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Abstract 

The aim of this work was to develop a data analysis baseline which could be used as a 

basis for sparse clinical data analysis. Clinical data is domain specific and if the expert 

knowledge is not accessible during analysis, applying the baseline should be possible 

without domain knowledge. Main purpose of developed baseline is to simplify and 

accelerate analysis of clinical data. 

Considering the clinical data properties (such as high amount of missing values and low 

amount of records), developed baseline consists of 3 steps: preprocessing (data cleaning), 

transformation (dimensionality reduction) and data mining (clustering analysis and 

association rules mining). Those steps are focused on extracting valuable information 

from dataset and improving the quality of this information. Those steps was implemented 

using Python and R programming languages with open source libraries. 

To test developed data analysis baseline we were provided with real clinical dataset, 

which was gathered during the treatment and observation of patients with cardiac 

diseases. Developed baseline was applied to this data without using expert knowledge for 

generating results (clusters, association rules), which were provided to domain expert for 

interpretation and evaluation. 

Finally, time complexity of the baseline with bigger datasets was empirically validated. 

It was applied to voluminous datasets and time, used by baseline processes was measured. 

Overall, baseline was developed and its application has demonstrated that it is possible to 

analyze clinical data without domain knowledge, however, certain steps would benefit 

from an expert's advice. 

This thesis is written in English and is 70 pages long, including 8 chapters, 21 figures and 

15 tables. 
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Annotatsioon 

Antud töö põhiliseks eesmärgiks oli andmete analüüsi baseline’i arendamine, mida saaks 

kasutada hõredate kliiniliste andmete analüüsi baasina. Kui eksperdi arvamus ei ole 

saadaval analüüsi käigus, siis sellel juhul oleks võimalik baseline’i rakendada ilma 

domeeniteadmisteta. Arendatud baseline’i peamine eesmärk on lihtsustada ja kiirendada 

kliiniliste andmete analüüsi ja töötlemist.  

Arvestades kliiniliste andmete omadusi (nagu suur hulk puuduvaid ja osaliselt sisestatud 

andmeid), koosneb arendatud baseline kolmest sammust: eeltöötlemine (andmete 

puhastamine), transformatsioon (dimensionaalsuse vähendamine) ning andmete 

kaevandamine (klasterdamine ning assotsiatsioonireeglite kaevandamine). Need sammud 

on keskendunud väärtuslike andmete leidmisele andmehulgast ja info kvaliteedi 

parandamisele. Realiseerimiseks kasutati Python ja R programmeerimiskeeli ja avaliku 

lähtekoodiga raamistikke. 

Arendatud andmete analüüsi baseline testimiseks kasutasime tegelikku kliinilist 

andmestikku, mis oli koostatud kardioloogiliste haiguste patsientide ravimise ja jälgimise 

käigus. Arendatud baseline rakendati nendele andmetele ilma ekspertteadmisteta. 

Valitud meetodeid kasutati tulemuste genereerimiseks (klastrid, assotsiatsioonireeglid). 

Need tulemused edastati spetsialistile, et ta interpreteeriks ja hindaks neid domeeni 

kontekstis. 

Lõpuks, valideeriti baseline’i empiirilist ajalist keerukust. See rakendati genereeritud 

mahukale andmehulgale, mõõdeti tööks kulunud aega.  

Töö tulemusel rakendati väljatöötatud baseline, mis näitas, et admete analüüs on võimalik 

ilma domeeniteadmiseta. Teatud analüüsi etapid oleksid siiski effektiivsemad, kui 

eksperdi nõu oleks saadaval. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 70 leheküljel, 8 peatükki, 21 

joonist, 15 tabelit. 
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List of abbreviations and terms 

  

Data imputation Replacing missing values with substituted values 

Distance matrix Statistical distance (how different are objects) between data 

records in the view of the matrix 

FP Frequent Patterns 

P-value Statistical value, which shows the probability, that presented 

null-hypothesis is true 

RF Random Forest 

Similarity measure The measure used to calculate similarity between objects 

(distances) 

SMC Simple Matching Coefficient 

Shape of data Amount of columns and rows in dataset 

VAT Visual Assessment of Tendency 
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1 Introduction 

1.1 Background and motivation 

Clinical data is complex in its origin. This kind of data often has different sources and is 

represented in different formats. For example, it could be collected automatically by 

performing certain procedures, or manually entered and provided by different laboratories 

or clinics. Those factors make data heterogeneous and voluminous [1]. Despite that, the 

complex clinical data is important for analysis, since it always contains useful and 

important information, located in the relationships of this data. Unfortunately, as the 

complexity of the medical data grows, it becomes difficult and time consuming to analyze 

it manually. Therefore, data analysis should be applied to extract useful knowledge from 

this data. 

In general, data analysis is a complex process, focusing on extracting useful knowledge 

from a data. Usually, this process consists of following steps: data selection, data 

preprocessing, data transformation, data mining, interpretation and presentation [2].  Each 

of these steps is a separate collection of different techniques and methods, aimed to 

improve data analysis results. Those steps could be used in the iterative way, meaning, 

that during the whole process, some of the steps could be changed, adjusted and repeated 

in any point of time, depending on the results, which were provided by other steps. Data 

analysis is always very data-specific. Data properties such as volume, shape, type, variety, 

and overall quality have the crucial role in the data analysis and define the optimal flow 

of the process and the possible range of applicable techniques and methodologies.  

By applying data analysis in the context of clinical data, data could be transformed into a 

form which would help to find valuable tendencies, dependencies and interrelationships 

within data. Pinpoint this information by carrying analysis manually is much more 

difficult and sometimes impossible. 
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1.2 Problem statement 

The main aim of this work is to develop a data analysis baseline for sparse clinical data. 

This baseline will represent a clinical data analysis basis and will aimed to simplify and 

accelerate the analysis process. To work on this thesis, we were provided with real clinical 

data, which was gathered during the treatment and observation of patients with cardiac 

diseases and assembled, using trial form (Appx. 1). Provided data is a subset of bigger 

dataset and is represented in the view of the table, consisting of 150 records. Each record 

represents a patient’s info and contain hundreds of properties (reaching 849). This 

represents another problem of clinical data analysis – data is represented in horizontal 

form. Having a large amount of properties, collected from different sources, assemble an 

appropriately large amount of records is usually difficult. This strongly affects data 

analysis accuracy and statistical expressiveness. Due to the complexness of provided data, 

manual analysis is impracticable. 

It is noticeable, that the quality of collected data is extremely low. A lot of missing values, 

duplicates, misspellings and incorrect values are present. Besides, data is represented by 

multiple types, meaning that both categorical and continuous values are present. This 

imposes certain limitations in the data analysis process. This representation of data is not 

suitable for directly applying data mining techniques to get a meaningful result. Existing 

data should be processed and transformed in order to get an optimal result from data 

analysis. 

Another problem of data analysis field is that domain knowledge, which is important in 

certain parts of data analysis, is not always directly accessible. It slows down the whole 

process and can lead to non-optimal or bias results. 

Presented problems form the main complexity of this thesis. If not resolved, they might 

hinder gaining constructive knowledge from provided data, which will obstruct the 

successful knowledge discovery from provided data. 

1.3  Goals 

The main goal of this work is to develop data analysis baseline for sparse clinical data 

and apply it on provided dataset to produce an information, which could be useful for 
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further analysis by domain expert. Considering the problems, mentioned above, it could 

be by divided into following steps: 

1. Develop an appropriate data analysis baseline for sparse clinical data (see part “2 

Data analysis baseline structure”). 

2. Apply developed baseline to provided data and validate it, so that potentially 

useful information can be extracted and presented to domain experts for further 

study. 

3. Develop an optimal baseline without knowledge and define whether presence or 

absence of relevant expertise affects data analysis procedures.  

4. Provided data is an extracted subset from bigger dataset. Therefore, influence of 

dataset`s growth on computational time complexity should be analyzed. 



15 

2 Data analysis baseline structure 

The standard baseline of data analysis consist of following steps (Fig. 1) [2]: 

 Selection - extracting an appropriate data subset from the whole dataset.  

 Preprocessing - processes aimed to improve the quality of data. 

 Transformation - finding useful features of data and projecting it into a form, 

which will be optimal for application of data mining techniques. 

 Data mining - applying techniques, such as clustering analysis, frequent pattern 

mining, etc. to find and produce valuable patterns and data structures. 

 Interpretation – extracting an important information by understanding the 

produced patterns. 

 

Figure 1: Standard baseline of data analysis [2] 

 

In developed baseline preprocessing, transformation and data mining steps are more 

focused on.  

The selection step is omitted, since dataset, which we were provided with, already 

contains the relevant data and this step always require expert knowledge. 

Preprocessing step is represented by data cleaning techniques, including data 

transformation, missing data analysis and duplicates analysis.  
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Dimensionality reduction techniques were applied as transformation step. 

Data mining includes association rules mining and clustering analysis (applying 

clustering techniques and validation of clustering techniques).  

The interpretation step is also not a part of this thesis, because it requires deep domain 

knowledge. However, produced patterns will be provided to domain expert for further 

analysis. 

The main idea of developed baseline is to take a sparse clinical data as an input and 

without applying domain knowledge, produce some patterns, which could be evaluated, 

interpreted and analyzed by domain expert. 
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3 Preprocessing 

Clinical data is usually represented in high-dimensional form with the high amount of 

records. In most cases, data is highly heterogeneous. It is gathered from different sources, 

having different format and representation. Such data contain misspellings, 

inconsistencies, redundant and missing values, duplicates, etc. Certainly, it affects data 

quality which is one of the most significant aspects, necessary for successful extracting 

meaningful data analysis results. 

Low-quality data complicates making significant and meaningful data analysis strategic 

decisions regarding building of the analysis baseline. To improve data quality, data 

cleaning could be applied. 

3.1 Data cleaning 

Data cleaning is a process of detecting incorrect, redundant and missing values and then 

correcting them. Being a complex of different techniques and approaches, it allows to 

improve the quality of data. In developed baseline was considered 3 data cleaning 

techniques – data transformation, missing data analysis and removal of duplicates. 

Implementation of those techniques is described in the “7.1 Implementation of the 

processes” part. 

3.1.1 Data transformation 

Clinical data is usually represented by multiple types (continuous, categorical). The type 

of data is one of the most limiting factors of data analysis. Some of the analysis techniques 

are only applicable to a certain data type to achieve an optimal result. To simplify the 

analysis, we can transform all data to one type.  

Provided data is mostly categorical, but nonetheless properties with continuous data are 

also present. In order to find them and generalize the search of continuous data without 

applying domain knowledge, we can filter our data by finding columns with high 

proportion of amount of unique values.  

Using this method, we have discovered following distribution: 

 Categorical data: 811 columns (95.52%) 
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 Continuous data: 38 columns (4.48%) 

Since most of our data is categorical, to simplify data analysis, we focus on categorical 

data only techniques. To apply them we would have to get rid of the continuous data first. 

However, since those columns could contain important information, their removal is 

undesirable solution. To keep this information, continuous columns could be converted 

to a categorical intervals. Normally, the most optimal way to implement this process 

would be to use the domain knowledge and apply data transformation, by creating 

categories based on this knowledge, which are more context-relevant. However, since 

domain knowledge was lacking in this study, categories from continuous columns could 

be also produced by replacing their values by number of uniform categorical intervals. 

For example, all column ‘age’ values, which vary from 33 to 88, could be replaced with 

5 following categories: ‘33-44’, ’45-55’, ’56-66’, ’67-77’, ’78-88’. Such automatic 

transformation without domain knowledge could introduce a bias to the analysis, since 

categories, describing specific clinical information could be produced improperly. 

Nevertheless, we assume, that this approach would harm the analysis expressiveness less, 

than removing those columns altogether, due to uniform distribution of produced column 

values and the possibility to interpret the final results of analysis by domain expert. 

3.1.2 Missing data analysis 

The unavoidable property of most complex datasets is missing values [1]. This factor is 

a consequence of a whole range of reasons, such as input errors, difference in formats and 

data sources, context specifics. Missing values introduce decrease of analysis accuracy 

and lead to meaningless and misleading results. This is a fundamental factor in the 

definition of the data quality. To conduct a successful data analysis, missing data should 

be analyzed and properly handled. 

3.1.2.1 Overview 

In our data, there are 127350 values in general with 150 rows and 849 columns. By 

counting missing values, we discovered, that 76125 (59.78%) are missing. This is an 

extremely low index for a straightforward statistical analysis and definitely requires a 

processing. Currently, there is no strict and established threshold of the acceptable 

proportion of missing values [3]. But, obviously, reducing the amount of missing values 

would lead to an increase of data statistical expressiveness and analysis accuracy. 
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Curiously enough, along with fully filled columns, our data contain empty columns: 

Number of columns 849 

Completely filled columns 101 (11.9%) 

Empty columns 170 (20.02%) 

Table 1: Empty and completely filled columns amount 

 

170 completely empty columns would introduce noise, misleading results and decrease 

analysis performance. Therefore, they were removed from the dataset. However, dataset 

is still sparse with high amount of missing values (Fig. 2) 

 

Figure 2: Visualization of dataset in the context of missing values before processing (white elements – 

missing values) 

 

Statistical information presented in this thesis will not take into account completely empty 

columns. By calculating missing values by columns we have following distribution (Fig. 

3). 



20 

 

Figure 3: Missing data distribution by columns 

Most of the columns are within 3 main categories: 0-20% missing (297 columns, 101 of 

them are completely filled), 90-100% missing (209 columns) and the uniform distribution 

with minor differences of columns within 20-90% (173 columns). This diverse 

distribution could decrease accuracy of results in regard to the whole data analysis 

process. Presence of such distribution complicates the search of dependencies between 

columns. 

Besides understanding of missing data distribution between columns, it is important to 

analyze the distribution by rows (Table 2, Fig. 4). 

Number of rows 150 

Completely filled rows 0 (0%) 

Partially filled 150 (100%) 

Table 2: Empty and completely filled rows amount 

 

Even with removing completely empty columns, the dataset have a missing values in 

every row. 
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Figure 4: Missing data distribution by rows 

 

This distribution shows, that most of the data rows are in the range of having 40-50% 

missing values. 

High amount of the columns and rows with missing values might have a significant 

influence on data analysis results and make it impossible to use whole dataset in the 

following analysis steps. At this point the goal of data cleaning is to find possible ways 

to reduce amount of missing values, introducing minimal amount of bias to data 

expressiveness. 

3.1.2.2 Missing data types 

Missing values in the dataset could be represented by different types of the missingness  

mechanisms [4]. They describe the origin of the missing value and its significance in the 

dataset. It is important to determine them since different missingness mechanisms require 

different processing approaches. Wrong determination and processing of missingness 

mechanisms may lead to misinterpretation of the missing value meaning and could be a 

reason of distorted and biased results [5], [6].  

Generally, there are 3 types of missingness mechanisms [4]: 
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values is not systematic. In this case, missingness is completely independent from 

variable. For example, if the age of the patient was not reported due to some 

technical error. 

 MAR (missing at random) – There is a systematic relationship between the 

missing value and the observed data, but not the missing data. Whether an 

observation is missing has nothing to do with the missing values, but with the 

values of others properties. For example, if patients with certain diseases tend not 

to fill up some fields in the form. 

 MNAR (missing not at random) – There is a relationship between missing values 

and other values of property. For example, there could be a rule to not report some 

medical procedure results, if they are below some threshold. 

When we are dealing with the MCAR data, the handling approaches could be more 

drastic, than with the MAR and MNAR data. For example, we can remove columns or 

rows with missing data without loss of valuable data. In the case of MAR and MNAR, 

the goal is to understand reasons of their appearance, interpret them and handle based on 

interpretation. 

3.1.2.3 Handling missing data 

There are several ways, how to determine mechanism of missingness. The most reliable 

is to apply domain knowledge and manually interpret the distribution of missing values. 

If domain knowledge is not accessible, the mechanism type can be determined based on 

data statistical properties. 

For example, we can apply Littles MCAR test [10]. This test uses null-hypothesis, that 

all missing values are MCAR. To successfully reject this hypothesis the p-value of test 

should be less than 0.05. If Littles test produces p-value larger than 0.05, it could be 

considered as a weak evidence against null-hypothesis. We have applied Littles test to 

our dataset and received the p-value=0.674. This indicates that null-hypothesis could not 

be rejected and allows to assume that missing values in our data are of MCAR type. 

However, despite the fact that we cannot reject null-hypothesis, it is still possible, that 

our data contain different types of mechanisms. Determination of MAR and MNAR 

values is more complicated. It is not possible to define statistically whether missing values 
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are of MAR or MNAR type. To define them accurately, they should be observed 

manually. 

In our data we have noticed, that a lot of missing values are generated by columns with 

date values. We made an assumption, that some of them represent a date when a certain 

procedures were conducted. Such columns could be an example of MNAR values. Instead 

of removing those columns, their content could be replaced by Boolean values, so that 

the value would represent, whether a patient had a particular procedure. 

Dataset contain 47 date-type columns with following missing values distribution (Table 

3). 

Missing data > 95% 15 columns 

Missing data 90-95% 8 columns 

Missing data 70-90%: 14 columns 

Missing data less than 70% 10 columns 

Table 3: Missing value distribution of date-type columns  

 

Those columns was converted to Boolean type values. 

In addition to missing value types, the efficiency of missing data handling techniques 

depend on another data properties. With the clinical data, the fact, that it often have small 

amount of records, imposes serious limitation on them. The most common methods, such 

as complete case analysis and imputation techniques [5] are often not applicable. For 

example, complete case analysis could not be used, due to small amount of records, since 

removing them we will lose an already a small number of rows, which define statistical 

expressiveness. Having very few records will also affect the results of imputation 

techniques. Those techniques allow to replace missing values by statistically appropriate 

ones. This, however, will introduce bias to the results, which grows proportionally to the 

decrease of the number of rows. Taking into account the properties of our dataset, it is 

more favorable to remove less important columns based on the number and type of 

missing values. 
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The columns with more than 20% of missing values were removed from dataset. As a 

result, considering, that we replaced date properties, 505 columns were removed. The 

remaining 344 columns now represent the completely different distribution of missing 

values, which visually is more dense and simple (Fig. 5). 

 

Figure 5: Visualization of dataset in the context of missing values after missing data handling (white 

elements – missing values) 

 

The rows are now in the range of 0-5% of missing values (Fig. 6). Obviously, due to 

removing of columns, certain bias was introduced to dataset analysis. It is possible, that 

along with missing values, also meaningful values were removed from the dataset. 

Despite that, this data cleaning significantly changed representation of our data, by 

producing more restricted dataset with higher data quality (in the context of integrity of 

rows), making possible to continue data analysis. 
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Figure 6: Distribution of missing values by rows before and after missing data handling 

 

3.1.3 Removal of duplicates 

Another problem of complex clinical data is duplicates. They introduce noise and 

redundancy to dataset and analysis. It is necessary to eliminate duplicated columns in 

order to bring consistency and improve the quality of the data [7]. Duplicates in our data 

are represented by 2 types - complete duplicates and context duplicates. 

3.1.3.1 Complete duplicates 

Complete duplicates represent completely identical columns and lead to inferior and 

misleading results. In provided data, complete duplicates was discovered by simply 

comparing columns with each other. Was found and removed 155 of 344 duplicate 

columns. This reduction will affect positively on following data mining methods in the 

context of performance and accuracy. 

3.1.3.2 Context duplicates 

In addition to complete duplicates, context duplicates could also exist in dataset. They 

represent the same property by multiple columns (e.g. patient sex is described by column 

as string “male/female” and by other column as code number “1/2”). Such duplicates are 

also redundant and should be removed from dataset. 
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Context duplicates could be identified by correlation analysis, where correlation represent 

a level of dependency between columns. To construct correlation matrix, we used chi-

squared value [8], which is relevant to categorical data. Chi-squared test show the strength 

of the relationship between columns. By building the frequencies table [9] between all 

pairs of columns, it compares the expected frequencies of categories with observed 

frequencies of categories (Eq. 1). Based on this comparison, it calculates how strongly 

one column depends on another. 

𝒳2 =  ∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖

𝑛

𝑖=1

 

Where: 

𝒳2 - Chi-squared test value 

𝑂𝑖 - Observed frequency of type i 

𝐸𝑖 - Expected frequency of type i 

Equation 1: Chi-squared test equation 

 

We can use this value, to calculate correlation coefficient between columns, by 

calculating the statistical effect of this value. For chi-squared test, it could be done by 

using Cramer’s V coefficient calculation [10]. Using the chi-squared test value and shape 

of the data (Eq. 2), Cramer’s V coefficient calculation produces a value between 0 and 1. 

This value also describes the strength of relationships between columns and could be 

interpreted, as correlation. 

𝑉 =  √
𝒳2

min (𝑛 − 1, 𝑚 − 1)
 

Where: 

𝑉 - Cramer’s V value 

𝒳2 - Chi-squared test value 

𝑛 – Amount of rows in dataset 



27 

𝑚 – Amount of columns in dataset 

Equation 2: Cramer's V equation 

 

By calculating Cramer’s V coefficient to all column pairs we constructed correlation 

matrix (Fig. 7). Column pairs with high Cramer’s V value represent highly correlated 

columns. The pairs with Cramer’s V coefficient that equals to 1 are context duplicates. 

Pairs with Cramer’s V values close to 1 could also represent duplicates, where some of 

the values in columns contain misspellings. To extract duplicates we identified columns, 

which produce correlation coefficient more than 0.95. 

 

Figure 7: Correlation matrix of dataset without complete duplicates 

In case of high-dimensionality dataset, calculating correlation using chi-square and 

Cramer’s V is time consuming, since we have to build frequency tables and calculate 

correlation coefficient for all pairs of columns. By analyzing produced correlation matrix, 

we can notice, that highly correlated columns are near the main diagonal. This means, 

that those columns are located close to each other in dataset. To optimize duplicates 

reduction for further analysis with bigger datasets, we can divide dataset to smaller 

subsets (chunks) and analyzed them separately. This improves performance efficiency. 

Since most of duplicates are located closely to each other, this approach does not 

introduce high risk of skipping duplicates. To exclude this risk, we can apply context 

duplicates reduction on dataset several times by dividing dataset each time on chunks 
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with different size. This approach eliminates risk of skipping duplicates and still will be 

more efficient, that analyzing whole dataset.   

Our dataset with 189 columns (after removing complete duplicates) was divided into 7 

chunks (27 columns each). For each chunk was conducted correlation calculation and 

columns with values more than 0.95 was extracted. 

 

Figure 8: Distribution of context duplicates 

66 context duplicates were discovered (Fig. 8). We expected, each chunk to have 

maximum 14 duplicate columns, meaning that each column in the chunk has a duplicate. 

In our result we got a chunk, which exceed this expected threshold. By analyzing result 

manually, we discovered, that often same property is described by 3 columns – name, 

code and date (which was transformed to Boolean). For example, columns such as 

VarasemadKardivaskulaarsedName, VarasemadKardivaskulaarsedKpv, 

VarasemadKardivaskulaarsedCode or vkhVarasemSkgKpv vkhVarasemSkgName, 

vkhVarasemSkgCode define same aspect of dataset. As a result, discovered duplicates 

were removed from dataset. 

After removing complete and context duplicates data dimensionality decreased to 123 

columns.  

3.1.4 Data cleaning results 

After applying missing data cleaning, the dimensionality of the data was significantly 

reduced without losing dataset records. Overall quality of the data was improved by 
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reducing number of missing values and removing duplicates. Also, data was transformed 

to more convenient for analysis form. 

2 datasets were produced for further analysis (Table 4). 

Dataset Columns Description 

1 679 Original dataset without completely empty columns. 

2 123 Dataset with columns, containing 0-20% of missing values, 

without complete duplicates, without context duplicates. 

Table 4: List of datasets after data cleaning 

In further analysis original dataset without completely empty columns will be considered 

as Dataset 1 and dataset produced by applying data cleaning as Dataset 2.  
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4 Transformation 

Despite the fact, that by applying data cleaning, dimensionality of the dataset was 

significantly reduced, amount of dimensions could still be too big and insufficient for 

further data analysis [11]. In the context of clustering, high amount of dimensions increase 

the computational cost of clustering algorithms and makes the objective differences 

(distances) between data points appear less clear. This makes harder to understand 

relationships between records and form meaningful clusters. To reduce the  amount of 

dimension, dimensionality reduction techniques [12] could be applied.  

4.1 Dimensionality reduction 

Dimensionality reduction will highlight the most and the least important features based 

on their statistical properties. We used those techniques, to generate extracted subsets 

additionally to datasets, which was produced by data cleaning (Dataset 1 and Dataset 2). 

4.1.1 Feature selection 

One of the very efficient techniques of dimensionality reduction is feature selection [13]. 

It allows to extract a subset of features based on the statistical properties of the data. By 

highlighting more important features of the dataset it leaves up to the user to decide, 

which properties to extract. This allows for reduction of dataset by any number of 

dimensions. 

In developed baseline we considered 3 feature selection methods:  

 Feature selection by correlation 

 Feature selection by random forest 

 Feature selection by clustering validation. 

Those methods was applied to Dataset 2, produced by data cleaning. Implementation of 

those methods is described in the “7.1 Implementation of the processes” part. 
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4.1.1.1 Feature selection by correlation 

The most straightforward way to evaluate the importance of features is univariate feature 

selection, meaning, that statistical definition is calculated and evaluated for each feature 

individually. 

One of the methods of univariate feature selection is to evaluate importance of features 

based on their correlation. For the implementation we can use correlation calculation 

solution, produced through early actions. The main this feature selection is to extract 

subsets of features, by removing highly correlated columns. By removing similar features 

in the context of correlation, the differences between data points will be more statistically 

expressive. The advantage of this method is, that on the application stage it not require 

domain knowledge. The columns, with correlation coefficient bigger than specified 

threshold were removed from dataset to produce a new subset. We applied this method to 

Dataset 2 with different minimum correlation coefficient threshold (Table 5). 

Minimum correlation 

coefficient threshold 

Amount of dimensions in 

extracted subset 

1.00 123 

0.90 103 

0.80 84 

0.70 62 

0.60 41 

0.50 21 

Table 5: Feature selection by correlation 

To significantly reduce an amount of dimension in our dataset with this method, low 

coefficient threshold should be used (Table 5). Unfortunately, this introduces a risk to 

lose not only highly correlated redundant properties, but also relevant ones. As a result, 

we produced a subset of data with 21 columns (with correlation threshold 0.50). In further 

analysis it referred to as Dataset 3. 
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4.1.1.2 Feature selection by clustering validation 

Another automatic method, which not requires domain knowledge is to extract important 

features by clustering application and evaluation. The idea is to conduct clustering on 

dataset with different amount of randomly extracted features and evaluate clustering 

accuracy. Then, extract subsets with highest evaluation results. This method require to 

conduct clustering analysis, therefore its implementation is presented in the “5.1.3.3 

Dimensionality reduction by clustering validation” part. 

4.1.1.3 Feature selection by random forest 

Another approach for selecting features is to construct a random forest and evaluate the 

importance of features in this forest [14]. This approach is based on one predictor 

(represented by feature), which is used for building multiple decisions trees. By 

constructing such trees, mean Gini impurity value is calculated for each property. This 

value could be interpreted as an importance of the features for specified predictor.  

This is a simple approach, which produces a straightforward overview of the importance 

of features. The approach is knowledge-based, since the predictor feature should be 

specified as an input. The appropriate choice of predictor should be done before 

application by domain expert. Therefore, we cannot include this approach in developed 

baseline. However, we will use it to evaluate an impact of dimensionality reduction on 

data analysis. Instead of selecting low-dimension data randomly, this approach could give 

a potentially more expressive subset.  

We used feature “Surm sSurmaKuup2ev” as a predictor. By building forest with 100 

decision trees (Appx. 2), mean decrease Gini value was calculated and 10 features with 

highest value was extracted (Fig. 9). 
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Figure 9: 10 most important features for "Surm aSurmaKuup2ev" predictor by random forest. 

 

Those features were used to generate new subset (with 10 columns). In further analysis it 

referred to as Dataset 4. 
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5 Data mining 

After data preprocessing and transformation, which produced 4 datasets, the next step of 

a developed baseline is to apply data mining techniques to extract patterns. We considered 

two techniques - clustering analysis and association rules mining. Implementation of 

those techniques is described in the “7.1 Implementation of the processes” part. 

5.1 Clustering analysis 

Clustering analysis is a process, which helps to understand the relationships between data 

points by grouping a set of records to clusters, based on their similarity. In developed 

baseline, clustering analysis consists of 3 steps: 

 Clustering tendency - helps to understand, is the dataset useful for clustering.  

 Clustering algorithms - divides data into clusters.  

 Clustering validation - helps to understand the relevance of produced clusters and 

compare clustering algorithms.  

5.1.1 Clustering tendency 

Before applying clustering algorithms, we can validate our dataset on the presence of 

potential patterns. If data is two-dimensional, it could be done simply by visualizing the 

data. In the case of high-dimensional data, clustering tendency technique [15] could be 

used. This technique helps to understand, is the distribution within dataset uniform or it 

could contain possible patterns. 

We implemented and included in the analysis baseline VAT [16] algorithm. This is 

clustering tendency approach, which is based on datasets ordered distance matrix (table 

of dissimilarity scores between all data points) visualization. It consists of following 

steps: 

1. Distance matrix calculation - calculation of distances between all data points. 

Generated matrix will be symmetric with zeros on main diagonal. 
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2. Distance matrix order – order of distance matrix, so that distances ascend from 

main diagonal without violating the data records relationships. This means, that 

in ordering we can only operate with rows and columns but not directly with 

matrix cells. The matrix symmetry should be preserved. 

3. Generation of random ordered distance matrix – creation of random dataset with 

the same shape as in original dataset and with respect to categories. This means, 

that variance of categories within generated dataset should be same as in original 

dataset. Using generated dataset, steps 1 and 2 should be repeated. 

4. Visualization – visualization of ordered distance matrices of randomly generated 

and original datasets. 

5. Visualization assessment – comparison of visualized produced in previous step.   

To calculate distance matrix, we used simple matching measure [17]. This similarity 

measure is relevant to categorical data. To create a random copy of dataset, for each 

column we calculated amount of unique categories within this columns. Then, we 

randomly generated categories in the range of this amount and filled dataset with those 

categories. To order distances matrixes was implemented an algorithm, presented in this 

article [16] (see “7.1 Implementation of the processes” part). After that, we have 

visualized ordered distance matrices for randomly generated data (Fig. 10) and for 

Dataset 2 (Fig. 11). Visualization of rest datasets could be found in the appendix (Appx. 

3, Appx. 4, and Appx. 5). 
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Figure 10: VAT for randomly generated ordered distance matrix (150 rows, 123 columns). Axises represent 

data points, color represent distance value. 

 

 

Figure 11: VAT for Dataset 2 ordered distance matrix. Axises represent data points, color represent distance 

value. 

The distribution of distance matrix based on random data clearly differs from matrix 

based on Dataset 2. When first represents a uniform distribution (Fig. 10), second has a 

potential patterns (Fig. 11). By comparing those figures we can assume, that Dataset 2 

could contain patterns and application of clustering algorithm would be relevant. 

5.1.2 Clustering 

If clustering tendency shows, that distribution of data is not uniform and could contain 

meaningful patterns, they should be discovered by applying clustering algorithms. The 
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selection of the algorithms is not trivial. For different clinical datasets, optimal algorithms 

could be different. It strongly depends on the type of distribution within the dataset, which 

is difficult to identify before clustering. However, the selection could be done after 

clustering, by validating clustering results. 

To make developed baseline more versatile, we applied two algorithms, which could 

handle datasets with different distribution types: centroid based k-modes [18] and density 

based HDBSCAN [19].   

5.1.2.1 K-modes 

Since we have discovered that our data could contain patterns, by applying simple 

matching distance measure, we used same distance measure to cluster data. Considering, 

that our data is categorical, we used k-modes algorithm [18]. K-modes is an extension of 

k-means algorithm. It replaces Euclidian distance measure (which is only applicable to a 

continuous data) by simple matching distance measure and identifies similar objects, by 

calculating modes instead of means. This extension preserves the efficiency of the k-

means algorithm and makes possible to apply it on categorical data. K-modes algorithm 

is centroid based and is optimal for datasets with centroid-based distribution (Fig. 12). 

 

Figure 12: Centroid based distribution of data [20] (two-dimensional dataset) 

One of the difficulties with k-type algorithms is that before clustering user should define 

the amount of clusters (k), to which the data will be divided. The optimal number of 

clusters depends on dataset structure and domain context. The only way to determine it 

before clustering is to use domain knowledge. However, to keep k-modes algorithm in 

developed data analysis baseline, we can determine optimal k after clustering. By 

applying algorithm multiple times with different k parameter, we can compare clustering 
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results and choose the optimal input parameter (described in “5.1.3.2.1 Selection of 

the optimal clustering parameters” part). 

K-modes algorithm was applied to datasets, produced in the previous steps (Table 6). 

Dataset Amount 

of 

columns 

Amount of 

records in 

produced 

clusters, k=3  

Amount of 

records in 

produced 

clusters, k=4 

Mean 

computational 

time 

(seconds) 

1 679 80/22/48 73/23/48/6 8.33 

2 123 74/22/54 70/22/29/29 1.08 

3 21 63/42/45 57/41/30/22 0.24 

4 10 84/44/22 83/38/21/8 0.21 

Table 6: Data records by clusters distribution using k-modes algorithm 

 

After observation of produced clusters, we noticed, that results of the algorithm are very 

similar for Dataset 1 and Dataset 2. They generate clusters with similar size, containing 

same objects. However, despite the fact, that data cleaning step did not affect the 

distribution of data in clusters, it introduces a significant improvement in algorithm 

performance in the context of time. The validation of k-modes results is described in 

“5.1.3.2.2 Comparing clustering algorithms” part. 

5.1.2.2 HDBSCAN 

Additionally to centroid-based distribution (Fig.12) data could be represented in more 

arbitrary forms (Fig. 13). 
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Figure 13: Arbitrary distribution of data [21] (two-dimensional dataset) 

In this case application of centroid-based algorithms will be impractical. With such data, 

density-based algorithms should be used, which are very efficient in the case of arbitrary 

distribution. One of them is DBSCAN [22]. This algorithm operates with distance 

matrices and has no restrictions on the clustering similarity measure. With our dataset, 

we calculated similarity matrix using the same measure, as with k-modes algorithm. 

DBSCAN produces clusters by using 2 main input parameters:  

1. Eps – radius of the neighborhood (restricted area around data record). 

2. MinPts – minimum amount of points (data records) in the neighborhood. 

Using those parameters, algorithm divides all data points into 3 groups: 

1. Core - points, whose neighborhood within Eps radius contain MinPts or more 

neighbor points. 

2. Border - points, whose neighborhood within Eps radius contain minimum 1 point 

and less, than MinPts neighbor points. 

3. Noise - points, whose neighborhood within Eps radius does not contain any 

neighbor points. 

With this separation, DBSCAN collects all core points, which are connected to each other 

to form clusters. Border points are used as the cluster borders. Noise points are considered 

as outliers and are ignored. This approach have following advantages:  

1. Clusters of any shapes could be discovered. 
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2. Outlier points are ignored. 

3. There is no need to determine the amount of clusters before clustering. 

However, the main disadvantage of this algorithm is that produced result is very sensitive 

to the specified parameters. The determination of the optimal Eps and MinPts is not trivial 

and requires domain knowledge.  

To include this algorithm into developed baseline and avoid using domain knowledge,  

HDBSCAN algorithm [19] could be applied. This is a hierarchical extension of DBSCAN 

with less sensitivity to input parameters. Basically, this algorithm performs DBSCAN 

over varying Eps parameter and extracts the clusters with best performance. This method 

allows returning an optimal result with the minimal tuning of the input parameters. 

Unlike DBSCAN, this algorithm does not apply the same Eps neighborhood radius to all 

points. Instead, it iteratively increases Eps value and forms the density level for each data 

point. It creates a density tree (cluster hierarchy) by merging points to a cluster, when 

they occur within the same neighborhood (Fig. 14). 

 

Figure 14: HDBSCAN forming clusters hierarchy by increasing Eps value (example for 2-dimensional data, 

where x and y axises represent feature values) 

Since it splits the tree every time, when new point occurs in the neighborhood, tree 

quickly becomes too voluminous and unreadable. To bypass this problem, it uses 

minimum cluster size input parameter (amount of minimum objects in the cluster). This 

parameter defines a threshold, allowing to split density tree and simplifies produced tree. 

The optimal minimum cluster size parameter could be defined by clustering statistical 

validation. Therefore this algorithm could be included in the developed baseline. 
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HDBSCAN generates density tree in a form of the dendrogram (Fig. 15), where branches 

are potential clusters. Color and wideness of dendrogram branches represent the amount 

of data points in cluster and alpha value – how long cluster remained unchanged. 

Algorithm selects branches with longest alpha value as an optimal clusters (outlined with 

red, green and blue circles on Fig. 15). Children of selected branches are identified as 

noise values. 

 

Figure 15: HDBSCAN generated density tree with Dataset 3, minimum cluster size = 5 

We applied this algorithm to a produced before datasets, with minimum cluster size = 5 

(Table 7).  

Dataset Amount of 

clusters 

Amount of 

records in 

produced clusters 

Amount of 

discovered 

noise points 

Time 

complexity 

(seconds) 

1 3 117/22/7 4 0.64 

2 3 122/22/6 0 0.25 

3 5 20/5/29/78/6 12 0.22 

4 7 9/7/35/9/32/24/20 14 0.16 

Table 7: Data records by clusters distribution using HDBSCAN algorithm 
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As with k-modes algorithm, Dataset 1 and Dataset 2 produced similar clusters. Clusters 

produced with Dataset 3 and Dataset 4 were very different. The validation of HDBSCAN 

results is described in “5.1.3.2.2 Comparing clustering algorithms” part. 

5.1.3 Clustering validation 

After applying clustering algorithms, the results should be analyzed. To understand 

clustering result, the validation techniques should be included in developed baseline. To 

give a completely objective evaluation and interpret clustering results in the domain 

context, domain knowledge is necessary. However, we can use clustering validation, 

avoiding domain knowledge to fulfill following goals: 

 Evaluate the impact of the data cleaning on clustering results. 

 Define optimal parameters for clustering. 

 Compare the performance of HDBSCAN and K-modes clustering algorithms 

 Select features with highest validation results 

Clustering validation could be divided by 2 types: 

1. Validation based on external criteria – evaluation of clustering results based on 

external knowledge about data, such as predefined distribution schemes, expected 

classification, etc. 

2. Validation based on internal criteria - evaluating clustering results based on 

dataset properties without external information. 

To apply validation without domain knowledge, we can only use internal criteria. In this 

work we used two validation techniques – visual validation and statistical validation. 

Also, clustering validation was used for dimensionality reduction as feature selection 

technique. 

5.1.3.1 Visual validation 

To give an initial assessment of clustering results we can use visualization. Since 

dimensionality of our data is high, we can’t visualize data points directly. However, we 

can visualize distance matrices of datasets with the respect to produced clusters. We have 



43 

ordered datasets in the same way, they are distributed by clusters. Then we recalculated 

the distance matrices for all datasets and visualized them (Fig. 16, Fig. 17). On this figures 

color represents a distances between data points. Visualization of such matrices could 

describe, how similar are data records within clusters and how different are clusters. The 

good clustering result should represent clearly isolated patterns with sharp borders.  

 

Figure 16:  K-modes clusters visualization, k=3 
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Figure 17: HDBSCAN clusters visualization, minimum cluster size = 5 

The Fig. 16 and Fig. 17 represents k-modes and HDBSCAN clustering results 

visualization, for all produced before datasets. Both visualizations produce similar blocks 

(clusters) with Datasets 1, 2 in the context of data distribution. However, clusters 

generated by Dataset 2 have the most perceptible separation. This means that produced 

clusters are more distinct from each other. It indicates to more efficient clustering. Since 

Dataset 2 represents a dataset, which was produced after data cleaning, we can assume, 

that data cleaning had a positive impact on clustering results.  

Also, with both algorithms, the distribution of Dataset 3 and Dataset 4 is a lot sparser. It 

is more difficult to distinguish strongly outstanding patterns, which indicates poor 

clustering.  

Having the poor efficiency of Dataset 4 and Dataset 5 with both clustering algorithm we 

assume, that feature selection by correlation with coefficient = 0.5 and by random forest 

is not efficient in the context of clustering. It does not improve clustering with our data. 

Clustering visualization gave an initial overview of tendencies in produced clusters. 

However, since clustering was conducted with constant parameters, it does not provide 

an evaluation of optimal parameters. Also, we cannot compare performance of clustering 

algorithms with this approach. To receive this information, the statistical properties of 

produced clusters should be analyzed. 
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5.1.3.2 Statistical validation 

In our case, statistical validation is based on internal indices. Currently existing a large 

number of various internal validity indices, which could be used for validation [23]. 

Generally, those indexes are based on two important clustering characteristics [24]: 

1. Compactness - how similar are objects in cluster. It is based on within cluster 

distances, where lower distances indicate better compactness. 

2. Separation - how distinct or well-separated are clusters from each other. Higher 

distances indicate better separation. 

As a measure of compactness and separation, we use distances between data points in 

produced clusters. In this work as the internal index we applied Silhouette score [25], 

which shows a good accuracy with both centroid-based and density-based algorithms 

[24]. 

By calculating Silhouette score, we get a coefficient, which represents clustering 

efficiency, based on the pairwise distances between inner-cluster and intra-cluster data 

points. To calculate pairwise distances for our data, we used simple matching similarity 

measure. 

Silhouette score varies between -1 and 1. High value indicates good clustering, where 

data points are well matched to clusters, to which they belong and poorly matched to other 

clusters. In developed baseline we use Silhouette score to define optimal clustering 

parameters, compare efficiency of clustering algorithms and select important data 

features. 

5.1.3.2.1 Selection of the optimal clustering parameters 

To define optimal parameters for clustering, we applied K-modes and HDBSCAN 

algorithms to all produced before datasets with different parameters (Fig. 18, Fig. 19). 
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Figure 18: K-modes silhouette score for all data points with different amount of clusters  

 

Figure 19: HDBSCAN silhouette score for all data points with different minimum cluster size 

 

K-modes tends to have better clustering with almost all datasets, when data is separated 

by 3 clusters (Fig. 18). With increasing the k value, the quality of clustering decreases. 

The k=3 could be considered as the optimal parameter with clustering our dataset using 

k-modes algorithm. Also, it is noticeable, that worst results generate Dataset 3 and 

Dataset 4. 
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In the case of HDBSCAN, we operate with minimum cluster size parameter (Fig. 19). 

Same as with k-modes, we have calculated silhouette score for all datasets with varying 

minimum cluster size and extracted the parameter, which generates highest validation 

score. 

Clustering algorithms were applied to all datasets with optimal parameters. Produced 

clusters were sent to domain expert for evaluation and were used to compare the 

efficiency of clustering algorithm. 

5.1.3.2.2 Comparing clustering algorithms 

Additionally to finding optimal clustering parameters, we used silhouette score to 

evaluate the influence of data cleaning on clustering results and compare, which 

clustering algorithm is more relevant with our dataset. Clustering algorithms were applied 

to all datasets and silhouette score was calculated (Table 8).  

K-modes algorithm produces highest silhouette score with Dataset 2. However, the 

difference between silhouette score with Dataset 1 and Dataset 2 is minimal. 

Significantly lower results were generated with Dataset 3 and Dataset 4. 

With the HDBSCAN, the best silhouette score also generates Dataset 2. However, unlike 

K-modes, the difference from other datasets was significantly bigger. This indicates on 

positive impact of data cleaning. As with K-modes, much worse performed Dataset 3 and 

Dataset 4. 

The best overall performance showed HDBSCAN algorithm. We assume, that 

HDBSCAN algorithm is more efficient to our dataset. 

Dataset Best K-modes 

silhouette score 

Best HDBSCAN 

silhouette score 

1 0.336 0.386 

2 0.339 0.579 

3 0.154 0.109 

4 0.279 0.213 



48 

Table 8: Comparison of K-modes and HDBSCAN best silhouette scores with all datasets 

By applying statistical validation, we confirmed assumptions made by initial visual 

validation. Application of data cleaning positively affects clustering results. However, the 

application of dimensionality reduction by correlation and random forest had a negative 

effect in the context of clustering. By using this technique in developed baseline, we can 

determine optimal clustering parameters and optimal algorithm for dataset, based on 

statistical parameters of the result.  

5.1.3.3 Dimensionality reduction by clustering validation 

Additionally, we used clustering validation as an approach of dimensionality reduction. 

At first we extracted multiple random subsets from our data with different amount of 

dimensions. Then we applied k-modes and HDBSCAN algorithms with those subsets and 

validated clustering results using silhouette score (Table 9). For every amount of 

dimensions, random subsets were picked 30 times. 

Dimensions 3 5 10 20 50 90 120 

K-modes silhouette score 

Min  0.089 0.107 0.152 0.208 0.281 0.266 0.207 

Max  0.985 0.787 0.69 0.513 0.543 0.440 0.422 

HDBSCAN silhouette score 

Min 0.453 -0.09 0.051 0.174 0.182 0.032 0.361 

Max 0.994 0.993 0.921 0.827 0.815 0.773 0.771 

Table 9: Min and max silhouette score distribution by applying k-modes and HDBSCAN to randomly 

extracted datasets 

Some of data subsets, even with high amount of dimensions generated very accurate 

results in the context of silhouette score, especially with HDSCAN clustering. Subsets, 

which generate high silhouette score were extracted for further analysis. Also were 

extracted clusters, produced by those subsets, which was sent to domain expert for 

interpretation. 
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5.1.4 Clustering analysis results 

In developed baseline clustering analysis is based on statistical properties of data and 

clustering results. However, statistical properties are not enough to interpret the result in 

the context of domain. For such interpretation, domain knowledge should be applied. 

Therefore, following information, produced with optimal parameters was sent to domain 

expert for the interpretation and further analysis: 

K-modes: 

 Clusters, produced with Dataset 1, Dataset 2,  k = 3 

HDBSCAN:  

 Clusters, produced with Dataset 1, Dataset 2, minimal cluster size = 5 

 Clusters, produced with subsets, selected by clustering validation based feature 

selection, with highest silhouette score (3, 5, 10, 20, 50 dimensions) 
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5.2 Association rules mining 

Besides clustering, to extract additional information from clinical data, we applied 

association rules mining technique [26]. The main purpose of this technique is to fulfill 

following goals: 

 Find frequent patterns in dataset 

  Generate association rules, based on frequent patterns 

Presence of those goals divide this technique by 2 steps: 

1. Frequent pattern mining – process, aimed to find frequent patterns in the data, 

which pass defined minimum support threshold (varies from 0 to 100). This 

threshold indicates, how frequently those patterns appear in dataset. 

2. Association rules generation – process, aimed to generate rules, based on frequent 

patterns, which pass defined minimum confidence threshold (varies from 0 to 

100). Confidence is ratio between the rule and the rule basis appearing in the 

dataset. 

This technique could be applied without domain knowledge and was included in the 

developed data analysis baseline. 

5.2.1 Frequent pattern mining 

Frequent pattern mining goes through dataset and finds the interesting patterns 

represented by data features called itemsets. Interestingness is measured by frequency of 

the pattern appearing in dataset. FP mining is computationally complex and presents a 

main difficulty in the association rules mining process. The computational complexity of 

FP mining significantly varies depending on dataset properties (shape of the data, variety 

of features) and on the mining algorithm. In this work, were considered 2 well-known 

algorithms - Apriori [27] and FP-Growth [28]. Considering advantages and disadvantages 

of both algorithms [29] and comparative study [30], we decided to use in our baseline FP-

Growth algorithm, which shows much better performance, comparing to Apriori.  
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5.2.1.1 FP-Growth 

FP-growth is an extension of Apriori algorithm, which removes its bottlenecks. It operates 

with dataset records to calculate frequencies of patterns and identify frequent patterns. 

When Apriori iteratively finds the frequencies for every pattern size, FP-Growth builds a 

tree with all frequencies only once. This approach gives significant increase of 

performance efficiency and reduces computational cost. 

The main parameter of FP-Growth is minimum support. Patterns with low support are 

usually uninteresting in the context of analysis, since rules generated with them may occur 

simply by chance and not represent a meaningful association [26]. However, for the 

clinical data, there is no defined optimal value for minimum support, which will produce 

best results. Rules generated from patterns with various minimum support could 

interesting [31]. Considering this factor, we established the range of minimum support 

between 40 and 80. This range excludes patterns, produced by chance and allows to 

analyze rules with different support score.  

One of the biggest problems of FP mining is that it tend to generate a big amount of 

patterns. Having high-dimensional data, by directly applying FP-Growth to our dataset 

(Dataset 2) and decreasing the minimum support, the amount of generated patterns grows 

very quickly (Fig. 20). 

 

Figure 20: Growth of the amount of discovered patterns, using FP-Growth algorithm for Dataset 2. 
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of analysis in the context of time complexity (Table 10) and in context of expressiveness 

of the results. It makes almost impossible to analyze patterns with high-dimensional data, 

introducing a huge amount of irrelevant and redundant information. 

Minimum support Time(seconds) 

85 0.03 

80 0.25 

75 1.50 

70 40.31 

67 332.91 

Table 10: Time complexity of FP-Growth algorithm, applied to Dataset 2 with different minimum 

support parameters 

 

To work around this problem, possible solutions could be considered from two different 

views: 

1. From the view of the algorithm limitations 

2. From the view of the dataset limitations 

At first, from the view of algorithm limitations, we can reduce the maximum amount of 

items in discovered patterns. Frequent patterns will be used to generate rules, which will 

be sent to domain expert. This means, that eventually, they will be analyzed manually. 

According to studies [31], rules with more than 5 variables are hard to interpret in the 

context of clinical data. Considering this, we will limit the maximum amount of items per 

pattern by 5.  

Results of this approach produce improvement in the context of time complexity (Table 

11), allowing to generate patterns with lower support. However, growth of the number of 

patterns size is still exponential (Fig. 21). 
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Figure 21: Growth of the amount of discovered patterns applying FP-Growth algorithm for Dataset 2 with 

decreasing s, where s = minimal support, after applying pattern size limitation. 

 

Minimum support Time(seconds) 

70 0.12 

65 2.17 

60 9.26 

55 21.60 

50 42.93 

Table 11: Time complexity of FP-Growth applied to Dataset 2 with pattern size limitation 

From the view of the dataset, the biggest factor, affecting the number of generated 

patterns is the amount of dimensions. Since Dataset 2 produce inappropriately big amount 

results, we applied frequent pattern mining to datasets, generated by dimensionality 

reduction (Table 12). Despite the fact, that datasets, generated by random forest and by 

correlation gave low results in the context of clustering, they could still contain the 
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20 and 50 dimensions. In following analysis they are marked accordingly: Dataset 5, 

Dataset 6, Dataset 7 and Dataset 8.  

Dataset 3 (10 dimensions) 

Minimum Support 80 60 40 

Patterns 0 0 11 

Dataset 4 (21 dimensions) 

Minimum Support 80 60 40 

Patterns 808 2432 4703 

Dataset 5 (5 dimensions) 

Minimum Support 80 60 40 

Patterns 17 20 26 

Dataset 6 (10 dimensions) 

Minimum Support 80 60 40 

Patterns 336 361 582 

Dataset 7 (20 dimensions) 

Minimum Support 80 60 40 

Patterns 59183 83330 125433 

Dataset 8 (50 dimensions) 

Minimum Support 80 60 40 

Patterns 176464 687969 1192298 

Table 12: FP-mining results with different support parameter. Datasets 3, 4, 5, 6, 7, 8 
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By applying FP-growth algorithm with those datasets, we got results with significantly 

smaller amount of patterns. It became possible to extract patterns with whole established 

range of minimum support (40-80). Frequent patterns, produced by Dataset 3, Dataset 5 

and Dataset 6 consist of appropriate number of patterns (for manual analysis) and could 

be used as a material for rules generation. 

5.2.2 Generating rules from frequent patterns 

After extracting frequent patterns from our datasets, we used them to generate association 

rules. This process is based on the confidence parameter. Confidence measures the 

reliability of the produced rules [26]. For the further analysis we extracted rules with high 

confidence threshold (Table 13). Generated rules for those datasets was extracted and sent 

to domain expert for further evaluation. 

Dataset 3 (10 dimensions), confidence = 80 

Minimum Support 80 60 40 

Rules 0 0 38 

Dataset 5 (5 dimensions) , confidence = 80 

Minimum Support 80 60 40 

Rules 55 55 55 

Dataset 6 (10 dimensions), confidence = 80 

Minimum Support 80 60 40 

Rules 1386 1456 2114 

Table 13: Association rules mining. Datasets 3, 5, 6 

Association rules mining is a final stage of developed baseline. 



56 

6 Complexity growth 

Developed baseline was applied to extracted dataset with low amount of records. Due to 

which, the relevance of the baseline should be evaluated with bigger datasets. We 

synthetically generated 500 row, 1000 row and 5000 row datasets, applied baseline 

processes on them and measured the efficiency of developed data analysis baseline in the 

context of time complexity (Table 14). The number of dimensions was same as with 

cleaned data (123 dimensions). 

Distance matrix calculation (123 dimensions) 

Rows 150 500 1000 5000 

Exec. Time (seconds) 0.14 0.77 3.01 77.49 

Correlation calculation, using Cramer’s V and chi-squared for duplicates removing and 

dimensionality reduction (123 dimensions) 

Rows 150 500 1000 5000 

Exec. Time (seconds) 20.61 22.53 27.34 29.83 

Random forest feature selection with 100 trees (123 dimensions) 

Rows 150 500 1000 5000 

Exec. Time (seconds) 0.24 0.83 2.17 31.45 

K-modes, k=3 (123 dimensions) 

Rows 150 500 1000 5000 

Exec. Time (seconds) 0.99 5.57 9.64 29.93 

HDBSCAN without distance matrix calculation, min cluster size = 5 (123 dimensions) 

Rows 150 500 1000 5000 
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Exec. Time (seconds) 0.01 0.04 0.13 3.27 

Silhouette score calculation without distance matrix calculation (123 dimensions) 

Rows 150 500 1000 5000 

Exec. Time (seconds) 0.01 0.02 0.09 2.64 

Table 14: Time complexity benchmarks with generated datasets 

Frequently pattern mining and association rule mining depends mostly on data 

distribution within datasets. In randomly generated dataset with minimum support more 

than 1 it is hard to find a lot of patterns, due to dataset uniform distribution. However, by 

applying those algorithms for different datasets with minimum support more than 1, there 

was no difference in the context of computational time. 

After applying benchmarks, the sharpest growth was with simple matching distance 

matrix calculation. However, it could be an implementation issue, since k-modes 

algorithm, using same dissimilarity measure performed much more efficient. Despite that, 

overall time complexity with bigger datasets is within reasonable time limits (in worst 

case scenario baseline application does not take more than 10 minutes). This means that 

developed baseline is relevant with the bigger datasets.   
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7 Implementation 

Most of the techniques, used in this thesis were implemented with Python and R 

languages and open source libraries, as a project “medcl”. For more convenient work with 

datasets, almost all implementations used “pandas” and “numpy” libraries.  

Source code and data could be found here: https://github.com/jjjmm/medcl 

General project structure: 

 src – project source code 

 data – directory with used and produced datasets, plots, baseline results 

Most of the baseline processes was implemented as separate files. 

7.1 Implementation of the processes 

Data transformation: 

 src/continuous_to_categorical.py (python) 

o Description: Detection of continuous variables and conversion of those 

variables to uniform categorical intervals 

Missing data analysis: 

 src/data_stats/missing_data/missing_visualization.py (python) 

o Description: Dataset visualization in the context of missing data 

o Used libraries: “missingo” 

 src/data_stats/missing_data/missing_data.py (python) 

o Description: Calculation of the distribution of missing values in dataset by 

rows and columns; removal of columns with high amount of missing 

values 

Duplicates removing: 
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 src/duplicates.py (python) 

o Description: identifying duplicate columns and removing them 

 src/cramers_v.py (python) 

o Description: Calculation of Cramer’s V score, correlation matrix 

visualization. 

o Used libraries: “matplotlib”, “scipy”, ”seaborn”. 

Feature selection: 

 src/feature_selection /rand_forest.r (R) 

o Description: Features selection by random forest generation 

o Used libraries: “randomForest” 

 src/feature_selection/by_clust_validation.py (python) 

o Description: Feature selection by clustering validation 

 src/feature_selection/by_corr.py (python) 

o Description: Feature selection by correlation 

Clustering tendency: 

 src/data_stats/tendency.py (python) 

o Description: implementation of VAT ordering algorithm, clustering 

tendency visualization 

o Used libraries: “seaborn”, “matplotlib” 

Simple matching similarity measure: 

 src/validation/simple_matching.py (python) 
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o Description: Distance matrix generation based on simple matching 

similarity measure 

K-modes clustering algorithm: 

 src/k_modes.py (python) 

o Description: Clustering, using k-modes algorithm 

o Used libraries: “kmodes” 

HDBSCAN clustering algorithm: 

 src/hdbscan_impl.py (python) 

o Description: Clustering, using HDBSCAN algorithm, visualization of 

HDBSCAN hierarchy 

o Used libraries: “hdbscan”, “seaborn”, “matplotlib” 

Clustering validation: 

 src/validation/va.py (python) 

o Description: Implementation of visual clustering validation 

o Used libraries: matplotlib, seaborn 

 src/validation/silhouette.py (python) 

o Description: calculating silhouette score for clustering validation and 

dimensionality reduction by clustering validation 

o Used libraries: “sklearn”, “matplotlib”, “hdbscan” 

Dataset generation: 

 src/util/data_util (python) 

o Description: Generation of synthetic datasets for time complexity 

evaluation 
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Littles test: 

 External software - IBM SPS Statistics 23 (https://www.ibm.com/us-

en/marketplace/spss-statistics) 

o Description: Calculation of Little’s MCAR test 

FP-growth feature selection, Extracting rules from data mining: 

 External software – FP-Growth algorithm implementation 

(http://borgelt.net/doc/fpgrowth/fpgrowth.html) 

o Generation of frequent patterns and association rules 

7.2 Used datasets 

Datasets, which were used in this thesis and were produced by application of developed 

baseline are listed in Table 15.  

Path Description 

data/datasets/original.csv Original dataset 

data/datasets/generated/123_50

0.csv 

Generated dataset with 500 rows 

data/datasets/generated/123_10

00.csv 

Generated dataset with 1000 rows 

data/datasets/generated/123_50

00.csv 

Generated dataset with 5000 rows 

data/datasets/1_679.csv Original dataset without completely empty columns. 

data/datasets/2_123.csv Dataset with columns, containing 0-20% of missing 

values, without complete duplicates, without context 

duplicates. 

https://www.ibm.com/us-en/marketplace/spss-statistics
https://www.ibm.com/us-en/marketplace/spss-statistics
http://borgelt.net/doc/fpgrowth/fpgrowth.html
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data/datasets/3_21.csv Dataset, produced by correlation based feature selection 

data/datasets/4_10.csv Dataset, produced by random forest feature selection 

data/datasets/5_3.csv Dataset, produced by clustering validation feature 

selection (3 columns)  

data/datasets/6_5.csv Dataset, produced by clustering validation feature 

selection (5 columns) 

data/datasets/7_10.csv Dataset, produced by clustering validation feature 

selection (10 columns) 

data/datasets/8_20.csv Dataset, produced by clustering validation feature 

selection (20 columns) 

data/datasets/randomly_filled_

with_respect_of_categories.csv 

Randomly generated dataset with respect of categories 

(used in clustering tendency assessment) 

Table 15: Used datasets 
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8 Summary 

During this work, data analysis baseline for clinical dataset was developed. This baseline 

consists of preprocessing, transformation and data mining techniques and could be 

applied without domain knowledge. Developed baseline could be used as an initial 

analysis base and accelerate whole data analysis process. Since data analysis is an 

iterative process, developed baseline could be changed and improved on any stage, 

relying on the interpretation of produced results. 

Some of the techniques were implemented and validated using simple matching similarity 

measure with categorical data. However, since most of the techniques operate with 

distance matrices, they could be applied to other data types, using different similarity 

measure. 

By applying data cleaning techniques, sparse data was projected to a more expressive 

form. This was the reason of achieving better results in the context of clustering. By using 

dimensionality reduction it became possible to extract association rules from dataset. 

Association rules mining and clustering analysis produced patterns, which could 

potentially represent valuable information. Developed baseline consists of following 

steps: 

1. Data cleaning 

a. Data transformation 

b. Missing data analysis 

c. Duplicates removing 

2. Dimensionality reduction 

a. Feature selection by correlation analysis 

b. Feature selection by clustering validation 

3. Clustering analysis 

a. Clustering tendency 
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b. K-modes 

c. HDBSCAN 

d. Clustering validation 

4. Association rules mining 

a. FP-growth feature selection 

b. Extracting rules from frequent patterns 

Developed data analysis baseline was applied to a real clinical dataset. With our data, 

HDBSCAN showed better results, than k-modes. Application of feature selection by 

correlation analysis and random forest produced a poor efficiency in the context of 

clustering. However, k-modes and feature selection by correlation remained in the 

baseline, since using those with clinical datasets with different data distribution could 

give better results. Feature selection by random forest was removed from baseline, since 

it could not be applied without domain knowledge. 

During this work the developed data analysis baseline was created taking into account the 

absence of domain knowledge. However, decisions made in this work were based only 

on statistical properties, which always introduce some bias. Using domain knowledge 

with some techniques (data transformation, missingness mechanism determination) could 

improve final results. Also domain knowledge is necessary to interpret the final results 

and get an objective evaluation of baseline performance. 

One of the biggest drawbacks of developed baseline is that strategic decisions were made 

using dataset with low amount of records. This factor reduces expressiveness of data and 

could cause biased results. Produced baseline should be validated by applying it with 

bigger real clinical dataset. However, even with small dataset, this baseline produces 

results, which could be potentially valuable in the domain context. Those results were 

sent to domain expert for evaluation and interpretation. 

Also, since we worked with extracted subset, the performance of developed baseline was 

analyzed in the case of the bigger dataset. If the dataset will grow, it will not affect the 

performance significantly, therefore baseline could be used with bigger datasets.  
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Appendix 

 

Appendix 1: Part of the form used to collect clinical data 

 

Appendix 2: Example of the decision tree in Random Forest 
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Appendix 3: VAT for Dataset 1 ordered distance matrix 

 

Appendix 4: VAT for Dataset 3 ordered distance matrix 
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Appendix 5: VAT for Dataset 4 ordered distance matrix 


