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Abstract 

The problem of Fraud has reached an alarming scale nowadays. Losses due to the fraud 

are reaching billions of dollars every year. It is impossible to fight against fraud alone 

hand because the huge amount of data is hard to be analysed by one person. To reduce 

the number of losses decision systems that use efficient fraud detection algorithms should 

be invented. With the support of modern technologies, these systems are able to manage 

to analyse the information and to create a prediction feature model. However, the 

invention of these systems is not a trivial matter but a quite challenging task due to the 

huge amount of different and unbalanced data. Moreover, it is not clear which Machine 

Learning Algorithm should be implemented. The present Thesis aims to give some 

answers by focusing on the following issues: 1) which of the Machine Learning 

Algorithms: Logistic Regression, Decision Tree or Self-Organized Map fits better to deal 

with the problem of Fraud Detection, 2) why and where it is best to implement Supervised 

or Unsupervised methods of Machine Learning in scope of Fraud Detection, 3) the way 

to deal with unbalanced data and use of such data for Machine Learning. A program 

prototype that can examine the provided data and make a decision according to the test 

data will be presented at the end of the Thesis. 

This thesis is written in English and is 41 pages long, including 5 chapters, 33 figures, 

and 18 tables. 
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Annotatsioon 

Masinaõpe ning andmete otsimine pettuste avastamiseks. 

Tänapäeval on pettuste probleem jõudnud murettekitava ulatuseni. Kahjumit   tekib 

pettuse pärast miljardeid dollareid aastas. Inimesed ise ei saa võidelda pettuste vastu, 

suure hulga andmete pärast, inimesed lihtsalt ei suuda analüüsida kõiki andmeid. Kahjude  

vähendamiseks saame luua õppivad otsustussüsteemid, mis kasutavad tõhusaid pettuste 

avastamise algoritme. Need süsteemid peavad suutma analüüsida andmeid ning luua 

mudeli, mida saaks kasutada pettuse leidmiseks. Aga ehitada sellist süsteemi ei ole 

triviaalne ülesanne, see on üsna keeruline, erinevate ning  alati mitte tasakaalus olevate 

andmete pärast. Samuti ei ole selge, millist masinõppe algoritmi me peaks kasutama. 

Autori eesmärgiks on pakkuda mõned vastused, keskendudes sellistele küsimustele nagu: 

1) milline algoritm valikust: Logistic Regression, Decision Tree või Self Organised Maps, 

on paremini sobiv pettuste avastamise probleemi lahendamiseks, 2) miks ja kus on parem 

kasutada järelvalvega või järelevalveta meetodeid pettuste avastamiseks, 3) kuidas me 

saame tegeleda tasakaalustamata andmete hulkadega, kuidas kasutada selliseid andmeid 

masinõppes. Üheks eesmärgiks on teha prototüüp, mis võimaldab mudelit õpetada ning 

kasutada seda pettuse leidmiseks. Samuti, töö lõpus, autor pakub erinevad võimalused 

mis tasub proovida tulevikus, õpetava mudeli tulemuse paranemise jaoks. Autori poolt 

oli valitud see teema, kuna ta arvad, et see on väga huvitav, perspektiivne ning aitab 

autorile tulevikus, enda töös. Printsiibid, mis autor kasutas lõputöös, saab ka kasutada 

teiste probleemide lahendamiseks, näiteks klassifitseerida andmed, leida andmete hulgas 

mustrid, ehitada otsuste puud jne. 

Selles töös, author kasutab avaliku andmete hulk. Andmete hulk koosneb kredit kaartide 

transaktsioonidest, andmed on väga tasakaalustamata ning kokku on 284807 rida. 

Andmed on leitav http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata.   

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 41 leheküljel, 5 peatükki, 33 

joonist, 18 tabelit. 

 

http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata
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List of abbreviations and terms 

AUC Area Under Curve 

PCA Principal Component Analysis 

SMOTE Synthetic Minority Over-sampling Technique 

APACS Association for Payment Clearing Services 

FP False Positive (genuine) 

TP True Positive (fraudulent) 

FN False Negative (fraudulent) 

TN True Negative (genuine) 

ROC Receiver operating characteristic 

TPR True Positive Rate 

TNR True Negative Rate 

FPR False Positive Rate 

FNR False Negative Rate 

NA Not a number 

DT Decision Tree 

CHAID Chi-square Automatic Interaction Detector 

SOM Self-organizing map 

BMU Best matching unit 

WSS Within groups sum of squares 

LR Logistic Regression 

MSE Mean square error 

BER Balanced Error Rate 

ERR Error 

KNN K-Nearest Neighbour 
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1 Introduction 

1.1 The problem of Fraud 

Fraud investigators classified Fraud as “Wrongful deception with the intent to gain 

personally or financially and intentional deception to persuade another person to part with 

something of value” [1]. The fraud problem is growing and can be estimated as difficult 

and challenging. The issue of fraud is as ancient as the history of humanity itself; it takes 

different forms: spam, payment fraud, account takeover, phishing, financial fraud and 

much more. Its costs are not always transparent. In addition to revenue costs, the indirect 

losses may arise as well, and one of those may be a reputation loss. The company can lose 

its good standing and thus clients since nobody wants to use a product with tarnished 

brand image. 

The Nilson Report [2] serving as the source of news and analysis in the global payment 

(mobile and card) industries informs that in 2015 the amount of global worldwide fraud 

losses has reached $21.84 billion and the $31.67 billion loss was projected in huge losses 

in 2020 [2]. Moreover, according to APACS, the credit card losses in the United Kingdom 

have been growing rapidly from £122 million in 1997 to £440.3 million in 2010 that 

shows the increase of credit card fraud [3]. In addition to these statements, the Annual 

Fraud Indicator has revealed that the UK cost of fraud was £50 billion in 2013 and could 

be as high as £193 billion per year [4]. 

1.2 Machine learning for Fraud detection 

Fraud can be smart, and it is continuously evolving. Without unlimited resources, it is 

very hard, better say, impossible to detect and stop fraudsters. Machine learning is an 

excellent candidate to pursue fraud detection in a scalable manner with small expense and 

effort. Also, this approach can help to find hidden patterns that are not directly apparent 

to a person. Moreover, machine learning can self-adapt to new events. What we can do is 

to try machine learning algorithms to examine the data and make decisions based on new 

events. The output of approach comes from the available information from the system 

where we aim to prevent the fraudulence. However, some data may be vast, unfinished, 

unbalanced and not trustworthy. 
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1.2.1 Machine learning for credit card Fraud detection 

Credit card fraud is a wide-ranging term for theft and fraud committed by utilising or 

using a payment card, such as a credit card or debit card, as a fraudulent source of assets 

in transactions. The goal may be to obtain goods without payment or to draw unauthorised 

cash from a user’s account. Credit card fraud is also an adjunct to identity data stealing. 

The frequency of credit card fraud is limited to about 0.1% of all card transactions, that 

has resulted in massive financial losses as fraudulent transactions were large-scale 

operations. It is hard to generate the fraud model due to the limited amount of fraudulent 

transactions, so, the credit card transactions do not represent the positive examples very 

well. However, credit card fraud is a major problem that may result in many distresses if 

not dealt with efficiently. 

There are some techniques that data analysts can use for credit card fraud detection.  

 The decision tree, it is easy to implement, understand and, which is important, 

display. 

 Peer group analysis (clustering the data) allows the fraud investigators to identify 

accounts that are behaving differently from their usual pattern at the specified 

period. 

 Neural networks, the fraud investigators have to cluster all data according to the 

type of account it belongs to.  

 K-Nearest Neighbour, the classifying samples supervised technique. KNN 

calculates the mean distances between various points on the input objects (vectors) 

and after that assigns the unlabelled point to the class of its nearest neighbours. 

 Bayesian Network, according to the David Heckerman [5], is a “graphical model 

that encodes probabilistic relationships among variables of interest. When used in 

conjunction with statistical techniques, the graphical model has several 

advantages for data analysis; it handles missed data entries, learns causal 

relationships, handles overfitting”. 

 K-means, the unsupervised clustering algorithm, divides the data into k clusters, 

and guarantee that the data in the same cluster are similar. 
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2 Foundations 

The machine learning plays a significant role in fraud detection. This Chapter is an 

Introduction to the domain of machine learning before the author is moving to the 

Contribution Chapter. Firstly, the target of the main topic is to clarify supervised and 

unsupervised learning methods. Secondly, it will disclose the cross-validation and bias 

vs. variance problems. The Chapter 2.4 will cover training, testing, validation and model 

selection. The Chapter 2.5 will introduce the issue of unbalanced data and a method to 

balance it.    

2.1 Supervised and Unsupervised Learning 

2.1.1 Supervised learning 

Supervised learning is the most frequent type of machine learning problem. Data analysts 

classify supervised learning problems as "regression" and "classification" problems. 

According to the [6] general acceptance, the supervised machine learning is the task of 

inferring a function from labelled training data. Supervised machine learning method 

means that learning algorithm uses supervised and labelled data in which every example 

consists of the input object and the output value. Typically the input object is a vector, 

and the output value is a signal, for instance, binary {0; 1}. The researcher gives the 

dataset to the algorithm in which the correct answers algorithm provides as an output. 

The researcher needs to gather training set to use this method, and training set should be 

distinctive in the actual use of the function. With gathered input objects, the 

corresponding outputs are also collected, either from human experts or measurements. 

The accuracy of the learned function strongly depends on how data represent the input 

object. However, the input data should contain enough information to predict the output 

accurately. To solve supervised machine learning problem the researcher also has to 

evaluate the accuracy of the learned function, so after the estimate function measures are 

made the performance of the resulting function should be measured on the test set 

separately from the training set. 
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If the investigator provides a set of 𝑁 training examples of the form 

{(x1, y1), … , (xn, yn)} such that xi is the feature vector of the i-th example and also its 

label, a learning algorithm seeks a function 𝑔 ∶ 𝑋 → 𝑌, where X is the input space and, Y 

is the output space. The function g is an element of some space of possible functions G, 

usually called the hypothesis space.    

2.1.2 Unsupervised learning 

We define unsupervised learning as problems where the researcher provides the data 

without the desired output. These algorithms are used to organise data clusters. Many 

companies, online shops and others have a lot of data in their databases, such as customer 

information for instance. We can look at this set of customer information and 

automatically detect the market segments. Unsupervised learning allows analysts to 

approach problems with little or no idea of what to expect as the resulting outcome. 

Analysts can derive structure from data where they do not necessarily know the effect of 

the variables [7]. With unsupervised learning, we can describe hidden structure from 

unlabelled data. Because the data is unlabelled there is no real estimation of the accuracy 

of the structure that is output by the appropriate algorithm — that is one way of 

distinguishing the unsupervised learning from supervised. For unsupervised methods that 

are used in different spheres, one good example is the voice recognition. Other examples 

of unsupervised learning are clustering and dimensionality reduction and classification. 

The researcher's community describes unsupervised learning as learning of a probabilistic 

data model. Even if the researcher issues the data without supervision or rewards, it might 

make sense for the function to estimate a model that represents the probability distribution 

for a new input 𝑥𝑛 given previous inputs 𝑥1, … , 𝑥𝑛 − 1 (consider the obviously useful 

examples of stock prices, or the weather).  

Techniques employed in anomaly detection are often combine profiling and outliers 

detection methods. Profiling and outliers model a baseline distribution that represent 

normal behaviour and then seek to detect information that shows the greatest dissimilarity 

with the typical response [3]. 
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2.2 Cross validation 

Evaluation and cross-validation are standard ways to measure the performance of a 

model. They both generate evaluation metrics that can be inspected or compared with the 

performance of other models.  

Let us consider that we aim to train a model, but the training data set and the testing data 

set are limited. A certain amount of information needs to be reserved for testing, and the 

remaining data will be used for training. The sample used for training or testing may not 

be representative, and it is important to check whether the data is representative or not. A 

statistical technique called cross-validation could be implicated. In cross-validation 

method, a fixed number of partitions should be determined. For example, an analyst might 

choose to use 5; then data set should be split into five approximately equal partitions. The 

researcher must use each partition for testing and the rest of training. That means that the 

researcher uses one section for testing and four sections for learning and repeats this 

procedure five times, so the algorithm uses each partition for testing only once. After all, 

the researcher needs to calculate the average error and accuracy. Cross-validation helps 

to determine how well a model would generalise new data sets. 

2.3 Bias vs. Variance 

In this Chapter, the author will identify the relationship between the degree of the 

polynomial d and the underfitting or overfitting of the hypothesis. For a better 

understanding of how to improve the data fitting process resulting in more accurate 

models, it is important to know how different sources of errors can lead to bias and 

variance. High bias is under fitting, and high variance is over-fitting. Ideally, the golden 

mean should be found between these two. 

2.3.1 Bias (under fit) 

Suppose, the investigator has a classification problem, and we want to train a model. After 

training the model, we can plot the hypothesis: 
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Figure 1. High bias. The author takes the picture from www.coursera.org/learn/machine-learning. 

Underfitting occurs when a hypothesis cannot find and capture the underlying trend of 

the dataset. It might happen when a linear model is fit to non-linear data or when there is 

not enough training data. Such function will have poor predictive performance. 

2.3.2 Variance (over fit) 

Where an algorithm overfits the model (we use the large degree), is summarised in the 

figure below: 

Figure 2. High variance. The author takes the picture from www.coursera.org/learn/machine-learning 

In over-fitting, a statistical model describes random error or noise instead of the base 

ratio. Overfitting can occur when a model is excessively complex, such as having too 

many parameters about the number of observations. A predictive model with overfitting 

has poor predictive efficiency, as it overreacts to minor fluctuations in the training data 

[8].  
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2.3.3 Diagnosing Bias vs. Variance 

We want to determine if bias vs. variance is the problem that leads to bad predictions. 

The increase in the number of features (polynomial degree d) will tend to bring the 

training error to decrease. However, at the same time, the cross-validation error might 

turn to decrease with the increase of d up and then it will increase as d increased, forming 

a convex curve [9]. The author illustrated it in the picture below: 

 Both errors should be nearly equal.  

2.4 Selection of model and datasets 

After data analyst trains the model, he may want to know whether the model fits well on 

training set or not. However, if learning algorithm fits well on the training set, it does not 

necessarily mean that it is a good model. For instance, it could over-fit the hypothesis and 

result in a poor prediction. It is especially dangerous that the error in this assumption, 

measured in the training data set, will be lower than any other data set.  

If a system analyst tries many models with a different number of features, he also can use 

the polynomial degree as a feature; he can use the systematic way to find and choose the 

better model. An analyst can test each model and look at the error in the result.  

For training and testing models, the researcher needs to split the data set. One common 

way to do this is by dividing the data set into three pieces: a training set 60%, cross-

validation (more about cross validation on page 15) set 20%, and test set 20%.  The 

researcher needs a separate testing set because only then he can guarantee that the 

 

Figure 3. Plot the diagnosing of Bias-Variance trade-off. The author takes the picture from 

www.coursera.org/learn/machine-learning. 
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experimental data is not used in the training process. After the researcher divides the data 

set into three pieces, the engineer can calculate three errors separately for three data sets 

using the method given below. 

Firstly, the engineer needs to optimise theta 𝜃 for each training dataset. Secondly, he is 

using least error using the cross validation method on page 15 and after that estimates the 

error using the test dataset.     

2.5 Unbalanced data 

In this Section, the author will discuss unbalanced datasets and approaches that 

researchers can utilise with such data interactions as well as the data set that is to be used 

for these experiments. 

2.5.1 Dataset 

The dataset is containing transactions made by credit cards in September 2013 by 

European cardholders, are taken from the public resource and are available at 

http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata.  The data scientists have 

already used this dataset in a number of works, one of those is [3]. The dataset is very 

unbalanced, in total there are 284807 rows (transactions) and only 492 are positive (fraud) 

examples (about 0.172% of all data). Data contains 30 numerical input variables and one 

binary output variable. Only three variables from the dataset are understandable; they are 

Time, Amount and Class. All the others variables, from V1 till V28, are transformed using 

principal components and cannot be revealed. Time variable means the seconds between 

each transaction and the first transaction in the dataset. The amount is transaction amount. 

The class is output variable, the label of the operation; it can be one (1) positive or zero 

(0) negative. In the case of fraud, the transaction is marked as positive, and when the 

operation is genuine, it is labelled as negative. 

2.5.2 Problem of unbalanced data 

As the author mentions above, the dataset that is being used in experiments is very 

unbalanced. Such data, according to this resource [3], is hard to use in learning algorithm 

for model training. That is because most of the learning methods are not suitable to 

manage a large difference between the numbers of cases belonging to different classes, 

when the total number of positive examples is far less than the total number of negative 

http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata
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examples, as in the case of this Thesis. The learned classifier would try to classify 

fraudulent transactions as genuine transactions. For example, there is a dataset where the 

acceptable case is about 99%, and if classifier classifies all 100% cases as genuine, then 

the accuracy of 99% can be seen. However, this is not the satisfactory result as data 

scientist can not use this model in the real world because the model did not find any case 

of fraudulent transactions. In the case when our class labels are mostly negative or mostly 

positive, a classifier that always outputs 0 or 1 will achieve seemingly high accuracy. 

Because the function classified all of the positive examples as negative, this case is called 

false positive, and that is what the data scientist aim to avoid. 

2.5.3 How to deal with unbalanced data 

There are several methods how the analyst can deal with unbalanced data [3] and methods 

that distinguish data and level algorithms. In data level methods the analyst interacts with 

data as pre-processor aims to modify dataset, rebalance the unbalanced data and remove 

noise between two classes before the analyst uses the data in the algorithm. An analyst 

can generate synthetic positive examples (oversampling) or remove negative examples 

(undersampling), or he can use both methods. At the algorithmic level special algorithms 

that are adjusted to deal with the minority, class are used. 

The author, first of all, suggests using data level methods for such unbalanced dataset and 

those methods that can be simply realised by researchers. The method that the author 

suggests using is SMOTE. SMOTE is the oversampling process that generates positive 

(less present) examples in the neighbourhood of observed ones. The image below 

illustrates SMOTE oversampling. 

Figure 4. SMOT produced blue positive instances in the neighbourhood of observed ones.  
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2.6 Estimation 

Evaluation model expects a scored data set as input (or 2 or even more if the analyst 

would like to compare the performance of different models). The model needs to be 

trained using the training data set and makes predictions on test dataset before it can 

evaluate the results. The estimation is based on the scored labels/probabilities along with 

the positive labels. The evaluation of learned model is crucial because only that analyst 

can decide if the hypothesis is well suited. In this Chapter, the author will disclose some 

methods that are used in the Thesis to estimate the model. 

2.6.1 Area under the curve 

AUC is a metric for binary classification problem. The area under the curve considers all 

possible thresholds that can be used to compute the accuracy from probabilities. Different 

thresholds result in different TP/FP rates. If an analyst decreases the threshold, the model 

is found that can predict more positive examples and at the same time it can increase FP 

classification rate. 

Figure 5. Relation between threshold and FP/TP rates 

Dashed line on the plot shows what can be achieved with random classifier where it is 

expected as many true positive examples as false positive ones. The area under the curve 

for the case is 0.5. Perfect prediction is 1. ROC curve is used to visualise the performance 

of a binary classifier and helps to understand the impact of that choice visually. AUC is 

a way to summarise the performance in series. It is important to note that the AUC is the 

highest when the two curves are farthest with little overlap. 

According to [10] AUC is useful metrics event if classes are highly unbalanced. 
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2.6.2 Evaluation of Classification 

Classification will help to understand better which model is more suitable to predict that 

this metric will count the number of mistakes made. The binary class labels in the training 

set can take on only two possible values that mostly refer to as positive or negative. The 

positive and negative instances that a classifier predicts correctly are called true positives 

TP and true negatives TN. The incorrectly classified instances are called false positives 

FP and false negative FN. Based on that True Positive Rate, True Negative Rate, False 

Positive Rate, False Negative Rate, Precision, Accuracy, Balanced Error Rate and Error 

Rate concepts will occur. 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (1) 

𝑇𝑁𝑅 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
 (2) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (3) 

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃+𝐹𝑁
 (4) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (5) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (6) 

𝐵𝐸𝑅 = 0.5 ∗ (
𝐹𝑃

𝑇𝑁+𝐹𝑃
+

𝐹𝑁

𝐹𝑁+𝑇𝑃 
) (7) 

𝐸𝑅𝑅 =
𝐹𝑃+𝐹𝑁

𝑃+𝑁
 (8) 

For example: 

Model Predicted Class 

Positive Negative 

Actual Class Positive 5 TP 9 FN 

Negative 10 FP 100 TN 

 

Consider equation (1) it is found that TPR = 5 / (5 + 9) = 0.36. For precision calculation 

using equation (5) Precision = 5 / (5 + 10) = 0.33. For accuracy calculation using equation 

Table 1. The confusion matrix of a binary classification estimation. The confusion matrix is simply a table 

showing the number of instances that fall under each of 4 categories (TP, TN, FP and FN). 
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(6) Accuracy = 105 / 124 = 0.847. However, there can be situations when the accuracy is 

not a right measure of performance particularly in unbalanced classification problem. In 

unbalanced classification problem one class is much more frequent than the other. 

The balanced error rate (BER) is the mean of the errors on each class; BER = 0.5 * (0.091 

+ 0.643) = 0.367. However, BER may not be suitable because of the different price of 

misclassification FN and FP rates. Precision and TP have completely different behaviour, 

having high Precision leads to bad TP and vice versa. 
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3 Data mining 

In this Chapter, the author will investigate the dataset that is used in experiments. Data 

mining is the process of analysing data from different aspects and summarising it into 

valuable information - information that can be used to increase the revenue or to cut costs, 

or for both. Several techniques that researchers can use for data discovery and 

optimisation will be discussed. 

The “R” programming language and “R” Tools for Visual Studio (for more information 

on “R” language, please refer to https://www.r-project.org) were used in experiments. 

3.1 Dataset 

The dataset dimension is 284807 rows and 31 columns, the last column is a label that 

shows if the transaction is fraudulent or genuine. As it is mentioned on page 2.5.118, the 

dataset is completely unbalanced. 

Table 2. Dataset class statistic. 

Class Rows Percentage  

Negative (genuine) 284315 99,827 

Positive (fraudulent) 492 0,1727 

 

Var. Min. 1st Qu. Median Mean 3rd Qu Max. Norm. 

Time 0 54200 84690 94810 139300 172800 No 

V1 -56,41000               -0,920 0,018 0,000 1,316 2,455 No 

V2 -72,72000              -0,598 0,065 0,000 0,804 22,060 No 

V3 -48,3300               -0,890 0,180 0,000 1,027 9,383 No 

V4 -5,68300        -0,849 -0,019 0,000 0,743 16,880 No 

V5 -113,70000                  -0,692 -0,054 0,000 0,612 34,800 No 

V6 -26,1600             -0,768 -0,274 0,000 0,399 73,300 No 

V7 -43,5600             -0,554 0,040 0,000 0,570 120,600 No 

V8 -73,22000              -0,209 0,022 0,000 0,327 20,010 No 

V9 -13,43000             -0,643 -0,051 0,000 0,597 15,590 No 

Table 3. Credit card dataset summary. Part 1. The last column shows if data are normally distributed or not. 

https://www.r-project.org/about.html
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Var. Min. 1st Qu. Median Mean 3rd Qu Max. Norm. 

V10 -24,590             -0,535 -0,093 0,000 0,454 23,750 No 

V11 -4,797        -0,762 -0,033 0,000 0,740 12,020 Yes 

V12 -18,680               -0,406 0,140 0,000 0,620 7,848 No 

V13 -5,792         -0,648 -0,014 0,000 0,662 7,127 Yes 

V14 -19,210              -0,426 0,051 0,000 0,493 10,530 No 

V15 -4,499          -0,583 0,048 0,000 0,649 8,878 Yes 

V16 -14,130              -0,468 0,066 0,000 0,523 17,320 No 

V17 -25,160              -0,484 -0,066 0,000 0,399 9,254 No 

V18 -9,4990       -0,499 -0,004 0,000   0,501 5,041 Yes 

V19 -7,214         -0,456 0,004 0,000 0,459 5,592 Yes 

V20 -54,500             -0,212 -0,062 0,000 0,133 39,420 No 

V21 -34,830             -0,228 -0,029 0,000 0,186 27,200 No 

V22 -10,930              -0,542 0,007 0,000 0,529 10,500 Yes 

V23 -44,810             -0,162 -0,011 0,000 0,148 22,530 No 

V24 -2,837         -0,355 0,041 0,000 0,439 4,585 No 

V25 -10,300               -0,317 0,017 0,000 0,351 7,520 No 

V26 -2,605         -0,327 -0,052 0,000 0,241 3,517 Yes 

V27 -22,570              -0,071 0,001 0,000 0,091 31,610 No 

V28 -15,430              -0,053 0,011 0,000 0,078 33,850 No 

Amount 0,000                   5,600 22,000 88,350 77,160 25690 No 

 

The tables above show that most of the data was not distributed normally. If the researcher 

does not scale the data, it can influence the accuracy of predictions, and the model will 

predict poorly. At the same time, the data was very similar except “Time” and “Amount” 

but with different precision. Also, the researcher can scale the data for better performance. 

The histogram is used to see how data distributions look. Some of the histograms are 

presented below. Though not all of the histograms are shown here because that will take 

much space, all pictures are included in the final package. 

Table 4. Credit card dataset summary. Part 2. The last column shows if data are normally distributed or not. 
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Figure 6. Badly distributed “Amount,” “Time” and “V1” variables. 

 

Figure 7. Normally distributed “V11”, “V13” and “V15” variables. 

Before the analyst starts to use the data in machine learning algorithm, it is useful to see 

if the data set includes not numbers, that information can be removed. In the case of the 

Thesis, there is no NA data. In “R” we can simply use this line of code: 

sapply(creditcard, function(x) sum(is.na(x))) 

Figure 8. Returns sum of not a numbers in each variable. 

Also, we can verify the data for uniqueness. In “R” we simply can use this line of code: 

sapply(creditcard, function(x) length(unique(x))) 

Figure 9. Returns number of unique rows for each variable. 
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Table 5. The variables uniqueness. 

Time V1 till V28 Amount Class 

124592 275663 32767 2 

 

These results show that variables from V1 till V28 are mostly unique. On the other side, 

Amount is not so different as V1 till V28; there are many transactions with the same 

quantity of money. Time denotes the seconds elapsed between each transaction and the 

first transaction in the dataset. Same time indicates that someone had made different 

transactions at the same time. 

It is always useful to plot the data. Due to the unbalanced dataset where positive examples 

are represented less than negative examples data visualisation gives the opportunity to 

compare the variables. That shows how positive and negative examples depend on some 

variables. 

Figure 10 shows that fraudster made all positive transitions with the lower amount of 

money. That indicates that fraudsters had tried to make unnoticeable transactions. Feature 

Amount can be used in example-dependent cost-sensitive learning [11]. Next, the author 

plots the time series classification. 

 

Figure 10. The amount of credit card transactions. 
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Feature Time denotes the seconds elapsed between each transaction and the first 

transaction in the data set on page 18. Fraudulent transactions take fewer seconds than 

individual transactions. Other features from V1 till V28 have been transformed using 

principal components. 

 

Figure 11. Time classification summary. Negative and positive. 

 

Figure 12. Features Time and Amount with positive and negative examples. 
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Figure 12, shows how positive examples depend on variables Time and Amount. It is 

hard to distinguish positive from negative samples due to data overlapping. 

Figures 13 show that positive examples are less than negative examples. Next picture 14 

show V1 and V2 together with positive examples. 

 

Figure 13. Credit card V1 and V2 classification summary. Negative and positive. 

 

Figure 14. Plot the V1 vs. V2 features with negative and positive examples. 
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The author will use PCA technique to convert variables to the components that explain 

most of the variance, and then, the author will plot first two elements, the components 

that are better to describe the data. 

Component Standard deviation Proportion of 

Variance 

Cumulative 

Proportion 

PC1 1,399 0,065 0,065 

PC2 1,297 0,056 0,121 

PC3 1,000 0,033 0,155 

PC28 1,000 0,033 0,988 

PC29 0,562 0,010 0,999 

PC30 0,205 0,001 1,000 

 

Table 6. PCA components. The proportion of Variance indicates that first two elements are most explain 

the difference. From CP3 till PC29 variance values are the same. 

 

Figure 15. Two principal components, which are most explain the difference, with highlighted positive 

examples. 
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3.2 Conclusion 

To conclude, data mining examinations in this chapter show that the researcher did not 

preprocess the data set. Negative and positive examples overlap and such information 

was difficult to distinguish. However, data screenshots indicate that positive examples 

are under-sampled and that makes it difficult to learn the model. That can affect the 

precision of predictions, but at the same time, the accuracy might be precise. 

When using a dataset with a broad range of features, it is reasonable to use PCA method 

to reduce the dimension of the data. Often PCA is used as an instrument in data analysing 

process and in order to create models for predictions. However, PCA can be useful for 

analysts who want to research a lower-dimensional picture when PCA can supply the 

analyst with the whole picture with a projection of the object when viewed from its most 

clear point of view. The researcher can create a low-dimensional image by using only the 

first two or three principal components so that the dimensionality of the data is ultimately 

reduced. 

PCA is not optimised for class distinguishability. Also, PCA result depends on the scaling 

of the data (variables). However, it is suitable for pattern recognition. Moreover, it can be 

used in the distance quantification between classes by calculating in the principal 

component area the mean and showing the Euclidean distance between the classes. 
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4 Experiments with learning algorithms 

In this Chapter the author will implement three different algorithms: Logistic Regression, 

Decision Tree and Self-Organised Map and the author will apply these algorithms on the 

same unbalanced dataset. In the end, the author will compare the results to make the 

conclusion. The author uses Visual Studio 2015 and R Tools for Visual Studio 

1.0.30213.1900 RC1 for the experiments. 

4.1 Logistic Regression 

In this Chapter, a logistic regression model (also called the logit model) shall be set to 

predict whether a credit card transaction is a fraud or genuine. Moreover, the author will 

introduce to the readers the notion of classification, the cost function for logistic 

regression, sigmoid function and gradient. 

4.1.1 Preliminaries 

Logistic regression is a method for classifying data into discrete outcomes, for example, 

{0; 1}. In the logistic regression model, the log odds of the outcome is modelled as a 

linear combination of the predictor variables. The logistic regression hypothesis is defined 

as: 

h0(𝑥) = 𝑔(𝜃𝑇𝑥) (9) 

Function g denotes the sigmoid function. The sigmoid function is defined as: 

𝑔(𝑧) =
1

1+𝑒−𝑧 (10) 

Where z is: 

𝑧 = 𝜃𝑇𝑥 (11) 

For a matrix, hypothesis function should perform the sigmoid function on every 

element. 

The cost function for logistic regression looks like: 

𝐽(𝜃) =
1

𝑚
∑ [−𝑦(𝑖)log (ℎ0(𝑥(𝑖))) − (1 − 𝑦(𝑖))log (1 −  ℎ0(𝑥(𝑖)))]𝑚

𝑖=1  (12) 

The gradient of the cost function is a vector of the same length as vector 𝜃 where the 𝑗𝑡ℎ 

element is defined as: 
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𝜕𝐽(𝜃)

𝜕𝜃𝑗
=

1

𝑚
∑ (ℎ0(𝑥(𝑖)) − 𝑦(𝑖))𝑥𝑗

(𝑖)
𝑤ℎ𝑒𝑟𝑒 𝑗 ≥ 0𝑚

𝑖=1  (13) 

Cost function and gradient the investigator should call at the same time. This gradient 

looks identical to the linear regression gradient, but the formula differs because linear and 

logistic regressions have different definitions of h0(𝑥). 

4.1.2 Experiments 

As it was mentioned on page 31 R programming language binomial logit is being used 

for the experiments; the code can be found in Appendix 1 – Logistic Regression code. 

There is a credit card data set with 284807 rows and 31 columns, and it was divided into 

two pieces. First is the training data set with 199295 rows and second is the test data set 

with 85412 rows. The author separates the testing set from the training dataset because 

only that can guarantee that the trained model was not used as a testing dataset. 

Table 7. Training dataset negative/positive class statistics. 

Class Rows Percentage  

Negative (genuine) 198960 99,832 

Positive (fraudulent) 335 0,168 

 

Table 8. Test dataset negative/positive class statistics. 

Class Rows Percentage  

Negative (genuine) 85258 99,820 

Positive (fraudulent) 154 0,180 

 

So, it is obvious that in both data sets there are a lot of negative examples and less positive. 

The next step is to split training dataset into five CV data sets, as described on page 15, 

and to train the model. Cross-validation helps in determining how well the model would 

generalise to new information sets. Moreover, CV is the way of measuring the 

performance of a trained model. By analysing the accuracy results for each subset, the 

analyst can interpret the quality of the data set and figure out whether the model is 

receptive to variety in the data. 
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Figure 16. Logistic regression CV AUC and ROC results. AUC of the fifth CV is 0.96. 

 

Table 9. Cross Validation results of a Logistic Regression model. 

Num. TPR TNR FPR FNR Prec. Acc. BER ERR MSE AUC 

CV1 0,562 0,999 0,0001 0,437 0,923 0,999 0,219 0,001 10,061 0,973 

CV2 0,469 0,999 0,0002 0,531 0,811 0,999 0,266 0,001 10,010 0,973 

CV3 0,596 0,999 0,0001 0,403 0,861 0,999 0,201 0,0005 9,801 0,984 

CV4 0,744 0,999 0,0001 0,256 0,865 0,999 0,128 0,0005 9,733 0,991 

CV5 0,530 0,999 0,0002 0,471 0,771 0,999 0,235 0,001 10,107 0,958 

Mean 0,580 0,999 0,0001 0,420 0,846 0,999 0,210 0,001 9,943 0,976 
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AUC for trained model is the same as for model trained with Cross Validation method. 

Table 10. Confusion matrix of a Logistic Regression. The threshold is 0.5. 

Num. TP FP TN FN 

T1 33 6 28417 14 

T2 37 6 28407 20 

T3 43 5 28415 7 

 

Table 11. Test results of Logistic Regression. The threshold is 0.5. 

Num. TPR TNR FPR FNR Prec. Acc. BER ERR MSE AUC 

T1 0,702 0,999 0,0002 0,298 0,298 0,999 0,149 0,0007 1,000 0,980 

T2 0,649 0,999 0,0002 0,350 0,860 0,999 0,175 0,0009 1,000 0,973 

T3 0,860 0,999 0,0001 0,140 0,895 0,999 0,070 0,0004 0,999 0,989 

Mean 0,737 0,999 0,0002 0,263 0,867 0,999 0,131 0,0007 1,000 0,981 

 

4.1.3 Conclusion 

The author examines the Logistic Regression model on provided dataset. From AUC 

results the conclusion can be made that classes are well separated and can be well 

distinguished. First of all the cross-validation method was tried to be used on the dataset 

 

Figure 17. AUC and ROC of Logistic regression tests.   
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and next all data sets were utilised for the model training. Trained model used three 

different test data sets for testing, and all the results for both methods have been added to 

the tables above. The result tables show the mean true positive rate for CV indicates the 

smaller result and at the same time the false positive rate is also lower. If the analyst wants 

to decrease the false positive rate for the trained model the threshold must increase. 

However, this will reduce true positive rate as well. In all cases the accuracy was 

excellent, but this is because of unbalanced data with a lot of negative and less positive 

examples. 

In conclusion, the ROC curve and AUC will help to understand the impact of a chosen 

classification threshold visually. ROC will show what false positive rate should be 

expected according to the true positive rate. The result of the comparison of the accuracy 

results and error rate for each cross-validation subsets can be explained by the quality of 

the data set that was used and shows that the model is susceptible to the difference in the 

data. Furthermore, by comparing the accuracy results and error rates in the independent 

tests results the performance of the model reader can be interpreted as a good. 

4.2 Decision Tree 

In this Chapter, the author will create a decision tree model to predict whether a credit 

card transaction is fraudulent or genuine. The author will introduce to the reader the 

advantages and disadvantages of decision tree classification and the metrics. 

4.2.1 Preliminaries 

The decision tree used in supervised learning is a method for both classification and 

regression problems. The decision tree is a graph that uses a branching method to show 

every possible output of a decision. The decision tree creates the model that predicts the 

output of a target variable by learning decision rules derived from the dataset. 

(𝑥, 𝑌) = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛, 𝑌) (14) 

Y is the target value that engineers want to classify, and x is a vector of features that the 

function uses for predictions. 
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A decision tree consists of: 

 Root node 

 Splitting  

 Decision node  

 Branch/Sub-tree 

 Terminal node 

Some highlighted advantages of the decision tree: 

 The investigator can visualise Decision trees; it is simple to understand. 

 Can handle both numerical and categorical data. 

 Can handle multi-output problems. 

 Decision tree uses a white box model; results are straightforward to interpret. 

Some highlighted disadvantages of the decision tree: 

 

Figure 18. Decision tree. The author takes the figure from [12]. 

 

Figure 19. Decision tree elements. The author takes the figure from [12]. 
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 A decision tree learners can create biased trees if some classes dominate. The 

dataset should be balanced. 

 Over-complex trees (overfitting). 

For decision tree as a metrics Gini index (in classification problem) was used. The 

algorithm applied these metrics to each subset candidate, and the resulting values are 

averaged to provide a measure of the quality of the split. The algorithm calculates Gini 

index for each node on according split. The approach is a summary of the square of 

probability for success and failure. Gini index performs binary splits, and the higher value 

denotes higher sameness than lower. 

The algorithm which finds the statistical significance of the differences between sub-

nodes and parent node is called Chi-Square. It is measured by the summa of squares of 

standardised differences between observed and expected frequencies of the target 

variable. The Chi-square algorithm works with categorical target variables, can perform 

two or more splits, the higher value denotes higher statistical differences between sub 

node and parent node. The formula for Chi-square: 

𝑋2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖
 (15) 

O is the observed value, and E denotes expected value. Two steps should be performed 

for Chi-square. First, calculate for an individual node by calculating the deviation for 

success and failure. Second, calculate for each node of the split using summa of all Chi-

squares of success and failure. 

A decision tree is built top-down from a root node and involves partitioning of the data 

into subsets that contain instances with similar values. The algorithm uses entropy to 

calculate the homogeneity of a sample. If the sample is completely homogeneous, the 

entropy is zero and if the sample is an equally divided that means that the entropy is one. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −𝑝 ∗ 𝑙𝑜𝑔2 ∗ 𝑝 − 𝑞 ∗ 𝑙𝑜𝑔2 ∗ 𝑞 (16) 

Two types of entropy have to be calculated in order to build the decision tree. 

First entropy is using the frequency of one attribute: 

𝐸(𝑆) = ∑ − 𝑝𝑖 ∗  𝑙𝑜𝑔2 ∗  𝑝𝑖
𝑐
𝑖=1  (17) 
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Second entropy is using the frequency of two attributes: 

𝐸(𝑇, 𝑋) =  ∑ 𝑃(𝑐) ∗ 𝐸(𝑐)𝑐𝜖𝑋  (18) 

Also, we should gain the information based on the decrease in entropy after the algorithm 

splits the dataset by attributes. A decision tree is about finding an attribute that returns the 

most homogeneous branches (highest information gain). The equation of target 

calculation entropy: 

𝐺𝑎𝑖𝑛(𝑇, 𝑋) = 𝐸(𝑇) − 𝐸(𝑇, 𝑋) (19) 

Attribute with the largest information gain should be used as the decision node. Divide 

the dataset by its branches and repeat the same process on every branch. Branch with null 

entropy will represent a leaf node and branch with entropy greater than null needs further 

splitting. The algorithm runs process recursively until all data is classified. 

4.2.2 Experiments 

As in the previous experiment in this examination, the author will use R programming 

language. The rpart library will be utilised for the decision tree; the code can be found in 

Appendix 2 – Decision Tree code. 

The author will use the same dataset that is described on page 4.1.232, the dataset divided 

into two pieces. In both datasets, there are a lot of negative examples and less positive. 

First of all, the author will train the model with cross-validation approach. Cross-

validation helps in determining how well a model would generalise to new datasets. 

Moreover, CV is a way of measuring the performance of a trained model. By analysing 

the accuracy results for each subset, the analyst can interpret the quality of the dataset and 

figure out whether the model is receptive to variety in the data or not. 
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The author does not show the third Cross-validation set here because the result is the same 

as in the first and the second CV folds. From CV sets the fourth fold shows a better result. 

That can occur because of balanced data used in that training data set or the data that just 

better represents the model. 

Table 12. Cross Validation results of a Decision Tree model. 

Num. TPR TNR FPR FNR Prec. Acc. BER ERR MSE AUC 

CV1 0,750 0,999 0,0001 0,250 0,923 0,999 0,125 0,0006 0,024 0,874 

CV2 0,750 0,999 0,0001 0,250 0,980 0,999 0,125 0,0005 0,022 0,874 

CV3 0,730 0,999 0,0001 0,270 0,883 0,999 0,135 0,0005 0,024 0,865 

CV4 0,860 0,999 0,0002 0,139 0,840 0,999 0,070 0,0003 0,019 0,930 

CV5 0,706 0,999 0.0002 0,294 0,837 0,999 0,147 0,0006 0,025 0,852 

Mean 0,759 0,999 0,0001 0,240 0,892 0,999 0,120 0,0005 0,023 0,880 

 

Figure 20. Decision Tree CV AUC and ROC results. 
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Table 13. Confusion matrix of a Decision Tree. 

Num. TP FP TN FN 

T1 38 4 28419 9 

T2 46 6 28407 11 

T3 43 4 28416 7 

 

Table 14. Test results of Decision Tree. 

Num. TPR TNR FPR FNR Prec. Acc. BER ERR MSE AUC 

T1 0,808 0,999 0,0001 0,191 0,905 0,999 0,096 0,0005 0,021 0,904 

T2 0,807 0,999 0,0002 0,192 0,884 0,999 0,097 0,0006 0,024 0,903 

T3 0,860 0,999 0,0001 0,140 0,915 0,999 0,070 0,0003 0,020 0,929 

Mean 0,821 0,999 0,0002 0,175 0,901 0,999 0,087 0,0005 0,022 0,912 

 

 

Figure 21. AUC and ROC of Decision Tree tests. 
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From the forecasts, it is obvious that positive predictions count much less than negative 

predictions. Next figure shows the visualised decision tree. 

 

 

Figure 22. Decision Tree predictions. 

 

Figure 23. Visualised classification tree of the segmentation data from the credit card dataset.  
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Variables used in the tree construction: V10, V12, V14, V17, V24, V26, V27. Other 

variables filtered by the algorithm. In figure 24, each node box displays the classification, 

the probability of each class at that node and the percentage of observations used at that 

node. The dotted lines indicate to emphasise the nodes and not the tree itself, and the 

bottom level of leaves lining up helps to guess that the percentages in the node boxes 

indicate the percentage of observations that arrived at each node. 

4.2.3 Conclusion 

The author has examined the Decision Tree classification model on provided dataset. It 

is important to highlight that the dataset was not scaled and was used without any changes 

and not re-balanced. The AUC results indicate that classes are well separated and can be 

distinguished. First of all the cross validation method was examined on the dataset and 

then the entire dataset for the model training had to be used. The trained model uses three 

different test datasets for testing and all results, for both methods, have been presented in 

the tables above. From the result tables mean true positive rate, for CV, shows the smaller 

result, when at the same time the false positive rate is also lower. If the analyst wants to 

decrease false positive rate for the trained model, the threshold needs to be increased. 

However, this will reduce the true positive rate as well. In all cases the accuracy was 

 

Figure 24. Visualised classification tree. Used rattle package. 
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excellent, but this is due to the unbalanced data, where there are a lot of negative and less 

positive examples. 

In conclusion, the ROC curve and AUC will help to understand the impact of a chosen 

classification threshold visually. ROC will show what false positive rate should be 

expected according to true positive rate. By comparing the accuracy results and error rate 

for each cross-validation subsets, an analyst can explain the quality of the dataset and 

come to the conclusion that the model is susceptible to the difference in the data. 

Furthermore, by comparing the accuracy results and error rates in the independent tests 

results the performance of the model can be interpreted as good. 

4.3 Self-organizing map 

In this Chapter, the author will create a Self-Organizing map model to predict whether a 

credit card transaction is a fraudulent or not. The author will introduce to the readers the 

algorithm of Self-Organizing map classification. 

4.3.1 Preliminaries 

SOM, or Kohonen Self Organising Feature Maps, were invented by Teuvo Kohonen,   

Professor of the Academy of Finland. Teuvo Kohonen had provided a way of representing 

multidimensional data in much lower dimensional spaces, it can be any dimension, but 

usually, it is one or two dimensions, a sampled representation of the input space of the 

training samples which is called a map. In general, the Kohonen approach creates a 

network that stores information in a way that the algorithm maintains any topological 

relationships within the training set. 

The main difference from two previous algorithms, presented in this Thesis, is that this 

approach is a type of artificial neural network that is trained using the unsupervised 

learning. Self-organizing maps differ from other artificial neural networks as they apply 

competitive learning as opposed to error-correction learning (such as backwards 

propagation with gradient descent) and in the sense that they use a neighbourhood 

function to preserve the topological properties of the input space [13]. SOM operates in 

two-way - training and mapping. Training process builds the map using input examples, 

vector quantization. Mapping automatically classifies a new input vector. SOM combines 

the components called nodes also known as neurones, where each neurone associated 
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weight vector of the same size as the input data vectors and a position in the map space. 

The proper arrangement of neurones is a conventional two-dimensional layout in a 

hexagonal or rectangular grid. The SOM describes a mapping from a higher-dimensional 

input to a lower-dimensional map. The procedure for putting a vector from data onto the 

map is to find the node with the smallest distance metric vector to the data space vector. 

In the training process, training examples are put into the network; the algorithm 

computes its Euclidean distance (20) to all weight vectors. The neurone with most similar 

weight vector to the input is called the BMU. The approach adjusts the weights of the 

BMU and closest neurones in the SOM grid towards the vector of entry. The weight of 

the change decreases with time and with distance from the BMU. 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √(𝑋1 − 𝑋2)2 + (𝑌1 − 𝑌2)2 (20) 

SOM algorithm equation for an update for a neurone 𝑣 with weight 𝑊𝑣: 

𝑊𝑣(𝑠 + 1) =  𝑊𝑣(𝑠) +  𝜃(𝑢, 𝑣, 𝑠) ∗  𝛼(𝑠) ∗ (𝐷(𝑡) − 𝑊𝑣(𝑠)) (21) 

Where 𝑠 is the step index, 𝑡 an index of the training sample, 𝑢 is the index of the BMU 

for 𝐷(𝑡), 𝛼(𝑠) is a monotonically decreasing learning coefficient and 𝐷(𝑡) is the input 

vector; 𝜃(𝑢, 𝑣, 𝑠) is the neighbourhood function which gives the distance between the 

neuron u and the neuron 𝑣 in step 𝑠. Depending on the implementations, 𝑡 can scan the 

training dataset systematically (𝑡 is 0, 1, 2...T-1, then repeat, T being the training sample's 

size), can be randomly drawn from the dataset (bootstrap sampling), or implement some 

other sampling method [12]. 

The algorithm itself looks like: 

 Weight vectors randomised for the nodes of the map. 

 Capture an input vector. 

 Go over each node (neurone) on the map and find the similarity between the vector 

of entry and the maps weight vector. Locate the node with the best same unit. 

 Use formula (21) for updating the nodes in the neighbourhood of the BMU by 

pulling them closer to the input vector. 

 Increase 𝑠 and repeat process from step 2 until 𝑠 lower then iteration limit. 
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A well-known problem for SOM is a selection of good initial approximation, using the 

random initiation of SOM weights for the approach. Due to the exact reproducibility of 

the results most important component initialization where the method chooses the first 

map weights from the space of the first principal components, it has become a popular 

approach. 

4.3.2 Experiments 

As in the previous experiment, in this examination, the author will use R programming 

language. For SOM the author will use kohonen library, the reader can find the code in 

Appendix 3 – Self-organized map. 

The author will utilise the same data set, which was utilised by the author on page 4.1.232, 

the dataset is divided into the two pieces. In both pieces, there are a lot of negative 

examples and much less positive. 

The original SOM used 15 x 15-dimensional grid with hexagonal topology. 

It shows how many iterations the approach required for the mean distance minimization. 

If the size of the SOM is too small, it may be hard to have convergence to a minimum. 

So this plot can be used to figure out the optimal size of the SOM. 

 

Figure 25. The plot of the training progress. This graph shows the variation between the weights of the 

nodes and the cases presented to it. 
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It can be used as a measure of map quality. It is good if the sample distribution is relatively 

uniform. Large numbers in SOM grid denote that larger map would be beneficial, but if 

the larger map does not change those numbers, then it can suggest a large cluster of cases. 

Next is a neighbour distance plot that shows the distance between each node and its 

neighbours, also known as U-Matrix. Nodes that are similar indicate small areas of 

neighbour distance and areas with bigger distance indicate nodes that are dissimilar. This 

matrix can be used to separate the clusters within the SOM. 

The smaller distance shows that the codebook vectors represent objects well. 

 

Figure 26. Count plot. Shows how many cases the approach mapped to each node on the map. 

 

Figure 27. Plot distance between each node and it neighbours. 

 

Figure 28. Plot the quality of object representation in codebook vectors. 
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It is useful to separate data into clusters, so similar looking or behaving data points can 

be grouped together. Clustering helps to group related data together while these groups 

are different from each other. 

This plot shows 14 potential groups, and two of them are significantly different from each 

other, the first and the second. These clusters should be able to demonstrate good 

homogeneity within. 

It is established that the training data consists of a lot of negative and less positive 

examples, so it was expected that one data cluster would be much better represented than 

another when being more separated. Because the SOM approach requires clean data the 

problem can occur when different variables have different units or data variables are 

posed in the various distance. It can be assumed that SOM does not perform well in this 

case because the data was not pre-processed, cleaned or rebalanced. 

 

Figure 29. WSS with some potential clusters (Index). 

 

Figure 30. Two groups which is much more different from each other. 
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Table 15. Cross Validation results of a Self-organized map model. 

Num. TPR TNR FPR FNR Prec. Acc. BER ERR MSE AUC 

CV1 0,062 0,997 0,003 0,937 0,038 0,995 0,470 0,004 1,001 0,677 

CV2 0,078 0,997 0,003 0,922 0,044 0,994 0,462 0,005 1,001 0,630 

CV3 0,077 0,996 0,004 0,923 0,033 0,995 0,463 0,004 1,000 0,671 

CV4 0,069 0,996 0,003 0,930 0,026 0,995 0,467 0,004 1,000 0,735 

CV5 0,118 0,991 0,009 0,882 0,019 0,989 0,446 0,010 1,000 0,679 

Mean 0,080 0,996 0,004 0,919 0,032 0,994 0,461 0,006 1,000 0,679 

 

 

Figure 31. Self-organized map CV AUC and ROC results. 
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Table 16. Confusion matrix of a Self-organized map. 

Num. TP FP TN FN 

T1 7 122 28301 40 

T2 5 111 28302 52 

T3 3 122 28298 47 

 

Table 17. Test results of the Self-organized map. 

Num. TPR TNR FPR FNR Prec. Acc. BER ERR MSE AUC 

T1 0,149 0,996 0,004 0,851 0,054 0,994 0,428 0,006 1,000 0,832 

T2 0,088 0,996 0,004 0,912 0,043 0,994 0,458 0,006 1,000 0,762 

T3 0,060 0,996 0,004 0,940 0,024 0,994 0,472 0,006 1,001 0,810 

Mean 0,099 0,996 0,004 0,901 0,040 0,994 0,452 0,006 1,001 0,800 

 

4.3.3 Conclusion 

Previously the author examines the Self-Organized map classification model on provided 

dataset. The dataset was not scaled, without any pre-processing and highly unbalanced. 

First of all, the aim was to analyse training dataset; the R Kohonen library was used. 

Furthermore, the SOM model results were plotted. Training progress Figure 25, without 

 

Figure 32. AUC and ROC of the Self-organized map evidence. 
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CV, shows that the mean distance was minimised after ~50 iterations. Also, the plot 

indicated that SOM was neither too small nor too big and it was a convergence to a 

minimum. Counts Figure 26 show that SOM model is relatively uniform, which means 

that map quality is not too bad. Next Figure 27 shows the distance between nodes; the 

researcher can use this plot to clarify the clusters. Four groups can be highlighted from 

this plot. Figure 28 indicates that better is represented only one group that has the smallest 

distance. Next, the map was divided into groups, and Figure 29 show 14 potential clusters 

and only two of them were used due to being highly different from each other. That was 

plotted in Figure 30. 

Secondly, the author had plotted ROC with AUC of cross-validation. Thirdly, a trained 

model was created in order to use three different test data sets for testing. All results for 

both methods have been presented in the tables above. The result tables indicate the mean 

true positive rate, for CV, that shows the smaller effect, however, the false positive rate 

is similar in both cases. From AUC results the conclusion can be made that classes were 

not very well separated. 

Results from the Table 15 show that CV1 shows the worst TPR than the other tests. FNR 

for CV4 is bigger than in the others cross-validation folds. in others cross-validation folds. 

In all cases, the accuracy was good but not enough. 

In conclusion, the ROC curve and AUC help to understand the impact of a chosen 

classification threshold visually. ROC will indicate what false positive rate should be 

expected according to the true positive rate. By comparing the accuracy results and error 

rate for each cross-validation subsets, it is possible to explain the quality of the data set 

being used and understand that the model is susceptible to the difference in the data. 

Furthermore, by comparing the accuracy results and error rates in the independent tests 

results the performance of the model can be interpreted as a good. 
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5 Summary 

This Thesis shows the research of different machine learning algorithms, the way how 

researchers could use algorithms in the classification problem. As well as how the data 

analysts or engineers can deal with unbalanced data. Three different machine learning 

algorithms, namely, Logistic Regression, Decision Tree, and Self-Organized map were 

used in order to train a model for the classification task. The trained model should be 

capable of classifying the transactions as fraudulent or genuine. Also, the result of this 

Thesis is a code of a program that can learn from provided dataset in three different 

manners. The code of this program can be found at the end of the Thesis in the Appendix 

Section. In this Chapter, the summary of main results of the Thesis will be given, and the 

future research directions will be presented. 

Table 18. Mean classification results from each model. 

Num. TPR TNR FPR FNR Prec. Acc. BER ERR MSE AUC 

Logit 0,737 0,999 0,0002 0,263 0,867 0,999 0,131 0,0007 1,000 0,981 

DT 0,821 0,999 0,0002 0,175 0,901 0,999 0,087 0,0005 0,022 0,912 

SOM 0,099 0,996 0,004 0,901 0,040 0,994 0,452 0,006 1,001 0,800 

 

 

Figure 33. Models mean AUC and ROC results. First Logistic Regression, second Decision Tree and the 

last one is a Self-organized map. 
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Therefore, according to the table above the conclusion can be drawn that the DT model 

performs better with unbalanced data without any pre-processing of that data on the 

fraudulent transactions classification problem. However, ROC shows that it could be 

reasonable for Logistic Regression to raise the TPR for getting a better result with a 

minimum increase in FPR. For example, with TPR 0.903 the FPR of 0.034 was gained. 

That is more of a business decision, whether it would rather minimise False Positive Rate 

or maximise True Positive Rate. 

One of the standard solutions to deal with a classification problem with unbalanced class 

distribution is to rebalance the classes before training a model. A popular rebalancing 

approach among the machine learning community is SMOTE oversampling, described 

on page 19. 

In the current research, it was established that in this case, the supervised machine 

learning method did work well. In general, the generated fraud alerts the individual 

researchers to check and annotate alerted transactions as negative (genuine) or positive 

(fraudulent). This kind of feedback from individual researchers provides recently 

supervised samples that may be very instructive so the data analysts can use those 

examples in supervised algorithms. 

To conclude, the tests results show good accuracy on trained models. However, it is 

important to consider that these results are good because the unbalanced data that has a 

lot of negative examples was used. In the future work the author will try to rebalance the 

data set with SMOTE method and also will try to rearrange the data and after that will 

use the pre-processed information in the same learning algorithms that were examined in 

this Thesis. It would be reasonable to combine two different, supervised and 

unsupervised, methods for the fraud classification problem. The author also suggests the 

implementation of the Abraham Wald sequential sampling test for probability ratio that 

will help to understand a quality of predictions on separate examples. As another great 

approach for data analysis, the author suggests trying the PRIDIT method. PRIDIT 

method is using principal components/factor analysis for data clustering.



53 

 

References 

 

[1]  LegalDictionary.net, "Legal Dictionary," 2017. [Online]. Available: 

https://legaldictionary.net/fraud/. 

[2]  N. Report, "The Nilson Report," The Nilson Report, 01 01 2010. [Online]. 

Available: www.nilsonreport.com. [Accessed 01 02 2017]. 

[3]  A. D. Pozzolo, "Adaptive Machine Learning for," 2015. 

[4]  D. M. Button, "City of London Police," 2016. [Online]. Available: 

https://www.cityoflondon.police.uk/news-and-appeals/Pages/Academic-report-

indicates-cost-of-Fraud-to-the-UK-is-%C2%A3193bn-a-year.aspx. 

[5]  D. Heckerman, "A tutorial on Learning with Bayesian," Technical report, MSR-

TR-95-06. Microsoft research, Redmond, WA 98052, 1995. 

[6]  t. f. e. Wikipedia, "Supervised learning," [Online]. Available: 

https://en.wikipedia.org/wiki/Supervised_learning. 

[7]  A. Ng, "Unsupervised Learning," [Online]. Available: 

https://www.coursera.org/learn/machine-

learning/supplement/1O0Bk/unsupervised-learning. 

[8]  Wikipedia, "Overfitting," 2017. [Online]. Available: 

https://en.wikipedia.org/wiki/Overfitting. 

[9]  A. Ng, "Diagnosing Bias vs. Variance," [Online]. Available: 

https://www.coursera.org/learn/machine-learning/supplement/81vp0/diagnosing-

bias-vs-variance. 

[10]  K. Markham, "ROC curves and Area Under the Curve explained," Data school, 19 

11 2014. [Online]. Available: http://www.dataschool.io/roc-curves-and-auc-

explained/. [Accessed 03 25 2017]. 

[11]  Alejandro Correa Bahnsen, Djamila Aouada and Bjorn Ottersten, "Example-

Dependent Cost-Sensitive Logistic," in 13th International Conference on Machine 

Learning and Applications, Luxembourg, 2014.  

[12]  A. Vidhya, "A Complete Tutorial on Tree Based Modelling from Scratch (in R & 

Python)," Analytics Vidhya, 2013. [Online]. Available: 

https://www.analyticsvidhya.com/blog/2016/04/complete-tutorial-tree-based-

modeling-scratch-in-python/#one. [Accessed 2017]. 

[13]  Wikipedia, "Self-organizing map," Wikipedia, 31 March 2017. [Online]. 

Available: https://en.wikipedia.org/wiki/Self-organizing_map. [Accessed 31 

March 2017]. 

[14]  N. Report, "Nilson Report," Nilson Report, 01 01 2010. [Online]. Available: 

https://www.nilsonreport.com/index.php. [Accessed 01 02 2017]. 

 

 



54 

 

Appendix 1 – Logistic Regression code 

Calculating Logistic Regression model and plot the ROC fro each Cross Validation result. 

In the end, mean error and AUC are shown. 

train_data <- readRDS(paste(project_path, "/creditcard_train.Rdata", 
sep = "")) 

calculateModelAucAndShowRoc(train_data, "log") 

 

Next code denotes Logistic Regression calculation without CV with three independent 

tests. Also, error and AUC numbers are shown and plot the ROC and the predictions.  

train_data <- readRDS(paste(project_path, "/creditcard_train.Rdata", 
sep = "")) 

test_data <- readRDS(paste(project_path, "/creditcard_test.Rdata", sep 
= "")) 

 

logistic <- performLogisticRegression(train_data, test_data) 

model <- logistic@model 

predictions <- logistic@predictions 

 

test1 <- test_data[1:28470,] 

test2 <- test_data[28471:56940,] 

test3 <- test_data[56941:85410,] 

testAndPlot(model, train_data, list(test1, test2, test3)) 

 

showErrorAndAuc(test_data, predictions) 

plotRoc(predictions, test_data[, 'Class'], "") 

table(predicted = predictions > .5, actual = test_data[, 'Class']) 
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Appendix 2 – Decision Tree code 

Calculating Decision Tree model and plot the ROC fro each Cross Validation result. At 

the end, mean error and AUC are shown. 

train_data <- readRDS(paste(project_path, "/creditcard_train.Rdata", 
sep = "")) 

calculateModelAucAndShowRoc(train_data, "dt") 

 

Next code denotes Decision Tree calculation without CV with three independent tests. 

Also, error and AUC numbers are shown and plot the ROC and visualized DT in a 

different manner. 

train_data <- readRDS(paste(project_path, "/creditcard_train.Rdata", 
sep = "")) 

test_data <- readRDS(paste(project_path, "/creditcard_test.Rdata", sep 
= "")) 

 

dt <- performDecisionTree(train_data, test_data) 

model <- dt@model 

predictions <- dt@predictions 

 

test1 <- test_data[1:28470,] 

test2 <- test_data[28471:56940,] 

test3 <- test_data[56941:85410,] 

testAndPlot(model, train_data, list(test1, test2, test3)) 

 

printcp(model) 

plotcp(model) 

summary(model) 

 

confusionMatrix(predictions, test_data$Class) 

plot(predictions, xlab = "Class", ylab = "Examples") 

 

predictions <- as.numeric(predictions) 

showErrorAndAuc(test_data, predictions) 

plotRoc(predictions, test_data[, 'Class'], "") 

 

prp(model, varlen = 5) 

fancyRpartPlot(model) 

 

plot(model, uniform = TRUE) 

text(model, use.n = TRUE, all = TRUE, cex = .8) 
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Appendix 3 – Self-organized map code 

Calculating Self-organized map model and plot the ROC fro each Cross Validation result. 

At the end, mean error and AUC are shown. 

train_data <- readRDS(paste(project_path, "/creditcard_train.Rdata", 
sep = "")) 

calculateModelAucAndShowRoc(train_data, "som") 

 

Next code denotes Self-organised map calculation without CV with three different tests. 

Also, error and AUC numbers are shown and plot the ROC. Plated different results to the 

SOM model. Prediction results are shown at the end of the script. 

train_data <- readRDS(paste(project_path, "/creditcard_train.Rdata", 
sep = "")) 

test_data <- readRDS(paste(project_path, "/creditcard_test.Rdata", sep 
= "")) 

 

som <- performSom(train_data, test_data, 15, 15) 

model <- som@model 

predictions <- som@predictions 

 

test1 <- test_data[1:28470,] 

test2 <- test_data[28471:56940,] 

test3 <- test_data[56941:85410,] 

testAndPlot(model, train_data, list(test1, test2, test3)) 

 

plot(model, type = "changes", main = "") 

plot(model, type = "count", main = "", palette.name = blueRed) 

plot(model, type = "quality", palette.name = blueRed, main = "") 

plot(model, type = "dist.neighbours", main = "", palette.name = 
blueRed) 

 

cluster(model, 15, 2) 

 

showErrorAndAuc(test_data, predictions) 

plotRoc(predictions, test_data[, 'Class'], "") 

 

table(test_data$Class, classmat2classvec(predictions)) 

table(predicted = classmat2classvec(predictions), actual = test_data[, 
'Class']) 

threshold <- max(predictions) / 2 

table(predicted = predictions > threshold, actual = test_data[, 
'Class']) 
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Appendix 4 – Generic code 

Plot the ROC function. 

plotRoc <- function(predictions, data, txt) { 

     

    pred <- prediction(predictions, data) 

    perf <- performance(pred, "tpr", "fpr") 

 

    par(mar = c(5, 5, 2, 2), xaxs = "i", yaxs = "i", cex.axis = 1.3, 
cex.lab = 1.4) 

    plot(perf, col = "black", lty = 3, lwd = 3) 

 

    auc <- performance(pred, "auc") 

    auc <- unlist(slot(auc, "y.values")) 

 

    minauc <- min(round(auc, digits = 2)) 

    maxauc <- max(round(auc, digits = 2)) 

    minauct <- paste(c("min(AUC)  = "), minauc, sep = "") 

    maxauct <- paste(c("max(AUC) = "), maxauc, sep = "") 

 

    legend(0.2, 0.5, c(minauct, maxauct, "\n", txt), border = "white", 
cex = 1.1, box.col = "white") 

} 

 

Show error and AUC value. 

showErrorAndAuc <- function(dataTest, predictions) { 

    yLabel <- c('Class') 

 

    err <- rmse(as.numeric(dataTest[, yLabel]), predictions) 

    auc <- auc(dataTest[, yLabel], predictions) 

     

    print(paste('MSE:', err)) 

    print(paste('AUC:', auc)) 

} 

 

Next is the main function which is used for model creation. 
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calculateModelAucAndShowRoc <- function(data, algorithm = "log") { 

    require(xgboost) 

    require(Metrics) 

 

    CVs <- 5 

    cvDivider <- floor(nrow(data) / (CVs + 1)) 

    indexCount <- 1 

    yLabel <- c('Class') 

    predictors <- names(data)[!names(data) %in% yLabel] 

    lsErr <- c() 

    lsAUC <- c() 

 

    for (cv in seq(1:CVs)) { 

        cvTxt <- paste('cv', cv) 

        print(cvTxt) 

        dataTestIndex <- c((cv * cvDivider):(cv * cvDivider + 
cvDivider)) 

        dataTest <- data[dataTestIndex,] 

        dataTrain <- data[-dataTestIndex,] 

 

        if (algorithm == 'log') { 

            model <- glm(dataTrain[, yLabel] ~ ., family = 
binomial(logit), data = data.frame(dataTrain[, predictors])) 

            predictions <- predict(model, data.frame(dataTest[, 
predictors]), outputmargin = TRUE) 

 

            print(summary(dataTest$Class)) 

            print(table(predicted = predictions > .5, actual = 
dataTest[, yLabel])) 

        } 

        else if (algorithm == 'dt') { 

            require(rpart) 

            require(caret) 

 

            model <- rpart(dataTrain[, yLabel] ~ ., data = 
data.frame(dataTrain[, predictors]), method = "class") 

            predictions = predict(model, dataTest, type = "class") 

            print(confusionMatrix(predictions, dataTest[, yLabel])) 

            predictions <- as.numeric(predictions) 

        } 

        else if (algorithm == 'som') { 

            require(kohonen) 

 

            x <- dataTrain[, predictors] 

            xMatrix <- as.matrix(x) 

 

            grid <- somgrid(xdim = 15, ydim = 15, topo = "hexagonal") 

            model <- som(xMatrix, 

                    grid = grid, 

                    rlen = 100, 

                    alpha = c(0.05, 0.01), 
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                    keep.data = TRUE, 

                    n.hood = "circular") 

 

            cluster(model, 15, 2) 

 

            predictions <- predict( 

                model, 

                newdata = as.matrix(dataTest[, predictors]), 

                trainX = model$data, 

                trainY = as.numeric(as.vector(dataTrain[, yLabel]))) 

             

            predictions <- predictions$prediction 

 

            threshold <- max(predictions) / 2 

            print(table(predicted = predictions > threshold, actual = 
dataTest[, yLabel])) 

        } 

 

        err <- rmse(as.numeric(dataTest[, yLabel]), predictions) 

        print(paste('MSE: ', err)) 

 

        auc <- auc(dataTest[, yLabel], predictions) 

        print(paste('AUC: ', auc)) 

 

        plotRoc(predictions, dataTest[, yLabel], cvTxt) 

        readkey() 

 

        lsErr <- c(lsErr, err) 

        lsAUC <- c(lsAUC, auc) 

 

        gc() 

    } 

    print(paste('Mean MSE:', mean(lsErr))) 

    print(paste('Mean AUC:', mean(lsAUC))) 

} 
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Next is the test function for model. 

testAndPlot <- function(model, trainData, testDatas) { 

    yLabel <- c('Class') 

    predictors <- names(trainData)[!names(trainData) %in% yLabel] 

    cls <- class(model) 

 

    for (i in 1:length(testDatas)) { 

        txt <- paste('Test', i) 

        print(txt) 

 

        if (cls[1] == "glm") { 

            predictions <- predict(model, data.frame(testDatas[[i]][, 
predictors]), outputmargin = TRUE, type = "response") 

 

            print(summary(testDatas[[i]][yLabel])) 

            print(table(predicted = predictions > .5, actual = 
testDatas[[i]][, yLabel])) 

        } 

        else if (cls == 'rpart') { 

            predictions = predict(model, testDatas[[i]], type = 
"class") 

            print(confusionMatrix(predictions, testDatas[[i]][, 
yLabel])) 

 

            predictions <- as.numeric(predictions) 

        } 

        else if (cls == 'kohonen') { 

            predictions <- predict( 

                model, 

                newdata = as.matrix(testDatas[[i]][, predictors]), 

                trainX = model$data, 

                trainY = as.numeric(as.vector(trainData[, yLabel]))) 

 

            predictions <- predictions$prediction 

 

            threshold <- max(predictions) / 2 

            print(table(predicted = predictions > threshold, actual = 
testDatas[[i]][, yLabel])) 

        } 

 

        showErrorAndAuc(testDatas[[i]], predictions) 

        plotRoc(predictions, testDatas[[i]][, yLabel], txt) 

        readkey() 

    } 

} 
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Next is the function for models tests. 

makeTestsOnModels <- function(testData, modelList, testCount = 1, 
trainData = NULL) { 

    yLabel <- c('Class') 

    predictors <- names(testData)[!names(testData) %in% yLabel] 

 

    results <- as.data.frame(testData[, 31:31]) 

    columns <- yLabel 

    modelsCount <- length(modelList) 

     

    for (i in 1:modelsCount) { 

        model <- modelList[[i]] 

        cls <- class(model) 

 

        for (j in 1:testCount) { 

             

            if (cls[1] == 'glm') { 

                column <- paste(cls[1], i, 'test', j) 

                predictions <- predict(model, data.frame(testData[, 
predictors]), outputmargin = TRUE, type = "response") 

            } 

            else if (cls == 'rpart') { 

                column <- paste(cls, i, 'test', j) 

                predictions = predict(model, testData, type = "class") 

            } 

            else if (cls == 'kohonen') { 

                column <- paste(cls, i, 'test', j) 

                predictions <- predict( 

                    model, 

                    newdata = as.matrix(testData[, predictors]), 

                    trainX = model$data, 

                    trainY = as.numeric(as.vector(trainData[, 
yLabel]))) 

 

                predictions <- predictions$prediction 

            } 

            columns <- c(columns, column) 

            results <- cbind(results, column = predictions) 

        } 

    } 

    names(results) <- columns 

    return (results) 

} 


