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SYMBOLS 

  ;(matrix system state (object)) ݑ݊	ݔ	ݑ݊ Functional matrix of size – ܣ
ሺ݅ܿܿܣ ൅ 1, ݅, ݅ െ 1ሻ – Acceleration; 
А݉݌ – Amplitude; 
В – Functional matrix sized ݊ݑ	ݔ	ݎ (control matrix (input)); 
С – Functional matrix with size ݉	ݔ	ݑ݊ (matrix of output state); 
 ;௜ – Cubic function݄ܥ
 ;௜ – Boundary conditions for cubic function΄΄݄ܥ ,௜΄݄ܥ
 ;(matrix of output control) ݎ	ݔ	݉ Functional matrix with size – ܦ
݅ܦ ௬݂,௭ – Deviation of accelerometers filtered data from average acceleration by 
 ;axes ݖ and ݕ
݅ܦ ௬݂௠௜ௗ,௭௠௜ௗ – Average difference between each measurement of filtered 
accelerometers data and average acceleration data by ݕ and ݖ axes;	
ሺ݅ݏ݅ܦ ൅ 2ሻ – Displacement; 
 ;axes	ݖ and ݕ ሻ – Arrays of displacements byݖ௬,௭ሺܦ	,ሻݏ௬,௭ሺܦ
 ;axes ݖ and ݕ ௠௔௫ – Maximal values of samples byݖ,௠௔௫ݕܦ
 ;axes ݖ and ݕ ௠௜௡ – Minimal values of samples byݖ,௠௜௡ݕܦ
 ;ሻݐሻ – Laplace image of the function ݂ሺݏሺܨ
 ;test-ܨ ௘௠௣ – Empirical value ofܨ
 ;test-ܨ ௧௔௕௟௘ – Table value ofܨ
 ;௥ – Gyroscope data for small period of timeܩ
 ;ሻ – Transfer characteristics of Butterworth filterݖሺܪ
 ;ଵ – Hypothesesܪ	,଴ܪ
I – Identity matrix; 
 ;Matrix impulse transition function of system –ܭ
 ;Logarithmic ratio – ܮ
 ;ሻ – Laplace transform of Euler functionݏሺ݌ܽܮ	,ሻݐሺ݌ܽܮ
 ;ݕ ௬ – Median by axisܯ
 ;ݖ ௭ – Median by axisܯ
௜ܰሺ݅ ൌ 1, . . . ,  ;ሻ – Equation of the system stateݑ݊

ܱ௞ሺ݇ ൌ 1,…݉ሻ – Equation defining the output variables with dependence from 
state variables and inputs; 
ܲሺݏሻ – Matrix whose elements are polynomials of ݏ; 
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ܴ – Radius; 
 ;Residue – ݏܴ݁
௜ܵ – Spline function; 
௦ܶ – Sample time (time of discretisation); 
௘ܶ௫௣ – Pure time of experiments; 

௧ܶ௢௧௔௟	– Total time of measurements for corresponding experimental mode; 
ܸሺ݅ ൅ 1, ݅, ݅ െ 1ሻ – Linear velocity; 
ܹ – Weight coefficient; 
௬ܹ,௭ሺݏ,  ;ሻ – Transfer functionsݖ

ܽ, ܾ, ܿ, ݀ – Coefficients in spline function; 
݁ – Euler constant; 
 ;ሻ – Random disturbanceݐሺݎ݁
݂ – Natural frequency; 
௖݂௨௧ – Cutoff frequency; 
݂ሺݐሻ – Function of Newton`s differential equation; 
௬݂ሺݐሻ, ௭݂ሺݐሻ – Fourier functions; 
݃௬,௭ – Angular velocity; 
݅ – Number of element in vectors and equations; 
݆ – Imaginary unit; 
݉ – Number of outputs; 
݊ – Arrays of time intervals with some number of points; 
݊ௗ – Damping Coefficients; 
݈݊ – Pole of multiplicity; 
݊௨ – Number of state variables of system; 
 ;Number of periods – ݉ݑ݊
 ;Processed signal – ݎ݌
 ;Number of inputs –	ݎ
 ;Variables of continuous-time function – ݏ
 ;௜ – Singular pointݏ
ሺ݅ݐ ൅ 1, ݅, ݅ െ 1ሻ – Time; 
 ;௠ሺ1,2,3ሻ – Step duration in timeݐ
 ;ሻ – Input signalݖሺݑ	,ሻݏሺݑ	,ሻݐሺݑ
 ;Unprocessed signal – ݊ݑ
 ;௤ – Input variablesݑ
 ;Transposed vectors – ்ݔ	,்ݕ	,்ݑ
ሷݑ ሶݑ ,  – Derivatives of input signal; 
 ;ሺ1,2,3ሻ – Weightݓ
 ;Intermediate variable – ݔ
 ;ሻ – Initial conditionݐ଴ሺݔ
 ;௜ – Total number of variable statesݔ
ሶݔ  – Differential operator; 
 ;Directions, axes – ݖ ,ݕ
 ;ሻ – Output signalsݖሺݕ ,ሻݏሺݕ ,ሻݐሺݕ
,തݕ  ;ݖ and ݕ Arithmetic means by axes – ̅ݖ
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ỹሺݐሻ – Theoretical yield of the object; 
 .Variables of discrete-time function – ݖ
 
Ψ – Operator of identification function; 
Φ – Integrand; 
 ;Angle of rotation around supporting bearing – ߙ
 ;Angle of rotation around axis x – (1,2,3)ߚ
 ;Values of displacements in ascending order – ߛ
 ;Real number – ߜ
 ;௜ – Characteristic number of matrix Аߣ
 ;axes ݖ and ݕ ௬,௭ – Expected values byߤ
 ;axes ݖ and ݕ ௬,௭ – Standard deviations byߪ
௬ሺ௨௡ሻߪ
ଶ ௬ሺ௣௥ሻߪ	,

ଶ  – Dispersion of unprocessed and processed signals by axis ݕ; 

௭ሺ௨௡ሻߪ
ଶ ௭ሺ௣௥ሻߪ	,

ଶ  – Dispersion of unprocessed and processed signals by axis ݖ. 
 
ࣦ  – Operation of Laplace transform. 
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INTRODUCTION 

Background 

Among the diseases that most people face sooner or later are illnesses connected 
with dysfunctions of the musculoskeletal system (MSS) and spine. Because the 
MSS is our frame, support, and foundation, it provokes imbalance causing 
disease in other systems and individual organs as well as decreased mobility 
and deterioration of general condition of the body. Diseases of the spine, bones, 
and joints are equally typical for young and elderly people. Apart from 
mechanical traumas and excessive loads on separate parts of MSS, there are 
some other diseases that are not directly connected with illnesses of the MSS 
components (for example – stroke), but cause the loss of locomotion activity. 
Statistics of morbidity of different types of diseases, according to the 
information of European Occupational Disease Statistics is shown in Fig. 1.1 
[1]: 

 

Figure 1.1. Proportional distribution of occupational diseases in EU (2005) [1].  

Many modifications of medical rehabilitation facilities and trainers have been 
designed in recent years for successful treatment of diseases of the MSS. Some 
of them have proved to have high efficiency in practice. The most successful 
models of such systems make it possible to provide feedback to the patient as 
well as to take into account individual physiological and anthropometric 
characteristics of a particular patient in the preparation of the course of 
restoration programs. However, the possibility of using these trainers at each 
facility is inappropriate primarily because of their high cost.  

One of the main ways to reduce the high cost of medical rehabilitation systems 
is using lower-cost inertial measurement units (IMUs) for the study of human 
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motion. Nowadays, there is no single mathematical model or complete 
description of human MSS using IMUs. Therefore, this area of biomechanics 
requires further study. 

The human pelvis, connecting the upper and lower parts of the body and 
transporting an individual’s own weight, has always been one of the highest 
priorities in the research of the human MSS. The description of the kinematics 
and dynamics of the pelvis during walking is especially difficult. Therefore, a 
large portion of mathematical models begin with study of the plane pelvic 
motion. 

Subsequently, the results of this work will be used during the development of a 
new rehabilitation trainer for people suffering from MSS diseases and will be 
used in restoration of the quality of pelvic motion abilities restoration (for 
sitting-in-saddle patients). From the famous trainers, only Zander’s models were 
equipped with a saddle, but they had only one degree of freedom (DOF) and 
became out of date. 

The main objective of this work is to model and construct a mechanical system 
for human heel-pelvis motion simulation in the frontal plane, and to find 
parameters of its mathematical model for subsequent use in human lower-limb 
recovery in the near future. 
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1. OVERVIEW OF THE MATHEMATICAL MODELS 
OF HUMAN LOWER LIMBS 

Up to this day, the most successful moving legged mechanisms are 
musculoskeletal system of living things, past centuries of adaptation. Depending 
on the lifestyle, living beings daily are successful in performing the functions of 
movement in different climates (temperature, humidity, etc.) and landscape 
(elevation, the presence of obstacles on the path of research, the nature of the 
soil, etc.) conditions. By this way, the basic principle of designing two-leg 
mechanisms (lower limbs) is to copy the movements of the musculoskeletal 
system existing in the nature of living beings. However, copying of bipedal 
biological systems is complicated because of some technical reasons such as the 
power consumption, the stability and the biological and mechanical complexity 
of legs [2].  

According to physical interpretation, the mechanism simulating human motion 
can be introduced with different parts of the legs (conditional one-leg 
mechanism with partial motion and bipedal mechanism with full motion), 
wheels, rails etc. 

Because of the object of study, the present overview is basically aimed to 
describe of different types of human lower-limb motion mathematical 
interpretations for bipedal construction.  

The representation of the human locomotor apparatus depends on the tasks of 
the study and assuming complexity and precision of the model [3].  

Therefore, according to the difficulty of measuring and simulating 
constructions, the human motion mathematical description can be divided into 
several groups of mathematical models [4]: 

‐ Models based on the inverted pendulum principles, having up to 2 springs or 
dampers in it, describing simplified human motion models. 

‐ Models of multilink mechanisms are usually more complicated and precise 
than the inverted pendulum mechanisms and able to describe the motion of 
the separate parts of the lower limbs (heels, ankles, knees, thighs, hips, 
pelvis, etc.). 

‐ Models obtained with human motion measurments made during real 
experiments with human walking which are the most precise and provide 
close results to real human motion. 
 

All examples of mechanisms and corresponding mathematical models presented 
in sections 1.1 – 1.4 describe the plane motion. 
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1.1. The simplest mechanisms: inverted pendulum 

The first group of biomechanical lower-limb and pelvic constructions consists 
of models based on inverted pendulum models [5–7]. The best way to use 
inverted pendulum models is by providing energy transfer during construction 
motion.   

The model with one spring is described in [8] and is illustrated in Fig. 1.1. 

 

Figure 1.1. a) The hopping rigid body, b) stance and flight phases comprising a full 
stride [8]. 

The distance between point ܱ and the point of spring-leg fixation on the hip can 
be calculated from Eq. (1.1):  

ߟ ൌ ඥ݀ଶ ൅ ଶߞ ൅ ሺ߰ݏ݋ܿߞ2݀ ൅  ሻ,  (1.1)ߠ

where ݀ is the distance from the centre of mass (COM), point ܩ to point ܪ, 
where a massless spring leg is attached to the hip joint; ߠ is the pitch angle; ߰ is 
the angle formed between the line joining foothold ܱ to the COM and the 
vertical (gravity) axis, and ߞ is the distance from foothold to the COM. 

The kinetic energy of the body is: 

ܶ ൌ
ଵ

ଶ
݉൫ߞሶଶ ൅ ଶߞ ሶ߰ ଶ൯ ൅

ଵ

ଶ
ሶߠܫ ଶ,  (1.2) 

where ݉ is the body mass, ܫ – moment of inertia. 

The potential energy of the body is: 

௧ܸ௢௧ ൌ ߰ݏ݋ܿߞ݃݉ ൅ ܸሺߟሺߞ, ߰,  ሻሻ,  (1.3)ߠ

where ݃ is the gravitational acceleration, and ܸ ൌ ௦ܸ௣௥ denotes the spring 

potential. Forming the Lagrangian ܮ ൌ ܶ െ ܸ and writing 
డ௏

డఎ
ൌ ఎܸ, we obtain 

differential equations of construction motion in the phase of stance (equations 
1.4 – 1.6): 
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ሷߞ ൌ ߞ ሶ߰ ଶ െ ߰ݏ݋ܿ݃ െ
௏ആሺఎሻ

௠ఎ
൫ߞ ൅ ሺ߰ݏ݋ܿ݀ ൅  ሻ൯,  (1.4)ߠ

ߞ ሷ߰ ൌ െ2ߞሶ ሶ߰ ൅ ሺ߰ሻ݊݅ݏ݃ ൅
௏ആሺఎሻ

௠ఎ
൫݊݅ݏሺ߰ ൅  ሻ൯,  (1.5)ߠ

ሷߠ ൌ ߞ݀
௏ആሺఎሻ

௠ఎ
sin	ሺ߰ ൅  ሻ.  (1.6)ߠ

The change of coordinates ீݔ, ீݕ  indicates the state of system at the ܱܮ ,
moment of liftoff and angle ߠ in time is (equations 1.7 – 1.9): 

ሻݐሺீݔ  ൌ ௅ைݔ ൅ ሶݔ ௅ை(1.7)  ,ݐ 

ሻݐሺீݕ ൌ ௅ைݕ ൅ ሶݕ ௅ைݐ െ
ଵ

ଶ
 ଶ,  (1.8)ݐ݃

ሻݐሺߠ ൌ ௅ைߠ ൅ ሶߠ ௅ை(1.9)  .ݐ 

More complicated models of inverted pendulums can have up to 2 damping 
elements. The simple models include concentrated in one point body mass (the 
COM) and a maximum of 2 variables (the COM) [4]. 

We observe a model simulating feet lifting during the running process [9] and 
having 2 springs. By the type of construction, this model can be related to 
spring-loaded inverted models (SLIP) (Fig. 1.2). 

 

Figure 1.2. Mass-spring model [9]. 

The pelvic oscillation control method allows storage and release of energy in 
different phases of gait through the use of springs in the construction (Fig. 1.2). 
The axis of pelvic movements aligns with the axes of movements of the hips. 
The process of controlling natural frequencies of oscillation of the pelvis occurs, 
taking into account pre-known values of stiffness of the supporting leg and 
mass. Furthermore, pelvic tilt angles are selected such that the vibrations of the 
springs would be sufficient for the correct work of the mechanism. A 
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mathematical model of pelvic vertical motion, in the form of differential 
equations, can be written as: 

ሻݐሷ௠ሺݖ݉ ൅ ݇ ቀݖ௠ሺݐሻ െ ݈௦ െ ݈௣ሺݐሻ െ ݈௞ሺ0ሻቁ െ ݉݃ ൌ 0,  (1.10) 

where ݉ is the body mass; ݖ௠ሺݐሻ indicates the vertical displacement of the 
mass; ݈௦ is the distance between the pelvis and the body mass; ݈௣ሺݐሻ denotes the 
vertical displacement of the pelvis caused by its rotation; ݈௞ሺݐሻ is the leg springs 
length; ݇ denotes leg stiffness; ݃ is gravitational acceleration; ݐ indicates time 
of stance phase. 

The angle of pelvic tilt (ߠ௣௘௟௩௜௦) can be found for 2 positions of the leg: 
touching the floor, and in the air (without touching the floor). 

For the leg, touching the floor, the law of pelvic tilt angle change can be found 
as follows:  

௦௧௔௡௖௘ሻݐ௣௘௟௩௜௦ሺߠ ൌ ௦௧௔௡௖௘ݐݓሺ݊݅ݏܣ ൅ ߮ሻ,  (1.11) 

where ܣ is the amplitude of pelvic rotation; ߱ is the natural frequency; ݐ௦௧௔௡௖௘ 
is duration of the stance phase, and ߮ denotes the phase difference between 
pelvic movement and mass vertical movement. 

For a lifted leg, pelvic tilt angle can be expressed as: 

௙௟௜௚௛௧൯ݐ௣௘௟௩௜௦൫ߠ ൌ ቐ

ሺఏ೛೐೗ೡ೔ೞ೔೙೔ିఏ೛೐೗ೡ೔ೞ೚೑೑ሻ

்೗ೌ೙೏೔೙೒
௙௟௜௚௛௧ݐ

௣௘௟௩௜௦_௜௡௜ߠ
,  (1.12) 

where ߠ௣௘௟௩௜௦_௜௡௜ is the initial angle of the pelvis at landing; ߠ௣௘௟௩௜௦೚೑೑  indicates 

the angle of the pelvis at take-off; and ݐ௙௟௜௚௛௧ is the time of the flight phase. 

The higher equation in the figure bracket describes the pelvic tilt angles when 
the initial angles are not reached, while the lower equation applies when the tilt 
angle has reached the initial angle (Eq. (1.13)). 

Since the movement of the mass has a trajectory of a parabola in the flight 
phase, the next landing time ௟ܶ௔௡ௗ௜௡௚ is given by:   

௟ܶ௔௡ௗ௜௡௚ ൌ
ଶ௩೥
௚

, (1.13) 

where ௟ܶ௔௡ௗ௜௡௚ denotes the time of landing, and ݒ௭ indicates the velocity of the 
mass in the vertical direction at take-off. 

In spite of the visual simplicity of inverted pendulum and SLIP models, the 
observed models cannot realistically represent human lower-limb motion. 
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1.2. Multilink mechanisms imitating human lower-limb motion 

The next group of mathematical models consists of multilink constructions 
simulating human lower-limb motion. Different types of biped mechanisms can 
be related to this group. In dependence on certain mechanisms, models of this 
type can be partial (only lower limbs) or full body [2]. 

The mechanism limited to only human lower-limb simulation is described in 
[10] and shown in Fig. 1.3.    

 

Figure 1.3. Coordinates and parameters [10]. 

The mechanical construction [10] shown in Fig. 1.3 has 16 DOF and consists of 
two identical legs (each has 7 DOF) and a waist (2 DOF). 

Leg motion of the illustrated walking simulator can be divided into 2 parts: 
supporting and swinging phases. Working angles of rotation of the elements of 
construction are selected to be the same as real angles of bending of human 
lower limbs while walking. Supporting leg flexion angle of the knee is defined 
in advance. Conditional waist position adjustment depends on the chosen 
working mode (pattern) of the mechanical structure and is not determined 
before the start of simulator work. 

To describe the position and orientation of elements of the mechanical 
construction in space, three different coordinate systems are used. The world 
coordinates system ܱሺܺ, ܻ, ܼሻ has a zero reference point fixed to the ground, the 
coordinate system ܹሺܺ௪, ௪ܻ, ܼ௪ሻ takes account of the geometric centre of the 
conditional waist, and the zero point of the coordinate system ܨ௦ሺܺ௦, ௦ܻ, ܼ௦ሻ is 
located in the centre of the supporting legs. 

The position of the hip of the leg staying on the ground, in the swinging 
phase, ௦ܲ, can be calculated as follows: 

௦ܲ ൌ ௪ܲ ൅ ௪ܧ ௛ܲ௪,  (1.14) 
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where ௪ܲ is the vector of position of the waist in coordinate system ܹ of the 
supporting leg (ܨ௦); ܧ௪ is the identity matrix of the waist; and ௛ܲ௪ the vector of 
position of the hip in relation to the moving frame. 

The distance between the supporting leg`s hip and the foot, ܮ௔௛, is calculated as 
follows: 

௔௛ܮ ൌ ඥܮ௥ଵ
ଶ ൅ ௥ଶܮ

ଶ െ  ௥௞,  (1.15)ߠݏ݋௥ଶܿܮ௥ଵܮ2

where ܮ௥ଵ and ܮ௥ଶ are the lengths of the supporting leg’s calf and thigh; ߠ௥௞ is 
the knee angle of the same leg. 

The position of the supporting leg’s hip by the vertical coordinate in relation to 
the leg coordinate system (ܨ௦), ௥ܲ௛௭, is written as follows from Eq. (1.16): 

௥ܲ௛௭ ൌ ටܮ௔௛
ଶ െ ሺ ௥ܲ௛௫

ଶ ൅ ௥ܲ௛௬
ଶ ሻ,  (1.16) 

where ௥ܲ௛௫ is ݔ and ௥ܲ௛௬ is the ݕ position of the hip of the supporting leg’s hip. 

Then, the position of the swinging leg’s hip relativ to ܨ௦, ௟ܲ௛, can be calculated 
mutually using the following equations (equations 1.17–1.19): 

| ௟ܲ௛ െ ௟ܲ௔| ൌ ටܮ௟ଵ
ଶ ൅ ௟ଶܮ

ଶ െ  ௟௞,  (1.17)ߠݏ݋௟ଶܿܮ௟ଵܮ2

| ௟ܲ௛ െ ௥ܲ௛| ൌ ௟ܲ௛௪ ൅ ௥ܲ௛௪, (1.18) 

ሺ ௟ܲ௛ െ ௥ܲ௛ሻ ∙ ܱ௪௫ ൌ 0,  (1.19) 

where ௟ܲ௔ is the position of the swinging leg’s ankle in coordinate system of 
supporting leg ܨ௦; ௥ܲ௛ denotes the position of the hip of the supporting 
leg; ܮ௟௛௪ indicates the pitch position of the left hip,  ܮ௥௛௪ denotes the pitch 
position for the right hip relative to the coordinate system ܹ, and ܱ௪௫ is a 
vector of unity for the waist. 

In [11], it is possible to see a multilinked mechanism representing the human 
body (Fig. 1.4).  
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Figure 1.4. Construction of multilinked biped mechanism [11]. 

The mechanism consists of 11 rod-like links. To find the equations of link 
motion, the Lagrange equations of the second kind are used. The Lagrange 
equation of the second kind in common view can be found from Eq. (1.20): 

ௗ

ௗ௧
ቀ డ௅
డ௤ሶ ೔
ቁ െ

డ௅

డ௤೔
ൌ ܳ௜, ሺ݅ ൌ 1…11ሻ,  (1.20) 

where ݍ௜ indicates the generalised coordinates; ܳ௜ are the generalised non-
conservative forces; ܮ ൌ ܶ െ ܸ, where ܮ indicates Lagrangian; ܶ is the kinetic 
energy, while ܸ is the potential energy. 

After the equations of generalised coordinates change for each link were 
composed; kinetic and potential energies have been found using well-known 
formulas from theoretical mechanics. Then, substituting the equation of 
generalised force for the first link of the mechanism can be written as: 

ܳଵ ൌ ݈݃ଵሺ݉ ൅݉ଶ ൅݉ଷ ൅݉ଵ݊ଵሻܿ߮ݏ݋ଵ ൅ ଵܯ െܯଶ, (1.21) 

where ݃ is the gravitational acceleration; ݉,… ,݉ଷ are the masses of the links; 
݊ଵ indicates an additional coefficient; ݈ଵ denotes the first link length; ߮ଵ is the 
angle between the ground and the first link, while ܯଵ,ܯଶ are moments of 
friction forces. 

Solving analytically with the use of Mathematica 6.0 software a system of 22 
diffrential equations [11], the final laws of angles ߮ଶ and ߮ଷ changing in time 
are obtained and shown graphically (Fig. 1.5). 



20 

 

Figure 1.5. Dependence on time during the full period of a step (full cycle): a) rotation 
angle, b) angular velocity, c) angular acceleration [11], 

where number 2 is related to the supporting leg shank; number 3 is related to the 
hip; the horizontal axis is measured in seconds, and the vertical axis in angles 
(degrees). 

1.3. Mathematical models of human motion obtained from experiments 

The last group of lower-limb mathematical models consists of models created 
on the basis of captured data from sensors during real experiments of human 
walking. Such models can simulate human walking much better than previous 
groups of models and can be used for many research purposes, but the main 
reason such technologies are not so widely revealed is the high cost of 
equipment and absence of the necessary number of patients (researches). 

This class of mathematical models can be related to the captured data with 
subsequent mathematical models obtained with different measuring systems, 
such as optical systems [12–14], sensors installed on certain parts of human 
lower limbs [15,16], special force plates equipped by force sensors [17–19], 
trainers for lower-limb motion function rehabilitation [20,21], and so on.  

A multilink mechanical model of the lower part of the human body is 
represented in [22]. The upper part of the body  is shown schematically and 
simplified in the form of a rod, located geometrically centrally between the left 
and right hip joints (Fig. 1.6). Thus, the upper body position is determined only 
by the angle ߠ௅. More accurate mechanical models (anatomically) should 
display the distance between the hip joint centres and spinal joint outer surface, 
which ultimately leads to a dependence between the position of the pelvic joint 
and the upper body angle ߠ௉, which is a function of the angle of inclination of 
the upper body with respect to the pelvis in the frontal plane of angles ߠௌ and 
 .௅ߠ
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Figure 1.6. Construction of body mechanics: a) full model of introduced mechanism, b) 
simplified model; c) calculation of pelvis orientation [22],  

where ߠ௎ is the upper body orientation; ߠ௅ is the lower body orientation; ߠ௉ is 
the pelvis orientation; ߠௌ is the support surface tilt angle; ோܲ is the pelvic ratio 
that was used to define ߠ௉ as a function of ߠௌ and ߠ௅ and depends on the 
relationship ܵ/ܹ (ܵ is the distance between heels, and ܹ is the width of the 
pelvis). 

The linear approximation of the dependance shown in the right part of Fig. 1.6 
was determined by calculating an defined set of ߠ௉, ߠ௅, and ߠௌ angles at a 
given ܵ/ܹ and then fitting the Eq. (1.22) to this data set: 

௉ߠ ൌ ோܲ ൅ ௦ߠ ൅ ሺ1 െ ோܲሻߠ௅.  (1.22) 

1.4. Identification of motion transfer from the human heel to the pelvis 

Identification methods are based on work with input and output data. The 
principles of identification methods are described in section 4.1. This part of the 
overview is dedicated to the scientific research of human lower-limb motion 
based on identification methods and described in different types of literature. 

The identification algorithm of locomotion introduced in [23] can be described 
as follows: 

The entire process of model identification may be divided into two parts: a 
preliminary subsystem (ܲܵ) and subsystem ( ௜ܵ) identification. The input signal 
for the ܲܵ model is the pelvis position in Carthesian coordinates, and output 
signals are pelvic rotations described in Euler angles. After identifying the ܲܵ 
model and estimating its output (rotations of pelvis by the trajectory of its 
movements), the modelling of 3 corrected pelvic rotations is possible. Then the 
obtained rotations after representation in exp-map play the role of the output 
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signals for ௜ܵ. The output signals for Si are identified by Euler angles of 
corresponding to the chain (Fig. 1.7) presented in the form of an exp-map. 

There are 5 submodels. The inputs for chains 1 to 3 are pelvic rotations in exp-
map representations. The inputs for chains 4 and 5 are the lower neck rotations 
in exp-map representations. The different output for chains 1 and 2 are the 
bottom part of the legs. The output for chain 3 is lower neck rotations, and for 
chains 4 and 5 are the output signals at the end of the hands. 

 

Figure 1.7. Description of the 5 open kinematic chains of human 3D articulated 
structure [23]. 

In [24] identification is used to find parameters of the knee tilt angle in the 
sagittal plane for an Intelligent Bionic Leg (IBL), constructed in Northeastern 
University (China). As input data, the values of torques of motors set at the hip 
are used. The output (ethalon) data is the angle of knee bending used. After the 
comparison of the few different models of identification was conducted, the best 
results were shown by an autoregressive model with external input (ARX 
model). 

Work [25] describes modelling, identification and simulation of the inverted 
pendulum PS600 (model of laboratory equipment developed by Amira GmbH). 

In [26,27] different aspects for the identification of motion transfer from the 
points touching the floor to the COMs are described for the sagittal plane. 
Based on the construction of a few simple SLIP elements [27,28], identification 
is described with the help of a transfer function.  

In [29], common aspects for identifying experiments connected with motion 
capturing using markers are represented. 

Another work [30] introduces possibilities for identifying artificial lower limbs 
(2 dynamic neural networks). After optimising and identifying using nonlinear 
identification and using the Quasi-Newton unconstrained optimisation 
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algorithm, the plots of the angles of knee rotations in the sagittal plane are close 
to real. 

In [31], the method to obtain linear transfer functions between muscle activation 
and joint angles of cats is shown. 

In addition, [32] is about exoskeleton (BLEEX) with a description of 
identification for motors torques installed in simulated exoskeleton ankles, 
knees, and hips. Results are similar enough for a series of experiments and can 
be estimated as sufficient. 

Of particular interest is [33], in which the transmission work is exchanged with 
transfer functions for 3 different combinations. As a result, the key parameters 
of motor work were found, such as angular acceleration, torques, and so on, for 
bipedal robot construction offered by the authors. 

The main conclusion that can be made is that identification methods for creation 
of a mathematical model of the mechanical heel-pelvis system in the frontal 
plane, as described in Chapter 2 has not yet been described in scientific 
literature. 

1.5. Experimental and analytical approach 

The experimental and analytical approach to transfer motion from the heel to 
the pelvis of a human in the modelling of the process of bipedal walking is used 
in this work. 

The experimental approach can be expressed as follows: we work with the input 
and output signals obtained from real experiments. To obtain the input signal, 
the results of 2 different experiments of human walking have been chosen. 
Finally, the curves of heel displacements from both experiments were combined 
and averaged. As output signals curve, we used the displacements obtained 
from the processed accelerations and angular velocities received from the IMUs 
mounted on the plate of the prototype, simulating human pelvic motion within 
27 independent experiments (Chapter 3). 

The principle of the black box as a mechanical system with unknown 
parameters between input and output signals is used to describe the work of the 
mechanical construction (section 2.1) of the experimental prototype. The 
resulting differential equation of motion of the second kind, hidden in the black 
box, means the motion of the system transfering movements from the input 
(motion of the heel) signal to the output (motion of the pelvis) signal. Thus, the 
analytical component used in this PhD thesis approach is based on the use of the 
black box and working with differential equations. 
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As a working tool, the application System Identification Toolbox (one of the 
MATLAB toolboxes) was used. The toolbox functionality allows using the 
identification method to determine the desired differential equation. 

The proposed mixed experimental and analytical approach has not yet been 
described in scientific literature for identifying mechanical heel-pelvis system 
parameters or for finding its mathematical model (differential equation hidden 
in the black box). 

Chapter 1. Results and discussion 

Based on the survey of mathematical models of lower-limb mechanisms 
discussed in the first part of Chapter 1 (sections 1.1 – 1.3), the mathematical 
models have been divided into 3 parts:  

1) Models based on the inverted pendulum mechanisms, having up to 2 springs 
or dampers in it, describing simplified human motion models. 

2) Models of multilink mechanisms are usually more complicated and precise 
than the inverted pendulum mechanisms and able to describe the motion of 
the separate parts of the lower limbs (heels, ankles, knees, thighs, hips, 
pelvis, etc.). 

3) Models obtained with human motion measurments made during real 
experiments with human walking which are the most precise and provide 
close results to real human motion. 

 
The main goals of this work are as follows: 

1.  Modelling and simulation of mechanical heel-pelvis system motion in the 
frontal plane. 

2.  Creation of a mathematical model of the motion of the mechanical heel-
pelvis system, based on identification methods. 

 
According to the goals of this work, the scientific objectives are as follows: 

‐ Creation of experimental prototype construction, simulating pelvis motion 
during walking within experiments, taking into account later studied 
movement use in the therapeutic simulator. 

‐ Creation of an algorithm for IMU data processing considering the 
possibilities of measuring systems, construction of an experimental 
prototype, and the action of damping elements. Statistical evaluation of 
results ((Fisher test (ܨ-test) and Dixon’s test (ܳ-test)). 

‐ Identification of damping and frequency coefficients of a mechanical system 
heel-pelvis in the frontal plane for both axes.  

‐ Development of a mathematical model of the motion of the mechanical heel-
pelvis system, based on identification methods. Determination of transfer 
functions and differential equations of motion, describing the mathematical 
patterns between input and output signals. 
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The main steps of conducting this PhD thesis are shown in Fig. 1.8. 

 
 
Figure 1.8. The main steps of PhD work. 
 
Step 1 is described in the introduction section. The determination of the 
trajectory of the plate-pelvis motion (Step 2) will be chosen as the possible 
motion for future construction of a complex medical prototype for human 
lower-limb motion restoration to make it more effective. The next step is 
selection of input data (Step 3). The input data (vertical heel displacements) will 
be obtained from experiments capturing human walking parameters using IMUs 
[53,54]. Selection of the measurement and control system equipment (Step 4) 
should be made according to the necessity of the experimental prototype 
(Chapter 2). After that, the experimental parameters (Step 5) will be chosen, 
which include three combinations of angle α (Fig. 2.3) and additional loads 
where weights are defined as maximal with no influence on the motion of the 
plate pelvis, and 3 durations of stepper motor steps were selected in advance, 
while programming the stepper motors (Section 3.1). Then, the experiments 
with the prototype will be conducted (every experiment began with calibration 
of IMUs using software) (Step 6) to attain the practical motion of the plate 
pelvis. After that, the signals of IMUs will be processed by the algorithm 
described in Section 3.2 (Step 7). For statistical evaluation and the numerical 
parameters of signals, some mathematical operations (Appendix 3) and 
statistical tests (ܨ-test in Appendix 2 and ܳ-test in Appendix 4) will be 
completed (Step 8). Next, after averaging the curves of the full one-step cycles 
of the experimental prototype, the shapes of displacement curves will be 
improved using MATLAB standard commands and a spline with different 
numbers of points (section 3.3) (Step 9). Afterwards, the curves of 
displacements will be obtained, and the identification of dynamical systems for 
both axes will be made. For the input and output data, the heel displacements 
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from the real experiments are used as input signals, and the plate-pelvis 
displacements will be used as the output signals. The dynamical system for each 
axis of plane motion will be designed consisting of one input, the black box, 
and output. The logical end of Step 10 will be calculating the coefficients in 
matrices of state-space representation and the damping and natural frequency 
numerical values found with the computational enumerative technique and 
integration from Newton’s equation (݂ሺݐሻ ൌ ሷݑ ൅ 2݊ௗݑሶ ൅ ݂ଶݑሻ (where ݑ is 
input signal, ݑሷ ሶݑ,  are derivatives of the input signal, ݂ is the natural frequency 
and ݊ௗ is the damping coefficients). Using Eq. (4.31), the transfer functions for 
dynamical systems of both axes will be found (Step 11). Finally, using the 
Laplace inverse transform, the final differential equations of mechanical heel-
pelvis motion for both axes will be found (Step 12). 

Apart from the statistics described in the Introduction section, the statistics of 
separate human pelvic disturbances are of particular interest. The question to be 
discussed can be formulated as ‘What are the descriptive statistics for human 
pelvic disturbances and how useful is the scientific research related to this 
work?’ Since the question is very vast and deserves a separate study, it is 
possible to restrict with only small part of it on example of few diseases. To 
find the answer to discussive question, we have to understand what types of 
illnesses can be successfully treated using physical therapy (mechanotherapy). 
According to the existing methods of treatment, rehabilitative gymnastics with 
assistance from a therapist are used in late rehabilitation of motion functions in 
cases of some pelvic bone fractures and some dysfunctions or traumas of the 
pelvic muscles [34,35]. According to the official statistics, one of the most often 
traumas in sports is the groin strain. This trauma is approximately 10% to 11% 
of all injuries in soccer and ice-hockey [36]. The frequency of pelvic bone 
fractures is 3% to 8% of all the traumas of the human MSS [37] and the 
incidence of pelvic fracture is 14.97/100000 persons per year [38]. The age 
group of adults most predisposed to such types of traumas [39,40] comprises 
people older than 80 years (0.00052% from the total population). The group of 
people aged 65 to 80 years (0.00021%) is in second place, while the third place 
comprises the group of people aged 18 to 64 years (0.00017%). Looking at 
genders, women suffer from pelvic fractures more often than men (53.6% 
against 46.4%) [39]. In spite of the mentioned directly pelvic diseases and 
traumas, there are illnesses leading to full (or partial) impossibility of human 
lower-limb motion abilities, some of which could be successfully treated with 
the help of medical facility and pelvic motion (stroke, full or partial paralyses, 
and so on). There are many factors influencing the quality of recovering motion 
abilities, such as the quality and functionality of medical trainer, experience of 
the therapist (orthopaedist, physiotherapists), specific particularities of the 
disease (or complex of diseases) and its severity, the state of muscles, bones, 
and joints, etc. That is why it is hard to estimate the benefits of use of the 
represented pelvic motion. The high efficiency of the use of rehabilitation 
trainers was approved on example of Lokomat in cases of subacute stroke [41] 
and multiple sclerosis [42,43]. 
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2. DESIGN OF EXPERIMENTAL PROTOTYPE 
CONSTRUCTION AND MEASUREMENT SYSTEM 

The main task of this chapter is describing the experimental prototype design 
aimed to obtain output signals. 
 
An additional condition is the use of accelerometers and gyroscope as IMUs. 
The installation of IMUs at the human pelvic, in reality, is quite problematic 
because a large part of the hipbone is covered with muscle and/or fatty tissues 
(fat and muscle tissues contract and fluctuate during walking, causing substan-
tial errors in the measurements). The decision of this problem is modelling an 
experimental prototype – a mechanical system for simulating the plane move-
ments of a sitting at the saddle human pelvis and calculating its main parameters 
(acceleration, velocity, displacement) has been accepted. 
 
All systems of the designed prototype can be functionally divided into 3 sepa-
rate parts: 
 
1)  The mechanical construction transmits drive signal movements from the heel 

to the pelvis (imitation of motion transmission from heel to pelvis).  
2)  The system of the prototype simulates movements of the heel while walking. 
3)  The measuring system captures accelerations and angular velocities of the 

plate. 
 
The mechanical construction (section 2.1) was assembled, and experiments 
were held by the author personally. The parts touching the stepper motor control 
(section 2.2) and the IMUs signal processing (section 3.2) were made together 
with MSc student Anton Verchenko and have already been described in [44]. 
The measurement system used in this work and in [44] was created by MSc 
student Aleksander Lazarev during his practice work. 
 
2.1. The mechanical construction of the experimental prototype 

The simplest method for human lower-limb simulation is connected with 
replacing the human lower-limb functional parts with mechanical elements. 
Representation of bones as rigid body elements, joints as hinges, and springs as 
muscles is a standard solution in such constructions [45,46]. 

The mechanical construction of the prototype schematically shown in Fig. 2.1 
consists of metal elements (profiles, plates, frames, fasteners, bearings, gear 
elements, and springs), wooden elements (the stick to lift the prototype to the 
required height and fix it), sensors, and other types of elements. To determine 
the size of the prototype, real intertrochanteric distance of adult men (32 cm) 
[47] and the horizontal angle of the pelvis during human gait are used 
(difference in elevation between the thighs; 3°–5° is shown in Fig. 2.4) [48]. 
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Damping elements were chosen with sufficient damping and stiffness 
characteristics. 

 
 

Figure 2.1. Elements of experimental prototype, where (1), (8) are stepper motors; (2), 
(9) are rack gears (link-ankles); (3), (10) are compensating plates (link-knees); (4), (11) 
are connecting plates (link-thighs); (5) is the upper plate (link-pelvis); (6) is a support-
ing bearing; (7) is a connecting plate; (12) are the IMUs; (13) is the additional loads; ݕ 
and ݖ are directions, and  and  are angles of plate motion; 2݀ݖ ,1݀ݖ are directions 
of vertical linear motion; ߮1, . . . , ߮4 are angles of links rotations, y1 and z1 are axes of 
IMU number 1 and y2 and z2 are the axes of IMU number 2, which were calibrated 
using special software being on the plate-pelvis situated horizontally. 
 
Although calibration was made in the horizontal position of the plate-pelvis, the 
starting point of each experiment was chosen as a maximally lifted right leg. 
 
A short description of the experimental prototype follows: when motors 1 and 
20 launch (accepted numeration is the same as in Appendix 1, where experi-
mental prototype work is described in detail), rack (2) starts to go up, plate (3) 
begins to rotate counterclockwise, and plate (4) does not change its position in 
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height. At the same time, rack (9) goes down and plates (10) and (11) stand in a 
row. The position of plate (11) gets higher, and plate-pelvis (5) turns left. After 
the angle of plate-pelvis rotation exceeds a critical angle, plate (5) goes to the 
left side and rotates around hinge (6), until supporting plate (7) will not reach its 
final value. Described motion simulates left leg lifting (Fig. 2.2(c)). After that, 
the right leg begins to lift and the left leg goes down in the same way (Figure 
2.2(a)). At the midpoint of the left or right leg lifting, plate-pelvis (5) is in the 
horizontal position (Fig. 2.2(b)). The second half step occurs in a similar man-
ner, but the left foot goes down, and the right leg goes up.  
 
Three combinations of angles are needed for different models of the experiment. 
In addition, load (13) is also used in various models of experiments (Chapters 3 
and 4 of this thesis). 
 
In Fig. 2.2, an experimental prototype is shown in different work positions. 

 

Figure 2.2. Work positions of experimental prototype; a) lifting of the right leg, b) two-
leg supporting phase; c) lifting of the left leg. 

The realised logic of the experimental prototype (the heel is lower, the corre-
sponding thigh is higher) coincides with the real movement of the pelvis while 
walking and is shown in Fig. 2.4 [48]. Additional description of pelvis motion 
during walking can be found in [49]. 

The explanation of experimental work in detail can be found in Appendix 1. 
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Figure 2.4. Pelvic rotations in frontal plane during walking [49]. 

Construction with very similar principles of work and design has been described 
in [50]. 

2.2. System of link motions generation 

For reducing the size of the engines, driving the links of the mechanical con-
struction of the prototype, and smoother work of motors, it was decided to use 
stepper motors, giving relatively high torques at low frequencies. Because there 
were available stepper motors from the company Optimum, stepper motor con-
trol systems from the company National Instruments (drive, controller, and 
connecting cables), and software from Labview, it was chosen to use the stand-
ard solution offered by National Instruments for stepper motor control (Fig. 
2.5). 

As a result we have got that system for control of links movements consisting of 
a drive stepper motors National Instruments MID-7602, stepper motor control-
ler NXI 7332 and 2 identical stepper motors Optimum, connecting cables, soft-
ware Labview. 

To find data of the heel vertical displacements, a short overview of the scientific 
literature has been made, according to results of which 4 curves of displace-
ments of the heel were chosen. 

While [51] has some curves of heel displacements, it is based on a more 
biomechanical approach to walking than a mechanical approach. 

Another curve of foot vertical displacements in time was captured with 
wearable sensors and discussed in [52], but the sensors were not installed on the 
heel, but on the side of the foot. Therefore, the averaged input data for the 
experimental curves of the heel vertical displacements captured with 
accelerometers [53,54] was chosen. 
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One step duraiton in time is 1,2 s. Two identical heel step durations for the right 
and left legs were defined as shifted from each other in time of 0,6 s (Fig. 2.5). 

 

 
 
Figure 2.5. Human left and right heels displacements during walking captured with and 
accelerometers [53,54] as input signals; a) displacements of the left heel; b) 
displacements of the right heel. 
 
After that, values of vertical displacements that describe the trajectory of heels 
using stepper motors were selected. Such values coincide with human real heel 
movements. Then, it was decided to program 24 step segments of 10 steps in 
each to describe the trajectory of the heel. One complete revolution of the 
output shaft of the motor is equal to 5000 steps or 0,05 m of the rack linear 
displacement (Numbers (2) and (9) in Fig. 2.1). Selected values of steps for 
each of the separate 240 steps were determined to repeat the profile of heel 
motion. 
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Selection of parameters for stepper motors was made using the software 
application Motion Assistant from National Instruments. It allowed the 
simultaneous running of 2 stepper motors and the ability to select profile 
programming speed movement parameters as well as the direction of the 
conventional point (straight line, arc, ܵ-shaped movement) and character 
reference motion (absolute or relative). Experimental choice of the minimum 
time duration for each step was connected with such durations of the stepper 
motors for which a discrete profile is fully described and the motor returns to 
the starting point without shifting. Finally, 3 different models of time step 
durations for future experiments: 0,021 s, 0,025 s, and 0,035 s were selected. 
The total time for each cycle of the experimental prototype (simulation of full 
human step) is as follows: 48,825 s for the regime with the duration time of one 
step 0,021 s; 52,545 s for duration of step time 0,025 s; 61,845 s for duration of 
step time 0,035 s. 

Then, the movement of a certain point in a straight line and a programmable 
motion profile as trapeze were chosen. After this we continued with the 
selection of parameters for acceleration, deceleration and constant movement of 
stepper motors.  

Picking up speed motor parameters for each step, using the software Labview, 
the block-diagram of the program was compiled to control stepper motors (Fig. 
2.6). 

 
 
Figure 2.6. Block-diagram of stepper motors control, 
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where 1) block for loading parameters of steps from files, 2) initialisation of 
motors, 3) element of simultaneous control of 2 stepper motors, 4) calculation 
of motor revolutions and the element that unites and strengthens by 1000 times 
the speed parameters, 5) direct execution of movements, 6) block for saving 
speed parameters and step parameters in files.  

2.3. Measurement system of experimental prototype 

This work is a continuation of scientific work aimed to create a mathematic 
model of motion for the human lower limbs with IMUs. In [54,55], human steps 
during walking were measured. Thus, IMUs were chosen as measurement units 
[56,57]. Finally, the measuring system consists of controller Arduino Nano v.3 
and 2 IMUs of model MPU 6050. IMU MPU 6050 contains a 3 DOF Micro-
electro Mechanical System (MEMS) accelerometer and a 3 DOF MEMS gyro 
in a single chip. The Arduino NanoV3 (Fig. 2.7) is a board based on the At-
mega328 chip.  

 
 

Figure 2.7. Measurement system in assembly. 
 
After the measurement system was assembled, it was necessary to write a pro-
gram for the fixation of measurement data. As a result, a program in MATLAB 
was written. It collects measurement data into the com-port with frequency 17,7 
Hz and draws plots in real time.   

For description of plane motion, we use accelerations by ݕ-axis and ݖ-axis and 
rotation velocity around the ݔ-axis (Fig. 2.1). 

In order to establish the effect of the delay controller Arduino NanoV3, a pro-
gram was written, sending the symbol from the controller to the MATLAB en-
vironment and recording the symbol return time from MATLAB back to con-
troller. As a result, the average time of symbol exchange is 0,011 s. From this, it 
follows that the controller includes a delay period between the previous and 
subsequent measurements of the IMU without affecting acceleration values 
obtained with inertial sensors. 
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2.4. Completed tasks creating an experimental prototype: evaluation of 
obtained results 

During the design of the experimental prototype, the following tasks have been 
resolved: 

‐ Designing the mechanical construction of the experimental prototype in 3D 
CAD (computer-aided design) using the software package SolidWorks. 

‐ Selection parameters of steps to repeat the trajectory of the original heel 
profile discrete movements were determined. 

‐ Creating a block-diagram for simultaneous control of stepper motors using 
the software package Labview. 

‐ Assembling and testing the experimental prototype. 
‐ Assembling and programming the measurement system. 
‐ Writing the program for obtainment of visible results of accelerations and 

angular speeds in the real-time model in the software package MATLAB.  

Chapter 2. Results and discussion 

The main result of Chapter 2 is the creation of an experimental mechanical con-
struction, transmitting motion from the heel to the pelvis of an individual per-
son, and creation of the measuring system, which allows fixing the acceleration 
and angular velocity of the captured motion of the pelvic plate at two points 
(output signal for subsequent identification), considering the subsequent use of 
such construction for therapeutic purposes. 

The logical question appearing after Chapter 2 is about the difference between 
the designed pelvic motion working as part of a medical complex for human 
motion ability rehabilitation and the real work of the pelvis during walking. 

As a result of designing and assembling an experimental prototype, it can be 
concluded that its work differs from the real plane movements of the pelvis with 
the following parameters: 

‐ Lack of vertical displacements of the centre of masses of the plate in simula-
tion, while in reality, during walking it is up to 5 cm [58]. 

‐ Two angles describing the motion of the plate (Section 2.2) are experiencing 
a much greater influence on inertia elements than the hip joint. In other 
words, changes occur at the designated angles, making walking smoother 
than it does in the case of the experimental prototype. 

‐ The legs of a real person are not attached to the pelvis at right angles [59]. 
‐ Friction forces in the joints of the experimental prototype exceed the friction 

in the human MSS. 
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3. EXPERIMENTS, SIGNAL PROCESSING, AND 
OUTPUT SIGNAL DETERMINATION 

3.1. Selection of experimental parameters 

After design, assembly, and testing of a prototype, there were experimental 
measurements made of the plane motion of the plate, simulating the pelvis to 
acquire the output curves of the displacements. There are 3 different changing 
parameters during experiments: angle of plate-pelvis rotation on the supporting 
bearing, duration of steps of the stepper motors in time, and additional loads, 
which were defined. Additional load and angle of rotation on the supporting 
bearing can be seen in Fig. 2.1. The principles of the choice of step durations of 
stepper motors are described in section 2.2. The total number of combinations 
of experiments is 27 (3 angles x 3 additional loads x 3 durations of steps). Nu-
merical data of selected parameters is shown in Table 3.1 [44,56,57]. 

Table 3.1. Selected parameters of experiment. 

Number of 
IMU 

Marking of 
parameter 

Value 
(⁰) 

Marking of 
parameter 

Value 
(N) 

Marking of 
parameter 

Value 
(s) 

1 α1 (angle) 4,8 w1 (weight) 16,54 tm1 (dura-
tion of step) 

0,021 

1 α2 (angle) 6,4 w2 (weight) 13,44 tm2 (dura-
tion of step) 

0,025 

1 α3 (angle) 8,0 w3 (weight) 9,08 tm3 (dura-
tion of step) 

0,035 

2 α1 (angle) 4,8 w1 (weight) 16,54 tm1 (dura-
tion of step) 

0,021 

2 α2 (angle) 6,4 w2 (weight) 13,44 tm2 (dura-
tion of step) 

0,025 

2 α3 (angle) 8,0 w3 (weight) 9,08 tm3 (dura-
tion of step) 

0,035 

 
After the experiments were conducted, the accelerations for axes ݖ ,ݕ, and 
angular velocity for the rotation axis ݔ were obtained with 2 IMUs. 

It was decided to sign the experimental parameters as ݕሺݖ, ݃௫ሻሺ1	. . . 2ሻ, 
.ሺ1ߙ . .3ሻ, ݓሺ1. . .3ሻ, ݐ௠ሺ1	. . . 3ሻ, where ݕሺݖ	, ݃௫ሻ are names of axes ݕ, and ݖ we 
measure accelerations, ݃௫ is the rotation over axis ݔ we measure angular 
velocity, numbers ሺ1	. . . 2ሻ indicate the number of sensor we used, ߙሺ1. .3ሻ is 
the current angle of rotation of the supporting bearing, ݓሺ1	. . . 3ሻ denotes 
current load value, ݐ௠ሺ1	. . . 3ሻ is the current duration of the step according to 
Table 3.1. For example, experimental mode ݐ2ݓ2ߙ௠2 observing later is the 
next combinations of parameters: 2ߙ is the angle 6,4°, 2ݓ denotes weight 13,44 
N, and ݐ௠2 indicates duration of step in time: 0,025 s.  
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3.2. Experimental data processing 

Straight integration of experimental accelerations does not give adequate results 
because of the effect of springs and damping elements on plate-pelvis motion 
and the substantial noise of the signals. That is why a special algorithm was 
needed to process the signals of IMUs. 

Considering the angles of rotation and distances between the centre point of the 
plate-pelvis and the measuring points in which IMUs are installed, it is possible 
to assume the approximate values of the final displacements for every 
experimental mode. 

Finally, the only algorithm levelling the effect of the springs has been found and 
represented in this section. The algorithm can be divided into a few steps to 
ensure every experimental mode attains the final experimental curves (output 
signals): 

1) Preparation of IMU signals. 
2) The choice of low-pass Butterworth filter for accelerometer signal filtering. 
3) Averaging signals of IMU accelerometers to simplify data processing and 

evaluate the accelerometer similarity results (Appendix 3). 
4) Use of complimentary filter to exclude the effect of angle floating.  
5) Assignment of gravity forces acting on IMUs during experiments. 
6) Obtaining filtered accelerations without gravity forces. 
7) Choosing a method of integration to obtain velocities and displacements 

from filtered accelerations without gravity force. 
8) Evaluation of results of the unprocessed and filtered signal comparison (F-

test, Appendix 2) and determination of the outliers from the obtained 
maximal values of displacements (Q-test, Appendix 4). 

 
In order to make the acceleration corresponding to the planned work of the pro-
totype, it was decided to align the acceleration along the horizontal axis. To do 
this, all the elements of acceleration arrays were summed and the overall rate of 
accelerations that were shifted from the horizontal axis was obtained. Then, the 
overall rate was divided by the number of measurements (elements of accelera-
tion array), and the resulting quotient of the division was subtracted from all 
elements of the array. Some measurements from the initial data were eliminated 
(filtering curve in Fig. 3.1 is situated higher or lower than the average values) to 
gain more logical signals because it is hard to understand how the experimental 
plate moves (up or down). Preparing signals for every experimental mode, we 
reduced the influence of the effect of the springs on the unprocessed experi-
mental data. It can be considered improvement of the IMUs data processing 
introduced in [44,56,57]. As a result, after using the Butterworth low-pass filter, 
we obtained the data shown in Fig. 3.1. 
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Calibration of the initial measurements is connected to the work with unpro-
cessed signals. It can be reached with the use of the Butterworth filter, which 
eliminates the peaks of initial accelerations and removes the time trends. 

Another aspect of calibration is connected with the calibration of IMU6050 with 
specialised programs for calibration.  

The need for some additional filters for signal processing is approved with re-
sults of the ܨ-test (Appendix 2). 

 

Figure 3.1. Acceleration with Gravity Force for experiment α2w2tm2. 

The low-pass Butterworth filter was chosen after compilation and testing of 
various kinds of filters created in the DSP System Toolbox [60–63]. 

The parameters of the designed filter are infinite impulse response (IIR), low-
pass second order discrete Butterworth filter, stable, and without linear phase. In 
addition, the normalised frequency value at 3 dB point is 0,02, and the gain is 
equal to 0,0009. The output gain is 1, and the transfer characteristic of the But-
terworth filter is the following: 

ሻݖሺܪ ൌ
ଵାଶ௭షభା௭షమ

ଵିଵ,ଽଵଵଶ௭షభା଴,ଽଵହ଴௭షమ
  (3.1) 



38 

Figure 3.2 represents the magnitude and phase response plot of the designed 
filter. 

 

Figure 3.2 Magnitude and phase response of designed filter. 

After accelerations were aligned on an axis, it was necessary to calculate how 
good the mechanical prototype has been assembled and tested. 

Since the obtained discrete accelerations were very noisy, it was difficult to 
evaluate the accelerometer data. Therefore, it made sense to evaluate the curves 
of the filtered data. Furthermore, as a comparative standard, an additional mid-
dle curve, whose coordinates were received from adding the filtered first and 
second IMU and dividing by 2, were obtained (Fig. 3.3). 

 
 

Figure 3.3. Comparison of filtered data of both IMUs accelerometers with averaged 
acceleration for experimental mode α2w2tm2 for: a) y-axis, b) z-axis. 
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Blue dotted line marks filtered acceleration curve for the first IMU 
accelerometer, and the black solid line represents the filtered acceleration curve 
of the second IMU accelerometer, while the red solid line is the average curve 
of the filtered accelerations, and yellow area refers to the difference between the 
measurements of the first and second IMUs accelerometers. 

Parameters of the calculated area (marked in yellow, the numerical difference 
between the accelerations obtained with 2 IMUs) for axes ݕ and ݖ for every 
experimental mode is represented in Appendix 3. 

Since data of accelerations for both sensors should be identical, Table A3.1 
(Appendix 3) numerically describes defects in the design and assembly of the 
prototype. Some of these defects are: 

‐ Possible errors in the installation IMUs on the plate, 
‐ Incomplete relevant elements of the mechanical system of the prototype, 
‐ Gaps in the joints, 
‐ Incomplete fixation of the plate in the frontal plane. Full fixation of the plate 

in the frontal plane with bearings was not possible due to the occurrence of 
friction forces between the plate and bearings. 

In the analysis, the biggest difference between the filtered acceleration sensors 
and the curve of averaged filtered acceleration is in those places where the angle 
between the filtered data and the horizontal axis (absolute zero) is the least. In 
fact, these places represent a break between running separate experiments and 
should not be taken into calculations of deviations. Thus, data of deviations 
shown in Table A3.1 (Appendix 3) mean the maximum possible deviation from 
experiments that were not really achieved. 

For greater consistency and to reduce the amount of data to be processed, we 
continue to process signals only for the curve of average values of the filtered 
accelerations. 

Then, it was necessary to determine the gravity force for every measured axis 
and experimental mode to subtract it from the averaged curves shown in Fig. 
3.3. After that, we obtained curves of accelerations that we can integrate to 
obtain the curves of linear velocities and displacements. 

It is worth noting that the coefficients of gravity forces would be impossible to 
find with only accelerometers. It is necessary to combine the accelerometers and 
gyroscopes for matching measured angles with accelerations to determine the 
tilt of the plate and to see how the gravity coefficient is distributed along the ݕ 
(horizontal axis) and ݖ (vertical axis) axes. 

To compensate for drifts in angles, the complementary filter is used. It plays the 
role of a compromise between the data collected from the accelerometer and 
gyroscope. The accelerometer is under the influence of external forces that do 
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not affect the gyroscope. Conversely, the gyro drift has no influence on the 
accelerometer [64,65]. The complementary filter eliminates the drift angle of up 
to 10 degrees. The equation of the complimentary filter calculation is: 

ሺ݅ሻߚ ൌ ܹ ∙ ሺߚሺ݅ െ 1ሻ ൅ ௥ܩ ∙ ሻݐ݀ ൅ ሺ1 െܹሻሺܿܿܣ ∙  ሻ, (3.2)ݐ݀

where ܹ is the weight coefficient (this mode is 0,98); ߚ is the angle; ܩ௥ denotes 
the gyroscope data for a small period of time, and	ܿܿܣ is the acceleration value 
[44,56,57]. 

Results of the complimentary filter in the case of the chosen experimental mode 
are shown in Fig. 3.4. 

 

Figure 3.4. Angular velocity and angles obtained from gyroscopes for experiment 
α2w2tm2. 

At a straight plate position, when the rails are at the same height, the 
gravitational component affects only the ݖ-axis. Fig. 3.5 shows the distribution 
of gravity forces depending on the time and position of the plate by axes ݕ and 
 .ݖ
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Figure 3.5. Gravity force by ݕ and ݖ axes for experiment α2w2tm2. 

After the average curve of the filtered accelerations was found, the values of 
changing gravitational constant ݃ (gravity forces) were subtracted from it (Fig.  
3.6). Red on the graph represents the original signal; black indicates the signal 
after passing through the filter. 

 

Figure 3.6. Accelerations without gravity forces for experiment α2w2tm2 by axes ݕ and ݖ. 
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Next, it is possible to find the linear velocities by axes ݕ and ݖ (Fig. 3.7). 

The integration of the vector of accelerations to find linear velocity values is 
made according to the next expression [66]: 

ܸሺ݅ ൅ 1ሻ ൌ ሺ݅ሻܿܿܣ ൉ ሺݐሺ݅ ൅ 1ሻ െ   ,ሺ݅ሻሻݐ (3.3) 

where ܸ is the value of linear velocity, ܿܿܣ is the value of acceleration, ݐ is 
time, and ݅ is the number of elements in the vectors of acceleration, velocity, 
and displacement in time. 

Since integration is based on work with numerical values, it is easy to follow 
the results of this mathematical operation. 

 

Figure 3.7. Obtained linear velocity from filtered average acceleration curve for exper-
iment α2w2tm2. 

After we have found values of linear velocity, we integrate velocities to obtain 
the real displacements by axes ݕ and ݖ (Fig. 3.8). 

The formula for linear velocity integration can be written as: 

ሺ݅ݏ݅ܦ ൅ 2ሻ ൌ ܸሺ݅ ൅ 1ሻ ൉ ൫ݐሺ݅ ൅ 1ሻ െ ሺ݅ሻ൯ݐ ൅
஺௖௖ሺ௜ሻ൉൫௧ሺ௜ାଵሻି௧ሺ௜ሻ൯

మ

ଶ
, (3.4) 

where ݏ݅ܦ is the value of displacement, ܸ is the value of linear velocity, ܿܿܣ is 
the value of acceleration, ݐ is the time, and	݅ is the number of elements in the 
vectors of acceleration, velocity, and displacement in time. 
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Figure 3.8. Measured displacements by axes ݕ and ݖ for experiment α2w2tm2. 

Finally, the values of maximal displacements for each experimental mode for 
axes ݕ and ݖ were found taking into account visually and analytically successful 
full steps (displacements related to separate steps) (Table 3.2). 

Table 3.2. Values of maximal displacements for experimental displacements on axes ݕ 
and ݖ. 

Number of 
IMU 

Experimental 
mode 

Maximal displacements 
by ࢟-axis (m) 

Maximal displacements 
by ࢠ-axis (m) 

1 α1w1tm1 0,0170 0,0252 
2 α1w1tm2 0,0166 0,0246 
3 α1w1tm3 0,0156 0,0223 
4 α1w2tm1 0,0161 0,0264 
5 α1w2tm2 0,0169 0,0246 
6 α1w2tm3 0,0169 0,0232 
7 α1w3tm1 0,0181 0,0291 
8 α1w3tm2 0,0163 0,0262 
9 α1w3tm3 0,0151 0,0263 

10 α2w1tm1 0,0195 0,0260 
11 α2w1tm2 0,0178 0,0226 
12 α2w1tm3 0,0171 0,0253 
13 α2w2tm1 0,0167 0,0232 
14 α2w2tm2 0,0178 0,0265 
15 α2w2tm3 0,0203 0,0259 
16 α2w3tm1 0,0207 0,0305 
17 α2w3tm2 0,0197 0,0258 
18 α2w3tm3 0,0210 0,0257 
19 α3w1tm1 0,0202 0,0263 
20 α3w1tm2 0,0190 0,0270 
21 α3w1tm3 0,0196 0,0274 
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22 α3w2tm1 0,0215 0,0282 
23 α3w2tm2 0,0232 0,0276 
24 α3w2tm3 0,0215 0,0288 
25 α3w3tm1 0,0202 0,0297 
26 α3w3tm2 0,0210 0,0280 
27 α3w3tm3 0,0213 0,0283 

 
The results of the ܳ-test for found displacements are introduced in Appendix 3.  

3.3. Interpolation with 3 order splines 

The main idea of the 3 order (cubic) spline is representation of the function of 
theoretical displacement profiles by some 3 order function on each interval of 
time, limited by the step of interpolation. That is, if there are ݊ arrays of time 
intervals with some number of points, the spline ܵሺݐሻ is the function [67]: 

ܵሺݐሻ ൌ ቐ
,ሻݐଵሺ݄ܥ ଴ݐ ൑ ݐ ൑ ଵݐ
,ሻݐ௜ሺ݄ܥ ௜ିଵݐ ൑ ݐ ൑ ௜ݐ
௡ିଵݐ			,ሻݐ௡ሺ݄ܥ ൑ ݐ ൑ ௡ݐ

,  (3.5) 

where each ݄ܥ௜ is a function of order 3. Commonly, the cubic function has the 
form 

ሻݐ௜ሺ݄ܥ ൌ ܽ௜ ൅ ܾ௜ݐ ൅ ܿ௜ݐଶ ൅ ݀௜ݐଷ. (3.6) 

To calculate the spline, we have to find the coefficients, ܽ௜, ܾ௜, ܿ௜, and ݀௜ for 
each ݅. Having ݊ intervals, the total number of coefficients needed for every 
interval is 4݊. First, the spline must be equal to real values at the beginning and 
end of the intervals: 

௜ିଵሻݐ௜ሺ݄ܥ ൌ  	;௜ିଵݕ

௜ሻݐ௜ሺ݄ܥ ൌ  ௜, (3.7)ݕ

at every time interval border. Therefore, it becomes 

ܽ௜ ൅ ܾ௜ݐ௜ିଵ ൅ ܿ௜ݐ௜ିଵ
ଶ ൅ ݀௜ݐ௜ିଵ

ଷ ൌ   ;௜ିଵݕ

ܽ௜ ൅ ܾ௜ݐ௜ ൅ ܿ௜ݐ௜
ଶ ൅ ݀௜ݐ௜

ଷ ൌ  ௜ (3.8)ݕ

It is worth noticing that totally we have 2݊ conditions. Then, to find the 
smoothest function ܵሺݐሻ, we need to express: 

௜ሻݐ௜ሺ΄݄ܥ ൌ  ;௜ሻݐ௜ାଵሺ΄݄ܥ

௜ሻݐ௜ሺ΄΄݄ܥ ൌ  ௜ሻ (3.9)ݐ௜ାଵሺ΄΄݄ܥ
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at all the internal points in the same time interval (i.e. ݐଵ, ,ଶݐ ଷݐ …  ௡). In theݐ
main form, it is possible to write named conditions as: 

ܾ௜ ൅ 2ܿ௜ݐ௜ ൅ 3݀௜ݐ௜
ଶ ൌ ܾ௜ାଵ ൅ 2ܿ௜ାଵݐ௜ ൅ 3݀௜ାଵݐ௜

ଶ; 

2ܿ௜ ൅ 6݀௜ݐ௜ ൌ 2ܿ௜ାଵ ൅ 6݀௜ାଵݐ௜ (3.10) 

The total number of such conditions is 2ሺ݊ െ 1ሻ. Taking into account that ݄ܥ௜ 
has 3 order, we have 4݊ coefficients determining ܵሺݐሻ. As a result, we obtain 
4݊ െ 2 equations, what is 2 equations less of determination all the needed coef-
ficients. For this moment of time, we have to choose of boundary. The standard 
operation is finding 

଴ሻݐଵሺ΄΄݄ܥ ൌ ௡ሻݐ௡ሺ΄΄݄ܥ ൌ 0 (3.11) 

The last expression denotes the natural boundary conditions. Eq. (3.12) has the 
name of clamped boundary conditions: 

଴ሻݐଵሺ΄݄ܥ ൌ ௡ሻݐ௡ሺ΄݄ܥ ൌ 0 (3.12) 

The main aim of spline usage and the last steps of spline operations can be seen 
from Fig. 3.9. In our case, splines are used to make some areas of displacement 
curves smooth, reducing sharp spots of filtered displacements. Moreover, cubic 
splines reduce the dispersions of processed signals. 
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Figure 3.9. The last steps of spline usage for: a) ݕ-axis displacements; b) ݖ-axis dis-
placements. 

3.4. Laws of plate motion in measured points 

After all the experimental signals from IMUs were processed using the pro-
posed algorithm considering the influence of springs and damping elements, it 
was necessary to find the laws of plate-pelvis motion. 

For experimental mode ݐ2ݓ2ߙ௠2, the mathematical laws of plate motion in 
measured points have been found using the Curve Fitting Toolbox (MATLAB).  

Function of plate motion in time for axis ݕ (in Fourier series form):  

௬݂ሺݐሻ ൌ െ0,00176 ൅ ሻݐሺ0,116ݏ݋0,00622ܿ െ ሻݐሺ0,116݊݅ݏ0,00063 െ
ሻݐሺ0,232ݏ݋0,00028ܿ െ ሻݐሺ0,232݊݅ݏ0,00107 ൅ ሻݐሺ0,348ݏ݋0,00141ܿ ൅
ሻݐሺ0,348݊݅ݏ0,00057 ൅ ሻݐሺ0,464ݏ݋0,00071ܿ െ ሻݐሺ0,464݊݅ݏ0,00080 ൅
ሻݐሺ0,58ݏ݋0,00143ܿ െ ሻݐሺ0,58݊݅ݏ0,00048 െ ሻݐሺ0,696ݏ݋0,00065ܿ െ
ሻݐሺ0,696݊݅ݏ0,00031 ൅ ሻݐሺ0,812ݏ݋0,00023ܿ ൅ ሻݐሺ0,928ݏ݋0,00022ܿ െ
 ሻ (3.13)ݐሺ0,928݊݅ݏ0,00013

For the y axis, an R-square value of splined curve fitting is equal to 0,9976. 

Function of plate motion in time for axis ݖ (in Fourier series form):  

௭݂ሺݐሻ ൌ െ0,00017 െ ሻݐሺ0,119ݏ݋0,00427ܿ ൅ ሻݐሺ0,119݊݅ݏ0,00699 െ
ሻݐሺ0,238ݏ݋0,00211ܿ ൅ ሻݐሺ0,238݊݅ݏ0,00049 െ ሻݐሺ0,357ݏ݋0,00501ܿ െ
ሻݐሺ0,357݊݅ݏ0,00368 െ ሻݐሺ0,476݊݅ݏ0,00045 ൅ ሻݐሺ0,595ݏ݋0,00114ܿ െ
ሻݐሺ0,595݊݅ݏ0,00057 െ ሻݐሺ0,714ݏ݋0,00019ܿ െ ሻݐሺ0,714݊݅ݏ0,00110 ൅
ሻݐሺ0,833ݏ݋0,00022ܿ െ ሻݐሺ0,833݊݅ݏ0,00049 െ  ሻ (3.14)ݐሺ0,952ݏ݋0,00039ܿ
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For the z axis, an R-square value of splined curve fitting is equal to 0,9979. 

The number of decimal points is chosen as the minimum required for the de-
scription of curve matching with a splined curve of displacements. For both 
curves, the ܴ-square values do not change with increasing numbers of decimal 
points (cases of 5–7 points were observed). 

Chapter 3. Results and discussion 

In Chapter 3 of this PhD thesis, an algorithm of IMU signal processing is shown 
and tested with an example using one experimental mode. To process the initial 
experimental data, a low-pass Butterworth filter of the second order was de-
signed. Using the complimentary filter allowed avoidance of angle floating. The 
curve of output data (signal) was measured at 2 points of the plate-simulating 
pelvis motion, and was obtained for 2 axes. The cubic spline usage improved 
the shape of the output signals curves. Then, the mathematical functions (laws) 
of the change in time in plate position by 2 measured axes in time were found. 
The algorithm of IMU initial data processing gives an opportunity to avoid 
complicated mathematical calculations connected with damping elements mo-
tion as a part of the experimental prototype. 

Of particular interest is a discussion about the comparison of obtained values of 
displacements of the plate-pelvis in axes ݕ and ݖ, and experimental plane mo-
tion of the human pelvis captured with sensors. In Fig. 3.10, the plate-pelvis 
motion in the frontal plane simulated with the experimental prototype is repre-
sented.  

 

Figure 3.10. Experimental plate-pelvis motion in the frontal plane. 

A simple way to estimate the plotted results with Vicon displacements (taken 
form experimental data described in [68]) is finding the deviation vector con-
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sisting of differences between elements with the same numbers. In Fig. 3.11 
histograms for deviation vectors for axes ݕ and ݖ are shown. 

 

Figure 3.11. Histograms of distribution of deviation vector exements for: a) axis y; b) 
axis z. 

It should be noted that even data from similar experiments with walking can be 
very different because of distinctions in experimental planning, precision of 
marker or sensor installation, anthropometric properties of the measured person 
(subject), and so on.       
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4. IDENTIFICATION OF MECHANICAL HEEL-
PELVIS SYSTEM 

Since the main objective of this work is to create a mathematical model and to 
construct a mechanical heel-pelvis system motion simulation in the frontal plane 
for subsequent usage in human lower-limb recovery, 2 possible ways of its real-
isation were examined. 

The first method, the consideration of the motion of the plate with the help of 
the laws of theoretical mechanics, followed the Lagrange equations of the sec-
ond kind for each DOF of the experimental prototype and subsequent analytical 
solution of derived differential equations. However, the description of the mo-
tion of the experimental prototype units is very complicated (a large number of 
DOF of the mechanical system of the prototype, the presence of springs, the 
complexity of the mathematical apparatus of the analytical solutions of the La-
grange differential equations, etc.) and necessarily requires additional research. 
Thus, the second alternative method was chosen. 

The alternative identification method is based on the finding of theoretical law 
of the plate movement in time by the creation of a dynamic linear stationary 
model, simulating the work of an experimental prototype using the command 
line of MATLAB and its functions. The state-space form is used to find pa-
rameters of all the matrices of dynamic systems for axes ݕ and ݖ. Thus, to sim-
plify the systems, the maximal range of differential equations is chosen as 2. 
After that, from state-space matrix parameters, it is possible to find transfer 
functions for both axes as well as differential equations. Moreover, the use of 
identification method allows us to determine dynamical parameters of observing 
system. 

4.1. Description of identification method 

Various models are widely used in theoretical and experimental studies. They 
are applicable to study the phenomena of mechanisms occurring in systems and 
facilities or to predict their performance. On this point, we solve the problem of 
creating a model of the motion of the experimental prototype [69,70]. 

Under the model is generally understood some form or other information about 
the most significant characteristics of the object. By way of presenting this in-
formation, the following types of models exist: 

‐ Verbal models; 
‐ Physical models (decrease copies of real objects, and sometimes other physi-

cal nature, allowing simulation of processes in the object of study); 
‐ Mathematical models (give information about the object or system is repre-

sented as mathematical terms). 
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In this work the identification of mathematical (analytical) models is used.  

Analytical models are a reflection of the relationship between the variables of 
the object in the form of a mathematical formula or a group of such formulas. 

The simulation is based on 2 fundamental features: 

‐ The principle of the practical limitations of the number of fundamental laws 
of nature; 

‐ The principle of similarity, meaning that the phenomenon of different physi-
cal natures can be described by the same mathematical relations. 

The procedure for constructing the model is called identification, although the 
term usually refers to the construction of analytical mathematical models of 
dynamic objects. Identified objects can be represented as shown in Fig. 4.1, 
where ݐ is time; ݑሺݐሻ is controlled (with) the input signal; ỹሺݐሻ is the theoretical 
yield of the object, and ݁ݎሺݐሻ is a random disturbance, reflecting the action of 
factors not considered (noise monitoring). 

 

Figure 4.1. Common view of object identification. 

Connection between the output and the ‘theoretical’ input signal is given by an 
operator ߖ: 

ሻݐ෤ሺݕ ൌ Ψሾݑሺݐሻሿ (4.1) 

Then, the observed output object can be described by the relation: 

ሻݐ෤ሺݕ ൌ Ψሾݑሺݐሻሿ ൅  ሻ (4.2)ݐሺݎ݁

The purpose of identification is the observations of the input	ݑሺݐሻ and output 
signal уሺݐሻ at a certain interval of time for the operator to determine the binding 
theoretical output and input signals [71]. 

A short description of the identification method used in this work follows: first, 
the state-space representation in continuous time is identified. Then, the state-
space representation in discrete- and continuous-time form must be found. Fi-
nally, using transfer functions, it is easy to express the differential system heel-
pelvis motion. 
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Proposing the identification method offers the possibility to find the resulting 
differential equation for a multilink system situated between the input and out-
put data,  regardless of the number of mechanical system links [69,70]. 

Thus, identification method is based on experimental and analytical approach, 
closely interrelated with the results obtained in Chapter 3. 

4.2. State-space representation. Vector-matrix form 

Since we do not have the coefficients of the transfer function or the poles and 
zeros of the transfer function, we use the vector-matrix model of the dynamical 
system to describe the experimental plate motion. The dynamical system for 
vector-matrix models is represented as a ‘black box’ with one input signal (ver-
tical displacements of summed left and right racks, simulating the human heel) 
and one output signal (displacements of plate, simulating pelvic motion by one 
of the 2 axes) for both axes and experimental modes. In summary, this vector-
matrix model is shown in Fig. 4.2. 

 

Figure 4.2. Simplified representation of the studied model [72]. 

All variables characterising the system can be divided into 3 groups [72,73]: 

1) Input variables or input signals generated with systems, which are external to 
the studied system. They are characterised by the input vector: 

்ݑ ൌ ሾݑଵ, ,ଶݑ … ,                            ௥ሿ,       (4.3)ݑ

where ݎ	is the number of inputs. In the case of our model (Fig. 4.2), ݎ ൌ 1. 

2) The output variables that characterise the system response to input signals 
are represented as the output vector: 

்ݕ  ൌ ሾݕଵ, ,ଶݕ … ,                            ௠ሿ,          (4.4)ݕ
 
where	݉ is the number of outputs. For observing model, ݉ ൌ 1. 

3) Intermediate variables or state variables describing the internal state of the 
system and represented by the vector: 

்ݔ ൌ ,ଵݔൣ ,ଶݔ …                            ௡ೠ൧, (4.5)ݔ
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where ݊௨ is the number of state variables of the system. For the studied model, 
݊௨ ൌ 2. 

In general, the dynamic system in the continuous state can be described by a 
pair of matrix equations: 

ሻݐሶሺݔ ൌ ܰሾݔሺݐሻ, ,ሻݐሺݑ  ሿ,  (4.6)ݐ

ሻݐሺݕ ൌ ܱሾݔሺݐሻ, ,ሻݐሺݑ  ሿ.  (4.7)ݐ

Matrix Eq. 4.6 is called the equation of the system state. Its solution, corre-
sponding to the initial condition ݔ଴ ൌ  .ሻ, defines the system state vectorݐ଴ሺݔ
Matrix Eq. 4.7, defining the output variables with dependence from ݔሺݐሻ and 
 .ሻ, is the output equationݐሺݑ

In this particular case, dependences ௜ܰሺ݅ ൌ 1, . . . , ݊௨ሻ and ܱ௞ሺ݇ ൌ 1,… ,݉ሻ can 
be linear combinations of state variables ݔ௜	and input variables ݑ௤. The dynamic 
system is described in vector-matrix form [74]: 

ሶݔ ൌ ݔሻݐሺܣ ൅  (4.8) ,ݑሻݐሺܤ

ݕ ൌ ݔሻݐሺܥ ൅  (4.9) ,ݑሻݐሺܦ

The transition to stationary models allows operating with a coefficient matrix or 
with stationary equations [75]: 

ሶݔ ൌ ݔܣ ൅  (4.10) ,ݑܤ

ݕ ൌ ݔܥ ൅  (4.11) ,ݑܦ

where the matrix ܣ is a functional matrix of size ݊௨	ݔ	݊௨, called the matrix of 
system state (object); 

В denotes functional matrix sized ݊௨	ݔ	ݎ, named control matrix (input); 

С is a functional matrix with size ݉	ݔ	݊௨, called the matrix of output state; 

 .called the matrix of output control ,ݎ	ݔ	݉ denotes functional matrix with size ܦ

This system can be interpreted as: 

ௗ

ௗ௧
ቀ௫భ௫మቁ ൌ ൬

ଵଵܣ ଵଶܣ
ଶଵܣ ଶଶܣ

൰ ቀ௫భ௫మቁ ൅ ቀ஻భ஻మቁ ሺݑଵ	ݑଶሻ (4.12) 

ݕ ൌ ሺܥଵ	ܥଶሻ ቀ
௫భ
௫మ
ቁ (4.13) 

Expressing matrices ܤ ,ܣ, and ܥ we obtain: 
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ܣ ൌ ൬
ଵଵܣ ଵଶܣ
ଶଵܣ ଶଶܣ

൰ ; ܤ	 ൌ ቀ஻భ஻మቁ ; ܥ	 ൌ ሺܥଵ		ܥଶሻ (4.14) 

Figure 4.3 (a) shows plots of the input signals (displacement heel), wherein one 
input signal is shifted relatively to the other by the amount of ߨ (half of a full 
step in time) and both of signals are summed; Fig. 4.3 (b) and 4.3 (c) show the 
experimental curves of the plate displacements by axes ݕ and ݖ. 

 

Figure 4.3. Graphical representation of studied system inputs and outputs; a) input 
signal; b) output signal by y-axis; c) output signal for z-axis. 

Thus, we find the coefficients of the matrices of discrete spaces of states of the 
system for the axes ݕ and ݖ (equations 4.15–4.16) with the help of the applica-
tion Control System Toolbox software environment MATLAB/Simulink [76]. 

Matrices in state-space representation in continuous–time form for axis ݕ are: 

ܣ ൌ ቀ
0 1

െ2,2619 െ2,5372ቁ ; ܤ ൌ ቀ
0,1863
െ0,5688ቁ ; ܥ ൌ

ሺ1 0ሻ; ܦ ൌ ሺ0ሻ,  (4.15) 

For axis ݖ the matrices are: 

ܣ ൌ ቀ
0 1

െ0,0765 0,6317ቁ ; ܤ ൌ ൬െ1,4 ∙ 10
ିଷ

2,4 ∙ 10ିସ
൰ ; ܥ ൌ ሺ1 0ሻ; ܦ ൌ ሺ0ሻ. (4.16) 

From these matrices, the state-space matrices coefficients (equations 4.15–
4.16), we find the transfer function of a continuous-time dynamic system for ݕ 
and ݖ axes from Eq. (4.32): 

௬ܹሺݏሻ ൌ
௒೤ሺ௦ሻ

௎ሺ௦ሻ
ൌ

଴,ଵ଼଺ଷ௦ି	଴,଴ଽ଺ଵ

	௦మା	ଶ,ହଷ଻௦	ା	ଶ,ଶ଺ଶ
  (4.17) 
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௭ܹሺݏሻ ൌ
௒೥ሺ௦ሻ

௎ሺ௦ሻ
ൌ

ଵ,଻∙ଵ଴షర௦	ି଼,ହ∙ଵ଴షర

	௦మା	଴,଺ଷଵ଻௦	ା	଴,଴଻଺ହ
 (4.18) 

where ܷሺݏሻ is the input array of displacements; ௬ܻሺݏሻ is the array of displace-
ments by the ݕ-axis, and ௭ܻሺݏሻ is the array of displacements by the ݖ-axis in 
continuous-time form. 

4.3. Solution of discrete state-space equations using Laplace transform: 
calculation of the transfer function 

To compare to the continuous-time state-space representation, we determine a 
discrete space. 

Sometimes, it is convenient to explore linear systems with constant parameters 
using the Laplace transform. We define the Laplace transform of the vector 
function ݌ܽܮሺݐሻ as follows [77–79]:  

ሻݏሺ݌ܽܮ ൌ ࣦሾ݌ܽܮሺݐሻሿ ൌ ׬ ݁ି௦௧݌ܽܮሺݐሻ݀ݐ
ஶ
଴ , (4.19) 

where ݏ is the complex variable. Symbol ࣦ refers to the operation of the La-
place transform of the function in the square brackets. 

Obviously, the Laplace transform of the vector-valued function	݌ܽܮሺݐሻ is a 
vector, whose components are the Laplace transform components of func-
tion ݌ܽܮሺݐሻ. 

Let us first observe the homogeneous differential equation of state: 

ሻݐሶሺݔ ൌ  ሻ, (4.20)ݐሺݔܣ

where А is the matrix of the system state. Performing the Laplace transform, we 
obtain: 

ሻݏሺܺݏ െ ሺ0ሻݔ ൌ  ሻ, (4.21)ݏሺܺܣ

as all the usual Laplace transform theorems for scalar expressions are also valid 
in the vector case. The solution relative to ܺሺݏሻ is: 

ܺሺݏሻ ൌ ሺܫݏ െ  ሺ0ሻ. (4.22)ݔሻିଵܣ

In the time domain, this corresponds to the expression: 

ሻݐሺݔ ൌ  ሺ0ሻ. (4.23)ݔݐܣ݁

In the case of a non-homogeneous equation: 

ሻݐሶሺݔ ൌ ݔሻݐሺܣ ൅  (4.24) ,ݑሻݐሺܤ
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where ܣ and ܤ are constant matrices, and by performing the Laplace transform, 
we obtain: 

ሻݏሺܺݏ െ ሺ0ሻݔ ൌ ሻݏሺܺܣ ൅  ሻ,  (4.25)ݏሺܷܤ

where we find that 

ܺሺݏሻ ൌ ሺܫݏ െ ሺ0ሻݔሻିଵܣ ൅ ሺܫݏ െ  ሻ. (4.26)ݏሺܷܤሻିଵܣ

The equation for the output coordinate of the system has the form: 

ܻሺݐሻ ൌ  ሻ, (4.27)ݐሺݔܥ

where С is the matrix of output states. Using the Laplace transformation and 
substituting Eq. (4.27), we obtain: 

ܻሺݏሻ ൌ Сܺሺݏሻ ൌ ܫݏሺܥ െ ሺ0ሻݔሻିଵܣ ൅ ܫݏሺܥ െ  ሻ. (4.28)ݏሺܷܤሻିଵܣ

Then, we express ܻሺݐሻ as: 

ܻሺݐሻ ൌ ሺ0ሻݔݐܣ݁ܥ ൅ ܥ ׬ െ߬ሻ௧ݐሺܣ݁
଴  ሺ߬ሻ݀߬. (4.29)ݑܤ

Having, ݔሺ0ሻ ൌ 0, Eq. (4.21) becomes: 

ܻሺݏሻ ൌ ܹሺݏሻܷሺݏሻ, (4.30) 

where: 

ܹሺݏሻ ൌ ܫݏሺܥ െ  (4.31) .ܤሻିଵܣ

Matrix ܹሺݏሻ is called a matrix-transfer function of the system. If ܹሺݏሻ and 
ܷሺݏሻ are known, the reaction of the system to the zero initial condition can be 
found using the Laplace inverse transform for Eq. (4.30). 

From Eq. (4.31), it follows that the matrix form of the transfer function ܹሺݏሻ is 
the Laplace transform for the matrix function: 

ሻݐሺܭ ൌ ,ܣሺ݌ݔ݁ܥ ,ܤሻݐ ݐ ൒ 0          (4.32)                           

It is obviously from Eq. (4.32) that 

ݐሺܭ െ ߬ሻ, ݐ ൒ ߬                                            (4.32a)                           

is the matrix impulse transition function of the system. A matrix transform func-
tion can be introduced as: 

ܹሺݏሻ ൌ
ଵ

ୢୣ୲ሺ௦ூି஺ሻ
ܲሺݏሻ, (4.33) 
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where ܲሺݏሻ is the matrix whose elements are polynomials of ݏ. Consequently, 
the matrix elements of the transfer function ܹሺݏሻ are rational functions of 
ܫݏሻ is the expression detሺݏThe common denominator of the ܹሺ .ݏ െ  ሻ, if thereܣ
is no cancellation of factors of type ݏ െ  ௜ is characteristic number ofߣ ௜, whereߣ
matrix А for all elements of matrix ܹሺݏሻ. 

Roots common denominator	ܹሺݏሻ called as the poles of the matrix transfer 
function ܹሺRoots of common denominator	ܹሺݏሻ are called the poles of the 
matrix-transfer function ܹሺݏሻ). If there is no cancellation, the poles of the ma-
trix-transfer function are the poles of the system or characteristic numbers of 
matrix А. 

If both input ݑሺݐሻ and output ݕሺݐሻ variables are scalar, a matrix transfer func-
tion transforms to a scalar transfer function. In the case of multivariate systems, 
each element ௜ܹ௝ሺݏሻ of the matrix transfer function ܹሺݏሻ is a transfer function 
from the jth component of input to the ݅th component of output. 

One way to transition from the continuous to the discrete function is the use of 
tables matching the Laplace transform and the z-image. This immediate transi-
tion from ܹሺݏሻ to ܹሺݖሻ can be matched with the next Eq. (4.34) [79–80]: 

ܹሺܼሻ ൌ  ሻሽ. (4.34)ݏሼܹሺ݌ܽܮ

A method for obtaining a discrete transfer function according to Eq. (4.30) is 
accurate, but its application to real systems of the second order and higher is 
difficult. Therefore, practical calculations of impulse systems use approximate 
methods of transition from the transfer function ܹሺݏሻ to the discrete transfer 
function ܹሺݖሻ. These methods are based on the replacement of the derivative of 
time, appearing in the continuous part of the equation in the form of the first 
difference: 

ௗ௬ሺ௧ሻ

ௗ௧
ൎ ∆௬ሺ௧ሻ

∆௧
ൌ ௬ሺ௧೔ሻି௬ሺ௧೔ିଵሻ

∆௧
			                    (4.35)                           

We write the differential equation of a continuous integrator as: 

ௗ௬ሺ௧ሻ

ௗ௧
ൌ  ሻ. (4.36)ݐሺݑ

Substituting Eq. (4.35) in Eq. (4.36), we obtain the residual equation of the in-
tegrator: 

ܻሺ݅ܶሻ ൌ ሺ݅ܶݕ െ 1 ∙ ܶሻ ൅  ሺ݅ܶሻ. (4.37)ݑܶ

Writing Eq. (4.37) in form: 

ܻሺݖሻ ൌ ܻሺݖሻିݖଵ ൅  ሻ, (4.38)ݖሺݑܶ

we express the discrete transfer function of the integrator as: 
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ܹሺݖሻ ൌ
௒ሺ௭ሻ

௎ሺ௭ሻ
ൌ

்

ሺଵି௭షభሻ
ൌ

்௭

ሺ௭ିଵሻ
. (4.39) 

Considering that the usual transfer function of the integrator is: 

ܹሺݏሻ ൌ
ଵ

௦
, (4.40) 

we obtain one of the most commonly used equations for approximate transition 
from the transfer function of a continuous system to a discrete transfer function, 

ݏ ൌ
ሺ௭ିଵሻ

்௭
. (4.41) 

A more precise transition from a continuous to a discrete system can be made 
using Tustin’s substitution, according to which: 

ݏ ൌ ଶሺ௭ିଵሻ

்ሺ௭ାଵሻ
. (4.42) 

Substitution Eq. (4.41) corresponds to the approximate (numerical) integration 
by the method of rectangles; the substitution Eq. (4.42) is the integration by the 
trapeze method. 

Equations of observing discrete systems are usually not written in differential 
form but in residual form: 

ܶ݉ݑሺ݊ݔ  ൅ ܶሻ ൌ ሻܶ݉ݑሺ݊ݔሻܶ݉ݑሺ݊ܣ ൅  ሻ; (4.43)ܶ݉ݑሺ݊ݑሻܶ݉ݑሺ݊ܤ

ሻܶ݉ݑሺ݊ݕ ൌ ሻܶ݉ݑሺ݊ݔሻܶ݉ݑሺ݊ܥ ൅  ሻ, (4.44)ܶ݉ݑሺ݊ݑሻܶ݉ݑሺ݊ܦ

where ݊݉ݑ is the number of periods and ܶ is the sample time. 

In the case of the studied experimental prototype of a mechanical system for 
simulation of pelvic movements (displacements), we obtain the following val-
ues of the transfer functions for the ݕ Eq. (4.45) and ݖ Eq. (4.46) axes. 

Thus, it is possible to find state-space matrices. 

For the ݕ-axis we have: 

ܣ ൌ ቀ
0 1

െ0,8665 1,8597ቁ ; ܤ ൌ ൬9,6 ∙ 10
ିଷ

8 ∙ 10ିଷ
൰ ; ܥ ൌ ሺ1 0ሻ; ܦ ൌ ሺ0ሻ. (4.45) 

For the ݖ-axis: 

ܣ ൌ ቀ
0 1

െ0,9649 1,9647ቁ ; ܤ ൌ ൬9,7 ∙ 10
ିହ

9,6 ∙ 10ିହ
൰ ; ܥ ൌ ሺ1 0ሻ; ܦ ൌ ሺ0ሻ.  (4.46) 

Finally, we obtain the transfer functions: 
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௬ܹሺݖሻ ൌ
௒೤ሺ௭ሻ

௎ሺ௭ሻ
ൌ

	଼,ସ∙ଵ଴షయ௭ି	଼,଺∙ଵ଴షయ

௭మ	ି	ଵ,଼଺଺଴௭	ା	଴,଼଻ଵ଼
 (4.47) 

௭ܹሺݖሻ ൌ
௒೥ሺ௭ሻ

௎ሺ௭ሻ
ൌ

ଶ∙ଵ଴షఱ௭ି	ଶ,ସ∙ଵ଴షఱ

	௭మି	ଵ,ଽ଺଻଴௭	ା	଴,ଽ଺଺ଽ
 (4.48) 

where ܷሺݖሻ is the input array of displacements; ௬ܻሺݖሻ is the array of displace-

ments by ݕ-axis, and ௭ܻሺݖሻ is the array of displacements by ݖ-axis in discrete-
time form. 

4.4. Dynamic parameters of automatic systems 

The main characteristics of dynamic links of the transfer function can be divid-
ed into time, phase, and frequency characteristics [81]. Since we work with 
vibrations, created during the experimental prototype work, we will observe 
logarithmic and damping characteristics. 

Using the second order of dynamic models for each axis, matrix coefficients in 
state-space representation describe the pattern between input and output signals. 
In this case, the main differential equation in generalized form can be written in 
Newton form [70]: 

ௗమ௨

ௗ௧మ
൅ 2݊ௗ

ௗ௨

ௗ௧
൅ ݂ଶݑ ൌ ݂ሺݐሻ, (4.49)  

where ݑ – input value, ݊ௗ – damping coefficient, ݂ – natural frequency.  

Then, after solving the characteristic equation and iterations of values of damp-
ing and natural frequency coefficients are obtained.  

4.4.1. Bode diagram 

To simplify the graphical representation of frequency characteristics as well as 
to facilitate the analysis of the processes in the frequency domain, the logarith-
mic frequency responses are used: logarithmic amplitude frequency response 
and logarithmic phase frequency response. During the building of logarithmic 
characteristics on the scale of frequencies, in spite of ݂ lays off logሺ݂ሻ on hori-
zontal axis and the measurement unit is the decade. The decade is the frequency 
range corresponding to 10 changes in frequency. The building logarithmic am-
plitude frequency response on the ordinate axis of the unit is the decibel (dB), 
which is the ratio of ܮ ൌ 20 logܣሺ݂ሻ. A decibel is an increase in output ampli-
tude of √10

మబ  times. The upper half of the plane of logarithmic amplitude re-
sponse corresponds to values А݉݌ ൐ 1 (increasing amplitude), and the lower 
half of the plane corresponds to values А݉݌ ൏ 1 (decreasing amplitude). The 
point of intersection with the abscissa axis is equal to the cut-off frequency ௖݂௨௧, 
at which the amplitudes of the input and output signals are equal [82].  
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We observe the logarithmic characteristics of the dynamic system of the studied 
prototype in the example of Bode diagrams (Fig. 4.4). 

 

 

Figure 4.4. Bode diagram a) for axis y; b) for axis z. 

For the Bode diagram on the frequency axis, we use a logarithmic scale and a 
natural scale for angles. In practice, the logarithmic frequency characteristics 
are based on the coincident coordinate system. 

4.4.2. Damping 

Damping of vibrations is the forced dampening of vibrations or the reduction of 
their amplitude to acceptable limits. Damping of mechanical vibrations is 
achieved by increasing the friction in the system. Thus, the damping coeffi-
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cients show the influence of the frictional force on the vibrations of mechanical 
system elements [81]. 

Tables 4.1, 4.2 shows the main characteristics of vibrations damping along the 
axes ݕ and ݖ. 

Figure 4.5 graphs the change of damping coefficients by axes ݕ and ݖ for the 
experimental prototype. 

Tables 4.1 and 4.2 show the main characteristics of vibrations damping along 
the axes ݕ and ݖ. In addition, Fig. 4.5 graph the change of damping coefficients 
by axes ݕ and ݖ for the experimental prototype. 

Table 4.1. Main features of vibrations damping by the axis ݕ. 

Eigenvalue Magnitude Damping Frequency 
(rad/s) 

-9,30·10-1+ 4,25·10-2݅ -9,31·10-1 8,44·10-1 1,50 
-9,30·10-1 - 4,25·10-2݅ -9,31·10-1 8,44·10-1 1,50 

 

Table 4.2. Main features of vibrations damping by the axis ݖ. 

Eigenvalue Magnitude Damping Frequency 
(rad/s) 

-9,91·10-1  -9,91·10-1 1,00 1,63·10-1 
-9,91·10-1 -9,74·10-1 1,00 4,68·10-1 
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Figure 4.5. Plot of natural frequencies and damping ratio; a) for axis y; b) for axis z. 

4.5. Inverse Laplace transform: determination of the law of plate plane 
pelvic motion 

The inversion formula allows finding the function ݂ሺݐሻ from its Laplace image 
of ܨሺݏሻ. On the basis of Jordan’s lemma, integration in the range of ߜ െ ݆∞ to 
	ߜ ൅ 	݆∞ can be replaced by integration in a closed loop formed by the direct 
ܴ௘ሺݏሻ ൌ  and closing it ends the semicircle of radius ܴ. In this case, for the ߜ
right side signal, all the poles of	ܨሺݏሻ must lie to the left of the line ܴ௘ሺݏሻ ൌ  ߜ
[83]: 

݂ሺݐሻ ൌ
ଵ

ଶగ௝
׬ ݏሻ݁௦௧݀ݏሺܨ
ఋା௝௪
ఋି௝௪ . (4.50) 

Then, according to the residue theorem, the integral Eq. (4.50) is equal to the 
sum of residues ሺܴ݁ݏሻ and the integrand ܨሺݏሻ݁௦௧ with respect to all ݈ singular 
points ݏ௜ of this function, lying inside the contour of integration, that is: 

݂ሺݐሻ ൌ
ଵ

ଶగ௝
׬ ݏሻ݁௦௧݀ݏሺܨ ൌ ∑ ௜ሻ݁௦೔௧ሿݏሺܨሾݏܴ݁

௟
௜ୀଵ

ఋା௝௪
ఋି௝௪ , (4.51) 

where ߜଵ ൒  .௠௜௡ߜ

Residues relative to a simple pole ݏ଴ can be defined by the equation: 

଴ሻሿݏሾΦሺݏܴ݁ ൌ lim
௦→௦బ

ሺݏ െ ሻݏ଴ሻΦሺݏ ൌ ݁௦௧ lim
௦→௦బ

ሺݏ െ  ሻ, (4.52)ݏ଴ሻFሺݏ

where: 

Φሺݏሻ ൌ Fሺݏሻ݁௦௧. (4.53) 
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The residue with respect to the ݈݊th pole of multiplicity at ݏ଴ is defined as: 

଴ሻሿݏሾΦሺݏܴ݁ ൌ
ଵ

ሺଵି௡ሻ!
lim
௦→௦బ

ௗ೙೗షభ

ௗ௦೙೗షభ
ሾሺݏ െ  ሻሿ. (4.54)ݏ଴ሻ௡Φሺݏ

To simplify the calculation of the inverse Laplace transform, there are special 
tables. 

We find differential equations from transfer functions using the inverse Laplace 
transform. Because continuous-time and discrete-time transfer functions are 
identical, both of those forms will be shown as the differential equations. 

From equations (4.18–4.19), it is possible to express the differential equations 
for axes ݕ and ݖ in continuous-time form. 

For axis ݕ: 

௬ܻሺݏሻሺݏଶ ൅ 	ݏ2,5370	 ൅ 	2,2620ሻ ൌ ܷሺݏሻሺ0,1863ݏ െ 	0,0961ሻ  (4.55) 

For axis ݖ: 

௭ܻሺݏሻሺݏଶ ൅ 	ݏ0,6317	 ൅ 	0,0765ሻ ൌ ܷሺݏሻ(	1,7 ∙ 10ିସݏ	 െ 8,5 ∙ 10ିସ) (4.56) 

Using inverse Laplace transforms, we obtain differential equations in time for 
both axes. 

For axis ݕ: 

ௗమ௬

ௗ௧మ
൅ 2,5370

ௗ௬

ௗ௧
൅ ݕ2,2620 ൌ 0,1863

ௗ௨

ௗ௧
െ  (4.57) ݑ0,0961

For axis ݖ: 

ௗమ௬

ௗ௧మ
൅ 0,6317

ௗ௬

ௗ௧
൅ ݕ0,0765 ൌ 1,7 ∙ 10ିସ

ௗ௨

ௗ௧
െ 8,5 ∙ 10ିସ(4.58) ݑ 

From equations 4.48 and 4.49, it is possible to express the differential equations 
for axes ݕ and ݖ in discrete-time form. 

For axis ݕ: 

௬ܻሺݖሻሺݖଶ െ 	ݖ1,8660	 ൅ 	0,8718ሻ ൌ ܷሺݖሻሺ8,4 ൉ 10ିଷݖ െ	8,6 ൉ 10ିଷሻ (4.59) 

For axis ݖ: 

௭ܻሺݖሻሺݖଶ െ 	ݖ1,9670	 ൅ 	0,9669ሻ ൌ ܷሺݖሻሺ2 ൉ 10ିହݖ െ	2,4 ൉ 10ିହሻ (4.60) 

The differential equations in discrete-time form are: 

For axis ݕ: 
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ௗమ௬

ௗ௧మ
െ 1,8660

ௗ௬

ௗ௧
൅ ݕ0,8718 ൌ 8,4 ൉ 10ିଷ

ௗ௨

ௗ௧
െ 8,6 ൉ 10ିଷ(4.61) ݑ 

For axis ݖ: 

ௗమ௬

ௗ௧మ
െ 1,9670

ௗ௬

ௗ௧
൅ ݕ0,9669 ൌ 2 ൉ 10ିହ

ௗ௨

ௗ௧
െ 2,4 ൉ 10ିହ(4.62) ݑ 

Chapter 4. Results and discussion 

In Chapter 4, the identification method for the heel-pelvis mechanical system is 
introduced. First, the matrix coefficients in state-space representation were 
found for the continuous-time form with one input and one output signal for 
both axes, simulating the frontal plane motion. Then, the transfer functions for 
axes ݕ and ݖ were calculated. On the basis of defined transfer functions, the 
differential equations for a mechanical heel-pelvis system motion have been 
found. Moreover, damping and Bode plots have been represented. To check the 
correctness of the state-space representation results in continuous-time form, the 
same calculations have been made for system identification in discrete-time 
form, which has practically identical results for studied dynamic system. 

One of the questions that can occur after reading Chapter 4 is how the calculat-
ed coefficients of the matrices in state-space form represent the real human 
heel-pelvis system motion? To answer this question, it is necessary to under-
stand that the main elements of experimental prototype construction (leg-links, 
plate-pelvis lengths, and angles of the plate-pelvis tilt) are chosen to coincide 
with statistically average adult person pelvis geometry. The input data (vertical 
heel displacements) is obtained with IMUs during experiments with walking. 
The output signal for indentification was captured with IMUs described in this 
work. So, calculated coefficients can be considered as conditionally responding 
to real human motion. 

Conversely, there are some differences between the work of the construction of 
the experimental prototype and human lower-limb motions during walking, 
described in the discussion sections to the Chapters 2 and 3. 
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CONCLUSION 

Scientific Results 

This thesis describes the experimental and analytical approach for obtaining a 
mathematical model of the mechanical heel-pelvis system in the frontal plane, 
on the basis of input and output signals captured from 27 different experiments 
simulating human pelvic motion, with corrections for possible subsequent usage 
of scientific results in mechanotherapy. 

The main scientific results of this work are the following: 
 
1) The development of an algorithm for IMU data processing, considering the 

possibilities of measuring systems, construction of an experimental 
prototype, and the action of damping elements on the motion of the pelvic 
plate. The macroparameters and technical facilities for experimental research 
of the kinematic hip system are identified. 

 
2) Identification of damping and frequency coefficients of the studied linear 

model of the heel-pelvis mechanical system. 
 
3) Determination of a mathematical model of the mechanical heel-pelvis 

system motion, based on identification methods. Obtainment of transfer 
functions and differential equations of motion, describing the mathematical 
dependence between input and output signals. 

 
Novelties 

1) An algorithm for the analysis of experimental data, with the possibility of 
measuring system, is developed.  

 
2) A mathematical model of the motion of the human mechanical heel-pelvis 

system is represented in the form of a differential equation, and its 
parameters are found for both axes. Moreover, the laws of human pelvic 
motion in time in the form of a Fourier series have been obtained for both 
axes for the first time for human motion in the frontal plane, taking into 
account the future use of the experimental prototype construction for 
medical purposes. The adequacy of the model for experimental data is 
shown by working with real experimental input (displacements of the heel) 
and output (plate-pelvis displacements by axes) data.  

Future work 

During this study, several ideas and problems emerged that require further in-
vestigation, including the following: 
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‐ Installation of an additional motor for automatic control of rotation was 
needed for the experimental plate, in order to imitate the pelvic supporting 
link. 

‐ The addition of extra elements to make the experimental prototype work in 
space. 

‐ Artificial simulation of knee motion for subsequent research of recovering 
trainer modelling. 

‐ Creation of the mathematical basis for the determination of patient foot mo-
tion from the motion of the pelvis. 

‐ Thorough selection and analysis of components for real therapeutic trainer, 
diagnostics of mechanical heel-pelvis system equipment, and details during 
scientific research. 
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ABSTRACT 

Experimental and Analytical Modelling of Pelvic Motion 

According to statistics from the World Health Organization, today, the illnesses 
of the musculoskeletal system (MSS) rank second after heart diseases. In this 
case, the risk of diseases of the spine, bones, and joints are not attributable to 
any one group, regardless of age or gender. Difficulty walking often causes 
problems in other organs, making diseases of the MSS a serious problem. One 
of the methods of rehabilitation of the human MSS is the use of special methods 
of training in special rehabilitation trainers. However, such systems are often 
associated with high costs. Therefore, it was decided to develop a relatively 
inexpensive model of a rehabilitation trainer, which can be used even in small 
medical centres. The simulators invented by the engineer G. Zander have been 
chosen as the most similar to describing the experimental prototype in this work 
because of having saddle in some of his constructions. However, having only 
one degree of freedom (DOF), such trainers are not effective and have become 
out of date over the lack of recovering abilities. 

The main objectives of this work are to create a mathematical model and 
construct a mechanical heel-pelvis system motion simulation in the frontal plane 
for its subsequent use in human lower-limb recovery in the near future. 

This thesis consists of 4 parts: 1) an overview of the existing mathematical 
models for simulating human lower-limb motion and overview of the use of 
identification methods for human lower-limb motion simulation and the 
description of a new approach to mechanical heel-pelvis system mathematical 
modelling; 2) a short analysis of input data (heel displacements while 
walking/running) and description of the experimental prototype creation of a 
mechanical heel-pelvis motion system with some particularities of its usage; 3) 
the algorithm for the initial data captured by IMUs placed on a plate simulating 
pelvic processing; and 4) the use of the identification method for finding 
mechanical heel-pelvis motion system parameters and mathematical models 
shown in differential equations of the second kind. 

Chapter 1 describes the classification of the mathematical models of lower 
limbs according to the simplicity of constructions and the possible precision of 
mathematical models. The foundation of a new experimental and analytical 
approach to biomechanical system modelling is represented on the example of 
dynamical system consisting of one input, the blackbox and one output. 
Moreover, the base steps of the work, used methodology and tools during this 
work are listed and explained.  

Chapter 2 gives a short descrition of heel displacement curve selection and 
describes the technical tasks appearing in the process of design, assembly and 
work of the experimental prototype. The logical foundations of the design and 
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choice of mechanical, measurement and control system components specifying 
the motion of experimental prototype links are shown. In addition, the 
principles of choice of 3 experimental parameters are explained.  

Chapter 3 explains the entire process of experimental data processing to obtain 
the output signal of plate-pelvis motion by axes, which is later used for 
identification of the mechanical heel-pelvis system motion parameters and the 
mathematical models. The main part of this chapter is dedicated to the work of 
the algorithm for IMU signal processing for plate-pelvis plane motion, shown in 
the example of one of the experimental modes. First, the IMU unprocessed data 
was statistically prepared for subsequent steps. After that, a low-pass 
Butterworth filter for accelerometer signal filtering was designed. The 
evaluation of the results of the unprocessed and filtered signal comparison (ܨ-
test, Appendix 2) was made to approve the need for filter use. Then, the average 
signals of IMU accelerometers to simplify data processing and evaluate the 
accelerometer similarity results (Appendix 3) were found for axes ݕ and ݖ. The 
next step is the design and usage of a complimentary filter to avoid the effect of 
angle floating. Afterwards, the gravity forces acting on IMUs during the 
experiments were assigned for both axes and subtracted from the filtered 
accelerations. A choice of integration method was made to obtain the arrays of 
velocities and displacements from filtered accelerations without gravity force 
saving the shape of filtered accelerations profiles. The combination of chosen 
low-pass and complimentary filters and the method of integration made it 
possible to avoid difficult calculations from theoretical mechanics and to 
replace them with a simpler algorithm. After that, the shape of the 
displacements was corrected with the use of cubic splines. Then, the absence of 
the presence of outliers was determined from the obtained maximal values of 
displacements (ܳ-test, Appendix 4) for axes ݕ and ݖ. Finally, the laws of 
motion of a plate pelvis by axes were finally determined. 

Chapter 4 provides an identification method in this work based on the 
mechanical heel-pelvis system. First, the state-space representation was found 
in continuous-time form with one input and one output along both axes and the 
black box between input and output. Then, the transfer functions for axes ݕ and 
 were calculated. On the basis of defined transfer functions, the differential ݖ
equations of mechanical system motions have been found. To control the 
determination of state-space representation in continuous-time form, state-space 
matrix coefficients and transfer functions were found in discrete-time form too, 
which has practically no difference from continuous-time representation. 

Finally, it can be concluded that all aims proposed in this work were completely 
achieved. 
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KOKKUVÕTE 

Vaagna liikumise eksperimentaalne ja analüütiline modelleerimine 

Vastavalt Maailma Tervishoiuorganisatsiooni statistikale on lihasluukonna hai-
gused ühed levinumad ning on oma leviku poolest teisel kohal peale südame-
veresoonkonna haigusi. Seetõttu ei ole selja, luude ja liigeste haiguste riski eest 
kindlustatud ükski isik sõltumata vanusest ja soost. Tihti põhjustavad inimese 
kõndimisraskused probleeme ka teiste organite töös, mistõttu lihas-luukonna 
haigused on tõsine probleem. 

Üks meetod inimeste lihasluukonna taastusravis on kasutada spetsiaalseid lii-
kumist taastavaid trenažööre, kuid sellised süsteemid on sageli kallid ja seotud 
suurte kulutustega. Seetõttu otsustati projekteerida odav taastusravi trenažöör, 
mille saaksid soetada ka väikesed meditsiinikeskused. Antud töös loodud ekspe-
rimentaalse prototüübi iseloomustamiseks on kasutatud Zanderi simulaatoreid 
nende lähima sarnasuse tõttu. Kuna aga Zanderi simulaatoritel on ainult üks 
vabadusaste, siis on need väikese efektiivsusega ja tänaseks vananenud.  

Käesoleva töö eesmärgiks on identifikatsioonimeetodi alusel mehaanilise süs-
teemi jalakand-vaagen matemaatilise mudeli ja võimaliku konstruktsiooni välja-
töötamine, mida saaks kasutada inimeste liikumisfunktsioonide taastamiseks 
lähitulevikus.  

Doktoritöö koosneb neljast osast: 1)  lihas-luukonna alumise osa liikumise si-
muleerimiseks kasutatavate eksisteerivate matemaatiliste mudelite ülevaade, 
lihas-luukonna alumise osa liikumise simuleerimiseks kasutatavate identsefit-
seerimismeetodite ülevaade ning uue eksperimentaalse ja analüütilise meetodi 
kirjeldamine; 2) sisendandmete lühianalüüs (jalakanna siirded) ning  mehaanili-
se süsteemi jalakand-vaagen liikumise simuleerimiseks loodava eksperimentaal-
se prototüübi kirjeldus; 3) sisendandmete töötlemise algoritm, mis saadud vaag-
na liikumise jäljendamiseks kasutatud katseplaadile paigaldatud kiirendusandu-
ritest; 4) identifikatsioonimeetodi kasutamine mehaanilise süsteemi jalakand-
vaagen parameetrite leidmiseks ning süsteemi liikumise kirjeldus diferentsiaal-
võrranditega. 

Peatükk 1 kirjeldab lihas-luukonna alumise osa matemaatiliste mudelite klassi-
fikatsiooni nende lihtsuse ja täpsuse järgi. Peatüki teine osa annab ülevaate  
identifitseerimise meetoditest, mida on kasutatud lihas-luukonna alumise osa 
liikumise kirjeldamisel. Peatüki viimases osas on kirjeldatud uut eksperimen-
taalset ja analüütilist lähenemist biomehaaniliste süsteemide modelleerimiseks. 

Peatükis 2 on antud jalakanna siirete kõverjoonte valiku analüüs ning samuti on 
kirjeldatud eksperimentaalse prototüübi väljatöötamisel tekkivaid tehnilisi üle-
sandeid ja nende lahendusi. Samuti on esitatud eksperimentaalse prototüübi 
mehaanilise konstruktsiooni ja mõõtesüsteemi komponentide valikute põhimõt-
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ted. Kirjeldatud konstruktsioon võimaldab saada väljundsignaali, mida kasuta-
takse edasi identifikatsioonimeetodis.  

Kolmas peatükk selgitab eksperimentaalse andmetöötluse kogu protsessi, sel-
leks et saada kätte plaadi-vaagna telgedesuunalise liikumise väljundsignaal. 
Antud signaali kasutatakse hiljem mehhaanilise süsteemi jalakand-vaagen lii-
kumise parameetrite ja matemaatiliste mudelite identifitseerimiseks. Antud pea-
tüki põhiosa on pühendatud inertsiaalmõõteandurite (IMA) signaalide töötlemi-
se algoritmile plaadi-vaagna tasapinnalisel liikumisel ning selle kohta on esita-
tud ka näide ühe eksperimentaalse režiimi kohta. Esmalt valmistati statistiliselt 
ette IMA töötlemata andmed järgnevateks etappideks. Peale andmete statistilist 
töötlust töötati välja Butterworth’i madalpääsfilter kiirendusandurite signaalide 
filtreerimiseks. Seejärel võrreldi töötlemata ja filtreeritud signaalide tulemusi 
(F-test, Lisa 2), mis kinnitas filtri kasutamise vajalikkust. Andmete töötlemise 
lihtsustamiseks ning kiirendusandurite signaalide sarnasuse hindamiseks leiti 
IMA signaalide keskmised väärtused ka telgede ݕ ja ݖ jaoks. Järgmise sammuna 
töötati välja ja võeti kasutusele lisafiltrid, et vältida signaalide nihutamist. See-
järel määrati gravitatsioonijõudude väärtused, mis mõjusid IMA-le katsete käi-
gus telgede suhtes ning lahutati need filtreeritud kiirendustest. Integreerimis-
meetodi valik põhines asjaolul, et see võimaldas saada kiiruste ja siirete massii-
vid filtreeritud kiirenduste väärtustest ilma gravitatsioonijõudude mõjuta säilita-
des samal ajal signaalide kuju. Madalpääs- ja lisafiltrite kasutamine kombineeri-
tuna integreerimismeetodiga võimaldas vältida teoreetilise mehaanika keerukaid 
arvutusi ning asendada need lihtsama algoritmiga. Seejärel korrigeeriti siirete 
kõverate kujud kolmandat järku joontega. Võõrväärtuste puudumine määrati 
telgede y ja z suunaliste maksimaalsete siirete kaudu (Q-test, Lisa 4). Lõpuks 
määrati süsteemi plaat-vaagen telgedesuunalised liikumisseadused. 

Peatükis 4 on esitatud mehaanilise süsteemi jalakand-vaagen identifitseerimise 
meetod. Esiteks leiti süsteemi pidevaja olekuvõrrandid ühe sisendi ja väljundi 
korral iga telje jaoks ning must kast sisendi ja väljundi vahel. Seejärel leiti ݕ ja 
 telje ülekandefunktsioonid. Defineeritud ülekandefunktsiooni põhjal koostati ݖ
mehaanilise süsteemi liikumise võrrandid. Süsteemi pidevaja olekuvõrrandite 
kontrollimiseks koostati süsteemi ka diskreetaja olekuvõrrandid ning ülekan-
defunktsioon, mis praktiliselt ei erinenud pidevaja olekuvõrranditest ning üle-
kandefunktsioonist. 

Kokkuvõtlikult võib öelda, et kõik selle töö eesmärgid olid saavutatud. 
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APPENDICIES 

Appendix 1. Experimental prototype work description 

Detailed construction of prototype is shown in Fig. A1.1. 

 
Figure A1.1. Elements of experimental prototype, (1), (8) are stepper motors; (2), (9) 
are rack gears (link-ankles); (14), (15), (22), (23) are bearings; (3), (10) are 
compen/sating plates (link-knees); (4), (11) are connecting plates (link-thighs); (5) is 
/the upper plate (link-pelvis); (16), (18), (21) are hinges and fittings; (17), (19), (20) are 
springs; (6) is a supporting bearing; (7) is a connecting plate; (13) shows additional 
loads; (24), (25) are curved outer plates; (26), (27) are internal plates; (28) are limiting 
bearings; (29) are limiting plates; (30), (31) are bolts without locking nuts; and finally, 
(12) are the IMUs. 
 
Experimental prototype consists of a simulated left (elements 2,3,4,14,15,16) 
and right legs (elements 9,10,11,21,22,23), pelvic plates (items 5,17,19,20) and 
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the supporting part (6,7,18), the restrictive elements (24,25,26,27,28,29,30,31), 
additional loads (13) and IMUs (12). 

The mechanical construction of the prototype works in the following way. After 
launching the motors (1 and 8), the left rack (2) starts to go up and the right rack 
(9) goes down (Fig. 2.2(a)). At the same time, the compensating plate of right 
leg (10) and bearing (23) gets up from outer shelf of the bent plate (25), and the 
compensating plate of the left leg gradually falls on the shelf (24). With further 
movement of the left foot the up springs (17) and the pull (16) become weak-
ened, and the angle between the plates (3 and 4) on the bearing (15) decreases. 
Together with this, the bearing (22) of the right leg moves down, rests on the 
plate (27), and bends it inwardly due to the bolt without locking nuts (31) until 
the moment when the bearing (22) will not enter into the space limited by the 
plates (25 and 27) and lift the plate (10) up the shelf. Accordingly, the angle 
between the plates (10 and 11) on the bearing (23) increase until the rack (9) 
reaches the lowest point. At the same time, the hinge (21) rises and gives force 
to the spring (20). This simulates the right side elevation of the pelvic plate (5) 
(lifting of the thigh). Rotation takes place around the middle point of the plate 
(5), the hinge (18) and the force are transmitted to the spring (19). The re-
sistance to this by the left leg does not occur because the left leg elements at this 
point are weakened. When a certain angle of inclination of the horizontal plate 
occurs, the support plate (7) and the rotation support bearing (6) begin to move 
left until the moment when the plate (7) abuts on the restrictive removable 
plates (29) (Fig. 2.2(b)). When the right rack reaches its lower position point, 
the left rack reaches its highest point (Fig. 2.2(c)). This point is the end of the 
first half step.  

The second half step occurs in a similar manner, but the left foot goes down, 
and the right leg goes up. At the same time, the thigh of the left leg is lifted, and 
the connecting plate is rotated to the right until it stops at the right restrictive 
plate (29). The bearings (28) are needed to fix the plate (5) in the frontal plane. 
The restrictive plates (29) can be removed and delivered to form a new angle of 
rotation of supporting bearing plates (6). Three combinations of angles are 
needed for different models of the experiment. In addition, load (13) is also 
used in various models of experiments (Chapters 3 and 4 of the thesis). 
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Appendix 2. Statistical evaluation of signals (ࡲ-test) 

Statistical evaluation of the measured unprocessed and processed signals in 
order to confirm the need to use filters and estimate the level of noise in the 
unprocessed signals is shown in Appendix 2.  

To avoid the presence of failed cycles of experimental steps, we select the least 
noisy periods of full steps for all modes. Choosing such periods, the measure-
ments are 911 (0,021 s), 930 (0,025 s), and 978 (0,035 s) for each of the exper-
imental modes. 

Common statistical parameters of the unprocessed and processed signals are 
found using standard functions of the software package MATLAB. Tables A2.1 
and A2.2 show the main parameters of the measured unprocessed and processed 
low-pass filter signals for axes ݕ and ݖ, where the letters ݊ݑ in brackets next to 
the name of the experimental mode indicates an unprocessed signal, and the 
letters ݎ݌ indicate processed signals, respectively. 

Table A2.1. Statistical parameters of unprocessed and processed signals for the ݕ-axis,  

 ࢟࣌ ࢟ࡹ ࢟ࣆ ࢞ࢇ࢓࢟ࡰ ࢔࢏࢓࢟ࡰ 

α1w1tm1(un) 5,8192 4,8339 –0,4328 –0,6411 0,6030 
α1w1tm1(pr) –1,4796 1,1860 –0,2574 –0,4101 0,4831 
α1w1tm2(un) –4,0035 4,3408 –0,4985 –0,7055 0,5727 
α1w1tm2(pr) –1,6458 1,1694 –0,3554 –0,5377 0,4890 
α1w1tm3(un) –3,4173 3,9019 –0,8290 –0,9576 0,5464 
α1w1tm3(pr) –2,0521 0,6732 –0,7019 –0,8501 0,4905 
α1w2tm1(un) –4,4425 3,8275 –0,5755 –0,7518 0,6292 
α1w2tm1(pr) –2,0260 1,0946 –0,4837 –0,6910 0,5619 
α1w2tm2(un) –3,1499 4,2603 –0,2242 –0,2064 0,5423 
α1w2tm2(pr) –1,5232 1,1933 –0,1469 –0,0875 0,4799 
α1w2tm3(un) –2,9100 3,2715 –0,4532 –0,4312 0,5709 
α1w2tm3(pr) –1,8413 1,0614 –0,3642 –0,3567 0,5320 
α1w3tm1(un) –4,7122 3,6152 –0,8421 –0,9401 0,6476 
α1w3tm1(pr) –2,0491 0,9280 –0,6817 –0,8025 0,5148 
α1w3tm2(un) –4,0735 5,2551 –0,6718 –0,8163 0,6118 
α1w3tm2(pr) –1,8883 1,1427 –0,4997 –0,6585 0,5171 
α1w3tm3(un) –3,4984 2,3598 –0,7406 –0,9213 0,5558 
α1w3tm3(pr) –1,9300 0,9627 –0,5672 –0,7177 0,5001 
α2w1tm1(un) –4,0127 2,7508 –0,6552 –0,5639 0,6222 
α2w1tm1(pr) –2,2140 1,0708 –0,5509 –0,4564 0,5801 
α2w1tm2(un) –3,1640 2,0811 –0,3737 –0,3810 0,5364 
α2w1tm2(pr) –1,7342 1,1273 –0,2748 –0,1975 0,5124 
α2w1tm3(un) –2,6610 1,7818 –0,5184 –0,4887 0,5514 
α2w1tm3(pr) –1,9291 1,0398 –0,4273 –0,3884 0,5437 
α2w2tm1(un) –5,4022 3,6414 –0,4810 –0,3175 0,5828 
α2w2tm1(pr) –1,8946 0,9104 –0,3561 –0,2128 0,4914 
α2w2tm2(un) –3,8974 3,4913 –0,4849 –0,3312 0,5487 
α2w2tm2(pr) –1,9482 0,9195 –0,3779 –0,2889 0,5214 
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α2w2tm3(un) –3,3691 2,8483 –0,4217 –0,2532 0,5739 
α2w2tm3(pr) –1,9363 1,0680 –0,3003 –0,1752 0,5306 
α2w3tm1(un) –5,2624 4,5859 –1,0691 –1,0113 0,7236 
α2w3tm1(pr) –3,2069 0,8465 –0,8584 –0,7667 0,6165 
α2w3tm2(un) –4,4959 2,9933 –0,8461 –0,7980 0,5989 
α2w3tm2(pr) –2,2591 0,7331 –0,6262 –0,5562 0,5344 
α2w3tm3(un) –3,8398 4,5284 –0,7646 –0,6520 0,5949 
α2w3tm3(pr) –2,1643 0,8175 –0,5859 –0,5124 0,5379 
α3w1tm1(un) –3,5715 3,3381 –0,7038 –0,6376 0,6315 
α3w1tm1(pr) –2,2270 0,9779 –0,5390 –0,4301 0,5901 
α3w1tm2(un) –2,9650 3,9135 –0,7251 –0,6610 0,6049 
α3w1tm2(pr) –2,1596 0,9110 –0,5656 –0,4346 0,5661 
α3w1tm3(un) –3,0111 2,0567 –0,7389 –0,6017 0,5949 
α3w1tm3(pr) –2,1916 0,9414 –0,5916 –0,5228 0,5757 
α3w2tm1(un) –6,0494 2,8768 –0,7350 –0,5792 0,6899 
α3w2tm1(pr) –2,5526 0,9492 –0,5932 –0,4197 0,6218 
α3w2tm2(un) –4,7920 3,5211 –0,6222 –0,5529 0,6612 
α3w2tm2(pr) –2,2811 1,0326 –0,4937 –0,3326 0,5974 
α3w2tm3(un) –4,0463 3,4214 –0,6212 –0,5376 0,6687 
α3w2tm3(pr) –2,3341 1,2431 –0,5147 –0,4422 0,6443 
α3w3tm1(un) –8,9892 5,6731 –0,7524 –0,7192 0,7749 
α3w3tm1(pr) –2,5732 0,9590 –0,6754 –0,5637 0,6246 
α3w3tm2(un) –6,3609 3,6119 –0,6556 –0,5602 0,7188 
α3w3tm2(pr) –2,4801 1,0503 –0,5772 –0,4337 0,6301 
α3w3tm3(un) –5,3456 3,3254 –0,6356 –0,5432 0,6721 
α3w3tm3(pr) –2,5213 1,0053 –0,5423 –0,4323 0,6219 

 
where ݕܦ௠௜௡ is the minimal value of sample, ݕܦ௠௔௫ is the maximal value of 
sample, ߤ௬ is the expected value, ܯ௬ is the median, and ߪ௬ is the standard devi-
ation. 
 
Table A2.2. Statistical parameters of unprocessed and processed signals for the ݖ-axis, 
 

 ࢠ࣌ ࢠࡹ ࢠࣆ ࢞ࢇ࢓ࢠࡰ ࢔࢏࢓ࢠࡰ 

α1w1tm1(un) 2,3522 17,2731 9,8434 9,8510 0,74195 
α1w1tm1(pr) 9,5418 10,3834 9,8239 9,7772 0,0834 
α1w1tm2(un) 1,3767 19,1525 9,8588 9,8191 0,80425 
α1w1tm2(pr) 9,4308 10,5045 9,8533 9,8310 0,10165 
α1w1tm3(un) 3,4589 16,4926 9,7434 9,7290 0,63175 
α1w1tm3(pr) 9,2751 10,0474 9,7714 9,7615 0,0747 
α1w2tm1(un) –2,5230 16,5389 9,7816 9,8089 0,89305 
α1w2tm1(pr) 9,4399 10,1615 9,7897 9,7810 0,0879 
α1w2tm2(un) 2,7159 18,8703 9,8596 9,8076 0,6771 
α1w2tm2(pr) 9,4131 10,4387 9,8210 9,7496 0,1311 
α1w2tm3(un) 5,4078 13,2060 9,7579 9,8338 0,42215 
α1w2tm3(pr) 9,5123 10,0869 9,7659 9,7259 0,06805 
α1w3tm1(un) –0,1784 19,5800 9,7530 9,8089 1,13535 
α1w3tm1(pr) 9,3373 10,2514 9,8194 9,8285 0,0959 
α1w3tm2(un) 1,2856 19,5709 9,9108 9,8573 0,9094 
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α1w3tm2(pr) 9,1887 10,6977 9,8876 9,8608 0,1214 
α1w3tm3(un) 0,0364 19,5791 9,8068 9,8032 0,75235 
α1w3tm3(pr) 9,4352 10,1513 9,7972 9,7973 0,082 
α2w1tm1(un) 0,0657 19,1516 9,7648 9,8134 0,82545 
α2w1tm1(pr) 9,2338 10,2778 9,7788 9,7447 0,11055 
α2w1tm2(un) 0,5355 19,5083 9,7737 9,7803 0,7474 
α2w1tm2(pr) 9,3152 10,3561 9,7870 9,7776 0,0899 
α2w1tm3(un) 4,8891 14,6608 9,7184 9,7486 0,49275 
α2w1tm3(pr) 9,5012 10,0391 9,7360 9,6923 0,07175 
α2w2tm1(un) 1,6522 18,5371 9,8439 9,8575 0,8702 
α2w2tm1(pr) 9,5210 10,2635 9,8193 9,7555 0,09705 
α2w2tm2(un) 0,1989 19,2632 9,8127 9,8173 0,95095 
α2w2tm2(pr) 9,3713 10,4302 9,7935 9,7664 0,09315 
α2w2tm3(un) 3,6335 17,5437 9,8349 9,8461 0,55275 
α2w2tm3(pr) 9,5738 10,1625 9,8345 9,7939 0,07265 
α2w3tm1(un) –0,3106 19,5196 9,8102 9,8275 0,97925 
α2w3tm1(pr) 9,3275 10,3965 9,8002 9,8002 0,1084 
α2w3tm2(un) –0,0853 16,0692 9,8194 9,8301 0,7845 
α2w3tm2(pr) 9,3335 10,3879 9,8160 9,8016 0,09435 
α2w3tm3(un) –1,0833 16,9991 9,7531 9,7901 0,6916 
α2w3tm3(pr) 9,4124 10,0901 9,7940 9,7892 0,08025 
α3w1tm1(un) 1,3436 17,1866 9,8193 9,8195 0,7341 
α3w1tm1(pr) 9,4487 10,4547 9,8301 9,8054 0,08945 
α3w1tm2(un) 1,4930 19,5508 9,7765 9,7654 0,7196 
α3w1tm2(pr) 9,4672 10,0653 9,7643 9,7585 0,0633 
α3w1tm3(un) 2,9666 15,2579 9,8070 9,8547 0,57855 
α3w1tm3(pr) 9,5315 10,1573 9,7850 9,7624 0,0662 
α3w2tm1(un) 2,5383 19,4992 9,6985 9,7497 1,0072 
α3w2tm1(pr) 9,3080 10,3402 9,7232 9,6931 0,0965 
α3w2tm2(un) 1,4385 19,4892 9,8763 9,8163 0,8349 
α3w2tm2(pr) 9,5345 10,2577 9,8275 9,7853 0,08185 
α3w2tm3(un) 4,5535 17,1345 9,7727 9,7483 0,58945 
α3w2tm3(pr) 9,4177 10,2209 9,7978 9,7818 0,0827 
α3w3tm1(un) 0,9470 19,5342 9,8037 9,8661 1,10225 
α3w3tm1(pr) 9,3365 10,8426 9,7915 9,7580 0,14035 
α3w3tm2(un) 2,8944 19,5081 9,8764 9,8160 0,9158 
α3w3tm2(pr) 8,7473 10,2666 9,7579 9,7846 0,1283 
α3w3tm3(un) 3,9834 18,7442 9,6789 9,6722 0,8867 
α3w3tm3(pr) 8,8845 10,7835 9,7923 9,7867 0,1339 

 
where ݖܦ௠௜௡ is the minimal value of sample, ݖܦ௠௔௫ is the maximal value of 
sample, ߤ௭ is the expected value, ܯ௭ is the median, and ߪ௭ is the standard devia-
tion. 
 
In one example of the same mode of experiments (ݐ2ݓ2ߙ௠2), as we observed 
in previous chapters, we try to determine the general need of usage filters. For 
this kind of problem, it is logical to use statistical methods to compare each 
experimental sample of the unprocessed and processed signals on the respective 
axes for the same experimental mode. Among these comparative methods are 
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widely used techniques associated with the definition of the ݐ-test (Student’s 
test) and the ܨ-test (Fisher’s test) results. Since the ݐ-test in our case is not ra-
tional (noisy signal, a large number of experimental data in the sample, average 
shift of processed and unprocessed signals according to the horizontal axis), the 
choice is the ܨ-test. 
 
The main reason we use the ܨ-test is to determine whether the null hypothesis 
-଴ works or, in other words, whether the requirement of lack uniformity is satܪ
isfied in the distributions of 2 samples of unprocessed and processed signals for 
each model experiment on each axis. From hypothesis ܪ଴, it follows that the 
obtained values correspond to the statistical chi-square distribution. However, if 
the hypothesis ܪ଴ is not satisfied, hypothesis ܪଵ is true. This indicates the ine-
quality of sample variances of samples of experimental data and a significant 
excess of the sample variance of the experimental data of the unprocessed signal 
with respect to the sample variance of experimental data of processed (filtered) 
signals [84]. 
 
Assuming that the experimental values of both samples are considered to have a 
normal distribution, we find the value of the sample variance for a sample of 
unprocessed and processed data for the ݕ-axis of the experiment α2w2tm2. 

Thus, ߪ௬ሺ௨௡ሻ
ଶ ൌ ௬ሺ௣௥ሻߪ ;0,3011

ଶ ൌ 0,2719. 

We define the ratio between the highest and lowest sample variances for the 
same experimental mode: 

.௘௠௣ܨ ൌ
ఙ೤ሺೠሻ
మ

ఙ೤ሺ೛ሻ
మ ൌ

଴,ଷ଴ଵଵ

଴,ଶ଻ଵଽ
ൌ 1,1074 (A2.1) 

Then, we compare the value obtained in Eq. (A2.1) with the empirical values 
from the Fisher-Snedecor used for the chosen DOF of samples (݄ݐଵ ൌ ଶ݄ݐ ൌ
929ሻ as the nearest to the quantity of measurement points. Thus, ܨ௧௔௕௟௘ ൌ 1.11 
for 1000 measurements (the next number of table values after the number of 
measurements) [85]. 

Because ܨ௘௠௣ ൏  .଴ is approvedܪ ௧௔௕௟௘, the hypothesisܨ

In Fig. A2.1, the chi-square distribution for DOF ݄ݐଵ.ଵ ൌ ଶ.ଵ݄ݐ ൌ 10 is shown 
graphically [86]. The number of degrees of freedom was reduced to improve the 
shape of plotted curve of probability density function of the chi-squared distri-
bution. 
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Figure A2.1. Chi-square distribution for experimental data with ݄ݐଵ.ଵ,ଶ.ଵ ൌ 10. 

We find the ܨ-test results for data of the experimental model ݐ2ݓ2ߙ௠2 for the 
 .axis-ݖ

We obtain ߪ௭ሺ௨ሻ
ଶ ൌ ௭ሺ௣ሻߪ ,0,9043

ଶ ൌ 0,0087. 

Substituting values from Table A2.2, we obtain the empirical value for the ܨ-
test for the axis ݖ: 

௘௠௣ܨ ൌ
ఙ೥ሺೠሻ
మ

ఙ೥	ሺ೛ሻ
మ ൌ

଴,ଽ଴ସଷ

଴,଴଴଼଻
ൌ 103,9425  (A2.2) 

This means hypothesis ܪଵ is accepted, by which ܨ௘௠௣ ൐ -௧௔௕௟௘. It can be conܨ
cluded that samples of unprocessed and processed signals are not uniform. 

Using analogical calculations for all experimental modes, we can make 2 main 
conclusions: 

1) Filtering is necessary because the noises (especially for the ݖ-axis) are strong. 

2) Results of the ܨ-test for all experimental models for the ݕ-axis are on the 
border between hypotheses ܪ଴ and ܪଵ. 
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Appendix 3. Filtered accelerations averaging 

The plot for averaging the filtered accelerations for the experimental mode 
 ௠2 is shown in Fig. 3.3. In Table A3.1, the parameters of the differenceݐ2ݓ2ߙ
of the filtered acceleration curves, measured with both IMU, are introduced. 

Table A3.1. Table of deviations of data from averaged acceleration and accelerations 
from both IMUs accelerometers for all experimental modes, 

Mode IMU 
№ 

૛ሻ࢓ሺ࢟ࢌ࢏ࡰ ࢖࢞ࢋࢀ ࢒ࢇ࢚࢕࢚ࢀ ૛ሻ࢓ሺࢠࢌ࢏ࡰ ሺࢊ࢏࢓࢟ࢌ࢏ࡰ
࢓
૛࢙
ሻ ሺࢊ࢏࢓ࢠࢌ࢏ࡰ

࢓
૛࢙
ሻ 

α1w1tm1 1 340 282 0,108 0,11 3,840·10–4 3,794·10–4 
 2 340 282 0,122 0,01 4,348·10–4 1,773·10–5 

α1w1tm2 1 272 245 0,109 0,11 4,441·10–4 4,489·10–4 
 2 272 245 0,131 0,01 5,343·10–4 4,081·10–6 

α1w1tm3 1 304 255 0,126 0,15 4,937·10–4 5,803·10–4 
 2 304 255 0,150 0,03 5,898·10–4 1,254·10–4 

α1w2tm1 1 307 235 0,138 0,09 5,889·10–4 3,872·10–4 
 2 307 235 0,155 0,07 6,583·10–4 2,808·10–4 

α1w2tm2 1 280 245 0,136 0,18 5,563·10–4 7,265·10–4 
 2 280 245 0,155 0,02 6,310·10–4 6,530·10–5 

α1w2tm3 1 303 255 0,144 0,16 5,659·10–4 6,431·10–4 
 2 303 255 0,165 0,07 6,482·10–4 2,549·10–4 

α1w3tm1 1 232 188 0,116 0,40 6,149·10–4 2,127·10–4 
 2 232 188 0,139 0,01 7,378·10–4 5,851·10–5 

α1w3tm2 1 270 245 0,103 0,05 4,225·10–4 2·10–4 
 2 270 245 0,128 0,01 5,208·10–4 4,897·10–5 

α1w3tm3 1 228 204 0,100 0,04 4,902·10–4 2,009·10–4 
 2 228 204 0,124 0,01 6,093·10–4 3,431·10–5 

α2w1tm1 1 352 282 0,141 0,12 5,025·10–4 4,432·10–4 
 2 352 282 0,181 0,10 6,429·10–4 3,652·10–4 

α2w1tm2 1 282 245 0,124 0,11 5,094·10–4 4,612·10–4 
 2 282 245 0,164 0,07 6,731·10–4 3,142·10–4 

α2w1tm3 1 446 306 0,140 0,16 4,582·10–4 5,228·10–4 
 2 446 306 0,178 0,08 5,837·10–4 2,679·10–4 

α2w2tm1 1 290 235 0,141 0,11 6,013·10–4 4,893·10–4 
 2 290 235 0,172 0,10 7,323·10–4 4,340·10–4 

α2w2tm2 1 230 196 0,141 0,12 7,230·10–4 6,326·10–4 
 2 230 196 0,170 0,07 8,699·10–4 3,775·10–4 

α2w2tm3 1 286 255 0,131 0,13 5,149·10–4 5,450·10–4 
 2 286 255 0,158 0,03 6,204·10–4 1,450·10–4 

α2w3tm1 1 274 235 0,125 0,10 5,340·10–4 4,340·10–4 
 2 274 235 0,139 0,01 5,945·10–4 6,382·10–5 

α2w3tm2 1 275 245 0,114 0,08 4,686·10–4 3,551·10–4 
 2 275 245 0,134 0,02 5,502·10–4 1,020·10–4 

α2w3tm3 1 266 255 0,109 0,07 4,282·10–4 2,823·10–4 
 2 266 255 0,129 0,02 5,078·10–4 7,843·10–5 

α3w1tm1 1 272 235 0,120 0,11 5,144·10–4 4,680·10–4 
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 2 272 235 0,142 0,03 6,081·10–4 1,574·10–4 
α3w1tm2 1 282 245 0,123 0,07 5,033·10–4 2,857·10–4 

 2 282 245 0,148 0,03 6,053·10–4 1,265·10–4 
α3w1tm3 1 287 255 0,122 0,11 4,800·10–4 4,352·10–4 

 2 287 255 0,148 0,01 5,808·10–4 7,058·10–5 
α3w2tm1 1 284 235 0,141 0,12 6,004·10–4 5,191·10–4 

 2 284 235 0,163 0,05 6,940·10–4 2,425·10–4 
α3w2tm2 1 327 294 0,135 0,13 4,616·10–4 4,523·10–4 

 2 327 294 0,157 0,05 5,354·10–4 1,836·10–4 
α3w2tm3 1 281 255 0,136 0,12 5,365·10–4 4,862·10–4 

 2 281 255 0,154 0,03 6,055·10–4 1,294·10–4 
α3w3tm1 1 285 235 0,152 0,08 6,486·10–4 3,702·10–4 

 2 285 235 0,167 0,05 7,110·10–4 2,468·10–4 
α3w3tm2 1 338 294 0,144 0,11 4,915·10–4 3,843·10–4 

 2 338 294 0,160 0,04 5,452·10–4 1,632·10–4 
α3w3tm3 1 285 255 0,152 0,12 5,969·10–4 4,745·10–4 

 2 285 255 0,160 0,07 6,302·10–4 2,941·10–4 
where: ௧ܶ௢௧௔௟ is the total time of measurements for corresponding experiments 
in seconds; ௘ܶ௫௣ is the pure time of experiments with the moving prototype in 
seconds;	
݅ܦ ௬݂ሺ݉ଶሻ is the deviation of accelerometer filtered data from average 
acceleration by the ݕ-axis; ݅ܦ ௭݂ሺ݉ଶሻ is the deviation of accelerometer filtered 
data from average acceleration by the ݖ-axis; ݅ܦ ௬݂௠௜ௗሺ

௠

௦మ
ሻ is the average 

difference between each measurement of filtered accelerometer data and 
averaged acceleration data by the ݕ-axis (Eq. (A3.1)); ݅ܦ ௭݂௠௜ௗሺ

௠

௦మ
ሻ is the 

average difference between each measurement of filtered accelerometer data 
and average acceleration data by the ݖ-axis (Eq. (A3.2)). 

݅ܦ ௬݂௠௜ௗ ൌ
஽೤

೐்ೣ೛
 (A3.1) 

݅ܦ ௭݂௠௜ௗ ൌ
஽೥

೐்ೣ೛
 (A3.2) 
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Appendix 4. Determination of outliers presence (ࡽ-test) 

On the basis of the data of experimental plate movements (Table A4.1), we 
conduct a brief assessment to determine the strength of the influence of 1) 
changes in the angle of rotation of the plate on the support joint, 2) the addition-
al load on the test plate, and 3) the increase/decrease of the step time of the 
stepper motor on the values of motions of an experimental plate. To assess this, 
we create a separate table (Table A4.2), which traces the relationship between 
the variable experimental setting parameters and the arithmetic mean of the 
plate movements, holding for these regime experiments. 

Table A4.1. Dependence between arithmetic means of experimental displacements and 
setting parameters,  

ࢻ  ሺ⁰ሻ ࢟ഥ (m) ࢠത (m) 
 0,0253 0,0165 4,8 1ߙ
 0,0256 0,0190 6,4 2ߙ
 0,0251 0,0208 8,0 3ߙ

ሻݔሺ݉ܽߙ െ  ሺ݉݅݊ሻ – 0,0043 0,0005ߙ

 ത (m)ࢠ ഥ (m)࢟ (N) ࢝ 
w1 16,54 0,0180 0,0252 
w2 13,44 0,0190 0,0258 
w3 9,08 0,0193 0,0278 

ሻݔሺ݉ܽݓ െ ሺ݉݅݊ሻݓ – 0,0013 0,0026 

 ത (m)ࢠ ഥ (m)࢟ (s) ࢙ 
 0,0273 0,0189 0,021 1ݏ
 0,0257 0,0187 0,025 2ݏ
 0,0259 0,0187 0,035 3ݏ

ሻݔሺ݉ܽݏ െ ሺ݉݅݊ሻݏ – 0,0002 0,0016 
where ݕത,  .ݖ and ݕ are the arithmetic means by axes ̅ݖ

Three major conclusions can be made from Table A4.1: 

1) The maximum values of the ݕ-axis movements of the experimental plate are 
in straight dependence on the change of the angle of the observed plate rotation 
around the support hinge. At the same time, the ݖ-axis movement is practically 
independent on changes in the angle of rotation around the support hinge. 

2) The displacements of the experimental plate are more dependent by the ݕ-
axis than by ݖ-axis from the values of additional load.  

3) Changing the duration of steps of stepper motors has almost no movement 
effect on the experimental plate. 

Assuming that all of the experimental movements have a normal distribution, 
we use Dixon’s ܳ-test to identify potential outliers in the results [87]. 
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The main expression of Dixon’s test is Eq. (A4.1), where the numerator denotes 
the difference between evaluating an adjacent number of a sample row, and the 
denominator denotes the difference between the maximum and estimated value 
of the sample row. All elements of the sample row are placed in ascending order 
(Eq. (A4.2)) [87,88]: 

ܳ ൌ
ఊమିఊభ
ఊ೙ିఊభ

    (A4.1) 

 
ଵߛ ൑ ଶߛ … ൑ ௡ିଵߛ ൑   ௡ߛ (A4.2) 
 
For this purpose, we divide all values of displacements along the ݕ-axis into 3 
parts, as they are strongly dependent on the angle of experimental plate rotation 
around the support hinge. Movements by the ݖ-axis do not have a strict depend-
ence on one of the parameters, so they can be evaluated as a single sample row 
[56]. 

Figure A4.1 shows graphical results of the ܳ-test for movements along the y 
and ݖ axes at a confidence level of 95%, obtained with the help of an applica-
tion written for statistical software package, JMP (SAS), to calculate the ܳ-test. 
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Figure A4.1 Dixon’s ܳ-test results for displacements of the experimental plate by: a) ݕ-
axis; b) z-axis. 

In Table A4.2 the main statistical parameters for each of the designated samples 
(arrays) of movements based on the results of Dixon’s ܳ-test for determination 
of outliers can be seen. 

Table A4.2. The main statistical parameters for each of the designated samples (arrays) 
of movements based on the results of Dixon’s Q-test for determination of outliers. 

Statistical parame-
ter 

 ૜ࢠ ૛ࢠ ૚ࢠ ૜࢟ ૛࢟ ૚࢟

Mean 0,0165 0,0190 0,0208 0,0253 0,0257 0,0279 
Standard deviation 0,0008 0,0016 0,0012 0,0020 0,0022 0,0010 

Standard error 
mean 

0,0003 0,0005 0,0004 0,0007 0,0007 0,0003 

Confidence coeffi-
cient 95% 

No 
outliers 

No outli-
ers 

No 
outliers 

No 
outliers 

No 
outliers 

No 
outliers 

Confidence coeffi-
cient 99% 

No 
outliers 

No outli-
ers 

No 
outliers 

No 
outliers 

No 
outliers 

No 
outliers 
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The main conclusion of this brief statistical research is that the experiment for 
simulation of the experimental plate movement was carried out correctly. The 
experimental plate motion parameters, captured with the measurement system 
and the proposed data processing algorithm, can be used in further studies. In 
addition, the importance of each of the 3 variable setting parameters for final 
experimental results is established. 
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