
Tallinn 2017

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Igor Anohhin 144117IAPM

DATA MINING AND MACHINE LEARNING

FOR FRAUD DETECTION

Master’s thesis

Supervisor: Leo Võhandu

 Professor Emeritus

2

Author’s declaration of originality

I at this moment certify that I am the sole author of this thesis. All the used materials,

references to the literature and the work of others have been referred to. This thesis has

not been presented for examination anywhere else.

Author: Igor Anohhin

18.01.1982

3

Abstract

The problem of Fraud has reached an alarming scale nowadays. Losses due to the fraud

are reaching billions of dollars every year. It is impossible to fight against fraud alone

hand because the huge amount of data is hard to be analysed by one person. To reduce

the number of losses decision systems that use efficient fraud detection algorithms should

be invented. With the support of modern technologies, these systems are able to manage

to analyse the information and to create a prediction feature model. However, the

invention of these systems is not a trivial matter but a quite challenging task due to the

huge amount of different and unbalanced data. Moreover, it is not clear which Machine

Learning Algorithm should be implemented. The present Thesis aims to give some

answers by focusing on the following issues: 1) which of the Machine Learning

Algorithms: Logistic Regression, Decision Tree or Self-Organized Map fits better to deal

with the problem of Fraud Detection, 2) why and where it is best to implement Supervised

or Unsupervised methods of Machine Learning in scope of Fraud Detection, 3) the way

to deal with unbalanced data and use of such data for Machine Learning. A program

prototype that can examine the provided data and make a decision according to the test

data will be presented at the end of the Thesis.

This thesis is written in English and is 41 pages long, including 5 chapters, 33 figures,

and 18 tables.

4

Annotatsioon

Masinaõpe ning andmete otsimine pettuste avastamiseks.

Tänapäeval on pettuste probleem jõudnud murettekitava ulatuseni. Kahjumit tekib

pettuse pärast miljardeid dollareid aastas. Inimesed ise ei saa võidelda pettuste vastu,

suure hulga andmete pärast, inimesed lihtsalt ei suuda analüüsida kõiki andmeid. Kahjude

vähendamiseks saame luua õppivad otsustussüsteemid, mis kasutavad tõhusaid pettuste

avastamise algoritme. Need süsteemid peavad suutma analüüsida andmeid ning luua

mudeli, mida saaks kasutada pettuse leidmiseks. Aga ehitada sellist süsteemi ei ole

triviaalne ülesanne, see on üsna keeruline, erinevate ning alati mitte tasakaalus olevate

andmete pärast. Samuti ei ole selge, millist masinõppe algoritmi me peaks kasutama.

Autori eesmärgiks on pakkuda mõned vastused, keskendudes sellistele küsimustele nagu:

1) milline algoritm valikust: Logistic Regression, Decision Tree või Self Organised Maps,

on paremini sobiv pettuste avastamise probleemi lahendamiseks, 2) miks ja kus on parem

kasutada järelvalvega või järelevalveta meetodeid pettuste avastamiseks, 3) kuidas me

saame tegeleda tasakaalustamata andmete hulkadega, kuidas kasutada selliseid andmeid

masinõppes. Üheks eesmärgiks on teha prototüüp, mis võimaldab mudelit õpetada ning

kasutada seda pettuse leidmiseks. Samuti, töö lõpus, autor pakub erinevad võimalused

mis tasub proovida tulevikus, õpetava mudeli tulemuse paranemise jaoks. Autori poolt

oli valitud see teema, kuna ta arvad, et see on väga huvitav, perspektiivne ning aitab

autorile tulevikus, enda töös. Printsiibid, mis autor kasutas lõputöös, saab ka kasutada

teiste probleemide lahendamiseks, näiteks klassifitseerida andmed, leida andmete hulgas

mustrid, ehitada otsuste puud jne.

Selles töös, author kasutab avaliku andmete hulk. Andmete hulk koosneb kredit kaartide

transaktsioonidest, andmed on väga tasakaalustamata ning kokku on 284807 rida.

Andmed on leitav http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata.

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 41 leheküljel, 5 peatükki, 33

joonist, 18 tabelit.

http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata

5

List of abbreviations and terms

AUC Area Under Curve

PCA Principal Component Analysis

SMOTE Synthetic Minority Over-sampling Technique

APACS Association for Payment Clearing Services

FP False Positive (genuine)

TP True Positive (fraudulent)

FN False Negative (fraudulent)

TN True Negative (genuine)

ROC Receiver operating characteristic

TPR True Positive Rate

TNR True Negative Rate

FPR False Positive Rate

FNR False Negative Rate

NA Not a number

DT Decision Tree

CHAID Chi-square Automatic Interaction Detector

SOM Self-organizing map

BMU Best matching unit

WSS Within groups sum of squares

LR Logistic Regression

MSE Mean square error

BER Balanced Error Rate

ERR Error

KNN K-Nearest Neighbour

6

Table of contents

1 Introduction ... 11

1.1 The problem of Fraud ... 11

1.2 Machine learning for Fraud detection .. 11

1.2.1 Machine learning for credit card Fraud detection ... 12

2 Foundations ... 13

2.1 Supervised and Unsupervised Learning ... 13

2.1.1 Supervised learning ... 13

2.1.2 Unsupervised learning ... 14

2.2 Cross validation .. 15

2.3 Bias vs. Variance .. 15

2.3.1 Bias (under fit) ... 15

2.3.2 Variance (over fit) ... 16

2.3.3 Diagnosing Bias vs. Variance .. 17

2.4 Selection of model and datasets.. 17

2.5 Unbalanced data ... 18

2.5.1 Dataset ... 18

2.5.2 Problem of unbalanced data .. 18

2.5.3 How to deal with unbalanced data ... 19

2.6 Estimation ... 20

2.6.1 Area under the curve ... 20

2.6.2 Evaluation of Classification .. 21

3 Data mining ... 23

3.1 Dataset .. 23

3.2 Conclusion .. 30

4 Experiments with learning algorithms ... 31

4.1 Logistic Regression .. 31

4.1.1 Preliminaries .. 31

4.1.2 Experiments ... 32

4.1.3 Conclusion ... 34

7

4.2 Decision Tree .. 35

4.2.1 Preliminaries .. 35

4.2.2 Experiments ... 38

4.2.3 Conclusion ... 42

4.3 Self-organizing map ... 43

4.3.1 Preliminaries .. 43

4.3.2 Experiments ... 45

4.3.3 Conclusion ... 49

5 Summary .. 51

References .. 53

Appendix 1 – Logistic Regression code ... 54

Appendix 2 – Decision Tree code .. 55

Appendix 3 – Self-organized map code ... 56

Appendix 4 – Generic code .. 57

8

List of figures

Figure 1. High bias. The author takes the picture from

www.coursera.org/learn/machine-learning. ... 16

Figure 2. High variance. The author takes the picture from

www.coursera.org/learn/machine-learning .. 16

Figure 3. Plot the diagnosing of Bias-Variance trade-off. The author takes the picture

from www.coursera.org/learn/machine-learning. ... 17

Figure 4. SMOT produced blue positive instances in the neighbourhood of observed

ones. .. 19

Figure 5. Relation between threshold and FP/TP rates .. 20

Figure 6. Badly distributed “Amount,” “Time” and “V1” variables. 25

Figure 7. Normally distributed “V11”, “V13” and “V15” variables. 25

Figure 8. Returns sum of not a numbers in each variable. ... 25

Figure 9. Returns number of unique rows for each variable. ... 25

Figure 10. The amount of credit card transactions. .. 26

Figure 11. Time classification summary. Negative and positive. 27

Figure 12. Features Time and Amount with positive and negative examples. 27

Figure 13. Credit card V1 and V2 classification summary. Negative and positive. 28

Figure 14. Plot the V1 vs. V2 features with negative and positive examples. 28

Figure 15. Two principal components, which are most explain the difference, with

highlighted positive examples. ... 29

Figure 16. Logistic regression CV AUC and ROC results. AUC of the fifth CV is 0.96.

 .. 33

Figure 17. AUC and ROC of Logistic regression tests. ... 34

Figure 18. Decision tree. The author takes the figure from [11]. 36

Figure 19. Decision tree elements. The author takes the figure from [11]. 36

Figure 20. Decision Tree CV AUC and ROC results. .. 39

Figure 21. AUC and ROC of Decision Tree tests. ... 40

Figure 22. Decision Tree predictions. .. 41

9

Figure 23. Visualised classification tree of the segmentation data from the credit card

dataset. .. 41

Figure 24. Visualised classification tree. Used rattle package. 42

Figure 25. The plot of the training progress. This graph shows the variation between the

weights of the nodes and the cases presented to it. .. 45

Figure 26. Count plot. Shows how many cases the approach mapped to each node on the

map. .. 46

Figure 27. Plot distance between each node and it neighbours. 46

Figure 28. Plot the quality of object representation in codebook vectors. 46

Figure 29. WSS with some potential clusters (Index). ... 47

Figure 30. Two groups which is much more different from each other. 47

Figure 31. Self-organized map CV AUC and ROC results. ... 48

Figure 32. AUC and ROC of the Self-organized map evidence. 49

Figure 33. Models mean AUC and ROC results. First Logistic Regression, second

Decision Tree and the last one is a Self-organized map. .. 51

10

List of tables

Table 1. The confusion matrix of a binary classification estimation. The confusion

matrix is simply a table showing the number of instances that fall under each of 4

categories (TP, TN, FP and FN). .. 21

Table 2. Dataset class statistic. ... 23

Table 3. Credit card dataset summary. Part 1. The last column shows if data are

normally distributed or not. .. 23

Table 4. Credit card dataset summary. Part 2. The last column shows if data are

normally distributed or not. .. 24

Table 5. The variables uniqueness. ... 26

Table 6. PCA components. The proportion of Variance indicates that first two elements

are most explain the difference. From CP3 till PC29 variance values are the same. 29

Table 7. Training dataset negative/positive class statistics. ... 32

Table 8. Test dataset negative/positive class statistics. .. 32

Table 9. Cross Validation results of a Logistic Regression model. 33

Table 10. Confusion matrix of a Logistic Regression. The threshold is 0.5. 34

Table 11. Test results of Logistic Regression. The threshold is 0.5. 34

Table 12. Cross Validation results of a Decision Tree model. 39

Table 13. Confusion matrix of a Decision Tree. .. 40

Table 14. Test results of Decision Tree. ... 40

Table 15. Cross Validation results of a Self-organized map model. 48

Table 16. Confusion matrix of a Self-organized map. ... 49

Table 17. Test results of the Self-organized map. .. 49

Table 18. Mean classification results from each model. .. 51

11

1 Introduction

1.1 The problem of Fraud

Fraud investigators classified Fraud as “Wrongful deception with the intent to gain

personally or financially and intentional deception to persuade another person to part with

something of value” [1]. The fraud problem is growing and can be estimated as difficult

and challenging. The issue of fraud is as ancient as the history of humanity itself; it takes

different forms: spam, payment fraud, account takeover, phishing, financial fraud and

much more. Its costs are not always transparent. In addition to revenue costs, the indirect

losses may arise as well, and one of those may be a reputation loss. The company can lose

its good standing and thus clients since nobody wants to use a product with tarnished

brand image.

The Nilson Report [2] serving as the source of news and analysis in the global payment

(mobile and card) industries informs that in 2015 the amount of global worldwide fraud

losses has reached $21.84 billion and the $31.67 billion loss was projected in huge losses

in 2020 [2]. Moreover, according to APACS, the credit card losses in the United Kingdom

have been growing rapidly from £122 million in 1997 to £440.3 million in 2010 that

shows the increase of credit card fraud [3]. In addition to these statements, the Annual

Fraud Indicator has revealed that the UK cost of fraud was £50 billion in 2013 and could

be as high as £193 billion per year [4].

1.2 Machine learning for Fraud detection

Fraud can be smart, and it is continuously evolving. Without unlimited resources, it is

very hard, better say, impossible to detect and stop fraudsters. Machine learning is an

excellent candidate to pursue fraud detection in a scalable manner with small expense and

effort. Also, this approach can help to find hidden patterns that are not directly apparent

to a person. Moreover, machine learning can self-adapt to new events. What we can do is

to try machine learning algorithms to examine the data and make decisions based on new

events. The output of approach comes from the available information from the system

where we aim to prevent the fraudulence. However, some data may be vast, unfinished,

unbalanced and not trustworthy.

12

1.2.1 Machine learning for credit card Fraud detection

Credit card fraud is a wide-ranging term for theft and fraud committed by utilising or

using a payment card, such as a credit card or debit card, as a fraudulent source of assets

in transactions. The goal may be to obtain goods without payment or to draw unauthorised

cash from a user’s account. Credit card fraud is also an adjunct to identity data stealing.

The frequency of credit card fraud is limited to about 0.1% of all card transactions, that

has resulted in massive financial losses as fraudulent transactions were large-scale

operations. It is hard to generate the fraud model due to the limited amount of fraudulent

transactions, so, the credit card transactions do not represent the positive examples very

well. However, credit card fraud is a major problem that may result in many distresses if

not dealt with efficiently.

There are some techniques that data analysts can use for credit card fraud detection.

 The decision tree, it is easy to implement, understand and, which is important,

display.

 Peer group analysis (clustering the data) allows the fraud investigators to identify

accounts that are behaving differently from their usual pattern at the specified

period.

 Neural networks, the fraud investigators have to cluster all data according to the

type of account it belongs to.

 K-Nearest Neighbour, the classifying samples supervised technique. KNN

calculates the mean distances between various points on the input objects (vectors)

and after that assigns the unlabelled point to the class of its nearest neighbours.

 Bayesian Network, according to the David Heckerman [5], is a “graphical model

that encodes probabilistic relationships among variables of interest. When used in

conjunction with statistical techniques, the graphical model has several

advantages for data analysis; it handles missed data entries, learns causal

relationships, handles overfitting”.

 K-means, the unsupervised clustering algorithm, divides the data into k clusters,

and guarantee that the data in the same cluster are similar.

13

2 Foundations

The machine learning plays a significant role in fraud detection. This Chapter is an

Introduction to the domain of machine learning before the author is moving to the

Contribution Chapter. Firstly, the target of the main topic is to clarify supervised and

unsupervised learning methods. Secondly, it will disclose the cross-validation and bias

vs. variance problems. The Chapter 2.4 will cover training, testing, validation and model

selection. The Chapter 2.5 will introduce the issue of unbalanced data and a method to

balance it.

2.1 Supervised and Unsupervised Learning

2.1.1 Supervised learning

Supervised learning is the most frequent type of machine learning problem. Data analysts

classify supervised learning problems as "regression" and "classification" problems.

According to the [6] general acceptance, the supervised machine learning is the task of

inferring a function from labelled training data. Supervised machine learning method

means that learning algorithm uses supervised and labelled data in which every example

consists of the input object and the output value. Typically the input object is a vector,

and the output value is a signal, for instance, binary {0; 1}. The researcher gives the

dataset to the algorithm in which the correct answers algorithm provides as an output.

The researcher needs to gather training set to use this method, and training set should be

distinctive in the actual use of the function. With gathered input objects, the

corresponding outputs are also collected, either from human experts or measurements.

The accuracy of the learned function strongly depends on how data represent the input

object. However, the input data should contain enough information to predict the output

accurately. To solve supervised machine learning problem the researcher also has to

evaluate the accuracy of the learned function, so after the estimate function measures are

made the performance of the resulting function should be measured on the test set

separately from the training set.

14

If the investigator provides a set of 𝑁 training examples of the form

{(x1, y1), … , (xn, yn)} such that xi is the feature vector of the i-th example and also its

label, a learning algorithm seeks a function 𝑔 ∶ 𝑋 → 𝑌, where X is the input space and, Y

is the output space. The function g is an element of some space of possible functions G,

usually called the hypothesis space.

2.1.2 Unsupervised learning

We define unsupervised learning as problems where the researcher provides the data

without the desired output. These algorithms are used to organise data clusters. Many

companies, online shops and others have a lot of data in their databases, such as customer

information for instance. We can look at this set of customer information and

automatically detect the market segments. Unsupervised learning allows analysts to

approach problems with little or no idea of what to expect as the resulting outcome.

Analysts can derive structure from data where they do not necessarily know the effect of

the variables [7]. With unsupervised learning, we can describe hidden structure from

unlabelled data. Because the data is unlabelled there is no real estimation of the accuracy

of the structure that is output by the appropriate algorithm — that is one way of

distinguishing the unsupervised learning from supervised. For unsupervised methods that

are used in different spheres, one good example is the voice recognition. Other examples

of unsupervised learning are clustering and dimensionality reduction and classification.

The researcher's community describes unsupervised learning as learning of a probabilistic

data model. Even if the researcher issues the data without supervision or rewards, it might

make sense for the function to estimate a model that represents the probability distribution

for a new input 𝑥𝑛 given previous inputs 𝑥1, … , 𝑥𝑛 − 1 (consider the obviously useful

examples of stock prices, or the weather).

Techniques employed in anomaly detection are often combine profiling and outliers

detection methods. Profiling and outliers model a baseline distribution that represent

normal behaviour and then seek to detect information that shows the greatest dissimilarity

with the typical response [3].

15

2.2 Cross validation

Evaluation and cross-validation are standard ways to measure the performance of a

model. They both generate evaluation metrics that can be inspected or compared with the

performance of other models.

Let us consider that we aim to train a model, but the training data set and the testing data

set are limited. A certain amount of information needs to be reserved for testing, and the

remaining data will be used for training. The sample used for training or testing may not

be representative, and it is important to check whether the data is representative or not. A

statistical technique called cross-validation could be implicated. In cross-validation

method, a fixed number of partitions should be determined. For example, an analyst might

choose to use 5; then data set should be split into five approximately equal partitions. The

researcher must use each partition for testing and the rest of training. That means that the

researcher uses one section for testing and four sections for learning and repeats this

procedure five times, so the algorithm uses each partition for testing only once. After all,

the researcher needs to calculate the average error and accuracy. Cross-validation helps

to determine how well a model would generalise new data sets.

2.3 Bias vs. Variance

In this Chapter, the author will identify the relationship between the degree of the

polynomial d and the underfitting or overfitting of the hypothesis. For a better

understanding of how to improve the data fitting process resulting in more accurate

models, it is important to know how different sources of errors can lead to bias and

variance. High bias is under fitting, and high variance is over-fitting. Ideally, the golden

mean should be found between these two.

2.3.1 Bias (under fit)

Suppose, the investigator has a classification problem, and we want to train a model. After

training the model, we can plot the hypothesis:

16

Figure 1. High bias. The author takes the picture from www.coursera.org/learn/machine-learning.

Underfitting occurs when a hypothesis cannot find and capture the underlying trend of

the dataset. It might happen when a linear model is fit to non-linear data or when there is

not enough training data. Such function will have poor predictive performance.

2.3.2 Variance (over fit)

Where an algorithm overfits the model (we use the large degree), is summarised in the

figure below:

Figure 2. High variance. The author takes the picture from www.coursera.org/learn/machine-learning

In over-fitting, a statistical model describes random error or noise instead of the base

ratio. Overfitting can occur when a model is excessively complex, such as having too

many parameters about the number of observations. A predictive model with overfitting

has poor predictive efficiency, as it overreacts to minor fluctuations in the training data

[8].

17

2.3.3 Diagnosing Bias vs. Variance

We want to determine if bias vs. variance is the problem that leads to bad predictions.

The increase in the number of features (polynomial degree d) will tend to bring the

training error to decrease. However, at the same time, the cross-validation error might

turn to decrease with the increase of d up and then it will increase as d increased, forming

a convex curve [9]. The author illustrated it in the picture below:

 Both errors should be nearly equal.

2.4 Selection of model and datasets

After data analyst trains the model, he may want to know whether the model fits well on

training set or not. However, if learning algorithm fits well on the training set, it does not

necessarily mean that it is a good model. For instance, it could over-fit the hypothesis and

result in a poor prediction. It is especially dangerous that the error in this assumption,

measured in the training data set, will be lower than any other data set.

If a system analyst tries many models with a different number of features, he also can use

the polynomial degree as a feature; he can use the systematic way to find and choose the

better model. An analyst can test each model and look at the error in the result.

For training and testing models, the researcher needs to split the data set. One common

way to do this is by dividing the data set into three pieces: a training set 60%, cross-

validation (more about cross validation on page 15) set 20%, and test set 20%. The

researcher needs a separate testing set because only then he can guarantee that the

Figure 3. Plot the diagnosing of Bias-Variance trade-off. The author takes the picture from

www.coursera.org/learn/machine-learning.

18

experimental data is not used in the training process. After the researcher divides the data

set into three pieces, the engineer can calculate three errors separately for three data sets

using the method given below.

Firstly, the engineer needs to optimise theta 𝜃 for each training dataset. Secondly, he is

using least error using the cross validation method on page 15 and after that estimates the

error using the test dataset.

2.5 Unbalanced data

In this Section, the author will discuss unbalanced datasets and approaches that

researchers can utilise with such data interactions as well as the data set that is to be used

for these experiments.

2.5.1 Dataset

The dataset is containing transactions made by credit cards in September 2013 by

European cardholders, are taken from the public resource and are available at

http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata. The data scientists have

already used this dataset in a number of works, one of those is [3]. The dataset is very

unbalanced, in total there are 284807 rows (transactions) and only 492 are positive (fraud)

examples (about 0.172% of all data). Data contains 30 numerical input variables and one

binary output variable. Only three variables from the dataset are understandable; they are

Time, Amount and Class. All the others variables, from V1 till V28, are transformed using

principal components and cannot be revealed. Time variable means the seconds between

each transaction and the first transaction in the dataset. The amount is transaction amount.

The class is output variable, the label of the operation; it can be one (1) positive or zero

(0) negative. In the case of fraud, the transaction is marked as positive, and when the

operation is genuine, it is labelled as negative.

2.5.2 Problem of unbalanced data

As the author mentions above, the dataset that is being used in experiments is very

unbalanced. Such data, according to this resource [3], is hard to use in learning algorithm

for model training. That is because most of the learning methods are not suitable to

manage a large difference between the numbers of cases belonging to different classes,

when the total number of positive examples is far less than the total number of negative

http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata

19

examples, as in the case of this Thesis. The learned classifier would try to classify

fraudulent transactions as genuine transactions. For example, there is a dataset where the

acceptable case is about 99%, and if classifier classifies all 100% cases as genuine, then

the accuracy of 99% can be seen. However, this is not the satisfactory result as data

scientist can not use this model in the real world because the model did not find any case

of fraudulent transactions. In the case when our class labels are mostly negative or mostly

positive, a classifier that always outputs 0 or 1 will achieve seemingly high accuracy.

Because the function classified all of the positive examples as negative, this case is called

false positive, and that is what the data scientist aim to avoid.

2.5.3 How to deal with unbalanced data

There are several methods how the analyst can deal with unbalanced data [3] and methods

that distinguish data and level algorithms. In data level methods the analyst interacts with

data as pre-processor aims to modify dataset, rebalance the unbalanced data and remove

noise between two classes before the analyst uses the data in the algorithm. An analyst

can generate synthetic positive examples (oversampling) or remove negative examples

(undersampling), or he can use both methods. At the algorithmic level special algorithms

that are adjusted to deal with the minority, class are used.

The author, first of all, suggests using data level methods for such unbalanced dataset and

those methods that can be simply realised by researchers. The method that the author

suggests using is SMOTE. SMOTE is the oversampling process that generates positive

(less present) examples in the neighbourhood of observed ones. The image below

illustrates SMOTE oversampling.

Figure 4. SMOT produced blue positive instances in the neighbourhood of observed ones.

20

2.6 Estimation

Evaluation model expects a scored data set as input (or 2 or even more if the analyst

would like to compare the performance of different models). The model needs to be

trained using the training data set and makes predictions on test dataset before it can

evaluate the results. The estimation is based on the scored labels/probabilities along with

the positive labels. The evaluation of learned model is crucial because only that analyst

can decide if the hypothesis is well suited. In this Chapter, the author will disclose some

methods that are used in the Thesis to estimate the model.

2.6.1 Area under the curve

AUC is a metric for binary classification problem. The area under the curve considers all

possible thresholds that can be used to compute the accuracy from probabilities. Different

thresholds result in different TP/FP rates. If an analyst decreases the threshold, the model

is found that can predict more positive examples and at the same time it can increase FP

classification rate.

Figure 5. Relation between threshold and FP/TP rates

Dashed line on the plot shows what can be achieved with random classifier where it is

expected as many true positive examples as false positive ones. The area under the curve

for the case is 0.5. Perfect prediction is 1. ROC curve is used to visualise the performance

of a binary classifier and helps to understand the impact of that choice visually. AUC is

a way to summarise the performance in series. It is important to note that the AUC is the

highest when the two curves are farthest with little overlap.

According to [10] AUC is useful metrics event if classes are highly unbalanced.

21

2.6.2 Evaluation of Classification

Classification will help to understand better which model is more suitable to predict that

this metric will count the number of mistakes made. The binary class labels in the training

set can take on only two possible values that mostly refer to as positive or negative. The

positive and negative instances that a classifier predicts correctly are called true positives

TP and true negatives TN. The incorrectly classified instances are called false positives

FP and false negative FN. Based on that True Positive Rate, True Negative Rate, False

Positive Rate, False Negative Rate, Precision, Accuracy, Balanced Error Rate and Error

Rate concepts will occur.

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (1)

𝑇𝑁𝑅 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
 (2)

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (3)

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃+𝐹𝑁
 (4)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (5)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (6)

𝐵𝐸𝑅 = 0.5 ∗ (
𝐹𝑃

𝑇𝑁+𝐹𝑃
+

𝐹𝑁

𝐹𝑁+𝑇𝑃
) (7)

𝐸𝑅𝑅 =
𝐹𝑃+𝐹𝑁

𝑃+𝑁
 (8)

For example:

Model Predicted Class

Positive Negative

Actual Class Positive 5 TP 9 FN

Negative 10 FP 100 TN

Consider equation (1) it is found that TPR = 5 / (5 + 9) = 0.36. For precision calculation

using equation (5) Precision = 5 / (5 + 10) = 0.33. For accuracy calculation using equation

Table 1. The confusion matrix of a binary classification estimation. The confusion matrix is simply a table

showing the number of instances that fall under each of 4 categories (TP, TN, FP and FN).

22

(6) Accuracy = 105 / 124 = 0.847. However, there can be situations when the accuracy is

not a right measure of performance particularly in unbalanced classification problem. In

unbalanced classification problem one class is much more frequent than the other.

The balanced error rate (BER) is the mean of the errors on each class; BER = 0.5 * (0.091

+ 0.643) = 0.367. However, BER may not be suitable because of the different price of

misclassification FN and FP rates. Precision and TP have completely different behaviour,

having high Precision leads to bad TP and vice versa.

23

3 Data mining

In this Chapter, the author will investigate the dataset that is used in experiments. Data

mining is the process of analysing data from different aspects and summarising it into

valuable information - information that can be used to increase the revenue or to cut costs,

or for both. Several techniques that researchers can use for data discovery and

optimisation will be discussed.

The “R” programming language and “R” Tools for Visual Studio (for more information

on “R” language, please refer to https://www.r-project.org) were used in experiments.

3.1 Dataset

The dataset dimension is 284807 rows and 31 columns, the last column is a label that

shows if the transaction is fraudulent or genuine. As it is mentioned on page 2.5.118, the

dataset is completely unbalanced.

Table 2. Dataset class statistic.

Class Rows Percentage

Negative (genuine) 284315 99,827

Positive (fraudulent) 492 0,1727

Var. Min. 1st Qu. Median Mean 3rd Qu Max. Norm.

Time 0 54200 84690 94810 139300 172800 No

V1 -56,41000 -0,920 0,018 0,000 1,316 2,455 No

V2 -72,72000 -0,598 0,065 0,000 0,804 22,060 No

V3 -48,3300 -0,890 0,180 0,000 1,027 9,383 No

V4 -5,68300 -0,849 -0,019 0,000 0,743 16,880 No

V5 -113,70000 -0,692 -0,054 0,000 0,612 34,800 No

V6 -26,1600 -0,768 -0,274 0,000 0,399 73,300 No

V7 -43,5600 -0,554 0,040 0,000 0,570 120,600 No

V8 -73,22000 -0,209 0,022 0,000 0,327 20,010 No

V9 -13,43000 -0,643 -0,051 0,000 0,597 15,590 No

Table 3. Credit card dataset summary. Part 1. The last column shows if data are normally distributed or not.

https://www.r-project.org/about.html

24

Var. Min. 1st Qu. Median Mean 3rd Qu Max. Norm.

V10 -24,590 -0,535 -0,093 0,000 0,454 23,750 No

V11 -4,797 -0,762 -0,033 0,000 0,740 12,020 Yes

V12 -18,680 -0,406 0,140 0,000 0,620 7,848 No

V13 -5,792 -0,648 -0,014 0,000 0,662 7,127 Yes

V14 -19,210 -0,426 0,051 0,000 0,493 10,530 No

V15 -4,499 -0,583 0,048 0,000 0,649 8,878 Yes

V16 -14,130 -0,468 0,066 0,000 0,523 17,320 No

V17 -25,160 -0,484 -0,066 0,000 0,399 9,254 No

V18 -9,4990 -0,499 -0,004 0,000 0,501 5,041 Yes

V19 -7,214 -0,456 0,004 0,000 0,459 5,592 Yes

V20 -54,500 -0,212 -0,062 0,000 0,133 39,420 No

V21 -34,830 -0,228 -0,029 0,000 0,186 27,200 No

V22 -10,930 -0,542 0,007 0,000 0,529 10,500 Yes

V23 -44,810 -0,162 -0,011 0,000 0,148 22,530 No

V24 -2,837 -0,355 0,041 0,000 0,439 4,585 No

V25 -10,300 -0,317 0,017 0,000 0,351 7,520 No

V26 -2,605 -0,327 -0,052 0,000 0,241 3,517 Yes

V27 -22,570 -0,071 0,001 0,000 0,091 31,610 No

V28 -15,430 -0,053 0,011 0,000 0,078 33,850 No

Amount 0,000 5,600 22,000 88,350 77,160 25690 No

The tables above show that most of the data was not distributed normally. If the researcher

does not scale the data, it can influence the accuracy of predictions, and the model will

predict poorly. At the same time, the data was very similar except “Time” and “Amount”

but with different precision. Also, the researcher can scale the data for better performance.

The histogram is used to see how data distributions look. Some of the histograms are

presented below. Though not all of the histograms are shown here because that will take

much space, all pictures are included in the final package.

Table 4. Credit card dataset summary. Part 2. The last column shows if data are normally distributed or not.

25

Figure 6. Badly distributed “Amount,” “Time” and “V1” variables.

Figure 7. Normally distributed “V11”, “V13” and “V15” variables.

Before the analyst starts to use the data in machine learning algorithm, it is useful to see

if the data set includes not numbers, that information can be removed. In the case of the

Thesis, there is no NA data. In “R” we can simply use this line of code:

sapply(creditcard, function(x) sum(is.na(x)))

Figure 8. Returns sum of not a numbers in each variable.

Also, we can verify the data for uniqueness. In “R” we simply can use this line of code:

sapply(creditcard, function(x) length(unique(x)))

Figure 9. Returns number of unique rows for each variable.

26

Table 5. The variables uniqueness.

Time V1 till V28 Amount Class

124592 275663 32767 2

These results show that variables from V1 till V28 are mostly unique. On the other side,

Amount is not so different as V1 till V28; there are many transactions with the same

quantity of money. Time denotes the seconds elapsed between each transaction and the

first transaction in the dataset. Same time indicates that someone had made different

transactions at the same time.

It is always useful to plot the data. Due to the unbalanced dataset where positive examples

are represented less than negative examples data visualisation gives the opportunity to

compare the variables. That shows how positive and negative examples depend on some

variables.

Figure 10 shows that fraudster made all positive transitions with the lower amount of

money. That indicates that fraudsters had tried to make unnoticeable transactions. Feature

Amount can be used in example-dependent cost-sensitive learning [11]. Next, the author

plots the time series classification.

Figure 10. The amount of credit card transactions.

27

Feature Time denotes the seconds elapsed between each transaction and the first

transaction in the data set on page 18. Fraudulent transactions take fewer seconds than

individual transactions. Other features from V1 till V28 have been transformed using

principal components.

Figure 11. Time classification summary. Negative and positive.

Figure 12. Features Time and Amount with positive and negative examples.

28

Figure 12, shows how positive examples depend on variables Time and Amount. It is

hard to distinguish positive from negative samples due to data overlapping.

Figures 13 show that positive examples are less than negative examples. Next picture 14

show V1 and V2 together with positive examples.

Figure 13. Credit card V1 and V2 classification summary. Negative and positive.

Figure 14. Plot the V1 vs. V2 features with negative and positive examples.

29

The author will use PCA technique to convert variables to the components that explain

most of the variance, and then, the author will plot first two elements, the components

that are better to describe the data.

Component Standard deviation Proportion of

Variance

Cumulative

Proportion

PC1 1,399 0,065 0,065

PC2 1,297 0,056 0,121

PC3 1,000 0,033 0,155

PC28 1,000 0,033 0,988

PC29 0,562 0,010 0,999

PC30 0,205 0,001 1,000

Table 6. PCA components. The proportion of Variance indicates that first two elements are most explain

the difference. From CP3 till PC29 variance values are the same.

Figure 15. Two principal components, which are most explain the difference, with highlighted positive

examples.

30

3.2 Conclusion

To conclude, data mining examinations in this chapter show that the researcher did not

preprocess the data set. Negative and positive examples overlap and such information

was difficult to distinguish. However, data screenshots indicate that positive examples

are under-sampled and that makes it difficult to learn the model. That can affect the

precision of predictions, but at the same time, the accuracy might be precise.

When using a dataset with a broad range of features, it is reasonable to use PCA method

to reduce the dimension of the data. Often PCA is used as an instrument in data analysing

process and in order to create models for predictions. However, PCA can be useful for

analysts who want to research a lower-dimensional picture when PCA can supply the

analyst with the whole picture with a projection of the object when viewed from its most

clear point of view. The researcher can create a low-dimensional image by using only the

first two or three principal components so that the dimensionality of the data is ultimately

reduced.

PCA is not optimised for class distinguishability. Also, PCA result depends on the scaling

of the data (variables). However, it is suitable for pattern recognition. Moreover, it can be

used in the distance quantification between classes by calculating in the principal

component area the mean and showing the Euclidean distance between the classes.

31

4 Experiments with learning algorithms

In this Chapter the author will implement three different algorithms: Logistic Regression,

Decision Tree and Self-Organised Map and the author will apply these algorithms on the

same unbalanced dataset. In the end, the author will compare the results to make the

conclusion. The author uses Visual Studio 2015 and R Tools for Visual Studio

1.0.30213.1900 RC1 for the experiments.

4.1 Logistic Regression

In this Chapter, a logistic regression model (also called the logit model) shall be set to

predict whether a credit card transaction is a fraud or genuine. Moreover, the author will

introduce to the readers the notion of classification, the cost function for logistic

regression, sigmoid function and gradient.

4.1.1 Preliminaries

Logistic regression is a method for classifying data into discrete outcomes, for example,

{0; 1}. In the logistic regression model, the log odds of the outcome is modelled as a

linear combination of the predictor variables. The logistic regression hypothesis is defined

as:

h0(𝑥) = 𝑔(𝜃𝑇𝑥) (9)

Function g denotes the sigmoid function. The sigmoid function is defined as:

𝑔(𝑧) =
1

1+𝑒−𝑧 (10)

Where z is:

𝑧 = 𝜃𝑇𝑥 (11)

For a matrix, hypothesis function should perform the sigmoid function on every

element.

The cost function for logistic regression looks like:

𝐽(𝜃) =
1

𝑚
∑ [−𝑦(𝑖)log (ℎ0(𝑥(𝑖))) − (1 − 𝑦(𝑖))log (1 − ℎ0(𝑥(𝑖)))]𝑚

𝑖=1 (12)

The gradient of the cost function is a vector of the same length as vector 𝜃 where the 𝑗𝑡ℎ

element is defined as:

32

𝜕𝐽(𝜃)

𝜕𝜃𝑗
=

1

𝑚
∑ (ℎ0(𝑥(𝑖)) − 𝑦(𝑖))𝑥𝑗

(𝑖)
𝑤ℎ𝑒𝑟𝑒 𝑗 ≥ 0𝑚

𝑖=1 (13)

Cost function and gradient the investigator should call at the same time. This gradient

looks identical to the linear regression gradient, but the formula differs because linear and

logistic regressions have different definitions of h0(𝑥).

4.1.2 Experiments

As it was mentioned on page 31 R programming language binomial logit is being used

for the experiments; the code can be found in Appendix 1 – Logistic Regression code.

There is a credit card data set with 284807 rows and 31 columns, and it was divided into

two pieces. First is the training data set with 199295 rows and second is the test data set

with 85412 rows. The author separates the testing set from the training dataset because

only that can guarantee that the trained model was not used as a testing dataset.

Table 7. Training dataset negative/positive class statistics.

Class Rows Percentage

Negative (genuine) 198960 99,832

Positive (fraudulent) 335 0,168

Table 8. Test dataset negative/positive class statistics.

Class Rows Percentage

Negative (genuine) 85258 99,820

Positive (fraudulent) 154 0,180

So, it is obvious that in both data sets there are a lot of negative examples and less positive.

The next step is to split training dataset into five CV data sets, as described on page 15,

and to train the model. Cross-validation helps in determining how well the model would

generalise to new information sets. Moreover, CV is the way of measuring the

performance of a trained model. By analysing the accuracy results for each subset, the

analyst can interpret the quality of the data set and figure out whether the model is

receptive to variety in the data.

33

Figure 16. Logistic regression CV AUC and ROC results. AUC of the fifth CV is 0.96.

Table 9. Cross Validation results of a Logistic Regression model.

Num. TPR TNR FPR FNR Prec. Acc. BER ERR MSE AUC

CV1 0,562 0,999 0,0001 0,437 0,923 0,999 0,219 0,001 10,061 0,973

CV2 0,469 0,999 0,0002 0,531 0,811 0,999 0,266 0,001 10,010 0,973

CV3 0,596 0,999 0,0001 0,403 0,861 0,999 0,201 0,0005 9,801 0,984

CV4 0,744 0,999 0,0001 0,256 0,865 0,999 0,128 0,0005 9,733 0,991

CV5 0,530 0,999 0,0002 0,471 0,771 0,999 0,235 0,001 10,107 0,958

Mean 0,580 0,999 0,0001 0,420 0,846 0,999 0,210 0,001 9,943 0,976

34

AUC for trained model is the same as for model trained with Cross Validation method.

Table 10. Confusion matrix of a Logistic Regression. The threshold is 0.5.

Num. TP FP TN FN

T1 33 6 28417 14

T2 37 6 28407 20

T3 43 5 28415 7

Table 11. Test results of Logistic Regression. The threshold is 0.5.

Num. TPR TNR FPR FNR Prec. Acc. BER ERR MSE AUC

T1 0,702 0,999 0,0002 0,298 0,298 0,999 0,149 0,0007 1,000 0,980

T2 0,649 0,999 0,0002 0,350 0,860 0,999 0,175 0,0009 1,000 0,973

T3 0,860 0,999 0,0001 0,140 0,895 0,999 0,070 0,0004 0,999 0,989

Mean 0,737 0,999 0,0002 0,263 0,867 0,999 0,131 0,0007 1,000 0,981

4.1.3 Conclusion

The author examines the Logistic Regression model on provided dataset. From AUC

results the conclusion can be made that classes are well separated and can be well

distinguished. First of all the cross-validation method was tried to be used on the dataset

Figure 17. AUC and ROC of Logistic regression tests.

35

and next all data sets were utilised for the model training. Trained model used three

different test data sets for testing, and all the results for both methods have been added to

the tables above. The result tables show the mean true positive rate for CV indicates the

smaller result and at the same time the false positive rate is also lower. If the analyst wants

to decrease the false positive rate for the trained model the threshold must increase.

However, this will reduce true positive rate as well. In all cases the accuracy was

excellent, but this is because of unbalanced data with a lot of negative and less positive

examples.

In conclusion, the ROC curve and AUC will help to understand the impact of a chosen

classification threshold visually. ROC will show what false positive rate should be

expected according to the true positive rate. The result of the comparison of the accuracy

results and error rate for each cross-validation subsets can be explained by the quality of

the data set that was used and shows that the model is susceptible to the difference in the

data. Furthermore, by comparing the accuracy results and error rates in the independent

tests results the performance of the model reader can be interpreted as a good.

4.2 Decision Tree

In this Chapter, the author will create a decision tree model to predict whether a credit

card transaction is fraudulent or genuine. The author will introduce to the reader the

advantages and disadvantages of decision tree classification and the metrics.

4.2.1 Preliminaries

The decision tree used in supervised learning is a method for both classification and

regression problems. The decision tree is a graph that uses a branching method to show

every possible output of a decision. The decision tree creates the model that predicts the

output of a target variable by learning decision rules derived from the dataset.

(𝑥, 𝑌) = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛, 𝑌) (14)

Y is the target value that engineers want to classify, and x is a vector of features that the

function uses for predictions.

36

A decision tree consists of:

 Root node

 Splitting

 Decision node

 Branch/Sub-tree

 Terminal node

Some highlighted advantages of the decision tree:

 The investigator can visualise Decision trees; it is simple to understand.

 Can handle both numerical and categorical data.

 Can handle multi-output problems.

 Decision tree uses a white box model; results are straightforward to interpret.

Some highlighted disadvantages of the decision tree:

Figure 18. Decision tree. The author takes the figure from [12].

Figure 19. Decision tree elements. The author takes the figure from [12].

37

 A decision tree learners can create biased trees if some classes dominate. The

dataset should be balanced.

 Over-complex trees (overfitting).

For decision tree as a metrics Gini index (in classification problem) was used. The

algorithm applied these metrics to each subset candidate, and the resulting values are

averaged to provide a measure of the quality of the split. The algorithm calculates Gini

index for each node on according split. The approach is a summary of the square of

probability for success and failure. Gini index performs binary splits, and the higher value

denotes higher sameness than lower.

The algorithm which finds the statistical significance of the differences between sub-

nodes and parent node is called Chi-Square. It is measured by the summa of squares of

standardised differences between observed and expected frequencies of the target

variable. The Chi-square algorithm works with categorical target variables, can perform

two or more splits, the higher value denotes higher statistical differences between sub

node and parent node. The formula for Chi-square:

𝑋2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖
 (15)

O is the observed value, and E denotes expected value. Two steps should be performed

for Chi-square. First, calculate for an individual node by calculating the deviation for

success and failure. Second, calculate for each node of the split using summa of all Chi-

squares of success and failure.

A decision tree is built top-down from a root node and involves partitioning of the data

into subsets that contain instances with similar values. The algorithm uses entropy to

calculate the homogeneity of a sample. If the sample is completely homogeneous, the

entropy is zero and if the sample is an equally divided that means that the entropy is one.

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −𝑝 ∗ 𝑙𝑜𝑔2 ∗ 𝑝 − 𝑞 ∗ 𝑙𝑜𝑔2 ∗ 𝑞 (16)

Two types of entropy have to be calculated in order to build the decision tree.

First entropy is using the frequency of one attribute:

𝐸(𝑆) = ∑ − 𝑝𝑖 ∗ 𝑙𝑜𝑔2 ∗ 𝑝𝑖
𝑐
𝑖=1 (17)

38

Second entropy is using the frequency of two attributes:

𝐸(𝑇, 𝑋) = ∑ 𝑃(𝑐) ∗ 𝐸(𝑐)𝑐𝜖𝑋 (18)

Also, we should gain the information based on the decrease in entropy after the algorithm

splits the dataset by attributes. A decision tree is about finding an attribute that returns the

most homogeneous branches (highest information gain). The equation of target

calculation entropy:

𝐺𝑎𝑖𝑛(𝑇, 𝑋) = 𝐸(𝑇) − 𝐸(𝑇, 𝑋) (19)

Attribute with the largest information gain should be used as the decision node. Divide

the dataset by its branches and repeat the same process on every branch. Branch with null

entropy will represent a leaf node and branch with entropy greater than null needs further

splitting. The algorithm runs process recursively until all data is classified.

4.2.2 Experiments

As in the previous experiment in this examination, the author will use R programming

language. The rpart library will be utilised for the decision tree; the code can be found in

Appendix 2 – Decision Tree code.

The author will use the same dataset that is described on page 4.1.232, the dataset divided

into two pieces. In both datasets, there are a lot of negative examples and less positive.

First of all, the author will train the model with cross-validation approach. Cross-

validation helps in determining how well a model would generalise to new datasets.

Moreover, CV is a way of measuring the performance of a trained model. By analysing

the accuracy results for each subset, the analyst can interpret the quality of the dataset and

figure out whether the model is receptive to variety in the data or not.

39

The author does not show the third Cross-validation set here because the result is the same

as in the first and the second CV folds. From CV sets the fourth fold shows a better result.

That can occur because of balanced data used in that training data set or the data that just

better represents the model.

Table 12. Cross Validation results of a Decision Tree model.

Num. TPR TNR FPR FNR Prec. Acc. BER ERR MSE AUC

CV1 0,750 0,999 0,0001 0,250 0,923 0,999 0,125 0,0006 0,024 0,874

CV2 0,750 0,999 0,0001 0,250 0,980 0,999 0,125 0,0005 0,022 0,874

CV3 0,730 0,999 0,0001 0,270 0,883 0,999 0,135 0,0005 0,024 0,865

CV4 0,860 0,999 0,0002 0,139 0,840 0,999 0,070 0,0003 0,019 0,930

CV5 0,706 0,999 0.0002 0,294 0,837 0,999 0,147 0,0006 0,025 0,852

Mean 0,759 0,999 0,0001 0,240 0,892 0,999 0,120 0,0005 0,023 0,880

Figure 20. Decision Tree CV AUC and ROC results.

40

Table 13. Confusion matrix of a Decision Tree.

Num. TP FP TN FN

T1 38 4 28419 9

T2 46 6 28407 11

T3 43 4 28416 7

Table 14. Test results of Decision Tree.

Num. TPR TNR FPR FNR Prec. Acc. BER ERR MSE AUC

T1 0,808 0,999 0,0001 0,191 0,905 0,999 0,096 0,0005 0,021 0,904

T2 0,807 0,999 0,0002 0,192 0,884 0,999 0,097 0,0006 0,024 0,903

T3 0,860 0,999 0,0001 0,140 0,915 0,999 0,070 0,0003 0,020 0,929

Mean 0,821 0,999 0,0002 0,175 0,901 0,999 0,087 0,0005 0,022 0,912

Figure 21. AUC and ROC of Decision Tree tests.

41

From the forecasts, it is obvious that positive predictions count much less than negative

predictions. Next figure shows the visualised decision tree.

Figure 22. Decision Tree predictions.

Figure 23. Visualised classification tree of the segmentation data from the credit card dataset.

42

Variables used in the tree construction: V10, V12, V14, V17, V24, V26, V27. Other

variables filtered by the algorithm. In figure 24, each node box displays the classification,

the probability of each class at that node and the percentage of observations used at that

node. The dotted lines indicate to emphasise the nodes and not the tree itself, and the

bottom level of leaves lining up helps to guess that the percentages in the node boxes

indicate the percentage of observations that arrived at each node.

4.2.3 Conclusion

The author has examined the Decision Tree classification model on provided dataset. It

is important to highlight that the dataset was not scaled and was used without any changes

and not re-balanced. The AUC results indicate that classes are well separated and can be

distinguished. First of all the cross validation method was examined on the dataset and

then the entire dataset for the model training had to be used. The trained model uses three

different test datasets for testing and all results, for both methods, have been presented in

the tables above. From the result tables mean true positive rate, for CV, shows the smaller

result, when at the same time the false positive rate is also lower. If the analyst wants to

decrease false positive rate for the trained model, the threshold needs to be increased.

However, this will reduce the true positive rate as well. In all cases the accuracy was

Figure 24. Visualised classification tree. Used rattle package.

43

excellent, but this is due to the unbalanced data, where there are a lot of negative and less

positive examples.

In conclusion, the ROC curve and AUC will help to understand the impact of a chosen

classification threshold visually. ROC will show what false positive rate should be

expected according to true positive rate. By comparing the accuracy results and error rate

for each cross-validation subsets, an analyst can explain the quality of the dataset and

come to the conclusion that the model is susceptible to the difference in the data.

Furthermore, by comparing the accuracy results and error rates in the independent tests

results the performance of the model can be interpreted as good.

4.3 Self-organizing map

In this Chapter, the author will create a Self-Organizing map model to predict whether a

credit card transaction is a fraudulent or not. The author will introduce to the readers the

algorithm of Self-Organizing map classification.

4.3.1 Preliminaries

SOM, or Kohonen Self Organising Feature Maps, were invented by Teuvo Kohonen,

Professor of the Academy of Finland. Teuvo Kohonen had provided a way of representing

multidimensional data in much lower dimensional spaces, it can be any dimension, but

usually, it is one or two dimensions, a sampled representation of the input space of the

training samples which is called a map. In general, the Kohonen approach creates a

network that stores information in a way that the algorithm maintains any topological

relationships within the training set.

The main difference from two previous algorithms, presented in this Thesis, is that this

approach is a type of artificial neural network that is trained using the unsupervised

learning. Self-organizing maps differ from other artificial neural networks as they apply

competitive learning as opposed to error-correction learning (such as backwards

propagation with gradient descent) and in the sense that they use a neighbourhood

function to preserve the topological properties of the input space [13]. SOM operates in

two-way - training and mapping. Training process builds the map using input examples,

vector quantization. Mapping automatically classifies a new input vector. SOM combines

the components called nodes also known as neurones, where each neurone associated

44

weight vector of the same size as the input data vectors and a position in the map space.

The proper arrangement of neurones is a conventional two-dimensional layout in a

hexagonal or rectangular grid. The SOM describes a mapping from a higher-dimensional

input to a lower-dimensional map. The procedure for putting a vector from data onto the

map is to find the node with the smallest distance metric vector to the data space vector.

In the training process, training examples are put into the network; the algorithm

computes its Euclidean distance (20) to all weight vectors. The neurone with most similar

weight vector to the input is called the BMU. The approach adjusts the weights of the

BMU and closest neurones in the SOM grid towards the vector of entry. The weight of

the change decreases with time and with distance from the BMU.

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(𝑋1 − 𝑋2)2 + (𝑌1 − 𝑌2)2 (20)

SOM algorithm equation for an update for a neurone 𝑣 with weight 𝑊𝑣:

𝑊𝑣(𝑠 + 1) = 𝑊𝑣(𝑠) + 𝜃(𝑢, 𝑣, 𝑠) ∗ 𝛼(𝑠) ∗ (𝐷(𝑡) − 𝑊𝑣(𝑠)) (21)

Where 𝑠 is the step index, 𝑡 an index of the training sample, 𝑢 is the index of the BMU

for 𝐷(𝑡), 𝛼(𝑠) is a monotonically decreasing learning coefficient and 𝐷(𝑡) is the input

vector; 𝜃(𝑢, 𝑣, 𝑠) is the neighbourhood function which gives the distance between the

neuron u and the neuron 𝑣 in step 𝑠. Depending on the implementations, 𝑡 can scan the

training dataset systematically (𝑡 is 0, 1, 2...T-1, then repeat, T being the training sample's

size), can be randomly drawn from the dataset (bootstrap sampling), or implement some

other sampling method [12].

The algorithm itself looks like:

 Weight vectors randomised for the nodes of the map.

 Capture an input vector.

 Go over each node (neurone) on the map and find the similarity between the vector

of entry and the maps weight vector. Locate the node with the best same unit.

 Use formula (21) for updating the nodes in the neighbourhood of the BMU by

pulling them closer to the input vector.

 Increase 𝑠 and repeat process from step 2 until 𝑠 lower then iteration limit.

45

A well-known problem for SOM is a selection of good initial approximation, using the

random initiation of SOM weights for the approach. Due to the exact reproducibility of

the results most important component initialization where the method chooses the first

map weights from the space of the first principal components, it has become a popular

approach.

4.3.2 Experiments

As in the previous experiment, in this examination, the author will use R programming

language. For SOM the author will use kohonen library, the reader can find the code in

Appendix 3 – Self-organized map.

The author will utilise the same data set, which was utilised by the author on page 4.1.232,

the dataset is divided into the two pieces. In both pieces, there are a lot of negative

examples and much less positive.

The original SOM used 15 x 15-dimensional grid with hexagonal topology.

It shows how many iterations the approach required for the mean distance minimization.

If the size of the SOM is too small, it may be hard to have convergence to a minimum.

So this plot can be used to figure out the optimal size of the SOM.

Figure 25. The plot of the training progress. This graph shows the variation between the weights of the

nodes and the cases presented to it.

46

It can be used as a measure of map quality. It is good if the sample distribution is relatively

uniform. Large numbers in SOM grid denote that larger map would be beneficial, but if

the larger map does not change those numbers, then it can suggest a large cluster of cases.

Next is a neighbour distance plot that shows the distance between each node and its

neighbours, also known as U-Matrix. Nodes that are similar indicate small areas of

neighbour distance and areas with bigger distance indicate nodes that are dissimilar. This

matrix can be used to separate the clusters within the SOM.

The smaller distance shows that the codebook vectors represent objects well.

Figure 26. Count plot. Shows how many cases the approach mapped to each node on the map.

Figure 27. Plot distance between each node and it neighbours.

Figure 28. Plot the quality of object representation in codebook vectors.

47

It is useful to separate data into clusters, so similar looking or behaving data points can

be grouped together. Clustering helps to group related data together while these groups

are different from each other.

This plot shows 14 potential groups, and two of them are significantly different from each

other, the first and the second. These clusters should be able to demonstrate good

homogeneity within.

It is established that the training data consists of a lot of negative and less positive

examples, so it was expected that one data cluster would be much better represented than

another when being more separated. Because the SOM approach requires clean data the

problem can occur when different variables have different units or data variables are

posed in the various distance. It can be assumed that SOM does not perform well in this

case because the data was not pre-processed, cleaned or rebalanced.

Figure 29. WSS with some potential clusters (Index).

Figure 30. Two groups which is much more different from each other.

48

Table 15. Cross Validation results of a Self-organized map model.

Num. TPR TNR FPR FNR Prec. Acc. BER ERR MSE AUC

CV1 0,062 0,997 0,003 0,937 0,038 0,995 0,470 0,004 1,001 0,677

CV2 0,078 0,997 0,003 0,922 0,044 0,994 0,462 0,005 1,001 0,630

CV3 0,077 0,996 0,004 0,923 0,033 0,995 0,463 0,004 1,000 0,671

CV4 0,069 0,996 0,003 0,930 0,026 0,995 0,467 0,004 1,000 0,735

CV5 0,118 0,991 0,009 0,882 0,019 0,989 0,446 0,010 1,000 0,679

Mean 0,080 0,996 0,004 0,919 0,032 0,994 0,461 0,006 1,000 0,679

Figure 31. Self-organized map CV AUC and ROC results.

49

Table 16. Confusion matrix of a Self-organized map.

Num. TP FP TN FN

T1 7 122 28301 40

T2 5 111 28302 52

T3 3 122 28298 47

Table 17. Test results of the Self-organized map.

Num. TPR TNR FPR FNR Prec. Acc. BER ERR MSE AUC

T1 0,149 0,996 0,004 0,851 0,054 0,994 0,428 0,006 1,000 0,832

T2 0,088 0,996 0,004 0,912 0,043 0,994 0,458 0,006 1,000 0,762

T3 0,060 0,996 0,004 0,940 0,024 0,994 0,472 0,006 1,001 0,810

Mean 0,099 0,996 0,004 0,901 0,040 0,994 0,452 0,006 1,001 0,800

4.3.3 Conclusion

Previously the author examines the Self-Organized map classification model on provided

dataset. The dataset was not scaled, without any pre-processing and highly unbalanced.

First of all, the aim was to analyse training dataset; the R Kohonen library was used.

Furthermore, the SOM model results were plotted. Training progress Figure 25, without

Figure 32. AUC and ROC of the Self-organized map evidence.

50

CV, shows that the mean distance was minimised after ~50 iterations. Also, the plot

indicated that SOM was neither too small nor too big and it was a convergence to a

minimum. Counts Figure 26 show that SOM model is relatively uniform, which means

that map quality is not too bad. Next Figure 27 shows the distance between nodes; the

researcher can use this plot to clarify the clusters. Four groups can be highlighted from

this plot. Figure 28 indicates that better is represented only one group that has the smallest

distance. Next, the map was divided into groups, and Figure 29 show 14 potential clusters

and only two of them were used due to being highly different from each other. That was

plotted in Figure 30.

Secondly, the author had plotted ROC with AUC of cross-validation. Thirdly, a trained

model was created in order to use three different test data sets for testing. All results for

both methods have been presented in the tables above. The result tables indicate the mean

true positive rate, for CV, that shows the smaller effect, however, the false positive rate

is similar in both cases. From AUC results the conclusion can be made that classes were

not very well separated.

Results from the Table 15 show that CV1 shows the worst TPR than the other tests. FNR

for CV4 is bigger than in the others cross-validation folds. in others cross-validation folds.

In all cases, the accuracy was good but not enough.

In conclusion, the ROC curve and AUC help to understand the impact of a chosen

classification threshold visually. ROC will indicate what false positive rate should be

expected according to the true positive rate. By comparing the accuracy results and error

rate for each cross-validation subsets, it is possible to explain the quality of the data set

being used and understand that the model is susceptible to the difference in the data.

Furthermore, by comparing the accuracy results and error rates in the independent tests

results the performance of the model can be interpreted as a good.

51

5 Summary

This Thesis shows the research of different machine learning algorithms, the way how

researchers could use algorithms in the classification problem. As well as how the data

analysts or engineers can deal with unbalanced data. Three different machine learning

algorithms, namely, Logistic Regression, Decision Tree, and Self-Organized map were

used in order to train a model for the classification task. The trained model should be

capable of classifying the transactions as fraudulent or genuine. Also, the result of this

Thesis is a code of a program that can learn from provided dataset in three different

manners. The code of this program can be found at the end of the Thesis in the Appendix

Section. In this Chapter, the summary of main results of the Thesis will be given, and the

future research directions will be presented.

Table 18. Mean classification results from each model.

Num. TPR TNR FPR FNR Prec. Acc. BER ERR MSE AUC

Logit 0,737 0,999 0,0002 0,263 0,867 0,999 0,131 0,0007 1,000 0,981

DT 0,821 0,999 0,0002 0,175 0,901 0,999 0,087 0,0005 0,022 0,912

SOM 0,099 0,996 0,004 0,901 0,040 0,994 0,452 0,006 1,001 0,800

Figure 33. Models mean AUC and ROC results. First Logistic Regression, second Decision Tree and the

last one is a Self-organized map.

52

Therefore, according to the table above the conclusion can be drawn that the DT model

performs better with unbalanced data without any pre-processing of that data on the

fraudulent transactions classification problem. However, ROC shows that it could be

reasonable for Logistic Regression to raise the TPR for getting a better result with a

minimum increase in FPR. For example, with TPR 0.903 the FPR of 0.034 was gained.

That is more of a business decision, whether it would rather minimise False Positive Rate

or maximise True Positive Rate.

One of the standard solutions to deal with a classification problem with unbalanced class

distribution is to rebalance the classes before training a model. A popular rebalancing

approach among the machine learning community is SMOTE oversampling, described

on page 19.

In the current research, it was established that in this case, the supervised machine

learning method did work well. In general, the generated fraud alerts the individual

researchers to check and annotate alerted transactions as negative (genuine) or positive

(fraudulent). This kind of feedback from individual researchers provides recently

supervised samples that may be very instructive so the data analysts can use those

examples in supervised algorithms.

To conclude, the tests results show good accuracy on trained models. However, it is

important to consider that these results are good because the unbalanced data that has a

lot of negative examples was used. In the future work the author will try to rebalance the

data set with SMOTE method and also will try to rearrange the data and after that will

use the pre-processed information in the same learning algorithms that were examined in

this Thesis. It would be reasonable to combine two different, supervised and

unsupervised, methods for the fraud classification problem. The author also suggests the

implementation of the Abraham Wald sequential sampling test for probability ratio that

will help to understand a quality of predictions on separate examples. As another great

approach for data analysis, the author suggests trying the PRIDIT method. PRIDIT

method is using principal components/factor analysis for data clustering.

53

References

[1] LegalDictionary.net, "Legal Dictionary," 2017. [Online]. Available:

https://legaldictionary.net/fraud/.

[2] N. Report, "The Nilson Report," The Nilson Report, 01 01 2010. [Online].

Available: www.nilsonreport.com. [Accessed 01 02 2017].

[3] A. D. Pozzolo, "Adaptive Machine Learning for," 2015.

[4] D. M. Button, "City of London Police," 2016. [Online]. Available:

https://www.cityoflondon.police.uk/news-and-appeals/Pages/Academic-report-

indicates-cost-of-Fraud-to-the-UK-is-%C2%A3193bn-a-year.aspx.

[5] D. Heckerman, "A tutorial on Learning with Bayesian," Technical report, MSR-

TR-95-06. Microsoft research, Redmond, WA 98052, 1995.

[6] t. f. e. Wikipedia, "Supervised learning," [Online]. Available:

https://en.wikipedia.org/wiki/Supervised_learning.

[7] A. Ng, "Unsupervised Learning," [Online]. Available:

https://www.coursera.org/learn/machine-

learning/supplement/1O0Bk/unsupervised-learning.

[8] Wikipedia, "Overfitting," 2017. [Online]. Available:

https://en.wikipedia.org/wiki/Overfitting.

[9] A. Ng, "Diagnosing Bias vs. Variance," [Online]. Available:

https://www.coursera.org/learn/machine-learning/supplement/81vp0/diagnosing-

bias-vs-variance.

[10] K. Markham, "ROC curves and Area Under the Curve explained," Data school, 19

11 2014. [Online]. Available: http://www.dataschool.io/roc-curves-and-auc-

explained/. [Accessed 03 25 2017].

[11] Alejandro Correa Bahnsen, Djamila Aouada and Bjorn Ottersten, "Example-

Dependent Cost-Sensitive Logistic," in 13th International Conference on Machine

Learning and Applications, Luxembourg, 2014.

[12] A. Vidhya, "A Complete Tutorial on Tree Based Modelling from Scratch (in R &

Python)," Analytics Vidhya, 2013. [Online]. Available:

https://www.analyticsvidhya.com/blog/2016/04/complete-tutorial-tree-based-

modeling-scratch-in-python/#one. [Accessed 2017].

[13] Wikipedia, "Self-organizing map," Wikipedia, 31 March 2017. [Online].

Available: https://en.wikipedia.org/wiki/Self-organizing_map. [Accessed 31

March 2017].

[14] N. Report, "Nilson Report," Nilson Report, 01 01 2010. [Online]. Available:

https://www.nilsonreport.com/index.php. [Accessed 01 02 2017].

54

Appendix 1 – Logistic Regression code

Calculating Logistic Regression model and plot the ROC fro each Cross Validation result.

In the end, mean error and AUC are shown.

train_data <- readRDS(paste(project_path, "/creditcard_train.Rdata",
sep = ""))

calculateModelAucAndShowRoc(train_data, "log")

Next code denotes Logistic Regression calculation without CV with three independent

tests. Also, error and AUC numbers are shown and plot the ROC and the predictions.

train_data <- readRDS(paste(project_path, "/creditcard_train.Rdata",
sep = ""))

test_data <- readRDS(paste(project_path, "/creditcard_test.Rdata", sep
= ""))

logistic <- performLogisticRegression(train_data, test_data)

model <- logistic@model

predictions <- logistic@predictions

test1 <- test_data[1:28470,]

test2 <- test_data[28471:56940,]

test3 <- test_data[56941:85410,]

testAndPlot(model, train_data, list(test1, test2, test3))

showErrorAndAuc(test_data, predictions)

plotRoc(predictions, test_data[, 'Class'], "")

table(predicted = predictions > .5, actual = test_data[, 'Class'])

55

Appendix 2 – Decision Tree code

Calculating Decision Tree model and plot the ROC fro each Cross Validation result. At

the end, mean error and AUC are shown.

train_data <- readRDS(paste(project_path, "/creditcard_train.Rdata",
sep = ""))

calculateModelAucAndShowRoc(train_data, "dt")

Next code denotes Decision Tree calculation without CV with three independent tests.

Also, error and AUC numbers are shown and plot the ROC and visualized DT in a

different manner.

train_data <- readRDS(paste(project_path, "/creditcard_train.Rdata",
sep = ""))

test_data <- readRDS(paste(project_path, "/creditcard_test.Rdata", sep
= ""))

dt <- performDecisionTree(train_data, test_data)

model <- dt@model

predictions <- dt@predictions

test1 <- test_data[1:28470,]

test2 <- test_data[28471:56940,]

test3 <- test_data[56941:85410,]

testAndPlot(model, train_data, list(test1, test2, test3))

printcp(model)

plotcp(model)

summary(model)

confusionMatrix(predictions, test_data$Class)

plot(predictions, xlab = "Class", ylab = "Examples")

predictions <- as.numeric(predictions)

showErrorAndAuc(test_data, predictions)

plotRoc(predictions, test_data[, 'Class'], "")

prp(model, varlen = 5)

fancyRpartPlot(model)

plot(model, uniform = TRUE)

text(model, use.n = TRUE, all = TRUE, cex = .8)

56

Appendix 3 – Self-organized map code

Calculating Self-organized map model and plot the ROC fro each Cross Validation result.

At the end, mean error and AUC are shown.

train_data <- readRDS(paste(project_path, "/creditcard_train.Rdata",
sep = ""))

calculateModelAucAndShowRoc(train_data, "som")

Next code denotes Self-organised map calculation without CV with three different tests.

Also, error and AUC numbers are shown and plot the ROC. Plated different results to the

SOM model. Prediction results are shown at the end of the script.

train_data <- readRDS(paste(project_path, "/creditcard_train.Rdata",
sep = ""))

test_data <- readRDS(paste(project_path, "/creditcard_test.Rdata", sep
= ""))

som <- performSom(train_data, test_data, 15, 15)

model <- som@model

predictions <- som@predictions

test1 <- test_data[1:28470,]

test2 <- test_data[28471:56940,]

test3 <- test_data[56941:85410,]

testAndPlot(model, train_data, list(test1, test2, test3))

plot(model, type = "changes", main = "")

plot(model, type = "count", main = "", palette.name = blueRed)

plot(model, type = "quality", palette.name = blueRed, main = "")

plot(model, type = "dist.neighbours", main = "", palette.name =
blueRed)

cluster(model, 15, 2)

showErrorAndAuc(test_data, predictions)

plotRoc(predictions, test_data[, 'Class'], "")

table(test_data$Class, classmat2classvec(predictions))

table(predicted = classmat2classvec(predictions), actual = test_data[,
'Class'])

threshold <- max(predictions) / 2

table(predicted = predictions > threshold, actual = test_data[,
'Class'])

57

Appendix 4 – Generic code

Plot the ROC function.

plotRoc <- function(predictions, data, txt) {

 pred <- prediction(predictions, data)

 perf <- performance(pred, "tpr", "fpr")

 par(mar = c(5, 5, 2, 2), xaxs = "i", yaxs = "i", cex.axis = 1.3,
cex.lab = 1.4)

 plot(perf, col = "black", lty = 3, lwd = 3)

 auc <- performance(pred, "auc")

 auc <- unlist(slot(auc, "y.values"))

 minauc <- min(round(auc, digits = 2))

 maxauc <- max(round(auc, digits = 2))

 minauct <- paste(c("min(AUC) = "), minauc, sep = "")

 maxauct <- paste(c("max(AUC) = "), maxauc, sep = "")

 legend(0.2, 0.5, c(minauct, maxauct, "\n", txt), border = "white",
cex = 1.1, box.col = "white")

}

Show error and AUC value.

showErrorAndAuc <- function(dataTest, predictions) {

 yLabel <- c('Class')

 err <- rmse(as.numeric(dataTest[, yLabel]), predictions)

 auc <- auc(dataTest[, yLabel], predictions)

 print(paste('MSE:', err))

 print(paste('AUC:', auc))

}

Next is the main function which is used for model creation.

58

calculateModelAucAndShowRoc <- function(data, algorithm = "log") {

 require(xgboost)

 require(Metrics)

 CVs <- 5

 cvDivider <- floor(nrow(data) / (CVs + 1))

 indexCount <- 1

 yLabel <- c('Class')

 predictors <- names(data)[!names(data) %in% yLabel]

 lsErr <- c()

 lsAUC <- c()

 for (cv in seq(1:CVs)) {

 cvTxt <- paste('cv', cv)

 print(cvTxt)

 dataTestIndex <- c((cv * cvDivider):(cv * cvDivider +
cvDivider))

 dataTest <- data[dataTestIndex,]

 dataTrain <- data[-dataTestIndex,]

 if (algorithm == 'log') {

 model <- glm(dataTrain[, yLabel] ~ ., family =
binomial(logit), data = data.frame(dataTrain[, predictors]))

 predictions <- predict(model, data.frame(dataTest[,
predictors]), outputmargin = TRUE)

 print(summary(dataTest$Class))

 print(table(predicted = predictions > .5, actual =
dataTest[, yLabel]))

 }

 else if (algorithm == 'dt') {

 require(rpart)

 require(caret)

 model <- rpart(dataTrain[, yLabel] ~ ., data =
data.frame(dataTrain[, predictors]), method = "class")

 predictions = predict(model, dataTest, type = "class")

 print(confusionMatrix(predictions, dataTest[, yLabel]))

 predictions <- as.numeric(predictions)

 }

 else if (algorithm == 'som') {

 require(kohonen)

 x <- dataTrain[, predictors]

 xMatrix <- as.matrix(x)

 grid <- somgrid(xdim = 15, ydim = 15, topo = "hexagonal")

 model <- som(xMatrix,

 grid = grid,

 rlen = 100,

 alpha = c(0.05, 0.01),

59

 keep.data = TRUE,

 n.hood = "circular")

 cluster(model, 15, 2)

 predictions <- predict(

 model,

 newdata = as.matrix(dataTest[, predictors]),

 trainX = model$data,

 trainY = as.numeric(as.vector(dataTrain[, yLabel])))

 predictions <- predictions$prediction

 threshold <- max(predictions) / 2

 print(table(predicted = predictions > threshold, actual =
dataTest[, yLabel]))

 }

 err <- rmse(as.numeric(dataTest[, yLabel]), predictions)

 print(paste('MSE: ', err))

 auc <- auc(dataTest[, yLabel], predictions)

 print(paste('AUC: ', auc))

 plotRoc(predictions, dataTest[, yLabel], cvTxt)

 readkey()

 lsErr <- c(lsErr, err)

 lsAUC <- c(lsAUC, auc)

 gc()

 }

 print(paste('Mean MSE:', mean(lsErr)))

 print(paste('Mean AUC:', mean(lsAUC)))

}

60

Next is the test function for model.

testAndPlot <- function(model, trainData, testDatas) {

 yLabel <- c('Class')

 predictors <- names(trainData)[!names(trainData) %in% yLabel]

 cls <- class(model)

 for (i in 1:length(testDatas)) {

 txt <- paste('Test', i)

 print(txt)

 if (cls[1] == "glm") {

 predictions <- predict(model, data.frame(testDatas[[i]][,
predictors]), outputmargin = TRUE, type = "response")

 print(summary(testDatas[[i]][yLabel]))

 print(table(predicted = predictions > .5, actual =
testDatas[[i]][, yLabel]))

 }

 else if (cls == 'rpart') {

 predictions = predict(model, testDatas[[i]], type =
"class")

 print(confusionMatrix(predictions, testDatas[[i]][,
yLabel]))

 predictions <- as.numeric(predictions)

 }

 else if (cls == 'kohonen') {

 predictions <- predict(

 model,

 newdata = as.matrix(testDatas[[i]][, predictors]),

 trainX = model$data,

 trainY = as.numeric(as.vector(trainData[, yLabel])))

 predictions <- predictions$prediction

 threshold <- max(predictions) / 2

 print(table(predicted = predictions > threshold, actual =
testDatas[[i]][, yLabel]))

 }

 showErrorAndAuc(testDatas[[i]], predictions)

 plotRoc(predictions, testDatas[[i]][, yLabel], txt)

 readkey()

 }

}

61

Next is the function for models tests.

makeTestsOnModels <- function(testData, modelList, testCount = 1,
trainData = NULL) {

 yLabel <- c('Class')

 predictors <- names(testData)[!names(testData) %in% yLabel]

 results <- as.data.frame(testData[, 31:31])

 columns <- yLabel

 modelsCount <- length(modelList)

 for (i in 1:modelsCount) {

 model <- modelList[[i]]

 cls <- class(model)

 for (j in 1:testCount) {

 if (cls[1] == 'glm') {

 column <- paste(cls[1], i, 'test', j)

 predictions <- predict(model, data.frame(testData[,
predictors]), outputmargin = TRUE, type = "response")

 }

 else if (cls == 'rpart') {

 column <- paste(cls, i, 'test', j)

 predictions = predict(model, testData, type = "class")

 }

 else if (cls == 'kohonen') {

 column <- paste(cls, i, 'test', j)

 predictions <- predict(

 model,

 newdata = as.matrix(testData[, predictors]),

 trainX = model$data,

 trainY = as.numeric(as.vector(trainData[,
yLabel])))

 predictions <- predictions$prediction

 }

 columns <- c(columns, column)

 results <- cbind(results, column = predictions)

 }

 }

 names(results) <- columns

 return (results)

}

