid point according to the coastline and topography. According to the
results by Hgyer and She (2007), longer correlation scales were taken along the coasts
and the isobaths and shorter scales in the perpendicular direction. The typical horizontal
impact scale along the coast or isobath was chosen at 15 km. Standard deviations for the
entire run were taken o2 = 0.5 and 2 = 1.0.

2.3.3 Successive corrections

The successive correction method or Cressman method was introduced by Cressman

(1959). The algorithm is based on the following assumptions: a) between the state

variables are univariate relations; b) weights of the individual observations w; in Eq. 3.

decrease with the distance d; between the observation point j and the model grid point

i. The weights are positive within the influence radius and zero outside of it.
Assimilation is done in two steps.

14



1) The first step is a calculation of weights:

R?-d?
max 0'2—£
R +dj

' max| 0——2% |+
21—1 R2+d§ N

w; = (3)

where R is influence radius (37 km, see details below) around the model point i;
Jj —observation point running index; k —number of observations out of total n observations
are located; 772 — relative noise variance; introduced for reduction of the assimilation
weights in realistic noisy conditions. It is estimated from the variances of observation

2
o .
errors 62 and background errors 0'3, 772 = —‘; In the noiseless case (n? = 0) the sum of
[e}
b

the weights is equal to unity (Paper I).
2) The second step is a calculation of analysis (Eq. 2).
Data assimilation for SST (Paper 1) was made with influence radius value of 37 km
(20 nautical miles, 40 grid points). This length is about ten times larger than Rossby
deformation radius. Therefore, the impact of individual mesoscale eddies is suppressed,
but basin-scale SST features are kept. Weight function has a greater impact within the
nearest 5 km, then it decreases to zero for 37 km.
The preparation for assimilation includes averaging the observations over each grid
cell in order to avoid oversampling problems. During the testing of the scheme,
the values of 62 and g were not known in advance. For the chosen dataset acceptable
2

results were obtained with R = 37 km and 772 = % = 2. These values were used
b

throughout the entire model run.

2.3.4 DA using reconstruction from empirical orthogonal functions

EOF is a statistical method, developed for meteorological applications (Lorenz, 1956),
and is mainly used for the decomposition of continuous space-time field into the sum of
basic functions of space and expansion functions of time. This approach allows for the
reduction of the number of variables without significant loss of signal. A detailed
description of the classical EOF technique with examples can be found e.g. in von Storch
ja Zwiers (1999).

A new method was developed (Paper Il) that allows for the making of a gridded
reconstruction of irregular point observations, using EOF modes calculated from the
model results.

The preparation is done in several steps:

1) The first step is the calculation of eigenvectors based on the covariance matrix:

B = L XTX,

T N-1

where X is matrix of deviations from mean model results, N — number of wet-points,
B — covariance matrix between all possible pairs of wet-points.
2) The second step is the calculation of eigenvalues and space-dependent eigenvectors:

BE = AE,

15



where E is matrix of eigenvectors, A — matrix of eigenvalues.

As far as modes are orthogonal, covariance is additive with respect to the EOF modes,
i.e., the full covariance is the sum of the covariance of the component data sets.
Calculated covariance is not homogeneous, which is usually assumed in the
implementation of Ol.

3) The third step is a reconstruction of observations to the entire grid at time i:

x; = Ea,, (4)

where X; is vector of reconstructed observations, E — matrix of eigenvectors,
a; — vector of observational amplitudes.
The expression to find observational amplitudes is

R -1
a, = (ETH'HE) ETH[y;, (5)

where H; is observation operator, y; — observation values.

Usually only L most energetic modes are taken into account.

The &; values should follow the least-square minimization of reconstruction error in
relation to observations ||y; — H;E4;||? = min. Note, that during standard EOF
decomposition, there are values of “observations” available at all space points (y; = x;),
the observation operator H; is unity, and therefore Eq(5) reduces to the standard EOF
formula 4; = ETx;.

While (4)-(5) present the time-fixed reconstruction when all observations are taken
exactly at time i , then extended time-dependent reconstruction assumes that within the
short time span the amplitudes depend linearly on time: Bp =4a;+d;- 8t,, where a; is
the time-fixed amplitude, d; is the rate of change vector and 6t, =t, —t; is the
difference between the observation and reference times. The amplitudes b; are found
again by least-square minimization and they are used in (4) instead of a;.

DA algorithm uses the transformation of the reconstructed one-dimensional vector
of observations X; back into the two-dimensional gridded field °. The dynamic
equation with Newtonian relaxation of the field Y to observations is written

op/at = F) == —9°), (6)

where F is model operator, T — adjustable relaxation time (5 or 10 days in this
research).

Discrete DA has two steps:

1) The first step is the calculation of raw forecast from the analysis of the previous DA
step:

W =9t ALF@ED),
where 1,[}f is raw forecast field without DA, 1,[}“_1 —analysis field from previous DA step,

At — DA time step, F (*~1) — cycle of model time-stepping operators within At.
2) The second step is the calculation of analysis:

Y =1 -y’ + ay®,
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where 1 is analysis field for the new DA step, 1° — reconstructed observations on

the model grid, @ = At/t — inverse non-dimensional relaxation time.

In time-dependent reconstruction (see details in Papers Il and Ill), it is necessary to
choose both the reference time and duration of the time interval. As with the time-fixed
reconstruction, the highest mode suitable for assimilation is determined by comparing
the amplitude values against statistical limits. The method allows for estimation of EOF
amplitudes and reconstruction of gridded fields solely by backward observational data.
This is the case for operational forecasts, where only past observations can be
assimilated for producing the present nowcast maps.

2.4 Observational data

2.4.1 FerryBox observations and shipborne monitoring

Automatic observations made from ships crossing the sea areas were used both as
independent data for validation and quality assessment (Paper |) and as input for
assimilation (Paper Ill). FerryBox is a measurement system installed on board commercial
ferries, collecting temperature, salinity, chlorophyll a fluorescence and turbidity data.
This technology is used to study basin-scale and mesoscale processes, upwellings and to
measure horizontal profiles of oceanographic parameters e.g., temperature and salinity
(Kikas and Lips 2016). The water is sampled at about 4 m below the surface at different
rates, but every 20 s measurement is recorded, thus covering roughly 160-200 m in a
horizontal direction. There are quality check procedures to eliminate unexpected and
physically unrealistic values and cross-checking with the same data from the return trip
is performed as well (Kikas and Lips, 2016). A comprehensive description of technical
parameters of the FerryBox system can be found in Lips et al. (2008).

Observations are available on the routes starting from the ports of Tallinn,
Helsinki, Travemiinde, and Stockholm (Fig. 2a) on the forth-and-back tracks twice a day
(Tallinn — Helsinki) or less frequently (other routes). For the particular grid cell of the
model, one mean SST value (Papers | and Ill) and one SSS value (Paper Ill) for each day
were calculated regardless of the time within the day and the number of observations.
Within these intervals, mean coordinates and observation time were collected for the
use in EOF analysis. Observations from the shipborne monitoring were also included
in the data set of EOF assimilation. Compared with the FerryBox data, shipborne
monitoring enlarged the area covered by observations (locations of the observations
are shown in Fig. 2b by dots), but the amount of data was very small and time intervals
were large.

The data were taken as they are within the CMEMS depository for 2015. The data had
passed an advanced quality check.
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Figure 2. Distribution of observations. (a) Map of FerryBox observation points along ship tracks
(blue) and shipborne monitoring observations (red) over the study period. Shown are also the
locations near Tallinn (south) and Helsinki (north) depicting the route of FB line (yellow circles with
black contour); (b) Observation amount over longitude and time. FerryBox data are shown by colour
image; each image cell presents the number of initial observations over intervals of 10 days and
18’ E longitude. Shipborne observations are shown by black dots. (Paper I1l)

2.4.2 Satellite observations

Sea surface temperature data, observed from satellites, were used as input observational
data within data assimilation with Ol and SC algorithms (Paper 1). Gridded observation
maps were obtained from the CMEMS multi-sensor product, which is built from
bias-corrected mono-sensor products at a horizontal resolution of 0.02 by 0.02 degrees.

SST product from satellite observations is composed by merging of various satellite
SST level 2 data (Bonekamp et al., 2016). The data have passed a significant number of
quality controls. The raw data have been calibrated through an inter-sensor bias
correction procedure. Nighttime SST maps were based on original SST observations
without any smoothing or interpolation. Details of the product are described on the
CMEMS web resource http://cmems-resources.cls.fr/documents/QUID/CMEMS-OSI-
QUID-010-009-a.pdf (last access: 8 May 2020). Data were acquired from NASA, NOAA,
IFREMER, EUMETSAT OSI-SAF and ESA using sensors like METOP_B, SEVIRI, VIIRS_NPP,
MODIS and others. (Paper )

Depending on cloud cover, there were from 200 up to 21000 observations per day.
Some obviously erroneous SST values were filtered out (which differed more than 10 °C
from model ones). All of them were used for assimilation with the Cressman method.
A data thinning algorithm was used for optimal interpolation in order to reduce
oversampling, leaving one value for the area of 2.5 by 5 nautical miles.

A single SST value was used for each day; it was reduced to midnight based on several
available observations at different times (near-real-time).

In order to make sure that the EOF algorithm will perform in the best possible way,
experiments with pseudo-observations were conducted. It was found that ca 5000
observations were needed to produce reliable results. As input data for assimilation,
model values at specified locations were taken instead of real observations (Paper Il).
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2.5 Validation of assimilation results

Following the approach by Taylor (2001), for each comparison of the two variablesf,, and
gn @ common data set is defined where missing values of one or both data sets are
ignored. If the standard deviations of the data sets are o, g, and the coefficient of their
mutual correlation is 77 4, then the centred (with bias removed) root-mean-squared
difference (RMSD) of the data sets Q' reads

Q% =0} + 05 — 2070475 . (7)

Maps or transect plots can be visually compared and described (Crosnier and
Le Provost, 2007). This method is appropriate for situations when no rigorous criteria are
set or they are unknown. Some features can be identified, inconsistencies removed and
algorithms altered.

From an assimilation perspective, time-series of good analysis lay between the free
run and the observations. Maps of good analysis should not have artificial and physically
impossible properties, like bull’'s eye formation around a single point observation,
rectangular shapes etc.; this should be valid also in the regions of missing observations
where quantitative validation is not possible.

The model performance with respect to observations was evaluated over the grid cells
— time span pairs, where and when the observations were available. Since there were
low number of observations, DA results were also checked against control run without
DA, though in this case it is not possible to conclude on improvement, but only to analyse
the changes due to DA. Standard statistical characteristics were calculated for the
individual fields: mean, standard deviation, in case of differences (for example, relative
to observations): bias, RMSD (root-mean-square difference, equals to the standard
deviation of difference field), and the Pearson correlation coefficient.

A comparison was made against independent data for SST (Paper I), and partially
against the data which was used in assimilation (Paper Ill) as there were no salinity
observations available from satellites.

When SST and SSS data were assimilated simultaneously using EOF reconstruction
(Paper 1l1), data from the DA experiments with a relaxation time of 5 and 10 days were
compared to the same averaged observational FB data as the data from the model run
without assimilation (FR). The problems concerning performance evaluations of
operational ocean models were described by Hernandez et al. (2015). In this research
different portion of the observations were withheld in order to see the impact of the
assimilation using 50% of the available data (Gregg et al., 2009). The implementation of
EOF DA described in the thesis involved about 13 k observational averages over coarse
5’ N x 10’ E grid. The reconstruction procedure by Egs. (4)—(5) has no direct connection
to the ongoing modelling (although it includes statistical results from longer model runs)

and the fields of 1° in Eq. (6) are the only link where observations enter the DA process.
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3 Results

The most important result of the entire work is the development of a method that allows
the assimilation of fragmented observations into a model and gets better results than
with free-run or simple algorithms. Additionally, it is shown that SST and SSS fields can
be realistically reconstructed using the EOF technique with model-generated values.
CMEMS data can be used as input for assimilation in the NE Baltic.

Several experiments were conducted in this study. The first experiment was
conducted to make sure CMEMS data are acceptable for data assimilation. The second
experiment revealed possibilities for two simple algorithms (SC and Ol) to improve
forecast comparing with free run (without assimilation). The third experiment showed
that EOF can be used for the reconstruction of SST fields. The fourth experiment
confirmed the ability of the EOF technique to assimilate sparse observations to the large
fine-grid.

3.1 Assimilation of satellite SST data from CMEMS

In the adopted data assimilation approach, SST satellite observations were used to
correct the model forecast. FerryBox data were taken from the Tallinn-Helsinki route
(Fig. 2a), which has the most frequent observations. Therefore, comparisons are
presented for this route.

A statistical comparison of weekly mean values of free run (FR) forecast and
assimilated SC and Ol forecasts with FB data revealed that assimilation provided better
correspondence to the independent observations (Table 1). Improvements were noted
in degrees of bias, root-mean-squared difference RMSD, and the overall correlation
(Table 1). The main performance estimator — RMSD — was < 1 °C in all the cases.

Time series of SST from daily SAT data revealed during the warming period in the open
part of the Gulf of Finland (Fig. 3), generally higher temperatures than FB. The SAT data
were spiky compared with the FB data: warmer spikes occurred during the warming
period and colder spikes during the cooling. The free run (FR) forecast provided in the
offshore waters slightly smaller SST than observed. Data assimilation using SC and Ol
“dragged” the model results towards SAT observations (Fig. 3b), still, the SST spikes did
not appear in the assimilated model results.
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Figure 3. Daily SST time series in 2015 on the Tallinn-Helsinki FerryBox transect in the central part
of the Gulf of Finland: FB during observation time and nightly values for FR and SAT. See
Abbreviations for explanations of the legend. (Paper I)
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Figure 4. Time-latitude map of weekly mean sea nightly surface temperature difference of

assimilated with SC (a) and Ol (b) in reference to Ferrybox data, between Tallinn and Helsinki.
(Paper 1)

The difference between the two assimilated SST datasets from the FB data is shown
in Fig. 4. In the central part of the Gulf of Finland (latitudes 59.5-60 N) there is a strong
seasonal signal. Thin layer temperature registered by satellite was 0.3-0.7 °C larger than
the bulk temperature of the upper layer (observed at a 4 m depth) during spring and
summer until August, and insignificantly (less than 0.5 °C) smaller in autumn and early
winter. Larger SAT minus FB differences emerged occasionally in areas immediate to the
coasts. In December the thin surface layer cooled down by 0.5-1.5 °C more than the
deeper surface layer along the whole transect, also including the coastal waters.

Total RMSD between analysis and validated data was less than 1 °C for SST. Within the
selected parameters of assimilation algorithms, the computationally effective SC
algorithm gave slightly better results than Ol in relation to independent FerryBox data.

A statistical comparison of weekly mean values of FR forecast and assimilated SC and
Ol forecasts with FB data (Table 1) revealed that assimilation provides better
correspondence to the independent observations. Presented deviations contain the
seasonal cycle, since all the statistics were calculated with respect to the constant mean
value over the whole period from April to December. Standard deviations of SST were in
the range of 4.2 to 4.6 °C. Calculated correlations were quite high — more than 0.93.

Table 1. Statistics of FR, SC, Ol and SAT with reference to FB data (weekly data).

FR SC ol SAT FB
bias [°C] -0.45 -0.34 -0.42 -0.31 0.00
RMSD [°C] 0.97 0.84 0.96 0.66 0.00
correlation 0.931 0.937 0.934 0.936 1.000
mean [°C] 10.99 11.11 11.03 11.13 11.45
standard 4.35 4.45 4.48 4,57 4.19
deviation [°C]

With reference to the SAT data, FR had RMSD = 0.96. Data assimilation reduced this
value to 0.82 (SC) and 0.93 (Ol).
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3.2 Assimilation of in-situ data with EOF method

3.2.1 SST and SSS reconstruction with EOF
The main idea behind EOF is temporal covariance between distant locations.
Covariance as a function of the space lag of original data (Fig. 5) usually did not follow
the normal distribution neither did it exponentially decrease. Large covariance values,
especially for SST (not shown), for remote wet points, are due to the similarity of their
thermohaline regime (shallow coastal areas, zones influenced by river discharge, local
basins with low-intensity circulation). The covariance of the most energetic modes
followed closely at larger scales the covariance of original data. Covariance of residual
fields (sum of the remaining higher EOF modes) had a strong normal distribution and it
decayed fast with increasing space lag. Correlation (not shown) dipped 0.2 at a distance
of 30 km for both SST and SSS, justifying the use of Ol for this part of the variability.

o
N
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Salinity covariance (gkg")?
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0 100 200 300 400 500
Space lag (km)

Figure 5. Covariance of SSS as a function of space lag between the model points. Shown are heavily
smoothed two-dimensional relative histograms of the original data (dotted lines, percentiles 90,
95, and 99 %) and mean covariance of original data (black line). The SSS covariance of the sum of
the six most energetic EOF modes is also shown (red line) and higher EOF modes (blue line).
(Paper I1)

Remapping one-dimensional vectors e, back into the two-dimensional geographical
framework gives insight into underlying physical processes. First, most energetic modes
(Fig. 6 shows the modes for SSS), had nearly “flat” patterns without sign change;
their amplitudes were dominated by a seasonal signal. Higher modes were considered
random due to mesoscale eddies and other fine-scale processes, therefore their
correlation decayed rapidly with increasing distance. In the SST patterns, the first mode
dominated heavily (97.64% of variance explained) due to the seasonal cycle. Regarding
the SSS patterns, the share of different modes was more distributed and the first six
modes explained 72.88% of the total variance. The details of the calculated modes and
their interpretation can be found in Paper Il (Table 1 and Table 2).

In order to make sure that the EOF algorithm will perform in the best possible way,
experiments with pseudo-observations were conducted. It was found that ca 5000
observations were needed for producing reliable results. As input data for assimilation,
model values at specified locations were taken instead of real observations (Paper Il).
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Figure 6. EOF patterns for the four first modes of SSS. Shown are the explained variance percentage
of each mode. The contour interval for non-dimensional normalized modes (744 points) is 0.02.
(Paper Il)

With a decreasing number of observations K, errors slightly increased when K > L,
where L is the number of modes. For example, SSS absolute error was < 0.3 g kg™ for
88% of cases with K = 51 and 80% of cases with K = 10. Regarding SST, the errors
were < 0.6 °Cin 90% and 82% of cases, respectively. Regression of all the values of both
SST and SSSyields tangent between initial and reconstructed data 0.99, their correlations
follow r > 0.95. Relative errors of all the SST data, compared with the horizontal
standard deviation of each time instance, were from 6.7% (observation grid step 37 km)
to 8.6% (93 km). Relative errors of SSS were somewhat larger — 18% and 25%,
respectively. For K < L the errors increased abruptly and singularity errors occurred in
Egs. (5)-(6).

In one of the experiments (Paper Il), the whole region was split into three sub-regions:
the Gulf of Finland, Gulf of Riga, and northeastern Baltic Proper (Fig. 1), and individual
EOF modes were calculated for each of the sub-areas. Except for the northeastern Baltic
Proper, the first two SST modes for the Gulf of Finland and Gulf of Riga were similar to
the patterns obtained for the whole area. Pairwise correlations of the SST amplitudes
were > 0.95 between the Gulf of Finland, the Gulf of Riga and the whole region. There
was no evidence that any particular season or sub-region was modelled with greater
accuracy than this.
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3.2.2 Assimilation using EOF reconstruction

When waters with an SST above 17 °C dominated the area, all the maps indicated
moderate upwelling near the northern coasts of the basins (Fig. 7). However, the spatial
extent of the colder waters and the minimum temperatures were different. Warmest
“cold” waters were observed on satellite images.
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Figure 7. Maps (longitude E, latitude N) of the SST in the study area on 3 August 2015: (a) free
model run without DA, (b) in situ observations reconstructed using EOF method, (c) DA with a
relaxation time of 5 days (weight 0.2), (d) satellite observations. (Paper IIl)

Various mesoscale features emerged on SST (Fig. 7) and SSS (Fig. 8) maps, like colder
upwelling filaments along the northern coasts of the Gulf of Finland and the Gulf of Riga,
and decaying anticyclonic warm-core eddies near the southern coast of the Gulf of
Finland.

The model forecasted spreading of the Daugava river waters by narrow coastal strips
of lower salinity in the NE and NW directions (Fig. 8). Locations with dense observations
allowed us to validate the model and visually evaluate assimilation quality. While SST
followed the seasonal cycle (Fig. 9), with weather-dependent deviations, then SSS
behavior was more irregular. All the compared SST data sources showed less variability
than that of SSS in the given variation scales of SST and SSS (16 °C and 2 g-kg™* respectively).
Still, for most of the time the assimilation curve (blue line, Fig. 9b) was closer to the
FerryBox observations than the control run, for both SST and SSS (Fig. 9).
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Figure 8. Maps (longitude E, latitude N) of SSS in the study area on 3 August 2015: (a) free model
run without DA, (b) in situ observations reconstructed using EOF method, (c) DA with relaxation

time 5 days (weight 0.2). (Paper Ill)

DA improved the model performance significantly: centered RMSD of SST was reduced
by 22% and SSS by 34%, compared to the control run (Table 2). From DAO1 to DAOQ2, slight
improvement of DA performance was observed, therefore DAO2 was adopted. Spatial
pattern of RMSD changes between the DA and FR (Fig. 10) indicates that most significant
improvement (RMSD reduction up to 50%), both for SST and SSS, took place in the
observation-covered areas in the Gulf of Finland. Too cold waters produced by FR near
the northern coast of the Gulf of Finland were effectively corrected by DA (see also
Fig. 7), therefore highest improvement percentage scores were detected in this region.
Near the western open boundary, non-assimilated SST and SSS values of the larger model
were advected into the area, therefore RMSD reduction was small, or even negative for
SSS.

Daily maps of EOF DA data were converted also to weekly averages, as it was done for
Ol and SC methods in Table 1 and Fig. 4, see details in Paper I. Weekly RMSD is 13% lower
for SST and 9% for SSS, compared to the daily data (Table 2). Weekly statistics suppressed
the mesoscale variability, not resolved by EOF reconstruction, and revealed better match
between the DA and the observations. DA decreased the bias, especially for SSS, and
increased correlation of SSS between analysis and observations.
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Table 2: Statistics of daily data in 0.5’ N x 1’ E grid cells with FerryBox (FB) observations: free model
run without data assimilation (FR), data assimilation DAO1 (observation weight 0.1), DAO2 (weight
0.2) and FB. Bias, RMSD and correlation are taken with reference to FB. (Paper Ill)

| FR | pbao1 | DpDAD2 | FB
SST [°C]
Mean 12.03 12.15 12.25 12.48
Standard deviation 3.98 3.92 3.93 3.97
Bias -0.45 -0.33 -0.23 0
RMSD 0.72 0.59 0.56 0
Correlation 0.98 0.99 0.99 1.00
SSS [g kgl
Mean 5.61 5.79 5.85 5.93
Standard deviation 0.35 0.29 0.31 0.37
Bias -0.31 -0.14 -0.08 0
RMSD 0.35 0.24 0.23 0
Correlation 0.52 0.76 0.78 1.00
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Figure 9. Time series of SST (a, c) and SSS (b, d) near Tallinn (a, b, 59.4833° N, 24.7667° E) and
Helsinki (c, d, 59.9500° N, 24.8833° E), locations shown in Fig. 2a. FerryBox data are shown by dots,
black lines represent control run without DA, red lines correspond to DA with relaxation time 5 days
(weight of observations 0.2), blue lines for 10 days (weight 0.1). (Paper Ill)
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Figure 10. Improvement of RMSD of DA compared to that of FR, both taken in reference to 110 k
FerryBox observations. Comparison is made for 20 x 20 grid cells (10’ N x 20’ E) for SST (a) and SSS
(b) over the whole study period. Legend codes: few points — less than 100 observations in a box,
small values - absolute percentage change less than 10%, negative — DA RMSD growth more than
10%, positive — DA improvement (RMSD reduction) from 10% to 30%, large positive —improvement
more than 30%. (Paper )
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4 Conclusion

Three different assimilation methods were used with HBM-EST simulations — Ol, SC and
EOF. Calculation was performed on model data for year 2015 and satellite observations
provided by CMEMS, validation was made with in situ data. The findings can be
summarized as follows:

The tests with marine data assimilation into the model of the northeastern Baltic
showed that satellite SST products from CMEMS can be well used for data
assimilation in the sub-regional marine forecasts (Paper I).

SST from the DA, produced using satellite data, was compared with FB observations;
it was confirmed that for areas with dense observations Ol and SC algorithms are
appropriate and can be used to produce good quality results (Paper 1).

Estimation of the model performance for both cases with or without DA gave for the
SC and Ol methods similar pattern of differences relative to FB data. Comparing the
results by SC and Ol methods, SC produced slightly more accurate results than Ol
with the given set of parameters. Namely, SC provided smaller bias and RMSD and
larger correlation as compared to the FB data. (Paper 1)

Statistically justified EOF reconstruction method is developed that allows to handle
large-scale patterns of observed fields in the sub-regions. The entire region can be
covered with interpolated and extrapolated observations using model-based EOF
patterns. Summation of all modes yields initial field variance (Paper II).

Study of the EOF reconstruction method revealed that in the smaller sea regions,
which are affected by the same large-scale forcing patterns, the dominating EOF
patterns have obvious physical interpretations. Their shape does not depend very
much on the selection of boundaries as shown by experiments with split regions
(Paper ).

Implementation of the EOF statistical reconstruction technique into the DA of the
forecast model yielded reduction of RMSD and interpolation errors. Mesoscale
deviations from large-scale EOF patterns follow well-defined covariance decay with
space lag; therefore, they could be treated by optimal interpolation or similar
method (Paper lll).

EOF DA method has small computational effort compared to the localized methods
like Ol etc (Paper ll).

Intermediate results are in the form of maps that are easily understandable and can
be checked visually or taught to be analysed by artificial intelligence (Paper IIl).
Since the quality of DA and forecast are primarily determined by the quality of EOF
reconstruction (when extensive mesoscale observations are not available), then it
would be possible to perform faster calculations with orthogonal EOF basis vectors
(Paper III).

DA made major improvement in modelling of SSS. Further improvements can be
made as RMSD to the observations makes 62% of observed standard deviations
(Paper III).
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Abstract
Development of data assimilation for forecasts in Estonian
marine areas

This research was performed in order to solve practical problems concerning quality of
operational marine forecast for Estonian coastal waters. This was done through data
assimilation using available observation data from satellites and FerryBox.

The main objective of the work was to find assimilation algorithm which allows to
produce forecast with smaller errors compared to model run without assimilation.
Observation coverage and spatiotemporal characteristics can vary significantly, but this
should not impact quality of the assimilation.

HBM model was used for experiments as it currently produces operational forecast
for Estonian marine areas. The region was limited to northeastern part of Baltic Sea,
including Gulf of Finland, Gulf of Riga and northeastern part of Baltic Proper. Temporal
resolution of the model was taken 24 hours, spatial resolution is 0.5 N x 1’ E.

Assimilation was performed only for the first water layer (depth 3m) since
observations were taken from satellite or FerryBox. Experiments were performed with
three algorithms.

Two of them are well-known straightforward methods — successive corrections (SC)
and optimal interpolation (Ol). These algorithms are computationally robust and can be
used for areas with abundant observation coverage. Assimilation reduces RMSD of e.g.
SST by 0.01-0.13 °C.

The novelty of the research is development of a new method, which allows to
assimilate small amount of scattered observations and improve forecast over entire grid,
including areas without observations. The algorithm is based on calculation of EOF
modes of model fields and reconstruction of observations using small portions of data.
This method uses grid transposition (from fine to coarse and then back to fine grid
through bilinear interpolation) in order to reduce computational load.

New method can be used for assimilation for regions that are under similar forcing
resulting in high covariance over large distances. Therefore variability of assimilated
fields can be presented by limited number of dominating EOF modes. Calculation of EOF
modes should be done with model that describes marine physical processes very well.

During all the experiments the same time period was used (01.05.2015-31.12.2015)
in order to maintain comparability between different algorithms.

Feasibility study of the EOF assimilation method showed that the EOF patterns have
obvious physical interpretations and their shape does not depend very much on the
selection of boundaries of sub-regions. The output is presented as two-dimensional maps
which can be interpreted in terms of underlying physics.

EOF DA method reduces RMSD for SST by 0.14-0.16 °C and SSS by 0.11-0.12 g-kg™.
Calculations of EOF modes were done with 5-year model data. First four modes can be
used for assimilation, they explain 99.3% and 65.4% of variance for SST and SSS
respectively.

EOF DA method has small computational effort compared to the localized methods
and can be used in operational forecast at Department of Marine Systems.
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Lihikokkuvote

Eesti merealade prognoosisiisteemi arendamine vaatlusandmete assimileerimise abil

Kaesolev doktoritéo kirjeldab uuringuid, mis viidi l1abi eesmargiga pakkuda tapsemat
lahendust Eesti merealade operatiivsele prognoosisiisteemile. Arendamine hdlmas
satelliitandmete ja kruiisilaevade vaatlusandmete assimileerimist.

Peamine eesmark oli leida arvutialgoritm, mis korrigeeriks prognoosi ning vahendaks
vigu, mis on iga mudeli puhul paratamatud, vérreldes mudeli tulemustega ilma
assimileerimiseta. Ldbi selle saavutatakse prognoosi kdrgem tdpsus, kuna arvutusi
jargmiseks paevaks alustatakse korrigeeritud vaartusest. Vaatluste tihedus vdib kdikuda
tile kogu basseini, samuti vdivad olla vaga erinevad ajalised parameetrid, kuid see ei
tohiks oluliselt mdjutada mudeli prognoosi kvaliteeti peale assimileerimist.

Eksperimentide jaoks kasutati HBM mudelit, mis t66tab operatiivsel reziimil Eesti
merealade jaoks. Uurimispiirkonnaks on Ladnemere kirdeosa, mis hGlmab Soome ja Liivi
lahte, Vdinamerd ning Ladnemere avaosa, mis jadb 21°E meridiaanist ida poole. Mudeli
assimileerimise ajasamm oli voetud 24 tundi ning ruumiline vGrgupesa suurus oli
0.5 Nx1'E.

Assimileerimine oli rakendatud ainult Glemise kihi jaoks (1. kihi paksus 3 m) kuna
satelliitandmed olid pinnakihi kohta ning FerryBox andmed parinesid sligavuselt 3—-4 m.
Eksperimentide kdigus katsetati kolme erinevat algoritmi.

Nendest kaks on tuntud ja lihtsad algoritmid — jarjestikulised muudatused (SC) ja
optimaalinterpolatsioon (Ol). Neile meetoditele on omane madal arvutusvéime, neid
saab kasutada assimileerimisel piirkondades, mille kohta on rohkelt vaatlusi tle kogu
basseini. Algoritmid vahendavad nt temperatuuri ruutkeskmist viga 0.01-0.13 °C vdrra.

T60 uudsuseks on uue meetodi arendamine, mis lubab taastada vaatluste vaartusi tle
kogu mudelivdrgu vaheste vaatluste korral, mis ei tarvitse olla samas alambasseinis.
Algoritm pdhineb EOF moodide arvutamisel mudeliandmete alusel ning vaatluste
rekonstrueerimisel, kasutades vdikest andmekogust. Selle meetodi arvutusvGéime
t6hustamiseks kasutatakse jamevorku, mis on peenvérgust, kus toimub assimileerimine,
100 korda vaiksema ruumilise resolutsiooniga, ning teisendus tagasi peenvérgule on
tehtud bilineaarse interpolatsiooniga.

Uus meetod sobib kasutamiseks assimileerimisel piirkondades, mis asuvad
homogeense mdjuvdlja alal, ja mille merevee parameetreid iseloomustab kdrge
kovariatsioon suurtel kaugustel. Seega terve valja muutlikkust saab kirjeldada
domineerivate moodide vdhese arvuga. EOF moodide arvutus eeldab, et kasutatav
mudel kirjeldab meres toimuvaid fuusikalisi protsesse killaltki hasti.

KGikides kirjeldatud eksperimentides oli kasutatud mudeliandmeid samast ajalisest
perioodist (01.05.2015—-31.12.2015), et tagada vorreldavus erinevate meetodite vahel.

EOF assimileerimismeetodi vdimekuste uuring nditas, et tugevamatel EOF mustritel
on fuusikaline tagap&hi ning nende kuju ei sdltu sellest, millisest alambasseinis parinevad
lahteandmed. Assimileerimise valjundiks on kahedimensioonilised kaardid, mida saab
tolgendada fiilsikaliste seadusparasustega.

EOF assimileerimismeetod vdhendab pinnatemperatuuri keskmist ruutviga
0.14-0.16 °C vdrra ning pinnasoolsuse oma 0.11-0.12 g-kg! vdrra. EOF moodid olid
arvutatud 5 aasta mudeliandmete pd&hjal. Esimesed neli moodi kirjeldavad dle 99,3%
pinnatemperatuuri ja 65,4% pinnasoolsuse muutlikkusest.

Arendatud meetod on arvutuslikult thus ning sobib kasutamiseks operatiivses
reziimis Tallinna Tehnikallikooli Mereslisteemide instituudis.
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Abstract. Satellite SST products from the Copernicus Marine Environment Service were tested for data assimilation in the
sub-regional marine forecasts. The sub-regional setup of the HBM model was used in the northeastern Baltic, covering also
the Gulf of Finland and the Gulf of Riga. Two assimilation methods — successive corrections and optimal interpolation — were
implemented on the daily forecasts from April to December 2015. Independent daily FerryBox data from the ship track between
Tallinn and Helsinki were used for validation. Higher SST forecast errors of the reference model were found near the shallower
northwestern coasts. During the calm heating period in spring and early summer, the reference model produced in these regions
too warm waters compared with the satellite and FerryBox observations. Too cold waters, compared to the observations, were
modelled during the cooling period from late summer to winter. Although data assimilation reduced these errors, improving the
treatment of coastal-offshore exchange in the core forecast model would be useful.

Key words: remote sensing, data assimilation, successive corrections, optimal interpolation, short-term forecast, HBM model,

SST assimilation.

1. INTRODUCTION

Assimilation of observational results into oceanographic
forecast models has a history of several decades,
following with some delay developments of data
assimilation in meteorology. In parallel to statistical
forecast correction methods based on linear filtering
and prediction theories (e.g. Kalman and Bucy, 1961),
Cressman (1959) proposed a robust ‘manually tunable’
method directly applicable for correcting weather
forecasts. Meteorology reached the state of working
operational assimilation and forecast systems already in
the 1970s (McPherson et al., 1979). In oceanography,
only a few offshore regular time series observations have

! Corresponding author, mihhail.zujev@ttu.ee

been made. Shipborne observations, which provide most
of the water column data, are non-synoptic and usually
separated by a distance larger than the scale (size)
of mesoscale motions. About a decade later than in
meteorology, the first global oceanic data assimilation
system (Derber and Rosati, 1989) was proposed based
on sea surface temperature (SST) observations from
merchant ships; quite sparse profile data from XBT, CTD,
and Nansen bottles were incorporated as well.
Acquisition and assimilation of remote sensing data
have been a common procedure for both meteorology
and oceanography. However, the data coverage and
accuracy are different for the atmosphere and the ocean.
Reliable spaceborne thermal emissivity observations
started in the 1960s on terrestrial (Buettner and Kern,
1965) and ocean (Anding and Kauth, 1970) surfaces.
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Further, atmospheric infrared and microwave sounding
allowed estimation of temperature and humidity profiles
with height, also in the cloudy areas. Operational
assimilation of remote sensing data into the weather
forecast models was introduced in the 1970s, based on
the adding of interpolated difference between observed
and forecast values to the original forecast in order to
obtain a corrected model state for the next forecast
interval. The tests showed (e.g. Ghil et al., 1979) that
the impact of data assimilation is highly sensitive to the
quantity of data available; the choice of the assimilation
method to determine the interpolation weights is also of
importance.

Ocean sea surface temperature (SST) can be
determined by most satellite sensors only in the cloud-
free areas. Again, the amount of ocean data on the
surface is irregular both in time and space as these are
temperature—depth profile data; this causes significant
problems in ocean data assimilation, compared with the
more regular atmospheric observational data. Skin-layer
corrected accurate (Donlon et al., 2002) and operationally
available SST data that have high resolution both in
space (<10 km) and time (6—12 h) have been synthesized
and used for data assimilation since the beginning of the
2000s (Tang et al., 2004; Brasseur et al., 2005).

New remote sensing SST products were developed
and made publicly available during the MyOcean
project (Nardelli et al., 2013). This procedure is
further developed and continued as the Copernicus
Marine Environment Monitoring Service (CMEMS),
http://marine.copernicus.eu/, providing Level 3 (or L3,
supercollated or merged multisensor data, different
options are available) and Level 4 (or L4, gap-free,
interpolated from L3) SST products (Martin et al., 2012)
in numerical format. These data open up new possi-
bilities for operational data assimilation.

Statistical methods for data assimilation have many
variants (e.g. Ide et al, 1997), which are all based on the
estimated spatial-temporal correlation functions and
variance fields. While optimal interpolation, 3DVAR,
and 4DVAR methods assume in most applications
prescribed statistical fields, then Kalman filters estimate
and predict their variations depending on the evolution
of oceanographic state variables. Good estimations are
found when true ensemble forecasts can be made, with
parallel forecasts starting from slightly modified initial
conditions. Another option, demanding much less
computing power, is to generate pseudo-ensembles from
a single forecast. Sea level innovations, introduced by
the assimilation procedure, propagate fast as barotropic
long gravitational surface waves, therefore continuous
assimilation with small increments during an assimilation
cycle is advisable. Assimilation of temperature and/or
salinity modifies the forecast density field, corres-

ponding perturbations propagate much slower as
baroclinic internal waves or advective plumes; hence
larger innovations are acceptable. When observations
of different state variables are combined into the same
forecast, multivariate optimal interpolation provides
reliable results (Cummings, 2005).

In the Baltic Sea, probably the first data assimilation
system was made by Sokolov et al. (1997) for ‘smart’
interpolation of temperature, salinity, and chemical profile
data from monitoring stations, using a hydrodynamic
model. Some tests have been devoted to assimilation
of sea level data (Canizares et al., 2001; Serensen and
Madsen, 2004; Ivanov et al., 2012), based on the various
options of the Kalman filter.

Assimilation of scalar variables such as temperature
and salinity into the Baltic Sea models has a quite rich
history. The present study has some specific features.
Firstly, assimilation is designed into the operational
forecast system and is prepared for the routine use;
therefore, the methods must be robust and computatio-
nally effective. Secondly, the study is based on the
downstream forecasts from the Baltic-wide core service
system and both the model results and SST observations
are of high spatial resolution. However, in the present
study we deal with the validation of averaged data sets
and do not consider high-resolution details.

Earlier, the operational assimilation system presented
by Funkquist (2006) used 3D optimal interpolation (3D
OI) for satellite and profile data. Correlation functions,
needed for OI, were also estimated by Hoyer and She
(2007), She et al. (2007), and Fu et al. (2011a). Nowicki
et al. (2015) used the Cressman method of successive
corrections (SC) for satellite-based SST data. A number
of pre-operational experiments have been conducted
to test the performance of new assimilation methods:
3DVAR with isotropic (Zhuang et al., 2011) and
anisotropic (Liu et al., 2009) recursive filters to estimate
covariance functions, Ensemble Optimal Interpolation
(Fu et al., 2011b), Singular Evolutive Interpolated Kalman
Filter (Losa et al., 2012, 2014). Long-term reanalysis
studies have used SC (Axell, 2013), 3DVAR (Fu et al.,
2012; Fu, 2016), Ensemble Optimal Interpolation (Liu
et al., 2013, 2014), and Ensemble 3DVAR (Axell and
Liu, 2016).

This study is aimed at testing marine data
assimilation into the operational high-resolution sub-
regional forecast model of the northeastern Baltic, using
new, routinely available satellite SST products from the
CMEMS. The paper starts with the presentation of the
model, data, and methods. The results section considers
satellite data comparison with FerryBox, spatial, and
seasonal features of assimilated data. Model skill
estimates are given for the free run without assimilation,
and for the model run with different options of
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assimilation. We discuss possible ways to use less
costly assimilation methods, yielding the results of nearly
the same quality as with more sophisticated methods.
Finally, conclusions are presented.

2. MODEL, DATA, AND METHODS

2.1. Sub-regional marine forecast model HBM

For assimilation tests we used the HBM-EST model
(Lagemaa, 2012), which is an Estonian implementation
of the HBM model (the abbreviation comes from
HIROMB-BOOS Model). The model was originally
constructed by the Bundesamt fiir Seeschifffahrt und
Hydrographie, Hamburg, Germany, named as BSHCmod.
Further developments have been made within Baltic-
wide cooperation in operational forecasting; different
options were merged to a new thoroughly tested HBM
code within the EU MyOcean project. Details of the
HBM model and its implementation are given by Berg
and Poulsen (2012).

The HBM is a free-surface baroclinic 3D ocean
model written in geographical latitude/longitude spherical
coordinates that uses a horizontal staggered Arakawa
C-grid and a fixed vertical grid with variable spacing
and time-varying top layer thickness. There is also
an option for dynamical vertical coordinates where
the grid spacing changes in time. Vertical turbulence
is treated by the s~ turbulence model and horizontal
turbulence is treated within the well-known Smagorinsky
formulation. The sea ice module is an integrated part
of the HBM model, including both dynamics and
thermodynamics. The model can take into account the
results from independent wave models.

The forcing of the model is done by externally
prescribed surface fields, point sources, and open
boundary conditions. Surface fields are adopted from
the numerical weather prediction model: 10-m wind
components, mean sea level atmospheric pressure,
surface air temperature, surface air humidity, and cloud
cover. The HBM model calculates surface energy fluxes
(mechanical, radiative, thermodynamic) using bulk
parameterization formulae. Point source data are
freshwater fluxes from rivers. If actual discharge
forecasts are missing, the climatology for each calendar
day will be used.

On the ocean side, the HBM model is forced by the
tidal sea surface elevation, sea level forecasts from the
barotropic storm surge model of the Northern Atlantic,
and monthly climatological hydrography. The Baltic Sea
implementation of the HBM uses a nested approach: the
largest area of the 3D forecast covers the North and
Baltic seas with a grid step of 12 nautical miles, the
intermediate resolution with a grid step of 3 nautical

miles is further refined into a 1-mile grid covering the
whole Baltic Sea. In the Danish Straits, two-way nesting
with a finer grid model with the resolution of 0.5 nautical
miles is used.

The Estonian implementation of the HBM (Lagemaa,
2012) covers the Baltic Sea sub-area east from 21.55°E
(Fig. 1), including the Gulf of Finland and the Gulf of
Riga, with the resolution of 0.5 nautical miles. The
horizontal grid of the HBM-EST model consists of 425
by 529 grid points. The grid cell length by longitude
is 1’, by latitude it is 30". In the vertical grid, 39 depth
layers are used, with a 3-m grid step near the surface
and larger grid steps in the deeper layers. Forcing at
the western open boundary is taken from the Baltic-
wide HBM model, which operates routinely within the
CMEMS with the resolution of 1 nautical mile. Forcing
on the sea surface is obtained from the Estonian version
of the HIRLAM model that is run by the national weather
service for operational forecasts on a 11-km grid. For
analysis of observation and forecast errors in relation to
wind conditions, time series of wind speed components
were extracted in the central part of the Gulf of Finland.

We chose the year 2015 for the forecasting and
assimilation experiment. The forecasts were updated
daily by introducing a new weather forecast at midnight.

2.2. Satellite SST data

Sea surface temperature data, observed from satellites,
were used as input observational data within data
assimilation. Gridded observation maps were obtained
from the CMEMS multi-sensor product, which is built
from bias-corrected L3 mono-sensor products at the
horizontal resolution of 0.02 by 0.02 degrees. For each
day a single SST value was used, which was reduced
to midnight based on available observations at different
times (near-real-time).

This product (Bonekamp et al., 2016) contains results
from the merging of various satellite SST level 2 data,
which have passed a significant number of quality controls
and which have been calibrated through an inter-sensor
bias correction procedure to provide an estimate of the
night time SST based on original SST observations
without any smoothing or interpolation. Details of
the product are described on CMEMS web resource
http://cmems-resources.cls.fr/documents/QUID/CMEMS-
OSI-QUID-010-009-a.pdf.

Sensors used include METOP B, SEVIRI,
VIIRS NPP, MODIS, and others. Observations were
collected from different producers: NASA, NOAA,
IFREMER, EUMETSAT OSI-SAF, and ESA.

Depending on the cloud cover there were from 200
up to 21 000 observations per day. Some obviously
erroneous SST values (which differed more than 10 K
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from model ones) were filtered out. All of them were
used for the assimilation with the Cressman method. For
optimal interpolation a data thinning algorithm was
implemented, leaving one value for the area of 2.5 by 5
nautical miles.

An example of data extracts is shown in Fig. 2a,
representing the observations on the line between
Tallinn and Helsinki during the whole test period.
The temperatures presented here are averaged over one
week.

2.3. FerryBox data

Automatic observations made from ships crossing the
sea areas were used as independent data for validation
and quality assessment. FerryBox is a measurement
system installed on board commercial ferries that collects
temperature, salinity, chlorophyll @ fluorescence, and
turbidity data. This technology is used to study basin-
scale temperature and salinity patterns together with
mesoscale processes and upwellings (Kikas and Lips,
2016). The water is sampled at about 4 m below the
surface at different rates and every 20 s the measure-
ment is recorded, thus covering roughly 160-200 m
in the horizontal direction. There are quality check
procedures to eliminate unexpected and physically un-
realistic values; cross-checking with the same data from
the return trip is performed as well (Kikas and Lips,
2016). Detailed description of technical features of the
FerryBox system is given by Lips et al. (2008).

Observations are available on the route Tallinn—
Helsinki on the forth and back tracks twice a day with
a time step of 20 s. Temperatures on the same latitude
were averaged across multiple tracks. For each day one
mean SST value was calculated regardless of the time of
the day and the number of observations in the particular
grid cell. Weekly averages of the temperatures observed
by the FerryBox system are shown in Fig. 2b.

The data were taken as they are within the Copernicus
system, in which the procedures include an advanced
quality check. As our aim was to check the working
of automatic systems, no additional quality control or
processing was performed.

2.4. Data assimilation

Let us consider the model state represented by a vector
X= {u,v,T,S,p,cf,.A.}, where the values in brackets
are the model state variables (velocity components,
temperature, salinity, water density, sea level, etc.),
generally given at discrete grid points. When the model
predicts the state vector x, on m grid points, it has
some errors regarding the true state. Observations y

are taken usually at different »n locations than x,.
Assimilation is a procedure to create the analysis vector
X, on the same set of coordinates as x;, with a
condition that by a given set of criteria, x, is closer
to y than x,. When the model state values y in the
points of observations are obtained by an interpolation
procedure, then the analysis is calculated from the
innovation vector y—y by the formula

Xa =X, +K(y-y), (M

where K is the gain matrix containing m xn weights
for interpolation over 1xn observation points. At
individual model grid point ; formula (1) can be written
using the weight vector w; = (K)[, In the following
formulae we consider one state variable only and omit
the index i, describing the specific model grid point.
As aresult we obtain

xo=xp Wy =9)=x+ Y wi(y,=5;). )
I=

2.4.1. Successive corrections

The successive correction method or the Cressman
(1959) method assumes univariate relations between
the state variables and that weights of the individual
observations w; in (2) decrease with the distance d;
between the observation point ; and the model grid
point i. Let us define the influence radius R around
the model point i, where k£ observations out of total n
observations are located. Good assimilation results are
obtained with the weights given by the formula

2 2
maX(O,Rzi_d’zJ
R +d;

n 2 2 ?
{Zmax [O,RZ_d’zj+nz}

= R +d;
where the weights are positive within the influence
radius and zero elsewhere. Reduction of the assimilation
weights in real noisy conditions is done by introducing
relative noise variance 772 , estimated from the variances
of observation errors o2 and background errors o7,
772 = 002/073 . In the noiseless case (772 =) the sum of
weights is equal to unity.

Data assimilation for SST was made using a medium-
scale value 37 km (20 nautical miles, 40 grid points)
for the influence radius. This length is about ten times
larger than the Rossby deformation radius. Therefore,
the impact of individual mesoscale eddies is suppressed,
but basin-scale SST features are kept. The weight

function has the greatest impact within the nearest 5 km,
then it goes almost linearly to zero for 37 km. Before

w; =

3)
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assimilation, the observations were averaged over each
grid cell in order to avoid oversampling problems.
During the testing of the scheme, the values of o2 and
of were not known in advance. For the chosen data set
we obtained acceptable results with R =37 km and
772 =7 / o7 =2. We used these values throughout the
entire model run.

For computational efficiency, assimilation was
performed in the two-dimensional domain for the surface
layer only; deeper model levels were left unaffected.
Since the observations were assimilated every day, the
introduced innovations were moderate (compared to the
vertical mixing) and not visible in the graphs of vertical
profiles.

2.4.2. Optimal interpolation

Optimal interpolation as developed by Gandin (1963)
uses least-square minimization of analysis errors to
calculate the weight coefficients w; in expression (2).
We follow the original point-wise presentation (see
also Hoyer and She, 2007) and denote f; =y;-J;,
fo=X,—xp,. Here X, is the ‘true’ unknown state in
the model point i . The observations include random
errors &;; the error variance is crj/. The squared
interpolation error, averaged over an ensemble,

2
n

E= fo—zw,-(fj +g‘,-) = min is minimized with
Jj=1

respect to w; . This is achieved by setting n constraints

for the derivatives 9E/éw; =0, using the conditions

£,=0, fo=0, =0, ¢f;=0, f=0. As a

result, we obtain for the ith model point the following

system of n linear equations regarding w; :

n
kaf/wjm;w, =fifo, k=l.n, &
Jj=1
which can be easily solved. By dividing equations (4)
by the variance o-} = f;# , we obtain correlation instead
of spatial covariance. The weight coefficients of optimal
interpolation are determined by the correlation matrix
between the individual observation points B = \f f; / o}
and the correlation vector between the observation point
and the ith model point b= m/a} , and by the
relative variance of observation error 7* = ofk o7 .
Equation (4) can be rewritten as w(B +7°1)=b , where
I is a unit matrix. The vector of weights is calculated in
the form
w=bB+7)" )
More general matrix-vector formulations of optimal
interpolation can handle also the case where observation

errors may be correlated between each other and with

the background field (Lorenc, 1986; Ide et al., 1997).
However, most of the practical implementations, like in
our case, are limited to equations (4) with solution (5),
where the spatial correlation is prescribed as a function
with ‘tuned’ parameters.

Correlations B and b were approximated by the
Gaussian function from the distance 7 between the
correlated points. Anisotropic correlation features were
taken into account by the directional distribution of
the correlation scale from the angle @ in the form of
the ellipse dependence L = asin(6—6h)+bcos(0—6y)
relative to the reference angle 6. So the correlation
was adopted in the form B(r,0)=exp —rz/L2 (9))
where L=L(@) was pre-calculated in each model
grid point according to the coastline and topography.
Following the results by Heyer and She (2007), longer
correlation scales were adopted along the coasts and the
isobaths than in the perpendicular direction. The typical
horizontal impact scale along the coast or isobath was
chosen as 15 km. Standard deviations for the entire run
were taken o, =0.5and o, =1.0.

Before performing the assimilation according to
equations (2) and (5), the observations were filtered with
a thinning algorithm to avoid oversampling and a huge
computation amount, leaving up to n = 700 points. The
distance between the generated super-observations was
kept at 10 km or more. For computational efficiency,
wet points (located in the sea) were divided into 30
blocks to cover the entire basin. That leaves up to 81
observations per block. Observations from each block
were cross-compared with all other observations in the
same block plus the neighbouring observations falling
into the adjacent area within a radius of 100 km, and the
correlation coefficients were calculated.

2.5. Methods for data quality and model skill
assessments

There are a number of different SST data sets that can
be compared. Here remote sensing SST products (SAT)
from CMEMS are used for data assimilation. FerryBox
observations (FB), carried out by the Department of
Marine Systems but accessed from the Copernicus
service, provide independent data for the assessment of
the skill of data assimilation. Before estimating the skill
of model versions (without data assimilation or with
different assimilation options) in reference to one or
another observational data set, the observations from
different platforms are compared.

Following the approach by Taylor (2001), for each
comparison of the two variables f, and g, a common
data set is defined where missing values of one or both
data sets are ignored. If the standard deviations of the
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data sets are oy, oy and the coefficient of their mutual
correlation is R/ ,, then the centred (with bias removed)
root-mean-squared difference (RMSD) of the data sets
E'" will read

E? =07 +0; ~20,04Rs 4. (6)

The size of the original data sets is very different.
Therefore we reduced in many cases the compared data
sets to the FerryBox transect between Tallinn and
Helsinki. Such data form a time-latitude matrix with
a daily step in time and a 2.222 km step by latitude.
For the data gap treatment we used the weekly average
of all the available data. The missing values were just
omitted from the averaging. Since satellite data were
recalculated to the midnight values, for this comparison
the forecast was treated as the weekly average of nightly
(23 h advance) values. Other data set definitions are
explained in the results section when necessary.

The model data sets are named as FR (‘free’ model
run without data assimilation), SC (model run with
assimilation of Copernicus SST with successive correction
method), and OI (model run with assimilation of
Copernicus SST with the optimal interpolation method).
The model data sets have 71986 values for each time step.

3. RESULTS

3.1. Comparison of SST from satellite and
FerryBox

There are principal differences between the temperature
observed from satellites and from in situ sensors located
a few metres below the surface. These observations give
closer results in well-mixed conditions (Siegel et al.,
2006; Uiboupin and Laanemets, 2015), which occur
during stronger winds.

Here we compare averaged satellite observations
from the Copernicus service (SAT) during 2015 along
the FerryBox track with the in situ data of the latter
(FB). Temperature values were merged by latitude,
leaving out the impact of ship track variations. Several
values for the same bin were replaced by their mean.
The SAT data were provided as of midnight while the
FB observations were made at different times during
a particular day. The FB data represent the average
temperature in the upper mixed layer, whose depth is
variable. The data sets are independent of each other
and have their maxima in August.

The difference between the two SST data sets is
shown in Fig. 3. In central parts of the Gulf of Finland
(latitudes 59.5-60 N) there is a clear seasonal behaviour.
The thin layer temperature registered by the satellite
was 0.3—0.7 K larger than the bulk temperature of the

Weekly difference satellite minus FB 2015

)/ : S
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Fig. 3. Weekly mean sea surface temperature difference
between the satellite and FerryBox observations on a transect
between Tallinn (south) and Helsinki (north) as a function of
time and latitude.

upper layer (observed at 4 m depth) during spring and
summer until August but insignificantly (less than 0.5 K)
smaller in autumn and early winter. Larger SAT minus
FB differences emerged occasionally in areas close
to the coasts: a range 0.7-1.0 K was observed in Tallinn
Bay and a larger range, 1.0-2.5 K, was found near
Helsinki. In December the thin surface layer cooled
down by 0.5-1.5 K more than the deeper surface layer
along the whole transect, including also the coastal waters.

In most of the cases the difference between the two
data sets (SAT minus FB) was of the same sign over the
whole transect. This is consistent with the results by
Uiboupin and Laanemets (2015), who studied similar
data from 2000-2009. They found that during wind
speeds less than 5 m/s different satellite sensors give
up to 3 K larger SST than it is observed by FB; the
difference is largest at smaller wind speeds of 2 m/s and
less during temporary stratification of the thin surface
layer. In our case with CMEMS data the difference was
larger near the coasts, but both the coastal areas usually
appeared in the SAT data either warmer or colder than it
was found from the FB data. The reasons for large SST
differences between satellite and in situ observations
were discussed by Siegel et al. (2006). They also noted
a seasonal behaviour as it is evident from our data
presented in Fig. 3.

3.2. Spatial patterns of SST

Sea surface temperature patterns manifest a variety of
physical processes like different heating or cooling in
coastal versus offshore areas, coastal upwelling, thermal
fronts between the water masses, and signatures of
mesoscale eddies and filaments.
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Fig. 4. Example of a HBM forecast (a) and satellite observations interpolated on the same grid (b). Both data from 2015-07-18.

We present an example of SST distributions for a
summer date when there was good coverage of the sea
area with satellite data. Comparison of the results of the
model forecast (Fig. 4a) and remote sensing (Fig. 4b)
reveals a different extent of warmer and colder areas of
coastal waters. Model results show wide bands of colder
water off the northern coasts, both in the Gulf of
Finland and the Gulf of Riga. Satellite data registered
only a small fraction of these colder water masses. In
the warmer shallow areas, located between the Estonian
larger islands and near the eastern coast of the Gulf of
Riga, satellite observations yielded higher SST (by
about 1 K) than the model. This can be partly attributed
also to the wind-dependent positive bias of satellite data
(Uiboupin and Laanemets, 2015). We note that the
model reproduces in the above example more distinct
mesoscale patterns than are evident from the satellite
data.

3.3. Time series of SST

In the adopted data assimilation approach, SST satellite
observations (example given in Fig. 4b) are used to
correct the model forecast (example given in Fig. 4a).
FerryBox data are independent and intended for
validation. The data as defined in Section 2 are from
observations (SAT and FB) and from models (FR, SC,
and OI). The data are compared on the FerryBox transect
(see Fig. 1c), where all the data are available. The model
results are with a regular time interval (1 h), but daily
observations have gaps.

In the open part of the Gulf of Finland daily SAT
data from CMEMS (Fig. 5a) revealed generally higher

temperatures than FB during the warming period (see
also Fig. 3). The SAT data were spiky compared with
the FB data: warmer spikes occurred during the warming
period and colder spikes during the cooling. The FR
forecast provided in the offshore waters slightly smaller
SST than observed. Data assimilation using SC and Ol
‘dragged’ the model results towards SAT observations,
still the SST spikes did not appear in the assimilated
model results.

As the cross-gulf SST pattern (Fig. 5Sb) shows, the
southern part of the gulf warmed up faster than the
central and northern parts, based on the results from SC-
assimilated model data (see also weekly SAT and FB
data in Fig. 2). This resulted in warmer by up to 5K
waters on a specific day. Cooling took place more
uniformly across the research area, temperature differ-
ences were up to 1.5 K. Similar regional differences
were evident in other data sets.

3.4. Skill assessment for non-assimilated and
assimilated model results

Independent FB data obtained in a cross-section of the
Gulf of Finland form the most comprehensive off-shore
in situ data set within the forecast area. In the following
we compare the assimilated model results obtained
using the two methods with the FB data. For the non-
assimilated model data (FR, reference run) we present
comparisons for model validation. Since the two
observations, SAT and FB, have different SST values
(see Section 3.1), comparison is also made in reference
to remote sensing data that were used in the assimilation
process.
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Further we consider temporal evolution of cross-gulf
SST patterns in the Gulf of Finland on the basis of
weekly average transects. Since the SAT data are
from midnight, we used nightly model data for finding
the weekly averages. The difference between the daily
mean and nightly model values (not shown) due to the
diurnal cycle was up to 0.5 K from April to August and
slightly negative from September to December.

Both the SC and OI methods gave similar patterns of
differences relative to FB data (Fig. 6). These patterns
are similar to that of FR minus FB (not shown), but
the variations of difference have been reduced by the
data assimilation. Greater differences were found in the
northern part of the Gulf of Finland, where a positive
difference was evident from April to August (although
the SC method gave some shorter negative differences
as well) and a negative difference from September to
December. In the central part of the gulf data assimilation
corrected the errors of FR effectively and the forecast
absolute difference from the FB data was in most cases
less than 0.5 K. Exceptions were found during stronger
winds at the beginning of October and November, when
the assimilated SST forecast remained by about 1 K
smaller than FB observations. Positive anomalies were
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Fig. 5. Daily SST time series on the FerryBox transect in
the Gulf of Finland: (a) FB during the observation time
and nightly values for FR and SAT; (b) nightly values
for FR, SC, and O, both (a) and (b) in the central part of
the transect; (¢) nightly SC values in the northern, central,
and southern parts of the transect. For abbreviations,
see the title of Table 1.

observed during the periods of calmer winds in the
second half of May and August. Comparison of the
results by SC and OI methods indicates that OI provided
with a given set of parameters generally smaller differ-
ences from FB than SC, except in June and July near the
northern coast when Ol produced larger differences than
SC. We note that the SC method used the interpolation
weights not dependent on the direction between the
points; in case of OI longer correlation scales were used
along the coasts than in the cross-shore direction.

Within the data assimilation, greater changes in
reference to FR (Fig. 7) were made by the OI than by
the SC method. We selected the OI parameters on
the basis of some trials. However, investigation of the
best combination of different parameters for OI is
outside the scope of this paper, reduction of sigma ratio
&= af/o-,i by the factor of two did not yield plausible
results.

Statistical comparison of weekly mean values of the
FR forecast and the assimilated SC and Ol forecasts
with FB data (Table 1) revealed that assimilation provided
better correspondence to the independent observations.
Based on formula (6), improvements are visible in bias,
RMSD, and correlation R. The main skill estimator —
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Fig. 6. Time—latitude map of the weekly mean sea nightly surface temperature difference of assimilated with SC (a) and OI (b) in
reference to FerryBox data between Tallinn and Helsinki. For abbreviations, see the title of Table 1.
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Fig. 7. Time—latitude map of the weekly mean nightly sea surface temperature difference of assimilated with SC (a) and OI (b) in
reference to non-assimilated model data between Tallinn and Helsinki. For abbreviations, see the title of Table 1.

Table 1. Statistics of free model run without data assimilation (FR), model run with assimilation with the successive
correction method (SC), model run with assimilation of Copernicus SST with the optimal interpolation method (OI),
and remote sensing SST data (SAT) with reference to FerryBox data (FB)

FR Ol SAT FB
Bias -0.45 -0.34 -0.42 -0.31 0
RMSD 0.97 0.84 0.96 0.66 0
Correlation R 0.931 0.937 0.934 0.936 1.00
Mean 10.99 11.11 11.03 11.13 11.45
Standard deviation o 435 4.45 4.48 4.57 4.19
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RMSD - was less than 1 K in all the cases, which can
be considered acceptable. In the given selection of
assimilation parameters, SC provided slightly better
results than OI, that is SC had a smaller bias and
RMSD and a larger correlation. Since the statistics
was calculated in relation to the constant mean value
over the whole data set (period from April to December),
deviations contained the seasonal cycle. Therefore
standard deviations of SST were in the range of 4.2—
4.6 °C. This is also the reason why the calculated
correlations were quite high — more than 0.93.

In reference to the SAT data, FR had RMSE =0.96.
Data assimilation reduced this value to 0.82 (SC) and
0.93 (O).

4. DISCUSSION

Massive validation of Baltic marine forecast products
was conducted earlier by the Baltic Monitoring and
Forecasting Centre. Results from different Baltic-
wide model setups were compared with offshore and
coastal in situ observations and with satellite L3
supercollated products. From the project report (http:
//marine.copernicus.eu/documents/QUID/CMEMS-BAL-
QUID-003-006.pdf) it can be found that in the year 2008
a common feature of the present HBM model versions
was faster heating during spring and summer and faster
cooling during autumn. For example, comparison of the
monthly mean SST maps from remote sensing (SAT) to
the forecast SST maps reveals a positive bias of the
model forecast of up to 2 K from April to July and
a negative bias amounting to —1 K from September
to December. During another period, in 2013, the bias
was negative throughout the whole year, with largest
forecast—observation differences found in winter. Spatial
differences in the bias were evident as well. In the Gulf
of Finland the forecast SST tends to be smaller than that
observed by SAT data. In our study with the sub-
regional model of higher resolution, a seasonally and
spatially varying bias appears also in our FR data
(reference run without data assimilation).

Compared to the errors in the open sea, higher
modelled SST monthly and quarterly scale errors were
found in our study in the coastal areas. A possible
reason is that the model produces too fast heating or
cooling in shallow coastal areas, where stratification is
usually absent. This indicates probable underestimation
of modelled coastal-offshore exchange. Recent studies
emphasize the importance of sub-mesoscale exchange
processes (Lips et al., 2016; Vili et al., 2017), which
need to be adequately captured by the models. During
the spring heating period, the SAT data taken from the
surface showed higher SST in the coastal areas than the

FB data observed at 4-m depth (Fig. 3). This points to
the importance of accounting for the shallow stratifi-
cation that may develop during the calm days.

Another important forecast aspect in coastal areas
is reproduction of upwelling events (Uiboupin and
Laanemets, 2009; Laanemets et al., 2011). Although
upwelling patterns are modelled quite well, models tend
to produce too low temperatures near the northern coast
of the Gulf of Finland compared to the SAT data.
On the larger estuarine systems this mismatch may be
related to the interaction of surface circulation (Elken
et al., 2011; Soosaar et al., 2014) and lateral salinity
gradients that create thin layers of less saline water on
the surface during calm weather and suppress mixing;
such layers may not be resolved well by the models.

Introduction of SAT data assimilation by the SC and
OI methods slightly improved the forecast. However,
since SAT and FB data sets of SST have differences, the
assimilated model results kept to some degree the main
error features relative to FB such as too warm waters
in the northern part of the Gulf of Finland during the
heating period in May and June and too cold waters
on the whole Gulf of Finland cross-section during the
cooling period from October to December. Usually OI
provides more accurate results than SC, but in our case
OI did not improve the forecast as much as SC. This
may be due to the inadequate description of the
correlation function and noise parameters. The focus of
a further study could be improvement of the description
of these parameters.

We tested routine tools — data products and standard,
validated model — in the data assimilation into sub-
regional ocean forecast models. The results were
satisfactory, and there is a need and possibility for
further developments that can be divided into two
categories: improvements in data and in models. SAT
products of SST are often too smooth and lack mesoscale
details under cloudy areas. In such areas there is deviation
of heat exchange with the atmosphere compared to
cloud-free conditions and sometimes also heavy pre-
cipitation, which both cause anomalies in SST. If we
assimilate SST towards SAT data, it may happen that
the assimilation result will be more different from the
independent FB data than the model results without
assimilation. There could be a need for an algorithm
to incorporate FB observations into the satellite-based
SST product. The spatial effect of such correction
is presently not known. The SST in coastal stations
depends very much on very-high-resolution local topo-
graphy, and these data can be used mainly in the local
forecast models.

Both the used data assimilation algorithms have
several important parameters that influence the forecasting
of the key variables and yield results of different quality.
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For this study these values were picked as the best choice
to our knowledge compared to other options. However,
this does not mean the results cannot be improved.

There is a challenge to use more observations for
data assimilation, but there should be some reliable
independent data remaining for validation. If FerryBox
data could be used in combination with CMEMS SAT
products, we would be left with sparse point observations
from coastal stations for checking the quality of
assimilation.

5. CONCLUSIONS

It was found that satellite SST products from the
Copernicus Marine Environment Monitoring Service
can be well used for data assimilation in the sub-regional
marine forecasts. Although the reference model without
data assimilation — sub-regional setup of the HBM
model — provided SST forecasts with root-mean-square
difference to the observational data sets (satellite products
and independent FerryBox data) less than 1 K, further
improvements of the forecast were achieved by robust
implementation of two assimilation methods: successive
corrections and optimal interpolation. Within the selected
parameters of assimilation algorithms, a computationally
effective successive corrections algorithm gave slightly
better results in reference to independent FerryBox data
than optimal interpolation.

Higher SST forecast errors of the reference model
were found near the shallower northwestern coasts.
During the calm heating period in spring and early
summer, the reference model produced in these regions
too warm waters compared with the satellite and
FerryBox observations. Too cold waters, compared to
the observations, were modelled during the cooling period
from late summer to winter. Although data assimilation
reduced these errors, improving the treatment of coastal—
offshore exchange in the core forecast model should
be useful.
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Mereandmete assimileerimise testimine Lifinemere kirdeosas, kasutades Copernicuse
mereseire programmi satelliitproduktide veepinna temperatuuri andmeid

Mihhail Zujev ja Juri Elken

Katsetati Copernicuse mereseire programmi satelliitproduktide veepinna temperatuuri (SST) andmete assimileerimist
piirkondlikku mereprognooside mudelisse HBM, mis oli seadistatud Laanemere kirdeosa jaoks, kaasa arvatud Soome
ja Liivi laht. Igapdevastele prognoosidele ajavahemikus aprillist detsembrini 2015 rakendati kaht assimileerimise
algoritmi: jarjestikuseid parandusi ja optimaalinterpolatsiooni. Valideerimine oli tehtud Tallinna-Helsingi liinil
soitvate laevade pardalt kogutud FerryBoxi andmetega. Suuremad SST prognoosivead (kasutades assimileerimiseta
referentsmudelit) esinesid vidiksemate stigavustega looderanniku ldhedal. Tuulevaiksete soojenemisperioodide
jooksul, kevadel ja varasuvel, tekitas mudel soojema veemassi, kui niitasid satelliidi ning FerryBoxi andmed.
Vaatlustega vorreldes kiilmemad piirkonnad olid modelleeritud hilissuvest talveni. Kuigi assimileerimise tulemusena
onnestus vigu vidhendada, on otstarbekas parendada referentsmudeli osavust prognoosida veevahetust rannaala ja
avamere vahel.
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Reconstruction of Large-Scale Sea
Surface Temperature and Salinity
Fields Using Sub-Regional EOF
Patterns From Models

Jri Elken*, Mihhail Zujev?, Jun She? and Priidik Lagemaa’

" Department of Marine Systems, Tallinn University of Technology, Tallinn, Estonia, ? Research and Development Department,
Danish Meteorological Institute, Copenhagen, Denmark

A method for reconstruction of gridded fields of sea surface variables from time-
dependent observations, using sub-regional EOF (Empirical Orthogonal Functions)
patterns from models, is presented and tested. Covariance fields, calculated from the
model results over long enough time span, are used to find EOF modes. The gravest
“observational” amplitudes and their first temporal derivatives are determined from the
least-square minimization of fitting errors in relation to the observed values. The field is
reconstructed by superposition of continuous model-based mode patterns multiplied
by observational amplitudes that meet adopted statistical limits. If the observational
amplitude exceeds the limits, gridded fields for this and higher modes are not produced.
We applied the method in the northeastern Baltic over the model time series 2010-2015.
Daily averages of sea surface temperature (SST) and salinity (SSS) from the high-
resolution (grid step 0.5 nautical miles) sub-regional HBM model were spatially averaged
over bins of 5 x 5 nautical miles. Three first modes cover 99% of variance of temperature
and 61.4% of salinity. As shown by experiments with pseudo-observations (model
values at these points reconstructed to the model grid and then compared with the
original model data), reconstruction performance depends on the configuration of
the observation points in the model domain. Still, a few first modes usually produce
acceptable results. When removing the SST seasonal cycle prior to EOF analysis,
spatial patterns of leading modes remained practically unchanged, share of variance of
the three first modes was reduced to 88.6% and reconstruction errors were reduced
by about 25%. Sufficient spatial data coverage of the larger basin with ship-born
observations usually takes quite long time — of the order of month; therefore, time
correction of the amplitudes using the found temporal derivatives improves the accuracy
of reconstruction. The method is compared with the Optimal Interpolation (Ol) by using
the pseudo-observations. Results show that, for SST reconstruction, the Ol method
is significantly worse than the EOF method. For SSS, Ol is slightly better than EOF.
The superiority of EOF is that the remote correlation patterns can be used in the
reconstruction, which is important when the observations are sparse.

Keywords: sea surface observations, model-based patterns, EOF analysis, reconstruction of gap-free data,
Baltic Sea
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INTRODUCTION

Many oceanographic tasks require appropriate reconstruction
of gridded fields from different observational data: shipborne
monitoring, coastal stations, offshore buoy stations, FerryBoxes,
gliders and remote sensing. As a result, densely sampled
sections may be neighbored with areas of rare or missing
observational data.

Meteorology and oceanography share the same theoretical
foundations of interpolation and data assimilation (Ghil and
Malanotte-Rizzoli, 1991; Ide et al, 1997). Their practical
implementation is, however, rather different (Ghil, 1989), owing
to the nature of governing processes (landlocked basins, shallow
areas and wind driving characterize oceans; atmosphere is
unbounded, “deep” and self-driving by polar-tropical gradients),
but also of techniques and amount/density of observations.

Many different methods have been applied for the data
reconstruction, including both statistical [e.g., regression,
optimal interpolation and Empirical Orthogonal Functions
(EOFs)] and dynamic methods (e.g., data assimilation). Good
reconstruction (in some statistical merit) should be based on
the knowledge of multiscale spatial and temporal covariance.
Atmospheric and ocean variability are similar (Woods, 1980;
Cushman-Roisin and Beckers, 2011), if the lengths are scaled
to the different values of baroclinic Rossby deformation radius
(Rg). On the shorter scales, marginal seas and/or their sub-
basins which have typical lateral dimensions less than 1000 km
(typical Ry in the atmosphere), are forced by the same or
neighboring weather patterns. This causes for example coherent
upwelling/downwelling patterns (Lehmann et al, 2012) on
the left-hand/right-hand coasts from the direction of weather-
generated wind. Considering also faster heating or cooling of
shallow coastal areas compared to the deeper offshore regions
(Legrand et al., 2015), and freshwater spreading patterns due to
the dynamics of river plumes (Soosaar et al., 2016), there could
be significant covariance of sea surface temperature (SST) and
sea surface salinity (SSS) in marginal seas over large distances,
mainly stretched along the topography isolines and/or coasts
(Fuetal., 2011).

Classical optimal interpolation (OI) (Gandin, 1963) assumes
that covariance is represented by Gaussian, damped cosine or
exponential decay of covariance with distance between the points.
In case of open sea or dense observations (e.g., satellite SST),
the OI is sufficiently good for the reconstruction (Hoyer and
She, 2007). However, when the observations are sparse or in the
coastal waters where the covariance pattern is complicated, more
comprehensive reconstruction method is needed.

Spatiotemporal variability of the ocean state can be regarded
as an attractor of the dynamic ocean system in a linear phase
space, in which any state can be presented as a linear summation
of a complete set of orthogonal base functions. The EOFs (Davis,
1976) is one kind of such base functions, which is derived
as eigenfunctions of the observed spatial covariance matrix. It
projects the spatiotemporal variability of the system state onto
correlation patterns of different scales, which are orthogonal.
The time-space matrix of the field of interest is decomposed
into the sum of space-dependent mode patterns multiplied

by time-dependent amplitudes of each mode (eigenfunction).
Eigenvalues present the variance of particular mode; the sum
of all eigenvalues is equal to the variance of the initial field.
Usually, a few most energetic modes present majority of the initial
field variance. The method is not restricted to Gaussian or other
similar decay over space lag.

One of the first developments of EOF interpolation in
oceanography (Smith et al., 1996) considered SST on the global
scale. During the period 1982-1993, when data coverage was
good, SST data were gridded using traditional OI. Further, EOF
modes were calculated from the gridded data. Subsequently,
the EOF method was expanded to the globe in a longer
period of 1950-1992. Compared to the traditional OI, the EOF
produced enhanced large-scale patterns like ENSO. A number
of studies (Kaplan et al., 1997; Kim, 1997; Menemenlis et al.,
1997; Beckers and Rixen, 2003) have considered multivariate
combined methods of interpolation: large-scale background field
is approximated by the dominant EOFs; in the regions of dense
sampling, the anomalies from large-scale fields are interpolated
using OI or some of its modified method. There are also examples
how iterated EOF method (DINEOF - Data Interpolating
Empirical Orthogonal Functions) is used to reconstruct gap-free
satellite images (Alvera-Azcdrate et al., 2015; Jayaram et al., 2018).

The present paper has been initially motivated by the need
of detailed examination of spatial covariance characteristics in
a specific region - the northeastern Baltic, in relation to the
data assimilation. Although using OI with Gaussian correlation
function provided satisfactory results (Zujev and Elken, 2018),
need for improved description of statistics deemed obvious.
During different test options, we used also traditional EOF
method. The covariance was determined from the model results
since observational data were too irregular. The vast amount of
available data was limited to the sea surface data, namely SST and
SSS. Although SST is densely sampled by remote sensing, most
demanding in terms of methodical aspects is using in situ data
from a variety of platforms, e.g., research vessels, FerryBoxes and
buoy stations. During the tests, we developed an easy algorithm,
where “observational” amplitudes of leading base functions (EOF
modes) can be evaluated by limited amount of instantaneous
observational data using least-square minimization. Smith et al.
(1996) have already developed this mathematics earlier, but they
used the method in oceanic conditions where EOF behavior is
quite different. Applying the method in the sub-region of the
marginal sea, preliminary results were promising and they were
presented in a recent conference paper by Elken et al. (2018).

The aim of the present paper is to develop and test the
method for large-scale EOF analysis of sub-regional time-
dependent SST and SSS data, based on the covariance estimates
from the model results. In real oceanographic situations, spatial
observations are spread over a certain time span (mapping
of a sub-region by different countries/ships may take about
month), therefore time correction of variables of reconstruction
procedure would be useful. “Observational” EOF amplitudes and
their temporal derivatives are calculated from the conditions of
least-square minimization of EOF analysis error at observation
points, compared to the observed values. After evaluating the
covariance and EOF modes for 5-years test period, we analyze
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the reconstruction accuracy using “pseudo-observations,” i.e.,
extracting of model data at variable “observation” locations and
comparing the reconstruction result with the original model
result, using the EOF reconstruction but also OI Further tests
of the method include removal of SST seasonal cycle prior to
reconstruction, partitioning of the study region into smaller sub-
regions, comparison of reconstruction using time correction,
and calculation of long sequences of gridded data using
only ship-borne observations. The paper ends with discussion
and conclusions.

METHODS AND DATA

Notations for Empirical Orthogonal
Functions (EOF)

We follow the vector-matrix notation and consider the model
resultsas M x N space-time matrix X containing deviations from
space-dependent temporal mean values X,,. The columns x; of
matrix X are spatial time slices consisting of M points at time i,
out of N time instances. Determine then the empirical orthogonal
functions as M x M matrix E, which columns are eigenvectors
(normalized orthogonal spatial modes) ey. In the decomposition,
the eigenvalues A form the diagonal matrix A that has zeros
outside the main diagonal. The eigenvalue of the specific mode
presents the variance attributed to this mode; the sum of all
eigenvalues is the variance of X.

Time-dependent part of the decomposition is M x N matrix
A, which columns a; are the values of time-dependent amplitude
vectors (one amplitude time series value for each mode) at time i.
As a result, we obtain

x; = EAa; or x; =Ea; (1)

where a; = Aa; is dimensional amplitude. For the whole data
set X = EAA. Note the orthonormality as eje; = 3;; and a;a; =
3;j, where 3;is the Kronecker symbol. For the amplitudes,
orthonormality usually is interpreted that amplitudes of different
modes are uncorrelated in time.

The eigenvalue problem is

BE = AE (2)

(equivalent to |B — A\I| =0), where the covariance matrix
averaged over N instances of time is
1

B=_—X"X 3

No1 3)
Matrix E can be found by a number of methods for solving
linear system of equations. One favorite method is singular value
decomposition (SVD). Due to the orthonormality ETE = I The

dimensional amplitudes are determined by the relation
a; = Aa; = ETX,' (4)

Reconstruction of Observed Fields Using
EOF Modes

Consider now the case where observations at a specific time
instance i are represented by vector y; that has different set of

K points than M points for x;. If observations include high-
resolution data that contain multiple data points within the grid
cell and time interval of model lattice, such oversampling has to
be removed prior to further analysis, usually by averaging over
the grid cell. Therefore K < M. Gridded data x; are transformed
to the observation points by matrix H; (observation function)
in a way that Hyx; has the same dimension as y; and has
to be directly compared with it. To be more specific, vector
y; presents the observed deviations from the temporal mean
value H;x,, whereas the observation function H; depends on the
configuration of observation points. Eigenvalue transformation
takes the form H;x; = H;Ea;, where a;is the “observational”
amplitude, determined from observed values y; at K observation
points, using the full patterns of EOF modes e; with M spatial
points. For the least-squares minimization of ||y; — Hix||> =
Ily; — H;Ea;||?, the system of equations is H'ETHEa; = HTETy,,
where the amplitudes as K x 1 vector and interpolated field x; are
found from

4 = (H'E"H;E)'HE"y,, % =E4 (5)
Note, that we cannot here anymore use the condition that the
mode patterns are orthonormal.

In the matrix of eigenvectors E, where different modes are
presented by column vectors, we take only L first vectors and
the rest of the columns are truncated to zero. When using only
L modes for reconstruction, contribution of truncated modes is
added in the error variance.

For the clarity of the calculations, we spell out also the
element-wise summation form without presenting the time

2
index. Minimization is done for Q = 3°X | (yk >t &Zéf‘) ,

leading to the L conditions 0Q / 0a; = 0. It results in the L x L
system of linear equations

Da=h (6)

where the matrix and vector elements are

K K
skosk ~k
Dy = zem [ hm = Z)’k €m (7)
k=1 k=1
Here & is the m-th eigenvector mapped to the

observation point k.

The original dimensional amplitudes a have some statistical
regularities determined over a large number of samples. Such
regularities contain e.g., standard deviation o or variance o2,
percentiles and covariance in relation to time lag etc. The
observational amplitudes a are determined from much less
amount of information and are rather uncertain. There is a
caution that with bad configuration of the observation points,
observational EOF amplitudes of particular modes may get larger
than limits determined from full statistics (details in section
Covariance and EOF Characteristics). Therefore it is important
to determine the maximum number of modes L by checking if
determined a values lie within the statistical limits of a; if the
limits are exceeded then this and higher modes are removed from
the further analysis.
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Extension of the EOF Reconstruction
Method to Time-Dependent Data

Quite often in oceanographic practice, there are not enough
observational data at a specific time instance i to perform
reliable construction of observations. Shipborne surveys over
larger sub-regions may take several days or even weeks. Usual
procedure is to consider the observations y, made within the time
window ny...1, p € ny...ny as instantaneous, and reference
the (non-processed) result to the time instance i, when n; <i <
ny. Such procedure can introduce apparent distortions, when
the observations are conducted during the increase or decrease
period within the seasonal cycle. For example, when during
the spring warming period the observations are first acquired
in the southern part and later in the northern part, then
higher temperatures presented in the northern part of the map
compared to the southern part are just an artifact, due to missing
treatment of time-dependence of the data.

Take now the P observed data y, within window p € ;... 1
and construct modified observation function ﬁp that allows
pointwise comparison of y, at different times and ﬁpx based on
gridded data at specified time i. Time difference of observation
p and reference time i is determined At, = t, — ;. Eigenvalue
transformation is I:IPii = I:IPEI;P, where modified amplitude,
accounting for linear time dependence given by rate of change
vector o, is f’p =4; 4 o; - Aty. The function to be minimized
is Q = Ily, — HpEby|[? = |ly, — H,E(&; + ; - Aty)||” regarding
0Q/0a; = 0and 0Q/da; = 0. Define the 2L unknown coefficients
z={ay...a;r, a;...a;} and modified EOF mode values at
observation points ﬁ’n = {élf . ?elz, %{Atp .. %{Atp}, we obtain
2L x 2L system of linear equations

Gz=w (8)

where the matrix and vector elements are
P P
Gun =D _fuftr W=D ypft ©)
p=1 p=1

We note that when all observations have the same time stamp and
Aty = 0, the system (8)-(9) is reduced to (6)-(7).

From the found vectors z we extract separately observational
amplitudes @ = {a;...a;} and their temporal derivatives o =
{ay ...ar}, where they both are checked for the statistics of full
data set, in order to determine the highest acceptable mode L.

Reference time i for observational amplitudes (and
corresponding reconstructions) can be modified on the
condition of acceptable accuracy. Finding these bounds is a
subject of separate study. In principle, it is possible to perform
centered referencing, including the data from past and future
times (like it is done in processing of existing time series), but
also backward referencing, including only the past data (like
within data assimilation for on-line forecasts).

Estimation of Reconstruction Accuracy

Using Pseudo-Observations
Accuracy of EOF reconstruction by a limited number of modes is
performed by evaluating the reconstructed fields versus original

fields over a sufficiently long span of time. In case of observational
data, another key factor, besides the number of modes, is
configuration (including the number) of observation points.
Assuming that statistical features of observations are close to
that of the model results, we introduce pseudo-observations
as extract of model results in the predefined locations where
usually observations are taken. Accuracy of reconstruction
from the pseudo-observations was checked by a series of
experiments containing the following steps: (i) Configuration
of observation points was selected; (ii) model values were
extracted at observation points (pseudo-observations were
taken); (iii) reconstructed fields X; were calculated from pseudo-
observations using (5)-(7); (iv) calculations were repeated for all
time instances available, statistical characteristics like root-mean-
square deviation (RMSD) between the reconstructed and original
fields were evaluated.

The main experiments were made for the case of pseudo-
observations on the variable grid. The factor N by which the
grid step of observations were larger than the model grid was
varied from 1 to 11. Additional experiments were performed
with configurations typical to the FerryBox observation points
and typical to the marine shipborne monitoring with reduced
sampling network (Elken et al., 2018; not shown here).

In addition to the EOF reconstruction, Ol was used for
comparison purposes in two configurations: (i) interpolation
of deviations from locally resolved mean (modeled) fields that
includes high gradients in the coastal areas of river influence
zones, (ii) interpolation of deviations from smooth climatological
mean fields. Both configurations used Gaussian correlation
function in the form C (r) = exp(—r?/R?) (e.g., Zujev and Elken,
2018), where r is the space lag and R is the correlation scale.
The OI configurations used for smoothing purposes prescribed
noise-to-signal ratio n2.

Regional Setting of Experiments

We chose the area of our study in the northeastern Baltic
(Figure 1) that contains two distinct geographical areas - Gulf
of Finland and Gulf of Riga - and includes the northeastern part
of the Baltic Proper. The Baltic Sea is a brackish estuarine-type
multi-basin marginal sea (Elken and Matthédus, 2008; Lepparanta
and Myrberg, 2009), where complex coastline and topography
essentially guide the dynamics of SST and SSS. In the Gulf of
Finland, EOF modes have profound structure (Elken et al., 2011).
Thermal regime is dominated by the seasonal heat cycle, but it
is also modified by differential heating/cooling above variable
depths in the coastal and offshore areas. Ice cover occurs in the
coastal areas every winter, while open parts of the sub-area are
ice-covered during severe winters (Vihma and Haapala, 2009).
SST is heavily modified by upwelling and downwelling patterns
induced by the transient wind fields (e.g., Laanemets et al., 2011).
Due to the fragmented coastline and multiple rivers entering
the area, SSS has numerous high-gradient regions. Large scale
SSS patterns are guided by unsteady circulation that depend
on the climatic variations of atmospheric forcing; while earlier
studies suggested cyclonic circulation patterns in both the Gulf
of Finland and the Gulf of Riga and right-hand spreading of less
saline waters from the large Neva and Daugava rivers, then recent

Frontiers in Earth Science | www.frontiersin.org

September 2019 | Volume 7 | Article 232



Elken et al.

Reconstruction With Model-Based EOF Patterns/Rev 2

Finland

legend.

z Estonia 3 —110
8 59 100 [
=)
= Main rivers —90 ~
s 1 - Neva 2600 m® st 80 £
58.5+ 7 2 - Daugava 678 m® s1 —70 S
3 - Narva 378 m?® st —60 &
4 - Kymijoki 307 m® s %0 0
58 5 - Luga 90 m3 s :gg -
6 - Gauja 68 m® s I P9
7 - Parnu 65 m?® s L 110
57 54 8 - Kasari 30 m* st L |5 -
—0
Latvia —
ols T T T 3
26 28 30
Longitude E

FIGURE 1 | A map of the study area in the northeastern Baltic. Shown are the main 8 rivers bringing into the sea mean freshwater discharge (m® s~ ) as given in the

studies frequently reveal also anticyclonic patterns (Soosaar et al.,
2016). Mesoscale variability has rather short spatial scales; the R4
values are from a few km to about 7 km (Alenius et al., 2003).
We used the HBM model (Berg and Poulsen, 2012) with sub-
regional 0.5 NM (nautical mile, 926 m) setup (Lagemaa, 2012;
Zujev and Elken, 2018) in the geographical bounds shown in
Figure 1 to produce the SST and SSS data. This HBM-EST model
domain contains 529 x 455 horizontal grid points. Forcing at
the western open boundary is taken from the Baltic-wide HBM
model, which operates routinely within the Copernicus Marine
Environment Monitoring Service (CMEMS) with the resolution
of 1 nautical mile. Forcing on the sea surface is obtained from
the Estonian version of the HIRLAM model that is run by the
national weather service for operational forecasts on 11-km grid.
HBM is a 3D oceanographic model for the North and
Baltic Sea, which uses Arakawa C-grid and is forced by
surface energy fluxes (mechanical, radiative, thermodynamic)
using bulk parameterization formulae. The model includes
sub-models for turbulence parameterization. A model for ice
thermodynamics and ice mechanics is embedded into the
model system. The HBM model has been upgraded within
the CMEMS from earlier BSHCmod versions. The Baltic-wide
HBM setup is extensively validated within CMEMS. The quality
information document for physical variables can be found on the

web http://cmems-resources.cls.fr/documents/QUID/CMEMS-
BAL-QUID-003-006.pdf as accessed on 10 July 2019.

For the analysis we used daily model data of free run (without
data assimilation) averaged over 10 x 10 grid points, resulting
in 744 wet points with 5 NM (9.26 km) resolution on the coarse
grid. Since the grid step of the averaged fields is larger than the
Rossby deformation radius, mesoscale patterns were suppressed
in the analysis results. The 5-year analysis period covered 1826
dates from July 1, 2010 to June 30, 2015.

In the observational data we focused on the in situ SST
and SSS data and remotely sensed SST data were occasionally
used for the comparison. Shipborne profile observations were
acquired from HELCOMY/ICES database, downloaded from
https://ocean.ices.dk/helcom/ on 12 February 2018. After
extraction of surface data within the study area, 2915 data
records were retrieved within 2009-2014. Prior to using the data
for the reconstruction, oversampling for each particular time
instance was eliminated by taking averages on the coarse grid
and selected time interval. CMEMS remote sensing SST Level
4 (L4) data were downloaded from the service portfolio http://
marine.copernicus.eu/services- portfolio/access-to-products/ as
the product SST_BAL_SST_L4 NRT_OBSERVATIONS_010
_007_b. FerryBox data were obtained from the same portfolio
as the product INSITU_BAL_NRT_OBSERVATIONS_013_032.
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Climatological monthly temperature and salinity fields were
adopted from the study made by Janssen et al. (1999), covering
the period 1900-1996.

RESULTS

Mean and Standard Deviations of SST
and SSS

The mean fields of surface temperature and salinity, shown
in Figures 2A,B, were calculated as temporal mean values of
individual grid points X, over the whole study period. Data
assimilation was not performed; therefore, the presented maps
may include some model bias. Primary purpose of the mean fields
is to set the background for the variability study, i.e., investigate
statistical properties of SST and SSS deviations from their fields.

The maps of mean SST and SSS are dependent on the
average atmospheric conditions during the period summer
2010 - summer 2015. The period covered severe ice winter
(2010/2011), and average (2011/2012, 2012/2013) and mild
(2013/2014, 2014/2015) winters (FMI, 2018). The mean SST map
reveals lower temperature along the Finnish coast; that occurs
during dominating westerly winds favoring upwelling in that
region. This is consistent with mean salinity distribution in the
Gulf of Finland that exhibited pattern typical to the dominance
of reversed estuarine circulation (Westerlund et al., 2019), where
tongue of less saline water near the Finnish coast is not present.
While our SSS map is close to the yearly climatological map
(Janssen et al., 1999) then SST is in the Gulf of Finland higher
by 1-1.5°C and in the Gulf of Riga by 0.5-1°C.

Based on all the model values for the period 2010-2015,
we calculated total mean value and the corresponding standard
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FIGURE 2 | Maps of mean values (A,B) and standard deviations (C,D) for SST (A,C) and SSS (B,D). Model grid statistics is calculated from 1 July 1 2010 to 30 June
2015. Climatological mean values for the period 1900-1996 (Janssen et al., 1999) are shown in (A,B) by red isolines. The units are °C for SST and g kg~ for SSS.

Latitude N

Mean surface salinity

60.5-

60

1.25
59.5

Latitude N

0.75
58.5- Standard deviation

of surface salinity

58

0.25

575 T 7 T T T T

22 23 24 25 26 27 28 29 30
Longitude E

Frontiers in Earth Science | www.frontiersin.org

September 2019 | Volume 7 | Article 232



Elken et al.

Reconstruction With Model-Based EOF Patterns/Rev 2

deviation o for SST as 8.2 and 7.0°C, and for SSS as 5.45
and 1.3 g kg~!. While variability of SST is strongly dominated
by temporal changes, SSS variability reveals dominant spatial

changes. Namely, mean temporal variance o7 (k) , calculated on
the basis of all spatial points k, comprises 99% of total variance for
SST but only 11% for SSS. The remaining percentage of variance
is due to variability of spatial means. Alternatively, mean spatial

variance o2 (i)l, calculated on the basis of all temporal instances i,
reveals 97% of total variance of SSS and only 3% of SST. During
individual time instances, spatial standard deviation o (i) for SST
was found from 0.08 (during winter) to 2.8°C; SSS values range
from 0.95 to 1.5 g kg~ L.

Maps of temporal standard deviations o; (k), calculated for
each spatial point k, are presented in Figures 2C,D. These maps
include seasonal cycle but also interannual and shorter period
variations. Despite the small fraction of spatial variance of SST,
some distinct spatial features over the area are evident. Higher
temporal standard deviations of SST (above 7.2°C) are found
in the shallow areas in the eastern part of the Gulf of Finland
and in the Moonsund located between the large Estonian islands
and the mainland. Spatial variations oy (k) of SSS are in the
range from 0.14 g kg=! to 1.5 g kg~! (Figure 2D), whereas
higher values occur near the entrance of larger rivers. High spatial
variations of standard deviation make difficult using spatial
correlation functions, which calculation require normalizing
covariance with variance.

Covariance and EOF Characteristics

We calculated SST and SSS covariance according to Equation
(3). After EOF decomposition of B using Equation (2), we also
calculated covariance of the sum of six most energetic modes
and of the rest higher modes. Due to orthogonality, covariance is
additive regarding the EOF modes, i.e., the full covariance is the
sum of covariance of the component data sets (six most energetic
modes, and the rest higher modes). In Figure 3 SST and SSS
covariance are presented as a function of space lag between the
model points. We see significant spreading of individual values
of covariance over pairs of points and conclude that calculated
covariance is not homogeneous, which is usually assumed in
implementation of OI.

In the bins of space lags, distribution (histogram) of
covariance of original fields and of the sum of most energetic
EOF modes (not shown) usually does not follow the normal
distribution. Therefore, mean covariance values can be
considered only as indicative, since they differ significantly
from the median values. Still it is clear that big covariance
values occur over large distances, especially for SST. Covariance
of residual fields (sum of higher EOF modes) has a good
normal distribution and it decays fast with increasing space lag.
Correlation (not shown) goes below 0.2 at a distance of 30 km
for both SST and SSS, justifying the use of OI for this part of
the variability.

Spatial EOF mode patterns for 4 leading modes are given in
Figures 4, 5 for SST and SSS, respectively. The one-dimensional
vectors ey of the SST and SSS modes are remapped back into the
two-dimensional geographical framework.

Among the spatial patterns, large-scale physical interpretation
can be easily found for four to six modes. The first, most energetic
modes have nearly “flat” patterns without sign change; their
amplitudes are dominated by a seasonal signal. Higher modes are
considered random due to eddies and other mesoscale processes,
therefore their correlation decays rapidly with increasing distance
(see the earlier sub-chapter). In the SST patterns, the first mode
dominates heavily (97.64% of variance explained) due to the
seasonal cycle (Table 1). In the SSS patterns (Table 2), the share
of different modes is more distributed and the first six modes
explain 72.88% of the total variance.

Temporal variance of the mode amplitudes a equals to the
eigenvalues of covariance matrix B. Based on the statistical
features of the amplitudes, it is possible to set the “natural” limit
Fj. for each of the mode k. During EOF reconstruction, we use
only the modes k where the estimated individual amplitude values
at time i follow the condition |&,~,k| < Fy. Since the absolute
values depend on the number of grid point, configuration of
the sea area and other factors, we do not present the numerical
values of Fi. Excluding 10% of the higher and lower values of
“natural” (calculated from full set of model results) amplitudes,
a reasonable limit is F, = 2 o (ay ).

We have presented in this paper the formulae (5)-(7) how
to reconstruct gridded fields from observations made during
one fixed time instance. Actual spatial observations are quite
often not instantaneous in time. The weights of observations
from past and future times depend on the temporal covariances
(or correlations). Within the EOF decomposition, amplitudes of
SST and SSS modes have different temporal correlation patterns,
as shown in Figure 6. For the SST, the first and the second modes
are nearly annually periodic with correlation r > 0.9 and shifted
phases. Moderate semi-annual periodicity (r~0.2-0.3) appears
on the fifth mode. The first SSS mode has annual harmonic with
r~ 0.4. The second SSS mode has even stronger annual harmonic
with r~ 0.6. Based on long correlation times, we consider the
method of EOF reconstruction of time-dependent observations,
presented by formulae (8)-(9), justified for the time window
up to 1-2 months.

Reconstruction Errors: Experiments With

Pseudo-Observations

Dependence of accuracy of EOF reconstruction on the number
and spacing of observation points was firstly studied by grid
configuration of pseudo-observations (see section Estimation
of Reconstruction Accuracy Using Pseudo-Observations) with
variable grid step. At prescribed locations, model data were
extracted on specific time instance; then the result of gridded
reconstruction was compared with the original model data.
Observational grid step A, was taken as integer # times the model
grid step A, Ay = nA,,. Observation grid step factor n was
cycled from 1 (observations taken at all the model points) to 11
or more (leaving 2-6 observation points).

We made pointwise comparison of all the 744 spatial points
during 1826 time instances, using 6 EOF modes for the
reconstruction. Frequency histograms of deviations for SST and
SSS are presented in Figure 7 for two spacing options between
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FIGURE 3 | Covariance of SST (A) and SSS (B) as a function of space lag between the model points. Shown are heavily smoothed two-dimensional relative
histograms of the original data (dotted lines, percentiles 90, 95, and 99%) and mean covariance of original data (black line). For SSS are shown also covariance of
the sum of six most energetic EOF modes (red line) and of higher EOF modes (blue line). For SST the latter curves are not distinguishable from mean covariance and

300
Space lag (km)

500

the pseudo-observations. We reveal that error histograms are
quite insensitive to the number of observations K, when it is
larger than the number of significant modes L. However, at
small observation amounts the number of larger errors (can be
considered as outliers regarding normal distribution) increases.
On the background of grid points of 37 km spacing, reconstructed
SST and SSS maps are shown for one arbitrary date 19 June

2015 (Figures 8C,D) together with the original model data
(Figures 8A,B).

With decreasing number of observations K, errors slightly
increase when still K > L. For example, SSS absolute error is
less than 0.3 g kg~! for 88% of cases with K = 51 and 80%
of cases with K = 10. Regarding SST, the errors are less than
0.6°C correspondingly for 90 and 82% cases. Regression of all
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FIGURE 4 | EOF patterns for four first modes of SST. Shown are the number of mode (1 to 4 as A to D) and explained variance percentage of each mode. Contour
interval for non-dimensional normalized modes (744 points) is 0.02.

the values of both SST and SSS yields tangent between initial
and reconstructed data 0.99, their correlations follow r > 0.95.
Relative errors of all the SST data, compared with horizontal
standard deviation oy (i) of each time instance, are from 6.7%
(observation grid step 37 km) to 8.6% (93 km). Relative errors of
SSS are somewhat larger, correspondingly 18 and 25%. For K < L
the errors increase abruptly and singularity errors may occur in
Equations (5)-(7).

Reconstruction capability from realistic sampling schemes
was evaluated for typical monitoring network (with smaller
number of stations than usual) and for two routes of FerryBox
along Tallinn-Helsinki and Tallinn-Stockholm (Petersen, 2014;
Kikas and Lips, 2016). Pseudo-observations from the selected
configurations were run through all the daily model maps.
The error statistics did not differ much from that of the

above-described observation grid experiments. Inspecting the
reconstructed maps (not shown), even with small number of
observations the reconstructed maps generally match well to the
original maps. The monitoring type of stations has observations
in all the three main areas: Gulf of Finland, Gulf of Riga and
adjacent Baltic Proper. The SST and SSS maps reconstructed from
the pseudo-observations (not shown) match well the original
maps. FerryBox data set has no data in the eastern Gulf of Finland
and in the Gulf of Riga (see an example by Elken et al., 2018),
therefore larger deviations of reconstructed data from initial data
occur in these regions. However, main large-scale SST and SSS
features, present in the initial model data, can be identified in the
reconstructed maps rather well.

For comparison of EOF reconstruction with OI, we set up an
experiment where EOF statistics were calculated during 4 years
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FIGURE 5 | EOF patterns for four first modes of SSS. Shown are the number of mode (1 to 4 as A to D) and explained variance percentage of each mode. Contour
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from 1 July 2010 to 30 June 2014, and the remaining 1 year period
from 1 July 2014 to 30 June 2015 was dedicated for comparison.
For each set of A, = n A, we included all the possible shifts of
observation grid into the comparison. For example, in case of
n = 8 there are 64 options for grid shift. All those shift options
produce different result of reconstruction, because of different
resolution of topographic and coastline features and freshwater
input areas. The points just neighboring the coast were excluded.
The method of OI was used with correlation scale R = 200 km
and noise-to-signal ratio n> = 0.1 (see section Estimation of

Reconstruction Accuracy Using Pseudo-Observations).

Dependence of RMSD of reconstruction on the spacing for
3 compared methods — EOF, OI-M with modeled mean field,
and OI-C with climatological mean fields - is presented in
Figure 9 as median values taken over all shift options.The spread

TABLE 1 | Characteristics of SST modes.

Mode nr % variance Description

1 97.6% Nearly uniform over space increase or decrease of
SST, represents seasonal heating and cooling.

2 1.3% Faster heating (in spring) or cooling (in autumn) in
the shallow coastal areas, compared with deeper
offshore areas.

3 0.31% Transverse colder or warmer anomaly stripes near
northern or southern coasts, like upwelling and
downwelling.

4 0.14% Longitudinal colder or warmer anomalies appearing
in east-west direction.

5 0.10% Different heating or cooling of the SW Gulf of Riga
and NW-N Gulf of Finland.

6 0.07% Physics not clear.
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TABLE 2 | Characteristics of SSS modes.

Mode nr % variance Description

1 36.2% Increase or decrease of salinity over the whole
study area (all changes have the same sign). Larger
changes occur in the northeastern Gulf of Finland,
near the discharge of the largest rivers in the region.

2 16.9% Transverse anomalies of salinity near northern or
southern coasts, like upwelling and downwelling.

3 7.1% Salinity changes in the freshwater spreading
pathway near the northern coast of the Gulf of
Finland, reminds cyclonic circulation.

4 5.2% Salinity changes near the southeastern coasts,
characteristic to alteration of cyclonic and
anticyclonic circulation.

5 41% Physics not clear.

6 3.5% Physics not clear.

of individual shift estimates increases from the spacing 46 km
toward greater spacing and smaller number of pseudo-
observations, especially for the EOF method. In case of SST, EOF
methods produces on the average more accurate reconstruction
than both of the OI methods using the values given above.
Still, during individual time instances the reconstruction results
may have similar difference pattern at large spacing of sampling
(Figures 10A,C) since coastal features may remain unresolved.
We had to choose large correlation scale and noise-to signal
ratio in order to have reconstruction over the whole area even
if the spacing of observations is large; then OI tends to make
heavy smoothing that is reflected in Figure 9A by larger RMSD.
SSS field is dominated by spatial variations; one control value of
such domination is RMSD = 0.411 g kg™! of “no observations”
(at each grid point, mean value is taken instead of observed
value) that lies in the range of RMSD variation (Figure 9B).
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Evaluation reveals that EOF reconstruction has slightly larger
error than OI relative to the modeled mean field. Commonly
used OI with deviations from climatological mean reveals larger
RMSD than EOF; it even exceeds the “no observations” already
with spacing larger than 28 km. These features of RMSD
appear due to the specific topographic and hydrographic features
of the region: fragmented coastline and prevalence of low-
salinity regions with surrounding higher spatial gradients and
temporal standard deviations (Figure 2) near the entrances
of larger rivers (Figure 1). If OI considers and interpolates
the SSS deviations from highly variable spatial mean map
(determined by the model that resolves local features), then such
deviations follow normal distribution without significant outliers

(not shown) and local features appear in the reconstruction
product without remarkable distortion. Deviations from spatially
smooth climatological mean values (Figure 2B) contain a high
number of outliers to the normal distribution, that cause larger
distortions of OI-C reconstruction in the river influence areas
than EOF reconstruction (Figures 10B,D).

Seasonality Issues in EOF

Reconstruction of SST

Among variety of physical processes, original SST data from
model reveal significant seasonal variation in time. Annual cycle
is evident in temporal correlation of the amplitudes of first and
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second EOF mode (Figure 6) that cover 98.9% of total variance.
This cycle is slightly variable in space, whereas highest spatial
variations (not shown) occur during the spring heating period
and smallest variations take place in the winter when SST is close
to or equal to freezing temperature.

It is interesting to consider what will happen to the EOF
reconstruction results when seasonal signal is removed
from space-time matrix X prior to the procedures by
Equations (1)-(7). Following Hoyer and She (2007), we
introduce a modified data set where time slices of spatial data
with seasonality removed are defined at time index i as

(10)

S _ . .
X; =X; — S,

where seasonal data s; are evaluated in each model grid point k.
Consider a time series vector x; which values are available on
times ; counted as fractions of decimal year. Based on the total

M data of xi (t;), make an approximation of seasonal cycle by a
biharmonic function

si (1) = Cy g sin2mt + Cy j cos 27t + Cs g sin 47t

+Cycosdmt + Cs k. (11)
The coefficients from C, j to Cs j are found to obtain best fit of
sk (t;) to the values xj (f;)in terms of minimizing their RMSD.
The fitting coefficients and resulting seasonal cycle are spatially
variable, whereas earlier and higher SST maxima generally appear
in shallower coastal waters.

Overall variance of SST, determined in reference to the
constant mean value, was 47.35 (°C)? whereas spatial variability
due to temporally constant mean values in each grid point
covered 0.3%. By introducing the seasonal cycle removal
procedure by Equations (10)-(11), variance percentage of the
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input field for the EOF analysis was significantly reduced: from
99.7% for x; to 6.1% for x;. The fitting biharmonic seasonal
cycle contained 80.0% of total variance and the remaining 13.8%
appeared in the covariance between x; and's; .

Although variability of x; was reduced as compared with x;,
spatially mean deviation from the seasonal cycle was typically in
the range from —2°C (mostly in autumn) to +4°C (in summer).
Spatial standard deviations of x; had maximum values during
summer, amounting typically to 2.5°C. Wintertime minimum of
spatial standard deviation, apparent in the initial x; data, was
not anymore apparent since biharmonic si (#;) had in winter
problems to follow the constant level of freezing temperature.

Spatial covariance estimates of x; (not shown) reveal
significant similarity to the estimates based on the original data
x; (Figure 3A): covariance at distances of several hundreds
of kilometers is close to the covariance at zero lag since
significant part of SST variability is caused by weather events and
interannual variations that occur nearly uniformly over smaller
sub-regions like in our case. Based on the full covariance matrix,
EOF analysis revealed highly similar patterns of leading modes of
x; to the modes of x; which are shown in Figure 4. The share
of “flat” first mode (Figure 4A) decreased from 97.6 to 80.5%
after removal of biharmonic seasonal cycle. At the same time,
the shares of higher modes 2-6 increased from 1.91 to 12.79%.
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In addition, the second and third mode changed their order
and the “upwelling” mode (Figure 4C for x;) got a bit higher
share of variance as the “differential heating” mode (Figure 4B
for x;) since those variations were already partly included into the
spatially variable seasonal cycle.

The original model field X can be approximated by leading
EOF modes using equation (1), whereas the higher eigenvectors
are truncated to zero. Using six leading modes both for x; and
xf datasets, the decompositions seem highly similar. However,
evaluation of RMSD allowed detecting of 4% reduction when
seasonal cycle was removed prior to the EOF procedures.

When there are much less observations than the number of
grid points, reconstruction accuracy can be estimated using the
pseudo-observations method. Example of comparison of the two
datasets is presented in Figure 11, based on the “observation”
data that were extracted in seven locations shown in Figure 10.

The reconstruction errors were correlated with r = 0.71, whereas
the regression line was (errors of x;) = 0.965 (errors of x;). Both
reconstructions had very high correlation with the initial model
data r > 0.99 and the scatterplot graphs (not shown) created
the impression that the data sets were nearly identical. Actually,
already small variations in the correlation modify RMSD and in
case of our example, there can be about 25% of RMSD reduction
when seasonality is removed prior to the EOF analysis.

Splitting the Region Into Sub-Areas

In one of the experiments, the whole region presented in Figure 1,
was split in three sub-regions: Gulf of Finland (GOF), Gulf of Riga
(GOR), and NE Baltic Proper (NEBP). Individual EOF modes
were calculated for each of the sub-area. Except for NEBP, the first
two SST modes for GOF and GOR were similar to the patterns
obtained for the whole area. Pairwise correlations of the SST
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amplitudes were r > 0.95 between the GOF, GOR and the whole
region. The whole region and GOR correlations for the first three
SSS modes were r > 0.9 while the first mode of GOR correlated
with GOF with r > 0.72 and with the whole region with r > 0.78.
The first three modes of SSS of the whole region covered 61.4%
of variance. The split regions had the mode coverage: GOF -
69.9%, GOR - 53.7%, NEBP - 72.8%. Although by splitting the
region, mode convergence (share of variance of the lowest modes)
increased slightly, we judged that EOFs of the whole region cover
the regional dynamics in sufficient accuracy. Note, that region
splitting may become important in other regions, where the mode
convergence of the whole region might not be satisfactory.

Examples Using Actual Observations

Taking Into Account Time Dependence of
Observations

It is usual practice, that spatial shipborne monitoring is carried
out by different ships belonging to different institutes and
countries. Covering the whole region may take quite long time.
On an example, given in Figure 12, four ships with ICES
codes 3499, 34AR, ESLV and LAVA made observations during
17 days from 18 May to 3 June 2009. During this spring heating
period, SST generally increased from 7 to 15°C, but local SST
variations were also evident. Over the time span, observations
in the northern area were taken in the first part when water
was not yet heated as much as by the end of the period.
Considering the observations as instantaneous, reconstruction

using Equations (5)-(7) provided rather cold waters there. In
turn, warm waters were drawn in the coastal areas where
observations were taken at the end of the period (Figure 12A).
EOF reconstruction using the time dependence of observations
based on Equations (8)-(9), setting the reference time in the
middle of the period (Figure 12B), increased the temperature in
the region of earlier observations and decreased in the region
of later observations, reducing this way the artificial contrasts
due to non-synchronous observations. Comparison with satellite
based SST map from CMEMS L4 product (Figure 12C) reveals
good similarity to the time-corrected map. Numerical differences
are mostly less than 1°C, not exceeding the range of unresolved
here diurnal oscillations (Karagali and Hoyer, 2014). From the
number of calculations we got the experience that reference
time may be modified within the observational window without
loosing the realism of reconstruction. However, extrapolation
outside the window should be avoided like in the case of one-
dimensional linear regression.

Automatic Reconstruction of Time Series of Maps
It is technically easy to set up procedures for automatic
reconstruction of time series of maps, using the time dependence
of observations based on Equations (8)-(9). We took the
shipborne profile data from ICES database (see section Regional
Setting of Experiments).

During the reconstruction procedure, EOF amplitudes for
each map were checked against the {&,-’ k| < Fy = 2 o (ay) criteria
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(see section Covariance and EOF Characteristics) in order to
determine the number of “good modes.” Taking the time window
for one map 1/12 year (about 1 month) and the limit of at
least 8 non-duplicate observations within the time window (time
average was taken over 2 days), we obtained 148 maps for SST and
137 maps for SSS, out of maximum 209 maps. Average number of
data points is 25 and maximum amounts to 83 both for SST and
SSS. We note that large number of observation points does not
necessarily mean high number of good EOF modes. For example,
the observations with highest amount 83 were fragmentarily
located along the coasts as short-scale repeated maps; the number
of good modes was only 3. Good six modes were in other
configuration obtained already from 20 to 30 observation points.

From reconstructed maps, SST and SSS time series were
extracted around monitoring stations LL12 (western Gulf of
Finland, 59.4835 N, 22.8968 E), V15 (Moonsund, 58.8167 N,
23.2167 E), G1 (central Gulf of Riga, 57.6167 N, 23.6167 E), K21
(Parnu Bay, 58.2167 N, 24.3083 E), F3 (central Gulf of Finland,
59.8383 N, 24.8383 E) and LL3A (northeastern Gulf of Finland,
60.0672 N, 26.3467 E). Such reconstructed time series can be
easily extended to climate studies.

Individual maps, reconstructed by the automatic procedure
(example is given in Figure 13), follow closely the observed
values but also reveal realistic patterns compared to the published
knowledge on Baltic Sea climatology and monthly and instan-
taneous distributions (e.g., Leppéranta and Myrberg, 2009).

DISCUSSION

There is a continued need for producing gap-free gridded
oceanographic data using observations. Although new
observation techniques became available, the problem of
fragmentation remains in oceanographic data management.
Reanalysis is a powerful, but costly method for production of
gridded fields. Widespread statistically based methods like OI
(optimal interpolation), DIVA (Data-Interpolating Variational
Analysis, Troupin et al, 2010) etc. use mainly localized
covariance patterns. Covariance estimates from models reveal
large values over basin scales due to trends, seasonal signal and
basin-wide dynamics (e.g., coherent upwelling-downwelling
near opposite coasts). Such covariance estimates suggest using
of methods that use full covariance fields. In this context, the
classical EOF method is again gaining interest (e.g., Yang et al.,
2017; Pilo et al., 2018), whereas the statistics of the studied field
can be estimated from the model results. Amplitudes of EOF
modes can be approximately estimated from the observational
data set which dimension is much smaller than the number of
model EOF mode grid points.

When using model data to create the EOF statistics, it is
important to know how reliable the estimates of modes and
amplitudes with respect to model uncertainties are. Thorough
treatment of the above question cannot be found in the literature.
However, on the sea surface, temperature and salinity results
from different models are rather well validated by observations
and the model-based covariance patterns can be considered
trustful. As a common practice, modeled covariance have been
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used in data assimilation. Fu et al. (2011) compared covariance  SSS against ferrybox data, showing that the SSS patterns were well
patterns from modeled SST and satellite SST, and found them  simulated by the model. In deeper layers, however, there is usually
agreeing well. CMEMS QUID report has presented validation of  larger spread between different model results.
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While ocean data come from different platforms and
observations are non-synchronous, taking into account the
time dependence of observations is a challenge. Amplitudes
of lowest EOF modes reveal distinct temporal correlation
patterns, with time scale several months. This could be used
to handle temporal gaps and/or non-synchronous data, if
they lie within the temporal correlation scale. As a first
step, we introduced linear correction to the EOF amplitude
depending on the difference of observation time relative
to reference time.

We have made comparison of the results from EOF
reconstruction with the results from classical OI method.
Our test region - NE Baltic - is characterized by
fragmented coastline and highly variable topographic and
hydrographic conditions. In such region the spatial changes
of oceanographic variables may have quasi-permanent
anomalies like low salinity near river influence areas
or faster warming and cooling in shallow coastal areas,
compared to the offshore SST variations. Therefore, EOF
reconstruction has a potential to achieve comparable or better
accuracy than OI method.

EOF modes and amplitudes depend on the selection of
domain. We used a sub-region, containing two geographical
regions and their transition area. It was found that some of
the modes (mainly the first mode) do not change significantly
when the domain is separated into smaller parts. If the
convergence of leading EOF modes of large sea area is
low (share of explained variance is small), refinement into
smaller areas might be useful. In our example, the convergence
improved only slightly when partition into three smaller areas
was made. Workable criteria for the region selection is not
yet established, although following geographical regions seems
to be acceptable.

In case of data assimilation into the high-resolution model,
it is reasonable to separate low-resolution component and
make large-scale corrections into that, keeping high-resolution
deviation patterns unchanged. The workable approach for
correction and/or assimilation of the data on the basin scales
is as follows: (1) to separate the coarse-grid part from the fine
grid data by spatial averaging, (2) to perform corrections on the
smaller dimension coarse grid, (3) to interpolate coarse grid data
back to the fine grid and add fine grid deviations determined
from the interpolation of the initial coarse grid. This is based
on the assumption, that correction of basin-scale features does
not influence the mesoscale patterns, apparent on the fine grid
but filtered out on the coarse grid. The EOF approach allows
additional assimilation of mesoscale patterns in the regions of
high data coverage.

We have tested reconstruction of SST and SSS in one sub-
region of the Baltic, based on the in situ observations. The
method itself allows to be applied on different data sets (for
example, including high-resolution remotely sensed SST) of
different variables and their combinations (for example, joint
data vector of temperature and salinity), on the condition that
significant part of variability can be presented by a few leading
modes. There could be obvious extensions of the approach to

cover the whole water column. This could be especially important
to properly match the consequences of large salt water inflows etc.

One straightforward application of the approach could be in
marine ecology, where building the gap-free patterns of nutrients
and biomass variables could allow more precisely estimate the
total amounts and budgets of ecosystem variables, and to evaluate
the values of environmental indicators that are important for
environmental management.

CONCLUSION

We have developed statistically justified EOF reconstruction
method to handle large-scale patterns of observed fields in
the sub-regions. The method uses model-based EOF patterns
to interpolate and extend the observational data over the full
study region. In the smaller sea regions, which are affected by
the same large-scale forcing patterns, the EOF patterns have
obvious physical interpretations and their shape does not depend
very much on the selection of boundaries. When removing the
SST seasonal cycle prior to EOF analysis, spatial patterns of
leading modes remained practically unchanged, share of variance
of the three first modes was reduced from 99 to 88.6% and
reconstruction errors were reduced by about 25%.

Since we use only the first most energetic EOF modes, we can
cover with this method basin and sub-basin scales of variability.
The relative interpolation errors, estimated over the full area,
usually remain below 10% for SST and 20% for SSS, compared
with multi-year standard deviation of all variability relative to
their mean value over the basin. In comparing with OI, EOF is
especially useful for reconstruction with very sparse observations.
In the regions of denser sampling, EOF cannot exactly follow the
observations. Mesoscale deviations from large-scale EOF patterns
follow well-defined covariance decay with space lag; therefore,
they could be treated by optimal interpolation or similar method.
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Abstract. The tested data assimilation (DA) method based
on EOF (Empirical Orthogonal Functions) reconstruction of
observations decreased centred root-mean-square difference
(RMSD) of surface temperature (SST) and salinity (SSS) in
reference to observations in the NE Baltic Sea by 22 % and
34 %, respectively, compared to the control run without DA.
The method is based on the covariance estimates from long-
term model data. The amplitudes of the pre-calculated domi-
nating EOF modes are estimated from point observations us-
ing least-squares optimization; the method builds the vari-
ables on a regular grid. The study used a large number of
in situ FerryBox observations along four ship tracks from 1
May to 31 December 2015, and observations from research
vessels. Within DA, observations were reconstructed as daily
SST and SSS maps on the coarse grid with a resolution of
5 % 10 arcmin by N and E (ca. 5 nautical miles) and sub-
sequently were interpolated to the fine grid of the prognos-
tic model with a resolution of 0.5 x 1 arcmin by N and E
(ca. 0.5 nautical miles). The fine-grid observational fields
were used in the DA relaxation scheme with daily interval.
DA with EOF reconstruction technique was found to be fea-
sible for further implementation studies, since (1) the method
that works on the large-scale patterns (mesoscale features are
neglected by taking only the leading EOF modes) improves
the high-resolution model performance by a comparable or
even better degree than in the other published studies, and
(2) the method is computationally effective.

1 Introduction

In the coastal oceans and marginal seas, basin-scale obser-
vation, modelling and forecasting of oceanographic and bio-
geochemical variables is a continuing challenge. As an ex-
ample from the Baltic Sea, large-scale nutrient dynamics
(Andersen et al., 2017; Savchuk, 2018) control the level of
eutrophication and hypoxia, affected by nutrient loads and
changing climate (Meier et al., 2019). Placke et al. (2018)
have recently shown, by comparison of different models,
that temperature is much better reproduced than salinity. A
similar evaluation has been obtained earlier by Golbeck et
al. (2015), based on 13 operational models used routinely in
the Baltic and North seas.

Data assimilation (DA) is a key element to improve the
model accuracy with respect to observations, both in the op-
erational forecast and the reanalysis context (Martin et al.,
2015; Buizza et al., 2018; Moore et al., 2019). DA meth-
ods are built upon dynamical models and they are based on
some kind of minimization (minimum variance, variational
cost function formulation etc.) of modelling errors (Carrassi
et al., 2018), using estimated statistical characteristics of the
studied variables. Most of the widespread methods (optimal
interpolation, 3DVar, 4DVar, various options of the Kalman
filter, including their ensemble formulations) use covariance
as the basic statistical characteristic. Recent overviews on
different DA applications in the Baltic Sea can be found in
the papers by Liu and Fu (2018), Zujev and Elken (2018),
Goodliff et al. (2019) and She et al. (2020). Whereas there
are several results from Baltic Sea reanalysis studies avail-
able (Axell and Liu, 2016; Liu et al., 2017), the operational
Baltic Sea forecasts within CMEMS (Copernicus Marine En-
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vironment Monitoring Service) do not presently include DA
(Huess, 2020) and there is ongoing work to implement an au-
tomated DA system which would be robust, reliable and well
validated.

Results of DA-based forecasting depend heavily on the
spatio-temporal configuration of the observing system (Le-
Traon et al., 2019). Unlike the regular weather observing net-
works, observation systems in marginal seas are rather frag-
mented, where areas and periods of dense sampling can be
neighboured by large observation gaps. Therefore, special
OSE (observing system experiment) studies have been ini-
tiated, to find optimal observation network configurations to
achieve best skill of DA (Fuji et al., 2019). However, most
of the observations of the Baltic Sea surface variables, not
yet detectable by remote sensing (like salinity, nutrients etc.),
stem from the FerryBox systems installed on board regularly
cruising commercial passenger or cargo ships (She, 2018),
and planning can be done only within the existing routes.
Therefore, development of improved gap-filling techniques
is a challenge and it would be highly beneficial for a region
with sparse observations.

Recently, a novel method for EOF reconstruction of grid-
ded sea surface temperature (SST) and salinity (SSS) fields,
using the data from (mostly) irregular and (often) sparse ob-
servations, was presented and thoroughly tested in the NE
Baltic Sea (Elken et al., 2019). The method relies on the es-
timate of covariance matrix from the long-term model data,
which is decomposed into the full set of EOF modes. The
mode values at observation points, together with the ob-
served values, enable least-squares estimation of observa-
tional amplitudes. The method is able to follow on the regu-
lar grid the pointwise observed temporal changes of the mean
state and of the major basin-scale gradients. The aim of the
present study is to implement this statistical reconstruction
technique into the data assimilation of the forecast model,
and to study the feasibility of such an assimilation method.

The paper is organized as follows. In the section on data
and methods, an overview of the sub-regional oceanographic
background and a short model description are presented.
Observational in situ data have been compiled from three
sources, and they contain shipborne monitoring and Ferry-
Box platforms. The reconstruction method is presented in
detail, and the section ends with the description of the data
assimilation method used. The results section starts with the
presentation of experiments in order to find the optimized pa-
rameters for reconstruction of gridded fields. The rest of the
section is devoted to the analysis of the results of data assim-
ilation experiments, ending with the performance evaluation.
Finally, discussion and conclusions are presented.

Ocean Sci., 17, 91-109, 2021
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2 Data and methods
2.1 Study area and the circulation model

We have chosen the study area in the NE Baltic within
56.9417-60.725° N, 21.55-30.35° E (Fig. 1), motivated by
several Estonian national interests within the operational
forecast of sea state and assessments of the marine environ-
ment. The region covers the Gulf of Finland, the Gulf of Riga
and part of the Baltic Proper adjacent to these gulfs. The re-
gion is rather shallow: the mean and maximum depths are 26
and 62m in the Gulf of Riga (Yurkovskis et al., 1993) and
37 and 123 m in the Gulf of Finland (Alenius et al., 1998),
respectively.

The region lies in the temperate climatic zone. During
the summer, SST exceeds usually 15°C in July or August
(Alenius et al., 1998), with highest values up to 25°C ob-
served in some years in the shallow coastal zones (Stram-
ska and Biatogrodzka, 2015). The warm upper layer of 10—
20m thickness is well mixed down to the thermocline or
bottom, whichever of them is shallower. Occasionally, wind-
driven coastal upwelling processes disrupt this warm layer
(Uiboupin and Laanemets, 2009). Nearly every winter, sea
ice forms with variable extent and thickness; during severe
winters, the Gulf of Finland and the Gulf of Riga are fully
ice-covered (Jevrejeva et al., 2004). The region is impacted
by large rivers: the Gulf of Finland and the Gulf of Riga to-
gether receive 34 % of the total freshwater discharge to the
Baltic Sea as can be calculated from the data by Johansson
(2017). As aresult, there is an estuarine increase in SSS from
east to west (Alenius et al., 1998; Yurkovskis et al., 1993),
reaching 7-8 gkg~! in the Baltic Proper (Kouts and Omst-
edt, 1993). The Gulf of Finland has a free connection to the
Baltic Proper without a sill or any other topographic restric-
tion; therefore deeper more saline waters of the Baltic Proper
penetrate into the Gulf of Finland and form an estuarine halo-
cline (Liblik et al., 2013). A shallow sill with a depth of 15 m
connects the Gulf of Riga with the Baltic Proper; therefore
deep layers of the Gulf of Riga can receive only surface wa-
ters of the Baltic Proper (Lilover et al., 1998). The two gulfs,
located in the NE Baltic, play an essential role in the dynam-
ics of the whole Baltic Sea (Omstedt and Axell, 2003).

For the modelling, an Estonian sub-regional set-up (Fig. 1)
of the Baltic-wide HBM model was applied with a resolu-
tion of 0.5 x 1 arcmin by N and E (ca. 0.5 nautical miles)
containing the entire Gulf of Finland, Gulf of Riga and
NE portion of Baltic Proper (Lagemaa, 2012; Zujev and
Elken, 2018). The model fields are three-dimensional hav-
ing 455 x 529 x 39 grid cells (by latitude, longitude and
depth correspondingly), with 750 088 wet points and 71 986
of them on the surface with a layer thickness of 3 m.
At the western open boundary, the data were taken from
the Baltic-wide HBM model (Huess, 2020), operated by
the Copernicus Marine Environment Monitoring Service
(CMEMS, https://marine.copernicus.eu/, last access: 2 May

https://doi.org/10.5194/0s-17-91-2021
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Figure 1. Map of the study area in the NE Baltic with depth contours. Shown are the sea areas of Gulf of Finland, Gulf of Riga and part of
the NE Baltic Proper. Insert presents the map of surface salinity of the Baltic and North seas by Rohde (1998). Location of our study area is

shown in the insert by a red box.

2020). Atmospheric forcing was provided by the Estonian
implementation of HIRLAM (Ménnik and Merilain, 2007).
HBM uses the Arakawa C-grid and produces a forecast for
16 ocean variables including temperature, salinity, current
speed and ice concentration. A detailed description of the
HBM model and its validation can be found by Berg and
Poulsen (2012); further analysis and evaluations are given
by Golbeck et al. (2015), Hernandez et al. (2015), Tuomi et
al. (2018), Huess (2020) and She et al. (2020). In particu-
lar, the CMEMS Quality Information Document (Golbeck et
al., 2018) concludes that temperature forecast between the
surface and about 100 m depth is one of the major strengths
of the CMEMS-V4 product, below which the halocline de-
viations of forecast from observations increase. Regarding
salinity, the values are slightly underestimated and the un-
derestimation increases with depth.

The model set-up has been designed for operational fore-
casting. For computational reasons, it was decided to keep
the operational 0.5 nautical mile grid resolution and to
perform shorter feasibility experiments, instead of choos-
ing larger grid steps and making longer experiments. The
model is used routinely by the Estonian Weather Service
(implemented by one of the authors, Priidik Lagemaa);
SST is displayed on the web page https://ilmateenistus.
ee/meri/mereprognoosid/merevee-temperatuur/ (last access:
8 May 2020) and SSS is shown on the page https:/
ilmateenistus.ee/meri/mereprognoosid/soolsus/ (last access:
8 May 2020). In compliance and for comparability rea-

https://doi.org/10.5194/0s-17-91-2021

sons with the recent study by Zujev and Elken (2018), we
chose the study period from 1 May to 31 December 2015,
to be used for the DA experiments. The model experiments
were conducted in the framework of operational forecasting,
where the forcing files were updated daily. There were no
gaps during the study period in meteorological data nor in
open-boundary conditions nor any other input.

2.2 Observational data

All available SST and SSS data from three sources were com-
piled:

1. The Copernicus Marine Environment Monitoring
Service  (CMEMS,  https://marine.copernicus.eu/,
last access: 8 May 2020) contains among other
data sources the quality-checked data set of Baltic
in situ near-real-time multiparameter observations:
https://resources.marine.copernicus.eu/?option=com_
csw&view=details&product_id=INSITU_BAL_NRT_
OBSERVATIONS_013_032 (last access: 24 October
2019). This data set, accessible through free-of-charge
registration, contains in our study region data from
several FerryBox systems (automatic observations
made from ferries and other ships crossing the sea areas
on a regular basis). There are also a number of coastal
stations, but they record mainly sea level and water
temperature, whereas salinity observations are missing;
therefore we are not using coastal stations. In our study

Ocean Sci., 17, 91-109, 2021
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Figure 2. Distribution of observations. (a) Map of FerryBox observation points along ship tracks (blue) and shipborne monitoring ob-
servations (red) over the study period. Shown are also the locations for time-latitude graphs and time series (black contours with yellow
background). (b) Observation frequency over longitude and time. FerryBox data are shown by colour image; each image cell presents the
number of initial observations over intervals of 10d and 18 arcmin of longitude (ca. 16.7 km). Shipborne observations are shown by black

dots.

area and time interval, there were not any operating
buoy stations, gliders or Argo floats.

2. HELCOM/ICES database contains the results from the
HELCOM marine monitoring programme and is hosted
by ICES, together with other oceanographic data (https:
/locean.ices.dk/HydChem/HydChem.aspx?, last access:
22 October 2019). It mainly includes the data from ship-
borne monitoring stations, where SST and SSS are eas-
ily extracted.

3. National monitoring database KESE (https://kese.envir.
ee/kese/viewProgramNew.action?uid=473556, last ac-
cess: 11 December 2020, search for “mereseire”) con-
tains detailed records of all variables observed under
the national environmental monitoring programme. The
data that were downloaded on 18 October 2019 con-
tain different data records for every environmental vari-
able. Except for a few cases, these data are also found
in the ICES/HELCOM database. Duplicate entries were
avoided from the composite data set by averaging over
small time and space intervals.

The largest amount of synchronous SST and SSS data orig-
inates from the FerryBox systems, accessed through the
CMEMS (Table 1). There were about 330 000 initial observa-
tion points from FerryBox, distributed over a few ship lanes
(Fig. 2a) with a resolution of a few hundred metres and from
daily to a few days interval. The analysed water is strongly
mixed in the surface layer by the moving ship. Typical ob-
servation depth may be considered 5 m, although variations
between the ships and due to the variable shipload exist (Lips
et al., 2008; Karlson et al., 2016). There were also about
370 observations from shipborne monitoring stations. Dis-
tribution of the amounts of observations in selected temporal
and longitude intervals (Fig. 2b) reveals a highly irregular

Ocean Sci., 17, 91-109, 2021

pattern. Most of the observations were concentrated on the
Tallinn—Helsinki transect located across the Gulf of Finland
between the longitudes 24.6-25° E. FerryBox observations
were missing in the Gulf of Riga and in the eastern part of
the Gulf of Finland, east from 26.5° E. In the southern part
of the Gulf of Riga, available data were missing during the
study period.

Two sets of compressed (averaged) FerryBox data were
created for further data analysis, containing mean observed
values, coordinates and observation times over the se-
lected intervals. Firstly, for the model validation study, daily
mean spatial averages over a fine grid with a resolution of
0.5 x larcmin by N and E (as in the used model) cells
were created, resulting in about 110000 values. Secondly,
for the EOF pattern analysis and reconstruction of SST and
SSS fields, daily mean spatial averages over the coarse grid
(5 x 10 arcmin by N and E, about 5 nautical miles) were cre-
ated. The main benefit of the coarse grid is to save compu-
tational costs while keeping the large-scale patterns well re-
solved (see Sect. 2.4 for more details on the advantages and
disadvantages of using the coarse grid). In this procedure,
the initial observations were compressed on the coarse grid
by roughly 25 times yielding about 13 000 average values for
SST and SSS. Within the temporal averaging, it was chosen
not to apply any diurnal cycle correction, and all the observa-
tions at different hours were averaged to the closest midnight.

For the interpretation of model and DA results, meteo-
rological data were taken from the model forcing fields.
For the occasional comparison, CMEMS remote sensing
SST Level 4 data were retrieved from the service portfo-
lio  https://resources.marine.copernicus.eu/?option=com_
csw&view=details&product_id=SST_BAL_SST L4 NRT_
OBSERVATIONS_010_007_b (last access: 8 May 2020).
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Table 1. FerryBox data from 1 May to 31 December 2015 in the NE Baltic used in the present study.

Ship Main route Operating institute Number of initial

observations

Baltic Queen Tallinn—Helsinki Marine Systems Institute, 63368
Tallinn University of Technology

FinnMaid Helsinki (Vuosaari)-Travemiinde  Finnish Environment Institute 142235

Silja Serenade  Helsinki-Mariehamn-Stockholm  Finnish Environment Institute 60228

Victoria Tallinn—-Mariehamn—Stockholm Estonian Marine Institute, 65037

University of Tartu

2.3 Reconstruction of gridded data from point
observations

For the purpose of DA, we chose to use EOF reconstruction
of large-scale SST and SSS fields, using the orthogonal pat-
terns from models following the detailed outline by Elken et
al. (2019), and subsequent relaxation of gridded observations
within the model time-stepping. In order to correct the mod-
elled basin-scale patterns towards observations, the spatio-
temporal distribution of in situ data was too irregular to use
standard interpolation and filtering algorithms like the Cress-
man method or optimal interpolation with approximated co-
variance (see an example from the same region by Zujev and
Elken, 2018). In this section, we summarize the well-known
EOF decomposition and present general features of EOF re-
construction as a problem when the number of observations
is less than the number of EOF modes (equal to the number
of model grid cells).

The basic option of EOF reconstruction uses at each DA
time step time-fixed amplitudes (Elken et al., 2018), encoun-
tering the observations spanning over a certain time frame
(which can be longer than DA time step) that are transferred
to the fixed times by some interpolation or filtering/averaging
procedure. The amplitudes are estimated using time-fixed
observations by minimizing the root-mean-square-difference
between the observations and the EOF reconstruction. The
amplitudes at adjacent time moments are not directly related,
but in the case of longer temporal filters when observations
overlap on different DA time steps, indirect relations between
adjacent amplitudes become evident.

Elken at al. (2019) also proposed an advanced method with
time-dependent amplitudes. Within this approach, the ampli-
tudes and their time derivatives are estimated together with
observations within a selected time interval, in order to find
least squares between the observations and EOF reconstruc-
tion in the observational framework.

The main steps of EOF reconstruction are as follows.
During the standard EOF decomposition, the orthonormal
eigenvector matrix E (contains the spatial eigenvectors ey)
is found from the eigenvalue problem BE = AE, where B
is M x M spatial covariance matrix, calculated from the

https://doi.org/10.5194/0s-17-91-2021

95

M x N spatio-temporal matrix X of the “values of interest”
by time averaging, and A is a diagonal matrix that contains
eigenvalues A;. The data set X contains time slices x; that
are spatial state vectors at time i. Although in the present
study we use the data set X selection as 2D sub-sets of indi-
vidual oceanographic fields, applications towards multivari-
ate analysis and/or extending over the 3D physical domain
are straightforward. While E is non-dimensional, the dimen-
sional amplitudes (or in other words, factors) of EOF decom-
position are found by @; = ETx;, and the decomposition is
reconstructed to the “values of interest” by x; = Ea;. Here
we have used the notation a@; = Aa;, where a; is the non-
dimensional amplitude. The eigenvalues A present the vari-
ance (energy) of the eigenvectors ey over the whole period,
and the sum of all eigenvalues is equal to o2, the variance of
X. EOF decomposition offers the possibility to keep only the
most energetic modes in the reconstruction and truncate the
higher modes in E. When L most energetic modes are taken
into account in the sorted list of eigenvalues and vectors, the
sum from A to Ay, presents the explained variance, and the
contribution of truncated modes forms the error variance. If
white noise with a variance &2 is present in the decomposed
data due to sub-grid-scale processes and/or sampling errors,
the noise variance appears only as additive to the diagonal
elements of the covariance matrix. The eigenvalue problem
becomes (B +£‘ZI)E = AE, where I is a unity matrix. Pat-
terns of spatial modes remain unaffected by adding the white
noise, but the eigenvalues and energy share of the modes de-

crease according to a factor (1 +¢2 /02)_1. When the sum
of eigenvalues of the included dominating modes is less than
o2 — &2, the contribution of noise is effectively smoothed.
During EOF reconstruction from observations y;, the
number of observations K is assumedly smaller than the
number of points M in the spatial eigenvectors e; that are
determined on the model grid and evaluated from the model
statistics. For the comparison with observations, the model
data x; are transformed to the observation points by the ob-
servation operator H; by the formula H;X; = H;Ea;, where
a; denotes the “observational” amplitudes. Further, the a;
values should follow least-square minimization of recon-

. . . . .2
struction error in relation to observations || y;, —H;Ea; H =
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min. The expressions to find observational amplitudes and
reconstructed fields are

-1
di:(ETH,-TH;E) ETHy, % =Ea;. )

In the reconstruction by Eq. (1), the critical point is a
possibility of spurious amplitudes based on few and un-
favourably spaced observation points. Experiments with
pseudo-observations (Elken et al., 2019) revealed that the
values of @; of dominating L modes should match the lim-
its derived from statistics of a@;, whereas higher modes with
outlying amplitudes should be neglected.

Most of the oceanographic observations are not made at
the same time. It may take several days or even weeks to
cover a larger sea area with shipborne monitoring. When P
observations y, are taken at different times p, then construct
an observation operator H p that allows pointwise compari-
son of y, and H pX; converted from gridded values at speci-
fied time i. Assume that within the short time span the ampli-
tudes depend linearly on time and introduce b p= a;+d;-$ tp,
where a; is the time-fixed amplitude, d; is the rate of change
vector, and §t, =1, —t; is the difference between the ob-
servation and reference times. The function to be minimized

regarding reconstruction errors is Q = H Yp— ItI,,Eﬁ ,,H =

2

v = BB @ +di-51,) |, which for fixed time 7 yields

a system of 2L linear equations obtained from 8 Q/d4; =0,
00/0d;=0,1=1...L:

P P
Gz=w, Gum=) fofl, wa=Y) ypfi. @)

p=1 p=1

Here the vector of unknowns combines the amplitudes
and their rates of change z = {[11 ...ap.,dy.. AdL}. Instead
of the full set of EOF mode values, as would be
used during standard decomposition, we take the modi-
fied/interpolated mode values at observation points; then
fh= {éﬁ). . .é'z, élljatp. . .ézﬁtp}. We note that when all obser-
vations have the same time stamp and &z, = 0, Eq. (2) is re-
duced to Eq. (1).

Time-dependent reconstruction allows the reference time
and length of time interval to be selected. As with the time-
fixed reconstruction, the highest “usable” mode is deter-
mined by checking the amplitude values with statistical lim-
its. The method also allows estimation of amplitudes and re-
construction only by backward observational data. This fea-
ture makes the method useful in operational forecasts, where
only past observations can be taken into account for drawing
the present nowcast maps.
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2.4 Method for data assimilation

Many DA techniques use (irregular) point observations of a
variable v as the input source. In our approach, gridded maps
¥° are used; they are optimized by EOF reconstruction as de-
scribed in Sect. 2.3. Therefore, in the continuous equivalent,
DA is performed by Newtonian relaxation (e.g. Holland and
Malanotte-Rizzoli, 1989):

1
31///3f=F(1//)—;(W—1//°), 3)

a discrete form of which has been applied for DA, for exam-
ple, using gridded climate data (Moore and Reason, 1993) or
using optimally interpolated daily satellite-based SST data
(Ravichandran et al., 2013). Equation (3) is then written for
DA time step At in two stages as

Pr=v A (), vt =m0y ey, @)

where ! is the raw forecast field calculated from the pre-
vious analysis field ¥*! using only the model operator F
without DA during this time step, and ¥ is the new analy-
sis field. Equation (3) contains adjustable relaxation time ©
that is transformed in Eq. (4) to non-dimensional o = At /7.
This is the main DA calibration parameter, since extensive
use of covariance statistics, including the effects of observa-
tion errors, has been included in the estimation of gridded
reconstruction of point observations. Newtonian relaxation
of gridded observations, applied during the model run at DA
time steps is also named “analysis nudging” (e.g. Stauffer
and Seaman, 1990), which has had recent meteorological ap-
plications (Bullock et al., 2018).

In practical calculations, SST and SSS observational data
were reconstructed on the coarser grid with a resolution of
5 x 10 arcmin by N and E (ca. 5 nautical miles) and interpo-
lated or extrapolated by bilinear procedure to the finer model
grid with a resolution of 0.5 x 1 arcmin by N and E (ca. 0.5
nautical miles). Such a simple transition of data from a coarse
to a finer grid includes smoothing, since ° lacks the de-
tails that are present on the finer grid. We have tested that
the effect of added smoothing is smaller than the physical
diffusion. In our study area, generation of meso- and small-
scale features is of high intensity; therefore relaxation to the
smooth observation fields does not apparently damp the fine-
grid variability. The approach of using two grids with differ-
ent resolutions is justified by irregular distribution of obser-
vations; reliable estimation is possible only for large-scale
patterns of SST and SSS fields. The computationally more
efficient coarser grid resolves these patterns with enough de-
tails.

The above DA method is computationally efficient. The
EOF modes are calculated prior to DA cycles. For each DA
time step, only one system of linear equations of rank of the
number of EOF modes (about 3—6) has to be solved for the
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entire grid. The coefficients of the matrix are found by sum-
mation of the products of EOF mode values over the obser-
vation points (Eq. 2). For comparison, optimal interpolation
requires solving the system of linear equations of rank of the
number of observation points (about 100) for each grid cell
(about 1000), with a single inverse matrix calculated for the
time step.

The model performance with respect to observations was
evaluated over those grid cells — time span pairs when ob-
servations were available. Since observations covered only a
small part of the study domain, DA results were also com-
pared with the control run without DA, but then it is pos-
sible to only analyse the changes due to DA, without evi-
dence of possible improvement. Standard statistical charac-
teristics were calculated for individual fields such as mean
and standard deviation, and in the case of differences (for
example, relative to observations) bias, RMSD (centred root-
mean-square difference that equals to the standard deviation
of difference field) and the Pearson correlation.

3 Results
3.1 Experiments on EOF reconstruction
3.1.1 Covariance, modes and reconstruction tests

The EOF modes were calculated on the coarse grid (5 x 10
arcmin by N and E) on the basis of space-averaged results
from the fine-grid (0.5 x 1 arcmin by N and E) model, run-
ning from 1 July 2010 to 30 June 2015 (Elken et al., 2019).
This analysis revealed that mean distributions of modelled
SST and SSS, serving as the basis for calculation of devi-
ations in the variability studies, were close to the climato-
logical maps calculated on the basis of observations (Janssen
et al., 1999). The highest temporal variability was found in
the shallow coastal areas for SST, whereas the largest SSS
variations were revealed near the larger river mouths and in
the NE area of the Gulf of Finland. While temporal changes
strongly dominate in the variability of SST, spatial changes
prevail in SSS variability.

Calculated SST and SSS covariance matrices have sig-
nificant spreading of individual values over pairs of points,
especially for the dominating gravest modes where big co-
variance values may occur over large distances. Covariance
of residual fields (sum of higher EOF modes) has a decay
scale of about 30 km with increasing space lag, both for SST
and SSS. The first, most energetic EOF modes have nearly
“flat” patterns without sign change (energy share 97.6 % for
SST and 36.2 % for SSS); their amplitudes are dominated
by a seasonal signal. A space-dependent mean biharmonic
seasonal cycle was not removed from the model time series
prior to the analysis, since special experiments revealed only
a small effect of seasonality suppression on EOF mode pat-
terns. The second EOF mode of SST (1.3 %) presents dif-
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ferential heating and cooling in shallow areas, compared to
the deeper offshore waters. Transverse anomaly stripes near
northern or southern coasts, like those due to coherent up-
welling and downwelling in the region, were evident in the
second SSS mode pattern (16.9 %) and third SST mode pat-
tern (0.31 %). There is also a pattern of SSS changes in the
freshwater spreading pathway near the northern coast of the
Gulf of Finland (third SSS mode, 7.1 %) and longitudinal
SST changes in the east-west direction (fourth SST mode,
0.14 %).

The data set used in the present DA study (Fig. 2) is
rather irregular, compared to the reconstruction experiments
by Elken et al. (2019). Therefore, we revisit the covariance is-
sues and perform additional reconstruction tests, before find-
ing in the next subsection the best options for the automatic
reconstruction procedure. Spatial interrelation of observed
values at a specific point to the values in the rest of the re-
gion is found from the extract of the spatial covariance ma-
trix, which can be shown as a map. One example of SSS
covariance with a frequently sampled HELCOM monitor-
ing station BMP F3 is shown in Fig. 3. The covariance of
three dominating EOF modes (Fig. 3b) comprises most of
the unfiltered data covariance (Fig. 3a) at large distances.
High covariance locations have clear basin-scale geograph-
ical explanations: under the similar weather and seasonal
forcing, which is spatially nearly uniform, SSS changes in
distant river influence areas are closely interlinked. Correla-
tion (not shown) may exceed 0.4 at distances greater than
500 km; therefore, assumptions of fast decay of correlation
with space lag (like using the Gaussian covariance approx-
imation), adopted in offshore areas with negligible coastal
influence, are not valid. Covariance of residuals to the large-
scale variations are presented by higher EOF modes (Fig. 3¢).
Such smaller-scale variations have nearly Gaussian struc-
ture, with elliptical anisotropy stretched along the axis of the
basins similar to the results by Hgyer and She (2007): spatial
scales in Fig. 3c are 30 and 15 km along the main axis and
perpendicular to the axis, respectively. Similar regularities —
physically explained high covariance at large distances, lo-
calized covariance patterns for the higher EOF modes — were
found for other points of reference, both for SSS and SST
fields.

The EOF reconstruction method relies on the full covari-
ance matrix, without any approximation. Covariance is fur-
ther treated using EOF modes. For the reconstruction pro-
cedure, we keep the lowest EOF modes without any ap-
proximation, and covariance from higher modes as shown
in Fig. 3c is not taken into account. The large-scale features
of the EOF reconstruction and associated DA exclude the
possibility of creating spurious “bullseye” patterns around
observation points, which may happen for instance during
unfavourable selection of optimal interpolation parameters.
Subsequently, our DA method handles the large-scale fea-
tures and excludes the possibility to assimilate smaller-scale
features, which can be described by the higher modes.
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Figure 3. Spatial covariance of SSS with the values in the grid cell near the HELCOM monitoring station BMP F3 (59.8383° N, 24.8383° E),
extracted from the full covariance matrix calculated from the model data over 5 years. Covariance is decomposed by EOF modes: covariance
of unfiltered data with all the modes included (a), the sum of covariance of the first three modes (b) and of the remaining higher modes,

starting from the fourth mode (c).

A full covariance matrix can be implemented in opti-
mal interpolation as well. While the EOF method needs to
limit the number of included modes, smoothing in such a
way smaller-scale variability and observational errors, opti-
mal interpolation needs to include observational error vari-
ance (“nugget effect” in terms of Kriging method, equivalent
to optimal interpolation); otherwise the system of underly-
ing linear equations may become close to singular and the
result may become unrealistically spiky. In some examples
(not shown), EOF reconstruction and optimal interpolation
based on full covariance produced similar results, but these
relations need further studies. When observed values were
close to the model-computed climatological background, vi-
sual similarity was caused mainly by the dominance of spa-
tial gradients of mean SSS over the spatio-temporal vari-
ability. Optimal interpolation with Gaussian approximation
to the covariance produced realistic results in the neighbour-
hood of observation points but gave unrealistic patterns and
values in the distant SW extrapolation area.
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3.1.2 Finding the parameters for reconstruction of
gridded observation fields

Multiple checks performed on our data set suggested that
only the three leading modes were included in the EOF re-
construction. In order to find the best options for reconstruc-
tion, experiments were made with different intervals (time
window) 7z around the reference time ¢;; including the ob-
servations within time window from #; —tg/2 to t; +1tg/2.
The results were evaluated to fulfil the following goals:

— a small RMSD between the observed values and the re-
constructed fields;

— asmall number of gaps in the reconstructed time series;

— a low number or missing presence of “spikes” and/or
“jumps” in the time series.

Two basic options for temporal handling of the reconstruc-
tion procedures were tested:
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a. application of procedure by Eq. (1) of time-fixed ampli-
tudes; time average of observations was taken for each
grid cell, time adopted in each grid cell as constant ref-
erence time;

b. full application of the procedure by Eq. (2) of time-
dependent amplitudes; all the daily mean observations
(average was taken also over coordinates and time) were
kept separate for each coarse grid cell where the obser-
vations existed.

In addition, the procedure by Eq. (2) was tested with an op-
tion with a time average of observations in each grid cell, and
with selection of observations closest to the reference time.
These experiments provided more spikes and 70 % higher
RMSD than the basic options (a) and (b) and they were ne-
glected from further consideration.

As a first step in all the experiments with variable time
windows, the EOF amplitudes of the mode k were checked
for the limit |&;,k| < 2/A =20 (ay) , where o denotes stan-
dard deviation. DA data for the days with higher amplitudes
were left blank since these reconstruction results most fre-
quently became unrealistic. In addition, when the number of
observations was less than six, reconstruction was not per-
formed and the DA step using Eq. (4) was skipped.

The time windows g for experiments (a) and (b) were se-
lected to be 10, 20 and 30d. Elken et al. (2019) have found
that the correlation timescales (e-folding drop, correlation
value 0.368) of EOF SST amplitudes were 65 d for the sea-
sonal first (overall heating/cooling) and second (faster heat-
ing/cooling in shallow coastal areas) modes, and 15 d for the
third “upwelling” mode. Timescales of the SSS modes were
65 d for the second and third modes, representing the large-
scale gradients, and 110 d for the first mode describing long-
term variations of mean salinity.

Methods of time-fixed (a) and time-dependent (b) recon-
structions revealed similar statistical results during the study
period in 2015, whereas RMSD between observed and re-
constructed values of (a) was by 5% larger than that of
(b). By increasing the time window, RMSD of reconstruc-
tion slightly increases due to the stronger smoothing. The
smoothing effect can be seen from the reconstruction exam-
ples given in Fig. 4. It should be noted that the reconstruction
is designed to yield the best approximation to the observa-
tions over the entire region; therefore, it does not need to
present the local best fit at individual points.

A network of observations, available during the study pe-
riod, appeared favourable for the reconstruction, although
observations were missing in the southern part of the Gulf
of Riga and eastern part of the Gulf of Finland. With a time
window of 30d, there were no reconstruction gaps identified
during the study period, determined for both of the methods
by the above-described amplitude limit criteria. Smaller time
windows yielded some gaps in 2015. During the longer pe-
riod from 2010-2018, gaps were found in most of the years
(except our study period), whereas shorter time windows
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result in more reconstruction gaps. Detailed comparison of
the time-fixed (a) and time-dependent (b) methods revealed
that time-fixed reconstruction might create spurious “jumps”
when there is a gap in observations which has a length close
to the time window. In that case, a backward average is taken
before the gap and forward average after the gap, which
may result in “jumpy” results. Time-dependent reconstruc-
tion, which also accounts for the temporal changes within
the time window, handled such situations more smoothly.

3.2 Data assimilation experiments

We have used a two-scale DA approach (see detailed expla-
nation in Sect. 2.4), where observations were reconstructed
on the coarse grid. Results were interpolated into the fine
grid of the model and were subsequently used for relax-
ing the fine-scale model results towards basin-scale observa-
tional patterns. More specifically, gridded observational SST
and SSS data were pre-calculated each day using the time-
dependent EOF reconstruction method with a time window
tg =30d as presented in Sect. 3.1. Reconstructed SST and
SSS fields were interpolated bilinearly to the fine 0.5 nau-
tical mile grid and used for relaxing the model results to-
wards observational counterparts, based on Eqs. (3)—(4) with
At = 1d. Two basic experiments were conducted, with re-
laxation time 10d (weight of observations 0.1, experiment
code DAO1) and with a relaxation time of 5 d (weight 0.2, ex-
periment code DA02). In addition, a variety of short-term tri-
als was performed in a preparatory phase (results not graph-
ically presented) which led to the two basic experiments.
Comparison data were coded as FR for the control run with-
out DA, and FB for observed FerryBox data.

3.2.1 Example from the beginning of August

There was an interesting oceanographic situation in the be-
ginning of August, when a moderate but extensive upwelling
SST pattern at the northern coasts of the basins (Fig. 5), with
some effects on SSS (Fig. 6), was combined with fast heating
of the thin (6-9 m) surface layer (Fig. 7). Since the middle of
July, moderate winds with speeds from 4 to 6ms~!, which
had a westerly zonal component (favouring upwelling at the
northern coasts of the basins), were blowing above the Gulf
of Finland. After 3 August 2015 (the maps in Figs. 5 and 6
are taken on this date), wind ceased and air temperatures in-
creased by 10 August across the study area up to 25-27°C in
the Gulf of Finland and up to 31 °C in the southern Gulf of
Riga, creating a thin layer of warm surface water. Heating of
surface waters was favoured by high night-time air temper-
atures, higher than SST. Vertical profiles (not shown) in the
Gulf of Finland revealed a deep thermocline at 40 m depth
near the southern (downwelling) coast and a shallower ther-
mocline near the northern coast; the warm surface water col-
umn near Tallinn was 2 to 3 times thicker than near Helsinki.
From the end of July to 10 August, warming resulted in an
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Figure 4. Salinity time series at locations (a) 59.8383° N, 24.8383° E (HELCOM station F3) and (b) 59.794° N, 24.822° E, during the
study period. Shown by dots are the observations from FerryBox and from ship monitoring. Reconstructed time series, made using the time-
dependent method, are given by solid lines: REC — basic option with 30 d interval, all observations in window were kept as they are; R1 — the

same as previous but with time interval 10d.

increase in SST (Fig. 7) near Tallinn from 16.5 to 18.5°C
and near Helsinki from 14.5 to 18 °C.

The SST maps presented in Fig. 5 include control run,
reconstructed in situ observations, one experiment with DA
(the other experiment yielded similar results) and satellite ob-
servations. When warm waters with SST above 17 °C dom-
inated the study area, all the maps revealed moderate up-
welling near the northern coasts of the basins. However, the
minimum temperatures and the spatial extent of the colder
waters were different. The warmest “cold” waters were ob-
served on satellite images. While satellites measure SST of
a thin surface layer, FerryBox and models acquire tempera-
ture over a much thicker layer. It is known that in the Gulf
of Finland satellite and FerryBox can have similar SST val-
ues in cases of winds stronger than Sms~! (Uiboupin and
Laanemets, 2015); at smaller wind speeds the SST bias can
be 1-3°C in reference to FerryBox observations. Within
these accuracy limitations, satellite observations presented
in Fig. 5d confirm the model patterns to some extent. The
control run (Fig. Sa) was characterized by SST contrasts that
are too high, compared to the satellite data (Fig. 5d; for the
data source see Sect. 2.2). From the earlier study by Zujev
and Elken (2018), it is known that the free model without
DA forecasts faster heating and cooling of shallow coastal
areas and slower heat dynamics in offshore areas. Data as-
similation (Fig. 5c), made using the reconstructed FerryBox
data (Fig. 5b), reduced discrepancies with satellite observa-
tion. The major large-scale differences between the satellite
data (Fig. 5d) and the best DA02 (Fig. 5c) can be outlined
as follows: (1) the colder upwelling water extended on the
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satellite image further to the east, (2) warmer waters were
found on the satellite images in the southern Gulf of Riga,
near the Daugava river and in the shallow areas between the
Estonian islands, and (3) in the Gulf of Riga, a strip of colder
waters was modelled along the western coast, while satellite
observations revealed warmer waters near this coast.

There were also numerous mesoscale features evident on
SST (Fig. 5) and SSS (Fig. 6) maps, like colder upwelling
filaments along the northern coasts of the Gulf of Finland
and the Gulf of Riga, and decaying anticyclonic warm-core
eddies near the southern coast of the Gulf of Finland. The
Irbe Front (Lilover et al., 1998; Raudsepp and Elken, 1999),
formed by the salinity difference between the Gulf of Riga
and the Baltic Proper, was found by the SSS maps in the out-
ward position, stretching from the strait towards the open sea.
This salinity structure was also repeated in the SST patterns;
the satellite observations confirmed the predicted outward
position during the taken snapshot. The model predicted that
in the Gulf of Riga the Daugava river waters were spreading
by narrow coastal strips of lower salinity in both the NE and
NW directions (Fig. 6).

3.2.2 Time series in the areas of dense observations

Locations with dense observations allow us to validate the
model and visually evaluate assimilation quality. We com-
pared SST and SSS data of the control run (FR) and DA op-
tions DAO1 and DA02 with FerryBox data (FB) at two points
near Tallinn and Helsinki (Fig. 7). While SST followed the
seasonal cycle, with weather-dependent deviations, then SSS
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Figure 5. Maps (longitude E, latitude N) of SST in the study area on 3 August 2015: (a) free model run without DA, (b) in situ observations
reconstructed using EOF method, (¢) DA with relaxation time 5d (weight of observations 0.2), (d) CMEMS product based on satellite

observations.

behaviour was more irregular. In the given variation scales of
SST and SSS (16°C and 2 gkg~! respectively), all the com-
pared SST data sources were more similar to each other than
that of SSS. Still, most of the time the assimilation curve
(DA02) was closer to the FerryBox observations than the
control run, for both SST and SSS.

Warm conditions in the beginning of August (Sect. 3.2.1)
are clearly visible on SST time series (Fig. 7a, ¢). Com-
paring the values near Tallinn and Helsinki, the southern
part of the Gulf of Finland was roughly 2°C warmer than
the northern part, whereas the northern part had an unsta-
ble day-to-day pattern, possibly due to the fluctuations of the
upwelling pattern. This is consistent with the spatial maps
given in Fig. 5. Near the southern coast, an upwelling event
occurred in September, reducing SST during a few days by
nearly 4 °C (Fig. 7a). A larger SST drop during the southern
coast upwelling (at easterly winds), compared to the northern
coast upwelling (at westerly winds of the same magnitude),
is explained by the steeper topography slopes in the southern
part of the Gulf of Finland (Laanemets at al., 2009). This up-
welling event was properly resolved by all the data sets, with
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DAO2 being closest to observations. In general, a free model
without DA expected warming at a lower rate during summer
and was more precise in autumn, while both assimilation ex-
periments properly corrected the SST and SSS values. How-
ever, in some cases, assimilated temperature was somewhat
higher than observed and modelled SST.

Assimilation resulted in one major SSS improvement in
early summer when the model predicted upwelling with
salinity near Helsinki that is too high. Nevertheless, in some
cases DA made minor corrections at one of the locations, ig-
noring observations and sticking to the control run (e.g. late
July to early August near Tallinn, and the middle of October
near Helsinki). When the model overshoots at both locations,
DA properly corrects temperature and salinity values. This
implies that DA of surface observations tends to correct the
mean values better than the cross-gulf gradients, for which
3D circulation (presently not assimilated) has a significant
impact.

In the salinity time series, a “freshwater event” with re-
duced salinity was observed in the Gulf of Finland at the
end of September and beginning of October. In the daily

Ocean Sci., 17, 91-109, 2021
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Figure 6. Maps (longitude E, latitude N) of SSS in the study area on 3 August 2015: (a) free model run without DA, (b) observations
reconstructed using EOF method, (c¢) DA with relaxation time 5 d (weight of observations 0.2).

SSS data (Fig. 7b, d) the event was spiky, possibly due to
the mesoscale features not assimilated in the present study:
without DA, the eddies tend to have a random phase, and the
spikes in the time series of different model options and obser-
vations do not need to be coherent. However, in the weekly
averaged data (not shown) the mesoscale activity was sup-
pressed and the fresh event appeared simultaneously in all
the data within the central and western part of the Gulf of
Finland.

Increasing assimilation weight in Eq. (4) two times did
not make assimilation results two times closer to the obser-
vations. As can be seen from Fig. 7, the results of assimi-
lation experiments DAO1 and DAO2, with relaxation times
of 10 and 5 d respectively, were not placed between the free
run and the observations proportionally to the corresponding
weights 0.1 and 0.2. They diverged as the study region ex-
perienced a temperature drop or daily trend change. Both op-
tions of assimilated SST could either coincide for a long time
or go in parallel, but DAO2 was systematically closer to the
FerryBox observations. Salinity fluctuations had larger am-
plitudes in the free run without assimilation, but both DA op-
tions, with a “thumb” rule — the bigger the weight, the bigger
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the change — had properly corrected them. Still, in December
DAO1 showed better results, being closer to the FerryBox
salinity than assimilation DA02.

3.2.3 Spatio-temporal dynamics

We have chosen to compare assimilation with the best results
(DAO02) to the control run without data assimilation (FR) and
track the continuous time-latitude changes of SST and SSS
(Fig. 8) in two sub-basins — the Gulf of Finland and Gulf of
Riga — along the coast-to-coast transects given in Fig. 2a. Us-
ing DA, temperature was corrected approximately by 1-2 °C,
and salinity by less than 1 gkg~'. Major systematic change
(in the Gulf of Finland this was validated as improvement;
see Sect. 3.2.4 for further details) was seen near the coasts
and in the spring and autumn periods, while summer tem-
peratures underwent minor corrections. Salinity corrections
had a more uniform distribution and smooth drifting pattern
— DA consistently increased SSS values with time in both of
the sub-basins.

Data assimilation had increased SST in the Gulf of Finland
in open waters during the warming period and in late autumn
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Figure 7. Time series of SST (a, ¢) and SSS (b, d) near Tallinn (a, b, 59.4833° N, 24.7667° E) and Helsinki (¢, d, 59.9500° N, 24.8833° E),
locations shown in Fig. 2a. FerryBox data (FB) are shown by dots, black lines represent control run (FR) without DA, red lines correspond
to DA with relaxation time 5 d (weight of observations 0.2, DA02), blue lines for 10d (weight 0.1, DAO1).

all across the gulf and had decreased in the coastal areas dur-
ing the warming period, whereas near the northern coast this
decrease continued until September. In the Gulf of Riga, the
SST increase dominated throughout the study period, but it
was interrupted occasionally by basin-wide events when DA
had decreased the temperature compared to the results from
FR. The largest corrections of both SST and SSS were evi-
dent in the coastal waters. Salinity was increased by DA in
most of the cases in the Gulf of Finland, except for May—
July near Tallinn. The largest increase in SSS occurred in
November and December, when control run results dropped
compared to the earlier period.

Some unusual basin-wide events can be found on the dif-
ference charts in Fig. 9. For example, abrupt warming of the
surface around 10 August 2015 (Sect. 3.2.1) was correctly
predicted by the free run model (Fig. 7c), but it was over-
smoothed by the data assimilation. A similar line in Decem-
ber on both charts denotes the occurrence of fronts of cold
and saline water due to strong winds and storms.
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As there are not enough observations available in the Gulf
of Riga for validation, we cannot definitely say whether DA
improved the situation in the region and to what extent.

3.2.4 Evaluation of DA-based forecast performance

Ocean model performance (e.g. Stow et al., 2009; Gol-
beck et al., 2015; Placke et al., 2018) is usually evaluated
by the differences between the observations and the model
results, transferred to the times and locations of observa-
tions so that they can be directly compared. The overall
mean difference (over time and space) is termed bias and
the standard deviation of differences at all the observation
points is denoted as RMSD (centred root-mean-square dif-
ference). The forecast skill is usually non-dimensional, with
the RMSD of the studied option (in our case, DA) scaled
to reference data (FR in our case) as skill =function of
[RMSD(DA,FB) / RMSD(FR,FB)].

The present ocean model has a fine resolution of about 0.5
nautical miles (930 m) (Sect. 2.1); therefore for comparison
with observations we used a simplified approach and took av-
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erages of observations over the model grid cells over a daily
time span (Sect. 2.2). Such a compressed fine-resolution ob-
servational data set, still having about 110 000 points for SST
and SSS, originated mainly from the FerryBox (FB) lines
(Fig. 2), and it covered central and western parts of the Gulf
of Finland and the neighbouring part of the Baltic Proper. Ar-
eas with lower salinity in the eastern Gulf of Finland and in
the Gulf of Riga had only a small number of observations.
Data from the DA experiments DAO1 and DA02 were
compared to the same compressed observational FB data as
the data from the control run without assimilation (FR). Her-
nandez et al. (2015), who reviewed the problems of perfor-
mance evaluations of operational ocean models, noted that
most available observations are used to adjust models and
reduce analysis errors. Therefore, a widespread approach is
withholding part of the data set for statistical quantification
of errors. In our study, the option of withholding the observa-
tions was performed: an evaluation was made of how much
the DA result will change if DA is performed using 50 %
of the available data (Gregg et al., 2009). The present im-
plementation of EOF DA used about 13000 observational
averages over a coarse grid of about 5 nautical miles. The
reconstruction procedure by Eqgs. (1)—(2) has no direct con-
nection to the ongoing modelling (although it includes sta-
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tistical results from longer model runs), and the fields of ¥°
in Egs. (3)—(4) are the only link where observations enter the
DA process. The experiments which took every second avail-
able observation “box” into account (this resulted in a mean
sampling interval along ship tracks about 20 km instead of
10 km) revealed that performing DA during the study period
with a reduced data set (6.5 000 averaged observation data in-
stead of 13 000) changed RMSD of SST by only 1 % and of
SSS by 2 %, whereas the RMSD values were 0.05 °C for SST
and 0.027 gkg~! for SSS. An evaluation was made over the
full time span and domain using 182000 coarse grid cells;
correlation between the data sets was higher than 0.999. We
have also checked reconstruction results with FerryBox data
only, excluding the data from shipborne monitoring stations.
Compared with the full data set, the largest (but still minor)
differences with RMSD of SSS up to 0.03 gkg~! were found
in the Gulf of Riga and the eastern Gulf of Finland, where
FB data were missing. Consequently, for our large-scale ap-
proach DA results are robust to the reasonable variation of
data amount, and we used FB data for reference in the per-
formance evaluations.

Evaluated forecast performance metrics are presented in
Table 2. Only those fine-grid points which had respective
value of FerryBox observations on the same day were used
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Table 2. Statistics of daily data in 0.5 x 1 arcmin (N and E) grid
cells with FerryBox (FB) observations: free model run without data
assimilation (FR), data assimilation DAO1 (observation weight 0.1),
DAO2 (weight 0.2) and FB. Bias, RMSD and correlation are taken
with reference to FB.

FR DAO1 DAO0O2 FB
SST (°C)
Mean 12.03 12.15 12.25 12.48
SD 3.98 3.92 3.93 3.97
Bias —-045 —-033 —0.23 0
RMSD 0.72 0.59 0.56 0
Correlation 0.98 0.99 0.99 1.00
SSS (gkg™!)
Mean 5.61 5.79 5.85 5.93
SD 0.35 0.29 0.31 0.37
Bias —-0.31 —-0.14 —0.08 0
RMSD 0.35 0.24 0.23 0

Correlation 0.52 0.76 0.78 1.00

for metrics calculation. Wet points of the model without cor-
responding observation value were left out from the proce-
dure.

The statistical properties presented in Table 2 reflect that
DA improves the model performance significantly: RMSD of
SST was reduced by 22 % and SSS by 34 %, compared to the
control run. From DAOI to DAOQ2, a slight improvement of
DA performance was observed; therefore we adopted DA02
as the major result. The spatial pattern of RMSD change be-
tween the DA and FR (Fig. 9) reveals that larger reduction
rates (up to 50 %), for both SST and SSS, were found in the
observation-covered areas in the Gulf of Finland. Overly cold
waters produced by FR near the northern coast of the Gulf of
Finland were effectively corrected by DA (see also Fig. 5);
therefore highest improvement percentage scores were de-
tected in this region. Near the western open boundary, non-
assimilated SST and SSS values of the larger model were
advected into the area, and therefore RMSD reduction was
small, or even negative for SSS.

The applied EOF DA method does not assimilate
mesoscale variability. Applying the weekly average statistics
like Zujev and Elken (2018) further reduced RMSD by 13 %
for SST and 9 % for SSS, compared to the daily data in Ta-
ble 2. Weekly statistics suppresses the mesoscale variability
and reveals a better match between the DA and the observa-
tions. DA decreased the bias, especially for SSS. At the same
time, the correlation of SSS between DA and observations in-
creased considerably. We may conclude that DA made major
improvements in the forecasting of SSS. Still, the forecast
RMSD in reference to the observations is 62 % of the ob-
served standard deviations, which suggests that there may be
further room for improvement. Modelling of SST is already
more accurate than SSS without DA: RMSD of the control
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run (FR) makes 18 % of the standard deviation of observa-
tions for SST and 94 % for SSS.

4 Discussion

The Baltic Sea is considered as one of the most studied ma-
rine areas in the world (e.g. Andersen et al., 2017). However,
the large observational data sets are distributed unevenly. If
we divide our study area into 744 eddy-averaging grid cells
of 5 x 10 arcmin by N and E, then during the study period
330000 FerryBox observations covered only 18 % of the sea
region. Shipborne monitoring added 8 % more coverage of
the area, but with a much smaller frequency of sampling.
Having in mind that the ocean models tend to deviate in the
NE Baltic from the observations not only by constant bias
but also for large-scale and longer-term responses, the intro-
duction of non-local, region-wide data assimilation is of high
importance.

It is interesting to consider how our statistical evaluations
of model and DA performance, given in Table 2, compare
with other Baltic Sea studies. For remote sensing versus
in situ reference, Kozlov et al. (2014) have found RMSD
1.31°C in the Curonian Lagoon. Uiboupin and Laanemets
(2015) have estimated RMSD of various satellite products to
FerryBox in the Gulf of Finland from 0.29 to 0.98 °C. Our
control run gave RMSD of 0.72°C. Golbeck et al. (2015)
compared SST from 13 models with satellite data and found
yearly RMSD for SST of 0.65-0.87°C in the Baltic Sea.
They found a larger relative spread of SSS ensemble mem-
bers than of SST: deviations in the Gulf of Finland between
the models were up to nearly 1 gkg ™!, while the average SSS
is only about 4 gkg~!. Unfortunately, there were not enough
validating observations for SSS available. Fu et al. (2011)
found even larger RMSD for SST for the control run, 1.0 °C,
based on satellite observations. They also used DA with en-
semble optimal interpolation and found that DA reduced
RMSD between the forecasts and observations by 25 % for
SST and 34 % for SSS. With our simpler and less compu-
tationally demanding EOF DA technique, similar RMSD re-
ductions have been obtained (Sect. 3.2.4) compared to earlier
studies.

We have developed and tested an EOF-based relaxation
technique where the large-scale observed fields to be as-
similated are pre-calculated independently from the ongoing
model. From sparse observations, it is possible to estimate
the amplitudes of only the gravest, large-scale EOF modes.
The EOF DA method handles large-scale features over the
sea basin(s), like change of mean SST, SSS and their gra-
dients, including differential heating in coastal and offshore
areas, major patterns from upwelling, and spreading of river
discharge. The method can work well with irregular data but
cannot resolve mesoscale features in the areas of dense ob-
servations, because the EOF amplitudes of higher modes get
noisy, according to our experiments. Optimal interpolation,

Ocean Sci., 17, 91-109, 2021



106

EOF-based data assimilation

M. Zujev et al.: A feasibility study in the NE Baltic Sea

Improvement of RMSD of data assimilation compared to that of free run, both taken in reference to FerryBox observations

(b)

Latitude N

O Few points
© small values
® Negative

® Positive

@ Large positive
T

Longitude E

26 2

Latitude N

©O Few points

© Small values
® Negative

® Positive

@ Large positive
T
26 27

Longitude E

Figure 9. Improvement of RMSD of DA compared to that of FR, both taken in reference to 110000 FerryBox observations. Comparison is
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successive corrections and similar methods usually assume
localized covariance and/or radius of influence (e.g. Axell
and Liu, 2016); they work well in resolving mesoscale fea-
tures in dense sampling areas, but regions of rare observa-
tions remain unaffected by DA. For the mesoscale range, in
our study area there are only satellite observations of surface
variables available. They were omitted from our study, since
salinity as a variable of primary interest can be presently only
be determined in situ in the Baltic. It is possible to implement
on top of EOF DA more traditional localized DA methods
to assimilate mesoscale data when and where such data are
available. Studies on using EOF DA for handling large-scale
data are also ongoing in the UK Met Office by Daniel Lea
(Haines, 2018).

We have tested the EOF-based DA in a centred time win-
dow of 30 d, based mainly on available FerryBox data during
the study period. As shown by reconstruction experiments by
Elken et al. (2019), the time-dependent method can also work
with backward observations as if it occurs during operational
forecasts. When more observations become available, for ex-
ample from new automated buoy stations, Argo floats and
gliders, the time window can be shortened. A full covariance
matrix estimated from the model results is the backbone of
the EOF DA method. Prior and/or complementary to imple-
mentation of the method into operational practice, detailed
covariance studies using results from multiple models could
be useful, as well as additional reconstruction and DA studies
using more data sources over longer periods.

The EOF DA method has some practical advantages.
Firstly, for assimilation of basin-scale patterns, it can be im-
plemented on a coarse grid, and therefore it has small com-
putational effort compared to the localized methods (like op-
timal interpolation etc.) that should be usually implemented
on the model resolution, i.e. on the fine grid. Secondly, inter-
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mediate results are in the form of maps that are easily under-
standable and can be checked visually or taught to be anal-
ysed by artificial intelligence. For optimizing the observa-
tional data needs, the concept of OSEs (observing system ex-
periments), which check various data configurations for DA
performance, is high on the agenda. Since the quality of DA
and forecasting are primarily determined by the quality of
EOF reconstruction (when extensive mesoscale observations
are not available), then it would be possible to save a signif-
icant amount of computing power and perform most of the
experiments using EOF basis vectors.

There are obvious possible extensions of the EOF DA
method to other variables and layers: improvement of stratifi-
cation modelling; extension to biogeochemical models; and
DA of oxygen, nitrogen and phosphorus. Applicability de-
pends on how well the model reproduces the studied fields
and their covariance as well as how much variance is ex-
plained by the major EOF modes. There are a number of
questions that may be addressed, such as the following: What
is the minimal amount of observations needed to produce de-
cent results? What areas are reconstructed with higher accu-
racy with given observation design, nearshore, offshore, open
basins? What areas are most problematic to reconstruct, com-
plicated coastline, straits and channels, semi-enclosed basins,
regions of river influence? Are there some specific locations
that can be used as a proxy for larger regions? Is it possible to
measure SST/SSS just at these points in order to give enough
input for successful reconstruction?
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5 Conclusions

The present study was aimed to implement EOF-based sta-
tistical reconstruction technique into the data assimilation of
the forecast model, and to study the feasibility of such assim-
ilation method. Gridded EOF modes were determined from
the 5 yr long model results. “Observational” EOF amplitudes
were found each day to minimize the RMSD between the
reconstructed and observed values at the observation points,
using a time-dependent technique where both the amplitudes
and their time rate of change were searched for the best fit.
In this procedure, a time window of 30d was selected that
ensured acceptable SST and SSS reconstruction patterns by
three leading EOF modes throughout the whole study period
from 1 May to 31 December 2015. The study used about
330000 FerryBox observations along four ship tracks from
1 May to 31 December 2015, and 370 observations from re-
search vessels. Statistically gridded observations were assim-
ilated into the model daily by the relaxation techniques, using
restoring times of 5 and 10d.

The tested EOF-based data assimilation (DA) method
decreased RMSD of surface temperature (SST) and salin-
ity (SSS) in the NE Baltic Sea by 22% and 34 %, re-
spectively, compared to the control run without DA. Using
the observation-estimated amplitudes of the pre-calculated
gravest model-based EOF modes, the method is able to fol-
low on the regular grid the pointwise observed temporal
changes of the mean state and of the major basin-scale gra-
dients. DA with EOF reconstruction technique was found to
be feasible for further implementation studies, since (1) the
method that works on the large-scale patterns (mesoscale fea-
tures are neglected by taking only the leading EOF modes)
improves the high-resolution model performance by compa-
rable or even better degree than in the other published stud-
ies, and (2) the method is computationally effective.

Code availability. The model code has been developed by the
Baltic MFC partners. Presently it is frozen and not being developed
anymore. The DA scripts and demonstrated model results can be
requested by contacting the corresponding author. All the observa-
tional data used are freely available as described in Sect. 2.2.
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[bookmark: _Toc73973614]Introduction

Oceans and marginal seas constitute the domains of the Earth System with increasing societal significance, as defined by a number of global and European policy documents, such as the UN Sustainable Development Goals, Paris Climate Agreement, and the EU Green Deal. Improved ocean governance necessitates that present marine information systems, based on in situ observations, remote sensing, and numerical modelling (both in operational forecasting and in climate projection modes) would undergo fast development, in order to provide timely, more detailed, and more accurate information products. 

When making numerical forecasts using models, improved accuracy in relation to observations is usually achieved by data assimilation (DA), which includes interpolation or reconstruction of observations and/or model errors, both in meteorology and oceanography (Ghil and Malanotte-Rizzoli, 1991; Ide et al., 1997). Oceanographic data assimilation has specific features (Ghil, 1989), owing to the nature of governing processes (landlocked basins, shallow areas, and wind driving characterized oceans; the atmosphere is unbounded, “deep”, and self-driving by polar-tropical gradients), but also of methods and observation coverage.

In the Baltic Sea data assimilation tests started in 2000s. Studies on sea level assimilation have been performed by a number of research groups (Canizares et al., 2001; Sørensen and Madsen, 2004, Ivanov et al., 2012), based on the different variations of Kalman filter. Assimilation of scalar variables like temperature and salinity has been tested by Funkquist (2006) who used 3D optimal interpolation (3D OI) for satellite and profile data. The OI method needs prescription of correlation functions which were estimated by Høyer and She (2007), She et al. (2007) and Fu et al. (2011a). Cressman method of successive corrections (SC) for satellite-based SST data was used by Nowicki et al. (2015). Regarding operational forecasts, several experiments have been performed to test the results of DA methods: 3DVAR with isotropic (Zhuang et al., 2011) and anisotropic (Liu et al., 2009) recursive filters to estimate covariance functions, Ensemble Optimal Interpolation (Fu et al., 2011b) and Singular Evolutive Interpolated Kalman Filter (Losa et al., 2012, 2014). In long-term studies, reanalysis has been made using 3DVAR 
(Fu et al, 2012; Fu, 2016), SC (Axell, 2013), Ensemble Optimal Interpolation (Liu et al., 2013; 2014) and Ensemble 3DVAR (Axell and Liu, 2016). (Paper I)

In optimal interpolation (OI) (Gandin, 1963) it is usually assumed that local covariance decreases with a distance between the points by some fading functions, like Gaussian, damped cosine or exponential decay. In the open sea where observations are dense (e.g., satellite SST in cloud-free conditions), the OI is sufficiently good (Høyer and She, 2007). For cases with sparse observations or in coastal areas with complicated covariance patterns, a more comprehensive reconstruction method should be needed. (Paper II)

In relation to improvements of DA, several statistical methods have been developed for the data reconstruction, like various options of regression, optimal interpolation and Empirical Orthogonal Functions (EOFs). Reconstruction of acceptable quality (in terms of statistics) should account for the multiscale spatial and temporal covariance. There is a number of processes that cause significant covariance over large distance, for example, warm and cold weather events, occurrence of storms, differential heating or cooling of shallow coastal areas compared to the deeper offshore regions (Legrand et al., 2015), patterns of freshwater plumes from rivers (Soosaar et al., 2016). Covariance patterns have geometrically often elliptical form, that are stretched along the coasts or isobaths (Fu et al., 2011a). 

Complementary to the classical OI, methods based on the EOF have been developed and applied. The methods have produced reliable large-scale patterns, which were approximated by dominant EOFs (Kaplan et al., 1997; Kim, 1997; Menemenlis et al., 1997; Beckers and Rixen, 2003); in the regions of dense sampling multivariate approach can be applied, and the anomalies from large-scale fields are interpolated using OI or some of its variations. (Paper II)

The novelty of this research is developing and testing a new statistical data assimilation algorithm. Testing the traditional assimilation methods with new sea surface temperature data sets from satellite remote sensing (Paper I) pointed to the need for a more detailed evaluation of spatial covariance statistics of the assimilated variable. 
A new EOF-based method for the reconstruction of gridded data fields of sea surface temperature and salinity was developed in the course of these covariance studies 
(Paper II). The new reconstruction method was applied in the new data assimilation algorithm (Paper III) that revealed a significant reduction of forecast errors, compared to the control run without data assimilation.

Surface temperature and salinity were chosen as variables for DA in the present study since they are important parameters for the modelling of the hydrodynamics, and there are abundant observational datasets available. DA of subsurface data was not included in the present study because of a much smaller amount of data, and will be considered in the future. 

The thesis has the following specific objectives:

· to test marine data assimilation into the model of the northeastern Baltic using satellite SST products from CMEMS and FerryBox observations (Paper I),

· to develop and test the method for large-scale EOF analysis of sub-regional 
time-dependent SST and SSS data, based on the covariance estimates from the model results (Paper II),

· to implement this statistical reconstruction technique into the DA of the forecast model (Paper III), 

· to study the feasibility of this assimilation method (Paper III),

· to assess the performance of the model with DA (Papers I and III). 






[bookmark: _Toc73973615]Materials and methods

[bookmark: _Toc42589986][bookmark: _Toc73973616]Description of the study area

The study was conducted in the northeastern part of the Baltic Sea (Fig. 1), between 21°E and 30°E from west to east and between 57°N to 61°N from south to north. The region includes the Gulf of Finland, the Gulf of Riga, and the northeastern Baltic Proper. 

The topography of the Baltic Sea is irregular with variable depths. There are narrow and shallow straits (Skagerrak, Kattegat, Belts and Öresund), deep basins (Arkona basin, Gotland deep) and several large gulfs (the Gulf of Finland, the Gulf of Riga, the Bothnian sea). Some sub-basins have sills (Bothnian Bay, the Gulf of Riga) restricting the inflow 
of bottom water from the Baltic Proper. The entire sea is regarded as a brackish 
estuarine-type multi-basin water body (Elken and Matthäus, 2008; Leppäranta and Myrberg, 2009).

The coastline of the region is very diverse. There is the Aland archipelago in the NW part and many small islands along the southern shore of Finland. Neva Bay in the NE has a triangular shape and smooth forms. The Estonian coast of the Gulf of Finland has interchanging sections of rocky and sandy beaches and a few islands. In the W there are two large islands (Saaremaa and Hiiumaa) with narrow straits connecting enclosed Väinameri with Baltic Proper, the Gulf of Riga, and the Gulf of Finland. There is a smooth coastline along the Gulf of Riga that has a partly elliptical shape. 

The region lies in the temperate climatic zone. In the summer, SST maximum usually exceeds 15 °C in July or August (Alenius et al., 1998), whereas temperatures up to 25 °C can occur in the shallow coastal zones (Stramska and Białogrodzka, 2015). Almost every winter, sea ice forms with variable extent and thickness; during severe winters (Vihma and Haapala, 2009), the Gulf of Finland and the Gulf of Riga are fully ice-covered (Jevrejeva et al., 2004). 

The wind regime is anisotropic, with dominant SW winds (Soomere, 2003; Soomere and Keevallik, 2003). During a period covered in this study, five storms were observed in the Baltic Proper at Utö station (Arra, 2018).

The river discharge impacts the basin in different ways. The Gulf of Finland and the Gulf of Riga together receive 34% of the total freshwater discharge to the Baltic Sea as can be calculated from the data by Bergström (1994) and Johansson (2017). This increases SSS values from east to west, characteristic to estuarine areas (Yurkovskis 
et al., 1993; Alenius et al., 1998), reaching 7‍–‍8 g kg-‍1 in the Baltic Proper (Kõuts and Omstedt, 1993). SSS has numerous high-gradient frontal regions influenced by fragmented coastline and multiple rivers entering the basin. Large-scale SSS patterns are guided by unsteady circulation that depends on the climatic variations of atmospheric forcing (Alenius et al., 1998).

The thermal regime is dominated by a seasonal heat cycle and modified by differential heating and cooling at variable depths in coastal and offshore areas. The warm upper layer of 10–20 m thickness is well mixed down to the thermocline or to the bottom, depending on which of them is shallower. Occasionally, wind-driven coastal upwelling processes disrupt this warm layer (e.g., Uiboupin and Laanemets, 2009). Upwelling and downwelling patterns induced by the transient wind fields have strong impact on SST (e.g., Laanemets et al., 2011). 

The salinity distribution varies in different sub-basins of the region. Water exchange of the Gulf of Finland (Maljutenko and Raudsepp, 2019) and the Gulf of Riga (Lips et al, 2016; Maljutenko, 2019) is governed by an inflow of more saline waters in the deep layers and outflow of less saline waters in the surface layers. During stronger winds with easterly directions, this estuarine circulation may be temporarily reversed (Elken et al. 2003; Liblik et al., 2013). The Gulf of Finland waters have lower salinity as of those in the Baltic Proper, and there is no barrier between them, so saline waters can freely enter the Gulf of Finland and create an estuarine halocline there (Elken et al., 2003; Liblik et al., 2013). In the Gulf of Riga situation is different: only surface waters from the Baltic Proper can overpass the sill between two sub-basins (Lilover et al., 1998).

The surface circulation in the Baltic Proper is cyclonic (Lehmann and Hinrichsen, 2000), unlike the Gulf of Riga where clockwise circulation may also occur (Maljutenko, 2019). Depending on the time scale, season, period, method of calculation, and depth there are various estimates of gyres in the Gulf of Finland according to different studies. Surface circulation in the Gulf of Finland near the coast of Finland has a weak eastward component and strong westward flow in Neva Bay and along the Estonian coast (Soomere et al., 2011). While horizontal circulation in both of the gulfs has been historically considered cyclonic, anticyclonic gyres occur as well. Mesoscale variability has rather short spatial scales; the Rossby deformation radius () values are from a few km to about seven km (Alenius et al., 2003).
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[bookmark: _Toc41295820][bookmark: _Toc41571806]Figure 1. Map of the study area in the northeastern Baltic with depth contours. Shown are the sea areas of the Gulf of Finland, Gulf of Riga and part of the northeastern Baltic Proper. Insert presents the map of surface salinity of the Baltic and North seas by Rodhe (1998). The arrows present the mean basin-wide river discharges in 1000 m3 s-1. The location of our study area is given on the insert by a red box. (Paper III)

[bookmark: _Toc73973617]Model description

The HBM model (Berg and Poulsen, 2012) originates from the BSHcmod model (Kleine, 1994) initially developed by the Federal Maritime and Hydrographic Agency at the beginning of the 1990s. Later it was modified and used by a variety of institutions within the HIROMB cooperation. 

The model was chosen for the present research since it was routinely used for operational forecast in Estonia. 

HBM uses the Arakawa C-grid, and produces a forecast for 16 ocean variables including temperature, salinity (which were studied in this research), current speed, ice concentration and others. More information is given in the report by Berg and Poulsen (2012) which has full description of the model and its validation.

The larger domain of the model covers the entire Baltic Sea including Danish straits with a portion of the southern part of the North Sea. For smaller areas, there are setups with finer resolution; one of them covers the northeastern Baltic, it has been used in the present research. 

The HBM-EST setup has a 0.5’ N x 1’ E resolution containing the Gulf of Finland, the Gulf of Riga and the northeastern portion of the Baltic Proper (Lagemaa, 2012). 
The model fields are three-dimensional having 455 x 529 x 39 points (by latitude, longitude and depth correspondingly) with 750 088 wet-points, and 71 986 of them on the surface. Data for the western open boundary originate from the Baltic-wide HBM model, provided by the Copernicus Marine Environment Monitoring Service (CMEMS, https://marine.copernicus.eu/, last access: 2 May 2020). Atmospheric forcing is provided by the Estonian implementation of HIRLAM (Männik and Merilain, 2007). Forecasts can be made up to 48 hours with a time step of one hour. In this research 24 hour forecast was used. 

For DA experiments, the model was run with data from the 1st of May until the 31st of December 2015. This short period was chosen due to computational reasons, since the aim was to keep the high resolution needed for the operational forecasts, which are made routinely by the Estonian Weather Service. Model data from the control run (free run) without DA were available in the archive for all the DA experiments. For the calculation of EOF modes, model data for the longer period were used, as will be described in Sect. 2.3.3.

[bookmark: _Toc73973618]Assimilation algorithms

[bookmark: _Toc73973619]General approach

All assimilation methods were performed in the two-dimensional surface layer for computational efficiency; there were no observations on deeper model levels. In the model results, vertical profiles did not have distinctive graphical signatures of assimilation (abrupt steps or jumps) since vertical mixing dominated over introduced innovations, as the observations were assimilated every day.

[bookmark: _Toc73973620]Optimal interpolation

OI was developed by Gandin (1963), and in this research it was used for assimilation (Paper I). The algorithm uses the least-square minimization of analysis errors to calculate the weight coefficients. The preparation of data and the algorithm itself are described below. 

Preparation includes the filtering and averaging of observational data. Irregular satellite observations were averaged in each wet-point of the 455x529 grid. 

Existing values were then averaged again for the coarse grid 45x53, leaving 744 
wet-points. 

The algorithm has three steps. 

1) The first step is to derive the equations, based on the minimization of function 
. It is minimized with respect to interpolation weights , where , which is the difference between the unknown “true” state  and background () in the model point ;  is the difference between observed values () and modelled values () taken at the observation points;  – random errors of observations. 

Minimization is done by setting the  constraints for the derivatives  using the conditions , , , , . As a result we obtain for the ith model point the system of  linear equations regarding 



[bookmark: _Ref41293479] ,				(1)

where  is a number of equation. 

By dividing Eq. (1) with the variance , we obtain correlation instead of spatial covariance.

2) The second step is calculating the vector of weights , based on Eq. (1) divided by variance. Here  is correlation vector between the observation point and the ith model point,  – correlation matrix between the individual observation points,  – a unit matrix,  – relative noise variance. 

3) The third step is a calculation of the assimilated value



 			(2) 

Correlations  and  were approximated by the Gaussian function from the distance  between the correlated points. Anisotropic correlation features were taken into account by the directional distribution of the correlation scale from the angle  in the form of ellipse dependence  relative to the reference angle . Ellipse semi-axes are designated as  and .This way the correlation has been adopted in the form , where  was pre-calculated in the each model grid point according to the coastline and topography. According to the results by Høyer and She (2007), longer correlation scales were taken along the coasts and the isobaths and shorter scales in the perpendicular direction. The typical horizontal impact scale along the coast or isobath was chosen at 15 km. Standard deviations for the entire run were taken  and . 

[bookmark: _Toc73973621]Successive corrections

The successive correction method or Cressman method was introduced by Cressman (1959). The algorithm is based on the following assumptions: a) between the state variables are univariate relations; b) weights of the individual observations  in Eq. 3. decrease with the distance  between the observation point  and the model grid point . The weights are positive within the influence radius and zero outside of it. 

Assimilation is done in two steps. 

1) The first step is a calculation of weights:



 	,			(3)

where  is influence radius (37 km, see details below) around the model point ; 
 – observation point running index;  – number of observations out of total  observations are located;  – relative noise variance; introduced for reduction of the assimilation weights in realistic noisy conditions. It is estimated from the variances of observation errors  and background errors , . In the noiseless case () the sum of the weights is equal to unity (Paper I).

2) The second step is a calculation of analysis (Eq. 2). 

Data assimilation for SST (Paper I) was made with influence radius value of 37 km 
(20 nautical miles, 40 grid points). This length is about ten times larger than Rossby deformation radius. Therefore, the impact of individual mesoscale eddies is suppressed, but basin-scale SST features are kept. Weight function has a greater impact within the nearest 5 km, then it decreases to zero for 37 km. 

The preparation for assimilation includes averaging the observations over each grid cell in order to avoid oversampling problems. During the testing of the scheme, 
the values of  and  were not known in advance. For the chosen dataset acceptable results were obtained with km and . These values were used throughout the entire model run. 

[bookmark: _Toc73973622]DA using reconstruction from empirical orthogonal functions

EOF is a statistical method, developed for meteorological applications (Lorenz, 1956), and is mainly used for the decomposition of continuous space-time field into the sum of basic functions of space and expansion functions of time. This approach allows for the reduction of the number of variables without significant loss of signal. A detailed description of the classical EOF technique with examples can be found e.g. in von Storch ja Zwiers (1999). 

A new method was developed (Paper II) that allows for the making of a gridded reconstruction of irregular point observations, using EOF modes calculated from the model results.

The preparation is done in several steps: 

1) The first step is the calculation of eigenvectors based on the covariance matrix:



, 



where  is matrix of deviations from mean model results,  – number of wet-points,  – covariance matrix between all possible pairs of wet-points. 

2) The second step is the calculation of eigenvalues and space-dependent eigenvectors:



, 



where  is matrix of eigenvectors,  – matrix of eigenvalues. 

As far as modes are orthogonal, covariance is additive with respect to the EOF modes, i.e., the full covariance is the sum of the covariance of the component data sets. Calculated covariance is not homogeneous, which is usually assumed in the implementation of OI.

3) The third step is a reconstruction of observations to the entire grid at time :



, 								           (4)



where  is vector of reconstructed observations,  – matrix of eigenvectors,  – vector of observational amplitudes. 

The expression to find observational amplitudes is



 , 						      (5)



where  is observation operator,  – observation values. 

Usually only  most energetic modes are taken into account. 

The  values should follow the least-square minimization of reconstruction error in relation to observations . Note, that during standard EOF decomposition, there are values of “observations” available at all space points (), the observation operator  is unity, and therefore Eq(5) reduces to the standard EOF formula .

While (4)-(5) present the time-fixed reconstruction when all observations are taken exactly at time  , then extended time-dependent reconstruction assumes that within the short time span the amplitudes depend linearly on time: , where  is the time-fixed amplitude,  is the rate of change vector and  is the difference between the observation and reference times. The amplitudes  are found again by least-square minimization and they are used in (4) instead of .

DA algorithm uses the transformation of the reconstructed one-dimensional vector of observations  back into the two-dimensional gridded field . The dynamic equation with Newtonian relaxation of the field  to observations is written



 ,						           (6)



where is model operator,  – adjustable relaxation time (5 or 10 days in this research).

Discrete DA has two steps: 

1) The first step is the calculation of raw forecast from the analysis of the previous DA step:



, 



where  is raw forecast field without DA,  – analysis field from previous DA step,  – DA time step,  – cycle of model time-stepping operators within . 

2) The second step is the calculation of analysis:



, 



where  is analysis field for the new DA step,  – reconstructed observations on the model grid,  – inverse non-dimensional relaxation time. 

In time-dependent reconstruction (see details in Papers II and III), it is necessary to choose both the reference time and duration of the time interval. As with the time-fixed reconstruction, the highest mode suitable for assimilation is determined by comparing the amplitude values against statistical limits. The method allows for estimation of EOF amplitudes and reconstruction of gridded fields solely by backward observational data. This is the case for operational forecasts, where only past observations can be assimilated for producing the present nowcast maps.

[bookmark: _Toc73973623]Observational data

[bookmark: _Toc73973624]FerryBox observations and shipborne monitoring

Automatic observations made from ships crossing the sea areas were used both as independent data for validation and quality assessment (Paper I) and as input for assimilation (Paper III). FerryBox is a measurement system installed on board commercial ferries, collecting temperature, salinity, chlorophyll a fluorescence and turbidity data. This technology is used to study basin-scale and mesoscale processes, upwellings and to measure horizontal profiles of oceanographic parameters e.g., temperature and salinity (Kikas and Lips 2016). The water is sampled at about 4 m below the surface at different rates, but every 20 s measurement is recorded, thus covering roughly 160–200 m in a horizontal direction. There are quality check procedures to eliminate unexpected and physically unrealistic values and cross-checking with the same data from the return trip is performed as well (Kikas and Lips, 2016). A comprehensive description of technical parameters of the FerryBox system can be found in Lips et al. (2008).

Observations are available on the routes starting from the ports of Tallinn, 
Helsinki, Travemünde, and Stockholm (Fig. 2a) on the forth-and-back tracks twice a day 
(Tallinn – Helsinki) or less frequently (other routes). For the particular grid cell of the model, one mean SST value (Papers I and III) and one SSS value (Paper III) for each day were calculated regardless of the time within the day and the number of observations. Within these intervals, mean coordinates and observation time were collected for the use in EOF analysis. Observations from the shipborne monitoring were also included 
in the data set of EOF assimilation. Compared with the FerryBox data, shipborne monitoring enlarged the area covered by observations (locations of the observations 
are shown in Fig. 2b by dots), but the amount of data was very small and time intervals were large.

The data were taken as they are within the CMEMS depository for 2015. The data had passed an advanced quality check.
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[bookmark: _Toc41571808]Figure 2. Distribution of observations. (a) Map of FerryBox observation points along ship tracks (blue) and shipborne monitoring observations (red) over the study period. Shown are also the locations near Tallinn (south) and Helsinki (north) depicting the route of FB line (yellow circles with black contour); (b) Observation amount over longitude and time. FerryBox data are shown by colour image; each image cell presents the number of initial observations over intervals of 10 days and 
18’ E longitude. Shipborne observations are shown by black dots. (Paper III)



[bookmark: _Toc73973625]Satellite observations

Sea surface temperature data, observed from satellites, were used as input observational data within data assimilation with OI and SC algorithms (Paper I). Gridded observation maps were obtained from the CMEMS multi-sensor product, which is built from 
bias-corrected mono-sensor products at a horizontal resolution of 0.02 by 0.02 degrees. 

SST product from satellite observations is composed by merging of various satellite SST level 2 data (Bonekamp et al., 2016). The data have passed a significant number of quality controls. The raw data have been calibrated through an inter-sensor bias correction procedure. Nighttime SST maps were based on original SST observations without any smoothing or interpolation. Details of the product are described on the CMEMS web resource http://cmems-resources.cls.fr/documents/QUID/CMEMS-OSI-QUID-010-009-a.pdf (last access: 8 May 2020). Data were acquired from NASA, NOAA, IFREMER, EUMETSAT OSI-SAF and ESA using sensors like METOP_B, SEVIRI, VIIRS_NPP, MODIS and others. (Paper I) 

Depending on cloud cover, there were from 200 up to 21000 observations per day. Some obviously erroneous SST values were filtered out (which differed more than 10 C from model ones). All of them were used for assimilation with the Cressman method. 
A data thinning algorithm was used for optimal interpolation in order to reduce oversampling, leaving one value for the area of 2.5 by 5 nautical miles. 

A single SST value was used for each day; it was reduced to midnight based on several available observations at different times (near-real-time).

In order to make sure that the EOF algorithm will perform in the best possible way, experiments with pseudo-observations were conducted. It was found that ca 5000 observations were needed to produce reliable results. As input data for assimilation, model values at specified locations were taken instead of real observations (Paper II).





[bookmark: _Toc73973626]Validation of assimilation results 

Following the approach by Taylor (2001), for each comparison of the two variables  and  a common data set is defined where missing values of one or both data sets are ignored. If the standard deviations of the data sets are ,  and the coefficient of their mutual correlation is , then the centred (with bias removed) root-mean-squared difference (RMSD) of the data sets  reads



 .						         (7)



Maps or transect plots can be visually compared and described (Crosnier and 
Le Provost, 2007). This method is appropriate for situations when no rigorous criteria are set or they are unknown. Some features can be identified, inconsistencies removed and algorithms altered. 

From an assimilation perspective, time-series of good analysis lay between the free run and the observations. Maps of good analysis should not have artificial and physically impossible properties, like bull’s eye formation around a single point observation, rectangular shapes etc.; this should be valid also in the regions of missing observations where quantitative validation is not possible. 

The model performance with respect to observations was evaluated over the grid cells – time span pairs, where and when the observations were available. Since there were low number of observations, DA results were also checked against control run without DA, though in this case it is not possible to conclude on improvement, but only to analyse the changes due to DA. Standard statistical characteristics were calculated for the individual fields: mean, standard deviation, in case of differences (for example, relative to observations): bias, RMSD (root-mean-square difference, equals to the standard deviation of difference field), and the Pearson correlation coefficient. 

A comparison was made against independent data for SST (Paper I), and partially against the data which was used in assimilation (Paper III) as there were no salinity observations available from satellites.

When SST and SSS data were assimilated simultaneously using EOF reconstruction (Paper III), data from the DA experiments with a relaxation time of 5 and 10 days were compared to the same averaged observational FB data as the data from the model run without assimilation (FR). The problems concerning performance evaluations of operational ocean models were described by Hernandez et al. (2015). In this research different portion of the observations were withheld in order to see the impact of the assimilation using 50% of the available data (Gregg et al., 2009). The implementation of EOF DA described in the thesis involved about 13 k observational averages over coarse 5’ N  10’ E grid. The reconstruction procedure by Eqs. (4)–(5) has no direct connection to the ongoing modelling (although it includes statistical results from longer model runs) and the fields of  in Eq. (6) are the only link where observations enter the DA process.






[bookmark: _Toc73973627]Results

The most important result of the entire work is the development of a method that allows the assimilation of fragmented observations into a model and gets better results than with free-run or simple algorithms. Additionally, it is shown that SST and SSS fields can be realistically reconstructed using the EOF technique with model-generated values. CMEMS data can be used as input for assimilation in the NE Baltic. 

Several experiments were conducted in this study. The first experiment was conducted to make sure CMEMS data are acceptable for data assimilation. The second experiment revealed possibilities for two simple algorithms (SC and OI) to improve forecast comparing with free run (without assimilation). The third experiment showed that EOF can be used for the reconstruction of SST fields. The fourth experiment confirmed the ability of the EOF technique to assimilate sparse observations to the large fine-grid.

[bookmark: _Toc73973628]Assimilation of satellite SST data from CMEMS

In the adopted data assimilation approach, SST satellite observations were used to correct the model forecast. FerryBox data were taken from the Tallinn-Helsinki route 
(Fig. 2a), which has the most frequent observations. Therefore, comparisons are presented for this route.

A statistical comparison of weekly mean values of free run (FR) forecast and assimilated SC and OI forecasts with FB data revealed that assimilation provided better correspondence to the independent observations (Table 1). Improvements were noted in degrees of bias, root-mean-squared difference RMSD, and the overall correlation (Table 1). The main performance estimator – RMSD – was < 1 °C in all the cases.

Time series of SST from daily SAT data revealed during the warming period in the open part of the Gulf of Finland (Fig. 3), generally higher temperatures than FB. The SAT data were spiky compared with the FB data: warmer spikes occurred during the warming period and colder spikes during the cooling. The free run (FR) forecast provided in the offshore waters slightly smaller SST than observed. Data assimilation using SC and OI “dragged” the model results towards SAT observations (Fig. 3b), still, the SST spikes did not appear in the assimilated model results.
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Figure 3. Daily SST time series in 2015 on the Tallinn-Helsinki FerryBox transect in the central part of the Gulf of Finland: FB during observation time and nightly values for FR and SAT. See Abbreviations for explanations of the legend. (Paper I)
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Figure 4. Time-latitude map of weekly mean sea nightly surface temperature difference of assimilated with SC (a) and OI (b) in reference to Ferrybox data, between Tallinn and Helsinki. (Paper I)



The difference between the two assimilated SST datasets from the FB data is shown in Fig. 4. In the central part of the Gulf of Finland (latitudes 59.5–60 N) there is a strong seasonal signal. Thin layer temperature registered by satellite was 0.3–0.7 C larger than the bulk temperature of the upper layer (observed at a 4 m depth) during spring and summer until August, and insignificantly (less than 0.5 C) smaller in autumn and early winter. Larger SAT minus FB differences emerged occasionally in areas immediate to the coasts. In December the thin surface layer cooled down by 0.5–1.5 C more than the deeper surface layer along the whole transect, also including the coastal waters.

Total RMSD between analysis and validated data was less than 1 C for SST. Within the selected parameters of assimilation algorithms, the computationally effective SC algorithm gave slightly better results than OI in relation to independent FerryBox data.

A statistical comparison of weekly mean values of FR forecast and assimilated SC and OI forecasts with FB data (Table 1) revealed that assimilation provides better correspondence to the independent observations. Presented deviations contain the seasonal cycle, since all the statistics were calculated with respect to the constant mean value over the whole period from April to December. Standard deviations of SST were in the range of 4.2 to 4.6 C. Calculated correlations were quite high – more than 0.93. 



Table 1. Statistics of FR, SC, OI and SAT with reference to FB data (weekly data). 

		

		FR

		SC

		OI

		SAT

		FB



		bias [C]

		-0.45

		-0.34

		-0.42

		-0.31

		0.00



		RMSD [C]

		0.97

		0.84

		0.96

		0.66

		0.00



		correlation  

		0.931

		0.937

		0.934

		0.936

		1.000



		mean [C]

		10.99

		11.11

		11.03

		11.13

		11.45



		standard deviation [C]

		4.35

		4.45

		4.48

		4.57

		4.19







With reference to the SAT data, FR had RMSD = 0.96. Data assimilation reduced this value to 0.82 (SC) and 0.93 (OI). 



[bookmark: _Toc73973629]Assimilation of in-situ data with EOF method

[bookmark: _Toc73973630] SST and SSS reconstruction with EOF 

The main idea behind EOF is temporal covariance between distant locations. 

Covariance as a function of the space lag of original data (Fig. 5) usually did not follow the normal distribution neither did it exponentially decrease. Large covariance values, especially for SST (not shown), for remote wet points, are due to the similarity of their thermohaline regime (shallow coastal areas, zones influenced by river discharge, local basins with low-intensity circulation). The covariance of the most energetic modes followed closely at larger scales the covariance of original data. Covariance of residual fields (sum of the remaining higher EOF modes) had a strong normal distribution and it decayed fast with increasing space lag. Correlation (not shown) dipped 0.2 at a distance of 30 km for both SST and SSS, justifying the use of OI for this part of the variability.
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Figure 5. Covariance of SSS as a function of space lag between the model points. Shown are heavily smoothed two-dimensional relative histograms of the original data (dotted lines, percentiles 90, 95, and 99 %) and mean covariance of original data (black line). The SSS covariance of the sum of the six most energetic EOF modes is also shown (red line) and higher EOF modes (blue line). (Paper II)



Remapping one-dimensional vectors  back into the two-dimensional geographical framework gives insight into underlying physical processes. First, most energetic modes (Fig. 6 shows the modes for SSS), had nearly “flat” patterns without sign change; 
their amplitudes were dominated by a seasonal signal. Higher modes were considered random due to mesoscale eddies and other fine-scale processes, therefore their correlation decayed rapidly with increasing distance. In the SST patterns, the first mode dominated heavily (97.64% of variance explained) due to the seasonal cycle. Regarding the SSS patterns, the share of different modes was more distributed and the first six modes explained 72.88% of the total variance. The details of the calculated modes and their interpretation can be found in Paper II (Table 1 and Table 2). 

In order to make sure that the EOF algorithm will perform in the best possible way, experiments with pseudo-observations were conducted. It was found that ca 5000 observations were needed for producing reliable results. As input data for assimilation, model values at specified locations were taken instead of real observations (Paper II). 
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Figure 6. EOF patterns for the four first modes of SSS. Shown are the explained variance percentage of each mode. The contour interval for non-dimensional normalized modes (744 points) is 0.02. (Paper II)



With a decreasing number of observations , errors slightly increased when , where  is the number of modes. For example, SSS absolute error was < 0.3 g kg-1 for 88% of cases with  and 80% of cases with . Regarding SST, the errors 
were < 0.6 C in 90% and 82% of cases, respectively. Regression of all the values of both SST and SSS yields tangent between initial and reconstructed data 0.99, their correlations follow . Relative errors of all the SST data, compared with the horizontal standard deviation of each time instance, were from 6.7% (observation grid step 37 km) to 8.6% (93 km). Relative errors of SSS were somewhat larger – 18% and 25%, respectively. For  the errors increased abruptly and singularity errors occurred in Eqs. (5)-(6).

In one of the experiments (Paper II), the whole region was split into three sub-regions: the Gulf of Finland, Gulf of Riga, and northeastern Baltic Proper (Fig. 1), and individual EOF modes were calculated for each of the sub-areas. Except for the northeastern Baltic Proper, the first two SST modes for the Gulf of Finland and Gulf of Riga were similar to the patterns obtained for the whole area. Pairwise correlations of the SST amplitudes were > 0.95 between the Gulf of Finland, the Gulf of Riga and the whole region. There was no evidence that any particular season or sub-region was modelled with greater accuracy than this. 
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When waters with an SST above 17 °C dominated the area, all the maps indicated moderate upwelling near the northern coasts of the basins (Fig. 7). However, the spatial extent of the colder waters and the minimum temperatures were different. Warmest “cold” waters were observed on satellite images. 



[image: ]



Figure 7. Maps (longitude E, latitude N) of the SST in the study area on 3 August 2015: (a) free model run without DA, (b) in situ observations reconstructed using EOF method, (c) DA with a relaxation time of 5 days (weight 0.2), (d) satellite observations. (Paper III)



Various mesoscale features emerged on SST (Fig. 7) and SSS (Fig. 8) maps, like colder upwelling filaments along the northern coasts of the Gulf of Finland and the Gulf of Riga, and decaying anticyclonic warm-core eddies near the southern coast of the Gulf of Finland. 

The model forecasted spreading of the Daugava river waters by narrow coastal strips of lower salinity in the NE and NW directions (Fig. 8). Locations with dense observations allowed us to validate the model and visually evaluate assimilation quality. While SST followed the seasonal cycle (Fig. 9), with weather-dependent deviations, then SSS behavior was more irregular. All the compared SST data sources showed less variability than that of SSS in the given variation scales of SST and SSS (16 °C and 2 g‍·‍kg‍-‍1 respectively). Still, for most of the time the assimilation curve (blue line, Fig. 9b) was closer to the FerryBox observations than the control run, for both SST and SSS (Fig. 9).
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Figure 8. Maps (longitude E, latitude N) of SSS in the study area on 3 August 2015: (a) free model run without DA, (b) in situ observations reconstructed using EOF method, (c) DA with relaxation time 5 days (weight 0.2). (Paper III)



DA improved the model performance significantly: centered RMSD of SST was reduced by 22% and SSS by 34%, compared to the control run (Table 2). From DA01 to DA02, slight improvement of DA performance was observed, therefore DA02 was adopted. Spatial pattern of RMSD changes between the DA and FR (Fig. 10) indicates that most significant improvement (RMSD reduction up to 50%), both for SST and SSS, took place in the observation-covered areas in the Gulf of Finland. Too cold waters produced by FR near the northern coast of the Gulf of Finland were effectively corrected by DA (see also 
Fig. 7), therefore highest improvement percentage scores were detected in this region. Near the western open boundary, non-assimilated SST and SSS values of the larger model were advected into the area, therefore RMSD reduction was small, or even negative for SSS.

Daily maps of EOF DA data were converted also to weekly averages, as it was done for OI and SC methods in Table 1 and Fig. 4, see details in Paper I. Weekly RMSD is 13% lower for SST and 9% for SSS, compared to the daily data (Table 2). Weekly statistics suppressed the mesoscale variability, not resolved by EOF reconstruction, and revealed better match between the DA and the observations. DA decreased the bias, especially for SSS, and increased correlation of SSS between analysis and observations.





Table 2: Statistics of daily data in 0.5’ N  1’ E grid cells with FerryBox (FB) observations: free model run without data assimilation (FR), data assimilation DA01 (observation weight 0.1), DA02 (weight 0.2) and FB. Bias, RMSD and correlation are taken with reference to FB. (Paper III)

		

		FR

		DA01

		DA02

		FB



		SST [C]

		

		

		

		



		Mean

		12.03

		12.15

		12.25

		12.48



		Standard deviation

		3.98

		3.92

		3.93

		3.97



		Bias

		-0.45

		-0.33

		-0.23

		0



		RMSD

		0.72

		0.59

		0.56

		0



		Correlation

		0.98

		0.99

		0.99

		1.00



		SSS [g kg-1]

		

		

		

		



		Mean

		5.61

		5.79

		5.85

		5.93



		Standard deviation

		0.35

		0.29

		0.31

		0.37



		Bias

		-0.31

		-0.14

		-0.08

		0



		RMSD

		0.35

		0.24

		0.23

		0



		Correlation

		0.52

		0.76

		0.78

		1.00







[image: ]

Figure 9. Time series of SST (a, c) and SSS (b, d) near Tallinn (a, b, 59.4833° N, 24.7667° E) and Helsinki (c, d, 59.9500° N, 24.8833° E), locations shown in Fig. 2a. FerryBox data are shown by dots, black lines represent control run without DA, red lines correspond to DA with relaxation time 5 days (weight of observations 0.2), blue lines for 10 days (weight 0.1). (Paper III)
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Figure 10. Improvement of RMSD of DA compared to that of FR, both taken in reference to 110 k FerryBox observations. Comparison is made for 20 x 20 grid cells (10’ N x 20’ E) for SST (a) and SSS (b) over the whole study period. Legend codes: few points – less than 100 observations in a box, small values - absolute percentage change less than 10%, negative – DA RMSD growth more than 10%, positive – DA improvement (RMSD reduction) from 10% to 30%, large positive – improvement more than 30%. (Paper III)
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Three different assimilation methods were used with HBM-EST simulations – OI, SC and EOF. Calculation was performed on model data for year 2015 and satellite observations provided by CMEMS, validation was made with in situ data. The findings can be summarized as follows: 

· The tests with marine data assimilation into the model of the northeastern Baltic showed that satellite SST products from CMEMS can be well used for data assimilation in the sub-regional marine forecasts (Paper I). 

· SST from the DA, produced using satellite data, was compared with FB observations; it was confirmed that for areas with dense observations OI and SC algorithms are appropriate and can be used to produce good quality results (Paper I).

· Estimation of the model performance for both cases with or without DA gave for the SC and OI methods similar pattern of differences relative to FB data. Comparing the results by SC and OI methods, SC produced slightly more accurate results than OI with the given set of parameters. Namely, SC provided smaller bias and RMSD and larger correlation as compared to the FB data. (Paper I)

· Statistically justified EOF reconstruction method is developed that allows to handle large-scale patterns of observed fields in the sub-regions. The entire region can be covered with interpolated and extrapolated observations using model-based EOF patterns. Summation of all modes yields initial field variance (Paper II).

· Study of the EOF reconstruction method revealed that in the smaller sea regions, which are affected by the same large-scale forcing patterns, the dominating EOF patterns have obvious physical interpretations. Their shape does not depend very much on the selection of boundaries as shown by experiments with split regions (Paper II).

· Implementation of the EOF statistical reconstruction technique into the DA of the forecast model yielded reduction of RMSD and interpolation errors. Mesoscale deviations from large-scale EOF patterns follow well-defined covariance decay with space lag; therefore, they could be treated by optimal interpolation or similar method (Paper III).

· EOF DA method has small computational effort compared to the localized methods like OI etc (Paper III). 

· Intermediate results are in the form of maps that are easily understandable and can be checked visually or taught to be analysed by artificial intelligence (Paper III). 

· Since the quality of DA and forecast are primarily determined by the quality of EOF reconstruction (when extensive mesoscale observations are not available), then it would be possible to perform faster calculations with orthogonal EOF basis vectors (Paper III).

· DA made major improvement in modelling of SSS. Further improvements can be made as RMSD to the observations makes 62% of observed standard deviations (Paper III). 
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Development of data assimilation for forecasts in Estonian marine areas  

This research was performed in order to solve practical problems concerning quality of operational marine forecast for Estonian coastal waters. This was done through data assimilation using available observation data from satellites and FerryBox. 

The main objective of the work was to find assimilation algorithm which allows to produce forecast with smaller errors compared to model run without assimilation. Observation coverage and spatiotemporal characteristics can vary significantly, but this should not impact quality of the assimilation. 

HBM model was used for experiments as it currently produces operational forecast for Estonian marine areas. The region was limited to northeastern part of Baltic Sea, including Gulf of Finland, Gulf of Riga and northeastern part of Baltic Proper. Temporal resolution of the model was taken 24 hours, spatial resolution is 0.5’ N x 1’ E. 

Assimilation was performed only for the first water layer (depth 3m) since observations were taken from satellite or FerryBox. Experiments were performed with three algorithms. 

Two of them are well-known straightforward methods – successive corrections (SC) and optimal interpolation (OI). These algorithms are computationally robust and can be used for areas with abundant observation coverage. Assimilation reduces RMSD of e.g. SST by 0.01–0.13 °C. 

The novelty of the research is development of a new method, which allows to assimilate small amount of scattered observations and improve forecast over entire grid, including areas without observations. The algorithm is based on calculation of EOF modes of model fields and reconstruction of observations using small portions of data. This method uses grid transposition (from fine to coarse and then back to fine grid through bilinear interpolation) in order to reduce computational load. 

New method can be used for assimilation for regions that are under similar forcing resulting in high covariance over large distances. Therefore variability of assimilated fields can be presented by limited number of dominating EOF modes. Calculation of EOF modes should be done with model that describes marine physical processes very well. 

During all the experiments the same time period was used (01.05.2015–31.12.2015) in order to maintain comparability between different algorithms. 

Feasibility study of the EOF assimilation method showed that the EOF patterns have obvious physical interpretations and their shape does not depend very much on the selection of boundaries of sub-regions. The output is presented as two-dimensional maps which can be interpreted in terms of underlying physics. 

EOF DA method reduces RMSD for SST by 0.14–0.16 °C and SSS by 0.11–0.12 g·kg-1. Calculations of EOF modes were done with 5-year model data. First four modes can be used for assimilation, they explain 99.3% and 65.4% of variance for SST and SSS respectively. 

EOF DA method has small computational effort compared to the localized methods and can be used in operational forecast at Department of Marine Systems. 
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Eesti merealade prognoosisüsteemi arendamine vaatlusandmete assimileerimise abil

Käesolev doktoritöö kirjeldab uuringuid, mis viidi läbi eesmärgiga pakkuda täpsemat lahendust Eesti merealade operatiivsele prognoosisüsteemile. Arendamine hõlmas satelliitandmete ja kruiisilaevade vaatlusandmete assimileerimist. 

Peamine eesmärk oli leida arvutialgoritm, mis korrigeeriks prognoosi ning vähendaks vigu, mis on iga mudeli puhul paratamatud, võrreldes mudeli tulemustega ilma assimileerimiseta. Läbi selle saavutatakse prognoosi kõrgem täpsus, kuna arvutusi järgmiseks päevaks alustatakse korrigeeritud väärtusest. Vaatluste tihedus võib kõikuda üle kogu basseini, samuti võivad olla väga erinevad ajalised parameetrid, kuid see ei tohiks oluliselt mõjutada mudeli prognoosi kvaliteeti peale assimileerimist. 

Eksperimentide jaoks kasutati HBM mudelit, mis töötab operatiivsel režiimil Eesti merealade jaoks. Uurimispiirkonnaks on Läänemere kirdeosa, mis hõlmab Soome ja Liivi lahte, Väinamerd ning Läänemere avaosa, mis jääb 21°E meridiaanist ida poole. Mudeli assimileerimise ajasamm oli võetud 24 tundi ning ruumiline võrgupesa suurus oli 0.5’ N x 1’ E. 

Assimileerimine oli rakendatud ainult ülemise kihi jaoks (1. kihi paksus 3 m) kuna satelliitandmed olid pinnakihi kohta ning FerryBox andmed pärinesid sügavuselt 3–4 m.  Eksperimentide käigus katsetati kolme erinevat algoritmi. 

Nendest kaks on tuntud ja lihtsad algoritmid – järjestikulised muudatused (SC) ja optimaalinterpolatsioon (OI). Neile meetoditele on omane madal arvutusvõime, neid saab kasutada assimileerimisel piirkondades, mille kohta on rohkelt vaatlusi üle kogu basseini. Algoritmid vähendavad nt temperatuuri ruutkeskmist viga 0.01–0.13 °C võrra. 

Töö uudsuseks on uue meetodi arendamine, mis lubab taastada vaatluste väärtusi üle kogu mudelivõrgu väheste vaatluste korral, mis ei tarvitse olla samas alambasseinis. Algoritm põhineb EOF moodide arvutamisel mudeliandmete alusel ning vaatluste rekonstrueerimisel, kasutades väikest andmekogust. Selle meetodi arvutusvõime tõhustamiseks kasutatakse jämevõrku, mis on peenvõrgust, kus toimub assimileerimine, 100 korda väiksema ruumilise resolutsiooniga, ning teisendus tagasi peenvõrgule on tehtud bilineaarse interpolatsiooniga. 

Uus meetod sobib kasutamiseks assimileerimisel piirkondades, mis asuvad homogeense mõjuvälja alal, ja mille merevee parameetreid iseloomustab kõrge kovariatsioon suurtel kaugustel. Seega terve välja muutlikkust saab kirjeldada domineerivate moodide vähese arvuga. EOF moodide arvutus eeldab, et kasutatav mudel kirjeldab meres toimuvaid füüsikalisi protsesse küllaltki hästi. 

Kõikides kirjeldatud eksperimentides oli kasutatud mudeliandmeid samast ajalisest perioodist (01.05.2015–31.12.2015), et tagada võrreldavus erinevate meetodite vahel. 

EOF assimileerimismeetodi võimekuste uuring näitas, et tugevamatel EOF mustritel on füüsikaline tagapõhi ning nende kuju ei sõltu sellest, millisest alambasseinis pärinevad lähteandmed. Assimileerimise väljundiks on kahedimensioonilised kaardid, mida saab tõlgendada füüsikaliste seaduspärasustega. 

EOF assimileerimismeetod vähendab pinnatemperatuuri keskmist ruutviga 
0.14–0.16 °C võrra ning pinnasoolsuse oma 0.11–0.12 g·kg-1 võrra. EOF moodid olid arvutatud 5 aasta mudeliandmete põhjal. Esimesed neli moodi kirjeldavad üle 99,3% pinnatemperatuuri ja 65,4% pinnasoolsuse muutlikkusest. 

Arendatud meetod on arvutuslikult tõhus ning sobib kasutamiseks operatiivses režiimis Tallinna Tehnikaülikooli Meresüsteemide instituudis. 
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