
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technology

Giorgi Basiashvili 201616IASM

HARDWARE DIGITAL OBFUSCATION
Master Thesis

Academic Supervisor
Samuel Nascimento Pagliarini

PhD
Academic Supervisor

Zain UI Abideen
MsC

Tallinn 2022

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Giorgi Basiashvili 201616IASM

Riistvaraline digitaalne hägustamine
Magistritöö

Juhendaja
Samuel Nascimento Pagliarini

PhD
Juhendaja

Zain UI Abideen
MsC

Tallinn 2022

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Giorgi Basiashvili

Date: May 9, 2022

i

Annotatsioon

Viimased tehnoloogilised edusammud riistvaradisaini vallas võimaldasid meil luua
keerukaid omavahel ühendatud süsteeme, mida kasutatakse tarbe- ja tööstustoodetes, seega
on tegemist väärtusliku varaga, mida tasub kaitsta. Selle tulemusena kerkivad integraal-
lülituse (IC) ökosüsteemis esile mitmed turvaohud. Nende hulgas on murettekitavad
pöördprojekteerimise tavad, mille eesmärk on IC võltsimine, ületootmine või muutmine.
Seetõttu on intellektuaalomandi (IP) kaitsemehhanismide arendamine kriitilise tähtsusega.
Viimastel aastatel on eelnimetatud ohtude maandamiseks välja pakutud erinevaid tehnikaid,
kuid ükski tehnika ei näi olevat piisav disaini hierarhia varjamiseks. Selline hierarhia
hägustamise võimalus on eriti oluline korduvaid mooduleid sisaldavate kujunduste puhul.
Selles lõputöös pakume välja uudse viisi selliste kujunduste häguseks muutmiseks, ka-
sutades tavapärast loogikasünteesi. Kasutame disaini mitmekesisuse loomiseks mitmeid
sünteesitööriistas saadaolevaid optimeerimisi. Meie turbeanalüüs, mille viis läbi DANA
pöördprojekteerimise tööriist, kinnitab nende optimeerimiste olulist mõju hägustamisele.
Paljude segaseks peetud projekteerimisjuhtumite hulgast võivad kasutajad leida valikuid,
mis tekitavad väga väikeseid üldkulusid, ajades samas segadusse pöördprojekteerija töö.

ii

Abstract

Latest technological advancements in the field of hardware design allowed us the creation
of complex interconnected systems, used in consumer and industrial products, thus, it is a
valuable asset that is worth protecting. As a result, numerous security threats are emerging
from untrusted players in the integrated circuit (IC) ecosystem. Among them, reverse
engineering practices with the intent to counterfeit, overproduce, or modify an IC are
worrying. Accordingly, development of intellectual property (IP) defence mechanisms are
of critical importance. In recent years, various techniques have been proposed to mitigate
the aforementioned threats, but no technique seems to be adequate to hide the hierarchy
of a design. Such ability to obfuscate the hierarchy is particularly important for designs
that contain repeated modules. In this thesis, we propose a novel way to obfuscate such
designs by leveraging conventional logic synthesis. We exploit multiple optimisations
that are available in the synthesis tool to create design diversity. Our security analysis,
performed by the DANA reverse engineering tool, confirms the significant impact of these
optimisations on obfuscation. Among the many considered obfuscated design instances,
users can find options that incur very small overheads while still confusing the work of a
reverse engineer.

iii

List of abbreviations and terms

AI Artificial Intelligence
BEOL Back end of the Line
CPU Central Processing Unit
DPA Differential Power Analysis
EDA Electronic Design Automation
FEOL Front end of the Line
HPWL Half Perimeter Wirelength
IP Intellectual Property
IC Integrated Circuit
PDF Probability Density Function
PE Processing Engine
RE Reverse Engineering
RTL Register Transfer Level
SPA Simple Power Analysis
VLSI Very Large Scale Integration
3PIP Third party Intellectual Property

iv

Table of Contents

List of Figures vii

List of Tables viii

1 Introduction 1

2 State of the Art 3
2.1 Side channel analysis . 3

2.1.1 Attack Methods . 4
2.1.2 Defence Strategies . 5
2.1.3 Metrics . 5

2.2 Hardware Trojans . 6
2.2.1 Attack Methods . 7
2.2.2 Defence Strategies . 7
2.2.3 Metrics . 7

2.3 Counterfeiting and IP piracy . 8
2.3.1 Attack Methods . 8
2.3.2 Defence Strategies . 8
2.3.3 Metrics . 9

2.4 Split manufacturing . 9
2.4.1 Attack Methods . 9
2.4.2 Defence Strategies . 11
2.4.3 Metrics . 11

2.5 Reverse engineering . 11
2.5.1 Physical Design obfuscation . 12
2.5.2 Structural Design obfuscation 14

3 Methodology 17
3.1 GPS Correlator Architecture . 18
3.2 Proposed synthesis based approach . 18
3.3 Optimisation strategies . 20

3.3.1 Clock gating . 20
3.3.2 Ungrouping . 21
3.3.3 Datapath Analytical . 21
3.3.4 Bubble Pushing . 22
3.3.5 Tighten Max Transition . 22

v

3.3.6 Retiming . 22
3.4 Evaluation . 22

4 Results 24
4.1 Power-Performance-Area evaluations . 24
4.2 Dana security analysis . 27
4.3 Discussion . 29

5 Conclusions 33

Bibliography 34

Appendices 40

Appendix 1 - GPS Correlator Code 40

vi

List of Figures

1 The left column shows the goals of the attack, and the right column shows
the location of the attacker. Source:[1] 3

2 Hardware trojan classification. Source:[13] 6
3 Anatomy of an integrated circuit. Source: [16] 10
4 Use of atypical doping to make apparent PMOS transistor realise a constant

VDD output. Source: [18] . 13
5 Transistor level diagram of NAND gate. 13
6 Simple example of logic locking. Source: [24] 15

7 Approaches to obfuscating a hierarchical design, from locking to design
diversity. 17

8 State diagram of GPS correlator. 18
9 The methodology to evaluate the hierarchy of design in the context of

reverse engineering. 20
10 Ungrouping. Source:[34] . 21
11 Architectural overview on DANA. Source:[8] 22

12 PDFs of the area (µm2) . 25
13 PDFs of the number of cells . 26
14 PDFs of the leakage power (mW) . 27
15 PDFs of the dynamic power (mW) . 28
16 Graph of the register group for baseline design 30
17 Graph of the register group for the clock-gated design 30
18 Graph of the register group for the retiming (delay) 31
19 Graph of the register group for the clock-gating and retiming (delay) . . . 31
20 Graph of the register group for the clock-gating and retiming (delay) with

steered mode (Register size 10). 32

vii

List of Tables

1 Number of unique designs generated by an optimisation strategy. 24
2 Minimum and Maximum values of area, number of cells, leakage and

dynamic power of the generated designs 26
3 Percent increase/decrease in the baseline design and a variants generated

with the corresponding optimisation technique 29

viii

1. Introduction

Microprocessors have become an integral part of our everyday lives. Day by day elec-
tronics are getting smarter and smarter, we are already seeing smart appliances such as
coffee machines or toasters, and even some light bulbs have integrated ICs so that they can
be controlled remotely. These devices are designed with performance, power consump-
tion, and cost in mind, accordingly security of these designs might often be overlooked
[1]. Moreover, the tools needed for hacking the chips have become more available and
accessible to everyone [2]. Meaning hardware designs are becoming more vulnerable to
hardware threats, some of which include: Hardware Trojans, IP piracy and IC overbuilding,
Reverse engineering (RE), and Side-channel analysis. Even though the security of a light
bulb might not be critical, hardware security in safety-critical systems, such as automotive
or medical devices, becomes increasingly important [2].

Most adversaries can be categorised into three main groups, depending on their capabil-
ities and objective [2]. First are nation-states, which have unlimited resources and their
objectives can range from verifying the correctness of their manufactured designs, i.e. no
hardware Trojans were injected during the manufacturing process, to analysing enemy
technology [2]. Second, are criminals who are looking for a payoff [2]. It can be either by
IP piracy or monetizing by exploiting design flaws, namely through developing malware
[2]. Third, thrill-seekers looking to disrupt something [2].

The number of in-house designed ICs is increasing daily, accordingly, reverse engineering
and IP piracy are becoming one of the most pressing issues in hardware security [2].
With RE adversary can obtain information about the technology used in the device and
intellectual property, thus he will be able to manufacture it and sell it for profit, or it can
be used to detect design flaws and reduce the reliability of the design [1]. The primary
defence mechanism against RE is design obfuscation, which has two different approaches:
physical design obfuscation and structural obfuscation [1]. Obfuscation aims to hide
the real functionality of the IC, by either camouflaging the cells to look alike, in such a
manner that they can be mistaken for each other and thus result in incorrectly extracted
functionality or insert additional logic to lock the design so that it will produce correct
output only if the correct key is applied [1]. It should be noted that any IC can be reverse
engineered to the desired level of abstraction, granted that enough resources and time are

1

provided. Accordingly, the main goal of the obfuscation is to delay the adversary [2].

With machine learning and AI becoming more popular, special AI accelerator chips are
being developed. One distinct feature AI accelerators have over conventional ICs is the
presence of multiple processing engines [3]. Instead of doing calculations on the CPU
the presence of PEs allows concurrent execution using highly specialised circuits, which
results in a significant performance increase [4]. Similar to AI accelerator’s processing
engines, GPS modules contain multiple copies of a correlator module. Since these circuits
have the same module instantiated multiple times, by reverse engineering only one module
adversary can detect all the copies of it. In addition to applying defence strategies, similar
to camouflaging, on every module, therefore making it harder to RE, we can disguise
modules so that it is not obvious that they are the same. This way, instead of analysing only
one module, the adversary would have to analyse each module separately, thus dramatically
increasing the time and effort needed for RE.

In this thesis, we will be discussing the structural obfuscation technique, which focuses on
circuits that contain multiple copies of an entity and tries to increase the effort needed to
learn the complete function of the circuit, and a case study of a GPS correlator module.
Accordingly, we will assume that through complex imaging and delayering techniques, the
adversary was able to correctly extract the complete netlist and has to examine it. Extracted
netlist and structural isomorphism can be used to reverse engineer the functional unit [5].
To reverse engineer the functionality of an unknown unit, it can be compared and matched
against a library of components with known functions [6, 7]. Accordingly, we will try to
generate distinct designs of an entity, in this case, a correlator module for GPS, through
different optimisation and implementation strategies. We will also analyse the overhead, in
terms of area and power of generated designs.

First, we will discuss the state of the art. What are current threats and their corresponding
defence strategies. Secondly, we will discuss the methodology used and thoroughly
examine the optimisation strategies used. Then we will move on to the results that each of
the strategies produced. Next, the results of the reverse engineering tool, DANA [8], will
be discussed. Finally, we will evaluate the effectiveness of the proposed methodology.

2

2. State of the Art

Globalisation enabled the rapid development of ICs. Designing and manufacturing every
component of the IC in-house is related to tremendous costs. Thus, during the production,
IC might go through several third parties. Firstly, due to the ever-increasing complexity
of circuits in most cases, some parts of the IC are designed in-house the rest is provided
by the third party designers [1]. Next, the design is sent to a foundry, which fabricates
the wafers [1]. Finally, before shipping, wafers are tested, either at the same foundry
where it was produced or by a different company [1]. Nevertheless, due to the involvement
of multiple parties, the risk of IP violations and hardware Trojans increases. However,
depending on the adversary’s goal and location, he might employ other strategies as well.
Figure 1 vividly visualises strategies adversaries might adopt depending on the goal and
the location.

Figure 1. The left column shows the goals of the attack, and the right column shows the
location of the attacker. Source:[1]

2.1 Side channel analysis

Side channel analysis is one of the most commonly used strategies in IC analysis. Very
often it is used to retrieve secret keys, but can also be used to gain information about
different aspects of the circuit. Traditionally, side channel analysis is related to measuring

3

delays, power consumption, and electromagnetic radiation and retrieving secret keys by
analysing measurements [9].

2.1.1 Attack Methods

Common attack strategies for side channel analysis are: Simple Power Analysis (SPA),
Differential Power Analysis (DPA), and template attacks [10]. Moreover, with the ad-
vancements in ML and AI, numerous side channel analysis methods are being introduced
incorporating different ML strategies.

One of the first attack strategies developed was simple power analysis and differential
power analysis. Both of them involve recording the power consumption across time and
some understanding of how the circuit was implemented, nevertheless, SPA is highly
dependent on the adversary and how he interprets the data [10]. On the other hand, DPA,
developed several years after SPA, introduced the model-based side channel attacks which
allow the automation of the process. While in SPA adversaries manually analyse the power
consumption traces in DPA traces are grouped into two and statistical methods are used to
determine if they are different [10].

A more advanced and most commonly used attack strategy is template attack. Besides the
device under attack, it also requires an identical copy of it, which can be fully controlled for
experimentation, during which the adversary builds up multiple templates [11]. During the
experimentation phase, a large number, several thousand for each operation, of power traces
are recorded. Then mean values are calculated for each operation, which is used to select
the points with large enough differences between each other, thus resulting in a multivariate
distribution of the power signals of the selected points [11]. Additionally, a Gaussian
distribution can be applied to the selected points to further reduce the number of points
and simplify the calculations [11]. Finally, the templates can be constructed by computing
the noise covariance matrices for each pair of the components of the noise vectors for each
operation [11]. After the experimentation phase, the adversary has templates consisting of
mean signal and noise probability distribution for each unknown value of key bits and can
analyse the traces from the device under attack. Since it was assumed that we are dealing
with a multivariate Gaussian probability distribution, the Bayes theorem can be used to
estimate the key [11].

Advancements in AI and machine learning enabled researchers to move away from multi-
variate analysis and employ machine learning algorithms, which can deliver more accurate
results [9]. Usually, when applying ML algorithms the complete dataset is split into two,
the larger dataset, typically ranging from 65% to 85%, is used for training the model,

4

whereas the smaller one is used for validating the predictions of the model. Numerous
ML algorithms, such as Support Vector Machines, Random Forest, Rotation Forest, and
MultiBoost, can be used to analyse the power traces from side channel [9]. However, the
accuracy of the model not only depends on the algorithm and the parameters used, but also
on the circuit and data traces it produces. Despite the long process of parameter tuning,
which can have a significant impact on the accuracy of the model, ML algorithms are
gaining traction and are employed more frequently in side channel analysis.

2.1.2 Defence Strategies

Primary defence strategies against side channel analysis are the introduction of noise in the
system, by adding random operations that consume power, and leakage reduction, which
decreases the dependence of secret key on power consumption [1]. Since most of the attack
strategies assume Gaussian noise distribution, injecting artificial noise in the side channel
can throw off the adversary. The simplest defence strategy involves performing extra
multiplication operations, which increases the noise and thus reduces the dependence of
the secret keys on leakage current [1]. However, adding dummy logic can have significant
performance overheads and can be overcome by using a larger sample size and averaging
the results [1].

Nonetheless, some attack strategies, like template attacks, require multiple devices, thus
by using a large number of keys and changing them frequently the adversary might not
be able to acquire identical devices, consequently, is unable to analyse the design [11].
Furthermore, introducing randomisation in the computation process, such as address and
data scrambling, can play a significant role in mitigating side channel attacks [11].

2.1.3 Metrics

Core metrics of the side channel attacks are the amount of secret information that is
available and the number of samples that are required to extract the secret keys [1].
Nevertheless, the correlation between the secret information and recorded data traces can
be quantified with the side channel vulnerability factor [12]. Moreover, since template
attacks are very powerful and common, some authors use them to evaluate the effectiveness
of their proposed approach.

5

2.2 Hardware Trojans

Hardware Trojans are malicious circuits that can be integrated with a system to disable it
when a set of parameters are matched or leak sensitive information [13]. As we can see
from figure 2 Trojans have three main components, physical, meaning the modification
to the circuit that is necessary for injection, activation, meaning when and under what
circumstances Trojan gets activated, and finally action, does it transmit information or
modifies the functionality of the system [13].

Figure 2. Hardware trojan classification. Source:[13]

Physical characteristics of the Trojan include distribution, structure, size, and type. Distri-
bution refers to the physical location of the Trojan in the design [13]. Trojan placement can
have a significant impact on the structure of the designs, which can force other components
to be placed differently, thus resulting in a different layout [13]. It can either change the
placement of several components or all of them. Size describes the number of added
or removed components after injection [13]. Finally, type refers to whether gates and
components were added or removed, which is called functional, or whether the Trojan was
implemented using already existing gates and wires, called parametric [13].

Activation characteristics describe how a Trojan gets activated. It can happen via an
external signal coming from either a sensor or an antenna. On the other hand, it can either
be always active, or get activated if certain requirements such as a specific input pattern
are met [13]. Always active usually means that some components have a higher failure
rate than designed and to avoid detection by random signals this type of activation should
be used on the paths that are rarely exercised [13].

Finally, action characteristics define what is the behaviour of the Trojan. Transmit infor-

6

mation class describes Trojans that transmit key information to adversaries [13]. Modify
specification refers to changing the characteristics of existing wires and gates to modify
timings or delays [13]. Finally, a modification function refers to changing a functionality
by adding or removing logic, which can result in a significantly different design [13].

2.2.1 Attack Methods

Due to the specifics of hardware trojans, they can not be inserted post-production, thus it
can only be injected either during the design phase, by utilising third-party designs, which
were either modified by the threat actor or were designed with the trojan in mind, and
were overlooked during the design phase, or during the production phase in an untrusted
foundry.

2.2.2 Defence Strategies

Trojan detection can be an issue since they are activated using a very specific signal, often
based on external sources, moreover, due to the increasing complexity of designs detecting
small malicious circuits in significantly larger designs can be troublesome [13]. Besides
using test vectors and observing the output of the chip to verify the correctness of the
design, side channel analysis could be used to detect Trojans.

Automatic test pattern generation is a standard tool in VLSI design, it uses the netlist
of the circuit to generate input patterns and their corresponding outputs. Theoretically,
it should be able to detect every modification to the circuit that is propagated to the
output, nevertheless, in practice due to the large size of test vectors it is impractical [14].
Nevertheless, since most Trojans require changing the number of gates they should have
more impact on the overall circuit than process variation and should be detectable with
side channel analysis by applying random patterns at the input and measuring the power
consumption [13].

2.2.3 Metrics

Several metrics exist to measure the effectiveness of injected Trojan. Specifically, the
probability of detection, which is the relation between the number of detected trojans
divided by the total number of trojans. Moreover, the ratio of falsely identified trojans over
the number of trojan-free designs can also have useful information for researchers [1].

7

2.3 Counterfeiting and IP piracy

The goals of the adversary in IP piracy can range from identifying trade secrets to stealing
the design [1]. In case of identifying trade secrets, adversaries might have to employ various
reverse engineering techniques, which are discussed later in the chapter. Accordingly, in
this section we will focus on stealing the design and using it as a black box, to produce
and sell illegal copies of it. As we see from figure 1 adversary can be located either at the
foundry or at SoC Integrator, in both cases adversary has access to the design, accordingly,
defence strategies focus on either obfuscating the design to throw off the adversary or mark
the design so that ownership can be claimed after production [1].

2.3.1 Attack Methods

As already mentioned, due to the adversary’s location he has easy access to the design,
nevertheless, if defence strategies such as split manufacturing or obfuscation are used, the
adversary will have to use reverse engineering attack strategies to recover trade secrets.

2.3.2 Defence Strategies

Split manufacturing and logic locking are key defence strategies against IP piracy and
IC overproduction [1]. Split manufacturing limits the access of the untrusted foundry by
providing only partial design, which will be later assembled at a trusted facility. Accord-
ingly, the adversary will have to put extra effort even if he is not interested in trade secrets.
Similarly, with logic locking foundry is not provided with the activation keys, without
which the IC does not exhibit desired properties. In both cases, the design can not be used
as a black box system, and can not be illegally produced without extra effort [1]. Both of
these strategies are discussed in detail later.

Unlike split manufacturing and logic locking, the goals of fingerprinting and watermarking
strategies are proving the ownership of the design [1]. Both techniques can be applied
during high-level, logic and physical synthesis [1]. Watermark is a uniquely encoded
signature, which can be embedded into the IC during the design and implementation
phases, by introducing additional constraints [15]. Imposed constraints may force the
grouping of certain nodes and the formation of unique structures, which can be easily
and unambiguously identified [15]. Nevertheless, additional constraints might alter the
behaviour of the chip, accordingly, special pre- and post-processing steps should be
performed on inputs and outputs to ensure that it does not interfere with the rest of the
design [15]. Moreover, watermarks should be robust, meaning it should be impossible to

8

remove the watermark without knowing the complete functionality of the circuit [1]. In
addition to the watermarking, an additional unique identifier, fingerprint, can be inserted
for each produced instance to identify the source of piracy [1].

2.3.3 Metrics

Split manufacturing and logic locking metrics include the hamming distance between the
original netlist and the one predicted by the adversary. Metrics of the watermarking and
fingerprinting are the probability of the generation of the same identifier for two different
signatures, and the degradation of the quality of the solution [1].

2.4 Split manufacturing

One of the most efficient defence strategies against IP piracy, counterfeiting, and Trojan
insertion is split manufacturing. To protect sensitive information from untrusted foundries,
design can be split into two parts. The bottom layer where the transistors are built is called
the Front end of the Line (FEOL), and the top layer, where the metal layers are built for
routing, is called the Back end of the Line (BEOL) [16]. Figure 3 illustrates the anatomy
of the circuit in terms of FEOL and BEOL. Note that BEOL can contain multiple layers
of wiring which are denoted as MX, where X stands for the layer level. The FEOL layer
contains transistors, as a result frequently require the use of a high-end foundry, whether it
is trusted or not [16]. On the other hand, BEOL layers can be much simpler than the FEOL,
thus they can be manufactured in the lower end but trusted foundries [16]. By splitting the
design in two, the untrusted foundry has limited access to the design, and thus can not infer
the complete functionality of the design, or inject trojans, moreover, it also limits their
ability to counterfeit and sell illegal copies of the design. Nevertheless, an experienced
adversary might still attempt to gain knowledge of BEOL layers if he possesses FEOL. It
can be achieved with proximity, network flow, and SAT attacks [16].

2.4.1 Attack Methods

Modern EDA tools often place connected elements close to each other to reduce power
and area, thus providing several hints for the adversary. Proximity attack assumes that
input-output pairs of different cells are placed in close proximity to one another [16].
For each input pin on the FEOL layer, a set of candidate pins are selected. Candidate
pins should satisfy several conditions. Specifically, inputs should be only connected to
a single output, thus effectively eliminating all input-input connections and one to many
connections [16]. Moreover, since combinational loops are only used by specific structures

9

Figure 3. Anatomy of an integrated circuit. Source: [16]

that can be easily identified, they can also be excluded [16]. Accordingly, it is assumed that
connecting input pins to the closest output pins that satisfy the aforementioned constraints
should be the correct connection. While this attack strategy works perfectly for small
designs, consisting of several thousand gates, it becomes extremely unreliable once the
design size increases [16].

Shortcomings of the proximity attack are overcome by a network flow attack. In addition
to constraints utilised in the proximity attack, the network flow attack also considers the
load capacitance, meaning, specific cells have a certain maximum load capacitance, thus
only connections satisfying the constraint can be considered as the candidate. Besides
load capacitance, timing constraints, which can be guessed from the clock speed, for each
connection are also considered to further reduce the number of candidate pins [16]. Finally,
the common practice of connecting the source pin to the sink node along the direction
of the sink node is taken into account and all other connections are excluded from the
list [16]. However, unlike proximity attacks, input pins are not directly connected to the
closest output pins, instead directed graphs are constructed and the min-cost network flow
problem is solved with the Edmons-karp algorithm [16]. While the network flow attack
can retrieve the correct BEOL layer from larger circuits than the proximity attack, it is still
unable to retrieve correct connections for large circuits [16].

Finally, the boolean satisfiability (SAT) based attack has been developed. This, unlike
previous methods, places key-based multiplexers which allow connection between every
node of the FEOL layer and does not result in the cyclic path. As a result, a key-based
locked circuit is generated, which can be solved with SAT attack [16]. Thus, an equivalent
circuit of the original design can be retrieved.

10

2.4.2 Defence Strategies

As we already saw in the previous section, most of the attack strategies use proximity
information to retrieve the BEOL. Accordingly, proximity perturbation and wire lifting
strategies have been developed to challenge these types of attacks.

Proximity perturbation is the group of defence strategies that aim to decrease the number
of hints left from the EDA tools. Common strategies include swapping pins so that the
hamming distance between the outputs of the original netlist and the modified one is 50%
[16]. This way enough distinction is introduced in the circuit to throw off the adversary
utilising proximity attacks [16]. Besides pin swapping, placement and routing perturbation
can be used, which modifies the netlist to introduce randomisation in the design [16]. It
involves randomly swapping input and output pins, placing and routing the modified design,
and finally correcting the swapped pins in the BEOL layer [16]. Netlist randomisation
offers a great defence against proximity attacks, nevertheless, it is still vulnerable to SAT
based attacks.

Another type of defence strategy is wire lifting. The goal of wire lifting is to reduce the
number of connections on the FEOL layer and move them to the BEOL layer, thus making
it harder for the adversary to find correct connections [16]. An important constraint of
this strategy is manufacturability. To achieve a high yield, via and wire density should
be considered. Accordingly, lifting every connection from FEOL to BEOL is impossible,
nevertheless, by prioritising and lifting wires that have significant logic differences from the
neighbouring cells, and the wires that would easily produce wrong outputs if misidentified,
enough connections can be lifted to make proximity attacks impractical, thus boosting the
security [16].

2.4.3 Metrics

No single metric is developed to assess the effectiveness, of a split manufacturing defence
strategy, nevertheless, the most common metrics include the number of correctly predicted
BEOL connections and the hamming distance, between the original netlist and the one
predicted by the adversary [1].

2.5 Reverse engineering

As we can see from figure 1 reverse engineers might have several intentions. Accordingly,
the desired abstraction level will vary. Assuming the adversary wants to learn the full

11

functionality of the circuit, the reverse engineering process will consist of two primary
stages. First, delayering of the IC and netlist extraction. Second, netlist analysis and
functional unit extraction. During the first phase, the physical IC is delayered and an
image of each layer is taken, which is used to extract the netlist [1]. Since we can not
stop the adversary from delayering the IC, defence strategies focus on obfuscating the
physical characteristics of the transistors, in order to make cells look like each other and
infer different functionality. These types of defence strategies are called physical design
obfuscation. Nevertheless, if the adversary is located at the untrusted foundry, he already
possesses the netlist and thus can entirely skip the first phase. Nonetheless, during the
second phase, the netlist is analysed to learn the functionality of the IC. Defence strategies
targeting the second phase are known as structural design obfuscation.

2.5.1 Physical Design obfuscation

As already mentioned, physical design obfuscation focuses on the netlist extraction phase,
accordingly, it concentrates on circuit element modifications that are difficult or impossible
for an adversary to detect. Common steps for these types of attacks are delayering, imaging,
and netlist extraction. Delayering refers to the process of removing each metal and
dielectric layer one by one. It can be achieved either chemically, where special chemicals
in precise dosage are applied to each of the layers to diffuse it, or mechanically, which
involves rubbing tools to smoothen and remove excess surface. During the delayering
process, various microscopy techniques, such as focused ion beams, can be used to image
the specifics of the layer [17]. Finally, functional analysis can be used to extract the
functional units from the gate-level netlist, which can be easily recovered from images
[6]. Common obfuscation strategies focus on transistor property alterations in order to
create stuck-at faults, delay faults, or stealthy signalling, to confuse the adversary during
transistor-level functional analysis [18].

Stuck-at faults, which are transistors that are either always closed or always open, and
delay faults, which refer to the nodes switching faster or slower to change the sequential
behaviour of the chip, can be achieved by modifying the doping strategy. Figure 4 shows
a normal PMOS transistor on the left and a transistor with a different type of dopant on
the right, which creates a short circuit between the source and the drain thus producing
a stuck-at fault, hence effectively allowing us to mask a certain component and imply
different functionality [18]. For instance, Figure 5 shows that by utilising stuck-at faults,
specifically, if the Q2 transistor is always off and the Q4 transistor is always on, the B input
of the NAND gate will always be high, thus it will be the equivalent of the inverter. The
same strategy can be employed to make larger, more complicated circuits, and perform
simple operations, thus making a great defence strategy due to the difficulty of dopant

12

transistor detection. Moreover, by manipulating source/drain doping or channel doping we
can also make transistors switch faster or slower, thus creating delay faults [18].

Figure 4. Use of atypical doping to make apparent PMOS transistor realise a constant VDD

output. Source: [18]

Q1 Q2

Q3

Q4

Vcc

OUT

A B

A

B

Figure 5. Transistor level diagram of NAND gate.

Even though these faults are hard to detect, it is not impossible. The adversary can use
passive voltage contrast [17], or picosecond imaging circuit analysis [19], to detect dopant
manipulation. However, due to the technicalities of these approaches, detecting every
atypically doped transistor becomes slow and expensive, making it harder for an adversary
to reverse engineer the circuit [18].

Finally, stealthy signalling refers to utilising cross talk to send signals. Usually, cross

13

talk is undesirable, and various techniques have been developed to avoid it. Most notably,
connecting metal fills to either VCC or the ground, nevertheless if instead it is connected
to a clock or any other controlled signal, cross talk can be predicted and utilised to
signal between neighbouring interconnects [18]. To further improve the signal strength, a
thin interlayer dielectric can be used to increase the capacitive coupling between layers,
resulting in increased crosstalk [18]. Similar to stuck-at and delay faults, stealthy signalling
detection is extremely hard without a thorough examination of electrical properties, which
is time-consuming when the ICs contain millions of transistors [18].

Since, physical design obfuscation requires the insertion of additional transistors or the
metal fills, obfuscating every cell would result in significant size overhead and would tip
the adversary. On the other hand, by obfuscating only the cells that easily propagate to the
output, the adversary would first have to detect which cells were obfuscated [20].

Considering physical design obfuscation’s goal is to hide some functionality from the
adversary, the skills and resources of the adversary will play a major role during the
reverse engineering process. Accordingly, quantifying the obfuscation would also require
taking into account the skills of the adversary, which is impossible, thus there is a lack
of quantitative approach to classifying the level of obfuscation. However, assuming
obfuscated cells were detected but unidentified or partially unidentified, the number of
brute force attempts required to recover the functionality can be used as a metric [20].
Additionally, the hamming distance between original and obfuscated designs can be used
to quantify the level of obfuscation [20].

2.5.2 Structural Design obfuscation

While physical design obfuscation concentrates on making netlist extraction harder, struc-
tural obfuscation focuses on complicating the analysis phase of extracted design. Popular
techniques include EPIC and its successor smart logic obfuscation. Both techniques add ad-
ditional logic gates and memory elements to the combinational circuit, which are activated
only when a certain key is used, accordingly, the circuit produces desired output only when
the correct key is applied [21, 22]. A similar approach can be taken with sequential circuits,
however, additional states are inserted in a finite state machine (FSM). FSM can have
modified state transitions, invalid transitions from one state into another, duplicated states,
or even black hole states, from which it will be unable to recover [1]. In all these scenarios,
only the correct key produces the output, hence they are called key-based obfuscation
strategies.

Key-based obfuscation techniques are mostly applied in the post-synthesis stage of circuit

14

design. During which, XOR and XNOR gates can be randomly inserted throughout the
design [21]. Figure 6 shows logic locking by adding XOR and XNOR gates. Even though
randomly placed cells can be effective, they might be easily detectable by the adversary
[23]. Accordingly, the gates should be placed constructively. Specifically, by assigning
specific weights to the interconnect and placing them to maximise the summation of
weights [23]. Although gate insertion is fast and effective, MUX-based logic locking also
offers data flow path obfuscation [23]. By inserting multiplexers and connecting its wrong
outputs to dummy logic [23]. On the other hand, during the pre-synthesis stage, control
and data flow graphs, as well as binary decision diagrams, can be obfuscated and locked
[23].

Figure 6. Simple example of logic locking. Source: [24]

Even though logic locking is very effective, if the adversary has access to the netlist of the
circuit and an unlocked version of the IC, which in most cases can be obtained through the
open market, key extraction becomes feasible with SAT attacks [24]. During SAT attack
boolean satisfiability test is performed on the IC, to find the distinguishing inputs, which
can rule out at least one wrong key, where the satisfiability is verified by the unlocked
version of the IC utilised [24].

Nonetheless, even if one cannot obtain an unlocked version of the IC or the IC is designed
to counter SAT attacks, by employing the ANTI-SAT circuit, which makes key extraction
exponentially harder depending on the key size, keys can still be extracted with high
accuracy using novel machine learning algorithms [25, 26].

15

Since key-based obfuscations aim at increasing the reverse engineering effort, required to
recover keys, one of the main metrics of such type of obfuscation is the number of brute
force attempts needed to recover secret keys and the hamming distance between correct
and incorrect outputs of the circuit [1].

Another type of structural obfuscation is key-less obfuscation. Unlike key-based techniques,
if the adversary possesses a netlist of the IC, he can still use it as a "black box" and sell
illegal copies. Still, extracting functional units from the netlist should be harder. Such
strategies include the insertion of cells that are connected to the rest of the circuit but do not
have an impact on the output, thus creating more data the adversary has to analyse before
extracting functional logic [18]. However, there is no quantitative method to measure the
effectiveness of such strategies since it depends on the skills and the equipment of the
adversary.

16

3. Methodology

There are multiple examples of designs that repeatedly instantiate the same module. Such
as in the hardware implementation of neural networks, neurons that contain the multiply-
and-accumulate type of functions are instantiated hundreds to thousands of times [27].
This common design style is also seen in cryptographic hardware accelerators that are
round-based, such as the AES [28]. A generic representation of such a type of system is
shown in Fig. 7 (top panel), where a notion of a shared bus that connects all the repeated
elements is also introduced.

Obfuscated

Original design
No obfuscation in place,

hierarchy is transparent

Instance 2 Instance 3 Bus
 . . .

Instance 1 Instance N

Instance 3 BusInstance 1 Instance N

Bus

 . . .

 . . .

Instance 2 Instance 3 BusInstance 1 Instance N
 . . .

Obfuscated Obfuscated Obfuscated

1-out-of-N obfuscation
Adversary can ignore obfuscated

module and copy others

N-out-of-N obfuscation
Adversary may break one in order to

break all. Significant overheads

Proposed approach
Adversary does not immediately

recognize hierarchy due to diversity

Figure 7. Approaches to obfuscating a hierarchical design, from locking to design diversity.

Next, assuming the system is an IP that is worth protecting against reverse engineering
threats, one could take a state-of-the-art locking approach [29] and apply it to a single
module (second panel). While this approach seems interesting at first – it would withstand
known attacks such as SAT – a capable adversary would bypass the problem entirely by
replacing the obfuscated module with one of the transparent ones. It follows then that all
instances have to be obfuscated under a key-based approach (third panel). However, even
if the approach appears to have merit, once a single module is broken, they may all be
broken. It is also important to note that logic locking approaches are not overhead-free, the
cost to obfuscate all N modules can be rather large [30].

The illustrative example depicted in Fig. 7 is an attempt to demonstrate that current
obfuscation practices have not sufficiently tried to hide the design hierarchy. The different
colours on the bottom panel of the image try to convey this concept of design diversity. In
the next subsection, we briefly discuss the architecture of the GPS correlator, a fundamental

17

part of the GPS module. Afterwards, we introduce a synthesis-based approach to achieve
slightly modified designs in a way that would make it harder for an adversary to notice the
repeated instances.

3.1 GPS Correlator Architecture

This thesis is based on a case study of the GPS correlator hardware obfuscation. The
objective is to develop a key-less structural obfuscation methodology that will be applicable
to circuits that utilise the same module multiple times. One of such ICs are neural network
accelerators which have multiple processing units. And due to the rise in popularity of
AI accelerated applications, their security and IP protection becomes prevalent. GPS
correlator is one of the integral parts of the GPS module. It receives a signal from the
satellite and continuously auto correlates it. Since GPS uses data from at least 4 satellites,
multiple correlators are needed. Moreover, an increased number of correlators can result in
a faster signal acquisition, which can be crucial in some scenarios. The correlator used in
this case study consists of combinational and sequential parts. The combinational part uses
XOR gates to perform correlation, meanwhile, the control unit keeps track of incoming
signals, offsets them, and stores them in registers to perform calculations. A state diagram
of the control unit is presented in figure 8. Data from sensors are read during setting and
loading states, then it is processed during deciding, dividing, offsetting, and running states,
and finally outputted during idle, locked, and read rank states.

Figure 8. State diagram of GPS correlator.

3.2 Proposed synthesis based approach

ASIC design flow can be divided into two phases: logic synthesis and physical synthe-
sis. During logic synthesis, the RTL description of the circuit is mapped into the netlist

18

of standard library cells. Whereas during physical synthesis netlist is further optimised
according to the placement, routing, and timing requirements. There are various opti-
misation techniques applicable during both phases of the design flow, which can have
a significant impact on the overall design. Modern EDA tools like Cadence and Xilinx
have integrated state of the art optimisation techniques, and allow the user to apply them
without the need to manually implement them [31, 32]. Applying optimisation strategies
during logic synthesis results in a different layout of the circuit and as already mentioned
the goal of this thesis is to generate a circuit with multiple copies of an entity with minor
differences in order to increase the effort needed to learn the complete function of the
circuit. Accordingly, we used Cadence Genus and a Nangate 15nm open cell library to
synthesise and optimise the correlator. Genus is highly configurable and offers state of the
art optimization techniques. A total of 9 optimisation strategies were used:

1. Clock Gating
2. Ungrouping
3. Datapath Analytical
4. Bubble Pushing
5. Tighten Max Transition
6. Retiming for Delay
7. Retiming for Area
8. Clock Gating + Retiming for Delay
9. Bubble Pushing + Retiming for Area

Besides optimisation strategies, to generate different designs, we selectively excluded
elements from the design. Specifically, the Nangate library contains 67 elements. And for
each run, a single element was excluded from the design. For instance, in the first run, we
excluded the AND2_X1 element, which is an AND gate with 2 inputs and drive strength
1. The simplest way the synthesiser can replace AND2_X1 is the use of an element with
different drive strength or a different number of inputs, in both cases at least area and
power consumption will be different from the baseline version. However, depending on the
synthesiser it can also use any other element to implement the same functionality. In the
second run, we returned the AND2_X1 but instead emitted the AND2_X2 element which
is also an AND gate with 2 inputs, but it has a different drive strength. This way, each
design will be marginally different from the previous one. First, this process was done
without any optimisations, then it was repeated for the previously mentioned optimisations
and their combinations. Ideally, it would produce:

(Numberofelements+ 1) ∗ (Numberofoptimisations) = 612

19

however, in some cases this difference might not be enough to alter the design significantly
enough, accordingly, we have to check each design and verify that their characteristics,
such as area, power, and critical path delay are different and eliminate the duplicate designs.

Fig. 9 illustrates our methodology that exploits the aforementioned techniques during
the logic synthesis to evaluate the obfuscation of the design’s hierarchy. The complete
process is fully automated and scripted to enable a push-button analysis. We provide RTL
description (i.e., Verilog or VHDL), timing constraint, and standard cell library of the
targeted technology. We use the Nangate 15nm library of standard cells throughout the
evaluation.

RTL

Commercial synthesis tool

Timing constraint

*
 N

an
g
at

e
1
5
n
m Standard cell library

R
ep

ea
tGate level netlist

opt_A + opt_B

dont_use X

O
p
ti

m
iz

at
io

n

Extract cells

Select cell

Data flow analysis

Hierarchical analysis

A
u

to
m

a
te

d
 p

ro
ce

ss

Reports

Figure 9. The methodology to evaluate the hierarchy of design in the context of reverse
engineering.

3.3 Optimisation strategies

3.3.1 Clock gating

Clock gating is a popular power-saving technique. It refers to the activation of the clock
signal in a specific part of the circuit only when there is work to be done [31]. Clock
power can consume a significant portion of the total power usage, thus its optimisation
can have a substantial impact on the overall power usage [31]. Clock power consumption
depends on capacitance, voltage, and frequency, and clock gating helps us reduce switching
capacitance, by avoiding unnecessary state updates to the components [31]. The simplest
clock gating strategies include utilising logic gates such as AND or NOR gates [33]. By
connecting one input of the NOR gate to the clock and the other to the enable signal we
can effectively pass the signal only when both of them are zero and create a clock gating

20

which is especially useful for positive edge triggering circuits [33]. Another popular clock
gating strategy is the RTL clock gating, which identifies flip-flops with a common enable
signal and uses it to control the clock enable signal of the flip-flops [31].

3.3.2 Ungrouping

Ungrouping is the process of merging sub designs into the parent design [34]. It is
especially helpful for floor-planning [35]. Figure 10 brightly demonstrates the result of
ungrouping. One of the ungrouping algorithms is MB*-tree. It has two main stages,
clustering and declustering [36]. During the clustering phase, it groups modules based on
area utilisation and connectivity with other modules [36]. After this comes the declustering
phase, during which newly clustered groups are expanded and additional logic is shared
between modules [36, 35]. It helps us reduce the area by sharing logic and reducing timing
[34].

Figure 10. Ungrouping. Source:[34]

3.3.3 Datapath Analytical

Datapath structure can have a significant impact on the performance, due to which lots
of high-performance VLSI designs datapaths are handcrafted [37]. However, due to the
constantly increasing complexity of designs, manually optimising everything becomes
infeasible. Thus, various analytical datapath optimisation techniques, such as HPWL
have been developed [38, 39, 40]. Since HPWL works during the logic synthesis phase,
its wirelength estimations are not accurate, especially in larger designs [38, 39]. If the
whole optimisation process is divided into multiple parts, datapath performance can be
significantly increased. Specifically, if the datapath circuit’s connectivity regularity is
extracted and used to evenly distribute them during the placement of logic blocks, then
an optimal placement strategy can be achieved [38]. Nonetheless, many other datapath
optimisation strategies exist which might work better in other circumstances, for instance
they might specialise in latch placements. However, optimisation strategies utilised by

21

EDA tools are often proprietary [41].

3.3.4 Bubble Pushing

The practice of applying DeMorgan’s law and duplicating logic to remove trapped inver-
sions is called bubble pushing [42].

3.3.5 Tighten Max Transition

In larger systems where delay timings vary between different logic blocks, a single switch-
ing event can be propagated at different speeds, thus causing multiple switches which can
cause the wrong value to be captured by a latch [43, 44]. Thus, constraining max transition
times can have a significant impact on reliability and power consumption [43, 45]. One
of the most common and efficient delay reduction techniques is buffer insertion [46]. An
optimal number of inverters can be calculated based on the total resistance and capacitance
of the interconnect line [46].

3.3.6 Retiming

Retiming is the process of reorganisation of memory elements in synchronous circuits [47,
48]. It can be focused either on minimising the delay, which is called retiming for delay
or minimising the number of registers and thus achieving area savings, which is called
retiming for area [47]. It was first introduced by Leiserson and Saxe in [49], and various
papers are still published regarding numerous optimisations to the original algorithm [50].

3.4 Evaluation

Finally, a reverse engineering tool, DANA [51, 52, 8], was used to analyse the designs
and evaluate the effectiveness of the method. As we can see from figure 11 depicting
the architecture of the tool. There are three main stages: preprocessing, processing and
evaluation. Processing and evaluation phases are run at least twice [8].

Figure 11. Architectural overview on DANA. Source:[8]

22

First, in the preprocessing phase, it parses through the netlist and identifies all flip-flops,
and traces them until the next memory element is detected [8]. Thus, the flow of data
between flip-flops is also identified. Next, each identified flip-flop is assigned to a unique
group, which during the processing phase gets refined [8]. Each subsequent run of the
processing phase takes the output of the previous evaluation phase as an input. Finally,
during the evaluation phase, all possible groupings generated during the processing phase
are analysed by taking into account the number of occurrences of the single group in the
refined groups as well as the number of small groups, and a single register group is chosen
[8]. If additional information on the register sizes is provided, later referred to as steered
mode, a higher priority is assigned to the groups of specified size. As we can see from
figure 11 output of the evaluation phase is used as an input to the processing phase and final
grouping is generated once there are no changes detected between previous and current
runs. The final output of the tool contains information about detected register groups, their
predecessors, and successors. The number of detected registers and their sizes, as well
as their predecessors and successors, should provide a good indication of the similarity
between different designs.

23

4. Results

This section reports the results of our proposed methodology, based on the case study of a
GPS correlator module. We used the RTL description of the GPS correlator and generated
the results for a single design. We did not change the RTL of the design throughout the
analysis for fairness. Recalling again, the objective was to develop a key-less and structural
obfuscation methodology that would apply to circuits that have modules instantiated
multiple times. Our proposed obfuscation is key-less and infers a little overhead, or almost
zero. The performance does not impact the optimisation techniques. But, the area and
power vary therefore it should be investigated. We have used a very relaxed clock frequency
in order to allow the synthesis tool to make less constrained decisions.

4.1 Power-Performance-Area evaluations

A total of 509 unique designs were generated. Without any optimisations enabled it was
able to generate 55 designs, the rest 12 cases generated one out of 3 already existing designs.
Nevertheless, the number of duplicate designs varies depending on the optimisation strategy.
Most of the unique designs were generated by Tightening Max Transition, Retiming for
Delay, and its combination with Clock gating, however, it should be noted that ungrouping
was not able to generate a single unique design. The detailed number of unique designs
generated per optimisation technique can be seen in table 1

In table 2 we can see the minimum and maximum values of the area, number of cells,

Optimisation Strategies Unique Designs
None 55
Clock Gating 50
Ungrouping 0
Datapath Analytical 56
Bubble Pushing 53
Tighten Max Transition 62
Retiming for Delay 61
Retiming for Area 53
Clock Gating + Retiming for Delay 62
Bubble Pushing + Retiming for Area 57

Table 1. Number of unique designs generated by an optimisation strategy.

24

and dynamic and leakage powers of the generated designs, as well as the optimisation
technique used. Note that min leakage power was achieved by all optimisations except
ungrouping, datapath analytical, and tightening max transition. Together with the normal
distribution graphs 12, 13, 14, 15 below, where red dot represents the location of baseline
design, gives us an idea about the overall results. Figure 12 shows that the baseline design
is closer to the mean value. Almost half of the designs have less area as compared to the
baseline design. This is the same for the number of cells as seen in figure 13. Similarly,
the leakage power of the baseline design, figures 14, 15, are closer to the mean value.
More than half of the designs consume more leakage power as compared to the baseline
design. Regarding the dynamic power, the baseline design is far from the mean value and
a large number of designs consume higher power as compared to the baseline design. It is
noteworthy that we observe the change in the hierarchy of the structure, and the effect of
the variation is reflected in the area, number of cells, leakage power, and dynamic power.

Figure 12. PDFs of the area (µm2)

Next, we are going to observe the percentage increase and decrease of the area, number of
cells, leakage power, and dynamic power. Table 3 lists the analysis of different overheads
for their corresponding techniques. The first column lists the optimisation technique, the
second column shows the percentage increase/decrease in the area, the third column shows
the percentage increase/decrease in the number of cells, and the last two columns represent
the leakage and dynamic power.

25

Figure 13. PDFs of the number of cells

Optimisation technique Area (µm2) Cells Leakage power (mW) Dynamic power (mW)
Min Max Min Max Min Max Min Max

Baseline 432.9 461.6 762 845 0.012 0.013 2.368 2.414
Clock Gating 432.7 462.2 750 810 0.012 0.013 0.600 0.935
Ungrouping 432.9 461.6 762 845 0.012 0.013 2.368 2.414
Datapath Analytical 433.2 458.8 750 821 0.012 0.013 2.368 2.431
Bubble Pushing 437.1 459.1 758 840 0.012 0.013 2.293 2.469
Tightening max transition 598.8 990.3 1168 1644 0.022 0.062 0.706 2.091
Retiming for Delay 440.9 600.9 737 1047 0.012 0.018 2.944 4.398
Retiming for Area 434.7 458.8 767 840 0.012 0.013 2.399 2.460
Clock Gating + Retiming for Delay 425.2 560.9 711 966 0.012 0.018 1.084 1.562
Bubble Pushing + Retiming for Area 440.0 460.3 755 842 0.012 0.013 2.350 2.537

Table 2. Minimum and Maximum values of area, number of cells, leakage and dynamic
power of the generated designs

We note that clock gating offers a significant decrease in dynamic power. Datapath
analytical lowers area, cells, and dynamic power between 1-3%. The same is happening
for the bubble pushing. Tightening max transition has a significant impact on the area,
cells, and leakage power. But it shows a remarkable decrease in the dynamic power
(84.3%). We should note that a large number of distinct designs were generated from this
technique. The retiming for delay also has a similar behaviour for area and cells (20.18%
and 12.71% increase) but it also shows an increase in the leakage and dynamic power. The
combination of clock gating and retiming for delay shows an increase in every parameter
except dynamic power, analogous to tightening max transition. The combination of bubble
pushing and retiming for the area also shows a little increase/decrease in the parameters. In
a nutshell, all the techniques have little impact on the area, cells, and power consumption

26

Figure 14. PDFs of the leakage power (mW)

except tightening max transition, retiming for delay, and a combination of clock gating &
retiming for delay.

4.2 Dana security analysis

Dana was used in both steered and normal mode. In steered mode, register sizes of 10
and 1115 were specified. Pyvis [53] library was used to generate graphs from the results
generated by Dana. It allows us to clearly see distinctions between different groupings.
Each bubble on the graph represents a register group. The size of the bubble shows how
many bits are in the register, the larger the size of the bubble the larger the size of the
register, straight lines show the interconnection between different registers, and circular
lines are connections from the register to itself. If we take graphs in figures 16, 17, 18,
19, based on normal mode 4 major clusters were identified by Dana. Based on this, we
can conclude that there are 4 major types of designs to which all other designs converge
to. Figure 16 shows the baseline design that includes different sized registers, but it still
contains two registers with size 10, which can be a straightforward clue for an adversary
to reconstruct the registers and their connected circuitry. Nevertheless, if we examine
figures with optimisations enabled we can see that in figure 17, where we had enabled
clock gating, we can see different 10-bit registers, however, a large number of registers are

27

Figure 15. PDFs of the dynamic power (mW)

diminished and only a few of them with varying sizes are left. It allows us to clearly see
distinctions between different groupings. In these unrolled designs, the sizes of the register
do not correspond to the correct sizes declared in the RTL code. Fig. 18 shows the graph
for the synthesised design with retiming for delay. Here, we can analyse that the complete
graph consists of a large number of registers and we still can see a 10-bit register. This also
offers a unique structure of the design and DANA is unable to map it in the same way. In
the next example, shown in Fig. 19, we exploit two different optimisations (clock-gating
and retiming for delay) at the same time. Again, we obtain a distinct graph. To summarise
these results, we can confidently state that a design composed of many instances of the
same module but each instance is synthesised differently, will present itself as a challenge
to a reverse engineering adversary.

All these experiments presented so far were executed in the normal mode of DANA. Now,
we exploit the steer mode of DANA with the register size of 10-bits as shown in Fig.
20. It is a fair assumption that from a non-steered mode, an adversary might reach the
conclusion that 10-bit registers are present. We can see that the structure of the design is
explicitly different from the previous ones. DANA still is unable to highlight clues even
in steering mode. This implied a high level of obfuscation for the design. The adversary
makes use of the different reverse engineering tools along with high skills but still, it
requires an additional effort to correctly identify the design. Our applied optimisation

28

Optimisation technique Area (%) Cells (%) Dynamic Power (%) Leakage Power
Clock gating -0.3 -0.7 -119.4 0
Ungrouping 0 0 0 0
Datapath analytical -1.4 -2.9 -0.4 0
Bubble pushing -0.5 -0.7 -2.7 0
Tighten max transition +69.8 +60.1 -84.3 +131.4
Retiming for delay +20.1 +12.7 +51.3 +28.5
Retiming for area -0.5 -0.3 +0.7 0
Clock gating + Retiming for delay +18.9 +13.6 -66.5 +34.4
Bubble pushing + Retiming for area +0.4 -2.1 +4.5 0

Table 3. Percent increase/decrease in the baseline design and a variants generated with the
corresponding optimisation technique

techniques perfectly modify the structure of the design. This places barriers on DANA’s
clustering algorithm which incorrectly identifies the register group. This is the case for
every optimisation technique.

4.3 Discussion

As already mentioned we can not prevent anyone from reverse engineering the circuit,
nevertheless, we can delay it and make it an unattractive target. Moreover, since the
skills and equipment of adversaries are diverse, we can not objectively and quantitatively
measure how long it would take anyone to reverse engineer the design. As we saw in the
previous section, leveraging logic synthesis and different optimisation strategies had a
significant impact on the hierarchy of the design. Thus, the optimisation techniques are
contributing towards obfuscation, to confuse the adversary to understand the architecture of
design. Based on this we can definitely say that due to the high divergence of the generated
designs adversary would have to analyse each of them separately, thus increasing the effort
needed. Moreover, since our flow for the obfuscation is completely automated and does
not incur high overheads, nor RTL changes, it becomes a highly attractive solution for
circuit designers.

Although, it will vary from design to design, in our case study difference between designs’
areas and cell counts difference were up to 80%, in terms of dynamic power up to 150%,
and approximately 135% in terms of leakage power. Nevertheless, the average overhead
in terms of area is 16.58%, in terms of cell count 15%, in terms of dynamic power 109%,
and in terms of leakage power 40%. Even though average dynamic power is more than
doubled than the baseline version, in applications where power consumption is a priority,
tightening max transition and retiming for delay can be excluded from the list to meet the
design goals and keep overheads under control. However, many other optimisations still
remain attractive solutions.

29

Figure 16. Graph of the register group for baseline design

Figure 17. Graph of the register group for the clock-gated design

30

Figure 18. Graph of the register group for the retiming (delay)

Figure 19. Graph of the register group for the clock-gating and retiming (delay)

31

Figure 20. Graph of the register group for the clock-gating and retiming (delay) with
steered mode (Register size 10).

32

5. Conclusions

The advancements in IC production and the increasing availability of reverse engineering
tools highlighted the need for hardware security. This is why in this thesis we presented a
novel approach to generating hundreds of unique designs from a single one, in an attempt
to confuse the adversary and delay the reverse engineering of the design. We demonstrated
in the case study of a GPS correlator the effectiveness of the approach and analysed the
overhead in terms of area and power. We saw that generated designs were clustered in
multiple groups by the state of the art reverse engineering tool DANA, which means that
the adversary would have to put an extra effort to analyse them separately. Even though
in our case study the average dynamic and leakage powers increased significantly, the
results will vary from design to design and the synthesis tools utilised. Nevertheless,
the approach showed promising results, meaning that it could help protect circuits that
instantiate the same module multiple times. Despite promising results, due to the high
range of adversary’s skills and equipment, it is impossible to quantitatively measure how
much harder it is to reverse engineer and the amount of additional effort needed to learn
the complete functionality of the circuit.

In the future, another synthesis tool can be used with both academic and commercial cell
libraries. Moreover, other reverse engineering tools such as RELIC can be used to analyse
the designs. Additionally, the ICs can be manufactured and analysed to examine whether
design diversity holds after physical implementation. Moreover, since the synthesis of
larger circuits is time consuming, synthesising hundreds of designs when only several of
them are needed is inefficient thus a methodology can be developed which can suggest
which optimisation strategy to utilise and what would be the approximate divergence from
the baseline version.

33

Bibliography

[1] Masoud Rostami, Farinaz Koushanfar, and Ramesh Karri. “A Primer on Hardware
Security: Models, Methods, and Metrics”. In: Proceedings of the IEEE 102.8 (2014),
pp. 1283–1295. DOI: 10.1109/jproc.2014.2335155.

[2] Ed Sperling. Fundamental changes in economics of Chip Security. 2020. URL:
https : / / semiengineering . com / fundamental - changes - in -

economics-of-security/.

[3] Yiran Chen et al. “A Survey of Accelerator Architectures for Deep Neural Net-
works”. In: Engineering 6.3 (2020), pp. 264–274. ISSN: 2095-8099. DOI: https:
//doi.org/10.1016/j.eng.2020.01.007. URL: https://www.
sciencedirect.com/science/article/pii/S2095809919306356.

[4] Hadi Esmaeilzadeh et al. “Neural Acceleration for General-Purpose Approximate
Programs”. In: 2012 45th Annual IEEE/ACM International Symposium on Microar-

chitecture. 2012, pp. 449–460. DOI: 10.1109/MICRO.2012.48.

[5] Mark C. Hansen, Hakan Yalcin, and John P. Hayes. “Unveiling the ISCAS-85
benchmarks: a case study in reverse engineering”. In: IEEE Design & Test of

Computers 16.3 (1999), pp. 72–80. DOI: 10.1109/54.785838.

[6] Pramod Subramanyan et al. “Reverse Engineering Digital Circuits Using Functional
Analysis”. In: Design, Automation & Test in Europe Conference & Exhibition

(DATE), 2013. IEEE Conference Publications, 2013. DOI: 10.7873/date.
2013.264.

[7] Wenchao Li, Zach Wasson, and Sanjit A. Seshia. “Reverse engineering circuits using
behavioral pattern mining”. In: 2012 IEEE International Symposium on Hardware-

Oriented Security and Trust. IEEE, 2012. DOI: 10.1109/hst.2012.6224325.

[8] Nils Albartus et al. “DANA Universal Dataflow Analysis for Gate-Level Netlist
Reverse Engineering”. In: IACR Transactions on Cryptographic Hardware and

Embedded Systems (2020), pp. 309–336. DOI: 10.46586/tches.v2020.i4.
309-336.

[9] Stjepan Picek et al. “Side-channel analysis and machine learning: A practical
perspective”. In: 2017 International Joint Conference on Neural Networks (IJCNN).
2017, pp. 4095–4102. DOI: 10.1109/IJCNN.2017.7966373.

34

https://doi.org/10.1109/jproc.2014.2335155
https://semiengineering.com/fundamental-changes-in-economics-of-security/
https://semiengineering.com/fundamental-changes-in-economics-of-security/
https://doi.org/https://doi.org/10.1016/j.eng.2020.01.007
https://doi.org/https://doi.org/10.1016/j.eng.2020.01.007
https://www.sciencedirect.com/science/article/pii/S2095809919306356
https://www.sciencedirect.com/science/article/pii/S2095809919306356
https://doi.org/10.1109/MICRO.2012.48
https://doi.org/10.1109/54.785838
https://doi.org/10.7873/date.2013.264
https://doi.org/10.7873/date.2013.264
https://doi.org/10.1109/hst.2012.6224325
https://doi.org/10.46586/tches.v2020.i4.309-336
https://doi.org/10.46586/tches.v2020.i4.309-336
https://doi.org/10.1109/IJCNN.2017.7966373

[10] Mark Randolph and William Diehl. “Power side-channel attack analysis: A review
of 20 years of study for the layman”. In: Cryptography 4.2 (2020), p. 15.

[11] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. “Template attacks”. In: Inter-

national Workshop on Cryptographic Hardware and Embedded Systems. Springer.
2002, pp. 13–28.

[12] John Demme et al. “Side-channel vulnerability factor: A metric for measuring
information leakage”. In: 2012 39th Annual International Symposium on Computer

Architecture (ISCA). IEEE. 2012, pp. 106–117.

[13] Mohammad Tehranipoor and Farinaz Koushanfar. “A Survey of Hardware Trojan
Taxonomy and Detection”. In: IEEE Design Test of Computers 27.1 (2010), pp. 10–
25. DOI: 10.1109/MDT.2010.7.

[14] Xiaoxiao Wang, Mohammad Tehranipoor, and Jim Plusquellic. “Detecting mali-
cious inclusions in secure hardware: Challenges and solutions”. In: 2008 IEEE

International Workshop on Hardware-Oriented Security and Trust. IEEE. 2008,
pp. 15–19.

[15] Andrew B. Kahng et al. “Watermarking techniques for intellectual property pro-
tection”. In: Proceedings of the 35th annual Design Automation Conference. 1998,
pp. 776–781.

[16] Tiago D. Perez and Samuel Pagliarini. “A Survey on Split Manufacturing: Attacks,
Defenses, and Challenges”. In: IEEE Access 8 (2020), pp. 184013–184035. DOI:
10.1109/ACCESS.2020.3029339.

[17] Takeshi Sugawara et al. “Reversing Stealthy Dopant-Level Circuits”. In: Lecture

Notes in Computer Science. Springer Berlin Heidelberg, 2014, pp. 112–126. DOI:
10.1007/978-3-662-44709-3_7.

[18] Arunkumar Vijayakumar et al. “Physical Design Obfuscation of Hardware: A
Comprehensive Investigation of Device and Logic-Level Techniques”. In: IEEE

Transactions on Information Forensics and Security 12.1 (2017), pp. 64–77. DOI:
10.1109/tifs.2016.2601067.

[19] James C. Tsang, Jeffrey A. Kash, and David P. Vallett. “Picosecond imaging circuit
analysis”. In: IBM Journal of Research and Development 44.4 (2000), pp. 583–603.
DOI: 10.1147/rd.444.0583.

[20] Jeyavijayan Rajendran et al. “Security analysis of integrated circuit camouflaging”.
In: Proceedings of the 2013 ACM SIGSAC conference on Computer & communica-

tions security. 2013, pp. 709–720.

35

https://doi.org/10.1109/MDT.2010.7
https://doi.org/10.1109/ACCESS.2020.3029339
https://doi.org/10.1007/978-3-662-44709-3_7
https://doi.org/10.1109/tifs.2016.2601067
https://doi.org/10.1147/rd.444.0583

[21] Jarrod A. Roy, Farinaz Koushanfar, and Igor L. Markov. “EPIC: Ending Piracy of
Integrated Circuits”. In: 2008 Design, Automation and Test in Europe. IEEE, 2008.
DOI: 10.1109/date.2008.4484823.

[22] Jeyavijayan Rajendran et al. “Security analysis of logic obfuscation”. In: Proceed-

ings of the 49th Annual Design Automation Conference on - DAC ’12. ACM Press,
2012. DOI: 10.1145/2228360.2228377.

[23] Sarah Amir et al. “Development and Evaluation of Hardware Obfuscation Bench-
marks”. In: Journal of Hardware and Systems Security 2.2 (2018), pp. 142–161.
DOI: 10.1007/s41635-018-0036-3.

[24] Pramod Subramanyan, Sayak Ray, and Sharad Malik. “Evaluating the security of
logic encryption algorithms”. In: 2015 IEEE International Symposium on Hardware

Oriented Security and Trust (HOST). IEEE. 2015, pp. 137–143.

[25] Prabuddha Chakraborty, Jonathan Cruz, and Swarup Bhunia. “SAIL: Machine
learning guided structural analysis attack on hardware obfuscation”. In: 2018 Asian

Hardware Oriented Security and Trust Symposium (AsianHOST). IEEE. 2018,
pp. 56–61.

[26] Yang Xie and Ankur Srivastava. “Anti-SAT: Mitigating SAT attack on logic locking”.
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

38.2 (2018), pp. 199–207.

[27] Javier M. Duarte et al. “Fast inference of deep neural networks in FPGAs for particle
physics”. In: Journal of Instrumentation 13.07 (2018).

[28] Homer Hsing. AES-128. 2013. URL: https://opencores.org/projects/
tiny%5C_aes.

[29] Zhaokun Han, Muhammad Yasin, and Jeyavijayan (JV) Rajendran. “Does logic
locking work with EDA tools?” In: 30th USENIX Security Symposium (USENIX

Security 21). USENIX Association, 2021, pp. 1055–1072. ISBN: 978-1-939133-24-3.
URL: https://www.usenix.org/conference/usenixsecurity21/
presentation/han-zhaokun.

[30] Sophie Dupuis and Marie-Lise Flottes. “Logic Locking: A Survey of Proposed
Methods and Evaluation Metrics”. In: Journal of Electronic Testing 35.3 (2019),
pp. 273–291. DOI: 10.1007/s10836-019-05800-4. URL: https://hal-
lirmm.ccsd.cnrs.fr/lirmm-02128826.

[31] Jitesh Shinde and Suresh S. Salankar. “Clock gating — A power optimizing tech-
nique for VLSI circuits”. In: 2011 Annual IEEE India Conference. 2011, pp. 1–4.
DOI: 10.1109/INDCON.2011.6139440.

36

https://doi.org/10.1109/date.2008.4484823
https://doi.org/10.1145/2228360.2228377
https://doi.org/10.1007/s41635-018-0036-3
https://opencores.org/projects/tiny%5C_aes
https://opencores.org/projects/tiny%5C_aes
https://www.usenix.org/conference/usenixsecurity21/presentation/han-zhaokun
https://www.usenix.org/conference/usenixsecurity21/presentation/han-zhaokun
https://doi.org/10.1007/s10836-019-05800-4
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02128826
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02128826
https://doi.org/10.1109/INDCON.2011.6139440

[32] Prasanth Chatarasi et al. “Vyasa: A High-Performance Vectorizing Compiler for
Tensor Convolutions on the Xilinx AI Engine”. In: 2020 IEEE High Performance Ex-

treme Computing Conference (HPEC). IEEE, 2020. DOI: 10.1109/hpec43674.
2020.9286183.

[33] Nandita Srinivasan et al. “Power Reduction by Clock Gating Technique”. In: Proce-

dia Technology 21 (2015), pp. 631–635. DOI: 10.1016/j.protcy.2015.10.
075.

[34] Smitha Iyengar and Lakshmi Shrinivasan. “Power, Performance and Area Optimiza-
tion of I/O Design”. In: 2018 International Conference on Inventive Research in

Computing Applications (ICIRCA). IEEE, 2018. DOI: 10.1109/icirca.2018.
8597347.

[35] Naushad Manzoor Laskar et al. “A survey on VLSI Floorplanning: Its representation
and modern approaches of optimization”. In: 2015 International Conference on

Innovations in Information, Embedded and Communication Systems (ICIIECS).
IEEE, 2015. DOI: 10.1109/iciiecs.2015.7192989.

[36] Hsun-Cheng Lee et al. “Multilevel floorplanning/placement for large-scale modules
using B∗ − trees”. In: Proceedings of the 40th conference on Design automation -

DAC ’03. ACM Press, 2003. DOI: 10.1145/775832.776037.

[37] Igor L. Markov, Jin Hu, and Myung-Chul Kim. “Progress and Challenges in VLSI
Placement Research”. In: Proceedings of the IEEE 103.11 (2015), pp. 1985–2003.
DOI: 10.1109/jproc.2015.2478963.

[38] Sheng Chou, Meng-Kai Hsu, and Yao-Wen Chang. “Structure-aware placement for
datapath-intensive circuit designs”. In: Proceedings of the 49th Annual Design Au-

tomation Conference on - DAC ’12. ACM Press, 2012. DOI: 10.1145/2228360.
2228498.

[39] Minsik Cho et al. “LatchPlanner: Latch placement algorithm for datapath-oriented
high-performance VLSI designs”. In: 2013 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD). IEEE, 2013. DOI: 10.1109/iccad.2013.
6691141.

[40] Thomas Kutzschebauch and Leon Stok. “Regularity driven logic synthesis”. In:
IEEE/ACM International Conference on Computer Aided Design. ICCAD - 2000.

IEEE/ACM Digest of Technical Papers (Cat. No.00CH37140). IEEE. DOI: 10.
1109/iccad.2000.896511.

[41] Samuel Pagliarini et al. “Evaluating Architectural, Redundancy, and Implementa-
tion Strategies for Radiation Hardening of FinFET Integrated Circuits”. In: IEEE

Transactions on Nuclear Science 68.5 (2021), pp. 1045–1053. DOI: 10.1109/
tns.2021.3070643.

37

https://doi.org/10.1109/hpec43674.2020.9286183
https://doi.org/10.1109/hpec43674.2020.9286183
https://doi.org/10.1016/j.protcy.2015.10.075
https://doi.org/10.1016/j.protcy.2015.10.075
https://doi.org/10.1109/icirca.2018.8597347
https://doi.org/10.1109/icirca.2018.8597347
https://doi.org/10.1109/iciiecs.2015.7192989
https://doi.org/10.1145/775832.776037
https://doi.org/10.1109/jproc.2015.2478963
https://doi.org/10.1145/2228360.2228498
https://doi.org/10.1145/2228360.2228498
https://doi.org/10.1109/iccad.2013.6691141
https://doi.org/10.1109/iccad.2013.6691141
https://doi.org/10.1109/iccad.2000.896511
https://doi.org/10.1109/iccad.2000.896511
https://doi.org/10.1109/tns.2021.3070643
https://doi.org/10.1109/tns.2021.3070643

[42] Tyler J. Thorp, Gin S. Yee, and Carl M. Sechen. “Design and synthesis of dynamic
circuits”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems

11.1 (2003), pp. 141–149. DOI: 10.1109/tvlsi.2002.800518.

[43] Chin-Chi Teng, Anthony M. Hill, and Sung-Mo Kang. “Estimation of maximum
transition counts at internal nodes in CMOS VLSI circuits”. In: Proceedings of

IEEE International Conference on Computer Aided Design (ICCAD). IEEE Comput.
Soc. Press. DOI: 10.1109/iccad.1995.480142.

[44] Yajun Ran et al. “Eliminating false positives in crosstalk noise analysis”. In: IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 24.9
(2005), pp. 1406–1419. DOI: 10.1109/tcad.2005.850829.

[45] Mohamed Chentouf and Alaoui Zine El Abidine. “Evaluating the Impact of Max
Transition Constraint Variations on Power Reduction Capabilities in Cell-Based
Designs”. In: Journal of Low Power Electronics and Applications 7.4 (2017), p. 25.
DOI: 10.3390/jlpea7040025.

[46] Jason Cong et al. “Performance optimization of VLSI interconnect layout”. In:
Integration 21.1-2 (1996), pp. 1–94. DOI: 10.1016/s0167-9260(96)00008-
9.

[47] Naresh Maheshwari and Sachin Sapatnekar. “Efficient retiming of large circuits”.
In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 6.1 (1998),
pp. 74–83. DOI: 10.1109/92.661250.

[48] Nagesh Shenoy and Richard Rudell. “Efficient Implementation Of Retiming”. In:
IEEE/ACM International Conference on Computer-Aided Design. IEEE. DOI: 10.
1109/iccad.1994.629770.

[49] Charles E. Leiserson, Flavio M. Rose, and James B. Saxe. “Optimizing Synchronous
Circuitry by Retiming (Preliminary Version)”. In: Third Caltech Conference on

Very Large Scale Integration. Springer Berlin Heidelberg, 1983, pp. 87–116. DOI:
10.1007/978-3-642-95432-0_7.

[50] Vinita Pandey, Subhash C. Yadav, and Priya Arora. “Retiming technique for clock
period minimization using shortest path algorithm”. In: 2016 International Confer-

ence on Computing, Communication and Automation (ICCCA). IEEE, 2016. DOI:
10.1109/ccaa.2016.7813942.

[51] Embedded Security Group. HAL - The Hardware Analyzer. https://github.
com/emsec/hal. 2019.

[52] Marc Fyrbiak et al. “HAL- The Missing Piece of the Puzzle for Hardware Reverse
Engineering, Trojan Detection and Insertion”. In: IEEE Transactions on Dependable

and Secure Computing (2018).

38

https://doi.org/10.1109/tvlsi.2002.800518
https://doi.org/10.1109/iccad.1995.480142
https://doi.org/10.1109/tcad.2005.850829
https://doi.org/10.3390/jlpea7040025
https://doi.org/10.1016/s0167-9260(96)00008-9
https://doi.org/10.1016/s0167-9260(96)00008-9
https://doi.org/10.1109/92.661250
https://doi.org/10.1109/iccad.1994.629770
https://doi.org/10.1109/iccad.1994.629770
https://doi.org/10.1007/978-3-642-95432-0_7
https://doi.org/10.1109/ccaa.2016.7813942
https://github.com/emsec/hal
https://github.com/emsec/hal

[53] West Health Institute. Pyvis. https://github.com/WestHealth/pyvis.
2018.

39

https://github.com/WestHealth/pyvis

Appendices

Appendix 1 - GPS Correlator Code

module c o r _ f l e x (c lk , r s t _ n , enab l e , d a t a _ f r o m _ s e n s o r , s a t e l l i t e , o f f s e t , k e y _ b i t s , k e y _ s e l , locked , r a n k i n g) ;
input c l k ;
input r s t _ n ;
input e n a b l e ;
input d a t a _ f r o m _ s e n s o r ;
input [4 : 0] s a t e l l i t e ; / / range i s [0 . . 3 1] , so 5 b i t s are needed
input [9 : 0] o f f s e t ; / / range i s [0 . . 1 0 2 2] , so 10 b i t s are neede
input [3 : 0] k e y _ b i t s ;
input [1 : 0] k e y _ s e l ;
output reg l o c k e d ;
output reg s ig ned [10 : 0] r a n k i n g ; / / b e s t case s c e n a r i o w i l l have a match on a l l 1023 b i t s . I need 10 b i t s t o s t o r e

t h a t . p l u s one f o r s i g n a l

localparam STATE_SIZE = 4 ;
localparam WAITING = 4 ’ d0 ;
localparam DECIDING = 4 ’ d1 ;
localparam OFFSETTING = 4 ’ d2 ;
localparam RUNNING = 4 ’ d3 ;
localparam IDLE = 4 ’ d4 ;
localparam LOCKED = 4 ’ d5 ;
localparam READ_RANK = 4 ’ d6 ;
localparam SETTING = 4 ’ d7 ;
localparam DIVIDING = 4 ’ d8 ;
localparam CRCING = 4 ’ d9 ;
localparam LOADING= 4 ’ d10 ;

reg [STATE_SIZE−1 : 0] s t a t e , n e x t _ s t a t e ;

reg [4 : 0] l o c a l _ s a t e l l i t e , n e x t _ l o c a l _ s a t e l l i t e ;
reg [9 : 0] l o c a l _ o f f s e t , n e x t _ l o c a l _ o f f s e t ;
reg [9 : 0] l o c a l _ g 1 _ s e t t i n g , n e x t _ g 1 _ s e t t i n g ;
reg [9 : 0] l o c a l _ r u n t i m e , n e x t _ r u n t i m e ;
reg d i v _ s e l , n e x t _ d i v _ s e l ;
reg n e x t _ l o c k e d ;
reg [10 : 0] n e x t _ r a n k i n g ;

localparam SEQ_SIZE = 1023 ;
localparam SEQ_SIZE_LIMIT = 10 ’ d1022 ;
localparam SEED = 10 ’ b1111111111 ;

reg [9 : 0] g1 , nex t_g1 ; / / G1 has f e e d b a c k from p o s i t i o n 3 and 10 , and i t i s c o n s t a n t f o r a l l s a t e l l i t e s
wire t a p _ f o r _ g 1 _ g 6 ;
wire and_out_g6 ;
and (and_out_g6 , g1 [9] , l o c a l _ g 1 _ s e t t i n g [6]) ;
xor (t a p _ f o r _ g 1 _ g 6 , g1 [5] , and_out_g6) ;

wire t a p _ f o r _ g 1 _ g 2 ;
wire and_out_g2 ;
and (and_out_g2 , g1 [9] , l o c a l _ g 1 _ s e t t i n g [2]) ;
xor (t a p _ f o r _ g 1 _ g 2 , g1 [1] , and_out_g2) ;

wire t a p _ f o r _ g 1 _ g 1 ;
wire and_out_g1 ;
and (and_out_g1 , g1 [9] , l o c a l _ g 1 _ s e t t i n g [1]) ;
xor (t a p _ f o r _ g 1 _ g 1 , g1 [0] , and_out_g1) ;

wire t a p _ f o r _ g 1 _ g 3 ;
wire and_out_g3 ;

40

and (and_out_g3 , g1 [9] , l o c a l _ g 1 _ s e t t i n g [3]) ;
xor (t a p _ f o r _ g 1 _ g 3 , g1 [2] , and_out_g3) ;

wire t a p _ f o r _ g 1 _ g 4 ;
wire and_out_g4 ;
and (and_out_g4 , g1 [9] , l o c a l _ g 1 _ s e t t i n g [4]) ;
xor (t a p _ f o r _ g 1 _ g 4 , g1 [3] , and_out_g4) ;

wire t a p _ f o r _ g 1 _ g 5 ;
wire and_out_g5 ;
and (and_out_g5 , g1 [9] , l o c a l _ g 1 _ s e t t i n g [5]) ;
xor (t a p _ f o r _ g 1 _ g 5 , g1 [4] , and_out_g5) ;

wire t a p _ f o r _ g 1 _ g 7 ;
wire and_out_g7 ;
and (and_out_g7 , g1 [9] , l o c a l _ g 1 _ s e t t i n g [7]) ;
xor (t a p _ f o r _ g 1 _ g 7 , g1 [6] , and_out_g7) ;

wire t a p _ f o r _ g 1 _ g 8 ;
wire and_out_g8 ;
and (and_out_g8 , g1 [9] , l o c a l _ g 1 _ s e t t i n g [8]) ;
xor (t a p _ f o r _ g 1 _ g 8 , g1 [7] , and_out_g8) ;

wire t a p _ f o r _ g 1 _ g 9 ;
wire and_out_g9 ;
and (and_out_g9 , g1 [9] , l o c a l _ g 1 _ s e t t i n g [9]) ;
xor (t a p _ f o r _ g 1 _ g 9 , g1 [8] , and_out_g9) ;

wire d i v i d _ i n ;
xor (d i v i d _ i n , g1 [9] , d a t a _ f r o m _ s e n s o r) ;

wire t a p _ f o r _ g 1 _ g 0 ;
a s s i g n t a p _ f o r _ g 1 _ g 0 = d i v _ s e l ? d i v i d _ i n : g1 [9] ;

reg [9 : 0] g2 , nex t_g2 ;
wire t a p _ f o r _ g 2 ;
xor (t a p _ f o r _ g 2 , g2 [1] , g2 [2] , g2 [5] , g2 [7] , g2 [8] , g2 [9]) ; / / G2 has f e e d b a c k from 2 , 3 , 6 , 8 , 9 , and 1 0 . c o n s t a n t f o r a l l

s a t e l l i t e s

wire f i n a l _ s u m 1 ;
xor (f i na l_ sum1 , g1 [6] , g2 [1] , g2 [5]) ;

wire f i n a l _ s u m 2 ;
xor (f i na l_ sum2 , g1 [6] , g2 [2] , g2 [6]) ;

wire f i n a l _ s u m 3 ;
xor (f i na l_ sum3 , g1 [6] , g2 [3] , g2 [7]) ;

wire f i n a l _ s u m 4 ;
xor (f i na l_ sum4 , g1 [6] , g2 [4] , g2 [8]) ;

wire f i n a l _ s u m 5 ;
xor (f i na l_ sum5 , g1 [6] , g2 [0] , g2 [8]) ;

wire f i n a l _ s u m 6 ;
xor (f i na l_ sum6 , g1 [6] , g2 [1] , g2 [9]) ;

wire f i n a l _ s u m 7 ;
xor (f i na l_ sum7 , g1 [6] , g2 [0] , g2 [7]) ;

wire f i n a l _ s u m 8 ;
xor (f i na l_ sum8 , g1 [6] , g2 [1] , g2 [8]) ;

wire f i n a l _ s u m 9 ;
xor (f i na l_ sum9 , g1 [6] , g2 [2] , g2 [9]) ;

wire f i n a l _ s u m 1 0 ;
xor (f i na l_ sum10 , g1 [6] , g2 [1] , g2 [2]) ;

wire f i n a l _ s u m 1 1 ;
xor (f i na l_ sum11 , g1 [6] , g2 [2] , g2 [3]) ;

wire f i n a l _ s u m 1 2 ;
xor (f i na l_ sum12 , g1 [6] , g2 [4] , g2 [5]) ;

wire f i n a l _ s u m 1 3 ;

41

xor (f i na l_ sum13 , g1 [6] , g2 [5] , g2 [6]) ;

wire f i n a l _ s u m 1 4 ;
xor (f i na l_ sum14 , g1 [6] , g2 [6] , g2 [7]) ;

wire f i n a l _ s u m 1 5 ;
xor (f i na l_ sum15 , g1 [6] , g2 [7] , g2 [8]) ;

wire f i n a l _ s u m 1 6 ;
xor (f i na l_ sum16 , g1 [6] , g2 [8] , g2 [9]) ;

wire f i n a l _ s u m 1 7 ;
xor (f i na l_ sum17 , g1 [6] , g2 [0] , g2 [3]) ;

wire f i n a l _ s u m 1 8 ;
xor (f i na l_ sum18 , g1 [6] , g2 [1] , g2 [4]) ;

wire f i n a l _ s u m 1 9 ;
xor (f i na l_ sum19 , g1 [6] , g2 [2] , g2 [5]) ;

wire f i n a l _ s u m 2 0 ;
xor (f i na l_ sum20 , g1 [6] , g2 [3] , g2 [6]) ;

wire f i n a l _ s u m 2 1 ;
xor (f i na l_ sum21 , g1 [6] , g2 [4] , g2 [7]) ;

wire f i n a l _ s u m 2 2 ;
xor (f i na l_ sum22 , g1 [6] , g2 [5] , g2 [8]) ;

wire f i n a l _ s u m 2 3 ;
xor (f i na l_ sum23 , g1 [6] , g2 [0] , g2 [2]) ;

wire f i n a l _ s u m 2 4 ;
xor (f i na l_ sum24 , g1 [6] , g2 [3] , g2 [5]) ;

wire f i n a l _ s u m 2 5 ;
xor (f i na l_ sum25 , g1 [6] , g2 [4] , g2 [6]) ;

wire f i n a l _ s u m 2 6 ;
xor (f i na l_ sum26 , g1 [6] , g2 [5] , g2 [7]) ;

wire f i n a l _ s u m 2 7 ;
xor (f i na l_ sum27 , g1 [6] , g2 [6] , g2 [8]) ;

wire f i n a l _ s u m 2 8 ;
xor (f i na l_ sum28 , g1 [6] , g2 [7] , g2 [9]) ;

wire f i n a l _ s u m 2 9 ;
xor (f i na l_ sum29 , g1 [6] , g2 [0] , g2 [5]) ;

wire f i n a l _ s u m 3 0 ;
xor (f i na l_ sum30 , g1 [6] , g2 [1] , g2 [6]) ;

wire f i n a l _ s u m 3 1 ;
xor (f i na l_ sum31 , g1 [6] , g2 [2] , g2 [7]) ;

wire f i n a l _ s u m 3 2 ;
xor (f i na l_ sum32 , g1 [6] , g2 [3] , g2 [8]) ;

reg u s e _ t h i s _ s u m ;
always @(*) begin

u s e _ t h i s _ s u m = 0 ;

case (l o c a l _ s a t e l l i t e)
5 ’ d0 : u s e _ t h i s _ s u m = f i n a l _ s u m 1 ;
5 ’ d1 : u s e _ t h i s _ s u m = f i n a l _ s u m 2 ;
5 ’ d2 : u s e _ t h i s _ s u m = f i n a l _ s u m 3 ;
5 ’ d3 : u s e _ t h i s _ s u m = f i n a l _ s u m 4 ;
5 ’ d4 : u s e _ t h i s _ s u m = f i n a l _ s u m 5 ;
5 ’ d5 : u s e _ t h i s _ s u m = f i n a l _ s u m 6 ;
5 ’ d6 : u s e _ t h i s _ s u m = f i n a l _ s u m 7 ;
5 ’ d7 : u s e _ t h i s _ s u m = f i n a l _ s u m 8 ;
5 ’ d8 : u s e _ t h i s _ s u m = f i n a l _ s u m 9 ;
5 ’ d9 : u s e _ t h i s _ s u m = f i n a l _ s u m 1 0 ;
5 ’ d10 : u s e _ t h i s _ s u m = f i n a l _ s u m 1 1 ;
5 ’ d11 : u s e _ t h i s _ s u m = f i n a l _ s u m 1 2 ;
5 ’ d12 : u s e _ t h i s _ s u m = f i n a l _ s u m 1 3 ;
5 ’ d13 : u s e _ t h i s _ s u m = f i n a l _ s u m 1 4 ;
5 ’ d14 : u s e _ t h i s _ s u m = f i n a l _ s u m 1 5 ;
5 ’ d15 : u s e _ t h i s _ s u m = f i n a l _ s u m 1 6 ;

42

5 ’ d16 : u s e _ t h i s _ s u m = f i n a l _ s u m 1 7 ;
5 ’ d17 : u s e _ t h i s _ s u m = f i n a l _ s u m 1 8 ;
5 ’ d18 : u s e _ t h i s _ s u m = f i n a l _ s u m 1 9 ;
5 ’ d19 : u s e _ t h i s _ s u m = f i n a l _ s u m 2 0 ;
5 ’ d20 : u s e _ t h i s _ s u m = f i n a l _ s u m 2 1 ;
5 ’ d21 : u s e _ t h i s _ s u m = f i n a l _ s u m 2 2 ;
5 ’ d22 : u s e _ t h i s _ s u m = f i n a l _ s u m 2 3 ;
5 ’ d23 : u s e _ t h i s _ s u m = f i n a l _ s u m 2 4 ;
5 ’ d24 : u s e _ t h i s _ s u m = f i n a l _ s u m 2 5 ;
5 ’ d25 : u s e _ t h i s _ s u m = f i n a l _ s u m 2 6 ;
5 ’ d26 : u s e _ t h i s _ s u m = f i n a l _ s u m 2 7 ;
5 ’ d27 : u s e _ t h i s _ s u m = f i n a l _ s u m 2 8 ;
5 ’ d28 : u s e _ t h i s _ s u m = f i n a l _ s u m 2 9 ;
5 ’ d29 : u s e _ t h i s _ s u m = f i n a l _ s u m 3 0 ;
5 ’ d30 : u s e _ t h i s _ s u m = f i n a l _ s u m 3 1 ;
5 ’ d31 : u s e _ t h i s _ s u m = f i n a l _ s u m 3 2 ;

endcase
end

wire p a r t i a l _ s c o r e ;
reg d a t a _ f r o m _ s e n s o r _ c o p y ;
xor (p a r t i a l _ s c o r e , u s e_ t h i s _ s um , d a t a _ f r o m _ s e n s o r _ c o p y) ;

reg sum1 , sub1 ;
reg next_sum1 , n e x t _ s u b 1 ;

reg temp , nex t_ temp ;

always @(posedge c l k) begin
i f (r s t _ n == 1 ’ b0) begin

s t a t e <= WAITING ;
g1 <= SEED ;
g2 <= SEED ;
l o c a l _ s a t e l l i t e <= 5 ’ d0 ;
l o c a l _ o f f s e t <= 10 ’ d0 ;

l o c a l _ g 1 _ s e t t i n g <= 10 ’ d0 ;
l o c k e d <= 1 ’ b0 ;

l o c a l _ r u n t i m e <= 10 ’ d0 ;
r a n k i n g <= 10 ’ d0 ;
sum1 <= 1 ’ b0 ;
sub1 <= 1 ’ b0 ;

d i v _ s e l <=1’ b0 ;
temp <= 1 ’ b0 ;
d a t a _ f r o m _ s e n s o r _ c o p y = 0 ;

end
e l s e begin

s t a t e <= n e x t _ s t a t e ;
g1 <= nex t_g1 ;
g2 <= nex t_g2 ;

d i v _ s e l <= n e x t _ d i v _ s e l ;
l o c a l _ s a t e l l i t e <= n e x t _ l o c a l _ s a t e l l i t e ;

l o c a l _ g 1 _ s e t t i n g <= n e x t _ g 1 _ s e t t i n g ;
l o c a l _ o f f s e t <= n e x t _ l o c a l _ o f f s e t ;
l o c k e d <= n e x t _ l o c k e d ;
r a n k i n g <= n e x t _ r a n k i n g ;

l o c a l _ r u n t i m e <= n e x t _ r u n t i m e ;
sum1 <= next_sum1 ;
sub1 <= n e x t _ s u b 1 ;
temp <= nex t_ temp ;
d a t a _ f r o m _ s e n s o r _ c o p y = d a t a _ f r o m _ s e n s o r ;

end
end

always @(*) begin
n e x t _ s t a t e = WAITING ;
nex t_g1 = g1 ;
nex t_g2 = g2 ;

n e x t _ d i v _ s e l = 1 ’ b0 ;
n e x t _ r u n t i m e = l o c a l _ r u n t i m e ;

n e x t _ l o c a l _ s a t e l l i t e = l o c a l _ s a t e l l i t e ;
n e x t _ l o c a l _ o f f s e t = l o c a l _ o f f s e t ;

n e x t _ g 1 _ s e t t i n g = l o c a l _ g 1 _ s e t t i n g ;
n e x t _ l o c k e d = 1 ’ b0 ;
next_sum1 = 1 ’ b0 ;
n e x t _ s u b 1 = 1 ’ b0 ;
n e x t _ r a n k i n g = r a n k i n g ;
nex t_ temp = temp ;

43

i f (sum1) begin
n e x t _ r a n k i n g = r a n k i n g + o f f s e t [9 : 5] * o f f s e t [4 : 0] ;

end
e l s e i f (sub1) begin

n e x t _ r a n k i n g = r a n k i n g − o f f s e t [9 : 5] * o f f s e t [4 : 0] ;
end

case (s t a t e)
WAITING : begin

i f (e n a b l e) begin
n e x t _ l o c a l _ s a t e l l i t e = s a t e l l i t e ;
n e x t _ l o c a l _ o f f s e t = o f f s e t ; / / c o p i e s from t h e i n p u t
n e x t _ s t a t e = SETTING ;

end
nex t_ temp = k e y _ b i t s [k e y _ s e l] ;

end
SETTING : begin

n e x t _ g 1 _ s e t t i n g = o f f s e t ;
n e x t _ s t a t e = LOADING;

end
LOADING: begin

n e x t _ r u n t i m e = o f f s e t ;
n e x t _ s t a t e = DECIDING ;

end
DECIDING : begin

i f (s a t e l l i t e == 5 ’ b00101) begin
n e x t _ s t a t e = SETTING ;

end
e l s e i f (s a t e l l i t e == 5 ’ b01001) begin

n e x t _ s t a t e = DIVIDING ;
n e x t _ d i v _ s e l = 1 ’ b1 ;

end
e l s e i f (l o c a l _ o f f s e t != 0) begin

n e x t _ s t a t e = OFFSETTING ;
nex t_g1 = { t a p _ f o r _ g 1 _ g 9 , t a p _ f o r _ g 1 _ g 8 , t a p _ f o r _ g 1 _ g 7 , t a p _ f o r _ g 1 _ g 6 , t a p _ f o r _ g 1 _ g 5 , t a p _ f o r _ g 1 _ g 4 , t a p _ f o r _ g 1 _ g 3 ,

t a p _ f o r _ g 1 _ g 2 , t a p _ f o r _ g 1 _ g 1 , t a p _ f o r _ g 1 _ g 0 } ;
nex t_g2 = { g2 [8 : 0] , t a p _ f o r _ g 2 } ; / / b u t t h i s doesn ’ t c o u n t as o f f s e t .

end
e l s e begin

n e x t _ s t a t e = RUNNING;
nex t_g1 = { t a p _ f o r _ g 1 _ g 9 , t a p _ f o r _ g 1 _ g 8 , t a p _ f o r _ g 1 _ g 7 , t a p _ f o r _ g 1 _ g 6 , t a p _ f o r _ g 1 _ g 5 , t a p _ f o r _ g 1 _ g 4 , t a p _ f o r _ g 1 _ g 3 ,

t a p _ f o r _ g 1 _ g 2 , t a p _ f o r _ g 1 _ g 1 , t a p _ f o r _ g 1 _ g 0 } ;
nex t_g2 = { g2 [8 : 0] , t a p _ f o r _ g 2 } ; / / b u t t h i s doesn ’ t c o u n t as o f f s e t .

end
end

DIVIDING : begin
n e x t _ r u n t i m e = l o c a l _ r u n t i m e − 10 ’ d1 ;

nex t_g1 = { t a p _ f o r _ g 1 _ g 9 , t a p _ f o r _ g 1 _ g 8 , t a p _ f o r _ g 1 _ g 7 , t a p _ f o r _ g 1 _ g 6 , t a p _ f o r _ g 1 _ g 5 , t a p _ f o r _ g 1 _ g 4 , t a p _ f o r _ g 1 _ g 3 ,
t a p _ f o r _ g 1 _ g 2 , t a p _ f o r _ g 1 _ g 1 , t a p _ f o r _ g 1 _ g 0 } ;

i f (l o c a l _ r u n t i m e == 10 ’ d0) begin
n e x t _ d i v _ s e l = 1 ’ b0 ;

i f (s a t e l l i t e == 5 ’ b01101) begin
n e x t _ s t a t e = IDLE ;

end
e l s e i f (s a t e l l i t e == 5 ’ b01100) begin

n e x t _ s t a t e = SETTING ;
end
e l s e i f (s a t e l l i t e == 5 ’ b01000) begin

n e x t _ s t a t e = LOADING;
end
e l s e i f (s a t e l l i t e == 5 ’ b00001) begin

n e x t _ s t a t e = DECIDING ;
end
n e x t _ r u n t i m e = o f f s e t ;

n e x t _ s t a t e = RUNNING;
end
e l s e begin

n e x t _ s t a t e = DIVIDING ;
n e x t _ d i v _ s e l = 1 ’ b1 ;
n e x t _ r a n k i n g = { r a n k i n g [9 : 0] , g1 [9] } ;

end
end

OFFSETTING : begin
n e x t _ l o c a l _ o f f s e t = l o c a l _ o f f s e t − 10 ’ d1 ;
nex t_g1 = { t a p _ f o r _ g 1 _ g 9 , t a p _ f o r _ g 1 _ g 8 , t a p _ f o r _ g 1 _ g 7 , t a p _ f o r _ g 1 _ g 6 , t a p _ f o r _ g 1 _ g 5 , t a p _ f o r _ g 1 _ g 4 , t a p _ f o r _ g 1 _ g 3 ,

t a p _ f o r _ g 1 _ g 2 , t a p _ f o r _ g 1 _ g 1 , t a p _ f o r _ g 1 _ g 0 } ;
nex t_g2 = { g2 [8 : 0] , t a p _ f o r _ g 2 } ;

44

i f (l o c a l _ o f f s e t != 1) begin
n e x t _ s t a t e = OFFSETTING ;

end
e l s e begin

n e x t _ s t a t e = RUNNING;
end

end
RUNNING: begin

n e x t _ r u n t i m e = l o c a l _ r u n t i m e − 10 ’ d1 ;

i f (s a t e l l i t e == 5 ’ b0000) begin
nex t_g1 = { t a p _ f o r _ g 1 _ g 9 , t a p _ f o r _ g 1 _ g 8 , t a p _ f o r _ g 1 _ g 7 , t a p _ f o r _ g 1 _ g 6 , t a p _ f o r _ g 1 _ g 5 , t a p _ f o r _ g 1 _ g 4 , t a p _ f o r _ g 1 _ g 3 ,

t a p _ f o r _ g 1 _ g 2 , t a p _ f o r _ g 1 _ g 1 , t a p _ f o r _ g 1 _ g 0 } ;
nex t_g2 = { g2 [8 : 0] , t a p _ f o r _ g 2 } ;

i f (p a r t i a l _ s c o r e == 1 ’ b0) begin / / meaning t h e y are t h e same (remember i t i s XORed)
next_sum1 = 1 ’ b1 ;

end
e l s e begin

n e x t _ s u b 1 = 1 ’ b1 ;
end

end
e l s e i f (s a t e l l i t e == 5 ’ b00101) begin / / meaning t h e y are t h e same (remember i t i s XORed)

n e x t _ s u b 1 =1 ’ b1 ;
end
e l s e begin

next_sum1 = 1 ’ b1 ;
end

i f (l o c a l _ r u n t i m e ==10 ’ d0) begin
i f (s a t e l l i t e == 5 ’ b00010) begin

n e x t _ s t a t e = DIVIDING ;
end
e l s e i f (s a t e l l i t e == 5 ’ b00011) begin

n e x t _ s t a t e = SETTING ;
end
e l s e i f (s a t e l l i t e == 5 ’ b00111) begin

n e x t _ s t a t e = LOADING;
end
e l s e i f (s a t e l l i t e == 5 ’ b01110) begin

n e x t _ s t a t e = DECIDING ;
n e x t _ r u n t i m e = o f f s e t ;

end
e l s e begin

n e x t _ s t a t e = IDLE ;
end

end
e l s e begin

n e x t _ s t a t e = RUNNING;
end

end
IDLE : begin

/ / I need t h i s i d l e s t a t e t o a l l o w f o r t h e r a n k i n g t o
/ / update , i t i s p i p e l i n e d
n e x t _ l o c k e d = 1 ’ b1 ;
n e x t _ s t a t e = LOCKED;

end
LOCKED: begin

n e x t _ s t a t e = READ_RANK & { temp , temp , temp } ;
end
READ_RANK: begin

/ / I need t h i s s t a t e t o a l l o w t h e r a n k i n g s t o be
/ / p r o p a g a t e d o u t s i d e
n e x t _ s t a t e = WAITING ;
n e x t _ r a n k i n g = 10 ’ d0 ;

end
endcase

end
endmodule

45

	List of Figures
	List of Tables
	Introduction
	State of the Art
	Side channel analysis
	Attack Methods
	Defence Strategies
	Metrics

	Hardware Trojans
	Attack Methods
	Defence Strategies
	Metrics

	Counterfeiting and IP piracy
	Attack Methods
	Defence Strategies
	Metrics

	Split manufacturing
	Attack Methods
	Defence Strategies
	Metrics

	Reverse engineering
	Physical Design obfuscation
	Structural Design obfuscation

	Methodology
	GPS Correlator Architecture
	Proposed synthesis based approach
	Optimisation strategies
	Clock gating
	Ungrouping
	Datapath Analytical
	Bubble Pushing
	Tighten Max Transition
	Retiming

	Evaluation

	Results
	Power-Performance-Area evaluations
	Dana security analysis
	Discussion

	Conclusions
	Bibliography
	Appendices
	Appendix 1 - GPS Correlator Code

