
THESIS ON INFORMATICS AND SYSTEM ENGINEERING C32

Relational and Object-Relational Database
Management Systems as Platforms for

Managing Software Engineering Artifacts

ERKI EESSAAR

TUT
PRESS

Faculty of Information Technology

Department of Informatics

TALLINN UNIVERSITY OF TECHNOLOGY

Dissertation was accepted for the commencement of the degree of Doctor of
Philosophy in Engineering on November 15, 2006.

Supervisor: Prof. Rein Kuusik, Faculty of Information Technology

Opponents: Prof. Bernhard Thalheim, Christian-Albrechts-University Kiel,
 Computer Science Institute, Germany

 Prof. Jüri Kiho, University of Tartu, Estonia

Commencement: December 18, 2006

Declaration: Hereby I declare that this doctoral thesis, my original investigation
and achievement, submitted for the doctoral degree at Tallinn University of
Technology has not been submitted for any degree or examination.

/Erki Eessaar/

Copyright: Erki Eessaar, 2006

ISSN 1406-4731

ISBN 9985-59-671-4

 3

Table of Contents
INTRODUCTION.. 6

OBJECTIVES .. 7
LIMITATIONS .. 10
OUTLINE OF THE DISSERTATION .. 11
ACKNOWLEDGEMENTS... 13

LIST OF ABBREVIATIONS.. 15

1 DATA MODELS ... 16

1.1 IMPORTANT CONCEPTS OF DATA MODELS 16
1.2 COMPARISON METHODS OF DATA MODELS.................................. 19
1.3 COMPARISON OF THE DATA MODELS.. 21

1.3.1 Proposed Method for Comparing Data Models 24
1.3.2 Comparison of Data Types.. 27

1.3.2.1 Discussion... 32
1.3.3 Comparison of Data Structures... 35

1.3.3.1 Discussion... 39
1.3.4 Comparison of Data Integrity Rules...................................... 42

1.3.4.1 Discussion... 44
1.3.5 Comparison of Data Operators... 46

1.3.5.1 Discussion... 51
1.3.6 Observations.. 53
1.3.7 Metrics Values... 55
1.3.8 Orthogonality Principle in Language Design 57

1.4 COMPARISON WITH THE EXISTING SATE OF THE ART 59
1.4.1 Object-Oriented Database Metamodel.................................. 59
1.4.2 CIM Database Model .. 60
1.4.3 Common Warehouse Metamodel... 60
1.4.4 SQL:2003 Ontology... 61
1.4.5 SQL Definition Schema ... 66

1.5 SUMMARY.. 67

2 DATABASE MANAGEMENT SYSTEMS IN EXISTING
SOFTWARE ENGINEERING SYSTEMS... 69

2.1 REQUIREMENTS TO THE REPOSITORY SYSTEMS............................ 72
2.2 EXISTING SOFTWARE ENGINEERING SYSTEMS 74

2.2.1 Systems that do not Use a DBMS .. 75
2.2.2 Heterogeneous Systems ... 77
2.2.3 Systems that Use Only an Engineering DBMS...................... 79
2.2.4 Systems that Use Only a General-purpose DBMS 81

2.2.4.1 Systems that Use a RDBMS ... 81
2.2.4.2 Systems that Use an OODBMS .. 84
2.2.4.3 Systems that Use an ORDBMS .. 84

 4

2.3 PROBLEMS OF USING THE RELATIONAL MODEL AND RDBMSSQLS

IN ENGINEERING SYSTEMS .. 86
2.4 SUMMARY.. 90

3 REPOSITORY DATABASE DESIGN.. 92

3.1 DESIGN ALTERNATIVES OF DATABASE SCHEMA OF A SOFTWARE

ENGINEERING SYSTEM .. 92
3.1.1 Encapsulated Artifact Types.. 93
3.1.2 Non-encapsulated Artifact Element Types 95
3.1.3 Encapsulated Artifact Element Types.................................... 96
3.1.4 Universal Data Model ... 97

3.2 CHECKING OF THE WELL-FORMEDNESS RULES 107
3.2.1 Ignore All Well-formedness Rules 108
3.2.2 Automatically Resolve Constraint Violations as they Arrive

 108
3.2.3 Disallow an Operation and Inform a User.......................... 108

3.2.3.1 Example with SimpleM .. 109
3.2.3.2 Example with Use Cases... 110

3.2.4 Allow Everything Initially and Search Errors Later 111
3.2.4.1 Integrated Approach with Versioning............................. 112

3.3 PRESERVING THE SEMANTICS OF RELATIONSHIPS IN A DATABASE

 116
3.3.1 Generalization Relationships .. 116
3.3.2 Whole-Part Relationships.. 117

3.3.2.1 Related Works... 117
3.3.2.2 Possible Designs ... 118
3.3.2.3 Choosing Between the Designs....................................... 120

3.3.3 Advantages of Attributes with Complex Types in Real Relvars
 126

3.3.4 Disadvantages of Attributes with Complex Types in Real
Relvars 128
3.4 ADDITIONAL GUIDELINES FOR DATABASE DESIGN 128

3.4.1 The Principle of Orthogonal Design 129
3.4.2 The Extended Principle of Orthogonal Database Design ... 135

3.4.2.1 Discussion and Examples ... 136
3.4.3 Heuristic Rules for Reducing Data Redundancy within the

Value of One Real Relvar.. 138
3.4.3.1 Discussion and Examples ... 139

3.4.4 An Example about the Suitability of Relation-Valued Attribute
 142
3.5 VIEW TO ORDBMSSQLS .. 145

3.5.1 SQL-specific Solutions .. 145
3.5.2 Usability of the Designs and Guidelines in ORDBMSSQLs .. 145

3.6 SUMMARY.. 154

 5

4 REPOSITORY SYSTEM WITH A FIXED DATABASE SCHEMA
 156

4.1 RELATED WORKS .. 158
4.2 DESCRIPTION OF THE MODELING LANGUAGE 160
4.3 QUERIES... 164

4.3.1 Consistency and Completeness Checks 165
4.4 DISCUSSION AND COMPARISONS... 167
4.5 SUMMARY.. 171

CONCLUSIONS .. 172

SUMMARY OF CONTRIBUTIONS .. 172
DIRECTIONS FOR FURTHER RESEARCH .. 178

KOKKUVÕTE ... 181

REFERENCES... 185

APPENDIX A: SOME PROPERTIES OF EXISTING SOFTWARE
ENGINEERING SYSTEMS THAT USE THE HELP OF A DBMS 205

APPENDIX B: SOME SECONDARY CHARACTERISTICS OF
WHOLE-PART RELATIONSHIPS ... 207

APPENDIX C: COMPARISON OF SOME SYSTEMS THAT
RECORD MODELS IN A DATABASE ... 208

APPENDIX D: THE LOCATION OF PROTOTYPE SYSTEM 210

APPENDIX E: CURRICULUM VITAE ... 211

APPENDIX F: ELULOOKIRJELDUS (CV IN ESTONIAN)............. 214

 6

INTRODUCTION

The main areas of this study are relational and object-relational data models and
their suitability in the systems that help to manage software engineering
artifacts. The concept "data model" has two different meanings (it is "construct
overload"):
• Meaning 1: "An abstract, self-contained, logical definition of the data

structures, data operators, and so forth, that together make up the abstract
machine with which users interact." (Date, 2003, p.15, 16) Some authors
use in this context the concept "database model".

• Meaning 2: "A model of persistent data of some particular enterprise."
(Date, 2003, p. 16)

An informal explanation is that a data model (meaning 1) specifies the
building blocks of databases, the rules how to assemble these blocks and
operations that can be performed based on the built-up structures. These blocks,
rules and operations do not depend on the enterprises that create and maintain
the databases. A data model (meaning 2) specifies a structure and constraints of
a database of a particular enterprise. In this work, we use the concept "data
model" in the sense of meaning 1, if not explicitly stated otherwise.

We also note that similarly to the book of Date (2003) we treat the terms
"data" and "information" as synonyms in this work.

Edgar F. Codd is the author of the seminal work (Codd, 1970) about the
principles of relational data model. Nowadays Relational Database Management
System (RDBMS) is a popular type of DBMSs. These systems use language
that conforms more or less to the SQL standard. SQL and systems that use it
apply many (but not all) ideas of E. F Codd and others about the relational
model.

Many researchers and developers claim, despite the success of RDBMSs,
that these systems are not suitable for some types of applications. These
applications use data that has a complex structure. An example of such a system
is a repository system which supports a software development process by
helping to record, retrieve, check and reuse different kinds of software
engineering artifacts. Repository system is a kind of a software engineering
system (SES). Repository manager that is a component of a repository system,
provides services for recording, retrieving, and managing objects in a repository
and therefore must offer functions of a DBMS and additional functions
according to Bernstein and Dayal (1994). A DBMS has an underlying data
model that determines how easy it is to create and extend a system that uses a
database. For example, a software engineering system (like any other system)
can take advantage of a data model that allows creation of new data types,
handles missing information properly and permits creation of complex queries
and declarative constraints that implement well-formedness rules.

 7

The motivation of this dissertation is rooted in the widespread opinion that
the relational data model is not powerful enough to be used in software
engineering systems or other systems that have to perform sophisticated
operations with complex data. Is the relational model useful, but outdated
model, or is it still relevant and provides basis for creating complex systems
now and in the future? The motivation of this work is to find answers to these
questions. In the latter case, it is time to rediscover the relational model.

Objectives

It is a widely accepted position that the underlying data model of SQL:1992 or
earlier versions of the SQL standard are the relational model and therefore
shortcomings and inefficiencies of SQL and DBMSs that use it are actually
shortcomings and inefficiencies of the relational model (Eessaar, 2006c). It
currently leads to a widespread opinion that the relational data model is not
powerful enough in order to build software engineering systems on top of a
DBMS that uses this model. For example, Halpin (2001, p. 709) writes:
"Relational DBMSs are suitable for about 90 percent of business applications,
but may prove inefficient for structurally complex applications such as CASE
tools and VLSI design." It is important to note that RDBMS in this case is a
system, which uses a database programming language that conforms to
SQL:1992 or earlier versions of the SQL standard. We refer to these kinds of
systems by using the abbreviation "RDBMSSQL" from now on. The Third
Generation Database System manifesto (Stonebraker et al., 1991) calls these
systems second generation systems.

However, there are researchers who do not agree with the view that the
relational model is not suitable in certain cases. Barghouti et al. (1996) present
requirements to the Process-Centered Software Engineering Environments.
They evaluate suitability of RDBMSSQL products to implement this kind of
environment and conclude: "The other requirements may not be satisfied
completely by commercially-available RDBMSs, due in many respects to the
limitations of the current SQL standard, SQL-89." Barghouti et al. (1996) also
add: "However, there is nothing intrinsic in the relational model that prohibits
the extension of RDBMSs to satisfy these requirements." They note that
RDBMSs as well as the SQL standard have evolved over the course of time.

Examples of the deficiencies of the underlying data model of RDBMSSQLs:
1. Impossible to declare new data types.
2. Too big distinction between base- and derived tables.
3. Limited means for presenting missing information.
4. Complex language structure that allows us to solve some problems in many

different ways but at the same time does not help to solve some other
problems at all. For example, options for making queries based on the
hierarchic or networked data are limited.

Are we trying to show that Mr. Halpin and other respectable researchers
have reached to the wrong conclusions? On the contrary, important question is:

 8

"What is relational data model and what are its components?" Some authors
(Pascal, 2000), (Date and Darwen, 2000), (Date and Darwen, 2006), (Date et al.,
2003), (Date, 2003) have concluded that SQL is an incomplete, inefficient and
imprecise implementation of the relational data model. Therefore, systems that
take advantage of SQL are not as powerful and flexible as they could be.

Many authors have proposed to use in the software engineering systems
DBMSs that are built up based on some other data model than relational model
(see Chapter 2). For example, Atkinson et al. (1989) present The Object-
Oriented Database Systems Manifesto that attempts to define object-oriented
database systems and their underlying data model.

In this dissertation, we are interested in the so-called Object-Relational
DBMSs (ORDBMSs) and their underlying data models. There are many
proposals about what should be the exact nature of these systems (Stonebraker
et al., 1991; Seshadri, 1998; Date and Darwen, 2000). In general, they should
combine features of the relational model (as interpreted by SQL:1992 or earlier
standards) and object-oriented programming languages. In this dissertation, we
deal with the two object-relational data models – ORSQL and ORTTM.

The SQL:1999 and SQL:2003 standards try to resolve some of the problems
of an early SQL by providing additional features (by extending it). For example,
they permit creation of new data types. It is said that these standards support
object-relational paradigm (Calero et al., 2006). We refer to the systems that
follow SQL:2003 (or its predecessor SQL:1999) standard by using the
abbreviation "ORDBMSSQL" from now on. We call the data model that is used
by the ORDBMSSQLs as "the ORSQL data model" or "ORSQL".

"The Third Manifesto is a detailed, formal and rigorous proposal for the
future directions of data and database management systems (DBMSs for short)."
(Date and Darwen, 2000, p. 3) It advocates the relational data model as basis
for future systems. According to this approach, all the good features that are
expected from object-relational data model can actually be implemented within
the framework of the relational model. In particular, the support to complex data
types is already present in the relational model in the form of domains (Date,
2003). Current standards and systems do not take all the principles of the
relational model into account and it causes calls to extend the model (with
possibly unnecessary features) or even abandon the relational model. The Third
Manifesto can be seen as a compilation of principles of ORDBMS that is free
from the burdens of SQL. "Accordingly, we also believe that a true

object/relational system would be nothing more nor less than a true relational

system – which is to say, a system that supports the relational model, with all
that such support entails." (Date, 2003, p. 861) The authors of the manifest
claim that they are not extending or replacing the relational model. "Thus, we
regard our Manifesto as being very much in spirit of Codd's original work and
continuing along the path he originally laid down." (Date and Darwen, 2000, p.
xiv) We refer to the data model that is advocated by The Third Manifesto as
"the ORTTM data model" or "ORTTM". We refer to The Third Manifesto
compliant DBMSs by using the abbreviation "ORDBMSTTM" from now on.

 9

Next, we present the objectives of this dissertation.
• Objective 1: To present metamodel-based comparison of the ORSQL and

ORTTM data models.
Data model is an abstract language and it is possible to create its metamodel.

Metamodel is "a model of a model" that provides "the rules/grammar for the
modelling language (ML) itself." (Henderson-Sellers, 2003)

Software engineering system is an example of a system that manages data
that has complex structure. Many software engineering systems are file-based
systems that do not use the services of a DBMS. Maybe it is consistent with the
results of existing research and usage of DBMSs in this kind of systems is not
advantageous?
• Objective 2: To find out what are the problems of using RDBMSs or

ORDBMSs in the software engineering systems according to the existing
research literature.

This investigation also helps to achieve the following objective:
• Objective 3: To describe the design alternatives of databases of software

engineering systems that will be implemented by using an ORDBMS.
We present a sample software engineering system that uses an ORDBMSSQL

in order to manage software engineering artifacts. This system uses some of the
design ideas that are explained in this dissertation.
• Objective 4: To demonstrate that the ORSQL data model has shortcomings

that cause difficulties in using the standard-compliant DBMSs in the
software engineering systems.

In addition, current DBMSs do not implement SQL in the full extent that
often makes implementation of the software engineering system even more
difficult. For example, possibilities to declare constraints are limited and
updateable views have additional restrictions.
• Objective 5: To demonstrate that the gap between the principles of ORSQL

(theory) and the actual implementation (practice) in current ORDBMSSQLs
causes additional problems to the designers of software engineering
systems.

• Objective 6: To demonstrate that the data model that is specified in The
Third Manifesto (ORTTM data model) is a suitable basis for a DBMS so that
this DBMS can be used in a software engineering system.

Emmerich (1995) and Barhouti et al. (1996) present somewhat similar
research. They investigate possibilities of using RDBMSSQLs or Object-Oriented
DBMSs in Process-Centered Engineering Environments. One difference with
our work is that they do not consider ORDBMSs. Secondly, they perform their
evaluation based on the commercial DBMS products. This research, on the
other hand, investigates suitability of different object-relational data models for
the management of software engineering artifacts. In addition, it referes to the
problems of existing DBMSs.

Metamodels of languages, based on which software engineering systems
database structure is created, often contain whole-part and generalization
relationships. A DBMS is able to understand and enforce structural and

 10

operational properties of those relationships and objects that participate in these
relationships (Zhang et al., 2001). The underlying data model of a DBMS
determines the extent of these abilities. Therefore, properties of the data model
determine how well a DBMS can capture knowledge about the real world
entities and their behaviour. There exist proposals about how to preserve the
semantics of generalization relationships in an ORDBMSTTM database but we
are not aware of such work about the whole-part relationships.
• Objective 7: To propose a set of designs for preserving the semantics of

whole-part relationships in a database that is created by an ORDBMSTTM
and guidelines explaining when to use these designs.

In this dissertation we use the concept "complex data type" (or "complex
type") in order to refer to: (a) relation types, (b) tuple types, (c) scalar types
where the possible representation has more than one component, (d) scalar types
where the possible representation has one component but this component has
one of the types (a)-(c). We intend to show that the use of these kinds of types
in the real relvars (tables) makes database design actually more complex. One
reflection of that is the necessity to extend the Orthogonal Database Design
Principle. This principle helps to prevent data redundancy across different
relvars in a database.
• Objective 8: To extend the Principle of Orthogonal Database Design (Date

and McGoveran, 1994) so that it would take into account the use of real
relvars that have attributes with complex types.

We use the concept "relvar attribute" in order to refer to an attribute that is
specified in the heading of relation type of a relvar.

Limitations

In this dissertation, we are not considering all the data models and their
associated DBMSs, but only two object-relational data models and
corresponding DBMSs. Examples of data models that are not under the
evaluation in this dissertation are: hierarchical, network, TransRelational data
model or object-oriented data models. There are many proposals about object-
oriented data models in literature according to Atkinson et al. (1989).

One limiting factor of the research is that we do not have final versions of
SQL:1999 and SQL:2003 standard documents at our disposal. We use
information from the manual of Gulutzan and Pelzer (1999) in order to gain
information about SQL:1999 and pre-publication version of SQL:2003 (Melton,
2003), (Melton, 2003b) (Melton, 2003c).

Information captured in the artifact that is recorded in a repository can be
presented to the user in more than one way using graphical and textual
notations. This dissertation concentrates on the management of the
informational content of the artifacts and does not address the issues of the
visualization of the artifacts.

 11

One limitation of this study is that the system that is introduced in Chapter 4
is implemented partially and only by using an ORDBMSQL. This dissertation is
not accompanied with an implementation of a software engineering system that
uses an ORDBMSTTM.

Outline of the Dissertation

Figure 1 presents an overview of the structure of this dissertation.

Introduction

Conclusions

Data Models – Chapter 1

Case Study – Chapter 4

Design Alternatives of a SEE Database Schema

– Section 3.1

Preserving the Semantics of Relationships in a
Database – Section 3.3

Additional Guidelines for Database Design –
Section 3.4

Guidelines for a Designer of a SES Database – Chapter 3

Objective 4

Objective 5

Objective 6

Objective 7

Objective 8

Objective 3

DBMSs in Software Engineering Systems –

Chapter 2

Objective 1

Checking of the Well-formedness Rules

– Section 3.2

Objective 2

View to ORDBMSSQLs – Section 3.5

Figure 1 Overview of the dissertation structure that relates the objectives of the
dissertation with the chapters, which contribute to their accomplishment

In Chapter 1, we describe "data models" in general (see section 1.1) and in
particular, two data models that have their roots in the relational model
introduced by E. F. Codd. These data models are underlying data model of
SQL:2003 (the ORSQL data model) and relational data model as defined by The
Third Manifesto (the ORTTM data model). We describe these two models in the
form of metamodel-based comparison (see section 1.3).

One purpose of this chapter is to give sufficient basis for further discussions
by presenting and comparing the data models. This chapter extends the work of
Calero et al. (2006) who propose an ontology of SQL:2003 Object-Relational
features. In addition, metamodel of the ORTTM data model is a novel result of

 12

this work. Other novel results are: proposal of the metamodel-based comparison
method of data models, actual comparison of the two data models (ORSQL and
ORTTM), metrics values that are calculated based on the metamodels, and
findings of violations of the orthogonality principle in ORSQL. We also refer to
the shortcomings of the work of Calero et al. (2006) (see section 1.4).

Software engineering artifacts are created using a wide range of languages
and tools. "Software Engineering System" (SES) is a class of complex systems
which members assist their users during development of a software or
information system. A SES could be a stand-alone tool or an environment,
which is a collection of integrated tools (Harrison et al., 2000). A SES is usable
in one or more development phases and helps to manage one or more types of
software engineering artifacts. For example, it could be a CASE or a Meta-
CASE tool, a pattern-based code generator, a web-based collaborative modeling
environment or a reuse repository of software engineering artifacts. These
systems have to record data (including artifacts) somewhere, just like business
applications. Their developers can choose between different implementation
strategies or combinations of them: (1) to use an existing DBMS; (2) to use an
existing repository system; (3) to build a data management component from
scratch. The results of sections 1.1, 1.2 and 1.3.4 have been accepted to be
published in (Eessaar, 2006h). The results of sections 1.3.2, 1.3.7 and 1.3.8
have been accepted to be published in (Eessaar, 2007).

A SES is a good example of a complex system that demands a lot from a
DBMS. In Chapter 2, we present a literature-based overview of SESs that use a
DBMS (see section 2.2). We are most interested in systems that use a RDBMS
or an ORDBMS because we think that existing overview papers about SESs do
not pay enough attention to them. Papers about SESs often refer to the problems
of RDBMSSQLs and their underlying data model. This means that we need a
better data model and DBMSs that use this model. Different papers refer to
different problems. Our research of SESs helps to compile the thorough list of
problems (see section 2.3). This part of the work is based on the first part of
paper of Eessaar (2006c). We also present requirements to repository systems
(see section 2.1) because a DBMS that is used in order to implement a SES
must provide the technical means that help to fulfil at least some of these
requirements.

Quite a lot of researchers and developers have proposed to use
ORDBMSSQLs in the SESs. Unfortunately they pay little attention to the
possible problems of this approach. Therefore, Chapter 2 presents actually the
context of Chapter 3. Chapter 3 contains guidelines for the design of a SES
database. Firstly, we investigate how it is possible to implement these
guidelines in an ORDBMSTTM database. In particular, this chapter describes
approaches for recording artifacts in a database (see section 3.1), checking the
well-formedness of artifacts (see section 3.2) and versioning of artifacts (see
section 3.2.4.1). These sections (except discussion of "universal design") are
based on the papers of Eessaar (2005a, 2006c).

 13

Repository structure is worked out based on the metamodels of the
languages (UML, Pattern and Component Markup Language etc.) that are used
in order to create artifacts. These metamodels contain many generalization and
whole-part relationships. Section 3.3 investigates how it is possible to preserve
semantics of this kind of relationships in an ORDBMS database. A lot of work
about preserving relationship semantics in an ORDBMSSQL database has been
done by different researchers. Therefore, we refer to the existing research and
concentrate to the investigation, how to preserve relationship semantics in an
ORDBMSTTM database. There are works that describe how to handle
generalization relationships in an ORDBMSTTM database (see section 3.3.1).
Therefore, we give a short overview about that work and concentrate to the
whole-part relationships (see section 3.3.2). Section 3.3.2 is mostly based on
the paper of Eessaar (2006g) and sections 3.3.3-3.3.4 are based on the papers of
Eessaar (2006d, 2006e).

Application of the principle of Orthogonal Database Design (Date and
McGoveran, 1994) helps to achieve a better repository database structure by
avoiding data redundancy across the values of different relvars (tables). Section
3.4 presents the extended Principle of Orthogonal Database Design, which takes
into account the use of complex data types in a database. In addition, it presents
two additional heuristic rules about avoiding redundancy within the value of
one relvar (table). This part of the work is based on the papers of Eessaar
(2006a, 2006b). We have improved the wording of the principle and rules
compared to the work of Eessaar (2006a, 2006b).

Finally, in section 3.5 we investigate the problems that come up if we try to
implement in an ORDBMSSQL database the designs and guidelines that are
presented in the previous sections of this chapter. As a result, we can refer to the
problems of the ORSQL data model and ORDBMSSQLs that make their use in the
software engineering systems (and other systems as well) more difficult. This
part of the work is based on the sections of the papers of Eessaar (2005a, 2006c,
2006d, 2006e, 2006g). Findings of sections 3.3 – 3.5 are applicable in the
design of any database, including a repository database.

Chapter 4 contains a description of a web-based system analysis
environment that provides queries in order to find violations of well-formedness
rules. This part of the work is based on the paper of Eessaar (2006f).

Conclusions of the dissertation are given after Chapter 4. We give summary
of the work that has been done and describe directions of future work.
Conclusions in English language are followed by the conclusions in Estonian
language.

Acknowledgements

Above all, I thank my supervisor, Prof. Rein Kuusik for the assistance in the
preparation of this dissertation.

I am thankful for Doctoral School in Information and Communication
Technology (IKTDK) and Estonian Information Technology Foundation

 14

(EITSA) for supporting participation in the different international conferences.
Feedback from these conferences allowed me to improve and extend this work.
I express my thanks to Reet Elling who helped to organize trips to the
conferences. I am grateful to Tarmo Veskioja and Mare-Anne Laane who have
improved the grammar of some parts of this work. I also thank all my
colleagues in Department of Informatics in general because they have created
atmosphere that encourages learning and researching. I thank my student Erko
Aaberg, who helped to build a prototype of the system that is presented in
Chapter 4.

Finally, I thank my mother Eda for encouraging me during all these years.
Without her support and love, I would not be the person who I am now.

 15

LIST OF ABBREVIATIONS

BNF - Backus Naur Form
BLOB - Binary Large Object
CASE - Computer Aided Software Engineering
CC check - Consistency and completeness check
CIM - Common Information Model
CLOB - Character Large Object
CWM - Common Warehouse Metamodel
DBMS - Database Management System
DDL - Data Definition Language
DML - Data Manipulation Language
EAV/CR - The entity-attribute-value representation with classes and

relationships
EDBMS - Engineering Database Management System
EF - Enterprise Factory
OCL - Object Constraint Language
ORDBMS - Object Relational Database Management System
ORDBMSSQL - Object Relational Database Management System that

conforms to SQL:1999 or later versions of the SQL standard.
ORSQL - Underlying data model of SQL:1999 or later versions of the

SQL standard
ORDBMSTTM - Object Relational Database Management System that

conforms to the prescriptions, proscriptions and suggestions of
The Third Manifesto

ORTTM - Relational data model as defined by The Third Manifesto
PSEE - Process-Centered Software Engineering Environment
POOD - Principle of Orthogonal Design
QIP - Quality Improvement Paradigm
RDBMSSQL - Relational Database Management System that conforms to

SQL:1992 or earlier versions of the SQL standard
SES - Software Engineering System
SQL - Structured Query Language
SQL:1999 - (International Organization for Standardization) standard

ISO/IEC 9075:1999 Database Language SQL
SQL:2003 - (International Organization for Standardization) standard

ISO/IEC 9075-2003 Database Language SQL
UDF - User-Defined Function
UDT - User-Defined Type
UDST - User-Defined Structured Type
UDR - User-Defined Routine
UML - Unified Modeling Language
XMI - XML Metadata Interchange

 16

1 DATA MODELS

This chapter contains an overview of data models in general and object-
relational data models in particular.

1.1 Important Concepts of Data Models

CIM (Common Information Model) Database Model (DMTF CIM, 2006) is a
conceptual model that describes common database management concepts.
However, it models the concept "data model" only as an experimental property
DataModelType of class CommonDatabase. We think that it is necessary to
model this concept more precisely and present the domain model (see Figure 2).
The classes with grey background are already present in CIM Database Model.
The new classes are with white background.

A programming language is a formal language designed specifically for
machine processing (Greenfield et al., 2004, p. 279). A data model is a kind of
an abstract programming language (Date, 2003, p. 16) (see Figure 2) that
specifies the data structures and operators, which are its structural and
behavioural components, respectively. In addition, a data model specifies "a
collection of general integrity rules, which implicitly or explicitly define the set
of consistent database states or changes of state or both" (Codd, 1981).

A Database Management System (Database System) (DBMS) is a software
system used for managing databases. A user can interact with it by using a
database programming language (DPL) that is designed according to some data
model. A specification of a formal language, like modeling or programming
language, must contain specifications of abstract syntax, semantics and
concrete- and serialization syntaxes (Greenfield et al., 2004). The data model is
the basis for the abstract syntax of a DPL. A database programming language
has two sublanguages – a Data Definition Language (DDL) and a Data
Manipulation Language (DML). Statements of a DDL are used in order to
create data structures, operators and integrity rules that are prescribed by its
underlying data model. Statements of a DML are used in order to perform
operations with data.

A database can be divided into conceptual, external and internal levels
according to ANSI/SPARC architecture (Date, 2003, p. 34). Ideally, a data
model specifies structures, operators and constraints that belong to the logical
levels - conceptual and external level (and not elements at the internal level). In
addition, a DBMS should provide a storage structure definition language
(SCDL) for managing storage structures at the internal level (Date and Darwen,
2006). In practice, there is often no separate SCDL. Instead, it is possible to
specify elements of the internal level (indexes, tablespaces, clusters, segments
etc.) and other properties of data storage by using DDL statements.

 17

Database system

Data model

Database programming language

1..*

-base

1

-provider 0..*

1

Common database

0..*

1..*

Data structure

1

-structural component

1..*

1

-behavioral component

1..*

Programming language

Abstract programming languageConcrete programming language

Formal language

Data operator

Data integrity rule

1
1..*

Language

Data definition language

Data manipulation language

1

1

1

1

Internal level

1

1

Conceptual level
1

1

External level

1 1

Data model component type

Logical file

Database storage area

Database service
0..*

0..*

0..*

1

0..*

0..1

0..*

1 External level element

0..* 0..*

Orthogonal feature type

0..*
0..*

Data type

1

1..*

Conceptual level element

0..*

0..*

Storage element

Storage structure definition language1

0..*

Database system

-provider 0..*1

Storage element type

0..*
0..*

language allows to create

Figure 2 Domain model of data models (desired state of affairs)

 18

Database programming languages provide features that are independent of a
data model. The existence of these orthogonal features does not depend on the
underlying data model of a database language and they could be present in
many languages that have different underlying models. Examples of these
orthogonal features are the support to the nested transactions (Date and Darwen,
2000, p. 195) or security mechanisms (for example, a possibility to specify
roles, users and their privileges in a database). A data model can have more than
one corresponding database programming languages. Different languages could
provide support to different orthogonal features. For example, The Third
Manifesto that is a proposal for future database systems uses the language name
"D" in order to refer to any language that follows its principles. The manifest
book also presents Tutorial D language that is: "a computationally complete
programming language with fully integrated database functionality" (Date and
Darwen, 2000). Nevertheless, the authors acknowledge that their proposed
language is a "toy" language that must help learning. Industrial-strength
languages would need additional features.

If we want to compare data models and reason about them, then we must
have their specifications at our disposal. The relational model is an example of
the data model that was formally specified before the appearance of systems
that implemented it (Codd, 1981). Sometimes a data model is formally specified
only after its implementations (DBMSs) have been created. This is, for
example, true in case of hierarchic and network data models (Codd, 1981).

Nowadays object-relational data models are of major interest. The SQL:1999
and SQL:2003 standards specify the object-relational database programming
language. We think that these specifications do not contain a clear and compact
description of an object-relational data model. Melton (2003b) writes: "The
structure of the Definition Schema is a representation of the data model of
SQL." However, the specification of Definition Schema consists of DDL
statements and short textual descriptions of the columns of tables in this schema
(310 pages long) (Melton 2003c). Explanations that are more thorough are in
the framework part (88 pages long) (Melton, 2003b) and foundation part (1332
pages long) (Melton, 2003).

The Third Manifesto, on the other hand, specifies the ORTTM data model and
the database programming language (Tutorial D) that is created based on this
model. It presents a compact form of 58 prescriptions, proscriptions and
suggestions with 11 pages (Date and Darwen, 2000). It distinguishes the issues
that are associated with the relational model and the issues that are orthogonal
to it.

An abstract syntax of a language describes its elements and rules about their
interconnections (Greenfield et al., 2004). It is possible to use context-free
grammars or metamodels in order to describe the abstract syntax (Greenfield et
al., 2004). For example, context-free grammars are used in order to present the
syntax of SQL and Tutorial D. The syntax is expressed by using a form of
Backus-Naur Form (BNF) notation. Chaudhuri and Weikum (2000) write that
"Understanding semantics of SQL (not even of SQL-92), covering all

 19

combinations of nested (and correlated) subqueries, null values, triggers, ADT
functions, etc. is a nightmare." We need better ways how to present the data
model to the interested readers.

People can benefit from a visual presentation of a concrete syntax of a
programming language (Braz, 1990). Is it possible to specify an abstract syntax
of a language by using visual means? Specification of the Unified Modeling
Language (UML) (OMG formal/03-03-01) is an example of using a
metamodeling approach in order to define an abstract syntax of a language.
Metamodel "makes statements about what can be expressed in the valid models
of a certain modeling language." (Seidewitz, 2003) If we use UML in order to
create a metamodel, then the following is true: "A metamodel characterizes
language elements as classes, and relationships between them using attributes
and associations." (Greenfield et al., 2004, p. 289) It is possible to create
metamodels by using other languages as well.

Other examples of using metamodeling approach are the metamodel-based
comparison of workflow management systems (Mühlen, 1999) and ontologies
(Davies et al., 2003) and description of Object Constraint Language (OCL) by
Richters and Gogolla (1999). Habela (2002) presents the metamodel of the
object-oriented database management systems. Calero et al. (2006) present the
ontology of SQL:2003 Object-Relational Features by using UML class
diagrams and well-formedness rules written in OCL.

1.2 Comparison Methods of Data Models

Applications that use databases become increasingly complex and they demand
more and more from the DBMSs. A very important selection criterion of a
DBMS is its underlying data model. How should we compare data models? The
work of Codd and Date (1975) is an example of a thorough and methodical
comparison of two data models. They present similarities and differences of
relational and network data model in the form of discussion and examples.
They even had to work out definitions of concepts of the network data model
based on CODASYL DBTG language proposals in order to do it properly. Date
and Codd (1975) compare the use of relational and network databases by the
applications. Additional examples of comparisons are the comparison of the
prescriptions, proscriptions and suggestions of The Third Manifesto with SQL
(Date and Darwen, 2000, Appendix H), and with ODMG proposal of object
model and associated database language (Date and Darwen, 2000, Appendix I).

Lack of clear and compact specifications of data models means that often
they are compared, evaluated or judged based on DBMSs (see section 2.3).
Inadequacies and shortcomings of the DBMSs can cause unfair criticism of a
data model. A more precise method for evaluating data models is needed.

Siau and Rossi (1998) introduce and classify the methods for evaluating
existing information modeling methods (we could also use the concept "data
modeling"). The ideas behind the comparison methods, described by Siau and
Rossi (1998), can be used in order to compare different data models. A

 20

comparison method is either empirical or non-empirical. Examples of empirical
methods are surveys, laboratory and field experiments, case studies and action
research. Next, we describe possible non-empirical methods.

Feature comparison. Data models can be compared with each other based on
the features that they provide to the database designers. For example, Date and
Darwen (2000, Appendix H) compare the relational model as presented in The
Third Manifesto with the underlying model of SQL. The Third Manifesto is
well-structured for making such comparisons because it consists of the sets of
prescriptions, proscriptions and suggestions, each of which can be seen as a
feature or a set of features. One could also create a checklist of the desired
features and compare data models with this list. Codd (1981) names
components of a data model and notes that comparisons of data models often
ignore operators and integrity rules and therefore "run the risk of being
meaningless".

The following methods require metamodels of data models.
Comparison based on metamodels. Instead of comparing "features" that are

extracted from probably long and vague specifications based on subjective
decisions, data models can be compared by finding common metamodel
elements as well as elements that have no counterpart in another metamodel or
that have more than one counterpart.

Comparisons based on the metrics values that are calculated based on the
metamodels. For example, Rossi and Brinkkemper (1996) propose the set of
metrics for comparing systems development methods and techniques.
Therefore, if the metamodels of data models are available, then these metrics
can be used in order to compare the data models.

Ontological evaluation. Chandrasekaran et al. (1999) write: "First of all,
ontology is a representation vocabulary, often specialized to some domain or
subject matter. More precisely, it is not the vocabulary as such that qualifies as
an ontology, but the conceptualizations that the terms in the vocabulary are
intended to capture." Ontological evaluation of a language is a comparison of
the concrete metaclasses of a language metamodel (language constructs) with
the concepts of an ontology in order to find ontological discrepancies: construct
overload, construct redundancy, construct excess and construct deficit (Opdahl
and Henderson-Sellers, 2002). For example, Opdahl and Henderson-Sellers
(2002) have performed an evaluation of UML by comparing it with Bunge–
Wand–Weber (BWW) model of information systems.

Are there any ontologies about databases? CIM (Common Information
Model) Database Model (DMTF CIM, 2006) is a conceptual model that
describes common database management concepts. These concepts correspond
mainly to the internal (storage) level of ANSI/X3/Sparc DBMS Framework.
Examples of the classes in this model are LogicalFile, SystemResource,
DatabaseServiceStatistics. A data model specifies constructs that are used in
order to build up a conceptual and external level of DBMS. In addition, the
CIM Database model specifies components of SQL Schema. It is part of the
specification of one data model but not databases in general.

 21

Date and Darwen (2000, 2006) and Date (2003) use a set of core concepts
("type", "value", "variable", "operator") as a basis of the description of the
ORTTM data model. They do not present their research result as ontology but we
believe that these core concepts should be part of an ontology that describes the
most basic concepts of conceptual and external level of a database, independent
of any specific data model.

The following brief overview (see also Figure 3) is based on the work of
Date (2003). "A value is an individual constant which has no location in time or
space." (Date, 2003) A value has at least one appearance (representation) that
uses some encoding and therefore appearances do have locations in time and
space. "A variable is a holder of the appearance of a value." (Date, 2003, p.
113) A variable has one value at a time, but its value can be replaced with
another value – in other words, variables can be updated. Values and variables
have types. An operator returns a value or updates a variable. A variable can
only have a value that has the same type as the variable. Each data value has a
type. Each parameter of an operator has a type. The result of a read-only
operation has a type.

Data types::Value

-name : String

Data structures::Variable

Data types::Type

1
0..*

1 1..*

Data types::Appearance of a value

1
1..*

-holder1 -current value 1

-name : String

Data operators::Operator0..*

-parameter type

0..*

0..* -result type0..1

Data types::Physical representation

11

Figure 3 Some basic underlying concepts of ORTTM

1.3 Comparison of the Data Models

Bećarević and Roantree (2004) write: "Object-relational databases do not have a
standardised metamodel". This section contains metamodels of two object-
relational data models as well as their metamodel-based comparison:
1. The data model that is described in The Third Manifesto (ORTTM) (Date and

Darwen, 2006).
2. The underlying data model of SQL:2003 (ORSQL) (Melton, 2003).

The presented metamodels do not cover completely The Third Manifesto
and SQL:2003 but should be thorough enough in order to compare the ORTTM
and ORSQL data models. These metamodels should be seen as the first step
towards creating complete metamodels. We think that the most appropriate
creators of a metamodel are the designers of a data model.

The advantages of metamodels of data models:

 22

1. Creation of a metamodel may cause actual specification of a data model.
For example, there is no clear and compact specification of the ORSQL data
model. Instead, there is a large textual specification of the SQL database
language. A foundation part of SQL:2003 (Melton, 2003) is 1332 pages
long.

2. A metamodel visualizes underlying concepts of a data model. It is possible
to get an overview about a data model with the help of much more compact
document compared to purely textual specification.

3. If we create a metamodel by using some visual language (like UML) that is
well known to the software engineering community, then it facilitates
understanding of the data models among many professionals. Maybe it also
helps to improve understanding of data models by the DBMS vendors and
improve current DBMSs (see examples of problems in section 3.5.2).

4. A metamodel can be used for the teaching purposes. "A concept map is a
graphical node-arc representation of the relationships among a collection of
concepts." (Turns et al., 2000) Ferguson (2003) demonstrates that "UML
class diagrams can be used as a concept-mapping tool". A metamodel of a
data model can be used as a concept map in order to give visual overview of
the data model constructs and their relationships. There is already research
how to use concept maps in order to communicate information, create
instructional materials and assess the students (Turns et al., 2000). The
metamodel elements can be a basis for creating a dictionary that describes
important concepts of this data model. The work of Date (2006) about
ORTTM is an example of such dictionaries.

5. A metamodel is a basis for creating a database catalog (see section 1.4.5)
and metadata management systems that manage metadata about the various
data sources.

6. It is possible to compare data models:
• by finding mapping and discrepancies between their metamodel

elements (see sections 1.3.2-1.3.5).
• by calculating metrics values based on their metamodels (see section

1.3.7) and comparing these values. It is possible to use existing special
tools like UML Model Measurement Tool (Lavazza and Agostini,
2005) in order to calculate metrics values.

7. Metamodels could help to improve a data model and its specification:
• Inspection of visual structures in a metamodel helps to find violations

of the orthogonality principle by the language that is specified by using
this metamodel (see section 1.3.8).

• Creation of a metamodel requires thorough study of existing
specifications and therefore can help to find incompletenesses,
inconsistencies and other mistakes in them (see section 1.4.4).

8. A metamodel helps to work out a profile in UML (OMG formal/05-07-04).
For example, a metaclass can have a corresponding stereotype in a profile.
The profile mechanism allows us to extend UML in order to use it for

 23

different purposes. A profile can be used in order to create a (design-level)
logical data model (meaning 2).

9. A metamodel of a data model is a basis for creating the metamodel of a
specific database programming language.

10. The metamodels help to build up a federated DBMS. "A federated database
system (FDBS) is a collection of cooperating but autonomous component
databases systems. /..../ The software that provides controlled and
coordinated manipulation of the component DBMs is called a federated
database management system (FDBMS)." (Sheth and Larson, 1990)
DBMSs that participate in a federation could have different underlying data
models. The mapping of the metamodel elements helps to perform schema
translation and schema integration tasks. An example of a FDBMS is
ORDBMSTTM Alphora Dataphor. Another example is the federated
multimedia database system EGVT (Bećarević and Roantree, 2004), the
data of which is recorded in object-oriented and object-relational databases.
For example, Bećarević and Roantree (2004) present and use mapping
between the EGVT metamodel and the Oracle9i metamodel metaclasses.

11. The metamodels help to work out the language for interchanging the
management information between management systems and applications.
CIM (Common Information Model) is a step towards this direction. CIM v.
2.13 specifies some SQL Schema elements, but this specification is not
complete (see section 1.4.1). The metamodels of different data models are a
potentially important sources that help to extend CIM.

12. Model comparison (Kolovos et al., 2006) and model transformation
(Kalnins et al., 2005), (Pedro et al., 2006) are operations that require
existence of the metamodels of the models (that we want to compare or
transform). In both cases, a system has to know the mapping between the
elements of different metamodels. Based on this mapping it is possible to
create comparison and transformation rules. An example of model
comparison in case of data models is a comparison of an ORDBMSSQL and
an ORDBMSTTM database. An example of model transformation is
generation of a logical data model (meaning 2) based on an ORDBMSTTM
database. Kalnins et al. (2005), Kolovos et al. (2006) and Pedro et al. (2006)
present a very simplified SQL metamodel as part of their examples.

The Third Manifesto is structured as a set of prescriptions, proscriptions and
suggestions. The manifest clearly distinguishes which of them are about the
data model and which are orthogonal to it. The ORTTM metamodel is created
based on The Third Manifesto relational model (RM) prescriptions, RM
proscriptions (except 17 - transactions), RM very strong suggestions 1 (system
keys), 2 (foreign key), 4 (transition constraints), 5 (quota queries), 6
(generalized transitive closure operator), 7 (generic operators). We also take
into account the RM very strong suggestion 8 (special values) (Date and
Darwen, 2000) that is removed from the third version of the manifest (Date and
Darwen, 2006).

 24

SQL:2003 is the official version of the SQL standard at the time of writing
this dissertation. It contains a description of a database programming language,
including its concrete syntax. This language has an underlying data model,
which is not explicitly specified. SQL:2003 is a big international standard. We
create the ORSQL metamodel based on the sections of the following parts of it:
Part 2: SQL/Foundation (Melton, 2003) and Part 11: SQL/Schemata
(Melton, 2003c). From SQL/Foundation we use the sections "Concepts" and
"Schema definition and manipulation". From SQL/Schemata we use the section
"Definition Schema". In the ORSQL metamodel, we present the metaclasses
• that have a counterpart in The Third Manifesto,
• that do not have a counterpart in The Third Manifesto. However, Date and

Darwen (2000) or Date (2003) have discussed them and have reached the
conclusion that for some reason they are unnecessary in ORTTM.

The works (Date and Darwen, 2000), (Date, 2003), (Melton, 2003), (Date
and Darwen, 2006) are the main sources of information for the comparison and
discussion that are presented in sections 1.3.2-1.3.5. The discussion parts of the
comparison should give a general overview of the main differences of the data
models. Interested reader could find more thorough discussion from (Date and
Darwen, 2000) and (Date, 2003).

1.3.1 Proposed Method for Comparing Data Models
We do the comparison in terms of the components of data models – data
structures, integrity rules and data operators.

There are different viewpoints whether the specification of data types is a
component of a data model. According to one school of thought, one of the
main differences between the relational model and the object-relational model is
that the former supports only simple predefined data types (INTEGER, CHAR,
DATE, etc.) but the latter also supports complex types and allows users to
create new types. On the other hand, Date and Darwen (2000, p. 21) write: "The
question as to what data types are supported is orthogonal to the question of
support for the relational model." Even Codd (1970) acknowledges the
possibility of the non-simple domains (types), the permitted values of which are
relations. One reason why he argues for eliminating non-simple domains is that
they require more complicated data structures at the storage level than simple
domains. Nevertheless, we decided to include data types to the comparison
because The Third Manifesto and SQL:2003 have considerable differences in
their support to the data types as well as using data types in order to build up a
database.

This dissertation presents comparison of the ORTTM and ORSQL data models.
However, the method can be used in order to compare other data models as
well. The comparison consists of the following parts:
1. Metamodels of the data models in the form of UML class diagrams

 25

We have to investigate whether there already exist metamodels of the data
models (see section 1.4). If there is no metamodel or it is not precise enough,
then we have to create a metamodel or improve the existing one.

Melton (2003b) writes: "The structure of the Definition Schema is a
representation of the data model of SQL." Why cannot we just draw the ORSQL
metamodel directly based on the Definition Schema specification? In this case,
we will not see important relationships. For example, assertions, table
constraints and unique constraints are all constraints with some common and
some different properties. The specification of the Definition Schema in SQL
(Melton, 2003c) describes tables ASSERTIONS, TABLE_CONSTRAINTS and
DOMAIN_CONSTRAINTS but does not describe table CONSTRAINTS.
However, it describes table CHECK_CONSTRAINTS. Not all the constraints
are check constraints. However, according to the CHECK constraint that is
associated with table CHECK_CONSTRAINTS, it can actually contain data
(names) of all the constraints. On the other hand, this general table does not
contain information that must be present in case of all the constraints - whether
a constraint is deferrable and whether it is initially deferred. Definition Schema
in SQL presents logical design data model (meaning 2). On the other hand, the
metamodel should present the conceptual model with all the important
relationships (including generalization and whole-part) in order to help to
understand the meaning of constructs in the data model and interconnections of
these constructs.

If we create a metamodel of a data model based on the database language
description, then we first have to decide which parts of the language are relevant
in terms of data model and which are orthogonal to it (and therefore have no
corresponding constructs in the metamodel of the data model).

We propose to use packages in order to control complexity and create
groupings of logically interrelated classes. These packages are – data types,
data structures, data integrity and data operators.

In some cases, it is necessary to add the stereotype <<singleton>> to a class
as Ricters and Gogolla (1999) do. This stereotype indicates that there is exactly
one instance of this class. An example is metaclass Boolean that belongs to the
package Data types. Some attributes of the classes could have type Enum,
which means that its possible value represents one of an enumerated set of
values. In case of the ORSQL metamodel, the attributes of metaclasses that have
type Boolean can have the values true or false, but not unknown.
2. Mapping between the metaclasses of the metamodels of the data models

For each metaclass in one metamodel, we have to try to find one or more
corresponding metaclasses from another metamodel. We have a pair of
metaclasses in the mapping if the constructs behind these metaclasses have
exactly the same semantics or they are semantically quite similar. Whether or
not the constructs are semantically so similar that the mapping can be created
depends on the opinions of the persons who perform the comparison. This
comparison is a kind of framework that allows us to reason about semantic
similarity of different constructs.

 26

3. Discrepancies between the data models
We consider the constructs that are represented as metaclasses in the

metamodels.
Let us assume that we compare two data models A and B. If we decide that

data model A has much clearer and much more precise specification than the
other data model B, then we can think about A as a kind of ontology. Then we
can perform an ontological evaluation of data model B in order to find its
construct redundancy, construct overload, construct excess and construct deficit
problems.

Generally, we do not prefer one data model and want to compare them
without prejudice. Based on the mapping between metaclasses of two data
models A and B we can find:
a) Cases when a metaclass of A/B has more than one corresponding

metaclass of B/A.
b) Cases when a metaclass of A/B does not correspond to any metaclass of

B/A.
We could use the same names as Opdahl and Henderson-Sellers (2002) in

order to refer to different cases of discrepancies. If a metaclass of the
metamodel of A has more than one corresponding metaclass of the metamodel
of B, then its reason could be:
• Data model B (and therefore its metamodel as well) is too complex. Data

model A pays more attention to the orthogonality principle of language
design. One requirement of this principle is that a language should provide
a comparatively small set of primitive constructs (Date and Darwen, 2000).
In this case the metaclasses of B that correspond to the metaclass of A have
a common supertype or it is at least possible to create that supertype. We
say that there is a construct redundancy in B.

• The construct of A is the counterpart of two or more constructs of B, the
semantic of which is very different (in the metamodel of B their
corresponding metaclasses do not have a common superclass and it is not
possible to create that). We say that there is a construct overload in A.

If a metaclass of the metamodel of A has no corresponding metaclass of the
metamodel of B, then B has construct deficit and data model A has construct
excess. Its reasons could be:
• Data model B is less powerful than data model A because it does not

provide an important construct that should be present in a well-designed
data model.

• Metamodel of data model B does not have a clearly corresponding
metaclass, but it could be created in the metamodel without violating
principles of the data model (for example, by creating a common superclass
of some existing metaclasses).

• Creators of data model B think that a construct is orthogonal to the data
model and therefore it is missing from the specification of B.

• The construct is not in B because creators of B think that a similar effect
can be achieved by using other constructs that are already present in B.

 27

In the latter two cases, the authors of B might explicitly argue against a
construct.
4. Mapping between the metaclasses does not mean that the constructs behind

them have exactly the same semantics. Therefore, we need an additional
section that contains the textual description of the differences.

5. Metrics values.
For each data model, we propose to calculate at least the amount of

metaclasses and the amount of their attributes. It is sometimes difficult to decide
whether to model something by using a class or using an attribute in a UML
class diagram. "If in doubt, define something as a separate conceptual class
rather than as an attribute." (Larman, 2002, p. 170) Therefore, we also present
the sums of these two values. The resulting values characterize the relative
complexity of the data models. We propose to calculate these values in case of
each package of a metamodel - data structures, data integrity, data operators and
data types as well as in general for the entire data model.

Rossi and Brinkkemper (1996) also propose to count relationship types. It is
difficult to calculate this metrics value for each package because many
relationship types cross boundaries of packages and connect metaclasses that
are part of different packages.

If we know the amount of metalasses, attributes and relationship types, then
it is also possible to calculate values of aggregate metrics that are proposed by
Rossi and Brinkkemper (1996).

1.3.2 Comparison of Data Types

-default : String

-is_derived_reference_attribute : Boolean

Attribute

-is_implementation_dependent_name : Boolean
-is_nullable : Boolean

-default : String
-is_updatabe : Boolean

-is_self_referencing : Boolean

Data structures::Column Field

-name : String

-ordinal_position : Int

Structural component

Data type

-declared type

1

0..*

{disjoint, complete}

-declared type1

0..*

-default : String

Data structures::Domain

-name : String

Predefined data type -data type

1 0..*

0..*

-declared type0..1

{XOR}

0..*

0..1

Figure 4 Structural components in ORSQL

 28

-name : String

Predefined data type

-max_length : Int

-octet_length : Int

Character string type

-max_octet_length : Int

Binary string type

-precision : Int

-precision_radix : Int
-scale : Int

Numeric type «singleton»

Boolean type -precision : Int

Datetime type

-interval_type : Enum

-interval_qualifier : Enum

Interval type

Figure 5 Predefined data types in ORSQL

Data type

-name : String

Predefined data type User-defined data type Constructed data type

Distinct type

-is_instantiable : Boolean

-is_final : Boolean

Structured type

Collection type

Row type

Reference type

-source type 1

0..*

Field

1

1..*

Attribute

1

-component

1..*

-supertype

0..1

-subtype 0..*

-type_of_self_referencing_column : Enum

Data structures::Typed table

-supertable0..1

-subtable

0..*

-referenceable table 1

1

-supertype0..*

-subtype

0..*

-supertype0..1

-subtype

0..*

-method_type : Enum

-is_overriding : Boolean

Data operators::SQL-invoked method

Data operators::Observer function

Data operators::Mutator function
1

1

Instantiable structured typeData operators::Constructor function

1 1

Representable value

1..* 0..*

-supertype

0..1

-subtype0..*

{disjoint, complete}

{disjoint, complete}

{disjoint,

complete}

Str. type representation

1
1

Distinct type representation

1

1

-type of the method1

0..*

1
1

Figure 6 Data types in ORSQL

 29

Constructed data type
Data type constructor

0..*

1

«singleton»

ARRAY Con

«singleton»

MULTISET Con

«singleton»

REF Con

«singleton»

ROW Con
Row type

-supertype 0..*

-subtype

0..*

Collection type

-supertype0..1

-subtype

0..*

-max_cardinality : Int

Array type

Multiset type

-ordinal_position : Int

Array element

1

0..*

Reference type

0..* 1

0..*
1

0..*

1

Data type

-element type

1

0..* {disjoint, complete}

{disjoint,

complete}

{disjoint, complete}

Collection type constructor

Multiset element

-element type1

0..*

1

0..*

-element type1

0..*

Table type
1

0..1

Figure 7 Data type constructors in ORSQL

-is_implicitly_invocable : Boolean

User-defined castData type

0..*-source type1

0..*-target type 1

0..1

-cast function

1

Data operators::SQL-invoked function

Figure 8 Casts in ORSQL

Data type

-ordering_form : Enum

-ordering_category : Enum

-state_category : String

User-defined ordering

1
0..1

Data operators::Equality comparison operator

1

0..1

Data operators::SQL-invoked routine

0..1 0..1

User-defined data type

Data operators::Comparison operator

Figure 9 Equality comparison operators in ORSQL

-name : String

Transform group
Data operators::SQL-invoked function

0..* 1

0..*
-to sql0..1

0..*
-from sql 0..1

Data types::User-defined data type

Figure 10 Transforms in ORSQL

 30

Type

Built-in scalar type

-name : String

Scalar type

User-defined scalar type

«singleton»
BooleanType

Generated type

«singleton»
RELATION Gen

«singleton»
TUPLE Gen

Type generator

0..* 1

Relation type

Tuple type

0..*

1

-subtype

0..*

-supertype0..*

Collection type

Collection type generator

Data operators::Tuple selector

1
1

Data operators::Relational selector

1

1

Data operators::Selector

Figure 11 Data types in ORTTM

ST declared possible representation

-name : String
-value : String

Special value def

0..*
1

0..* 1

Data operators::Selector

Data operators::SET_ operator

1

1

ST declared physical representation

1

1

Type

-name : String

Scalar type

Component

Data operators::Equality comparison operator

1

1

Data operators::Special value finder

Data operators::Special value checker

1

1

1

1

Data operators::GET_ operator

1

1

Data operators::Comparison operator

-relation expr : String

Data operators::Conversion operator

1..*
-target type

1

0..1

0..1

-declared type 1

0..*

1

0..*

Data operators::Scalar GET_ operator

Data operators::Tuple GET_ operator

Data operators::Relational GET_ operator

Data operators::Scalar selector

1..* 1

0..1

0..1

{XOR}

Figure 12 Scalar types in ORTTM

Table 1 Mapping of ORSQL and ORTTM metaclasses that belong to the packages
"Data types"

ID ORSQL metaclass ORTTM metaclass that represents the
most similar concept

1 Attribute Component
2 Boolean type BooleanType (truth-value type)

 31

ID ORSQL metaclass ORTTM metaclass that represents the
most similar concept

3 Collection type Collection type
4 Collection type constructor Collection type generator
5 Constructed data type Generated type
6 Data type (Data type descriptor) Type (data type, domain)
7 Data type constructor Type generator
8 Distinct type User-defined scalar type
9 Distinct type representation ST (Scalar type) declared possible

representation
10 Field Attribute
11 Instantiable structured type User-defined scalar type
12 Predefined data type (built-in data

type)
Built-in scalar type (system-defined
type)

13 Representable value Value
14 ROW Con TUPLE Gen
15 Row type Tuple type
16 Row Tuple (tuple value)
17 Row component Tuple component
18 Str. type representation ST (Scalar type) declared possible

representation
19 Structured type User-defined scalar type
20 Table type Relation type
21 User-defined cast Conversion operator, Selector,

Scalar selector
22 User-defined data type (UDT,

abstract data type, ADT)
User-defined scalar type

Construct redundancy in ORSQL:
• Instantiable structured type, User-defined data type, Distinct type and

Structured type in ORSQL vs. User-defined scalar type in ORTTM;
• Distinct type representation and Str. type representation in ORSQL vs. ST

declared possible representation in ORTTM.
Construct redundancy in ORTTM:
• Conversion operator, Selector, Scalar selector in ORTTM vs. User-defined

cast in ORSQL.
Construct deficit in ORTTM: ARRAY Con(1), Array element(1), Array type(1),
Character string type(2), Binary string type(2), Datetime type(2), Interval type(2),
MULTISET Con(1), Multiset element(1), Multiset type(1), Numeric type(2), User-
defined ordering, REF Con(3), Reference type(3), Transform group(4), Typed
table(3).

(1) – Date and Darwen (2000) suggested ARRAY and SET type generators as
orthogonal features, but more lately they have come to a conclusion that these
types of generators and the corresponding types are unnecessary (Date and
Darwen, 2006). Please also note that a set cannot contain repeating elements but
a multiset can.

 32

(2) – ORTTM does not prohibit built-in types, but lets vendors of DBMSs to
decide which predefined types to implement.

(3) – The Third Manifesto argues explicitly against pointers and typed tables
in the section "OO Prescriptions" (Date and Darwen, 2006).

(4) – Authors of ORTTM think that a call level interface is orthogonal to a data
model.
Construct deficit in ORSQL: Appearance of a value, ST declared physical
(actual) representation, RELATION Gen, Special value def.

In addition, we note that the following ORTTM metaclasses do not have one
clearly corresponding metaclass in the current ORSQL metamodel: Body,
Relation heading, Tuple heading (see Figure 21), Scalar type. However, it is
possible to create these metaclasses as abstractions without violating the
principles of ORSQL.

1.3.2.1 Discussion

Among other things, a type is a finite set of values that the computer system is
able to represent (Date, 2003). Distinct types have no values in common
according to The Third Manifesto. Data types in ORTTM have to be distinct.
Data types in ORSQL do not have to be distinct – a representable value can
belong to more than one data type (Melton, 2003, p.11).

ORTTM prescribes only one built-in scalar type - Boolean. ORDBMSTTM

vendors and database programming language designers have the freedom to
provide additional built-in types. For example, Tutorial D language specifies
additional built-in types: INTEGER, RATIONAL and CHAR (Date and
Darwen, 2006). Date et al. (2003) describe the use of timestamp and interval
types (and corresponding operators) in order to build up a database that contains
time-related data. If we use ORTTM as a basis of an Engineering DBMS, then
this system could, for example, provide built-in types (and operators) that
correspond to certain artifact types (see section 3.1.1).

ORSQL specifies many predefined data types (see Figure 5). It is interesting
to note that Boolean type was firstly specified not in the first edition of SQL
standard (SQL-86), but in a major revision SQL:1999 (Gulutzan and Pelzer,
1999). ORTTM advocates two-valued logic and therefore type Boolean includes
only values TRUE and FALSE. ORSQL, on the other hand, uses three-value logic.
In this case type Boolean should include values TRUE, FALSE and
UNKNOWN. ORSQL uses "NULL value" in order to represent the value
UNKNOWN. NULL behaves sometimes differently than other values. The well-
known example is that the result of the comparison of two NULL's
(NULL=NULL) is not TRUE. This and other examples are basis on the
viewpoint that "NULL is not a value in SQL because it does not have all the
properties of the values" (Date and Darwen, 2000, p. 426). ORTTM rejects the
use of NULLs and stresses that all the attributes in the relations must always
have a value (see also the discussion about special values at the end of this
section).

 33

Both ORTTM and ORSQL permit database users to create data types and
operators (ORTTM) or routines (ORSQL) that make operations with the values
with these types. In case of user-defined (scalar) types, ORSQL distinguishes
distinct types and structured types (see Figure 6). There is no such distinction in
ORTTM (see Figure 11).

A possible representation of a type specifies how the users see it. A physical
representation of a type specifies how the values are recorded at the storage
level. SQL:2003 states: "The definition of a user defined type specifies a
representation for values of that type. /.../ physical representations of user-
defined type values are implementation-dependent." (Melton, 2003, p. 37)
Based on these citations we conclude that the creator of a user-defined type
specifies a possible representation of this type in ORSQL.

Each type in ORTTM must have associated selector operator that is a kind of
conversion operator. All of its arguments are literals and its successful
invocation returns value with this type. Its invocation must always be explicit
and the only way to destroy this operator is to destroy the type.

One difference between ORSQL and ORTTM is that ORSQL does not allow us to
declare more than one possible representation in a user-defined type declaration,
but ORTTM allows that. Each declared possible representation PR of a scalar
type T in ORTTM must have associated automatically created selector operator
(see Figure 12). Its invocation returns value of type T with the possible
representation PR. In addition, ORTTM permits the creation of additional
conversion operators. ORSQL allows the creation of user-defined casts for type
conversion (see Figure 8). It is possible to specify a cast so that its invocation
would be implicit. It is possible to destroy a cast without destroying a type.

In ORTTM, each type must have an associated equality comparison operator
for comparing equality of values with this type. In ORSQL, a user-defined type
can have an associated equality comparison operator. This operator can be
created only after a user-defined ordering has been created (see Figure 9). A
DBMS has to create ordering automatically in case of creation of a distinct type.
It has to be created explicitly after the creation of a structured type.

In ORSQL, a structured type can have associated transform groups, which
group the functions that help exchange structured type values with host
language programs and with external routines (see Figure 10). Other
Orthogonal Prescription 3 of The Third Manifesto states that a database
programming language may support, but does not require (a) invocations from
so-called "host programs" written in other languages and (b) the use of other
languages for implementation of user-defined operators. Therefore, issues that
are addressed by transform groups in ORSQL are orthogonal to ORTTM.

ORTTM requires that an ORDBMSTTM must support two type generators that
allow creation of non-scalar types – TUPLE and RELATION (see Figure 11).
ORSQL specifies four type constructors – REF, ROW, ARRAY and MULTISET
(see Figure 7).

Fields of a constructed row type are left-to-right ordered in ORSQL (see
attribute ordinal_position in the metaclass Structural component in Figure 4). If

 34

we change the order of fields in the declaration of a row type, then this
declaration specifies a new type. On the other hand, attributes of a tuple type are
not left-to-right ordered in ORTTM.

The value of a constructed multiset type in ORSQL is an unordered collection
of elements. All these elements must have the same type (see Figure 7). It can
be any type that is supported by a particular ORDBMSSQL (except the multiset
type itself). This collection can contain repeating elements. The value of a
relation type in ORTTM is an unordered set of tuples all of which have the same
tuple type. The set cannot contain repeating elements (tuples). ORSQL uses the
concept "table type" in the context of table functions. The wording "<returns
type>::= <returns data type> [<result cast>] | <returns table type>" (Melton,
2003, p. 676) gives an impression that a table type is not a data type. Actually
the result of an invocation of a table function has a composite type
MULTISET(ROW(...)) that is created by using two different type constructors.

Reference type, a kind of constructed data type, is used together with the
typed tables in ORSQL (see Figure 6). In contrast to ORTTM, ORSQL allows us to
create typed tables based on the user-defined structured types. The row type of a
typed table is derived from a structured type. A typed table is a referencable
table. "A REF value is a value that references a row in a referenceable table."
(Melton, 2003, p. 43). A reference type is a set of REF values that reference
rows in a typed table that is defined based on a structured type. These values are
like Object ID-s in object systems that "are addresses – at least conceptually –
and are hidden from the user" (Date, 2003, p. 826). Such state of the affairs is
caused by the view of SQL creators that the object-oriented concepts "class" (or
type) and "instance" are the counterparts of the database concepts "table" and
"row", respectively. ORTTM, on the other hand, advocates that the counterpart of
the concept "class" is the concept "data type".

ORTTM treats the concepts "domain" and "data type" as synonyms. ORSQL, on
the other hand, distinguishes these concepts. "A data type is a set of
representable values." (Melton, 2003, p. 11) "A domain is a set of permissible
values." (Melton, 2003, p. 49) A domain in ORSQL is a reusable specification of
the properties of the base table columns (see Figure 14). A domain must be
associated with a predefined data type. A domain may have one or more
associated domain constraints and it may specify a default value.

A value can be missing from a database for different reasons. Note that the
fact that some information is missing for some reason is also information that
should be recorded in a database. ORTTM and ORSQL deal differently with the
missing values in a database. ORSQL uses NULL's in order to represent the
missing information. On the other hand, The Third Manifesto strongly suggests
(Date and Darwen, 2000, p. 218) that each scalar type can have associated
special values (see Figure 12). A declaration of these special values is part of
the declaration of the type. Each special value represents some reason why the
information is missing. The special values belong to the set of permitted values
of a type. Each special value must have two associated scalar operators. One of
the operators (we call it Special value finder) is used in order to return the

 35

special value. Another operator (we call it Special value checker), the declared
type of which is Boolean checks whether the result of the evaluation of a scalar
expression is the special value or not.

1.3.3 Comparison of Data Structures

Cluster

CatalogSQL-schemaSchema object

1

-cluster object

0..*1

-catalog object

1..*

1-schema element0..*

Base table

Viewed table

Data types::User-defined data type Data operators::External sequence generator

Domain Data integrity::Constraint Data operators::SQL-invoked routine

-name : String

Object

INFORMATION_SCHEMA

{disjoint, complete}

DEFINITION_SCHEMAPath

-ordinal_position : Int

Path element

1

1

1 0..*

1

0..*

Data integrity::Trigger

Figure 13 Objects in ORSQL

Data types::Predefined data type
-default : String

Domain-data type

1 0..*

Data integrity::Domain constraint

1 0..1

Figure 14 Domains in ORSQL

Column

Base table

1 1..*

-is_insertable : Boolean

Table

Base table column

1 1..*

Base column

-value_expression : String

Generated column

-parametric column0..*

-dependent column0..*

-generation_option : Enum

Identity column

Data operators::Internal sequence generator

1
1

{disjoint,

complete}

1

0..1

Figure 15 Columns in ORSQL

 36

-is_insertable : Boolean

Table

Base table

-on_commit_option : Enum

Temporary base table Persistent base table

Declared local temporary tableCreated local temporary table
-is_with_check_option : Boolean

-with_check_option_type : Enum

Viewed table

Transient table

-is_updatable : Boolean

-is_simply_updatable : Boolean
-query_expression : String

Derived table

-is_instantiable : Boolean

-is_final : Boolean

Structured type

0..* 1

Typed base table

Typed view

-supertable

0..1

-subtable 0..*
subtable inherits from

Global temporary table

-type_of_self_referencing_column : Enum

Typed table

{disjoint,
complete}

{disjoint, complete}

{disjoint, complete}

Column

1

1..*

-self referencing column1

0..1

0..*

0..*

expression refers to

Data integrity::Trigger

1..*

0..1 trigger execution brings into existence

Data operators::SQL-invoked routine

0..*

0..*

expression refers to

0..*

0..*

expression refers to

Figure 16 Tables in ORSQL

-is_insertable : Boolean

Table

Data types::Row type

-supertype0..*

-subtype

0..*

Data types::Row1

0..*

10..*

Data types::Field

1
1..*

Column

1

1..*

Data types::Row component

11..*

1 0..*

10..*

-row type of the table 1

0..*

Figure 17 Rows in ORSQL

 37

Catalog

0..1

0..*

Database

1 0..*

Real relvar

Relvar

-expression : String

Virtual relvar

Data types::Relation type
0..*

1

-name : String

Variable

Data types::Type

-declared type

1
0..*

Data types::Generated type

Scalar variable

Tuple variable Data types::Tuple type

0..* 1

-name : String

Data types::Scalar type10..*

11

Relvar attribute

1

0..*

0..*
0..*

expression refers to

Application relvar

Database relvar

{disjoint, complete}

{disjoint, complete}

Public relvarPrivate relvar

{disjoint, complete}

0..*

1..*

expression refers to

Data operators::Read only operator

0..*

0..*
expression refers to

Figure 18 Variables in ORTTM

Real relvarScalar variable Tuple variable Private relvar

Initializable variable

-expression : String

Init expression

1

-explicit expression

0..1

expression result initializes variable

Figure 19 Initializable variable in ORTTM

Relvar Relvar attribute
0..*1

-default_expression : String

Attribute with default
Data operators::System function

0..*

0..* expression refers to

«singleton»

Data operators::SERIAL Func

-name : String

Data types::Attribute10..*

Data operators::Read only operator

Figure 20 Relvar attributes in ORTTM

 38

RelvarData types::Relation

-current value

1 1

0..*

1

relation conforms toData types::Body

1

1

Data types::Tuple

0..*
1

Data types::Relation type

0..*

1
-name : String

Variable

0..* 1

tuple conforms to

-name : String

Data types::Attribute

Data types::Tuple type
1

1

1

1

0..*

-attribute type

1Data types::Type

Data types::Tuple component

0..* 1

0..*

1

0..*

1

Data types::Tuple heading

0..*

1

0..*

1

Data types::Relation heading

Data types::Appearance of a value

Figure 21 Relations in ORTTM

Table 2 Mapping of ORSQL and ORTTM metaclasses that belong to the packages
"Data structures"

ID ORSQL metaclass ORTTM metaclass that represents the
most similar concept

1 Base column Relvar attribute
2 Base table Real relvar (Base relvar), Relation
3 Base table column Relvar attribute
4 Catalog Database
5 Cluster (mentioned as SQL Object by

Gulutzan and Pelzer (1999, p. 27))
Database

6 Column Relvar attribute (Attribute of relvar)
7 Created local temporary table Private relvar, Relation
8 Declared local temporary table Private relvar, Relation
9 DEFINITION_SCHEMA Catalog
10 Derived table Relation
11 Generated column Attribute with default
12 Global temporary table Private relvar, Relation
13 Identity column Attribute with default
14 INFORMATION_SCHEMA Catalog
15 Persistent base table Real relvar, Relation
16 Table Relvar (Relation variable)

Relation (Value of relation variable)
17 Temporary base table Private relvar, Relation
18 Viewed table (View) Virtual relvar, Relation

Construct redundancy in ORSQL:
• Catalog and Cluster in ORSQL vs. Database in ORTTM;

 39

• DEFINITION_SCHEMA and INFORMATION_SCHEMA in ORSQL vs.
Catalog in ORTTM;

• Generated column and Identity column in ORSQL vs. Attribute with default
in ORTTM;

• Created local temporary table, Declared local temporary table, Global
temporary table, Temporary base table in ORSQL vs. Private relvar in
ORTTM.

Construct overload in ORSQL: Created local temporary table, Declared local
temporary table, Global temporary table, Temporary base table, Base table,
Persistent base table, Table, Viewed table in ORSQL correspond to Relvar (or its
subtypes) and Relation in ORTTM. Relvar is a variable and relation is its value.
Construct deficit in ORTTM: Domain, Path element, Path, SQL-schema,
Transient table, Typed table(1), Typed base table(1), Typed view(1).
(1) - The Third Manifesto argues explicitly against pointers and typed tables in
the section "OO Prescriptions" (Date and Darwen, 2006).
Construct deficit in ORSQL: Application relvar, Initializable variable (1), Init
expression, Public relvar, Scalar variable(1), Tuple variable(1), Variable(1).
(1) – It is possible to use variables in SQL-invoked routines.

1.3.3.1 Discussion

ORTTM is built up based on a set of core concepts: "value", "variable", "type",
"operator" (see Figure 3) that makes the specification easier to understand as
compared to SQL:2003. Gulutzan and Pelzer (1999, p. 255) write: "The SQL
Standard describes the concepts on which SQL is based in terms of objects,
such as Tables" (see Figure 13). In this context, the concept "object" is not a
counterpart to the ORTTM concept "value", but rather to the concept "variable".
An object is a cluster, a catalog, a SQL-schema or a schema object.

The basic data structure in ORTTM is a database relation variable (see Figure
18). Although ORTTM also specifies application relvars, we use the concept
relvar from now on in order to refer to a database relation variable, if not stated
otherwise. The basic data structure in SQL is a table (see Figure 16). A database
in ORTTM is a named set of database relvars. A database itself can be seen as a
variable (Dbvar) (Date and Darwen, 2000, p. 155). Scalar and tuple variables
are not permitted in the databases. ORSQL does not define the concept "database"
and specifies instead the composite objects "cluster", "catalogue", and "SQL-
schema" (see Figure 13).

ORSQL permits creation of temporary base tables in order to allow users
(applications) to record the results of their data operations temporarily to a
database so that other sessions cannot access this data (see Figure 16). ORTTM
allows us to use private application relvars for this purpose (see Figure 18).
"The definition of a global temporary table or a created local temporary table
appears in a schema." (Melton, 2003, p. 52) The content of this kind of a table is
temporary, but the table as structural element persists after the end of a session.
A declared local temporary table is materialized in some schema if it is for the

 40

first time referenced in a session, and it is dropped at the end of this session. In
ORTTM, private application relvars are not part of a database.

The concept "catalog" has different meanings in ORTTM and ORSQL. In
ORTTM, it means a data dictionary that contains some database relvars. Its
purpose is to present the description of the data that is recorded in that database.
In ORSQL, a catalog is a named group of schemas, which are in turn named
groups of schema objects. Each catalog in ORSQL must contain a schema with
the name "INFORMATION_SCHEMA" (see Figure 13). This schema consists
of views and domains, the purpose of which is to describe the SQL-data, which
belongs to that catalog. The SQL standard specifies these views. "The
INFORMATION_SCHEMA Views are based on the Tables of an Ur-Schema
called DEFINITION_SCHEMA, but the Standard does not require it to actually
exist – its purpose is merely to provide a data model to support
INFORMATION_SCHEMA." (Gulutzan and Pelzer, 1999, p. 287) Therefore,
ORSQL metaclasses INFORMATION_SCHEMA and DEFINITION_ SCHEMA
are counterparts of ORTTM metaclass catalog. Views in ORSQL
INFORMATION_SCHEMA are not updateable – it is not possible to
insert/update/delete data in underlying base tables through these views. ORTTM,
on the other hand, prescribes that the authorized user must have a possibility to
assign new values to the relvars that are part of a catalog. ORTTM does not
specify the exact structure of a catalog as ORSQL does.

ORTTM clearly distinguishes the concepts "value" and "variable". A variable
has at any moment one value, but it is possible to change this value. Defining a
scalar variable, a tuple variable, a real relvar or a private relvar has the effect of
initializing this variable to some value. This value can be specified explicitly by
specifying an init expression that returns a value that has the same type as the
variable (see Figure 19). A value of a relvar is called a relation in ORTTM (see
Figure 21). In ORSQL, the concept "table" means "table value" as well as "table
variable". The next definition is a good example of that: "A table is a collection
of rows having one or more columns." (Melton, 2003, p. 51) All the rows in a
table are values that have the same row type (see Figure 17). All the values of
the n-th field in a row are the values of the n-th column in the table. Differences
of ORTTM relation and ORSQL table (value) according to Date and Darwen
(2000, p. 430) and Date (2003, p. 151):
• Left-to-right order of columns has significance in ORSQL. For example,

writer of SQL INSERT statements has to know the order of columns. The
order of attributes is not important in ORTTM relations and all the attributes
are identified by their names and not by their ordinal position.

• A base table or a viewed table cannot contain two or more columns with
the same name in ORSQL. However, a derived table that is derived directly
or indirectly from one or more other tables by the evaluation of a query
expression can contain more than one column with the same name. In
ORTTM, a heading of a relation cannot contain more than one attribute with
the same name.

 41

• An ORSQL table is a collection (of rows) that can contain duplicates.
Database users can prevent them, but are not obliged to do so. Declaring a
primary key or a unique constraint prevents duplicate rows in a base table.
Special syntax in a query expression prevents duplicated rows in a derived
table. ORTTM explicitly prohibits duplicate tuples in the relations. Each
relvar must have at least one candidate key. In addition, an ORDBMSTTM
has to automatically remove duplicates from the result of the evaluation of
a query expression.

• A table in ORSQL must have at least one column. ORTTM, on the other hand,
specifies two special relations – TABLE_DEE and TABLE_DUM where the
set of attributes is empty – in other words, these relations have no attributes
(Date, 2003, p. 154).

One difference of ORSQL tables and ORTTM relvars is that columns in a table
are ordered (see attribute ordinal_position in ORSQL metaclass Structural
component in Figure 4), but attributes in a relvar are not. In addition, ORSQL
permits creation of a base table based on a user-defined structured type (see the
metaclasses Typed base table and Typed view in Figure 16). It is not possible to
create a relvar based on a scalar type in ORTTM. ORSQL allows inheritance
between the typed tables. ORTTM, on the other hand, does not consider
inheritance between relvars as a good idea and allows only inheritance between
the types (as part of very strong orthogonal (to data model) suggestions). One
difference of ORSQL viewed tables and ORTTM virtual relvars is that not all
logically updateable views are actually updateable in ORSQL.

It is possible to declare a default value to a relvar attribute in ORTTM as well
as to a base table column in ORSQL. ORTTM strongly suggests to use the system
function SERIAL in order to automatically generate unique values to some
attribute of a relvar (see Figure 20). This value can be obtained via the default
mechanism. A system function may require access to certain "environmental
variables" and involves certain "hidden arguments" (Date and Darwen, 2000, p.
204). The similar effect can be achieved in ORSQL by using the identity column
of a table (see Figure 15) that has an associated internal sequence generator (see
Figure 30). "A sequence generator is a mechanism for generating successive
exact numeric values, one at a time." (Melton, 2003, p. 77) If a row that is
inserted to a table does not contain a column corresponding to an identity
column, then the value for this column is generated by an internal sequence
generator (Melton, 2003, p. 57).

A value of a generated column in ORSQL base table is the result of evaluation
of a generation expression, the declared type of which is "by implication that of
the column" (Melton, 2003, p. 57) (see Figure 15). A limitation is that "A
generation expression can reference base columns of the base table to which it
belongs but cannot otherwise access SQLdata." (Melton, 2003, p. 57) A similar
effect can be achieved in ORTTM by specifying that the default value of an
attribute is the result of evaluating some expression. This expression can refer to
one or more read-only operators (see Figure 20).

 42

1.3.4 Comparison of Data Integrity Rules

-is_deferrable : Boolean

-initial_mode : Enum

Constraint

Assertion Domain constraint Table constraint

Data structures::Base table

-update_action : Enum

-delete_action : Enum

-match_type : Enum

Referential constraint Unique constraint

Table check constraint

Primary key constraint

Data structures::Base table column

1

1..*

1

1..*

0..*

-referencing 1..*

0..*

-referenced

1

0..*

-referenced table1

-is_preferred : Boolean

Candidate key

1..*
1

-explicitly enforces

0..1

1

-type of expr. result 1

0..*

Data types::Boolean type

{disjoint, complete}

{disjoint,
complete}

1

0..*

1..*

0..*

expression refers to

-expression : String

CHECK constraint

{disjoint,
complete}

-is_insertable : Boolean

Data structures::Table

0..*

-referenced 1..*

-ordinal_position : Int

Unique column

1

0..*

Data structures::Column

1

1..*

0..*

0..*

expression refers to

Data operators::SQL-invoked routine

0..*

-expression refers to 0..*

-ordinal_position : Int

-position_in_unique_constraint : Int

Referencing column

-ordinal_position : Int

Referenced column

Figure 22 Constraints in ORSQL

-action_time : Enum
-event : Enum

-action_condition : String
-action_statement : String

-creation_time : Timestamp
-action_orientation : Enum

Trigger
Data structures::Base table

-subject table

1

0..*

Data structures::Persistent base table

Data structures::Base table column

1
1..*

-triggerred update column

0..*
0..*

-old_transition_variable_name : String

-new_transition_variable_name : String

Row-levelt trigger

-old_transition_table_name : String
-new_transition_table_name : String

Statement-level trigger

Data structures::Column

0..*

0..*statement refers to

Data operators::Routine

0..*

-executed as a result0..*

statement refers to

Data structures::Table

1

1..*

0..*
0..* statement refers to

Data operators::External sequence generator
0..*

0..*

statement refers to

Figure 23 Triggers in ORSQL

 43

-name : String

-expression : String

Integrity constraint

Type constr. Database constraintTransition constr

«singleton»

Data types::BooleanType

0..*

-type of expr. result

1

Total database constraint

-conjunct0..* -conjunction 1

Data structures::Relvar

0..*

0..*

expression refers to

Data operators::Read only operator

0..*

0..*

expression refers to

Figure 24 Constraints in ORTTM

Data structures::Relvar

-update_referential_action : Enum
-delete_referential_action : Enum

Referential constraint

0..*

-referencing

0..*

1

0..*

-is_primary : Boolean

Candidate key constr

0..*
-referenced attributes1

Database constraint

Type constr.

-name : String

Data types::Scalar type
0..*

1Data types::Type

Data structures::Relvar attribute

-name : String

Data types::Attribute

1

0..*

Candidate key

11..*

-explicitly defined0..1

1

0..*
-attribute type

1

Key attribute

0..*
1

0..*1

Figure 25 Candidate key and referential constraints in ORTTM

Table 3 Mapping of ORSQL and ORTTM metaclasses that belong to the packages
"Data integrity"

ID ORSQL metaclass ORTTM metaclass that represents the most
similar concept

1 Assertion Database constraint
2 Candidate key Candidate key
3 CHECK constraint Database constraint
4 Constraint Integrity constraint
5 Primary key constraint Candidate key constraint
6 Referential constraint

(Foreign key constraint)
Referential constraint
(Foreign key constraint)

7 Table check constraint Database constraint
8 Table constraint Database constraint
9 Unique column Key attribute
10 Unique constraint Candidate key constraint

 44

Construct redundancy in ORSQL:
• Assertion, CHECK constraint, Table check constraint and Table constraint

in ORSQL vs. Database constraint in ORTTM.
• Primary key constraint and Unique constraint in ORSQL vs. Candidate key

constraint in ORTTM.
Construct deficit in ORTTM: Domain constraint, Row-level trigger(1),
Statement-level trigger(1), Trigger(1), Referenced column(2), Referencing
column(2).
(1) - Authors of ORTTM are not strictly against triggered procedures, but find that
this feature is not foundational part of data models. It is possible to use triggered
procedures in case of different data models and therefore we can say that this
feature is orthogonal to a data model.
(2) - These two metaclasses were created in the ORSQL metamodel in order to
show that columns have ordinal positions in a referential constraint. ORTTM, on
the other hand, tries not to complicate the language and prescribes that we have
to refer to an attribute only by using its name and not by its ordinal position.
Construct deficit in ORSQL: Transition constraint, Type constraint.

In addition, we note that the ORTTM metaclass Total database constraint
does not have one clearly corresponding metaclass in the current ORSQL
metamodel. However, it is possible to create this metaclass as an abstraction
without violating the principles of ORSQL.

1.3.4.1 Discussion

Both ORTTM and ORSQL allow us to create declarative constraints by using
nonprocedural database programming language. Such a constraint specifies a
rule, but does not prescribe a DBMS how to check it. In ORSQL, it is also
possible to implement constraints by creating trigger procedures that can
contain statements of imperative language (SQL procedural extensions or other)
(see Figure 23). Greenfield et al. (2004, p. 227) propose the definition: "An
imperative specification describes instructions to be executed without
describing the desired results of execution." "An SQL Trigger is a named chain
reaction that you set of with an SQL-data change statement." (Gulutzan and
Pelzer, 1999, p. 463) Authors of ORTTM do not prohibit triggers (they use the
concept "triggered procedure"). However, they take the position that the use of
triggered procedures is in many cases unnecessary if declarative constraints are
fully supported by a DBMS.Type constraint in ORTTM limits the values that
belong to this type (see Figure 24). In addition, ORTTM permits creation of a
type as a subtype of another type by using a specialization by constraint. It is
not possible to create declarative type constraints in ORSQL or to create types by
using the specialization by constraints. According to Mattos and DeMichiel
(1994) specialization by constraints should be prohibited because it requires, for
example, overloading of operators. Date and Darwen (2000, Appendix G)
discuss negative implications of the approach that prohibits specialization by
constraint.

 45

In ORSQL, the correctness of a value that belongs to a user-defined type can
be checked by the SQL-invoked methods of this type. Methods can be
implemented by using some imperative language (SQL procedural extensions
or other). Note that the ORSQL domain constraint (see Figure 22) is not a
counterpart to the ORTTM type constraint because a domain in ORSQL is not a
data type but a reusable specification of column properties.

A database constraint determines the legal values that a set of database
relation variables can have (see Figure 24). Earlier versions of The Third
Manifesto (for example, Date and Darwen (2000)) distinguished a relvar- and
database constraints. A relvar constraint constrains the values of exactly one
relvar and a database constraint constrains the values of more than one relvars.
In addition, earlier versions of The Third Manifesto used the concept "attribute
constraint". An attribute constraint is enforced by the declaration that an
attribute has a type.

The values of the relvars that are referenced by the Boolean expression of
database constraints must be such that the result of the evaluation of this
expression is TRUE. In ORSQL, a table check constraint (see Figure 22)
constrains values in a base table with which it is associated. Its expression can
contain a subquery that can refer to other tables as well. An expression that is
associated with an assertion in ORSQL refers to one or more tables. Constraints
in ORSQL are satisfied if the result of the evaluation of their expression is not
false (that means it is either true or unknown).

If a variable VA that has a value V1 obtains a new value V2, then the
transition constraint (Date 2003, p. 268) (see Figure 24) checks whether such
transition of values was legal. It is not possible to create declarative transition
constraints in ORSQL, but it is possible to implement them by using triggers.

Differences of candidate keys in ORSQL (see Figure 22) and ORTTM (see
Figure 25) (Date and Darwen, 2000, p. 431):
• ORSQL states that the set of candidate keys in a table is not empty.

However, the declaration of a unique constraint in a base table is not
mandatory and it is not possible to explicitly declare the keys in the viewed
tables. ORTTM requires that each relvar should have at least one candidate
key. An explicit specification of at least one candidate key is mandatory in
case of the relvars that are not virtual relvars. It is optional in case of a
virtual relvar because an ORDBMSTTM should be able to determine the
candidate keys of a virtual relvar based on the candidate keys of its
underlying real relvars.

• ORSQL advocates the selection of one candidate key as a primary key. In
ORTTM, the selection of the first among the equals is not necessary.

• In ORSQL, a primary key or a uniqueness constraint must be declared over
one or more columns. ORTTM specifies two relvars (TABLE_DEE and
TABLE_DUM) that have no attributes. These relvars have exactly one
candidate key that has no components (Date, 195, p.129).

• ORSQL permits one key to be a proper subset of another that is violation of
the irreducibility property of a candidate key.

 46

• ORSQL specifies that the unique constraint descriptor must include the
ordinal position of a column within a constraint (Melton, 2003, p. 65). In
ORTTM, this ordinal position is not important.

In ORTTM, constraints are checked right after the end of the statement that
might cause their violation. ORTTM permits a multiple assignment statement that
assigns a new value to more than one relvar. In that case a constraint is checked
after more than one relvar obtains a new value. In ORSQL it is possible to defer
the checking of the constraints to the end of transaction (see attribute
is_deferrable of metaclass Constraint in Figure 22) and determine that the
isolation level of transactions is as high as possible - SERIALIZABLE.

1.3.5 Comparison of Data Operators

Routine

Data analysis function

-name : String

Predefined routine
SQL-invoked routine

Group function

Aggregate function

Window function

Parameter0..*

1

Data type

1
0..*

-result type

1

0..*

Row value constructor

Figure 26 Predefined routines in ORSQL

 47

-specific_name : String
-language : Enum

-is_schema_level : Boolean

-security_characteristic : Enum

-is_deterministic : Boolean

-SQL_data_access_indication : Enum

-savepoint_level_indication : Enum

-parameter_style : Enum

-creation_time : Timestamp

-last_altered_time : Timestamp

SQL-invoked routine

-external_name : String

External routine
-is_locator_return_value : Boolean

-is_type_preserving : Boolean

-is_null_call : Boolean

SQL-invoked function

-max_nr_of_dynamix_result_sets : Int

SQL-invoked procedure

Data types::Data type

-name : String

-ordinal_position : Int

-parameter_mode : Enum

-is_locator : Boolean

-is_result : Boolean

SQL parameter

0..*
1

0..*

1

-body : String

-SQL_path : String

SQL routine

-result cast from type0..1

0..*

Data types::Table type -returns table type

1

0..1

Table functionNon-table function

Data structures::Column

0..*

0..*routine body refers to

Data types::Constructed data type

Data types::Collection type

Data types::Multiset type

Data types::Row type

1

0..1

-returns data type

1

0..*

-name : String

Data types::Transform group

0..* 0..*

Data operators::External sequence generator Data structures::Table0..*

0..*

routine body refers to

0..*

0..*

routine body refers to

0..*

0..*

routine body refers to

Figure 27 SQL-invoked routines in ORSQL

Regular SQL-invoked function

SQL-invoked function

Constructor function

Mutator function Observer function

-method_type : Enum

-is_overriding : Boolean

SQL-invoked method

Data types::User-defined data type

-type of the method 1

0..*

Figure 28 SQL-invoked functions in ORSQL

-name : String

Operator

Equality comparison operator

Comparison operator Predefined routine

-implementation1

0..1

Figure 29 Operators in ORSQL

 48

-min_value : Int

-max_value : Int

-start_value : Int

-increment : Int

-is_cycle : Boolean

-current_base_value : Int

Data operators::Sequence generator

Data operators::Internal sequence generator

Data types::Data type

0..1

0..*

Data operators::External sequence generator

Schema object

{disjoint, complete}

Figure 30 Sequence generators in ORSQL

Equality comparison operator

Comparison operator

SET_ operator

Special value checker

Special value finder

Scalar operator Update operator

-name : String

Operator

Scalar GET_ operator

Scalar selector

-name : String

Data types::Scalar type

0..*
-declared type1

-name : String

Subject to update parameter

1..*

1

-name : String

Data structures::Variable

0..*

-variable that gets new value1

-name : String

Data operators::ParameterData types::Type

0..*-declared type1

Assignment operator1

1

Not-generic operator

0..* 1

Figure 31 Scalar and update operators in ORTTM

-name : String

Operator

-expression : String

Relational operator

-declared type 1

0..*

-name : String

Parameter

0..*

10..*

1

Data types::Type

Data types::Relation type

Tuple operator

Data types::Tuple type

-declared type 1

0..*

Relational GET_ operator Tuple GET_ operator

Relational selector Tuple selector

Not-generic operator

Figure 32 Relational and tuple operators in ORTTM

 49

Scalar operator

Update operator

Relational operator

Generic relational operator

Generic aggregate operator

Built-in scalar operator

User-defined scalar operator

Built-in update operator

User-defined update operator

Built-in relational operator

User-defined relational operator

Built-in generic relational operator

User-defined generic relational operator

Built-in generic aggregate operator

User-defined generic aggregate operator

Generalized transitive closure operator

Read only operator

Tuple operator

Built-in tuple operator

User-defined tuple operator

GET_ operator
Conversion operator «singleton»

SERIAL Func

Figure 33 Built-in and user-defined operators in ORTTM

Generic operator

Generic relational operatorGeneric aggregate operator

Operator

Data types::Type generator
10..*

System function «singleton»

SERIAL Func

Figure 34 Generic operators and system functions in ORTTM

Table 4 Mapping of ORSQL and ORTTM metaclasses that belong to the packages
"Data operators"

ID ORSQL metaclass ORTTM metaclass that represents the
most similar concept

1 Aggregate function Built-in generic aggregate operator
2 Comparison operator Comparison operator
3 Data analysis function Read-only operator
4 Equality comparison operator Equality comparison operator
5 External routine User-defined scalar operator

User-defined tuple operator
User-defined relational operator
User-defined update operator

6 External sequence generator SERIAL func
7 Internal sequence generator SERIAL func

 50

ID ORSQL metaclass ORTTM metaclass that represents the
most similar concept

8 Mutator function SET_ operator
9 Non-table function User-defined scalar operator
10 Observer function GET_ operator

Scalar GET_ operator
Tuple GET_ operator
Relation GET_ operator

11 Operator Built-in scalar operator
12 Parameter Parameter
13 Parameter (where parameter mode

is OUT)
Subject to update parameter

14 Predefined routine Built-in scalar operator
15 Regular SQL-invoked function User-defined scalar operator

User-defined tuple operator
User-defined relational operator

16 Routine Operator
17 Row value constructor Tuple selector
18 Sequence generator SERIAL func
19 SQL-invoked function User-defined scalar operator

User-defined tuple operator
User-defined relational operator

20 SQL-invoked method Read-only operator
Update operator

21 SQL-invoked procedure User-defined update operator
22 SQL-invoked routine

(Schema-level routine)
User-defined scalar operator
User-defined tuple operator
User-defined relational operator
User-defined update operator

23 SQL parameter Parameter
24 SQL routine User-defined scalar operator

User-defined tuple operator
User-defined relational operator
User-defined update operator

25 Table function User-defined relational operator
26 Window function Relational operator

Construct redundancy in ORSQL:
• Operator, Predefined routine in ORSQL vs. Built-in scalar operator in

ORTTM.
• External sequence generator, Internal sequence generator, Sequence

generator in ORSQL vs. SERIAL func in ORTTM.
• External routine, Regular SQL-invoked function, SQL-invoked function,

SQL-invoked routine, SQL-routine, Table function in ORSQL vs. User-
defined relational operator in ORTTM.

• External routine, Non-table function, Regular SQL-invoked function, SQL-
invoked function, SQL-invoked routine, SQL-routine in ORSQL vs. User-
defined scalar operator in ORTTM.

 51

• External routine, Regular SQL-invoked function, SQL-invoked function,
SQL-invoked routine, SQL-routine in ORSQL vs. User-defined tuple
operator in ORTTM.

• External routine, SQL-invoked procedure, SQL-invoked routine, SQL-
routine in ORSQL vs. User-defined update operator in ORTTM.

Construct deficit in ORTTM: Constructor function, Group function.
Construct deficit in ORSQL: Assignment operator, Built-in relational
operator(1), Built-in tuple operator, Built-in update operator, Generalized
transitive closure operator, Relational selector, Special value finder, Special
value checker, System function, Tuple operator, User-defined generic aggregate
operator, User-defined generic relational operator.
(1) - ORSQL specifies built-in operators that operate on multisets and return
multisets.

In addition, we note that the following ORTTM metaclasses do not have one
clearly corresponding metaclass in the current ORSQL metamodel: Built-in
generic relational operator, Generic aggregate operator, Generic operator,
Not-generic operator, Generic relational operator, Relational operator, Scalar
operator. However, we think that it is possible to create these metaclasses as
abstractions without violating the principles of ORSQL.

1.3.5.1 Discussion

Both ORTTM and ORSQL provide the means for performing operations in a
database. Firstly, integrity constraints and triggers that are associated with the
relvars/tables can be used in order to prohibit recording of incorrect data in a
database (see section 1.3.4). Checking of these constraints is an operation.
Triggers can also be used in order to trigger execution of some routine in a
database.

In addition, ORTTM allows us to use operators and ORSQL allows the use of
operators and routines for making operations in a database. ORTTM uses the
general concept "operator". ORSQL, on the other hand, uses the concepts
"operator", "function", "procedure", and "method" for the same subject matter
and therefore actually makes the specification much more complicated. ORSQL
uses the concept "operator" in order to describe the infix, prefix or postfix
notation for calling a function (see Figure 29). ORSQL does not permit users to
create new "operators".

"Functions and procedures correspond very roughly to our read only and
update operators, respectively; methods behave like functions, but are invoked
using a different syntactic side." (Date, 2003, p. 132) Invocations of the ORTTM
scalar (see Figure 31), relational and tuple operators (see Figure 32) produce
scalar values, relations and tuples, respectively. These operators are read-only
and cannot change the values of relvars in a database or modify the structure of
a relvars. Routine body of ORSQL SQL-invoked function can contain SQL
executable statements like INSERT/UPDATE/DELETE statements (Melton,
2003, p. 676).

 52

An update operator in ORTTM (see Figure 31) is not typed at all because its
invocation does not produce a value as a result. On the other hand, SQL-
invoked procedure can have output parameters. SET_ operator that is a kind of
update operator is used in ORTTM in order to update scalar variable so that if its
value before update is v and after update is v', then the possible representations
of these values differ by only one component. ORSQL specifies mutator
functions for the same purposes. The invocation of a mutator function returns a
value (Melton, 2003, p. 8).

ORTTM specifies assignment operators that allow us to assign new values to
variables. We decided to model assignment operator as the subclass of update
operator (see Figure 31). "An update operator is an operator that, when
invoked, is allowed to update at least one variable that is not purely local to that
operator." (Date and Darwen, 2006) An assignment operator is an update
operator that has two parameters and assigns a new value to exactly one
variable. One of the parameters allows us to access a variable and is therefore
called "subject to update parameter". Another parameter allows us to pass the
new value of the variable to the operator. ORSQL does not use the concepts
"variable" and "assignment operator", but it specifies statements for modifying
data in a table.

A method is associated with a user-defined type in ORSQL (see Figure 28).
ORTTM on the contrary advocates that types and operators should be unbundled
and that security mechanism helps to give to an operator access to the internals
of instances of any number of types.

ORTTM permits creation of relational or tuple operators, the result of which
has a specific relation type or tuple type, respectively (see Figure 32). If this
operator has no parameters, then it is an analogy to a virtual relvar (view).
ORSQL permits creation of views. In addition, ORSQL permits creation of table
functions. A table function can have input parameters and its result has a table
type (see Figure 27). Actually it is a composite type MULTISET(ROW(...)) that
is created by using two different type constructors. One difference between the
relational operators in ORTTM and the table functions in ORSQL is that the former
eliminates automatically repeating tuples from the result, but the latter needs
explicit specification in order to remove repeating rows from the result.

ORSQL specifies different window functions. One of them is a rank function.
Date and Darwen (2000, p. 210) demonstrate that the result that is expected
from a rank function can be achieved in terms of usual relational algebra
operators. In addition, they propose a relational operator RANK, which is a kind
of shorthand.

Relational algebra operators UNION, INTERSECT and JOIN are the
examples of generic relational operators. ORSQL allows us to perform relational
algebra operations, but does not use the concept "operator" in that context.
ORSQL does not permit creation of user-defined generic operators as ORTTM does
(see Figure 34). If a generic operator GO is associated with a type generator TG
then it is possible to apply GO to any value that has a type which is generated

 53

by TG. For example, generic relational operator works for all relations and
allows us to derive relations from other relations.

1.3.6 Observations
This section contains some observations that we made during the creation of the
metamodels and comparison of them.

We created the mapping between the metaclasses (see Table 1 - Table 4). In
many cases, it was possible to find pairs of metaclasses, which present
constructs that have a relatively similar meaning. However, we think that none
of these pairs has semantic equivalence.

It was sometimes difficult to determine a package for a particular metaclass
in case of ORSQL. We found three metaclasses in ORSQL that we were unable to
classify – Object, Schema object and Structural component. These metaclasses
"represent an abstraction of properties that are common to multiple disjoint
types." (Guizzardi, 2005, p. 112) In addition, these disjoint types (metaclasses)
belong to different packages. For example, user-defined data types, base tables
and SQL-invoked routines are schema objects and therefore Objects as well.
However, the metaclass User-defined data type belongs to the package Data
types, the metaclass Base table belongs to the package Data structures and the
metaclass SQL-invoked routine belongs to the package Data operators.
Structural component represents a generalization of metaclasses Field, Attribute
and Column. The first two belong to the package Data types and the latter
belongs to the package Data structures.

Table 5 shows some metaclasses that belong to a package, but we found it
difficult to determine the most appropriate package for them. We do not claim
that this classification is definitive, but rather it reflects our current
understanding of the subject matter. Mark "*" in column Possible packages
identifies a package that we finally chose for this metaclass.

Table 5 Metaclasses of the ORSQL metamodel that we found difficult to classify

Metaclass Possible packages Comment
Domain Data structures *

Data types
"A domain definition specifies a data type."
(Melton, 2003, p., 49) A domain is not a data
type (data types), but rather a reusable
specification of column properties (data
structures).

Sequence
generator
(and its
subclasses)

Data operators*
Data structures
Data integrity

"A sequence generator is a mechanism for
generating successive exact numeric values, one
at a time." (Melton, 2003, p. 77) It can be used
for generating key (data integrity) values that are
recorded in some table (data structures). We
choose to think about it as a special routine (data
operators) that is similar to ORTTM system
function "SERIAL".

 54

Metaclass Possible packages Comment
Path and
Path
element

Data operators
Data structures*

A path determines the search order for user-
defined routines (data operators) (Melton, 2003,
p. 473). However, its specification is part of
schema definition (data structures).

Table type Data operators
Data types*

The SQL standard uses the concept "table type"
in connection with table functions (data
operators). The wording " <returns type>
::=<returns data type> [<result cast>]| <returns
table type>" (Melton, 2003, p. 676) gives an
impression that table type is not a data type. If
<returns type> RST specifies TABLE and TCL
is the <table function column list>, then "RST is
equivalent to the <returns type> ROW TCL
MULTISET." (Melton, 2003, p. 678) Therefore,
we decided to model table type as a data type that
is created by using two type constructors –
MULTISET and ROW.

Transform
group

Data operators
Data types*

A transform is an object that associates a user-
defined type (Data types) with two SQL-invoked
functions (Data operators) "that are automatically
invoked when values of user-defined types are
transferred from SQL-environment to host
languages or vice-versa." (Melton, 2003, p. 42)

User-
defined
cast

Data operators
Data types *

A user-defined cast is an object that associates a
source data type, a target data type (Data types)
and a routine (Data operators) that is invoked if
casting of a value with source data type is
needed.

User-
defined
ordering

Data operators
Data types*

A user-defined ordering is an object that can
accompany a user-defined data type (Data types).
It specifies the method how to compare two UDT
values and optionally determines a routine that
performs comparison (Data operators).

Trigger
(and its
subclasses)

Data integrity*
Data operators
Data structures

A trigger is a specification for a given action
(Data operators) to take place every time a given
operation takes place on a given object (Data
structures). We decided to place these classes to
the package "Data integrity" because triggers can
be used in order to implement integrity
constraint. We have to note that it is possible to
use triggers for other purposes as well.

We placed ORTTM metaclasses Database and Catalog and ORSQL

metaclasses Cluster, Catalog, Schema, DEFINITION_SCHEMA and
INFORMATION_SCHEMA to the package Data structures. Another option is to
create separate package Container for these metaclasses because they represent
actually composites of objects that make up a database.

 55

The previously described problems are one example that SQL:2003 and
therefore ORSQL as well are too complex. SQL:2003 specification is much
longer and uses more concepts (see section 1.3.7) than The Third Manifesto.

Descriptions of data types, data structures, data integrity and data operators
depend on each other. It is not possible to understand concepts from one
package without studying concepts in the other packages. For example, the
metamodels contain metaclasses that model the values. Among other things, a
type is a set of values that the computer system is able to represent (Date, 2003).
Therefore, we decided to place the metaclasses about the values to the package
Data types (see section 1.3.2) and not to create separate package Data values.
However, the description of the values of relation variables is placed to section
Data structures (see section 1.3.3) because it is no possible to explain this topic
without explaining the concept relation variable.

Different levels of abstraction in the metamodels make it difficult to
compare them. For example, ORTTM uses the concepts Relation heading and
Body. The corresponding concepts in ORSQL would be Table heading and Table
body, but ORSQL does not use them. However, at the higher level of abstraction,
it is possible to imagine that a table has a heading and a body.

If two data models use the same concept, then it does not mean that the
constructs behind this concept are semantically equivalent or similar. For
example, both ORTTM and ORSQL use the concept domain. However, in ORTTM it
means a data type and in ORSQL a reusable specification of column properties.

1.3.7 Metrics Values
Rossi and Brinkkemper (1996) propose a set of metrics, the values of which can
be calculated based on the metamodels and that help to compare the complexity
of system development methods and techniques. It is also possible to use these
metrics in case of the data models if their metamodels are available.

This section contains the values of three types of metrics – the number of
metaclasses, the number of attributes of metaclasses and the sum of these values
(see Table 6). The metrics values are calculated for ORSQL and ORTTM.

For the comparison purposes we also present the metrics values for the
underlying data model of SQL:1992. We do not present the metamodel of the
underlying data model of SQL:1992 in this dissertation. We calculate these
values based on the ORSQL metamodel by taking into account the new features
that were added to SQL:1999 and SQL:2003. We use appendix D
(Incompatibilities with SQL-92) of the book about SQL:1999 (Gulutzan and
Pelzer, 1999) and the annex E (Incompatibilities with ISO/IEC 9075:1999) of
SQL:2003's Part 2: SQL/Foundation (Melton, 2003) in order to collect data for
this purpose.

In case of these metrics, bigger values mean bigger complexity. However,
Rossi and Brinkemper (1996) write: "the metrics by themselves cannot be used
to judge the “goodness” or the appropriateness for the task of the method" and
should be used together with other comparison methods. We have followed this
advice (see section 1.3.1).

 56

The underlying data model of SQL:1992 has smaller metrics values as
compared to ORSQL and ORTTM. In this case, smaller metrics values (and
complexity) are caused by the lack of many important features (for example, the
lack of possibilities to declare new types and operators). This actually makes
creation of applications that use a database more difficult because more work
has to be done by an application. Section 2.3 and the work of Eessaar (2006c)
contain a literature-based overview of problems of the underlying data model of
SQL:1992 or earlier versions of the SQL standard. The ORSQL and ORTTM data
models try to solve many of these problems.

Table 6 Metrics values that are calculated based on the metamodels of data models

 SQL:1992 ORSQL ORTTM
The number of metaclasses that deal
with the data types + the number of
their attributes

10+10=20 37+21=58 27+4=31

The number of metaclasses that deal
with the data structures + the number
of their attributes

18+12=30 26+17=43 16+4=20

The number of metaclasses that deal
with the data integrity + the number of
their attributes

13+11=24 16+21=37 9+5=14

The number of metaclasses that deal
with the data operators + the number
of their attributes

8+2=10 27+32=59 42+5=47

The number of metaclasses that we
cannot classify + the number of their
attributes

3+3=6 3+3=6 -

∑ 52+38=90 109+94=203 94+18=112

All three metrics values of ORSQL are bigger than the corresponding metrics

values of ORTTM. The amount of metaclasses in the ORSQL and ORTTM
metamodels is quite similar. The metaclasses of the ORSQL metamodel have
significantly more attributes as compared to the metaclasses of the ORTTM
metamodel. It points to the bigger complexity of ORSQL compared to ORTTM and
is caused by the following reasons:
• A database designer who designs a database based on ORSQL has more

opportunities to "tune" the schema objects.
• ORSQL makes use of such properties that according to the creators of ORTTM

complicate the data model without providing an advantage. For example,
ORSQL and SQL database language attaches significance to the ordinal
positions of structural components and columns that participate in a
primary key, uniqueness or referential constraint.

In this case, smaller metrics values of ORTTM compared to ORSQL do not
mean that ORSQL is "better". Firstly, analysis of similarities and discrepancies of
ORSQL and ORTTM shows that despite the lack of some constructs in ORTTM it is
still possible to use an ORDBMSTTM in the cases that require the use of these

 57

constructs in an ORDBMSSQL. We just have to use some construct (that is
actually present in ORSQL) in a way that is not possible in ORSQL due to its
limitations. In addition, ORSQL violates orthogonality principle (see section
1.3.8). Therefore, we have to agree with Rossi and Brinkemper (1996) that it is
not possible to determine "goodness" of a method or data model by using only
the metrics values (see Table 6).

1.3.8 Orthogonality Principle in Language Design
Date and Darwen (2000, p. 505) explain that a programming language that
displays orthogonality provides "(a) a comparatively small set of primitive
constructs together with (b) consistent rules for putting those constructs
together, and (c) every possible combination of those constructs is both legal
and meaningful (in other words, a deliberate attempt has been made to avoid
arbitrary restrictions)." (Date and Darwen, 2000, p. 505) [Italics added by the
author] It is also true in case of abstract programming languages like data
models.

An advantage of ORTTM compared to ORSQL is that ORTTM is based on the
small set of core concepts that makes the model much easier to understand (see
requirement (a) of orthogonality)(see also Figure 3). Unlike ORSQL, ORTTM uses
the concepts "variable" and "operator" as a basis of specification of its data
structures and data operators, respectively. Some of the concepts are metaphors
that help to make a data model easier to understand to people with a
programming background. Examples of such concepts are "variable" and
"assignment operator". Rittgen (2006) recommends to use metaphors in the
software engineering in order to make a particular topic more understandable
because "they resort to knowledge that is rooted in common sense and therefore
shared by everybody." (Rittgen, 2006, p. 434)

Date and Darwen (2000, p. 435-436) illustrate SQL violations of the
orthogonality principle with a non-exhaustive list of examples. These examples
are about the requirement (c) of orthogonality. We found additional examples.
We present the problem in ORSQL as well as the comment about the state of
affairs in ORTTM.
1. Attributes, fields and columns are structural components. A column can be

associated with a domain, but an attribute or a field cannot be associated
with a domain.
Note: ORSQL should allow us to associate a domain with any structural
component in order to better follow the orthogonality principle.
ORTTM: ORTTM does not use the constructs field, column and domain. An
attribute can have a type that is either a built-in or a user-defined scalar type
or a non-scalar type (tulpe- or relation type).

2. It is not possible to declare a default value to a field, but it is possible in
case of attributes and columns.
ORTTM: A relvar attribute (virtual relvars are not excluded) can have a
default value (Date and Darwen, 2000, p. 202). We cannot declare a default
value to an attribute that belongs to the heading of a relation type.

 58

3. It is possible to use generated columns but not generated attributes or fields.
ORTTM: A default value of a relvar attribute can be found by using some
expression.

4. A nullability characteristic is part of the column descriptor but not part of
an attribute or field descriptor (Melton, 2003, p. 49).
ORTTM: ORTTM rejects the use of NULL's in order to present missing
information.

5. A domain can be associated only with a predefined data type but not with a
user-defined type or a constructed type.
ORTTM: ORTTM uses the concepts domain and type as synonyms. Attributes
that are in the heading of a relation- or tuple type or components of a
possible representation of a scalar type have a type.

6. Both base tables and viewed tables have columns. However, it is not
possible to declare a default value to the column of a viewed table. Together
with the updateable views, it could allow us to record different default
values in a column of a base table in the different situations.
ORTTM: A relvar attribute can have a default value (Date and Darwen,
2000, p. 202). The authors do not distinguish between a real- and a virtual
database relvars in this case.

7. A base table or a viewed table cannot contain two or more columns with the
same name in ORSQL. However, a derived table that is derived from one or
more other tables by the evaluation of a query expression can contain more
than one column with the same name.
ORTTM: ORTTM does not allow two attributes with the same name in a
relvar, in a relation or in the heading of relation- or tuple type.

8. Table constraints can only be explicitly associated with the base tables but
not, for example, with the viewed tables.
ORTTM: In ORTTM, an expression of a database constraint contains names of
(it refers to) one or more relvars.

9. It is possible to create temporary base tables but not temporary viewed
tables.
ORTTM: ORTTM specifies private and public application relvars. It does not
allow us to create temporary real- or virtual database relvars.

10. It is possible to create a typed table based on a user-defined structured type
but not based on a distinct type.
ORTTM: ORTTM does not support typed tables.

11. Each typed table must have exactly one self-referencing column. If this
typed table is a typed base table, then this column has an implicit
uniqueness constraint. On the other hand, SQL permits not-typed base
tables, which do not have any associated (explicitly or implicitly defined)
uniqueness constraint.
ORTTM: ORTTM does not support typed tables. However, each real relvar
must have at least one explicitly defined candidate key.

12. A subject table of a trigger can only be a persistent base table. It cannot be a
viewed table.

 59

ORTTM: ORTTM does not specify triggered procedures.
The data model evolves over time, some orthogonality violations disappear

but others come into existence. For example, Date and Darwen (2000, p. 436)
note based on SQL:1999 that only the surrogate key column of a typed base
table can use "VALUES ARE SYSTEM GENERATED" option. However,
SQL:2003 allows us to use identity columns in the not-typed base tables.

If a metamodel contains a generalization relationship between metaclasses
(see Figure 35) so that some attributes and/or relationships are at the superclass
level and some are at the subclass level, then it could be a sign of a possible
violation of requirement (c) of the orthogonality principle. For example, in case
of problem (10) we could replace the letters in the figure in the following way:
A – User-defined type, B – Structured type, C – Distinct type, D – Typed table.

-c
-d

B

-e

C

-a
-b

A

D

E

Figure 35 Constructs in a metamodel that identify possible violation of the
orthogonality principle

The result of our research supports the opinion of Rossi and Brinkkemper
(1996) that it is not possible to determine "goodness" of the model based only
on metrics values. Metrics values show that ORSQL is more complex than
ORTTM. However, the designers of ORTTM have paid more attention to the
principle of orthogonality as compared to the designers of ORSQL.

1.4 Comparison with the Existing Sate of the Art

1.4.1 Object-Oriented Database Metamodel
Habela (2002) presents a metamodel of Object-Oriented DBMSs. On the other
hand, we deal with the object-relational data models and present the
metamodel-based comparison of two data models. Habela (2000) describes the
roles of a metamodel. Firstly, he states that the metamodel must "support the
understanding of the introduced data model by all parties" and therefore he
presents a conceptual view of the discussed metamodel constructs as a UML
class diagram (Habela, 2000, p. 66). This metamodel is a simplified and
improved version of the ODMG (Object Data Management Group) metamodel.
Large portion of the work of Habela (2000) is dedicated to the problem how to
implement a metadata repository based on the metamodel. He claims that the
presented metamodel is too complex and proposes the flattened metamodel

 60

structure that contains classes MetaObject, MetaAttribute, MetaValue,
MetaRelationship. In general, he proposes to use the "Universal Data Model"
approach. We explain the problems of this approach in section 3.1.4.

1.4.2 CIM Database Model
CIM (Common Information Model) is a conceptual information model that
specifies different areas of information technology management. Part of CIM
Database Model (DMTF CIM, 2006) is model of SQL Schema. It presents only
some of the most basic concepts (Object, CharacterSet, Schema, Trigger, Table,
Domain, Constraint and UserDefinedType) and mostly generalization
relationships between them. We think that the generalization relationship
between experimental classes SqlDomain and SqlDomainConstraint does not
model correctly the semantics of the relationship between these two constructs
(see Figure 14 in order to see how we modelled it).

The ORSQL metamodel that is presented in this dissertation is much more
extensive. In addition, part of CIM Database model, which specifies SQL
Schema contains concepts (for example, ManagedElement, LogicalElement)
that are not used in the SQL standard.

1.4.3 Common Warehouse Metamodel
The relational package of the Common Warehouse Metamodel (CMW)
Specification (OMG formal/03-03-02) contains a metamodel of a relational
database. Calero et al. (2006) present a list of problems of this metamodel. We
divide these problems into the following categories:
• The metamodel uses the concepts that the standard does not use. Examples

of such concepts: structural feature, named column set, SQL simple type.
• The metamodel specifies a type of database objects (index) that the

standard does not specify.
• The metamodel does not specify the types of database objects that are

described in the standard. For example, the metamodel does not specify the
sequence generators, which were incorporated first to SQL:2003. The
metamodel also does not specify the domains, although they were present
in SQL:1999. The metamodel uses the class ChekConstraint that can refer
to zero or more tables, but it does not explicitly use the concept Assertion.

• The metamodel contains relationships that are not consistent with the
standard. For example, a column is an attribute according to the model.
However, the standard uses the concept attribute specifically in the context
of structured types. It is true that columns of a typed table are created based
on the attributes of a structured type, but not all the tables are typed tables.

In addition, we note that the metamodel does not always take into account
the following guidelines for creating expressive and easily understandable
domain models:
• "Relate conceptual classes with an association, not with an attribute."

(Larman, 2002, p. 169) The metamodel contains foreign key attributes in
conceptual classes.

 61

• "If in doubt, define something as a separate conceptual classes rather as an
attribute." (Larman, 2002, p. 170) For example, character set and collation
are types of schema objects that are modeled as attributes.

1.4.4 SQL:2003 Ontology
Calero et al. (2006) present an ontology of the object-relational features of the
SQL:2003 standard. We use the pre-publication version of their article. They do
not use a special-purpose language for presenting the ontology (for example,
OWL). Instead, they present UML class diagrams and well-formedness rules
written in OCL. In comparison, semi-formal specification of the abstract syntax
of a language contains metamodel and well-formedness rules (OMG formal/03-
03-01, p. xxxiv). A metamodel can be presented by using UML class diagrams
and well-formedness rules as prose and OCL expressions. Thus, what is the
difference between UML class diagrams that are part of the SQL ontology and
the metamodel that is presented in this dissertation? Gruber (1995) notes that
one design criterion of ontologies requires that an ontology should require the
minimal ontological commitment. Gruber (1995) comments that "since
ontological commitment is based on consistent use of vocabulary" it can be
minimized by "defining only those terms that are essential to the
communication of knowledge consistent with that theory." Calero et al. (2006)
follow this guideline and present only the most important concepts and their
interconnections. On the other hand, a metamodel should describe all the
language constructs without simplifications.

Calero et al. (2006) divide the ontology into two sub-ontologies – DataTypes
and SchemaObjects. This classification is not precise enough. Firstly, a user-
defined data type is also a schema object. In addition, some schema objects are
data structures (for example, base table), some schema objects help to perform
operations with data (for example, SQL-invoked routine) and some schema
objects help to constrain data in a database (for example, constraint). Therefore,
we think that it is more reasonable to use a classification that takes into account
components of data models – Data structures, Data operators, Data integrity
and in addition Data types.

We compared UML class diagrams that are part of the ontology and the
ORSQL metamodel that is presented in this dissertation. We discovered that the
ontology is sometimes not precise enough. Next, we present the problems
together with the figures and comments. Each figure has two parts. Part (a) of a
figure is a fragment of the ontology that is presented by Calero et al. (2006).
Part (b) of a figure is a fragment of the metamodel that is presented in this
dissertation (see section 1.3) and which in our view better reflects the SQL:2003
standard. The problems with the ontology (Calero et al., 2006) can be divided
into two categories.
1. The fragments of ontology are too general and require additional well-

formedness rules in order to reflect the standard correctly. In addition, rules
in OCL are more difficult to understand than visual diagrams. The work of

 62

Calero et al. (2006) actually does not contain these rules. Problems 1, 2, 5, 6
belong to this category.

2. The ontology does not reflect the standard correctly. Problems 3, 4, 7, 8 and
9 belong to this category.

We do not consider the missing classes (except in case of problem 8),
attributes or associations because they are probably missing due to the
simplifications. For example, the ontology does not show that the identity
column is associated with an internal sequence generator.

Problem 1: There is an association between Domain and Data type (see
Figure 36).

0..* 1

Domain_hasTypeOf_DataType

(a)

Data structure::Domain Data types::Data type

Data types::Predefined data type

0..*

1

Domain_hasTypeOf_DataType

(b)

Domain Data type

Predefined data type

Figure 36 Possible ways to model Domains

Comment: A Domain must be associated with a Predefined data type
(Melton, 2003, p. 603).

Problem 2: An element of a Collection type has an attribute ordinal_position
(Figure 37).

Collection type

Multiset type Array type

-ordinal_position : Int

Element
0..*

1

Data types::Data type

-ordinal_position : Int

Data types::Array element0..*

1

Data types::Collection type

Data types::Multiset element

0..*
1

0..* 1

0..* 1

Data types::Multiset type

Data types::Array type

(a)

(b)

Data type

0..*

1

Collection_hasTypeOf_DataType

Data types::Generated type

0..*-element data type1

Figure 37 Possible ways to model collections

Comment: Collection type in SQL:2003 is either a multiset type or an array
type. An array is an ordered collection, but a multiset is an unordered collection.
"Since a multiset is unordered, there is no ordinal position to reference
individual elements of a multiset." (Melton, 2003, p. 46)

 63

Problem 3: There is no relationship to show inheritance between the
collection types (see Figure 38).

Comment: Melton (2003) explains that a collection type CT2 can be a
subtype of another collection type CT1 "if and only if CT1 is the same kind of
collection as CT2 and the element type of CT2 is a subtype of the element type
of CT1." (Melton, 2003, p. 45) Unfortunately, sections "<array value
constructor>" (Melton, 2003, p. 285) and "<multiset value constructor>"
(Melton, 2003, p. 291) do not contain any reference that it is possible to use
subtypes in case of these type constructors. Therefore, it seems that the SQL
standard is confusing and a possibility to use subtypes in this case is only
theoretical. Calero et al. (2006) also point to this inconsistency in SQL:2003.

Collection type Data types::Collection type

(a) (b)
-supertype

0..1

-subtype0..*

Figure 38 Possible ways to model collection types

Problem 4: Each Method must have exactly one associated Data type in case
of relationship type "MethodResult_isCastedTo_DataType" (see Figure 39).

Comment: A method specification descriptor includes "The <result cast from
type>, if any." (Melton, 2003, p. 39) The last part of this sentence indicates that
some methods do not have an associated <result cast from type>.

MethodData type

0..*

1

MethodResult_isCastedTo_DataType

Data operator::MethodData types::Data type

0..*

0..1

MethodResult_isCastedTo_DataType

(a) (b)

Figure 39 Possible ways to model methods

Problem 5: The model contains the relationship type according to which a
BaseTable has zero or more subtables and zero or one supertable (see Figure
40).

Base table

View Typed table

{XOR}

-supertype

0..1

-subtype0..*
inherits from

(a)

Data structure::Base tableData structure::View

Data structure::Typed view

-supertype0..1

-subtype

0..*

subtype inherits from
(b)

Data structure::Typed base table

Data structure::Typed table

{disjoint, complete}

Figure 40 Possible ways to model typed tables

Comment: SQL supports the inheritance relationship only between typed
tables (for example, Ta and Tb where Tb is supertable and Ta is subtable). A
base table or a view can be a typed table (Melton, 2003, p. 54). "Both Ta and Tb

 64

shall be created on a structured type and the structured type of Ta shall be a
direct subtype of the structured type of Tb." (Melton, 2003, p. 55)

Problem 6: The model contains the relationship type between Generated
column and Column according to which each Generated column must be
associated with one or more Columns (see Figure 41). These columns are
referenced by the generation expression of a generated column. The ontology
causes the following wrong impressions.
1. It is possible to specify generated column in a view definition the same way

as in a base table definition.
2. Expression of a generated column must reference to at least one column.
3. Expression of a generated column can reference another generated column

of same base table.

Column

Generated column
0..*

1..*Generates

(a)

Data structure::Column

Data structure::Base table column

Data structure::Base column Data structure::Generated column

(b)
-parametric column0..*

-dependent column0..*

Table Data structure::Base table

11..*

1 1..*

{disjoint, complete}

Figure 41 Possible ways to model generated columns

Comment: SQL:2003 states: "A column of a base table is either a base
column or a generated column. /.../ A generation expression can reference base
columns of the base table to which it belongs but cannot otherwise access SQL-
data." (Melton, 2003, p. 57) In our view, the word "can" means that an
expression refers to zero or more base columns. In addition, an expression
cannot reference generated columns.

Problem 7: The ontology does not model correctly uniqueness constraint
(see Figure 42). The ontology causes the following wrong impressions.
1. Each base table in SQL must have at least one unique constraint.
2. There is no reference whether subclasses of class Column are disjoint or

not. It may give an impression that an identity column or a generated
column cannot be unique column at the same time.

3. A column can have only one ordinal position within unique constraints.
4. It is possible to explicitly declare a unique constraint to a viewed table.

Comment: We think that the association between Candidate key and Unique
constraint has wrong cardinality and participation constraints. SQL:2003 states
that in each table "The set of candidate keys SCK is nonempty" (Melton, 2003,
p. 75). However, SQL does not oblige database designers to declare uniqueness
constraints to a base table. It is also comment to the impression 1. Therefore,
each unique constraint is associated with exactly one candidate key and each
candidate key is associated with zero or one unique constraint. Comment to the
impression 3 is that a column can participate in more than one uniqueness
constraint. Therefore, a column can have more than one different ordinal

 65

position within uniqueness constraints. Comment to the impression 4 is that
only statements for creating or altering base tables permit creation of unique
constraints.

Data structure::Base table

Data integrity::Unique constraint

Data structure::Base table column

1 1..*

Data integrity::Candidate key

1..* 1

0..1

1
constraint is explicitly declared

Data structure::Table

-ordinal_position : Int

Data integrity::Unique column 10..*

1

1..*

(b)

Column

Generated column
0..*

1..*
Generates

(a)

Table

Identity column
-ordinal_position : Int

Unique column

Unique constraint

1..*

1..*

Candidate key

1
0..1

references

Data structure::Base column

Data structure::Generated column

Base table

1 1..*

1
1..*

{disjoint, complete}

Figure 42 Possible ways to model uniqueness constraint

ColumnTable

Base table

1 1..*

Referential constraint

1..* 0..*

References

10..1

1

0..*

References
1..*1

Data structure::ColumnData structure::Table

Data structure::Base table

1 1..*

Data integrity::Referential constraint

-referenced column

1..*

0..*

Data integrity::Candidate key Data integrity::Unique constraint

0..11

-referenced columns

1

0..*

1..*

1

Data structure::Base table column

1 1..*

-referencing column1..*

0..*

(a)

(b)

Candidate key Unique constraint

-ordinal_position : Int

Data integrity::Referenced column
-ordinal_position : Sting

-position_in_unique_constraint : Int

Data integrity::Referencing column

Figure 43 Possible ways to model referential constraint

Problem 8: The ontology does not model correctly referential constraints
(see Figure 43).
1. It is not possible to understand whether the association between Column and

Referential constraint models referencing columns or referenced columns.

 66

2. The ontology causes the wrong impression that referenced columns or
referencing columns can be any columns, including columns of derived
tables and columns of transient tables.

3. Earlier we stated that we do not consider missing model elements.
However, Calero et al. (2006) show that a unique column, a field and an
attribute have an ordinal position. However, they do not show that ORSQL
pays attention to the ordinal positions of column names that are specified in
the referential constraint.

Comments: SQL:2003 states "The referenced table shall be a base table."
(Melton, 2003, p. 550) Therefore, referenced columns must be columns of a
base table. A referencing table is identified by the containing <table definition>
or <alter table statement> according to Melton (2003, p. 549). It is possible to
create or alter only base tables by using such statements. Therefore, we
conclude that referencing table is a base table and referencing columns must be
columns of the base table. "The <referencing columns> shall contain the same
number of <column name>s as the <referenced table and columns>. The i-th
column identified in the <referencing columns> corresponds to the i-th column
identified in the <referenced table and columns>. The declared type of each
referencing column shall be comparable to the declared type of the
corresponding referenced column." (Melton, 2003, p. 550) We conclude that a
DBMS has to know the ordinal positions of column names in <referencing
columns> and in <referenced table and columns> in order to enforce this rule.

Problem 9: The ontology states that each SQL-schema must contain at least
one schema element (see Figure 44).

Schema object SQL-schema
11..*

Schema object SQL-schema
1

-schema element

0..*

(a)

(b)

Figure 44 Possible ways to model schemas

Comment: Specification of schema elements is optional part of CREATE
SCHEMA statement (Melton, 2003, p. 519).

1.4.5 SQL Definition Schema
A database must include a catalog (sometimes also called "system catalog" or
"data dictionary"), which contains data that describes the data types, data
structures, data operators and integrity rules that are used in this database. The
structure of the catalog reflects the metamodel of underlying data model of a
DBMS where this database is created.

Among other things, the SQL standard specifies base tables that must belong
to DEFINITION_SCHEMA (Melton, 2003c) (see section 1.3.3). "The only
purpose of the Definition Schema is to provide a data model to support the
Information Schema and to assist understanding." (Melton, 2003c)

 67

If we think about the ORSQL metamodel as data model (meaning 2), then we
could create a set of base tables based on that model and these tables could be
part of a database catalog.

We evaluated the ORSQL metamodel by checking, whether the base tables of
the "Definition Schema" and their columns, which are specified by the SQL
standard (Melton, 2003c) have corresponding base tables and columns in a
hypothetical database that we could create based on the ORSQL metamodel.
Calero et al. (2006) used the same method in order to evaluate their SQL
ontology.

We do not present the metamodel of the entire SQL language in this
dissertation. Therefore, we found as we expected that some Definition Schema
base tables have no counterpart in our metamodel. These tables are:
• The tables that contain information about authorizations:

AUTHORIZATIONS, ROLE_AUTHORIZATION_DESCRIPTIONS
• The tables that contain information about privileges:

COLUMN_PRIVILEGES, ROUTINE_PRIVILEGES,
TABLE_METHOD_PRIVILEGES, TABLE_PRIVILEGES,
USER_PRIVILEGES, USER_DEFINED_TYPE_PRIVILEGES.

• The tables that contain information about the SQL schema objects that we
think are orthogonal to underlying data model (character sets, collations,
translations): CHARACTER_ENCODING_FORMS,
CHARACTER_REPERTOIRS, CHARACTER_SETS, COLLATIONS,
COLLATION_CHARCTER_SET_APPLICABILITY, TRANSLATIONS.

• The tables that contain specific information about the SQL standard or a
DBMS: SQL_IMPLEMENTATION_INFO, SQL_LANGUAGES,
SQL_SIZING, SQL_SIZING_PROFILES.

In addition, the ORSQL metamodel that is presented in this dissertation does
not model the concept "module", which is specified in SQL:2003 Part 4
"ISO/IEC 9075-4, Persistent Stored Modules". We think that ability to group
the routines is orthogonal to the data model.

If we want to create the metamodel of entire SQL, then we have to extend
the ORSQL metamodel in order to cover the previously mentioned constructs as
well.

1.5 Summary

The main goal of this chapter is to give a general overview of the ORTTM and
ORSQL data models and to compare them. It should make it easier to understand
the following chapters.

This chapter contains the following novel results:
• Proposal of the comparison method of data models. One precondition of

using this method is the existence of metamodels of the data models.
• Description of the ORTTM and ORSQL data models in the form of

metamodels.

 68

These metamodels are presented as UML class diagrams. Metamodel of a
data model provides more compact and visual overview about the model
components and their associations, compared to purely textual description. The
existing literature does not provide clear and complete specification of the
ORSQL data model. Instead, there is a large textual specification of SQL
database language. There are some other attempts to specify parts of the ORSQL
data model in the form of metamodel, but none of them is currently as extensive
as this work.
• Metamodel-based comparison of the ORTTM and ORSQL data models.

 We found mapping between the metaclasses and discrepancies of data
models based on the metaclasses. Existing comparison of these data models
(Date and Darwen, 2000, Appendix H) does not use this method. They present
textual feature-based comparison of principles of The Third Manifesto and
SQL. Metamodel-based comparison is similar to the feature-based comparison
because it has subjective nature. We had to decide when to create mapping
between the metamodel elements based on our understanding of the data
models. In our view, the biggest challenge of the metamodel-based comparison
method is the creation of the mapping of metamodel elements. One precondition
of this work is the existence of clear definitions of the data model constructs.
Therefore, the use of such comparison method could trigger the creation and
improvement of the definitions.

The advantages of metamodel-based comparison are:
1. Metamodels that are created by using popular modeling language make the

comparison more understandable to wider audience.
2. Part of SQL/Foundation document (Melton, 2003) is "SQL feature

taxonomy". It could be used in the feature-based comparison. However, the
additional advantage of the ORSQL metamodel is that it illustrates
interconnections of these "features".

3. In general, a feature could cover more than one data model concept. For
example, many prescriptions, proscriptions and suggestions of The Third
Manifesto have more than one corresponding metamodel element.
Therefore, in case of a metamodel-based comparison, we perform the
comparison between more fine-grained elements and the result can be more
precise.

4. It is easier to calculate metrics values based on metamodels. These values
help to see the relative complexity of the data models.

• Date and Darwen (2000) present examples about how ORSQL violates the
orthogonality principle. We found additional examples by studying the
metamodel of ORSQL.

• The description of the shortcomings of the ontology that is presented by
Calero et al. (2006).

 69

2 DATABASE MANAGEMENT SYSTEMS IN
EXISTING SOFTWARE ENGINEERING
SYSTEMS

Greenfield et al. (2004) define a formal model as an artifact that captures
metadata in a form that can be interpreted by humans and processed by tools.
Can we use data management systems for the artifact management?

This chapter gives an overview of the use of DBMSs in software
engineering systems (SES). We want to investigate observations and opinions
of researchers about using a RDBMS or an ORDBMS in order to build up a
SES. We want to show that the use of these kinds of DBMSs in the engineering
systems is already common practice, but there exists the need to improve these
DBMSs. Harrison et al. (2000) present summary of history, present situation
and future trends of SESs. Next, we list examples of SESs.
• CASE environment.
• Meta-CASE environment.
• System that helps to manage and provides access to repository of reusable

artifacts.
All these systems need to record artifacts and/or data about them

somewhere and can take advantage of database technology.
A CASE environment allows us to model a system by using a modeling

language that is typically a general-purpose language (like UML). Among other
things, this system could allow generating new models based on the existing
ones, generating code and documentation based on the models and generating
models based on the code.

A Meta-CASE environment (Zhang and Lyytinen, 2001) permits the
specification of new domain-specific modeling languages that use domain
specific vocabulary. We can use these languages in order to create artifacts.
This kind of system also allows us to specify possible operations with the
artifacts.

Many of these systems record their data directly in files (we call them file-
based systems). Some historical reasons of such design decision could be:
• Limitations of DBMSs (see section 2.3). However, DBMSs have improved

and evolved over the course of time.
• Expectation that file-based systems have better performance compared to

DBMS-based systems.
• DBMS-based system requires the installation of additional software.

File-based systems have their own serious problems. Connolly and Begg
(2002, p.12-14) list limitations of applications that access directly files in order
to record and retrieve data:
1. Data that is scattered across different files is separated and isolated.

 70

2. Lack of central database could cause the duplication of data (in this case
artifacts) in the different computers.

3. Application code depends on the physical structure and storage of data files.
4. It is possible that an application cannot access the data in a file that is

created by another application, due to incompatible file formats.
5. New queries based on the data have to be written by an application

developer and therefore getting answer to unplanned queries takes quite a
lot of time.

There are different views, whether a file-based system has better
performance or not compared to a DBMS-based system. Gruhn and Schneider
(1998) write: "If process models were stored in files, the access to this
information would demand to open many files. This would not be fast enough
when dealing with large numbers of related processes." The direct use of files
buy a modeling tool also causes problems with the model partitioning and
references between models (Greenfield et al., 2004).

If a system (CASE, Meta-CASE or other) uses help of a DBMS and a
database that is in the local computer, then it helps to avoid problems 1, 3, 4, 5.
Miguel et al. (1990) have come to the similar conclusion. They classify the
architecture of CASE environments as tool centric or data/knowledge centric.
This classification also applies to any other software engineering environment
that is installed in the same computer through which it is used. Data is scattered
across different files that are used by different sub-tools of a CASE environment
in case of the tool centric architecture. Data that is used by different sub-tools is
in one repository database (knowledge base) in case of the data/knowledge
centric architecture. Miguel et al. (1990, p. 418) see many advantages of
data/knowledge centric architecture, including:
a) "The data base becomes the medium of communication and coordination

between tools." (Miguel et al. 1990, p. 418)
b) Each tool uses the set of views that present the required data in the required

format.
c) System developer does not have to implement the features that are available

in the database system.
An example of CASE system that records data in a database is PARallel

Software Engineering CASE system (Gray, 1997). However, even the system
that is not an environment, but a single tool, can take advantage of the database
systems because of the advantage (c). In addition, in this case it is easier to
integrate this tool with an existing system that also uses a database. An example
of a tool that could use a database is pattern-based code generator. It could be a
separate tool or part of a CASE or a Meta-CASE environment or part of a
system that deals with the management of patterns. Brash and Stirna (1999)
define pattern as "accumulated experience of various business practices that
may be useful for tackling similar issues under similar circumstances." Each
pattern has a name and emphasizes only one problem in a big problem-space.
For example, Florijn et al. (1997) presents a tool that among other things is able
to generate program elements based on a selected pattern. Part of the system is

 71

database of fragments. A fragment is a design element that has a type (class,
method, pattern, association, etc.) and roles that can contain references to other
fragments (Florijn et al., 1997).

We note that a CASE or a Meta-CASE environment could be a multi-user
environment that records its data directly in a central database. It helps to avoid
problems with the duplication of data. For example, web-based system EA
WebModeler that records data in a central database provides form-based web
interface for creating system specifications. In Chapter 4, we propose web-
based modeling system, which records models in a central database.

Another example of the software engineering system is a system that helps
to manage the shared database of reusable software engineering artifacts. We
note that many authors use the concepts "element" or "component" instead of
the concept "artifact". This kind of system "provides organization, storage,
management, and access facilities for reusable software components."
(Constantopoulos et al., 1995) These components could be created during any
phase of software development life cycle. An example of this kind of system is
Software Information Base (Constantopoulos et al., 1995).

It is possible to use different approaches in order to collect and publish these
reusable components. For example, an enterprise that develops systems consists
of the development organization and enterprise factory according to Experience
Factory (EF) approach (Basili et al., 1994). These parts of an organization have
distinct goals. The mission of the development organization is to develop and
deliver systems. The mission of the EF is to learn from experience and improve
software development practice. The Quality Improvement Paradigm (QIP)
specifies six steps that are used in EF in order to plan and execute a project,
analyse its results, and package the gained experience for later reuse. Only after
that, the experience elements that are recorded in the experience base become
available to the public. Q-Labs Experience Management System (Seaman et al.,
1999) is an example of the system that implements EF approach (see section
2.2.4.1). It is possible to present experience elements in the form of patterns.
Matjás (2006) presents an example of system that makes patterns electronically
available (see section 2.2.1). This system deals with the object-oriented design
patterns (Gamma et al., 1995). Many printed catalogues of different types of
patterns have emerged: object-oriented design patterns (Rising, 2000), (Larman,
2002), data modeling patterns (Hay, 1996), (Silverston, 2001), analysis patterns
(Fowler, 1997), project management patterns (Brown, 2000) and modeling
guidelines patterns (Evitts, 2000) are some of the examples. These catalogues
should be in electronic form together with a search engine, in order to be more
useful.

There are also systems that manage data about the artifacts. Artifacts
themselves are distributed between different computers. An example of such
system is Guide to Available Mathematical Software (GAMS) (Boisvert, 1994)
that contains data about the software modules. There is also system Agora
(Seacord et al., 1998) that is search engine of software components. It searches

 72

components that are available in the Internet, collects data about them and
compiles an index (see section 2.2.2).

All the previously mentioned systems must contain an information
management component. This component must satisfy requirements to a
repository system, at least in some extent. Therefore, in the next section (see
section 2.1) we describe shortly requirements to the repository systems. A
repository system consists of a repository manager (engine) and a repository
(database). "A repository is a shared database of information about engineered
artifacts produced or used by an enterprise." (Bernstein and Dayal, 1994) A
repository manager provides services for modeling, retrieving, and managing
objects in a repository and therefore must offer functions of a DBMS and
additional functions (Bernstein and Dayal, 1994).

It is possible to build a software engineering system on top of a commercial
repository system. Another possibility is to build it on top of a DBMS. In this
case, we have to implement the necessary functionalities of a repository system
that a DBMS does not automatically provide within the database or in the
application code. The amount and simplicity of this additional work depends on
the properties of underlying data model of a DBMS.

2.1 Requirements to the Repository Systems

Bernstein and Dayal (1994), Singh and Han (1996), Bernstein (1998) and Blaha
et al. (1998) describe necessary functionalities of the repository systems.
Emmerich (1995) and Barghouti et al. (1996) present requirements to the
information management component of Process-Centered Software Engineering
Environments. Tombros and Geppert (1995) present requirements to a DBMS
that can be used in order to implement a Process-Centered Software
Development Environment.

Some of these requirements are fulfilled by the DBMSs:
1. A DBMS is built up based on a data model that determines the data

structures, operators and integrity checking mechanisms that are usable in a
repository database.

2. Data Manipulation and Data Definition Languages that conform to this data
model.

3. Access control.
4. Transactions.
5. Possibility to distribute data between different servers.
6. Possibility to replicate data.
7. Possibility to backup and restore data.
8. User interface to the database administrator.
9. Programming interface.

Functionalities (3) – (9) are orthogonal to the underlying data model of a
DBMS.

The creation of a repository system or an information management
component of SES from scratch means the reimplementation of the

 73

functionalities of DBMSs. Earlier researches have pointed to the problems of
DBMSs that limit their use in the repository systems. For example, DBMSs do
not provide many of the value-added services of the repository systems (Sidle,
1980) and do not meet the data storage needs of the repository systems (Miguel
et al., 1990). The shortcomings of data models and DBMSs have caused a lot of
criticism (see section 2.3).

The database technology has evolved and matured over the years. Section
2.2 refers to many systems that use a general-purpose DBMS in order to
manage engineering artifacts and data about them. Dittrich et al. (2000) also
note that the use of general-purpose DBMSs in the repository systems gains
popularity.

Next, we list the functionalities that are specific to a repository system
according to Bernstein and Dayal (1994) and Bernstein (1998):
1. Reuse repository should be adaptable to the needs of a specific organization

and reuse project in order to support management of all required artifacts
(Feldmann, 1999). Therefore, a designer should be able to dynamically
extend the schema of the repository database. The extension activities
include the definition of new types/operators and modification of the
existing ones.

2. The system must be able to react to different events. The events could
trigger actions. Examples of the events are that a deadline has passed or all
the goals of a milestone have been achieved. The triggered actions could be
the generation of code or document or notification of users. Jasper (1994)
uses the concept "active repository" in order to refer to the repositories that
offer this functionality.

3. The system should allow users to acquire and release exclusive or shared
rights on artifacts by checking them in and out. Haskin and Lorie (1982)
write that this functionality allows users to transport a complex object to
their workspace in order to modify it. The system has to lock all parts of
this object. The modification could last hours or days rather than minutes.
The system should update the object after the end of modification,
synchronize the concurrent updates, release the locks and hence make the
object fully available to the users of the repository.

4. The system should allow us to manage semantically meaningful snapshots
of selected artifacts. These snapshots are called versions. The system should
be able to restore a particular artifact version in order to present it to the
users, create a new version based on it or compare it with other artifacts.

5. The system should allow us to manage bindings (called configurations)
between a version of a composite object that consists of other objects and a
version of each of its (versioned) components.

6. The system should allow us to manage views to the objects in a repository.
These views, which are called contexts, determine, for example, user
preferences, and rules and constraints that are applicable to the objects in
them.

 74

7. The system should allow us to track the state of an object in the repository
on the basis of a specified workflow control model.

8. The system must be able to manage relationships between the objects that
are recorded in the repository.

9. The repository system product could provide built-in database schemas that
are designed according to some information (data) models (meaning 2).
These ready-made schemas should allow us to record different engineering
artifacts.

Additional value-adding features that a repository system could provide:
1. The system should allow exporting and importing artifacts from various

sources (Blaha et al., 1998).
2. The system should have reverse engineering and code generation

capabilities (Blaha et al., 1998).
3. The system should allow us to specify the mapping between the elements of

different kind of artifacts that are recorded in the repository (Blaha et al.,
1998).

4. The system should allow users to specify forms and reports that are used in
order to access data in the repository (Blaha et al., 1998). After changing
the schema of the repository database, a user interface has to be modified as
well. It must be possible to describe mapping between the elements of
repository schema and elements of the user interface.

5. A user of a repository system must have possibility to adjust the user
interface as well as mapping between models and physical schema (Blaha et
al., 1998).

6. The system should allow us to enforce the existing conventions and to
define new ones (Blaha et al., 1998). For example, a database designer who
works with a physical database design model could enforce the convention
for naming integrity constraints.

7. The system should use hypertext (Oinas-Kukkonen and Rossi, 1999).
Artifacts could contain hyperlinks to other artifacts and other resources both
within as well as outside the repository. These links do not depend on the
relationships that are recorded in the repository.

8. Liu et al. (1996) require verification functions that checks correctness of an
artifact against some criteria.

9. Liu et al. (1996) require script generation function, the purpose of which is
to generate serialized versions of the recorded artifacts.

2.2 Existing Software Engineering Systems

It is possible to classify (software) engineering systems based on their use of
DBMSs in order to build up an information management component:
1. Systems that do not use a DBMS at all (see section 2.2.1).

• Systems that use custom-built information management components.
• Systems that use a commercial repository system.

 75

2. Heterogeneous systems that use the different means for the data
management (see section 2.2.2).
• Systems that use a DBMS for the data management as well as record

data in the files that are not managed by a DBMS.
• Systems that use more than one DBMS (possibly with the different

underlying data models).
3. Systems that use a DBMS for the management of all the data. Barghouti et

al. (1996) calls it "closed world view of existing data management
systems". A DBMS could be either:
• An engineering DBMS that is created specifically for the engineering

applications. This kind of DBMS can use the same data model as some
general-purpose DBMS or it can use specifically designed data model
that supposedly makes management of engineering data more easier
(see section 2.2.3).

• A general-purpose DBMS (see section 2.2.4). Batory and Thomas
(1997) write: "General-purpose DBMSs are heavyweight; they are
feature-laden systems that are designed to support the data management
needs of a broad class of applications."

Next, we list different possibilities for recording artifacts in case the system
uses the help of a DBMS:
1. An artifact is in the files that are not managed by a DBMS. A database

contains references to these files. Bernstein and Dayal (1994) refer to some
problems of this approach - data changes in the files cannot be part of
database transactions, it is difficult to ensure consistency of a database and
the content of files and it is difficult to make queries based on artifacts.

2. An artifact is recorded in a database without decomposing it (see section
3.1.1). For example, an artifact can be recorded as a large object (LOB) in
case of using ORDBMSSQL (see section 3.5.1)

3. An artifact is divided into components. These components are recorded in a
database (see sections 3.1.2 and 3.1.3).

Next sections contain examples of the software engineering systems. We
concentrate our attention to the systems that have been described in the
scientific papers. We do not claim that these lists are complete. Some of the
examples are about the systems that are not used in the software engineering
field. It shows that we can use DBMSs in different kinds of engineering
systems.

2.2.1 Systems that do not Use a DBMS
This section refers to the systems that do not use a DBMS at all (see Table 7).

Table 7 Examples of software engineering systems that do not use the help of a
DBMS

ID) Name: Content. Comments. Comments about data
management

Reference

1) Arcadia: Software objects that are Custom-built object Taylor et

 76

ID) Name: Content. Comments. Comments about data
management

Reference

either internal data structures or
external products. Examples of internal
data structures are parse trees, symbol
tables, and abstract syntax graphs.
Examples of external products are
source code, executable modules,
documentation and test plans.

management system. al. (1988)

2) Process WEAVER: Fragments of
process description.

Custom-built component
that records data in UNIX-
files.

Fernström
(1993)

3) Software Information Base (SIB):
Data about the reusable software
components that specify requirements,
designs and implementations of
software.

Custom-built object
management system.

Constanto
poulos et
al. (1995)

4) Business rules Commercial repository
system Rochade.

Herbst
(1996)

5) Conceptual Schema Reuse (CSR)
toolkit: Reusable conceptual schema
components. These components contain
schema descriptions as well as
semantic descriptors, certification data,
reuse history and reuse guidelines.
Comment: This toolkit provides reuse-
oriented services to KHEOPS database
design environment.

Custom-built repository
system with the selection
and insertion tools. Part of
the system that deals with
the repository management
is implemented by using
Eclipse Prolog.

Ruggia
and
Ambrosio
(1997)

6) GraMMi (graphical meta-data-
driven modeling tool): Conceptual
design models of data warehouses.

Commercial repository
system Softlab Enabler.

Sapia et
al. (2000)

7) Collection of analysis patterns that
are usable in ArgoCASEGEO tool.
Analysis pattern in this context is any
part of a requirement analysis
specification that could be used during
the GIS application development.

The collection of patterns is
recorded in a catalog that is
structured through directory
architecture. Each pattern is
recorded in a separate
directory. A directory
contains at least a XMI file
with a model and a XML
file with the data about a
pattern.

de Freitas
Sodré et
al. (2005)

8) Object-oriented software design
patterns that were presented by Gamma
et al. (1995).
Comment: The system is a web-based
catalogue.

Patterns are recorded as
OWL ontology (in XML
files).

Matjás
(2006)

9) According to OMG Reusable Asset
Specification (RAS), a reusable asset
that describes a solution to a software
development problem should be

The specification suggests
that reusable assets should
be collected to the central
RAS repository. The

OMG
ptc/04-06-
06

 77

ID) Name: Content. Comments. Comments about data
management

Reference

implemented as a package file. specification does not
explicitly prohibit or advise
to use a DBMS in order to
build up a repository.
However, it seems that one
way is to do it without using
the help of a DBMS.

2.2.2 Heterogeneous Systems
This section refers to the systems that do not record artifacts in a database that is
created by using a DBMS. The databases contain only data about the artifacts
and references to them (see Table 8). The artifacts themselves are in the files
that are not managed by the DBMS.

Sign "-" in the columns that contain data about DBMSs (see Table 8-Table
14) means that we do not know the concrete DBMS product that was used in
order to build up a particular system.

Table 8 Examples of software engineering systems that do not record all the data
in a database

ID) Name: Content. Comments. DBMS type:
product

Reference

1) Project Master Data Base (also uses the concept
"environment database"): Data that is gathered during
the entire project lifecycle (persons, tools, products,
milestones, requirements, software components, test
cases etc.).
Comments: Artifacts that contain large amount of
textual data are recorded in the files that are not
managed by a DBMS.

RDBMS:
Ingres

Penedo
(1987)

2) The C Information Abstraction System (CIA):
Source code files of C programs and data about the
following global elements of C programs: files,
macros, global variables, data types, and functions.
Comments: The data that is extracted from the source
code is recorded in a database. The code is in the files
that are not managed by a DBMS.

Any
RDBMS is
suitable

Chen et al.
(1990)

3) XREF: Data about programs, including data about
files, functions and relationships.
Comments: Each programming language that is
supported by XREF must have corresponding program
analyser. The data that is extracted from the source
code is recorded in a database. The code is in the files
that are not managed by a DBMS.

RDBMS:
XREFDB

Lejter et
al. (1992)

 78

ID) Name: Content. Comments. DBMS type:
product

Reference

4) Guide to Available Mathematical Software
(GAMS) Repository: Index of the mathematical or
statistical software modules or packages that are
physically in the different repositories (and computers).
Index contains also references to abstracts,
documentation, source code, examples and tests that
are associated with the modules or packages.

RDBMS:
RIM DBMS

Boisvert
(1994)

5) REGINA Software Library project: Data about
the software components, including their classification.
These components can be at different levels of
granularity (classes, class libraries, binary components,
but also frameworks) and could be implemented using
different programming languages.

RDBMS:
Oracle

Behle
(1998)

6) Agora search engine: Data about the software
components that are available in the Internet.
Comments: The system compiles the index
automatically by going out over the Internet.
Components themselves are in the different computers.

- Seacord et
al. (1998)

7) Software Engineering Experience Environment
(SEEE): Experience elements that are captured
according to the Enterprise Factory approach (Basili et
al., 1994).
Comments: SEEE consists of an Experience Base (EB)
specific part and an artifact specific part. The artifacts
could be recorded in a database or in the files that are
not managed by a DBMS. The EB specific part of the
system is used in order to manage characterizations of
these artifacts.

ORDBMS Althoff et
al. (1999)

8) Online-repository for the Embedded Software
(ORES): Software components.
Comments: Code, tutorial, documentation are recorded
in files that are not managed by a DBMS

ORDBMS:
Oracle8i

Yen et al.
(2001)

9) OSCAR: Active software artifacts and process data
about them. Process data includes data about the actors
who change the artifacts, the rationale associated with
those changes and tools that were used in order to
create artifacts.
Comments: Process data is recorded in a database and
artifacts are in the files that are not managed by a
DBMS. Authors think that if they record artifacts
outside the database, then it helps to improve
performance of the system. However, they
acknowledge the loss of the query and transaction
services. OSCAR is an open-source system that is part
of the distributed software development environment
GENESIS.

- Boldyreff
et al.
(2002)

 79

ID) Name: Content. Comments. DBMS type:
product

Reference

10) AGAP: Software patterns and associated diagrams.
Comments: Software patterns are recorded in a
database and their associated diagrams are recorded in
a shared directory as XMI files.

- Conte et
al. (2004)

The problem of work (Lejter et al., 1992) is that the authors use the name

XREFDB in order to refer to a DBMS as well as to a database. XREFDB
DBMS is part of FIELD programming environment and therefore it is fair to
say that it is not a general-purpose DBMS, but rather a simple embedded
DBMS that accompanies a complex software tool.

Mocko et al. (1994) presents an example of an engineering system (other
than software engineering) that uses a RDBMS (MySQL) in order to record
data about behavioural models. The behavioural model in this context is "a
model that captures the mathematical description of the physical behaviour of a
product" (Mocko et al., 2004). Data about the models contains references to the
files that contain executable models.

2.2.3 Systems that Use Only an Engineering DBMS
One possibility to classify the research about the Engineering DBMSs is
according to the results of the research.
1. A proposal of a data model that could be used by an Engineering DBMS.

This data model is supposedly better suited for the management of
engineering artifacts than the existing ones. Table 9 contains names and
references of some of these models. These models typically use principles
of object-orientation together with the ideas from the hierarchical or
network data models.

2. A data model together with the implemented DBMS that uses this data
model. Examples of engineering DBMSs are PRIMA (Prototype
implementation of the MAD model) (Härder et al., 1987), ROSE (The
Relational Object System for Engineering) (Hardwick and Spooner, 1989),
GRAS (for GRAph Storage)(Kiesel et al., 1995) and Cons-Base (Savnik et
al., 1993).

3. A system that uses some engineering DBMS in order to manage
engineering artifacts. Table 10 refers to some of these systems.

Table 9 Examples of special data models for the engineering databases

Name Reference
Hybrid relational and network data model Haynie (1981)
Molecule-Atom Data Model Härder et al. (1987)
ROSE (The Relational Object System for Engineering)
Data Model

Hardwick and
Spooner (1989)

Construction Database Model. Savnik et al. (1993)
GRAS (Graph Storage) Data Model Kiesel et al. (1995)
Contiguous Connection Model Wurden (1997)

 80

Table 10 Examples of software engineering systems that use an Engineering DBMS

ID) Name: Content. Comments. DBMS
product

Reference

1) EPOS: Process models and process artifacts.
Comment: EPOS is Process-centered Software
Engineering Environment. "EPOS-DB is a proprietary,
client-server database to store process models in the
context of versioned, nested, long and cooperating
transactions. It has a structurally object-oriented data
model and its own change-oriented version (COV)
model" (Ambriola et al., 1997).

EPOS-DB

Ambriola et
al. (1997)

2) MultiText Analytical Repository System
(MARS): Computer program source code, the analyses
results of this code and supplementary data.

MultiTex Cox et al.
(1999)

There are more examples of engineering systems that use an Engineering

DBMSs but these systems are not for the software engineering (see Table 11).

Table 11 Examples of other types of engineering systems that use an Engineering
DBMS

ID) Name: Content. Comments. DBMS
product

Reference

1) MARVEL: Artifacts that are produced by the users
of an engineering project.
Comment: This system is similar to the Meta-CASE
systems in the sense that it allows us to adapt the
system to the needs of a particular project. "MARVEL
is a knowledge-based engineering environment that can
be instantiated with the artifacts and tools for a specific
engineering project, together with rules regulating the
(technical) conduct of the project." (Kaiser et al., 1988)

Custom
built
database-
system

Kaiser et al.
(1988)

2) Design objects.
Comment: The system uses the hybrid approach
according to which detailed data about the design
objects is recorded in a ROSE database and index of
this data is created in a relational database. Design
objects can, for example, be design circuits. The index
helps to get an overview of dependencies between the
objects and the results of changing the objects.

ROSE Hardwick
and Samaras
(1989)

3) Cons-Cad: CAD models.
Comment: This system uses Construction Database
Model.

Cons-
Base

Savnik et al.
(1993)

4) M-Sync: Mechanical engineering data.
Comment: The system allows us to synchronize and
distribute the data. AMOS II DBMS is a main-memory
resident ORDBMS that has the peer-to-peer

AMOS II
(Active
Mediator
Object

Ma et al.
(2005)

 81

ID) Name: Content. Comments. DBMS
product

Reference

communication capability. System)
DBMS

2.2.4 Systems that Use Only a General-purpose DBMS
This section refers to the systems that use the help of a general-purpose DBMS
and record data about the artifacts as well as the artifacts themselves in a
database.

2.2.4.1 Systems that Use a RDBMS

This section refers to the systems that use RDBMSs that conform to SQL:1992
or earlier standards (RDBMSSQLs). There are conflicting views whether the
relational data model is suitable to use in the engineering applications.
Hardwick (1984) concludes based on the literature study that the relational
systems are more suited to design applications than the systems that use the
network models because (relational) "algebra enables the relational system to
calculate relationships dynamically, on demand" and user of relational system
does not have to use explicitly pointers. On the other hand, Katz (1990) writes:
"Other models, such as the relational model, require rather drastic extensions to
form a suitable base for engineering design applications." Dittrich et al. (2000)
is also not against the view that "the relational data model is generally not
considered powerful enough for the modeling of software repositories".
Bernstein et al. (2000) and Dittrich et al. (2000) note that object-oriented
DBMSs (OODBMSs) and object-relational DBMSs (ORDBMSs) are suitable
platforms on which to implement model management systems and software
repositories, respectively. Probably they do not mention relational databases as
suitable platform due to criticism towards RDBMSSQLs (see section 2.3).
Despite that, there are many examples of systems that use a RDBMSSQL (see
Table 12).

Table 12 Examples of software engineering systems that use a RDBMS

ID) Name: Content. Comments. RDBMS
product

Reference

1) OMEGA: Fine-grained data about the procedures,
statements, variables etc. that make up a program,
which is created by using Pascal-like language called
Model. System extracts data from the source code
and records it in 58 relations.

INGRES Linton
(1984)

2) Class library management system for object-
oriented programming: Data about the classes that
belong to the class library.

INGRES Ng et al.
(1993)

 82

ID) Name: Content. Comments. RDBMS
product

Reference

3) Integrated toolset for program understanding:
Repository contains data that is extracted from the
program code (data items, data types, procedure calls
etc.).
Comment: The repository is used by the tools Rigi
and REFINE. Rigi has to discover abstractions from
software representations and present them in a
meaningful way to software engineers. REFINE
helps to cluster program fragments.

SQL/DS Mylopoulos
et al. (1994)

4) A CASE tool that fulfils the requirements of
PARSE (PARallel Software Engineering) project:
Models (process graphs) that are created by using the
CASE tool. "Process graphs promote a structured,
top-down approach to parallel software
development." (Gray, 1997, p. 238)

Oracle Gray (1997)

5) JB (Jade Bird) Component Library system –
JBCL: Software components.

Sybase Keqin et al.
(1997)

6) Conceptual and physical data models and mapping
between their elements. For example, the mapping
between attributes of entity types and columns of
tables.

MS-Access

Blaha et al.
(1998)

7) APSARA - A Web-based Tool to Automate
Pattern Retrieval and Synthesis: Reusable patterns
that help to automate the design of object-oriented
systems. The database contains also class models
that are associated with patterns. These models
specify classes, their attributes, methods and
relationships. Comments: The Apsara system creates
object-oriented specification (class model) based on
the description of requirements in natural language.
It searches significant words from the text and then
searches patterns based on these words. The system
combines different patterns in order to create a final
model.

MS-Access Purao (1998)

8) Repository of FUNSON net approach: process
models that could be used for the workflow
management.
Comment: "The FUNSOFT net approach has been
implemented in a commercially available workflow
management environment, called Leu." (Gruhn and
Schneider, 1998)

Oracle Gruhn and
Schneider
(1998)

 83

ID) Name: Content. Comments. RDBMS
product

Reference

9) Q-Labs Experience Management System
(EMS): Software experiences that are captured
according to the Enterprise Factory approach (Basili
et al., 1994). A perspective is a set of experience
packages. "A perspective is defined by three parts: a
classification part, a relationship part, and a body
part." (Seaman et al., 1999). The perspective body
has associated files that are recorded in a database as
large objects.

- Seaman et
al. (1999)

10) Models that specify requirements and object-
oriented implementation of a large commercial
application system - stock broker trading system
GEOS. The system also records associations between
the requirements and implementation elements.
Comments: The system allows users to specify
requirements and collects data about the
implementation by reverse-engineering source code.

SQL-Access Sneed and
Dombovari
(1999)

11) BORE (Building an Organizational
Repository of Experiences): Cases that describe
project-specific solutions to problems that occur
during the software development activities. The
system also allows us to record associations between
the cases, associations between activities, states of
activities, options for the activities, questions and
answers, references to the documents and domain
rules.

- Henninger
(2001)

12) R2: Specifications of requirements.
Comments: The system allows us to specify
requirements as diagrams.

Oracle Lopez et al.
(2002)

13) Aspects that are used in AspectJ program.
Aspects are constructs of Aspect Oriented
Programming that help to separate crosscutting
concerns (Rashid and Loughran, 2003).

- Rashid and
Loughran
(2003)

14) Business rules Access Chisholm
(2003)

15) UML Model Measurement Tool (UMMT):
UML class-models and state models.
Comments: The system reads data from XMI files
and populates a database in order to make possible
queries based on the models.

MySQL Lavazza and
Agostini
(2005)

16) EA WebModeler: Commercial system for the
management of architecture artifacts.

- EA Web
Modeler
(2006)

R2 and FUNSON use ORDBMSSQL Oracle. We placed descriptions of these

systems to the list of systems that use a RDBMS because they do not use object-
relational features of Oracle.

 84

System RASES (Relational Algebraic System Entity Structure) (Park et al.,
1994) helps to manage models of electronic schemas and simulation. It is an
example of an engineering system (other than software engineering) that uses a
RDBMS (INFORMIX). In addition, Blanning (1982) and Tsai (2001) suggest
that it is possible and reasonable to record models in a relational database.
These models are abstract representations of some real-world problems.
Examples of such models are transportation or production optimisation
problems. Authors do not present working system, but rather investigate
possibility of using RDBMSs for recording and managing these models.

2.2.4.2 Systems that Use an OODBMS

Ditrich et al. (2000) present an overview of the systems that use an OODBMS
in order to manage engineering artifacts. Table 13 contains some examples of
this kind of systems.

Table 13 Examples of software engineering systems that use an OODBMS

ID) Name: Content. Comments. OODBMS
product

Reference

1) SPADE-1: Process models and process artifacts.
Comments: SPADE-1 is Process-centered Software
Engineering Environment.

O2 Ambriola et
al. (1997)

2) Design level specification of enterprise workflow
models.

ObjectStore Liu et al.
(1996)

3) SPOOL (Spreading Desirable Properties into
the Design of Object-Oriented, Large-Scale
Software Systems) design repository: Design-level
data that is extracted from the source code.
"The schema of the design repository is based on an
extended version of the UML metamodel 1.1."
(Keller et al., 2001)

POET Keller et al.
(2001)

An example of an engineering system that is not software engineering

system and uses an OODBMS is NIST Design Repository (Szykman et al.,
2000). Its database contains design artifacts and data about them. The system is
built by using ObjectStore OODBMS. The paper contains an example of an
artifact that is the result of the mechanical engineering process.

2.2.4.3 Systems that Use an ORDBMS

Bernstein (2003) writes about the implementation of a model management
system and concludes: "Given technology trends, an object-relational system is
likely to be the best choice, but an XML database system might also be
suitable." ORDBMS in this case is a DBMS, the underlying data model of
which is ORSQL. It allows us to define user-defined types (UDTs) and user-
defined routines (UDRs), including user-defined functions (UDFs). Table 14
refers to the systems that use an ORDBMS in order to manage artifacts.

 85

Table 14 Examples of software engineering systems that use an ORDBMS

ID) Name: Content. Comments. ORDBMS
product

Reference

1) Knowledge and Data Base for Software Systems:
program sources, symbol tables, abstract syntax trees.
Comments: System is able to read C program code and
produce symbol table and abstract syntax tree.

POSTGRES Miguel et al.
(1990)

2) CommonKADS models.
Comments: Database schema is extended version of the
generic schema for object modeling called the Defence
Command and Army Data Model (DCADM).

Oracle Allsop et al.
(2002)

3) SFB-501 Reuse Repository: Software experiences
that are analysed and packaged according to the
Quality Improvement Paradigm (QIP) steps 5-6 as well
as complete experiment documentations, structured in
accordance with QIP steps 1-4.
Comments: This system is designed to support the
Enterprise Factory approach (Basili et al., 1994). It
uses extreme extending (X2) approach that means that
entire application logic as well as major parts of the
presentation layer are implemented using the
extensibility infrastructure of an ORDBMS.

Informix
IDS/UDO

Feldman et
al. (2000),
Mahnke and
Ritter (2002)

4) SERUM (Generating Software Engineering
Repositories using UML): Design artifacts.
Comments: SERUM provides framework for building
customized repository managers for the management of
different types of artifacts. A repository designer has to
create UML specification of a new repository manager
by using domain guidelines (specified in OCL), design
patterns and templates (Härder et al., 2000). The
system records specification and generates code for
creating the repository manager and database. The
repository database is built up by using typed tables.
UDFs implement reading and recording (CRUD)
services (Kovse et al., 2002).

Informix
IDS/UDO

Härder et al.
(2000),
Kovse et al.
(2002)

5) UML Repository: UML models.
Comments: The schema of its database is created based
on the UML metamodel. The repository database is
built up by using typed tables. Demuth and Hussman
(1999) explain that it is possible to generate relational
database constraints from the OCL constraints. This
system is an example of that because "OCL invariants
defined in the UML meta-model are mapped to SQL
constraints" (Ritter and Steiert, 2000).

Informix
IDS/UDO

Ritter and
Steiert
(2000)

 86

ID) Name: Content. Comments. ORDBMS
product

Reference

6) ORIENT (Object-based Relationship Integration
ENvironmenT). This experimental system extends
ORDBMS in order to allow us to preserve the
semantics of relationships in a database. The authors
use management of software artifacts as an example of
a field that can take advantage of such system.

Informix
IDS/UDO

Zhang et al.
(2001)

An example of an engineering system that is not software engineering

system and uses an ORDBMS is DUCADE (Domain-Unified Computer Aided
Design Environment) (Montero et al., 2002). Its database contains design
features of mechanical and electric engineering domains and couplings between
these features. The database is created by using Oracle8i ORDBMS.

2.3 Problems of Using the Relational Model and RDBMSSQLs
in Engineering Systems

Next, we classify problems of the relational model and RDBMSSQLs based on
the literature study and briefly analyse them in terms of The Third Manifesto.
The study covers many papers that are referenced in the previous section (see
section 2.2). They refer to the problems of the relational data model and
RDBMSSQLs. We remind, that the relational model in this case is the underlying
data model of SQL:1992 or previous standards. Researchers and developers
present these problems as reasons why a relational database is not the best type
of database that can be used in the (software) engineering systems. On the other
hand, this dissertation tries to show that the relational model (ORTTM model) is
suitable for the engineering systems. Therefore, we have to be familiar with the
criticism towards the relational model and systems that implement it.

Often the researches point only to some problems that are the most important
in their opinion. This study is different because it presents references to many
problems. Table 15 presents problems of the relational model that are
mentioned in the literature.

Some researchers have raised the issues that are actually orthogonal to the
relational model. We adopt the approach taken by Date and Darwen (2000, p.
21): "The question as to what data types are supported is orthogonal to the
question of support for the relational model." Transaction model is also in our
view orthogonal to the relational model. Date and Darwen (2000) have
requirement for nested transactions in the section of the Other Orthogonal
Prescriptions.

Hierarchic and networked data can be represented relationally (Pascal, 2000,
chap. 7). The issue of making queries based on data that represents graph
structure is addressed in The Third Manifesto. The Relational Model Very
Strong Suggestion no. 6 (Date and Darwen, 2006) requires that a relational
language should provide shorthand for expressing generalized transitive closure

 87

operation. The paper of Agrawal and Jagadish (1987) is an example of the work
that presents and compares algorithms for computing the transitive closure of
large database relations. They emphasize the importance of transitive closure as
a primitive database operator. The latest versions of the SQL standard, which
specify "WITH RECURSIVE" phrase (Melton, 2003), also allow us to create
recursive queries.

Fragmentation increases complexity to the user of a database according to
Gray (1997). Virtual relvars (views) help to overcome this problem in
ORDBMSTTMs. A view expression can join values of relvars that contain data
about an object. The view can have relation-valued attributes, the values of
which are calculated using the relational operator GROUP that provides relation
"nest" capability (Date and Darwen, 2000).

Table 15 Problems of the relational model according to literature

Problem Authors who mention that problem
It is not powerful, flexible and expressive
enough.

Hardwick and Spooner (1989),
Constantopoulos et al. (1995),
Ma et al. (2005)

Fragmentation. Data about the object is in
different relations (tables).

Kemper et al. (1987),
Liu et al. (1996),
Gray (1997)

Performance problems due to fragmentation. Kemper et al. (1987),
Hardwick and Spooner (1989),
Gray (1997)

Super/sub typing is not supported Liu et al. (1996)
Lack of powerful type system that could allow
"complex" types.

For example, Hardwick (1984) thinks that the
relational model is invented for flat,
homogeneous entities.

Hardwick (1984),
Taylor et al. (1988),
Emmerich et al. (1992),
Liu et al. (1996),
Gray (1997)

An inability to represent heterogeneous
relationships.

Hardwick (1984)

Poor support to data that represents graph
structures (including hierarchies). Lack of
facilities for making queries based on such
data including finding transitive closure.

Hardwick (1984),
Katz (1990),
Emmerich et al. (1992),
Gray (1997),
Lange et al. (2001),
Yen et al. (2001)

Inappropriate transaction models for the
engineering systems.

Hardwick and Spooner (1989)

Detailed semantics of the relvars have to be
captured outside the relational database.

Wurden (1997),
Engle (2003)

Lack of possibility to preserve the semantics
of relationships.

Zhang et al. (2001)

 88

Gray (1997) writes that fragmentation may cause performance problems.
However Stonebraker et al. (1991) and Date (2005) think that performance is
not a data model issue but an implementation issue. In addition, some
researches about using relational databases in order to record engineering
artifacts do not see performance as a problem. Allsop et al. (2002) write: "We
are confident that there is no performance problem in extracting data from the
database using complex PL/SQL queries."

The internal predicate a relvar is the conjunction of all the constraints that
apply to this relvar (Date, 2003). The DBMS has to understand and enforce this
predicate. "Internal predicates are (loosely) what the data means to the system"
(Date, 2003, p. 262). A RDBMS should provide means for defining constraints.

Database users have to understand internal predicates. However, it is
possible to construct an informal description of the relvar that helps to explain
the meaning of the relvar to the human user. Date (2003) calls this description
"external predicate". For example, section 3.2.4.1 contains some examples of
external predicates. External predicates could well be recorded in the database
catalog (see section 1.3.3).

Table 16 presents problems of RDBMSs that are mentioned in the literature.

Table 16 Problems of the RDBMSs according to literature

Problem Authors who mention that
problem

Limited amount of data types (it is not possible to
record "complex objects" without fragmentation).

Haskin and Lorie (1982),
Miguel et al. (1990),
Barghouti et al. (1996)

It is not possible to define functional interface of a
data type wholly within the schema using SQL
In other words, it is not possible to specify
operators/function that allow us to perform
operations with the data values.

Barghouti et al. (1996)

Fragmentation. Data about the object is in the
different relations (tables).

Barghouti et al. (1996)

Views (including updateable) are inadequately
supported.

Haynie (1981),
Emmerich et al. (1992),
Emmerich (1995),
Barghouti et al. (1996)

Database language (SQL) does not have the power
to express transitive closure and path traversal
queries

Miguel et al. (1990),
Consens et al. (1992)

Performance is not satisfactory Haskin and Lorie (1982),
Linton (1984),
Miguel et al. (1990),
Chen et al. (1990),
Barghouti et al. (1996),
Lange et al. (2001)

 89

Problem Authors who mention that
problem

Inappropriate transaction models.

Haskin and Lorie (1982),
Katz (1990),
Emmerich et al. (1992),
Barghouti et al. (1996),
Gray (1997)

Inadequate concurrency control mechanisms (like
two-phase locking).

Constantopoulos et al. (1995)

Lack of versioning facilities. Emmerich et al. (1992),
Emmerich (1995),
Barghouti et al. (1996),
Gray (1997)

Lack of facilities for maintaining consistency
between data structure definitions in the schema
and operation definitions in a host programming
language with embedded SQL.

Emmerich (1995),
Barghouti et al. (1996)

Lack of access control on a level of single tuples in
a relation

Emmerich et al. (1992)

Lack of distributed and multi-database
architectures

Gray (1997)

Lack of configuration management Constantopoulos et al. (1995),
Gray (1997)

Lack of possibilities to have cooperative work
processes

Gray (1997)

It is difficult to integrate an existing tool with
RDBMS if the source code of the tool is not
available.

Barghouti et al. (1996)

Some of these problems are also present in the list of problems of the

relational model (see Table 15). The first five problems in Table 16 (problems
with the data types, views and transitive closure queries) are caused by the
inadequate implementation of the relational model by RDBMSSQLs. The
fragmentation problem is caused by the limited support to viewed tables by
RDBMSSQLs. All other problems are orthogonal to the relational model.

The problems that are mentioned in Table 15 and Table 16 should primarily
cause improvement of the implementation and standards but not necessarily the
invention of new data models.

Barghouti et al. (1996) evaluate RDBMSs in order to find the shortcomings
that limit their use in software engineering systems. One difference from the
present research is that they do not present separately shortcomings of the
relational data model and implementation of the model (DBMSs). They also do
not point to all the shortcomings that are mentioned in the literature.

During the literature study we discovered that the existing researches do not
always make clear whether they describe the problems of the relational model or
implementation of this model by some standard and DBMS. For example,
Hardwick and Spooner (1989), Emmerich et al. (1992) and Singh and Han
(1996) point to the shortcomings of "relational technology".

 90

2.4 Summary

This chapter gives a short literature-based overview of existing software
engineering systems and requirements to their information management
components. We are most interested in systems where the information
management component uses a RDBMS or an ORDBMS. There exist
overviews of software engineering systems that use some other type of DBMSs.
For example, Tombros and Geppert (1995) present a list of software
development environments that use an OODBMS and Dittrich et al. (2000)
present a list of special-purpose software engineering database and object
management systems. However, they refer to only few software engineering
environments that use a RDBMS or an ORDBM. Guo and Luqi (2000) present
a survey of software reuse repositories that are one type of software engineering
systems. However, the comparison part of their survey does not contain
information whether these systems are built on top of a DBMS or not.

This chapter contains a more thorough list of software engineering systems,
that use a RDBMS or an ORDBMS, than the existing overview papers. It
illustrates the fact that quite a lot of researchers and developers have decided to
use general purpose DBMSs in order to build up a software engineering system.
Dittrich et al. (2000) thinks that the object-oriented data model is also one of the
most prominent general-purpose data models. In line with this view, we
consider OODBMSs as "general-purpose" systems in this work. However, the
creation of OODBMSs was partly triggered by the needs of specific types of
applications like CASE and CAD and they are not as widely used as RDBMSs
or ORDBMSs. Bernstein (1998) writes: "Indeed, many object-oriented database
systems have been marketed primarily as support for software tools."

The systems in this chapter help to manage analysis specifications, design
specifications, program code, experience elements and patterns. "Appendix A:
Some properties of existing software engineering systems that use the help of a
DBMS" is a table that gives an overview of the content of their repositories. It
shows that most of the first systems that came into existence helped to manage
program code. They were followed by systems that helped to manage other
software engineering artifacts. Harrison et al. (2000) note the same thing by
writing: "The first significant efforts in producing tightly integrated
development environments were those in the area of programming support
environments (PSEs)."

All the systems in this chapter that use a RDBMS or an ORDBMS use
actually a RDBMSSQL or an ORDBMSSQL, respectively. We did not find any
software engineering system that uses an ORDBMSTTM. The reason is probably
the lack of stable and easily usable ORDBMSTTMs. Currently Alphora
Dataphor, which is a federated DBMS with integrated application development
environment, is the only commercial implementation of the principles of The
Third Manifesto. An example of a prototypical system is the free and open
source DBMS Rel (Voorish, 2005).

 91

The referenced research literature points to numerous problems with the
relational data model and RDBMSs. Despite that, we found many examples of
software engineering systems that use a RDBMS. Papers about these systems
are a good source of comments about shortcomings of RDBMSSQLs and their
underlying data model. The problem is that different papers refer to different
problems and there is no comprehensive list of all possible problems. The novel
results of this chapter are lists of the SQL and RDBMSSQL problems together
with the references to the papers that mention these problems. We also shortly
analysed these problems in terms of The Third Manifesto.

We found more systems that use a RDBMSSQL than systems that use an
ORDBMSSQL. This can be explained by the fact that ORDBMSSQLs came into
existence much more lately. Papers that describe systems, which use an
ORDBMSSQL, point to several advantages of these systems:

• "Advanced data, object, and knowledge (rules) services" (Miguel et al.,
1990)

• " Access to External Data" (Ritter et al., 1999)
• "Infrastructure for Access via WWW" (Ritter et al., 1999)
• "The enhanced type system" (Ritter and Steiert, 2000)
• "The powerful SQL facilities" (Ritter and Steiert, 2000)
• "Extensibility features of ORDBMSs" (Ritter and Steiert, 2000)
• "Allow the mapping of important concepts of object models, such as

class hierarchy, to the repository schema" (Kovse et al., 2002)
• Row type can be used in order to "store values of table relationships so

that the join operations can be reduced or eliminated" (Pardede et al.,
2003)

We agree that these features give more options to database designers and
programmers compared to RDBMSSQLs. However, these papers pay little
attention to the possible problems of ORDBMSSQLs. For example, Mahnke and
Ritter (2002) acknowledge in their final sentence that the use of extreme
extending (X2) approach by using the extensibility infrastructure of the
ORDBMS will definitely lead to "a whole bunch of problems, e. g., concerning
system performance and robustness as well as ease of development." It seems
that this comment is about X2 approach, but not about the ORDBMSs or their
underlying data model. Major parts of the presentation layer (GUI) reside within
the database server in accordance with the X2 approach. Section 3.3.2.1 refers to
some problems that the researchers have discovered when they tried to
implement whole-part relationships in an ORDBMSSQL database.

We think that the investigation of possible problems of ORSQL and
ORDBMSSQLs is also important. The results may help to decide whether to use
an ORDBMSSQL in a software engineering system. We also think that it is worth
to investigate, whether the use of an ORDBMSTTM in the engineering systems is
more advantageous compared to ORDBMSSQLs. For example, one reason to
prefer an ORDBMSTTM is the lack of orthogonality in ORSQL (see section 1.3.8).

 92

3 REPOSITORY DATABASE DESIGN

Bernstein et al. (2000) suggest that a model management system can take
advantage of a specialized DBMS, the underlying data model of which is
domain specific and treats models, model mappings and model management
operations as its first-class elements.

This dissertation, on the other hand, investigates how it is possible to use the
features of some of the "general purpose" data models - ORTTM and ORSQL - in
order to record software engineering data.

In sections 3.1-3.4 we describe the designs that are usable in an ORTTM
database. We use the concepts of the ORTTM data model, if not stated otherwise.
We present examples of database language statements. They have been written
in Tutorial D relational language and have been mostly tested in the
prototypical ORDBMSTTM Rel (ver. 0.0.13 Alpha) (Voorish, 2005). We have
not tested the statements that use (a) TCLOSE operator; (b) outer joins; (c) user-
defined types; (d) THE_ operators. Unfortunately, Rel does not support them
yet or supports partially. Tutorial D language has been proposed in The Third
Manifesto (Date and Darwen, 2000) and a dialect used by Rel is based on that
proposal.

3.1 Design Alternatives of Database Schema of a Software
Engineering System

We investigate only the design alternatives according to which an artifact is
recorded entirely in a database. These alternatives allow us to use all the
features of a DBMS and its underlying data model for the artifact management.

Artifacts are created by using some language. A language allows us to create
one or more types of artifacts. An example of a modeling language is UML
(OMG formal/03-03-01) and an example of a pattern writing language is Pattern
and Component Markup Language (ObjectVenture).

How can we specify a language? The description of a semi-formal language
(like, for example, UML) contains descriptions of abstract syntax, well-
formedness rules and semantics. The abstract syntax is specified using a
metamodel. The well-formedness rules are expressed using OCL constraints
(OMG formal/2006-05-01). The semantics is described using free-form text.

A repository system permits management of artifacts that are created using a
language that belongs to the set of its supported languages. The repository
system should allow us to add new languages to this set in order to be most
useful. Each repository has an information model that "specifies a model of the
structure and semantics of the artifacts that are stored in the repository."
(Bernstein, 1998) This information model contains a general part and a
metamodel specific part. We have to create the latter part of an information

 93

model based on the metamodels of the languages and their well-formedness
rules. We can implement a repository as an ORDBMSTTM database by creating a
set of types, relvars, operators and integrity constraints. There are different
approaches to build up a repository and we explain them in the following
sections.

Each metamodel is an instance of a meta-metamodel. If we implement
repository by using a DBMS, then components of the underlying data model of
this DBMS correspond to the meta-metamodel.

3.1.1 Encapsulated Artifact Types
We implement each artifact type by using:
1. Scalar type ST that corresponds to the artifact type. Values that belong to

this type are artifacts. This type could be a user-defined type. However, if
we use the ORTTM data model as underlying data model of an Engineering
DBMS, then this type and its associated operators could also be built-in in
this EDBMS.

2. Exactly one real relvar RR with the type RELATION {K, A}. An artifact is
recorded as a tuple that is part of the value of this relvar. K and A are pairs
of attribute name and type name. A represents the attribute that corresponds
to the artifact type. This attribute has the scalar type ST.

3. Scalar type that is specified in K. It could be the built-in scalar type
INTEGER or a user-defined scalar type.

4. Possible representations of scalar types (in this case from pairs K and A)
have components. We need a set of operators that allow us to select and
modify values of these components (see section 1.3.2).

5. Constraints that the attribute of the relvar RR that corresponds to K is a
candidate key and a foreign key that refers to relvar Artifact.

6. It is not necessary to record the same artifact more than once. Therefore, we
also need a constraint that the attribute of relvar RR that corresponds to A is
a candidate key.

7. Exactly one virtual relvar VR that joins values of relvars Artifact and RR. If
we assign a new value to VR, then the system should assign a new value to
relvars Artifact and RR.

8. Candidate key attribute of relvar Artifact could be a surrogate key, which
means that the values of this attribute are generated by the system by using
system function SERIAL (see section 1.3.3.1).

We need relvar Artifact because if we want to record additional metadata
about the artifacts in general (for example, events with them), then we have to
create additional relvars and associate them with relvar Artifact. A possible
naming convention could be that the names of RR and VR are almost the same
except that the name of RR has prefix "_", but the name of VR does not.

Figure 45 presents fragment of the information model of a repository that
allows us to record Use Case Diagrams (UCD) and State Transition Diagrams
(STD). In case of entity type UCD in Figure 45 we have to create real relvar
_UCD with the type RELATION {artifact_id# INTEGER, model UCDType}.

 94

In addition, we have to create virtual relvar UCD with the type RELATION
{artifact_id# INTEGER, model UCDType}.

-artifact_id# : Int
-model : STDType

STD-artiact_id# : Int
-model : UCDType

UCD

-artifact_id# : Int

Artifact

General part Metamodel specific part

Figure 45 Example of structure of a repository that uses encapsulated artifact
types

Next, we present examples of statements for creating relvars. For example,
we create the real relvar that corresponds to entity type UCD (1).

VAR _UCD BASE RELATION {artifact_id# INTEGER, model
UCDType} KEY {artifact_id#} KEY {model} FOREIGN KEY

{artifact_id#} REFERENCES Artifact;

(1)

In addition, we create the following virtual relvar (view) (2) because there is
a generalization relationship (see section 3.3.1). Supertype Artifact represents a
more general concept and subclass UCD more specialized one.

VAR UCD VIEW (_UCD JOIN Artifact) {artifact_id#, model}; (2)

If a user assigns a new value to virtual relvar UCD, then the system assigns
new values to real relvars _UCD and Artifact. The precondition of this design is
that a DBMS must allow us to update the value of a virtual relvar so that all its
underlying real relvars get a new value.

We can call this design "encapsulated artifact type" because each artifact
type has a corresponding scalar type. Well-formedness rules of the artifacts
have to be implemented as type constraints. We need a set of scalar- and
relational read-only operators as well as update operators in order to perform
operations with the values of these types (artifacts). For example, a possible
representation of type UCDType could contain components Use_Case, Actor,
Include that all have a relation type. We need read-only and update operators in
order to expose these components (see section 1.3.2). If we want to make it
easier to make queries, then we have to create virtual relvars, which present data
in unencapsulated way. For example, if we assume that the relation type of
component Use_Case has only one attribute – name (with the type CHAR), then
the type of the following virtual relvar (3) is RELATION {artifact_id#
INTEGER, name CHAR}. Its value contains names of use cases.

Operator THE_Use_Case exposes component Use_Case of UCDType.
Operator UNGROUP is used in order to "unnest" an attribute that has a relation
type. Why do we have to use this design if we need so complex virtual relvars?

 95

VAR Use_case VIEW ((EXTEND _UCD ADD THE_Use_Case
(model) AS Use_Case) {artifact_id#, Use_Case}) UNGROUP

Use_Case

(3)

In general, types should correspond to properties and relvars to entities (Date
and Darwen, 2000, Appendix C). Singh and Han (1996) have the same position.
They note that the coarse grained representation of documents in an object-
oriented repository make it difficult and inefficient to manipulate individual
document components. For example, the little modification of the document
would mean recording entire document in order to preserve old version of it. An
alternative is to use the design where an artifact is recorded by using many real
relvars. The design "encapsulated artifact type" does not follow the suggestion
of Date and Darwen (2000).

3.1.2 Non-encapsulated Artifact Element Types
An artifact consists of artifact elements. Each element has a type. We
implement each artifact element by using:
1. Exactly one real relvar RR with the type RELATION {K, P1,...,Pn}. K, P1,

..., Pn are pairs of attribute name and type name. Each attribute in the pairs
P1,...,Pn corresponds to one property of the artifact element type. K
represents the surrogate key attribute.

2. Scalar types that are used in the pairs K, P1,..., Pn. These types are either
built-in or user-defined.

3. Set of operators that allow selecting and modifying components of the
possible representation of these scalar types.

4. Let us assume that entity types ET1, ..., ETn in the information model are
organized into a class hierarchy. Let us assume that ETk is the supertype
and ETk+1 is its direct subtype (1≤k< n). Real relvar RRk that corresponds to
ETk and real relvar RRk+1 that corresponds to ETk+1 are associated using a
foreign key. For each ETi where i>1 we have to create a corresponding
virtual relvar. For example, element type ETk+1 has corresponding virtual
relvar VRk+1 that joins values of real relvars RR1,..., RRk+1. If one assigns a
new value to VRk+1, then the system should be able to assign a new value to
all the real relvars RR1,...., RRk+1. Again, we could use naming convention
that names of RRi and VRi are almost the same except that the name of RRi
has prefix "_", but the name of VRi does not have this prefix.

In this case, an artifact element is recorded as a tuple in a relation and
artifact (as a whole) is represented by the set of tuples in the different relations.
If a new artifact is added to a repository, then it must be broken into elements so
that it is possible to record these elements.

We illustrate a database structure that follows this design by using two
software design languages:

• Simple software design language SimpleM that was originally presented
by Serrano (1999) in order to introduce VCt specification language.

 96

SimpleM specifies one diagram (visual model) type. We can use it in
order to create simple state diagrams.

• Unified Modeling Language (UML). We consider its part that specifies
use-case diagrams (OMG formal/05-07-04, p. 570).

 Figure 46 presents a fragment of the information model of a repository that
allows us to record the state models, which are created by using SimpleM as
well as use case models, which are created by using UML. We have simplified
UML language specific part of the information model for the presentation
purposes by adding attribute name to entity types Classifier, Use Case and
Include. In reality, these entity types have this attribute through inheritance. We
also do not consider extension relationships and extension points in this
example.

Artifact, Element_in_artifact and Element are not part of UML or SimpleM
metamodel and correspond to the generic part of the repository.

-artifact_id# : Int

-name : String

Artifact

-element_id# : Int

Element

1 0..*

-artifact_id# : Int
-element_id# : Int

Element_in_artifact

1
0..*

-element_id# : Int

-origin : Int

-destination : Int

Event

-element_id# : Int
-name : String

State

-element_id# : Int

StartState

-origin

10..*

General part

Metamodel specific part

- SimpleM

0..*
-destination 1

-element_id# : Int

-name : String

Classifier

-element_id# : Int

-name : String
-classifier : Int

Use Case

0..1

-owned use case0..*

1

0..*

-element_id# : Int

Actor

-element_id# : Int

-name : String

-addition : Int

-including : Int

Include

-addition

1

0..*

-including case

1
-include 0..*

Metamodel specific part

- Use Cases

-element_id# : Int
-use_case : Int

-classifier : Int

Classifier_use_case

-subject

1
0..*

Figure 46 Example of structure of a repository that uses non-encapsulated artifact
element types

For example, based on entity type Actor we have to create real relvar _Actor
with the type RELATION {element_id# INT} and virtual relvar Actor with the
type RELATION {element_id# INT, name CHAR}. Relational expression of
this virtual relvar joins relations _Actor, _Classifier and Element.

3.1.3 Encapsulated Artifact Element Types
It is also possible to use the design that combines previous two designs (see
sections 3.1.1 and 3.1.2). In this case, each artifact element type ET has
corresponding scalar type ST and real relvar RR with an attribute that has type
ST. In addition, relvars should contain candidate key attributes, the values of
which are generated by the system and foreign key attributes. An artifact is

 97

recorded as a set of tuples that are part of the values of more than one relvar.
This design uses user-defined scalar data types as the "Encapsulated Artifact
Types" approach. This design is also similar to the "Non-encapsulated Artifact
Element Types" approach because an artifact will be recorded as a value of
more than one relvar.

This kind of design does not follow the suggestion of Date and Darwen
(2000, Appendix C): "types should correspond to properties and relvars to
entities." The design that is presented in this section does not remove
complexity from the repository design. On the contrary, we need type
constraints as well as database constraints in order to enforce well-formedness
rules. We also need virtual relvars that expose components of the scalar types
that correspond to the element types.

3.1.4 Universal Data Model
Next, we investigate suitability of using the database design "Universal Data
Model" in order to build up a repository database. In this case, the concept "data
model" has the meaning 2 (see Introduction). We use the concepts of the ORSQL
data model in this section because existing literature about this design uses
these concepts.

Nowadays the results of the research of Baskerville and Pries-Heje (2001)
should not be surprise to anyone. Their research shows that two important
properties of the system development methodologies of Internet time are: (a)
constant time pressure to the developers and (b) vague requirements that often
change. Designers of a repository must also take into account these factors
because requirements to a repository database schema evolve. One tempting
solution seems to be the use of a highly generic database design that has
different names: "Universal Data Model" (Hay, 1996, p. 254-256), "The entity-
attribute-value representation with classes and relationships (EAV/CR)" (Chen
et al. 2000), "Generic data model" (Kyte, 2003, p. 34-36). The following
diagram (see Figure 47) presents the general idea of this design. We note that
diagrams in this section present conceptual data models and therefore they do
not contain foreign key attributes.

-entity_type_id : Int
-name : String

Entity type

-entity_id : Int

Entity

-atrribute_id : Int

-name : String
-is_mandatory : Boolean

-multiplicity : Int

Attribute

-value_id : Int
-int_value : Int

-string_value : String
-timestamp_value : Timestamp

-boolean_value : Boolean

Value

Relationship

-A

10..*

-B10..*

1

0..*

1 1..*

1 0..*

1

0..*

Knowledge level

Operational level

-data_type_id : Int

-name : String

Data type

1
0..*

-relationship_type_id : Int

-name : String

Relationship type

1

0..*

Figure 47 Conceptual data model of "Universal data model"

 98

This diagram uses the modeling principle according to which a model should
be explicitly divided into operational and knowledge levels (Fowler, 1997, p.
26). "The knowledge level objects define legal configuration of operational
level objects" (Fowler, 1997, p. 25) Data about an object system is recorded at
the operational level in terms of the entities, their attributes and relationships.
Entity type Value has a set of attributes with the general form:
<<data_type_name>>_value data_type_name. These attributes allow us to
record values that have different types. Amount of these attributes and their data
types depend on a DBMS where this database is created. Data at the knowledge
level determines the legal values that can be associated with an entity at the
operational level. The knowledge level contains data about relationship types,
entity types and their attributes, and data types of the attributes. Some of the
variations of the "Universal Data Model" are:
• The word "entity" can be replaced with the words "object" or "thing".
• Hay (1996, p. 254-256) proposes entity type Attribute_assignment that

models an association between Attribute and Entity type (conceptually
many-to-many relationship between Attribute and Entity_type).

• Entity types Attribute or Attribute_assignment could have associated entity
type Legal_value (or Domain_element) that allows us to specify legal
values of the attributes (Hay, 1996, p. 255).

• Entity type Attribute could have an attribute or even associated entity type
Format in order to permit recording of a format for the values of an
attribute (Hay, 1996, p. 255).

• Each supported data type should have corresponding table for recording
values with this type (see Figure 48) according to EAV/CR approach (Chen
et al., 2000). This is different from the solution in Figure 47, where is one
generic entity type (and therefore also a table) Value.

• Another possibility to extend the design is to allow us to record permissible
relationship types between the entity types at the knowledge level. This
data determines permitted relationships between entities at the operational
level.

-entity_id : Int

Entity
-atrribute_id : Int

-name : String

-is_mandatory : Boolean

-multiplicity : Int

Attribute
-string_value : String

String_value

-int_value : Int

Int_value

1

0..*

1
0..*

1

0..*

1

0..*

Figure 48 Fragment of EAV/CR design

We use the concept "universal design" in order to refer to the database
design according to the "Universal Data Model" (see Figure 47). We assume
that each entity type in the conceptual data model (see Figure 47) has a
corresponding table and each attribute has a corresponding column. The names

 99

of the tables and columns are the same as the names of the entity types and
attributes, respectively.

We use the concept "regular design" in order to refer to the design where
each entity type and attribute in a conceptual data model (meaning 2) has a
corresponding table and column in a database schema, respectively.

At first glance, the "universal design" seems like the easy way to quick
success. However, it also has many serious problems. For example, Kyte (2003,
p. 34-36) points to the problems with the query complexity and query speed. Do
and Rahm (2004) also acknowledge complexity of the queries. These are not the
only problems. It seems that there is a lack of consensus about this design and
no comprehensive discussion about all its shortcomings. Researchers and
developers have tried to use it repeatedly in order to achieve maximum
flexibility.

Systems that use "universal design" have to manage large amounts of data.
Some bioinformatics systems use a database that is designed according to
EAV/CR approach: (a) Subsystem of system net-TRIAL that helps to manage
procedures and laboratory results of the clinical trials (Hageman and Reeves,
2001); (b) SenseLab database for recording neuroscience data (Marenco et al.,
2003); (c) System PhD for web-based management of phenotype data (Li et al.,
2005). System GenMapper that helps to integrate heterogeneous molecular-
biological annotation data (Do and Rahm, 2004) uses database that is designed
according to Generic Annotation Model that is a variation of the "Universal
Data Model". It contains a source level (knowledge level) and an object level
(operational level). Some systems in the area of software engineering also use
"universal design". Bernstein et al. (1997) describe the Microsoft repository that
uses a RDBMSSQL database in order to provide persistent storage for the
different software tools. This database contains generic tables Object and
Relationship among others. These tables correspond to entity types Entity and
Relationship in the "Universal Data Model", respectively. Habela (2002)
proposes flattened metamodel that resembles the "Universal Data Model" (see
section 1.4.1). Habela (2002) envisage that the schema of a metadata database
could be designed based on this metamodel. Bednárek et al. (2005) describe the
data integration system DataPile that records data in a repository, which is
designed according to the "universal design".

The advantages of the "universal design" are:
1. It is possible to extend the repository without executing DDL (Data

Definition Language) statements. Instead, a user has to modify data at the
knowledge level and the system has to execute DML (Data Manipulation
Language) statements. Ideally, even the users who are not database
designers or programmers could do that. Question remains – why it is the
better approach compared to the generation and execution of DDL
statements based on the instructions of a user?

2. These changes do not require corresponding changes in the user interface
that is provided to database users, if there is one to one mapping between
the columns in the tables and fields in the forms.

 100

3. If a value of an attribute is missing, then in case of EAV/CR approach there
is no need to use NULL's (Ahnøj, 2003).

4. A query for finding all the data about an entity has to access only one table
(Value) and does not need reprogramming then attributes of an entity type
change (Ahnøj, 2003). If an entity has attributes with the different types,
then more than one table has to be accessed in case of EAV/CR approach.

On the other hand, there are many problems with the "universal design" in
the following areas:
1. Database schema evolution
2. Expressiveness of a database schema
3. Constraints
4. Compensating actions
5. Default values
6. Query complexity
7. Missing information
8. Dependencies of database objects
9. Query performance
10. Size of data
11. Access control
12. Concurrency control
13. User interface of a data management program

Database schema evolution: A database that is designed according to this
design may still need schema changes in the future because of the data types
that are usable in a DBMS. Each data type could have a corresponding column
in table Value or even a separate table in case of EAV/CR approach. The set of
predefined data types in a DBMS may change from release to release. Some of
these changes are caused by the changes in standards. For example, SQL:1999
introduced the predefined type BOOLEAN (Gulutzan and Pelzer, 1999).
SQL:2003 deprecated the data types BIT and BIT VARYING (Melton, 2003, p.
1173). ORDBMSs provide data type constructors in addition to the predefined
data types. Therefore, a large amount of data types could be used in a database.
If new requirements stress the need for having an attribute with a data type that
has no corresponding column in table Value or no corresponding separate table,
then the database structure has to be changed. It seems reasonable to use most
popular predefined data types at the beginning and gradually add support to the
data types. The result of the application of this kind of design could be the use
of the limited amount of simple data types (for example, VARCHAR and
INTEGER) as column types. This, on the other hand, limits and complicates
operations with the data values. An application that uses this database must
perform type conversions.

All the data values that otherwise would be part of different tables are now
in table Value (or in the separate tables that correspond to the data types in case
of EAV/CR approach). A comment about the implementation – a DBMS
usually locks a table exclusively in case of changing its structure. If someone
changes structure of table Value, then it locks a very large portion of a database.

 101

Therefore, all the schema changes have to be done at the times, when the use of
the entire database is as minimal as possible. Corruption of a database table or
its indexes or modifications of its data or structure have far greater
consequences compared to the "regular design".

Expressiveness of a database schema: External predicate of a relvar is an
informal construct that specifies what the data in a database means to the user
(Date, 2003, p. 263). In this case, external predicates of tables do not give any
information about the object system, the data of which is recorded in a database.
For example, table Value could have the following external predicate (4). The
parameters of the predicate correspond to the columns and they are written in
italics.

Entitity entity_id has an associated value value_id of an attribute
attribute_id, which is either an integer value int_value, string value
string_value, timestamp value timestamp_value or Boolean value

boolean_value.

(4)

We need a special tool in order to present database conceptual schema based
on the data at the knowledge level (Marenco et al., 2003).

Constraints: It is more difficult to enforce constraints to the data values than
in case of the "regular design". For example, the data at the knowledge level
could state that entity type ET has mandatory attribute A with the multiplicity
"1". Attribute A has data type DT. Therefore, each entity E, that has type ET,
must have exactly one associated value V that is associated with attribute A.
Which attribute (int_value, string_value, timestamp_value, boolean_value etc.)
of V has a value, depends on the data type that is associated with A.

The SQL standard permits creation of assertions and the use of subqueries in
the CHECK constraints. However, some well-known DBMSs (like PostgreSQL
(PostgreSQL, 2005) and Oracle (Oracle, 2005)) do not follow the standard in
this regard. Türker and Gertz (2001) note in the review of integrity constraints
in the different DBMS-s: "assertions are in general not available and are
unlikely to be offered in the near future". Therefore, triggers have to be created
in order to enforce these rules at the database level. These triggers must react to
the following events: (a) Creation of a Value instance; (b) Modification of a
Value instance; (c) Deletion of a Value instance. If each data type has a
corresponding separate table like in case of EAV/CR approach, then each of
these tables must have these triggers. If data changes at the knowledge level,
then triggers have to be created/altered/dropped as well. This means that the
system has to generate and execute DDL statements after all (see the advantages
of "universal design"). In addition, the system has to check whether the existing
data violates new rules and in case of violation prohibit the changes. These
triggers do the work that is implicitly done by a DBMS in case of the "regular
design".

Let us assume that we want to enforce two rules in a pattern repository:
1. Name of a pattern cannot be an empty string or a string that consists of

spaces.

 102

2. Creation time of a pattern must be smaller or equal than its last modification
time.

Let us assume that table Pattern in the "regular design" contains columns
name, creation_time, last_modification_time among others. Both rules can be
enforced by using table level check constraints of table Pattern ((5) and (6)):

CONSTRAINT chk_pattern_name CHECK(Trim(name)<>'') (5)

CONSTRAINT chk_pattern_creation_modification
CHECK(creation_time<=last_modification_time)

(6)

Function Trim removes spaces from the beginning an end of a string.
The first rule can be enforced by a table level constraint of table Value in

case of the "universal design" (7):

CONSTRAINT chk_pattern_name CHECK(attribute_id= val1 AND
Trim(string_value)<>'')

(7)

The value val1 identifies attribute pattern_name. It is possible to enforce the
second rule by using the assertion (8):

CREATE ASSERTION chk_pattern_creation_modification CHECK
((SELECT Count(*) AS amt FROM Value INNER JOIN Value AS

Val_1 ON Value.entity_id = Val_1.entity_id WHERE
(Value.attribute_id= val3) AND (Val_1.attribute_id= val2) AND

(Value.timestamp_value<Val_1.timestamp_value))=0);

(8)

The values val2 and val3 identify attributes creation_time and
last_modification_time, respectively. Note that expression of this constraint
contains self join of a table that probably contains the biggest amount of rows in
a database. If for some reasons the values val1, val2, or val3 change in a
database (someone modifies attribute identifiers in table Attrbute), then the
constraints have to be rewritten as well. Otherwise, they will enforce incorrect
rules.

In addition, assertions are not supported by current DBMSs. We also remind
that one expected benefit of the "universal design" was that even the users who
are not database experts could extend the database. Question remains – who
creates these constraints? If these constraints are generated by the system, then
the system has to create more complex constraints in case of the "universal
design" than in case of the "regular design". Another possible solution is to use
as little constraints as possible and permit recording of inconsistent and
incomplete data. It is possible to use queries in order to find inconsistencies and
incompletenesses, but the query expressions are also more complicated
compared to the "regular design".

Columns in table Value must be as "flexible" as possible. Examples:
• All the columns in table Value that correspond to the different supported

data types must be optional (permit NULLs) (see Figure 47). For example,
if a row in table Value contains a value that corresponds to column
int_value, then columns string_value, timestamp_value, boolean_value etc.

 103

must have NULLs in this row. EAV/CR approach prevents the use of such
large amount of NULL's because each supported data type has a separate
table (see advantage 3).

• The specification of the maximum length, in characters, of acceptable
values in column string_value (it has type VARCHAR), must be as big as
possible in particular DBMS. For example, this column could contain
names of the patterns that should contain less than 50 characters and
problem statements that should contain less than 4000 characters. It also
means that it is possible to record names of the patterns that consist of
approximately 4000 characters. We could create a constraint in order to
prevent that.

Column entity_id of table Entity contains identifiers of entities. This column
is a primary key column. The values in this column are probably system
generated and do not prevent real data duplication in a database. It is difficult if
not impossible to declare that a set of attributes of an entity type must have
unique values in case of the "universal design". For example, let us assume that
a repository that uses the "universal design" has to store data about the patterns.
Let us assume that the patterns are uniquely identified by their names (name has
the type VARCHAR). The following constraint of table Value (9) does not give
the desired result because the column string_value contains values of many
different attributes. For example, maybe we want to record data about the
documents and the name of a document can be the same as the name of some
pattern.

CONSTRAINT ak_document UNIQUE(string_value) (9)

Sometimes it is possible to use proprietary solutions in order to solve this
problem. For example, in PostgreSQL we could use the following statement
(10) in order to declare the key that consists of one attribute. In this case, val4 is
identifier of attribute name that belongs to entity type Pattern.

CREATE UNIQUE INDEX idx_document ON Value (string_value)
WHERE attribute_id= val4;

(10)

We note that the SQL standard does not specify indexes and therefore this
solution is not universal. In this case, we do not declare database constraints that
belong to the conceptual level of a database, but indexes that are constructs of
the database internal level. We have the problem (as with the constraints (7) and
(8)) that if someone changes the identifier of attribute name (in table Attribute),
then this index enforces incorrect rule.

It is possible that the complexity of defining constraints leads to a database
with few constraints. Constraint checking, if any, is done by the application that
uses a database. It is likely that many constraints are not checked at all because
they need complex queries (12).

Compensating actions. A DBMS can sometimes resolve constraint
violations as they arrive by executing a compensating action. We have to
implement some compensating actions by using triggers. For example, if we

 104

wish that deletion of an entity with the type ET1 should cause cascading
deletion of all the related entities (see entity type Relationship in Figure 47)
with the type ET2, then the use of "ON DELETE CASCADE" option in the
foreign key declaration is not enough and we have to create a trigger.

Default values: SQL permits declaration of one default value for a column.
This feature is not always usable in case of "universal design". For example,
attributes of patterns registration_time and next_revision_time can have the
default values Date() and Date()+'3 months', respectively. The values of these
attributes are in the same column timestamp_value of table Value in case of the
"universal design". Therefore, we have to use the triggers in order to use the
default values. For example, if we decide to create one trigger, then it must
contain a set of if-then statement, each of which specifies a default value of an
attribute. Values val6 and val7 are identifiers of attributes registration_time and
next_revision_tine, respectively.

IF new.attribute_id==val6 THEN new.timestamp_value:=Date;

ELSE IF new.attribute_id == val7 THEN
new.timestamp_value:=Date()+'3 months';

(11)

An alternative is to create many triggers, each of which specifies default
value of only one attribute. If a database user specifies new attributes of an
entity type or modifies the existing ones, then the system may have to generate
and execute DDL statements for creating, replacing or removing triggers.

Query complexity:

SELECT A.name FROM (SELECT Entity.entity_id, Val.string_value
AS name FROM ((Entity_type INNER JOIN Attribute ON

Entity_type.entity_type_id = Attribute.entity_type_id) INNER JOIN
Entity ON Entity_type.entity_type_id = Entity.entity_type_id) INNER

JOIN Val ON (Entity.entity_id = Val.entity_id) AND
(Attribute.attribute_id = Val.attribute_id) WHERE

Entity_type.name='Pattern' AND Attribute.name='name') AS A INNER
JOIN (SELECT Entity.entity_id, * FROM (Entity_type INNER JOIN
Attribute ON Entity_type.entity_type_id = Attribute.entity_type_id)

INNER JOIN Entity ON Entity_type.entity_type_id =
Entity.entity_type_id WHERE Entity_type.name='Pattern' AND

Attribute.name='solution' AND NOT EXISTS (SELECT * FROM Val
WHERE Val.attribute_id=Attribute.attribute_id AND

Val.entity_id=Entity.entity_id)) AS B ON A.entity_id=B.entity_id;

(12)

Let us assume that a database that is created based on the "universal design"
contains data about the patterns (entity type Pattern) that have a name, a
problem description and a solution description (attributes name, problem and
solution, respectively). The query (12) finds names of patterns that have no
solution description:

In case of the "regular design", we could solve the same problem with the
query (13):

 105

SELECT name FROM Pattern WHERE solution IS NULL; (13)

It is possible to simplify the query writing task by creating operators (Do and
Rahm, 2004) or views. However, after performing the view resolution a DBMS
still has to execute a complex query even in case of the simple problems. It
causes performance problems that are reported, for example, by Kyte (2003)
and Wang et al. (2004). Chen et al. (2000) propose to use combinations of
simpler queries and temporary tables in order to speed up the queries. In this
case, a user of a database looses an advantage of a DBMS according to which a
user can make a (complex) query and a DBMS decides how to execute it. In this
case, a user has to describe a procedure how to retrieve the desired results.

Size of data. Chen et al. (2000) write: "The EAV/CR representation
consumed approximately four times the storage of our conventional schema."
Conventional schema is created according to the "traditional design".

Missing information: If value of an attribute is missing, then one possibility
is not to record a row in table Value. However, there are many reasons why
value of an attribute could be missing (Date, 2003, p. 577). It is a useful data
that could be recorded in a database. Existing research about the "universal
design" does not deal with this problem. We have several options:
1. D. McGoveran (in Date, 1998, p. 381) suggests to record reason for missing

data in a special metadata table.
2. Date and Darwen (2000) propose that the definitions of a scalar type could

specify the special values that represent different reasons, why a value is
missing. Currently it is not possible to declare such special values in SQL
type definitions.

3. Darwen (2003) proposes to use vertical and horizontal decomposition of
tables in order to prevent combination of multiple meanings in a single
table.

Figure 49 presents a conceptual data model of a possible solution to this
problem in case of "universal design".

Missing_data_metadata
-reason_for_missing_id : Int

-name : String

Reason_for_missing1

0..*

Entity

Attribute

1
0..*

1
0..*

Figure 49 A possible solution for recording reasons of missing data

Table Missing_data_metadata has the following external predicate (14):

Value of an attribute attribute_id of entity entity_id is missing because of
the reason reason_for_missing_id.

(14)

This design could be extended further by the many-to-many relationship
between Attribute and Reason_for_missing. This relationship models the fact

 106

that different attributes can have different possible reasons, why the attribute
value might be missing.

The following rule also has to be enforced: if a row in table Entity has an
associated row in table Value, then it cannot have the associated row in table
Missing_data_metadata. If a value is recorded in a database, then corresponding
row in table Missing_data_metadata has to be deleted.

Dependencies between database objects: Database objects like triggers,
declarative constraints, conditional indexes and views depend on the
specifications at the knowledge level (see Figure 47). Data changes at this level
can cause creation, modification or removal of these database objects.
Dependencies between the database objects are automatically recorded in a
database catalog by a DBMS. A database has to contain explicitly defined tables
in order to record the dependencies in case of the "universal design".

Access control: Access control mechanisms that are provided by a DBMS
are not sufficient in case of the "universal design". SQL provides statements for
granting privileges that allow us to perform a given action on a specified table
or column. Let us assume that a database contains data that corresponds to
entity types ET1, ET2 and ET3. Let us also assume that user U1:

• has right to SELECT and UPDATE data that correspond to ET1,
• has right to SELECT data that corresponds to ET2,
• does not have rights to use the data that corresponds to ET3.

It is unreasonable to grant to user U1 direct access to tables Entity and Value
because these tables contain data about all the entities. Instead, we have to
create two views that present data about entity types ET1 and ET2, respectively.
Then we can give to the user U1 rights to use these views in order to see or
modify data. We have to bear in mind that in some DBMSs (like PostgreSQL
8.0) it is not possible to modify data in base tables through views without
further programming. The result might be that the systems, which use a
database that follows the "universal design", do not use the security mechanisms
of a DBMS, in order to restrict access to the data.

Concurrency control: Locking is widely used mechanism for concurrency
control by DBMSs. Examples of the situations that need special care in case of
the "universal design":

• Explicit locking of all the attribute values of an entity. For example, two
separate users could change a pattern concurrently so that one modifies
the problem statement and another modifies the description of solution.
The result of these modifications could be an incorrect pattern.

• Explicit locking of all the data values that correspond to an entity type.
• Modifications at the knowledge level that influence the operational level

should restrict concurrent data changes at the operational level. For
example, if data type of an attribute changes, then at the same time
system should not allow us to register new values of this attribute or to
change existing value of the attribute.

According to the most basic locking strategy, if a transaction requests a read
lock (shared lock) on a data item, then other transactions cannot request a write

 107

lock (exclusive lock) on the same data item in order to update it (Weikum and
Vossen, 2002, p. 131). Therefore, making query about an entity prevents the
concurrent updates of its attribute values. Some DBMSs like PostgreSQL and
Oracle use the multiversion concurrency control mechanism (Weikum and
Vossen, 2002, p. 185). Versions of the modified data are kept by a DBMS in
order to allow us to answer to the queries even if the data is modified at the
same time. In this case reading of data does not block its concurrent updates and
vice versa. Therefore, making query about the entity does not prevent the
concurrent updates of its different attribute values. We have to use SELECT
statement with special syntax in order to lock the necessary data.

User interface design: Marenco et al. (2003) acknowledges that data in a
database that follows the "universal design" "must be transiently converted
(‘‘pivoted’’) into a conventional representation through fairly elaborate
metadata-driven code." (Marenco et al., 2003) Conventional representation
means that each data element is presented in the separate field with the
meaningful label.

In conclusion, we can say that the "universal design" advocates building a
DBMS on top of a DBMS. Knowledge level of a schema is actually a database
catalog – addition to the one that is automatically created by a DBMS.
Designers have to work out many ad hoc solutions and do redundant work
instead of relying on the built-in features of DBMSs. Many features that are
present in a DBMS have to be duplicated in the applications.

Database is "a collection of true propositions" (Date, 2003, 15). A DBMS
cannot enforce truth, but as an approximation it can check that all the data
values are consistent (i.e., conform to the integrity constraints) (Date, 2003).
Not all the consistent propositions are correct, but all the correct propositions
must be consistent. In our view, the "universal design" advocates a database
where the consistency is not the most important property (due to the difficulties
to enforce the integrity rules).

3.2 Checking of the Well-formedness Rules

Current CASE tools provide mostly built-in constraint checks that are
implemented in their code. A Meta-CASE tool uses constraints that are
embedded in its code and run-time constraints that are enforced by a constraint
manager (Gray and Welland, 1999). Dittrich et al. (2000) note that one
advantage of using DBMSs in the software engineering environments is their
integrity control mechanisms. It can help to "automate manual consistency
checks, provide information about tool-provoked errors, and simplify the logic
implemented in software tools". A constraint manager that ensures enforcement
of the constraints is component of a DBMS. Constraints that are enforced by a
DBMS constraint mechanism are called run-time constraints.

Rasmussen (2005) describes different policies of constraint checking in
CASE tools. These policies are applicable in software engineering systems in

 108

general. Next, we describe how it is possible to implement some of them in an
ORDBMSTTM database.

3.2.1 Ignore All Well-formedness Rules
Relvars with the minimal possible set of constraints must be created in case of
the policy that ignores all well-formedness rules.

What constraints belong to the minimal possible set of constraints? By
definition, each attribute of a relvar must have a type. This means enforcement
of an attribute constraint. Each relvar must by definition have at least one
candidate key. In addition, foreign key attributes must have foreign key
constraints that enforce the referential integrity rule.

One could say that this policy is useful if the repository is used for storing
artifacts that have been created by tools, which are not integrated with a
repository. One could say that these tools and not the repository are responsible
for checking the artifacts. However, the constraint checking in a repository is a
second defence-line that prevents spreading of the artifacts that are incomplete,
incorrect and inconsistent.

There are situations when this design is most appropriate. Lavazza and
Agostini (2005) describe UML Model Measurement Tool (UMMT) that
calculates metrics values based on UML models. This tool must be able to
calculate metrics values in case of incomplete and inconsistent models as well.

3.2.2 Automatically Resolve Constraint Violations as they Arrive
It can be achieved in a database by using compensating actions, which occur if a
DBMS discovers constraint violation. "ON DELETE CASCADE" and "ON
UPDATE SET DEFAULT", which are used in the definition of the foreign
keys, are examples of the compensating actions.

In current ORDBMSSQLs compensating actions can be implemented by using
triggered procedures. The Third Manifesto does not prohibit triggers and
therefore it is also possible in an ORDBMSTTM database.

It would be useful if a DBMS could allow us to specify a compensating
action that is associated with a constraint. This is actually a special kind of
trigger, the triggering event of which is the occurrence of a constraint violation.
If a DBMS discovers the constraint violation, then it must execute a set of
operations and check the constraint again after these operations have been
performed.

3.2.3 Disallow an Operation and Inform a User
Another approach is to disallow an operation that leads to the violation of a
well-formedness rule and inform a user about that. In this case, we have to use
the integrity constraints (type, database and transition constraints). If a new
value is assigned to a relvar, then a DBMS checks whether this value is correct
in terms of the integrity constraints and rejects changes that are incorrect. This
policy also requires that the certain operations must be atomic. For example, the
task of recording data about the whole instance and its two mandatory part

 109

instances would need to be done as a single atomic operation. It can be done in
an ORDBMSTTM by using multiple assignment operations (Date, 2003).

The problem of this policy is that an artifact can be initially "incorrect" and
only at some point must become correct. However, a DBMS does not allow in a
database data that does not conform to the integrity constraints. Next, we
present examples of statements for creating integrity constraints.

3.2.3.1 Example with SimpleM

In this section, we illustrate the "Disallow an Operation and Inform a User"
approach by using a simple software design language SimpleM (see Figure 46).
Serrano (1999) describes well-formedness rules of the language. We have
modified rules R1 and R2.
1. (R1): Both StartState and State have a label with a name that is unique

amongst all other states.
2. (R2): There is at most one StartState in a repository.
3. (R3): "The StartState can only be connected to States by outgoing Events."

(Serrano, 1999)
4. (R4): "Any pair of States is connected at most by two Events, one in each

direction." (Serrano, 1999)
5. (R5): "Loop Events, i.e. Events that connect a State to itself, are not

allowed." (Serrano, 1999)
Next, we present the database constraints that implement these rules.
Each relvar must have at least one candidate key. We can enforce some well-

formedness rules by creating appropriate key constraints.
Rule R1 can be enforced by creating the constraint KEY{name} in relvar

_State.
Rule R4 can be enforced by creating the constraint KEY{origin, destination}

in relvar _Event.
Constraint KEY {artifact_id#, element_id#} in relvar Element_in_artifact

ensures, that each element can participate only once in an artifact. Together with
constraint C_2 (15) they guarantee that each diagram (artifact) can contain at
most one StartState.

Rules R2, R3 and R5 are enforced by database constraints C_2 (15), C_3
(16) and C_5 (17), respectively. C_3 is created based on the reformulation of
R3 to the equivalent rule R3'. (R3'): "StartState cannot be destination of any
event."

CONSTRAINT C_2 (COUNT(_StartState)<=1); (15)

CONSTRAINT C_3 IS_EMPTY ((_Event RENAME (element_id# AS
el_id#, destination AS element_id#) JOIN _State) JOIN _StartState);

(16)

CONSTRAINT C_5 (IS_EMPTY (_Event WHERE origin=destination)); (17)

 110

IS_EMPTY (<relation exp>) is a scalar operator that evaluates to TRUE if
body of the relation denoted by <relation exp> contains no tuples (Date et al.,
2003). IS_EMPTY is built-in operator in Rel.

Database constraint C_6 (18) ensures that each element is part of at least one
artifact. It uses relational operator SEMIMINUS (Date, 2003) in order to find
tuples of one relation that have no counterpart in another.

CONSTRAINT C_6 IS_EMPTY (Artifact_element SEMIMINUS
Element_in_artifact);

(18)

Constraints C_3, C_5 and C_6 could also be created using Count operator
(Count(<relation exp>)=0). However, the use of IS_EMPTY operator allows
DBMS to optimise execution of <relation exp> (see section 3.5.2)

3.2.3.2 Example with Use Cases

In this section, we illustrate the approach by using a fragment of UML language
(see Figure 46). UML 2.0 specification (OMG formal/05-07-04) states the
following rules about the elements of the metamodel fragment:
1. (R1) A UseCase must have a name.
2. (R2) UseCases can only be involved in binary Associations.
3. (R3) UseCases cannot have Associations to UseCases specifying the same

subject.
4. (R4) A use case cannot include use cases that directly or indirectly include

it (see Figure 50).

UseCase1

UseCase2

UseCase3

«includes» «includes»

«includes»

Figure 50. Illegal relationships between use cases

5. (R5) An Actor can only have associations to UseCases, Components, and
Classes. Furthermore, these associations must be binary.

6. (R6) An Actor must have a name.
7. (R7) We also conclude based on the specification that inclusion relationship

must be between two different use-cases.
Next, we present the constraints that implement these rules. Rules R1 and R6

are by default enforced by an ORDBMSTTM because all attributes in a relation
must have a value. If there is a possibility that attribute cannot have a value,
then a designer of the type of the attribute must define "special values" for
dealing with the missing information.

Some rules are enforced by the structure of the relvars.
Rule R2 is enforced by the structure of relvar _Include. It has two foreign

key attributes and therefore allows only to record data about the binary
relationships.

 111

Rule R5 is enforced by the database structure because currently actors (or in
general classifiers) can only have associations with use-cases.

Rule R3 can be enforced by the following database constraint (C_3) (19).
Subsection of the constraint with bold font finds pairs of use cases (actually
their identifiers) that are associated with the inclusion relationship. We have to
use RENAME operator because a relation cannot have two attributes with the
same name. Subsection of the constraint with italic font finds pairs of use cases
(actually their identifiers) that are associated with the same subject.

CONSTRAINT C_3 (IS_EMPTY(((_Include RENAME (addition AS
use_case)) RENAME (including AS uc) {use_case, uc}) INTERSECT

((((_Classifier_use_case RENAME (use_case AS uc)) JOIN
(_Classifier_use_case RENAME (classifier AS cl))) WHERE

classifier=cl AND use_case<>uc) {uc, use_case})));

(19)

We use intersection operation in order to find the pairs that belong to both
these sets. The set of pairs that belong to both these sets must be empty.
Tutorial D does not provide explicitly Cartesian product operator and it makes
syntax of the constraint C_3 more complicated.

Built-in transitive closure operator TCLOSE (Date, 2003, p. 203) can be used
in order to enforce rule R4. Constraint C_4 (20) also enforces rule R7.

CONSTRAINT C_4 (IS_EMPTY((TCLOSE (_Include {including,
addition})) WHERE including=addition));

(20)

3.2.4 Allow Everything Initially and Search Errors Later
Gray and Welland (1999) call the constraints, the violation of which is initially
allowed "soft constraints". On the other hand, constraints that must be
immediately satisfied (see section 3.2.3) are called "hard constraints". In case of
this policy, we propose two approaches.

Approach 1: Create relvars with the minimal possible set of constraints.
Create a set of queries in order to find violations of the well-formedness rules. It
is possible to create more than one query based on a rule. One query checks
whether an artifact follows this particular rule or not and returns a Boolean
value. Another query presents information about the artifact elements that
violate this rule. The third one could find the artifact elements, which satisfy the
rule. User of a system can execute the queries at any time in order to check
artifacts. A repository database must contain specific real relvars in order to
record these queries.

Approach 2: Create two sets of relvars. The first set (let us call it A) uses the
minimal possible set of constraints. The second set (let us call it B) of relvars is
accompanied with the integrity constraints that help to enforce all well-
formedness rules. If a user wants to check an artifacts, then the system must
read the artifact from the relations in the set A and try to record it in the
relations in the set B. It must be done as a single atomic operation by using
multiple assignment operations. If the artifact is correct in terms of the

 112

constraints, then this operation succeeds otherwise it does not succeed. The
problem is that a DBMS reports only the first error, even if there are more errors
in the artifact. The user has to fix this error and check the artifact again in order
to find the next error. The user does not know in advance how many more
improvements the artifact will need.

3.2.4.1 Integrated Approach with Versioning

Next, we propose the design that is synthesized based on the schema design
approach "Non-encapsulated Artifact Element Types" (see section 3.2.4.1), the
constraint checking approach "Allow Everything Initially and Search Errors
Later" (see approach 2 in section 3.2.4) and the proposal about how to keep
temporal data in an ORDBMSTTM database (Date et al., 2003). A repository
database should consist of five sets of relvars:
1. Values of relvars (relations) in the set S present current data that may or

may not be validated.
2. Relations in the set Svalidated present current and validated data.
3. Relations in the set Shistory present historical data that may or may not be

validated.
4. Relations in the set Svalidated_history present historical and validated data.
5. Relvars in the set Sno_history_and_version_control are the so-called "regular" relvars.

In case of them, we do not want to know historical data and do not want to
validate data by using approach 2 from section 3.2.4. Creation of the relvars
that belong to this set is optional and depends on the needs of a system that
uses this database.

Values of the relvars in S and Shistory present so-called initial artifacts. Values
of the relvars in Svalidated and Svalidated_history present so-called validated artifacts.
Now, we shortly explain the procedure of data registration and validation.
Firstly, data is registered by using relvars in S. If we modify data in a relation in
S, then the system automatically registers the historic attribute values by using
the corresponding relvars that belong to Shistory. If an artifact (the data of which
is in the relations in S) is successfully validated, then the values of the
corresponding relvars in Svalidated will change. The system automatically registers
historic and validated attribute values by using relvars in Svalidated_history.

We explain the proposed approach by using a small example. Let us assume
that a repository has to contain information about states (that are part of a state-
transition model). Next, we list external predicates of the real relvars. Relvar
STATE in S has predicate (21). Relvar STATE_VALIDATED in Svalidated has
predicate (22). Relvars STATE_DURING and STATE_NAME_DURING in
Shistory have predicates (23) and (24), respectively. Relvars
STATE_VALIDATED_DURING and STATE_VALIDATED_NAME_
DURING in Svalidated_history have predicates (25) and (26), respectively. The
parameters of the predicates are written in capital letters. In this example, we
assume that all states belong to one artifact. In general, the repository can
contain more than one artifact.

 113

State ELEMENT_ID# has been in the initial artifact ever since
ELEMENT_ID#_SINCE (and not the time point immediately before

ELEMENT_ID#_SINCE), and has been named NAME ever since
NAME_SINCE (and not the time point immediately before

NAME_SINCE).

(21)

Validated state ELEMENT_ID# has been in the validated artifact ever
since ELEMENT_ID#_SINCE (and not the time point immediately

before ELEMENT_ID#_SINCE), and has been named with valid name
NAME ever since NAME_SINCE (and not the time point immediately

before NAME_SINCE).

(22)

From the time point that is the beginning point of DURING (and not on
the point immediately before that point) to the time point that is the end
point of DURING (and not on the point immediately after that point),

inclusive, state ELEMENT_ID# was in the initial artifact.

(23)

From the time point that is the beginning point of DURING (and not on
the point immediately before that point) to the time point that is the end
point of DURING (and not on the point immediately after that point),

inclusive, state ELEMENT_ID# in the initial artifact had name NAME.

(24)

From the time point that is the beginning point of DURING (and not on
the point immediately before that point) to the time point that is the end
point of DURING (and not on the point immediately after that point),

inclusive, validated state ELEMENT_ID# was in the validated artifact.

(25)

From the time point that is the beginning point of DURING (and not on
the point immediately before that point) to the time point that is the end
point of DURING (and not on the point immediately after that point),

inclusive, validated state ELEMENT_ID# had valid name NAME.

(26)

A designer has to select granularity of time points that are used in a system.
Date et al. (2003 p. 62) write that time points are "time units that are relevant
for some particular purpose, which might be days or months or milliseconds".
For example, if designer decides the granularity is one second, then it means
that the system has to consider it as an indivisible point. The model of timeline
for computing purposes consists of discrete points that have this granularity.

The repository database contains constraints that implement well-formedness
rules of artifacts. Relvars in the different sets have different constraints. A
repository designer has to choose, which constraints to create only in Svalidated
and which constraints to create in both S and Svalidated. If we want to allow
violation of a well-formedness rule in an initial artifact, then we have to create
the corresponding integrity constraint in Svalidated and not in S. If we want to
prohibit violation of a well-formedness rule in an initial artifact, then we have to
create the corresponding integrity constraints in both S and Svalidated.

 114

Gray and Welland (1999) describe hard and soft constraints. If a rule has the
corresponding constraints in both S and Svalidated, then we can say that this rule is
enforced by using a hard runtime constraint. The word "hard" means that this
constraint cannot be temporarily violated. The word "runtime" means that the
constraint is enforced by a constraint manager of a DBMS and the constraint is
not directly embedded in the code of the run-time system (SES). If a rule has a
corresponding constraint in Svalidated (but not in S), then we can say that this rule
is enforced by using a soft runtime constraint. The word "soft" means that this
constraint can be temporarily violated.

Let us define a rule that name of a state must be at least four characters long.
Let us decide that the system must enforce this rule by using a soft run-time
constraint. We have to create the constraint in Svalidated. This could be a database
constraint that is associated with relvar STATE_VALIDATED or a type
constraint that is associated with the type of attribute NAME of relvar
STATE_VALIDATED.

ELEMENT_ID# NAME

1 Acceptedt01

ELEMENT_ID#_SINCE NAME_SINCE

t01
(t01)

STATE

ELEMENT_ID# NAME

1 Acceptedt02

ELEMENT_ID#_SINCE NAME_SINCE

t02
(t02)

STATE_VALIDATED

ELEMENT_ID# NAMEELEMENT_ID#_SINCE NAME_SINCE

1 Accpt.t01 t03
(t03)

STATE

ELEMENT_ID# NAME

1 Accepted

DURING

[t01:t02]

STATE_NAME_DURING

ELEMENT_ID# NAMEELEMENT_ID#_SINCE NAME_SINCE

1 Accpt.t02 t04
(t04)

STATE_VALIDATED

ELEMENT_ID# NAME

1 Accepted

DURING

[t02:t03]

STATE_VALIDATED_NAME_DURING

ELEMENT_ID# NAMEELEMENT_ID#_SINCE NAME_SINCE

1 Accpt.t01 t03
(t05)

STATE

2 Bt05 t05

ELEMENT_ID# NAMEELEMENT_ID#_SINCE NAME_SINCE

1 Accpt.t01 t03
(t06)

STATE

ELEMENT_ID# NAME

1 Accepted

DURING

[t01:t02]

STATE_NAME_DURING

2 B [t05:t05]

ELEMENT_ID# DURING

STATE_DURING

2 [t05:t05]

Figure 51 Creation, modification and validation of a new state

The scenario that is illustrated by Figure 51 is following:
1. A user defines the state "Accepted" at the time point t01. New tuple is added

to relation STATE.
2. A user wishes to validate the state "Accepted" at the time point t02. The

system tries to add a new tuple to relation STATE_VALIDATED because

 115

this state is validated the first time. If it succeeds, then relvar
STATE_VALIDATED obtains a new value. The system must use multiple
assignment operations in order to enforce atomicity of the validation
operation. If the DBMS rejects an assignment operation because its result
does not conform to the integrity constraints, then it must roll back all
operations that are part of this multiple assignment operation.

3. A user renames the state "Accepted" to "Accpt." at the time point t03. The
system updates tuple in relation STATE. It changes values of attributes
NAME and NAME_SINCE. Modification of the tuple in relation STATE
causes the system to automatically add tuple with the historic name to
relation STATE_NAME_DURING. The value of attribute DURING shows
the period when the value of attribute NAME was the name of the state.

4. A user validates the renamed state at the time point t04. The existing tuple is
updated in relation STATE_VALIDATED because this state (with the same
element ID) has already been validated and the element with the identifier
value 1 is already in the relation. Modification of the tuple in relation
STATE_VALIDATED causes the system to automatically add the tuple with
the historic name to relation STATE_VALIDATED_NAME_DURING.

5. A user defines a new state at the time point t05. Such value of relvar STATE
is allowed because it has no constraint about the length of the name. If user
chooses to validate this new state, then this state is rejected because of the
integrity constraint in Svalidated.

6. A user deletes the state "B" at the time point t06. The system deletes tuple
from relation STATE and assigns new values to relvars STATE_DURING
and STATE_NAME_DURING.
Date et al. (2003) distinguishes the concepts "stated time" and "logged time".

According to Date et al. (2003), "stated times are the times when, according to
our current beliefs, something is, was, or will be true." According to Date et al.
(2003), "logged times are the times when the database said we believe
something is, was, or will be true." Times that are used in proposed versioning
approach (in our example, values of all the relvar attributes, the name of which
contains "SINCE" or "DURING") are logged times and must be recorded by the
system. The system must not allow us to change the logged times (Date et al.,
2003). Users cannot modify a validated artifact directly. They must modify the
initial artifact and validate the changes. The system must also forbid all the
changes of relvar values in Shistory and Svalidated_history that are not caused by the
changes in S and Svalidated, respectively.

The proposed approach allows us to find old versions of the artifact elements
and artifacts. For example, the system can give an answer to the question:
"What was the validated name of the state with the element_id#=1 at the time
point t02?" A version of an artifact (either initial or validated) can be found by
using the set of queries. The system can reconstruct an artifact, by finding the
values of artifact elements that were current at the given time point. Therefore,
this system supports intensional versioning. In case of intensional versioning, a

 116

version is constructed in response to some query (Conradi and Westfechtel,
1998).

If we want to explicitly identify different versions, then each version must
have unique version identifier (VID) that could be system generated (Conradi
and Westfechtel, 1998). In this case, we should create separate real relvar
Version that belongs to Sno_history_and_version_control. This relvar could have type:
RELATION {version_id INTEGER, artifact_id INTEGER, version_time
DATE}. Creation of a new version means insertion of new tuple to relation
Version. In this case, we determine explicitly the time point that must be used in
the queries in order to restore the artifact.

We can say that data about the entity types that have corresponding relvars
in S, Shistory, Svalidated and Svalidated_history is put under the version control. All the
relvars that must belong to these sets must have additional constraints because
they contain temporal data. Thorough discussion of these constraints is
presented by Date et al. (2003, chapter 11, 12). Example of the constraints:
• The fact, that a validated artifact element had some name n at time point t,

can be recorded only in one tuple in the database.
We have to create much more relvars and constraints than in case of "regular

design". This design approach needs supporting development environment that
is able to generate DDL statements for creating necessary relvars, types and
constraints.

3.3 Preserving the Semantics of Relationships in a Database

A conceptual data model that is created, for example, in UML (OMG
formal/03-03-01) can contain aggregation, composition and generalization
relationships between entity types. These types of relationships are also often
used in the class diagrams that present abstract syntax of modeling language
(and that are the basis for the creation of repository information model). For
example, the class diagram that specifies abstract syntax of use-cases (OMG
formal/05-07-04, p. 570) in UML2.0 contains six different generalization
relationship instances and five different composition relationship instances. This
section explains how to preserve semantics of these relationships in an
ORDBMSTTM database.

A DBMS does not "understand" semantics of a relationship the same way as
humans do - based on the names of a relationship and its participants (Date and
McGoveran, 1994). However, a DBMS is able to enforce structural and
operational properties of the relationships and objects, which participate in these
relationships (Zhang et al., 2001). These properties depend on the type of
relationship.

3.3.1 Generalization Relationships
Date and Darwen (2000, p. 397) describe possible ORDBMSTTM database
design approach in case of generalization relationship. If a conceptual data

 117

model contains entity types ETsuper and ETsub where ETsuper and ETsub are
supertype and subtype, respectively, then a database should contain real relvars
RRsuper and RRsub that correspond to ETsuper and ETsub, respectively. In addition,
a database should contain a virtual relvar that joins relations RRsuper and RRsub.
Value of the virtual relvar must be updateable and updates must propagate to
the values of real relvars (Date and Darwen, 2000). Relational language could
have special statement (as shorthand) in order to create relvar that is
conceptually associated with other relvar through generalization relationship
(Pascal, 2000). This kind of statement causes creation of necessary real- and
virtual relvars.

3.3.2 Whole-Part Relationships
Different authors have done a lot of research about the semantics of the
aggregation and composition relationships. Examples of the recent research are
works of Barbier et al. (2003) and Guizzardi (2005). Their view is that UML (at
least prior to the version 2.0) does not define the semantics of this kind of
relationships precisely enough. Therefore, we use instead the concept "whole-
part relationship".

3.3.2.1 Related Works

Some researchers have investigated how to preserve semantics of whole-part
relationships in an ORDBMSSQL database.

The first approach is to extend the ORSQL data model with the relationships
as first class objects. For example, extension module ORIENT (Zhang et al.,
2001) extends Informix ORDBMSSQL by providing CREATE RELATIONSHIP
statement and means for recording and using relationship data.

The second approach tries to add support to the relationships by using
existing facilities of DBMSs and their underlying data models. SQL:2003
defines type constructors ROW, ARRAY, REF and MULTISET and permits
creation of the user defined structured types (UDTs) (Melton, 2003). We could
use these types in order to implement whole-part relationships. If we look the
picture of the table that has a column with a complex data type, then we see that
data about the whole instance contains data about its associated part instances.
Hammer and Mc Leod (1981) describe Semantic Database Model: "The
constructs of the database model should provide for the explicit specification of
a large portion of the meaning of a database." Researchers have already
suggested to implement whole-part relationships in an ORDBMSSQL database
by using array- or table types (the latter is interpretation of a multiset type in
Oracle DBMS) (Marcos et al., 2001), indexed clusters or table types (features in
Oracle DBMS) (Rahayu and Taniar, 2002) or multiset- or row types (Pardede et
al., 2005). Data about the part instances can be recorded in the columns that
have complex data types and hence data about the whole instances and their part
instances can be recorded in one table at the conceptual level. The use of
clusters in Oracle means that data about the whole- and part instances can be

 118

recorded together at the internal level, but they remain in the separate tables at
the conceptual level.

Our comment about the array types is that array is a collection in which
elements have a defined order and the same element can be in the collection
more than once. Tuples in the body of a relation are unordered and relations
cannot contain duplicated tuples (Date and Darwen, 2000). Therefore, we
cannot use arrays in order to implement relationships if we want to treat their
participants in a uniform way.

Proponents claim that the object-relational features help to implement
relationships in more natural and semantics-preserving ways. However,
researches have also identified problems of using collections in conceptual
modeling (Halpin and Bloesch, 2000) and in database schemas. "A collection is
a composite value comprising zero or more elements, each a value of some data
type DT." (Melton, 2003, p. 45) Halpin and Bloesch (2000) note that collections
make harder to express constraints (which typically occur on members, not
collections) in a conceptual model. If it is difficult to use declarative language
like OCL in order to express constraints in a conceptual model, then it is also
difficult to express declarative constraints and queries on collections in a
database. Smith and Smith (1977) propose to use complex types as domains for
the attributes in relations in order to record semantically important information
about an aggregation of objects in a relational database. They also identify
possible problems that include restrictions to ways how user can access data and
duplication of data. The latter causes waist of storage space as well as
introduces problems of possible inconsistency. One solution could be the use of
pointers, but "Pointers are objects which have no real-world analogy and serve
to dramatically increase the complexity of database interactions." (Smith and
Smith, 1977) Soutou (2001) has also identified this problem and writes:
"Collections should model relationships when there are no strong integrity
constraints and when there is a particular data access (via a separate relation)."
Collections offer little performance gain according to experience of Halpin and
Bloesch (2000). "Collections can provide better performance than a standard
relational database, but require more complex queries for data retrieving."
(Smith and Smith, 1977) Comment to the last observation is that performance is
an implementation issue, not a model issue (Date, 2003) and should not be a
criterion for evaluating different data models.

Date (2003, p. 374) present the guideline (not strict law) that real relvars
without relation-valued attributes should be preferred because they have a
simpler logical structure that simplifies operations with the data. His discussion
of using attributes with the relation- or tuple types is limited and he gives few
examples. Therefore, we think that it is necessary to study more thoroughly the
implications of using complex data types in real relvars.

3.3.2.2 Possible Designs

In this section, we present some possible designs of an ORDBMSTTM database
structure. For the illustrative purposes, we assume that we have a conceptual

 119

data model with entity types Whole and Part. They are associated with a generic
binary whole-part relationship. Entity type Whole has the attributes a and b and
Part has attributes c and d. Values of attributes a and c are unique identifiers of
the Wholes and Parts, respectively. We also assume that attributes a, b, c and d
have type INTEGER (INT).

Declarations of the relvar types (see Table 17) consist of the pairs of
attribute and type identifiers. The phrase "part TUPLE {c INT, d INT}" in
Table 17 means that the relvar has attribute part with a tuple type. Phrases "part
RELATION {c INT, d INT}" and "part RELATION{part ST}" mean that the
relvar has attribute part with a relation type. Type ST is a scalar type that is
created based on entity type Part. Its possible representation contains
components that correspond to attributes c and d. All relvars that are presented
in Table 17 are real relvars.

 Table 17 contains illustrations of the values of the relvars. Some designs
have the same illustration. The reader must bear in mind that the designs are
different because they use the different types.

Designs 1 and 6 are similar to the ones that Rahayu et al. (1998) propose to
use in RDBMSSQL databases in case of the collection type set in an object-
oriented conceptual model. Designs 2-5 use relvar attributes that have complex
types. They are similar to some of the designs that the researchers (Marcos et
al., 2001; Soutou, 2001; Zhang et al., 2001; Pardede et al. 2004) recommend to
use in the ORDBMSSQL databases.

Table 17 Design alternatives for implementing a whole-part relationship

ID Types of the real relvars
(relvar name : relvar type)

Pictures that illustrate
values of the relvars

1 Whole : RELATION {a INT, b INT}
Part : RELATION {c INT, d INT, a INT} a b

1

42

2

Whole

c d a

1

252

15

Part

2 Whole :

RELATION {a INT, b INT, part ST}
3 Whole : RELATION {a INT, b INT,

 part TUPLE {c INT, d INT}}

a b

1

42

2

Whole

part

1, 5

2, 5
 4 Whole : RELATION {a INT, b INT,

 part RELATION {c INT, d INT}}
5 Whole : RELATION {a INT, b INT,

 part RELATION{part ST}}

a b

1

42

2

Whole

part

1, 5

2, 5

3, 6
6 Whole : RELATION {a INT, b INT}

Part: RELATION {c INT, d INT }
PartOfWhole: RELATION {a INT, c INT}

a b

1

42

2

Whole c d

1

52

5

Parta c

1

22

1

PartOfWhole

63

32

31

 120

Relvar Part has one foreign key (attribute a) and relvar PartOfWhole has
two foreign keys (attributes a and c) in case of designs 1 and 6, respectively.
For example, foreign key a refers to relvar Whole in case of design 1.

All these designs (1-6) require additional constraints depending on the
secondary characteristics of the relationship that they help to implement (see
next section).

3.3.2.3 Choosing Between the Designs

In this section, we evaluate the designs (1-6) in terms of some of the secondary
characteristics of the whole-part relationships (see Table 18): shareability (SH),
lifetime dependency (LD), existential dependency (ED) and separability (SP).
We refer to these characteristics in column "Values of the characteristics" in
Table 18 by using the abbreviations that are in brackets. For example, Barbier et
al. (2003) and Guizzardi (2005) explain the meaning of these characteristics.
See also "Appendix B: Some Secondary Characteristics of Whole-part
relationships" that explains some of these characteristics. Pictograms in column
"Relationship constraints" in Table 18 illustrate the participation and cardinality
constraints of the relationships that are imposed by the values of the secondary
characteristics. "[W]" and "[P]" denote "Whole" and "Part", respectively.

We give marks (0-4) to these designs based on the possible values of the
characteristics. The marks depend on the participation and cardinality
constraints and characterize whether it is reasonable to use the design and how
much effort it requires. We assume that a database designer wants to enforce
consistency of data by using integrity constraints.

If the design is unreasonable because it will cause data redundancy, then we
give mark 0. For example, we could use designs 4 or 5 in case of the
relationship: [W]<>-0..n----0..n-[P]. Pardede et al. (2004) propose to use similar
design in case of the shareable parts. However, data about some part instances
would be repeatedly recorded (see Figure 52) and it will cause update
anomalies.

a b

1

42

2

Whole

part

1, 5

2, 5

3, 6

2, 5

93
4, 1

2, 5
?? 1, 4

Figure 52 Relation that contains redundant data

Mark 2 means that the design can be used, but besides candidate key and
foreign key constraints we have to create additional database constraints.

Mark 3 means that a database designer has to ensure that attributes can have
special values for dealing with the "missing information". Additional constraints
like in case of mark 2 are not needed. For example, we could use designs 1-5 in

 121

case of the relationship: [W]<>-0..1-----0..n-[P]. In this case, relation Whole
must contain exactly one tuple with the special values (see "?" in Figure 52).
This tuple corresponds to a missing whole instance. The Third Manifesto
envisages that declarations of the scalar types can be accompanied by the
declarations of the special values, which represent information that is missing or
unknown for some reasons (Date and Darwen, 2000) (see section 1.3.2). We can
use an empty relation as a special value in case of a relation type. In case of a
tuple type, we have to declare that scalar types of attributes of the tuple type
permit special values.

Table 18 Comparison of the designs

ID Values of the
characteristics

D
6

e
1

s
2

i
3

g
4

n
5

Gr
p

Relationship
constraints

1 LD: lifetime dependency –
cases 1, 2, 4, 5.

- - - - - - 5 [W]<>-1..------[P]

2 LD: lifetime dependency –
cases 3, 6, 7, 8, 9.

- - - - - - 5 [W]<>-0..------[P]

3 SH, SP: locally exclusive part
with optional wholes.

4 3 3 1 1 1 4 [W]<>-0..1----[P]

4 SP: whole with no more than
one optional part.

4 4 3 3 1 1 4 [W]<>----0..1-[P]

5 SH: globally exclusive (non-
shareable) part.

4 4 4 4 4 4 4 -

6 SH: globally shareable part. 4 4 0 2 2 0 3 -
7 SH, SP: locally exclusive part

with mandatory wholes.
ED, SH: inseparable and
locally exclusive part.

2 4 4 2 2 2 3 [W]<>-1..1----[P]

8 SP: whole with exactly one
mandatory part.
ED: whole with exactly one
essential part.

2 2 4 4 2 2 3 [W]<>----1..1-[P]

9 SP: whole with more than one
mandatory part.
ED: whole with more than one
essential part.

2 2 0 0 2 2 2 [W]<>----1..n-[P]
n>1

10 SP: whole with more than one
optional parts.

2 2 0 0 1 1 2 [W]<>----0..n-[P]
n>0

11 SH: locally shareable part. 2 0 0 0 0 0 1 [W]<>-m..n---[P]
n>1 n>=m

12 SP, SH: mandatory whole with
locally shareable parts.
ED, SH: inseparable and
locally shareable part.

2 0 0 0 0 0 1 [W]<>-1..n----[P]
n>1

13 SP, SH: optional whole with
locally shareable parts.

2 0 0 0 0 0 1 [W]<>-0..n----[P]
n>0

∑ 30 25 18 16 15 13

 122

Mark 1 means that we have to use additional constraints (mark 2) as well as
special values (mark 3).

Mark 4 means that the design can be used by just creating relvars. Each
relvar has by definition one or more candidate keys and can have foreign keys –
additional constraints (mark 2) and special values (mark 3) are unnecessary.

In the description of lifetime dependency, we use nine cases proposed by
Barber et al. (2003) (see Figure 53) that compare lifetime of the part to the
lifetime of the whole.

We do not give marks in case of this characteristic (see Table 18) because
cardinality constraints are not specified. These constraints determine possibility
of using one or another design (designs 1-6) and necessary additional
constraints.

time

Whole

Part (case 1)

Part (case 2)

Part (case 3)

Part (case 4)

Part (case 5)

Whole

Part (case 6)

Part (case 7)

Part (case 8)

Part (case 9)

time

Figure 53 The cases of lifetime dependency (Barber et al. 2003)

If the notation of the cardinality constraint value is n, then we assume that it
is some finite number that a designer can specify.

We used the "minus technique" algorithm (Võhandu et al., 2006) for
ordering the data table (see Table 18) in order to see typical and fuzzy parts of
the data. This algorithm reorders rows and columns in a table based on the
frequencies of the data values (marks in this case). It also finds groups of the
relationship characteristic values that have a similar usability (marks) in terms
of the designs (1-6) (see column Grp in Table 18).

Next, we give examples of the integrity constraints that are necessary in case
of the designs (1-6) in the context of the values of the characteristics. Our goal
is not to present all the possible constraints that correspond to all the
characteristics of the whole-part relationships. Instead, we want to present
examples in order to illustrate decisions what we had to make during the
creation of Table 18.

Firstly, we investigate the case where the cardinality constraint of the
relationship determines that a whole must have at most one part (ID=4 in Table
18). In case of designs 1 and 6, we do not need additional relvar and database
constraints besides candidate key and foreign key constraints. In case of design
1, attribute a of relvar Whole must be the candidate key. Relvar Part must have
two candidate keys – attribute c as well as the foreign key attribute a. In case of
design 6, attribute a of relvar Whole, attribute c of relvar Part and foreign key
attribute a of relvar PartOfWhole must be candidate keys. In case of designs 2-
5, attribute part of relvar Whole can have the values that represent missing
information. In addition, in case of designs 4 and 5 we have to limit the amount

 123

of tuples that can be part of a value of attribute part. We could create database
constraint with the following expression (27):

IS_EMPTY((SUMMARIZE (Whole UNGROUP part) PER Whole {a}
ADD Count AS card) WHERE NOT (card<=1));

(27)

If the cardinality constraint of the relationship requires that a whole must
have exactly one part (ID=8 in Table 18), then attribute part cannot have a
value that represents missing information in case of designs 2-5. In addition, the
previous relvar constraint must have the condition card=1 in case of designs 4
and 5. In case of designs 1 and 6, we have to additionally create database
constraints with the expressions (28) and (29), respectively:

IS_EMPTY(Whole SEMIMINUS Part); (28)

IS_EMPTY(Whole SEMIMINUS PartOfWhole); (29)

A SEMIMINUS B is the relational operation, the result of which contains
tuples of A that have no corresponding tuple in B (Date 2003). If we want to
assign new values to relvars Whole, PartOfWhole and Part in case of
constraints (28) and (29), then we have to use multiple assignment operation.

Next, we investigate the case where a part must have exactly one associated
whole (ID=7 in Table 18). Attribute c must be the candidate key of relvar
PartOfWhole in case of design 6 and we need similar constraint to the constraint
(29) that refers to relvar Part instead of relvar Whole. In case of designs 2-5, we
have to prevent the possibility that the data about the same part is recorded
repeatedly – as part of the different tuples in relation Whole. For example, in
case of design 3 we could create database constraint with the following
expression (30) in order to assure that the value of attribute c is not recorded
repeatedly in the relation. Therefore, values of user-visible attribute c must be
unique across relation Whole. The attribute c is the unique identifier attribute of
entity type Part.

IS_EMPTY((SUMMARIZE (Whole UNWRAP part) PER Whole
UNWRAP part {c} ADD COUNT AS cnt) WHERE cnt>1);

(30)

UNWRAP is the relational operator that forms a relation, the heading of
which contains attributes that correspond to the attributes in the heading {H} of
the tuple type, instead of one attribute with the type TUPLE{H} (Date 2003). In
case of design 2, we have to declare that attribute part with a scalar type is a
candidate key. It is not enough to declare that attribute part is a candidate key in
case of designs 4 and 5. Two distinct values with the same relation type can
contain the same tuple. Therefore, in case of designs 4 and 5 we have to use
similar constraint to the previous one (30) where the operator UNWRAP is
replaced with the operator UNGROUP. UNGROUP is the relational operator
that "unnests" an attribute that has a relation type.

The constraint is even more complex than (30) if we assume that whole-part
relationship has the following participation and cardinality constraints:
[W]<>-1..1-------0..1-[P]. Such relationship exists, for example, in case of

 124

mandatory wholes with no more than one locally exclusive part. Let us assume
that "?" is a special value that represents a missing value in case of integers (see
Figure 54) and UNK_INT() is the operator that returns this special value.

a b

1

42

2

Whole
part

?, ?

2, 5

53 7, 1

4 9 ?, ?

Figure 54 Value of relvar Whole that contains special values

The constraint with the following expression (31) ensures in case of design 3
that data about the same part instance is not recorded across all the values of
attribute part more than once.

IS_EMPTY(((SUMMARIZE Whole UNWRAP part PER Whole
UNWRAP part {c} ADD COUNT AS cnt) WHERE

c<>UNK_INT()) WHERE cnt>1);

(31)

The idea of this constraint is to "unwrap" attribute part and count how many
times each value of attribute c participates in the result. The set of c values,
except special value returned by UNK_INT(), that is in the result more than
once must be empty.

One characteristic of the whole-part relationships is shareability of parts.
Object type can be related through whole-part relationship type to another
whole object type in case of globally shareable parts (see Figure 55). We use the
same neutral notation (a dotted line diamond) as Barbier et al. (2003) for
presenting general whole-part relationship.

-a

-b

Whole

-c

-d

Part

-e

-f

R
1

0..*
1

0..*

Figure 55 Globally shareable part

It is possible to implement the relationship type between entity types Part
and R in case of designs 1, 3, 4 and 6. In case of designs 1 and 6, we can use
foreign key constraints for maintaining the referential integrity rule, but we need
special database constraints in case of designs 3 and 4. For example, expression
of the constraint in case of design 3 is following:

IS_EMPTY((Whole UNWRAP part) SEMIMINUS R); (32)

Attribute part of relvar Whole has tuple- or relation type in case of designs 3
and 4. We assume that the headings of these types contain the foreign key
attributes. In addition, we assume that the candidate key attributes in relvar R
(that is created based on entity type R) have the same names as previously
mentioned foreign key attributes. In this case, we do not have to use RENAME

 125

operator. The problem with this kind of approach is that we cannot specify
easily the compensating action (for example, ON DELETE CASCADE) in
order to overcome possible referential integrity violation.

In case of designs 1 and 6, we can use virtual relvars (views), which have
attributes with complex types, in order to present data the same way as in case
of designs 2-5. The following expression (33) is an example of the relational
expression of a virtual relvar that can be used in case of design 1. The virtual
relvar with such relational expression has the relation type: RELATION {a INT,
b INT, part RELATION {c INT, d INT}}.

"A mandatory FILL clause specifies the contents for non-matching tuples,
thus avoiding the need for NULLs" (Voorish, 2005). We assume that "?" is the
special value for unknown data in case of type INTEGER.

(Whole LEFT JOIN Part FILL {c "?", d "?"}) GROUP {c, d} AS
part;

(33)

Date (2003, p. 301) describes The Principle of Interchangeability according
to which there must be no arbitrary and unnecessary distinctions between real-
and virtual relvars. Therefore, an ORDBMSTTM allows us to change the values
of real- and virtual relvars the same way. For example, if we delete tuple from
the value of the virtual relvar (33), then the system must change the values of
the underlying real relvars by deleting corresponding tuples from the relations
Whole and Part. This behaviour is needed in case of the inseparable parts.

Next, we draw some conclusions based on Table 18. Designs that have
attributes with complex data types in real relvars are unsuitable to use in case
of the relationship characteristic values which impose restriction that the
cardinality constraint at the relationship end connected to the whole is bigger
than one. It is traditionally seen as property of the aggregation relationship. In
addition, designs 2 and 3 that use an attribute with a tuple type or a user-defined
scalar type are not usable if the cardinality constraint at the relationship end
connected to the part is bigger than one. Designs 2 and 3 are well usable and do
not require additional constraints if the multiplicity at the both ends of the
relationship is 1..1. Design 6 is usable in case of any characteristic value, but
sometimes requires additional constraints. Design 1 is not usable only in case of
the relationship characteristic values, which impose restrictions, that the
cardinality constraint at the relationship end connected to the whole is bigger
than one.

We summarize marks by designs (see row ∑ in Table 18). Generally, the
bigger the sum is, the smaller are the usage restrictions of the design and the
need for the accompanying constraints and special values. As we can see in
Table 18, designs 1 and 6 have bigger results than designs 2-5. These values do
not mean that it is prohibited to use attributes with complex types in the real
relvars. For example, Date (1998, p. 55) presents example where the use of this
kind of attribute in a relvar is reasonable (see section 3.4.4). However, these
values should help to make a good and reasonable decision.

 126

3.3.3 Advantages of Attributes with Complex Types in Real
Relvars

Possible advantage of designs 2-5 (see section 3.3.2.2) is that data about a
whole instance and its associated part instances can be accessed by only
accessing one relvar (Whole). A user has to retrieve only one tuple and has to
send only one request to a DBMS instead of many requests. It reduces network
load. However, in case of designs 1 and 6, we could use virtual relvars for the
same purpose. They provide even more flexibility because the user can decide
which relvar to use and how complex tuple to retrieve.

We have to agree with Date (2003) that one advantage of designs 2-5 is that
database users do not have to write expressions that contain the outer join
operator in order to retrieve data about the whole and part instances together.
However, if users ask the values of virtual relvars (see (33)), then they do not
have to write outer-join queries themselves.

Encapsulation is one of the secondary characteristics of the whole-part
relationships (Barbier et al., 2003) and is rooted in the object-oriented software
engineering. In this context, it means that database users have to use special
access operators in order to access data about parts. However, tuples in relations
are not encapsulated and have user-visible components. Data about parts is
encapsulated in case of design 2 and 5 because we need special operators that
accompany scalar type ST, in order to access and modify data about parts. Data
about parts is not encapsulated in case of designs 1, 3, 4 and 6. One could
emulate encapsulation of parts by using user-defined relation-valued operators
(RM Prescription 20) (Date and Darwen, 2000). The operator (34) can be used
in case of design 1, but similar operator could be used in case of other designs
as well.

OPERATOR Part(w INT) RETURNS (RELATION {c INT, d INT})
RETURN ((Part WHERE a=w) {c, d}); END;

(34)

The argument of this parameterized operator is a whole instance identifier
and it returns relation that contains data about the associated part instances of
this whole instance. The idea of using stored parameterized queries is not
unique to The Third Manifesto. For example, Levy et al. (1996) propose to use
parameterized views.

Designs 2-5 do not necessarily reduce the amount of relvas in a database
because we may create additional virtual relvars. They allow us to access
directly data about parts and provide better support to ad hoq queries. For
example, in case of design 4, we can create the following virtual relvars. A
value of the virtual relvar that has expression (35) contains only data about
wholes. Its relation type is RELATION {a INT, b INT}.

Whole {ALL BUT part}; (35)

A value of the virtual relvar that has expression (36) contains data about
parts. Its relation type is RELATION {a INT, c INT, d INT}.

 127

Whole UNGROUP part {a, c, d}; (36)

Why do we have to use real relvars that have attributes with complex types if
we have to create such virtual relvars?

Designs 2-5 could make it easier to implement some features that are
orthogonal to data models. Designs 2-5 make naive implementation of
versioning easier. If we modify a tuple, then the versioning system must
preserve old version of it. The problem is that even the smallest change causes
recording of old version of the entire tuple and therefore data about a whole
instance as well as its associated part instances. It causes data redundancy and
increases the need for storage space.

Designs 2-5 can make it easier to implement concurrency control by
database vendors because it is possible to use existing functionalities of
DBMSs. For example, if a DBMS records data about parts and wholes together
at the internal level and uses locking, then only one tuple in the implementation
of a real relvar (at the internal level) has to be locked in order to lock data about
a whole instance and its associated part instances. However, locking is method
of concurrency control that belongs to the implementation level of the system.
In addition, not all DBMSs are recording data about the whole and part
instances together at the internal level. For example, a table with a column that
has a table type in Oracle (Oracle, 2005) is recorded internally as two separate
tables (Kyte, 2001).

There are opinions that the use of attributes with the complex data types in
real relvars helps to improve performance because data about an object is in this
case not fragmented (see the problem "Performance problems due to
fragmentation" in Table 15). However, storage of the data that is presented in
relations does not have to reflect the structure of relvars. If there are two
separate real relvars at the conceptual level, then at the internal level their data
can be recorded together as if there is one relvar. This approach has already
been used in the real systems. DBMS Oracle (Oracle, 2005) permits creation of
indexed- or hash clusters for this purpose. Skatulla and Dorendorf (2003)
investigate how to optimize storage structures of complex types in ORDBMSs.
They propose Physical Representation Definition Language (PRDL) and
implement a prototype system in Oracle9i. A PRDL-specification is a strictly
separated part of a DDL statement. Skatulla and Dorendorf (2003) acknowledge
that: "fully separated definition with adequate references would be possible."
This is in line with the work of Date and Darwen (2000) who propose "storage
structure definition language" that is distinct from the data definition and data
manipulation languages.

In addition, if we want to keep logical distinction of model and
implementation, then "easy implementation" should not be argument that forms
and reshapes the model. Date (2003, p. 301) describes The Principle of
Interchangeability according to which there must be no arbitrary and
unnecessary distinctions between real- and virtual relvars. Therefore, an
ORDBMSTTM should allow update virtual relvars the same way as real relvars.

 128

Such update propagates to the underlying real relvars of this virtual relvar and
causes locking of the relevant tuples that are part of their values.

3.3.4 Disadvantages of Attributes with Complex Types in Real
Relvars

Designs 2-5 (see section 3.3.2.2) cause the problem of asymmetry (Date, 1998,
p. 53) because we have to access, retrieve and modify data about whole
instances and their part instances differently.

Section 3.3.2.3 demonstrates that if we use complex types in real relvars,
then we need more complex integrity constraints in order to preserve integrity
of data in a database. Queries about part instances will also be more complex
and we need additional virtual relvars in order to simplify their writing task.
Special values of scalar types are needed in order to deal with the missing data.

It is unreasonable to use designs 2-5 in case of some cardinality constraints
of the whole-part relationship (see Table 18). For example, we could record data
about the same part instance repeatedly if the cardinality constraint in the
relationship end connected to the whole is bigger than one. However, it would
cause data duplication and update anomalies.

Designs 2-5 make it more difficult to discover data redundancy across
different relvars. For example, we could create real relvars with the following
types:
• RELATION{empno EMPNO_TYPE, ename ENAME_TYPE, sal

SAL_TYPE}
• RELATION{contractno CONTRNO_TYPE, creation_time TIME_TYPE,

supervisor TUPLE {empno EMPNO_TYPE, ename ENAME_TYPE, sal

SAL_TYPE }}.
Values of both these relvars can contain data about the same employee. The

principle of orthogonal database design helps to discover data redundancy
across different relvars. The extended version of the principle that takes into
account the use of complex data types in real relvars (designs 2-5) (Eessaar,
2006b) is more complicated than the original principle (Date and McGoveran,
1994) that does not take it into account. See the next section for more thorough
discussion of this principle. See also section 3.4.4 that provides additional
illustrations of problems that occur if we use relation-valued attributes in a real
relvar.

The use of complex data types does not have such clear advantages that one
could conclude based on the existing research like (Zhang et al., 2001) and
(Pardede et al., 2005). It does not remove the complexity, but repositions it
within the system.

3.4 Additional Guidelines for Database Design

Bigger selection of data types means that a database designer has more design
options but also more possibilities to come up with a bad design. For example,

 129

an entity type in a conceptual data model could be implemented as a separate
real relvar or in some cases as an attribute of a real relvar. This attribute has a
scalar or non-scalar (tuple- or relation type) type. Soutou (2001) presents a
simple conceptual data model (meaning 2) with six entity types and four
relationship types. He offers 384 different designs in order to implement such
data model in an ORDBMSSQL database. Many of these designs use collections
and pointers. He does not take into account solutions that have multiple nesting
levels.

We need guidelines that help to avoid bad design decisions. One obvious
guideline is that we should design our database in a way that prevents redundant
data in it. Normalization and dependency theory deals with the formal
guidelines about how to eliminate data redundancy within the value of each
relvar. Vincent (1998) offers formal definition of the redundancy and explains
informally that: "an occurrence of a data value in a relation is semantically
redundant if it is implied by the other data values in the relation and the
constraints which apply to the relation." Mok et al. (1996) also define
redundancy and take into account nested relations. However, both these
definitions consider redundancy within the value of one relvar.

What about data redundancy across different relvars?
A relevant guideline that helps to prevent data redundancy across different

relvars is The Principle of Orthogonal Design (POOD) (Date and McGoveran,
1994). General idea of POOD is "no cross-table duplication, which means no
two tables should have rows representing the same entity (or propositions about
the same entity)"(Pascal et al., 2005). If this principle is violated, then the same
data about the same entity could be recorded as part of the value of more than
one real relvar and it means data redundancy. It causes update anomalies and
therefore possible violations of data integrity and makes more difficult to
construct queries and understand data in a database. However, the original
version of this principle does not take into account that real relvars could have
attributes that have complex types.

3.4.1 The Principle of Orthogonal Design
In this section, we describe original version of The Principle of Orthogonal
Design (POOD).

Connolly and Begg (2002) present guidelines for the logical design of a
relational database. They describe how to create tables in a database if a
conceptual data model contains generalization relationships between the entity
types. If the participation constraint is "Mandatory" and disjointness constraint
is "Disjoint" (see Figure 56), then they suggest to create a table (relvar) for each
combined entity sybtype/supertype. The integrity constraints should ensure that
if we add a tuple to one relation, then we cannot add a tuple with the same data
to another relation. These tables violate POOD without such constraint.
Unfortunately, Connolly and Begg (2002) do not state that this kind of
constraint is necessary.

 130

-person_no : PERSON_NO_TYPE

-last_name : NAME_TYPE

Person
-sal : SAL_TYPE

Professor

Student
{Mandatory; Disjoint}

Figure 56 Example of generalization relationship with associated constraints

In this case, we have to create the following real relvars ((37) and (38))
according to the guideline of Connolly and Begg (2002).

VAR Professor BASE RELATION {person_no PERSON_NO_TYPE,
last_name NAME_TYPE, sal SAL_TYPE} KEY {person_no};

(37)

VAR Student BASE RELATION {person_no PERSON_NO_TYPE,
last_name NAME_TYPE} KEY {person_no};

(38)

The Principle of Orthogonal Design: "Let A and B be distinct base relvars.
Then there must not exist nonloss decompositions of A and B into A1, A2, ...,
Am and B1, B2, ..., Bn (respectively) such that some projection Ai in the set
A1, A2, ..., Am and some projection Bj in the set B1, B2, ..., Bn have
overlapping meanings." (Date, 2003, p. 397)

Nonloss decomposition of relvar R into projections R1, R2, ..., Rn means
that R is equal to the join of R1, R2, ..., Rn and no projection is redundant (if
any of these projections is missing, then the join of others is not equal to R).
(Date, 2003, p. 355) For example, if we have the following projections of relvar
Professor {person_no}, {person_no, last_name}, {person_no, sal}, then the
first one ({person_no}) is not needed in order to restore relvar Professor. The
nonloss decompositions of relvar Professor are:
• {person_no, last_name}, {person_no, sal}
• {person_no, last_name, sal}

What is an overlapping meaning of the relvars? A DBMS does not
"understand" the meaning of a relvar the same way as humans do – based on the
name of the relvar and the names of its attributes (Date and McGoveran, 1994).
Even humans may have difficult to understand it if the names are not properly
selected. Operations with the relvars do not depend on their names. However, a
DBMS knows the integrity constraints that are associated with a relvar. The
relvar predicate for relvar R "is the logical AND or conjunction of the
constraints that apply to - in other words, mention relvar R" (Date, 2003, p.
259). Let us assume that R1 and R2 are two relvars, with associated relvar
predicates R1A and R1B, respectively. The meanings of R1 and R2 are said to
overlap if and only if it is possible to construct some tuple t so that R1A(t) and
R1B(t) are both true (Date and McGoveran, 1994). In other words, if relvars R1
and R2 have overlapping meanings, then tuple t could be part of the value of
both these relvars.

Relvar (let us call it Professor'') that is a possible projection of relvar
Professor has the relation type:

 131

• RELATION {person_no PERSON_NO_TYPE, last_name NAME_TYPE}
Relvar (let us call it Student'') that is a possible projection of relvar Student

has the relation type:
• RELATION {person_no PERSON_NO_TYPE, last_name NAME_TYPE}

Both these relvars have the following predicate (39):

p.person_no PERSON_NO_TYPE AND

p.last_name NAME_TYPE AND

(IF p.person_no=r.person_no THEN p.last_name=r.last_name)

(39)

The first two rows of the predicate show that both relvars have two attributes
and these attributes have the same types. The last row of this predicate indicates
that both these relvars have one candidate key and a candidate key attribute has
in both relvars the same type. Relations Student'' and Professor'' can both
contain a tuple with the same data even if the names of attributes are different in
different relvars. We conclude that in this case, relvars Professor and Student
have overlapping meanings and they do not follow POOD guideline. It is
possible to record same data about the same person by using both these relvars.
We need the following constraint (40) in order to prevent that:

CONSTRAINT C IS_EMPTY (Professor JOIN Student); (40)

Join operation uses the attributes in both relvars that have same name and
type– person_no and last_name. If the names in the relvars are different, then
we have to use additionally RENAME operator. In this case relvar Professor''
has the predicate (41):

p.person_no PERSON_NO_TYPE AND

p.last_name NAME_TYPE AND

(IF p.person_no=r.person_no THEN p.last_name=r.last_name) AND

IS_EMPTY (Professor'' SEMIJOIN Student)

(41)

and relvar Student'' has the predicate (42):

p.person_no PERSON_NO_TYPE AND

p.last_name NAME_TYPE AND

(IF p.person_no=r.person_no THEN p.last_name=r.last_name) AND

IS_EMPTY (Student'' SEMIJOIN Professor)

(42)

Date (2003, p. 196) writes: "the semijoin of a with b is the join of a and b,
projected over the attributes of a." These predicates are different and therefore
relvars Professor and Student have no overlapping meanings and they follow
POOD guideline.

Let us assume that we create a real relvar based on each entity type that is in
Figure 57. All these relvars have two attributes – one of them has built-in type

 132

INT and another has built-in type CHAR. An attribute that has type INT is a
candidate key.

-person_no : Int

-last_name : String

Person

-depno : Int

-name : String

Department

-petno : Int

-name : String

Pet

Figure 57 Example of difficulties in using POOD

We want to record different data by using the different relvars. However, a
DBMS does not know that. For example, tuple with the values <1, 'test'> could
be part of the value of all these relvars. If we apply POOD, then we find that
these relvars violate it.

If we take the position that design in Figure 57 is satisfactory and use only
built-in "simple" types (INT, CHAR, DATE etc.) in a database, then we cannot
effectively automate the checking of POOD. The software would find a lot of
pairs of projections that formally have overlapping meaning. However, without
manual intervention of a user, the system does not know for sure, what was the
exact intention of designer and whether these relvars suppose to help to record
the same data or not. In this case, this principle is only intuitive guideline to the
database designer, who manually inspects the data model (meaning 2).

It is an argument in support of using user-defined types in a database. For
example, attributes in relvar Person could have types PERSON_NO (base type
INTEGER) and PERSON_NAME (base type CHAR) and attributes in relvar
Department could have types DEPT_NO (base type INTEGER) and
DEPT_NAME (base type CHAR). The possible representations of these types
have only one component.

Albrecht et al. (1998) describe a database design method that allows us to
derive database structure and constraints from a natural language description. A
database designer has to enter real world data in order to find candidates for
valid and not-valid semantic constraints. According to "Heuristic Rules to
Search for Analogue Attributes" (Albrecht et al., 1998), it is possible to find the
cases when different tables contain the same data by finding attributes that have
the same meaning (they are called "analoga"). "All attributes of a database
having the same type and similar length are checked for being analoga."
(Albrecht et al., 1998) Examples of the heuristic rules that help to determine
whether the attributes have the same meaning: these attributes have same or
similar (synonyms) attribute names; the same values in the sample data; the
same or similar number of distinct possible values. Differences with POOD are
that this approach requires sample data and uses the names of attributes.
However, it is possible that two attributes that have the same meaning have
names that are not similar. It is possible that the registered sample values of two
attributes that have the same meaning are different. In addition, this approach
does not seem to take into account the use of complex types.

 133

The use of complex data types opens up new opportunities to the database
designers.

-a : Int
-b : Int

A

-c : Int
-d : Int

B

1 0..*

Figure 58 Example of one-to-many relationship

Next, we present some possible designs of real relvars that we could create
based on this model (see Figure 58). We also show names of the relvars (A or
B) (INT is abbreviation of INTEGER).
Design 1: A: RELATION {a INT, b INT}
B: RELATION {a INT, c INT, d INT}
Design 2: A: RELATION {a INT, b INT, B RELATION {c INT, d INT}}
Design 3: A: RELATION {a INT, b INT, B RELATION {B B_TYPE}}

B_TYPE is a scalar type that is created based on entity type B. Its possible
representation contains two components that correspond to attributes c and d.
Design 4: B: RELATION {A TUPLE {a INT, b INT}, c INT, d INT}
Design 5: B: RELATION {A A_TYPE, c INT, d INT}

A_TYPE is a scalar type that is created based on entity type A. Its possible
representation contains components that correspond to attributes a and b.
Design 6: A: RELATION {a INT, b INT}
B: RELATION {c INT, d INT}
AB: RELATION {a INT, b INT}

We note that in this case Soutou (2001) proposes 12 solutions based on
ORSQL. One could say that the use of collection types is reasonable only in case
of whole-part relationships. However, Soutou (2001) presents different designs
and some of them use collection types in case of one-to-many relationships
(which are not necessary whole-part relationships). Pardede et al. (2004) also
suggest to use collection types in case of one-to-many relationships.

Data that corresponds to entity type A is duplicated within the value of relvar
B in case of designs 4 and 5 if an entity with the type A is associated with more
than one entity with type B. In case of designs 2 and 3, we need constraints,
which enforce the rule that an entity with type B is associated with only one
entity with type A. Otherwise we could register data about the same entity with
type B within more than one tuple of relation A. This means that entity types A
and B are associated with many-to-many relationship.

Now let us assume that requirements to the database evolve. The database
must allow us to register data about entity types C and D (see Figure 59).

-a : Int

-b : Int

A

-e : Int

C
-f : Int

-g : Int

D

-c : Int

-d : Int

B

1 0..*0..* 1 0..* 1

Figure 59 Multiple occurrences of one-to-many relationship

 134

Next, we present two examples of names and types of possible real relvars
that implement this model. The first example is:
• B: RELATION {A TUPLE {a INT, b INT}, C TUPLE {e INT}, c INT, d

INT}
• D: RELATION {A TUPLE {a INT, b INT}, f INT, g INT}

In this case, data about an entity that has type A is duplicated in the values of
different relvars if it is associated with an entity that has type B as well as with
an entity that has type D. Another example is:
• A: RELATION {a INT, b INT, B RELATION {c INT, d INT}, D

RELATION {f INT, g INT}}
• C: RELATION {e INT, B RELATION {c INT, d INT}}

In this case, data about an entity that has type B is duplicated in the values of
different relvars if it is associated with an entity that has type A as well as with
an entity that has type C.

Now we present the motivating example, which shows that the original
principle of orthogonal design does not take into account the use of complex
data types. Figure 60 presents conceptual data model, which shows that an
employee can be supervisor of orders as well as contracts.

-contrno : CONTRNO_TYPE

-total : TOTAL_TYPE

-state : STATE_TYPE

Contract

-empno : EMPNO_TYPE

-ename : ENAME_TYPE

-sal : SAL_TYPE

Emp
-Supervisor

1 0..*

-orderno : ORDERNO_TYPE

Order

-Supervisor 1
0..*

Figure 60 Conceptual data model with entity types Emp, Contract and Order

One could come up with the following database design (we present names
and types of the real relvars):
• Emp: RELATION {empno EMPNO_TYPE, ename ENAME_TYPE, sal

SAL_TYPE, orders RELATION {orderno ORDERNO_TYPE}}
The candidate key of relvar Emp is attribute empno.

• Contract: RELATION {supervisor TUPLE{empno EMPNO_TYPE,
ename ENAME_TYPE, sal SAL_TYPE}, contrno CONTRNO_TYPE,
total TOTAL_TYPE, state STATE_TYPE}

The candidate key of relvar Contract is attribute contrno.
Relvar Emp is created based on design 2 and relvar Contract is created based

on design 4. The following expressions show how to create relvar Contract (43)
and assign a new value to it (44). "sal(1000)" is an example of invocation of
scalar selector operator.

VAR Contract BASE RELATION {supervisor TUPLE{empno
EMPNO_TYPE, ename ENAME_TYPE, sal SAL_TYPE}, contrno

CONTRNO_TYPE, total TOTAL_TYPE, state STATE_TYPE}
KEY {contrno};

(43)

 135

INSERT Contract RELATION {TUPLE {supervisor TUPLE {empno
empno(1), ename ename('JOHN'), sal sal(1000)}, contrno contrno(1),

total total(50000), state state(10)}};

(44)

Examples of possible values of relvars Emp and Contract can be seen in
Figure 61.

empno ename sal contrno total state

1

ANN3

102500031000JOHN1

154000021500BOB2

105000011000JOHN

100000 2042000

supervisor

empno ename sal

1

1500BOB2

1000JOHN

ANN3 2000

Emp
Contract

orderno

order

1

9

14

2

LISA4 2500 221

Figure 61 Examples of values of relvas Emp and Contract

Data about the employees is duplicated in the values of the different relvars.
Intuitively this kind of database design does not seem right. Can we show it by
using POOD? One possible projection of relvar Emp has the following type:
• RELATION {empno EMPNO_TYPE, ename ENAME_TYPE, sal

SAL_TYPE}
One possible projection of relvar Contract has the following type:

• RELATION {emp TUPLE{empno EMPNO_TYPE, ename
ENAME_TYPE, sal SAL_TYPE}, contrno CONTRNO_TYPE}

These relvars are not isomorphic. Two tables A and B are isomorphic "if and
only if there exists an one-to-one correspondence between the columns of A and
the columns of B, say A1:B1,..., An:Bn, such that in each pair of columns Ai:Bi
(i = 1, ..., n) the two columns are defined on the same domain." (Date and
McGoveran, 1994) One of the relvars has three attributes and another has two
attributes. The types (domains) of their attributes are also different. Date and
McGoveran (1994) write: "Two tables cannot possibly have overlapping
meanings if they are not isomorphic." Therefore, original version of POOD is
insufficient in this case.

3.4.2 The Extended Principle of Orthogonal Database Design
In this section, we present the extended version of POOD and examples of its
usage.

The Extended Principle: "The type is "complex type" if it is: (a) a relation
type, (b) a tuple type, (c) a scalar type where the possible representation has
more than one component, (d) a scalar type where the possible representation
has one component but this component has one of the types (a)-(c). Let A and B
be distinct real relvars. Let A' and B' be distinct virtual relvars where the
expressions of A' and B' "flatten" the structure of A and B, respectively. It
means that the headings of the relation types of virtual relvars A' and B' cannot
contain an attribute with the declared type being "complex type". Then there

 136

must not exist nonloss decompositions of A' and B' into A'1, A'2, ..., A'm and
B'1, B'2, ..., B'n (respectively) such that some projection A'i in the set A'1, A'2,
..., A'm and some projection B'j in the set B'1, B'2, ..., B'n have overlapping
meanings."

How to construct virtual relvars A' and B'?
• If relvar R has attribute t, which has a tuple type, then the following

relational expression unwraps this attribute: R UNWRAP t.
• If relvar R has attribute t, which has a relation type, then the following

relational expression unnests this attribute: R UNGROUP t.
• If relvar R has attribute t, which has a scalar type ST and this scalar type

has a possible representation with the components c1,...,cn, then the
following relational expression exposes these components and removes
attribute t from the result: (EXTEND R ADD (THE_c1 (t) AS c1, THE_c2
(t) AS c2,, THE_cn (t) AS cn)) {ALL BUT t}

The reader must bear in mind that real relvars could have multiple levels of
nesting and real relvars could have more than one attribute that has a complex
type. For example, an attribute in the heading of a tuple type can have a relation
type or an attribute in the heading of a relation type could have a user-defined
scalar type, the component of possible representation of which has again a
relation type. The relational expressions of the virtual relvars must take it into
account.

3.4.2.1 Discussion and Examples

Let us continue with the motivating example that is at the end of section 3.4.1.
Based on relvar Emp, we can create a virtual relvar with the following type:
• RELATION {empno EMPNO_TYPE, ename ENAME_TYPE, sal

SAL_TYPE, orderno ORDERNO_TYPE}
This virtual relvar has the following expression (45):

Emp UNGROUP orderno; (45)

Based on relvar Contract, we can create a virtual relvar with the following
type:
• RELATION {empno EMPNO_TYPE, ename ENAME_TYPE, sal

SAL_TYPE, contrno CONTRNO_TYPE, total TOTAL_TYPE, state
STATE_TYPE}

This virtual relvar has the following expression (46):

Contract UNWRAP emp; (46)

One possible projection of both these virtual relvars has the following type:
• RELATION {empno EMPNO_TYPE, ename ENAME_TYPE, sal

SAL_TYPE}
The candidate key of this relvar is attribute empno. These projections have

overlapping meanings because they both have the same predicate (47):
Therefore design of relvars Emp and Contract is not correct in terms of the

extended version of POOD.

 137

e.empno EMPNO_TYPE AND

e.ename ENAME_TYPE AND

e.sal SAL_TYPE AND

(IF e.empno=f.empno THEN e.ename=f.ename AND e.sal=f.sal)

(47)

Let us see another example, which show that existing design guidelines do
not always take POOD into account. We use entity types Emp and Contract
from Figure 60 as an example. Next, we present the names and types of real
relvars based on a possible database design in case of one-to-many relationship
(Soutou, 2001):
• Emp: RELATION {empno EMPNO_TYPE, ename ENAME_TYPE, sal

SAL_TYPE, contracts RELATION {contrno CONTRNO_TYPE}}
• Contract: RELATION {contrno CONTRNO_TYPE, empno

EMPNO_TYPE, total TOTAL_TYPE, state STATE_TYPE}
As you can see, contract numbers are duplicated in the different relvars. We

can create the virtual relvar with the following type based on relvar Emp.
• RELATION {empno EMPNO_TYPE, ename ENAME_TYPE, sal

SAL_TYPE, contrno CONTRNO_TYPE}
This virtual relvar has the following expression (48):

Emp UNGROUP contracts; (48)

We can create the virtual relvar with the following type based on relvar
Contract.
• RELATION {contrno CONTRNO_TYPE, empno EMPNO_TYPE, total

TOTAL_TYPE, state STATE_TYPE}
This virtual relvar has the following expression (49):

Contract; (49)

One possible projection of both these virtual relvars has the following type:
• RELATION {empno EMPNO_TYPE, contrno CONTRNO_TYPE}

The candidate key of this relvar is attribute contrno. These projections have
overlapping meanings because they both have the same predicate (50):

e.empno EMPNO_TYPE AND

e.contrno CONTRNO_TYPE AND

(IF e.contrno=f.contrno THEN e.empno=f.empno)

(50)

Therefore design of relvars Emp and Contract is not correct in terms of the
extended version of POOD.

Predicate of a relvar is the conjunction of the constraints that apply to this
relvar. A human user found the predicates in the previous examples. It would be
very useful if a DBMS or some separate tool would be able to determine the
predicates of virtual relvars and check whether a database follows POOD
guideline. The Third Manifesto states: "the constraints that apply to the result of

 138

evaluating an arbitrary relational expression shall be well defined and known to
both the system and the user." (Date and Darwen, 2006)

Next, we present some examples about how it is possible to determine the
predicate of a virtual relvar.

An attribute constraint (like "empno EMPNO_TYPE") determines the set of
possible values that attribute could have (Date, 2003) by specifying the type of
the attribute. Some attributes of a virtual relvar and their types could be derived
from the headings of the tuple type, relation type or from the components of
possible representation of the scalar types.

Let us consider key constraint as an example of database constraint.
Expression "(IF e.empno= f.empno THEN e.ename=f.ename AND e.sal=f.sal)"
states that attribute empno is a candidate key. Date and Darwen (2000) suggest
that a DBMS should be able to determine candidate keys of virtual relvars if it
knows about candidate keys in real relvars. They acknowledge the possibility
that implementations might find proper superkeys rather than true candidate
keys or might not discover some candidate keys at all. Possible ways how a
DBMS could find the key constraints of a virtual relvar:
• By using the input of a user who explicitly specifies the key constraints of

the virtual relvar.
• By deducing the information about the keys from the existing constraints to

the real relvars. For example, Date and Darwen (1992, p. 133-154) explain
how to find functional dependencies in derived relations that are formed by
executing some relational expression.

• By analysing the existing value of a relvar. For example, algorithm TANE
(Huhtala et al., 1999) finds functional dependencies in a relvar by analysing
its value.

A DBMS must have as much as possible information about the data that is in
a database in order to fulfil this task. We can give to the DBMS information
about nature of the data by creating constraints.

Constraint that helps to enforce rule 1 (see section 3.4.3) determines a
candidate key (attributes bi, bj, ..., bk) of a virtual relation that "unnests" an
attribute with a relation type. Constraint that helps to enforce rule 2 (see section
3.4.3) determines a candidate key (attributes bi, bj, ..., bk) of a virtual relation
that "unwraps" an attribute with a tuple type.

3.4.3 Heuristic Rules for Reducing Data Redundancy within the
Value of One Real Relvar

In this section, we present two heuristic rules that help to prevent data
redundancy within the value of one real relvar. These rules take into account the
fact that a database designer can use relvar attributes that have complex types.
These rules should be seen as guidelines but not as law. The word "heuristic"
means that these rules are often, but not always, usable. For example, these
rules are not mandatory if heading {H} of a tuple- or relation type contains one
attribute that has a scalar type, the each possible representation of which has
only one component.

 139

Rule 1: Let there be real relvar R having attributes a1,..., an and relation-
valued attribute r with relation type RT that has heading {H}. Let us assume
that if we could have relvar R' with type RT, then the set of attributes bi, bj, ...,
bk that are a subset of attributes b1,..., bm in {H} would be a candidate key of
relvar R'. Then each possible value of relvar R must satisfy the constraint that
has the following expression (51):

IS_EMPTY((SUMMARIZE R UNGROUP r PER R UNGROUP r
{bi, bj, ...,bk} ADD COUNT AS card) WHERE card>1)

(51)

Loosely speaking, attributes bi, bj, ...,bk should also be involved in a
candidate key of the relation where the relation-valued attribute is "flattened" by
using UNGROUP operator.

Rule 2: Let there be real relvar R having attributes a1,..., an and tuple-valued
attribute t with tuple type TT that has heading {H}. Let us assume that if we
could have relvar R' with the type with heading {H}, then the set of attributes
bi, bj, ..., bk that are a subset of attributes b1,..., bm in {H} would be a
candidate key of relvar R'. Then each possible value of relvar R must satisfy the
constraint that has the following expression (52):

IS_EMPY((SUMMARIZE R UNWRAP t PER R UNWRAP t {bi,
bj, ..., bk} ADD COUNT AS card) WHERE card>1)

(52)

Loosely speaking, attributes bi, bj, ...,bk should also be a candidate key of
the relation where the tuple-valued attribute is "flattened" by using UNWRAP
operator.

These rules can be enforced as database constraints. If the creation of these
constraints is unacceptable, then a designer has to seriously consider, whether
the database design has to be changed or whether the existing design is a special
case (see section 3.4.3.1) that does not need changes.

If we can enforce these constraints in case of attribute t of real relvar R, then
we could also state that attribute t is a candidate key of relvar R. However, if we
just state that attribute t is a candidate key, then a DBMS may have incomplete
information about constraints. For example, without constraint (51) a DBMS
will not have information that contract number (attribute contrno) is unique
identifier of contracts (see Figure 63).

3.4.3.1 Discussion and Examples

Next, we will present an example about the use of the rule 1.

-empno : EMPNO_TYPE

-ename : ENAME_TYPE

-sal : SAL_TYPE

Emp

-contrno : CONTRNO_TYPE

-total : TOTAL_TYPE

-state : STATE_TYPE

Contract
-Supervisor

1 0..*

Figure 62 Conceptual data model with entity types Emp and Contract

 140

Figure 63 presents possible value of relvar Emp that is created based on the
conceptual data model (see Figure 62) and follows design 2 (see section 3.4.1).
This relvar has the following type:
• RELATION {empno EMPNO_TYPE, ename ENAME_TYPE, sal

SAL_TYPE, contracts RELATION{contrno CONTRNO_TYPE, total
TOTAL_TYPE, state STATE_TYPE }}

Attribute empno is the candidate key of this relvar. Contrno is used in order
to uniquely identify contracts. Result of the SUMMARIZE operation (see
Figure 63) shows that data about the contract with the contrno 1 is duplicated. It
will cause update anomalies. The constraint for avoiding data redundancy
according to rule 1 is (53):

CONSTRAINT C_emp_contract (IS_EMPTY((SUMMARIZE Emp
UNGROUP contracts PER Emp UNGROUP contracts {contrno}

ADD COUNT AS card) WHERE card>1));

(53)

empno ename sal contrno total state

1

ANN3

10250003

15400002
1500BOB2

10500001
1000JOHN

100000 2042000

10500001

contracts
Emp

contrno card

12

13

21

14

Figure 63 Sample value of relvar Emp and result of the SUMMARIZE operation

The similar constraint is also usable in case of design 3. In this case, we need
equality comparison operator for comparing values that have a scalar type. The
Third Manifesto prescribes that "The equality comparison operator "=" shall be
supported for every type." (Date and Darwen, 2000, p. 139) This operator
should be created automatically if a new user-defined scalar-type is created. For
example, in case of using design 3 we could create relvar Emp that has the
following type:
• RELATION {empno EMPNO_TYPE, ename ENAME_TYPE, sal

SAL_TYPE, contracts RELATION{contract CONTRACT_TYPE}}
The constraint for avoiding data redundancy according to rule 1 is (54):

CONSTRAINT C_emp_contract (IS_EMPTY((SUMMARIZE Emp
UNGROUP contracts PER Emp UNGROUP contracts {contact}

ADD COUNT AS card) WHERE card>1));

(54)

A DBMS must check equality of values with type CONTRACT_TYPE by
using equality comparison operator.

Figure 64 presents possible value of relvar Contract that is created based on
the conceptual data model (see Figure 62) and follows design 4. This relvar has
the following type:

 141

• RELATION {supervisor TUPLE{empno EMPNO_TYPE, ename
ENAME_TYPE, sal SAL_TYPE}, contrno CONTRNO_TYPE, total
TOTAL_TYPE, state STATE_TYPE}

empno ename sal contrno total state

1

ANN3

102500031000JOHN1

154000021500BOB2

105000011000JOHN

100000 2042000

supervisor

Contract

Figure 64 Sample value of relvar Contract

Attribute contrno is the candidate key of this relvar. Empno is used in order
to uniquely identify employees. Data about the employee with the empno 1 is
duplicated.

The constraint for avoiding data redundancy according to rule 2 is (55):

CONSTRAINT C_contract_emp (IS_EMPTY((SUMMARIZE
Contract UNWRAP supervisor PER Contract UNWRAP supervisor

{empno} ADD COUNT AS card) WHERE card>1));

(55)

Soutou (2001) and Pardede et al. (2004) use collection types in order to
implement one-to-many relationships in an ORDBMSSQL database. They do not
use this kind of constraints. A reason is that it is not possible to declare such
constraints in current ORDBMSSQLs. Therefore, an application has to enforce
these constraints instead of a DBMS.

As we said earlier, rules 1 and 2 are heuristic rules. Now we present
counterexamples that show that we do not always have to follow these rules.

Each employee has exactly one salary number and name. One could create
relvar Emp that has an attribute with a tuple type for recording name and salary:
• RELATION {empno EMPNO_TYPE, emp TUPLE {ename

ENAME_TYPE, sal MONEY_TYPE}}
We could have different employees who have the same name and salary.

Therefore, the use of the constraint that is proposed in the rule 2 is not suitable.
However, such design would make it more difficult to change/retrieve data and
enforce constraints and therefore we do not advise to use it.

Let us assume that we have relvar Emp_background with the following type:
• RELATION {empno EMPNO_TYPE, degree DEGREE_TYPE, skill

SKILL_TYPE}
We want to record only names of degrees and skills. Therefore, both types

have one possible representation with one component – name of the degree or
skill, respectively. Name has the built-in type CHAR. Let us also assume that
relvar Emp_background is not in the fourth normal form and contains multi-
valued dependencies: empno→→degree and empno→→skill.

In Figure 65 is a sample value of relvar Emp_background. Astrova (2003)
presents the algorithm that transforms relational database schema to the object-

 142

database schema. This algorithm maps relvar with the multi-valued
dependencies to the class that has encapsulated attributes with the set types.

empno

1

2

1

degree

BSc

BSs

MSc

skill

drawing

programming

multimedia

2 MSc analysis

2 MSc programming

3 BSc multimedia

Figure 65 Sample value of the relvar that contains multivalued dependenies

Therefore, by using analogy we could replace relvar Emp_background with
the relvar that has the following type:
• RELATION {empno EMPNO_TYPE, degrees RELATION {degree

DEGREE_TYPE}, skills RELATION {skill SKILL_TYPE}}.
Many employees could have the same degree or skill and no degree and skill

is associated with the same employee more than once. We cannot enforce the
constraint that corresponds to rule 1. We may choose to ignore it because values
of attributes degrees and skills contain minimal amount of repeating data. Only
names are repeatedly recorded. The problem is that if names change, then we
may have to update more than one tuple.

If we want to start to record textual descriptions about the different types of
degrees, then we could add new component description with the type CHAR to
the possible representation of type DEGREE_TYPE. In this case, name as well
as description would be repeatedly recorded in the different tuples and we
should consider changing the design so that rule 1 is satisfied.

3.4.4 An Example about the Suitability of Relation-Valued
Attribute

Date and Darwen (1992, p. 86) and Date (2003 p. 374-375) present one example
about the situation where a relation-valued attribute (a relvar attribute that has a
relation type) makes sense. Each relvar must have at least one candidate key.
Date (2003) proposes that a database catalog (see section 1.3.3) must contain a
real relvar Rvk. Its value "lists the relvars in the database and their candidate
keys" (Date, 2003, p. 375). For each candidate key (ck) of a relvar (rvname), it
presents the names of the attributes (attrname) that participate in this key. Date
(2003) proposes to create real relvar Rvk with the following type:
• RELATION {rvname RVNAME_TYPE, ck RELATION {attrname

ATTRNAME_TYPE}}
The candidate key of this relvar is the combination {rvname, ck}. An

advantage of such design is that the candidate key constraint already enforces
the rule (R1): A relvar cannot have two distinct candidate keys that involve
exactly the same attributes (Date and Darwen, 1992, p. 87). Next, we present
some examples of possible designs that extend the original design (relvar Rvk).
Common problems to all these designs:

 143

o the use of them requires complex query expressions and hence also
complex expressions in order to enforce integrity rules or change
values of relvars;

o violations of the extended version of POOD.
If a database user executes a DDL statement, then a DBMS must change

values of some of the relvars that belong to the catalog. A relvar can have more
than one candidate key. Therefore, a value of relvar Rvk can contain more than
one tuple with the same relvar name. This redundancy means that if a database
designer wants to rename a relvar, then the system must search Rvk to find
every tuple with the old name (and change it). If the system does not make
changes in all the tuples but only in some of them, then the relation presents
incorrect data. If we want to avoid this problem and at the same time still use
relation-valued attributes, then we must use multiple nesting levels. We could
create a real relvar with the following type:
• RELATION {rvname RVNAME_TYPE, cks RELATION {ck RELATION

{attrname ATTRNAME_TYPE}}}
The candidate key of this relvar is attribute rvname. Attribute cks cannot be a

candidate key because it is possible that two distinct relvars have exactly the
same amount of candidate keys and names of the attributes that participate in
these keys are the same. Unfortunately, in this case, the rule R1 is not enforced
by the candidate key constraint and we have to enforce it by using a separate
database constraint.

Some relvars can have overlapping keys (an attribute is part of more than
one key). Data about these attributes is duplicated within the value of relvar
Rvk. If a database designer changes name of a candidate key attribute, then the
system has to find every tuple with the old name (and change it) or otherwise
the catalog contains inconsistent data.

Let us continue with the original proposal of Date (2003). A database catalog
could contain more information about the attributes. For example, it could
contain the information about the type of each attribute. In addition, not all the
attributes of a relvar are part of a candidate key. We could create additional real
relvar Non_candidate_key_attribute with the following type in order to record
data about the attributes that are not involved in any candidate key.
• RELATION {rvname RVNAME_TYPE, attrname ATTRNAME_TYPE}

The candidate key of this relvar is the combination {rvname, attrname}.
Without the additional constraint (56), relvars Rvk and
Non_candidate_key_attribute violate the extended version of POOD (see
section 3.4.2). It means that without this constraint the database could contain
the proposition that an attribute is part of a candidate key as well as not part of
any candidate key. Other interpretation of the relvars that do not have this
constraint is that it is permitted to create a relvar that has a type where the
heading {H} contains two or more attributes that have the same name.
However, "No two distinct pairs in {H} shall have the same attribute name."
(Date and Darwen, 2006)

 144

CONSTRAINT C_relvar_attribute (IS_EMPTY(Relvar UNGROUP
ck JOIN Non_candidate_key_attribute));

(56)

If a database designer wants to drop a candidate key, then the DBMS may
have to assign new values to two relvars because data about the non-candidate
key attributes must be added to the value of real relvar
Non_candidate_key_attribute.

Another possibility is to create relvar Rvk with the following type:
• RELATION {rvname RVNAME_TYPE, cks RELATION {ck RELATION

{attrname ATTRNAME_TYPE}}, non_ck_attributes {attrname
ATTRNAME_TYPE}}

Attribute non_ck_attributes has a relation type and its value contains the
names of non-candidate key attributes of a particular relvar. We also have to
create a database constraint (for the same reasons as (56)). However, the
necessity of this constraint is not detected by the extended version of POOD
because both these attributes (cks and non_ck_attributes) belong to one real
relvar.

If we also want to record data about the types of attributes, then we could
come up with the two real relvars that have the following types:
• Relvar Rvk: RELATION {rvname RVNAME_TYPE, ck RELATION

{attrname ATTRNAME_TYPE, typename TYPENAME_TYPE}}
• Relvar Non_candidate_key_attribute: RELATION {rvname

RVNAME_TYPE, attrname ATTRNAME_TYPE, typename
TYPENAME_TYPE}

Without additional constraint, these relvars also violate the extended version
of POOD. Examples of situations that require reading and possibly changing
values of both these relvars:

• changing the name of a type;
• changing the type of a candidate key that participates in a foreign key.

We have to change the types of associated foreign key attributes as well.
We could also create the relvars:

• Relvar Rvk: RELATION {rvname RVNAME_TYPE, ck RELATION
{attrname ATTRNAME_TYPE}}

• Relvar Rvk_attribute: RELATION {rvname RVNAME_TYPE, attrname
ATTRNAME_TYPE, typename TYPENAME_TYPE}

A value of relvar Rvk contains names of candidate key attributes and a value
of relvar Rvk_attribute contains data about all the attributes (including attributes
that are involved in candidate keys). These two relvars violate the extended
version of POOD and we cannot use a constraint in order to prevent that.
Creation, renaming or deletion of an attribute that participates in a candidate
requires that the system has to read and change values of both these relvars.

In conclusion, we can say that even the example that should demonstrate the
advantages of relation-valued attributes in certain real relvars has not clear
advantage if we extend the database.

 145

3.5 View to ORDBMSSQLs

In this section, we firstly explore some of the database design options that we
cannot use in an ORDBMSTTM database. Secondly, we analyse whether it is
possible to use the designs that are usable in the ORDBMSTTM databases in the
ORDBMSSQL databases as well.

3.5.1 SQL-specific Solutions
Some of the designs that are usable in case of the ORSQL data model are not
usable in case of the ORTTM data model.

Some systems, like for example UML repository (Mahnke and Ritter, 2002)
use typed tables and inheritance between the typed tables. It is interesting to
note that Definition Schema of SQL (Melton, 2003c) does not implement the
generalization relationships by using typed tables.

It is not possible to use typed tables in ORDBMSTTM (see Chapter 1). The
authors of The Third Manifesto quite strongly oppose the use of typed tables
and inheritance relationship between typed tables. They claim that it adds
unnecessary complexity to the data model without actually providing benefits.
ORTTM allows us to implement generalization relationship by using virtual
relvars (see section 3.3.1). We do not want to repeat the extensive discussion of
this topic and interested reader could look, for example, the work of Date (2003,
chapter 26) and Date and Darwen (2000, Appendix E).

Bernstein and Dayal (1994), Feldman et al. (2000) and Mahnke and Ritter
(2002) advise to record representations of experience elements as a set of
CLOBs (Character Large Objects) or BLOBs (Binary Large Objects) in order to
keep original storage formats of the different tools. Each experience element is
recorded as a big uninterpreted "chunk" without dividing it into fine-grained
components. In addition, an experience element is associated with an experience
characterization vector (CV) that describes the element.

Barghouti et al. (1996) and Rashid and Lougharn (2003) argue against
recording software code in the columns that have CLOB or BLOB data types
because a DBMS provides limited means to formulate queries based on this
data and modify this data. DBMSs provide only some basic built-in scalar
operators and functions (equality comparison, concatenation, substring etc.) for
these types. The developers can create user-defined routines (UDRs) or use
application code in order to retrieve and modify subcomponents of the artifacts.
"The queries become too complex in case of CLOBs and are hard to formulate
due to the lack of a formal structure e.g. a relational schema." (Rashid and
Lougharn, 2003). Therefore, it is also difficult to create constraints to the
columns with these types. The system has to record additional metadata in order
to allow us to make queries about the artifacts.

3.5.2 Usability of the Designs and Guidelines in ORDBMSSQLs
This section describes problems of ORSQL and ORDBMSSQLs. Some problems
are caused by the shortcomings of the SQL standard (and ORSQL) and some are

 146

caused by the incomplete implementation of the standard in the ORDBMSSQLs.
These problems make it more difficult to use the designs that were proposed in
the previous sections (3.1-3.4) in the ORDBMSSQL databases. The appropriate
terminology that describes ORSQL based design can be found by using the
mapping between the ORSQL and ORTTM data model elements (see section 1.3).
We pay attention to two ORDBMSSQLs – Oracle10g (Oracle, 2005) and
PostgreSQL8.0 (PostgreSQL, 2005).

Current ORDBMSSQLs make it difficult to use declarative constraints in a
database in order to enforce well-formedness rules of the artifacts. Let us
assume that names of patterns cannot be empty strings or strings that contain
only spaces or underscores. According to ORTTM, we can create a new scalar
type with the appropriate type constraint. On the other hand, in ORSQL we can
choose between the creation of a domain or a type. Domains allow us to specify
declarative constraints, but we cannot achieve strong typing because domain is
not a data type in ORSQL. If the base types of two domains are the same, then we
can perform operations (that we have not explicitly specified) with the values
that belong to these domains. In addition, Türker and Gertz (2001) evaluate
seven DBMSs that use SQL language and write that only one of them allows us
to create domains. If we want to define a new type in ORSQL, based on a
predefined type and achieve strong typing, then a distinct type has to be created.
We cannot use constraint declarations there. We can use methods of user-
defined types in order to implement the constraints by using some imperative
language.

Date and Darwen (2000) treat concepts "operator" and "function" as
synonyms but use the term "operator". SQL (starting from SQL:1999) specifies
statement for creating user-defined functions but does not specify statement for
creating operators. It is not possible to determine more convenient infix, prefix
or postfix notation that could be used in order to call this function. On the other
hand, SQL dialect of PostgreSQL (PostgreSQL, 2005) and Oracle (Oracle,
2005) allow us to create user-defined operators as well as user-defined
functions.

Date et al. (2003, p. 22) introduces the read-only scalar operator
IS_EMPTY that could be a built-in operator. Currently there is no such built-in
operator or function in SQL (Melton, 2003). Argument of IS_EMPTY should
be a SELECT statement. It returns a Boolean value TRUE if the result of this
query contains at least one row and returns FALSE if the result of this query
contains no rows. Important implementation detail is that it should stop its
execution and return the result as soon as first row that belongs to the resultset
of the query is found. SQL provides EXISTS predicate, but we cannot write the
statement SELECT EXISTS(<<subquery>>). One could say that it is possible
to achieve the same results as expected from IS_EMPTY by using the Count
aggregate function. The problem is that in this case DBMS has to execute a
query, find all the rows that belong to the resultset and count them. It is
inefficient because we are interested in existence of at least one row in the
resultset but not about the exact amount of rows. It is also possible to implement

 147

IS_EMPTY as a generic user-defined function that uses dynamic SQL.
However, DBMS vendors probably have better means to optimize this function
and prevent its misuse. For example, programs that use dynamic SQL are
vulnerable to SQL-injection problem (Boyd and Keromytis, 2004) that could be
used in order to attack a database.

Current ORDBMSSQLs have problems with the database constraints. A
database constraint can be implemented as a CHECK constraint. There exists
ORDBMSs like PostgreSQL and Oracle that do not allow us to use subqueries
in the CHECK constraint although the SQL standard permits that. Database
constraints can be implemented using assertions that constrain the set of valid
values for one or more base tables in SQL (Gulutzan and Pelzer, 1999). For
example, the following assertion (57) implements rule R2 from section 3.2.3.1:

CREATE ASSERTION C_2

CHECK ((SELECT COUNT(*) FROM StartState)<=1);

(57)

Unfortunately Ceri et al. (2000) note that many RDBMSSQLs do not support
assertion objects. Türker and Gertz (2001) write in the review of integrity
constraints in the different DBMS-s: "assertions are in general not available and
are unlikely to be offered in the near future."

Alternative method for enforcing constraints in the current ORDBMSSQLs is
to use imperative programs in the SQL-invoked routines or triggers that were
both first time standardized in SQL:1999.

We can create an SQL-invoked function that accesses data that is in different
tables and returns a scalar value. We can use this function in a CHECK
constraint by determining that a value that is returned by this function must
satisfy some condition. Currently it is permitted in PostgreSQL but not in
Oracle.

If data in a database is changed using SQL-invoked routines, then these
routines can enforce the well-formedness rules. In this case, routines must be
the only means for modifying data. Systems like UML-repository (Ritter and
Steiert, 2000) and business-rule enforcer (Zimbrão et al., 2003) use declarative
OCL constraints in order to specify database constraints. They cannot use
assertions in order to implement these constraints and have to generate triggers
that are written in a proprietary imperative language. Some problems of using
triggers: (a) the creation of a trigger does not cause automatic evaluation of the
existing data; (b) the SQL standard does not permit to defer execution of the
trigger to the end of a transaction; (c) "Semantic query optimization is not
possible if the declarative semantics are hidden in triggers." (Cochrane et al.,
1996); (d) application generators cannot find easily the data integrity rules. In
addition to a DBMS, a generated application could also check whether these
rules are satisfied; (e) instead of one declarative constraint, we need many
triggers in order react to all the events that can cause invalidation of the
constraint.

Let us assume that we have created tables Whole and Part based on the
conceptual data model (see Figure 66) and we want to enforce the structural

 148

constraint that each whole instance must be all the time associated with between
two and six part instances. We need triggers that react to the insertion of a new
row to table Whole, insertion of a new row to table Part, modification of a part
identifier in table Part and deletion of a row from table Part.

-a

Whole

-b

Part1

2..6

-a : Int

-b : Int

Super

-c : Int

-d : Int

Sub

Figure 66 Examples of whole-part and generalization relationships

For example, if a new row is added to table Whole, then we have to associate
it with the data about the part instance in table Part. These operations must be
part of one transaction and a DBMS must check the data at the end of it. If any
of the checks fails, then the transaction should be rolled back. It can be
implemented in PostgreSQL by using not-standardized constraint triggers. They
allow us to defer execution of the trigger procedure to the end of transaction. In
contrast, The Third Manifesto states that constraints must be satisfied at
statement boundaries and relational language must have multiple form of the
assignment operation in which several individual assignments to relvars are
performed as a single logical operation (Date and Darwen, 2000).

In PostgreSQL, we cannot use a CHECK constraint that uses a user-defined
function in order to enforce this constraint. Currently PostgreSQL permits us
only to defer checking of foreign key constraints.

Lloyd (1994) shows advantages of the declarative programming languages
compared to imperative languages which include easier teaching, clearer
semantics, improved programmer productivity and better support to meta-
programming and parallelism. Cochrane et al. (1996) write: "declarative
constraints should be used in lieu of triggers whenever possible." Leff and
Rayfield (2006) are also convinced in an advantage of declarative statements
and write: "Dramatic improvements in productivity might be achieved if
programmers could fully define applications declaratively." They propose
Relational Blocks approach that presents business logic in relational algebra and
allows us to create an application by using only declarative statements.

Cochrane et al. (1996) thinks that RDBMSs do not support assertions
because they are "extremely expensive to support". Maybe it means that an
assertion reduces performance of a system? Performance is an issue of the
implementation of the data model. If triggers have sufficient performance
compared to assertions and table CHECK constraints, then creation of a
declarative constraint at the model level could cause automatic creation of the
imperative programs (triggers) at the implementation level. For example, in case
of Relational Blocks approach application code in Java is created based on the
declarative specification of model, view and controller part of the system.

A DBMS should have information about types of relationships
(generalization, whole-part) between entity types (that correspond to tables) in
order to be able enforce properties of the relationships and answer to the queries

 149

(Zhang et al., 2001). We have to use virtual relvars in order to implement this
kind of relationships in an ORDBMSTTM database (see section 3.3). It must be
possible to change data in a database by assigning new value to a virtual relvar.
The data change must propagate to the values of all its underlying real relvars.

Generalization relationship is an example of a generic relationship that is
often used in the metamodels (see Figure 66). In an ORDBMSTTM database we
could create real relvars Super and _Sub and virtual relvar Sub that joins
relations Super and _Sub. If we want to register data about a new entity with the
type Sub, then we add new tuple to the value of virtual relvar Sub and a DBMS
adds corresponding new tuples to the values of the real relvars Super and _Sub.

Is it possible to change data in an ORDBMSSQL database through views?
SQL:1992 and earlier standards do not allow us to use joins in the updateable
views (Date, 2003). Starting from SQL:1999 views defined as one-to-one or
one-to-many join of two base tables are updateable (Date, 2003). Unfortunately,
there are ORDBMSSQLs that do not support the SQL standard in this regard. For
example, in PostgreSQL all views are not-updateable without further
programming. In Oracle, a DML statement must affect only one underlying
table of an updateable join view. In our case, system needs to add data to all the
base tables that participate in the join. An alternative is to use not-standardized
features like rules (PostgreSQL, 2005) or instead-of triggers (Oracle, 2005) that
are associated with a view in order to achieve its updatability. Creation of these
objects requires additional programming.

There are other ways to implement generalization relationship in an
ORDBMSSQL database. However, we do not need them (and related complexity
in the data model) in the DBMSs that that fully support the relational model.

The SQL standard defines language constructs for creating subtables and
supertables that seem suitable in order to implement this kind of relationship.
Both subtable and supertable must be typed tables and a structured type on
which subtable is defined must be subtype of a structured type on which
supertable is defined (Date, 2003). As stated earlier, it is not possible to use
declarative constraints in the structured type specification. However, it is
possible to use table constraints in order to restrict values in a typed table.
PostgreSQL uses non-standard approach according to which a subtable and
supertable are not typed tables (PostgreSQL does not support typed tables).
PostgreSQL implementation of subtable-supertable feature is immature because
the subtable does not inherit all the declarative constraints of the supertable.

Another possibility is to use triggers that are associated with the base tables
(Pokrajac et al., 2004). Let us assume that table B is a subtable and A is its
supertable. For example, we could create delete and update triggers that are
associated with B. Their task is to delete corresponding row from A then row in
B is deleted and update primary key of A then corresponding foreign key is
updated in B. This approach also requires insertion of new rows into A and B
within one transaction using two different statements.

Users of the current ORDBMSSQLs must often manually create additional
database objects if some object is created in a database. For example, by default

 150

it is not possible to add a key constraint to a column that has a row type in a
PostgreSQL database. We have to create first an operator class and a b-tree
support function that compares two values that have a row type. Another
example is creation of rules or instead-of triggers in order to make a view
updateable. Ceri et al. (2000) notes that handcrafted triggers are error-prone
and triggers should be created by the system. We think that ideally a DBMS
should create all these objects automatically. At least the system should allow
us to use the schema triggers (like in Oracle) in order to allow us to create the
generation program that is executed, when database schema changes. SQL:2003
does not permit such triggers (Melton, 2003).

 Standardization of some important features that are required by The Third
Manifesto has begun in SQL:1999 or SQL:2003. It takes time before
ORDBMSSQLs start to fully implement the standard in this regard.

Recursive queries (introduced in SQL:1999) based on data that represents a
graph structure. Information about the associations between artifacts as well as
associations between elements of artifacts could be recorded in a repository.
Associations and associated elements form a graph structure. Example of a
query that is needed then a pattern is modified: Find all patterns in pattern
language PL that directly or indirectly depend on pattern P.

Types that are constructed by using the type constructor ROW (introduced in
SQL:1999) and Multiset (introduced in SQL:2003) could be used in the views
that allow us to present artifact to a user without fragmentation. It is also
possible to use columns with these types in the base tables in order to
implement whole-part relationships (see section 3.3.2).

Examples of the constraints that may be necessary in case of using
constructed types:
1. A field of a row type or an attribute of a table type must be mandatory (they

should not permit NULL's).
2. A row that is part of the value of a row- or a table type must satisfy a

predicate.
3. A value with the multiset type cannot contain some element (value)

repeatedly.
4. A value with the multiset type has minimum and/or maximum cardinality. It

is also possible, that there are gaps in the sets of permitted cardinalities.
5. If a column has a multiset type, then an element (value) can be part of at

most one multiset in this column.
6. An attribute of a table type is also a foreign key attribute.
7. Column with a constructed type can have primary key or uniqueness

constraint.
A multiset can contain repeating elements. It is not consistent with The Third

Manifesto that prohibits duplicate tuples in a body of a relation. Developer who
wants to use sets of rows instead of multisets must be continuously aware that
most (but not all) of SQL statements must explicitly state it. Constraint (3)
would be automatically enforced, if we could use type constructor SET.
Unfortunately it is not present in SQL:2003. However, we can create a view

 151

where duplicate elements that are part of the multiset value are removed by
using the function SET.

SQL specifies UNNEST operator that allows us to present elements of a
multiset as rows of a virtual table. In theory, we could create declarative
constraints to the values of the constructed types that are in some column by
using table- or database constraints. These constraints should use, for example,
UNNEST operator or MEMBER, SUBMULTISET or SET predicates,
introduced in SQL:2003. In practice, we cannot create them because of the
limited support to the declarative constraints in the ORDBMSSQLs. The same
problems are with the database constraints that reference more than one table. It
is possible to use triggers for checking these constraints (1-7).

Table-functions (introduced in SQL:2003) allow us to implement
parameterized relational operators and return multiset (bag) of rows. They help
to implement queries that search artifacts or statistical information from the
repository.

Sequence generators (introduced in SQL:2003) generate values for the
candidate keys.

Table 19 contains comparison of SQL:2003, The Third Manifesto and two
existing systems - Oracle 10g and PostgreSQL 8.0. In Table 19 "Y" means that
the feature is supported, "P" means that the feature is "partially supported"
according to our evaluation and "N" means that the feature is not supported.

Column Design refers to the identifiers of possible designs of whole-part
relationship (see section 3.3.2) where such feature is needed.

Sometimes there is no exact correspondence between ORSQL and ORTTM
constructs. For example, relations are sets but tables are multisets. Special care
is needed in SQL in order to prevent and eliminate duplicated rows. In this case,
we use the most similar features in a comparison. Last row of Table 19
summarizes support to the features.

Big amount of "P"-s and "N"-s in the table is consistent with the finding of
Barghouti et al. (1996) who evaluated RDBMSSQLs and OODBMSSQLs and
concluded: "there is no single commercial system that completely satisfies the
PSEE data management requirements." Unfortunately, the situation has not
dramatically changed during the last ten years.

One could say that an ORDBMSSQL allows us to achieve the same results as
an ORDBMSTTM if we bear in mind good database design principles and that
much of the ORDBMSTTM features are present in the current ORDBMSSQLs.
Our study shows that the existing ORDBMSSQLs do not allow us to implement
many aspects of the designs that are presented in the previous sections (see
sections 3.1-3.4). Other researches have noticed similar problems. For example,
Pardede et al. (2004) try to implement whole-part relationship in an
ORDBMSSQL database by using the collection data types. Pardede et al. (2004)
write: "At present, we cannot use SQL to embed integrity constraint checking in
ORDB collection." Our research result supports this finding and brings attention
to the practical need to improve the existing standards and systems.

 152

Table 19 Some features that could help to implement software engineering repository

 The Third Manifesto Designs SQL:2003 Oracle 10g PostgreSQL8.0
1 tuple type generator 3 Y: row type constructor N Y
2 relation type generator (relation

is a set)
4, 5 P: multiset type constructor P: table type – supports

the multiset feature but
not the syntax

N

3 user-defined scalar type 2, 5 Y: user-defined type (UDT) P: supports user-defined
structured types (UDST)
but not distinct types

N

4 attribute with a complex type
can be a key

2, 3, 4, 5 Y: no reference that it cannot
be

N

P: needs
programming

5 attribute with a complex type
can be mandatory

2, 3, 4, 5 Y: no reference that it cannot
be

P: yes in case of UDSTs.
No in case of the table
types

Y

Y: CHECK constraint with a
subquery

N: CHECK constraint cannot contain a
subquery

Y: UDF in a check constraint N Y

6

complex declarative relvar and
database constraints

1, 2, 3, 4,
5, 6

Y: assertion object N: not possible to create assertions
7 declarative constraints to the

values of the complex types if
we use these types as declared
types of columns

2, 3, 4, 5 Y: attributes and fields have
data types. Possible to declare
others constraints by using,
for example, UNNEST
function.

P: attributes of UDSTs
have types. If UDST is a
column type, then relvar
constraints that its
attributes are mandatory.

P: fields have data
types. Relvar
constraints to the
values of row
types.

8 it is possible to change value of
multiple relvars through a
virtual relvar (view), the
expression of which contains a
join

1, 6 P: yes in case of one-to-one
join. No in case of one-to-
many join - only "many side"
is updateable (Date, 2003, p.
322).

P: yes if not-standardized instead-of triggers
(Oracle) or rules (PostgreSQL) are
programmed.

 153

 The Third Manifesto Designs SQL:2003 Oracle 10g PostgreSQL8.0
9 automatically generated

= and ≠ operators for comparing
values with a complex type

2, 3, 4, 5 Y

Y P: there is CREATE
OPERATOR statement
and possible to
program it

10 built-in GROUP operator. The
result of its invocation is a set

1, 6 P: COLLECT function (
result is a multiset) +
SET funct.

P: CAST function +
SET function

N

11 built-in UNGROUP operator 4, 5 Y: UNNEST function Y: TABLE function N
12 built-in WRAP operator 1, 6 N N N
13 built-in UNWRAP operator 3 N N N
14 IS_EMPTY built-in scalar

operator
1, 2, 3, 4,
5, 6

N N N

15 SEMIMINUS built-in relational
operator and possibility to define
new universal relational operators

1, 2, 3, 4,
5, 6

N N N

16 possibility to define new scalar
operators

1, 2, 3, 4,
5, 6

P: Possible to create
SQL-invoked routines

Y: There is CREATE OPERATOR statement
It is possible to create SQL-invoked routines

17 possibility to declare in a type
creation statement that some
special value represents the
missing information

1, 2, 3, 4, 5 N N N

18 user-defined relational operators 1, 2, 3, 4,
5, 6

P: it is possible to create a table functions, the results of which are multisets.
Duplicates have to be explicitly removed. In addition, in Oracle a table type
and in PostgreSQL a row type has to be created.

∑ supports fully / supports
partially / doesn't support

 10 / 5 / 5 3 / 7 / 10 4 / 5 / 11

 154

3.6 Summary

Soutou (2001) writes: "Few efforts have been made to offer guidelines to design
an OR-database." The general guidelines that we can give based on this chapter
are:
• Do not use the "Universal Database Design" approach.
• The use of the database design according to which a real relvar has an

attribute that has complex type (see section Objectives) does not simplify
database design, but repositions the complexity in a database. Prefer the
designs that do not use attributes with complex types in real relvars.

• Use virtual relvars that have attributes that have complex types in order to
implement whole-part relationships.

• If you decide to use real relvars where attributes have complex types, then
create constraints that prevent data redundancy.

• Follow the extended Principle of Orthogonal Database Design in order to
avoid data redundancy across different real relvars.

• Require good support of virtual relvars (including updatable views) and
declarative integrity constraints from a DBMS, which you plan to purchase.

These guidelines are not new. However, we have revised these guidelines in
terms of ORTTM. We offer additional examples that support these guidelines. For
example, Date (2003) presents one example when to use a relation-valued
attribute in a real relvar. We showed that if we extend a database, then the
proposed solution leads to data redundancy and requires complex constraints.

The main results of this chapter are:
• Description of different approaches to repository database design. In

particular we discussed the schema design and checking of the well-
formedness rules. We also proposed an approach for the versioning of
artifacts. We presented three approaches for designing a repository
database schema – encapsulated artifact types, non-encapsulated artifact
element types and encapsulated artifact element types. Loosely speaking,
the first one proposes simple real relvars and complex data types. The
second one proposes bigger amount and more complex real relvars that use
simpler data types. The last one is a combination of previous two. These
approaches are not new. Date and Darwen (2000, Appendix C) call the
selection between them the "design dilemma". We have to agree with Date
and Darwen (2000) that the use of complex data types in a database does
not remove the complexity from the system because we still have to create
complex virtual relvars and constraints.

• Evaluation of the "Universal Data Model" design approach. This chapter
contains more thorough overview of problems of this kind of design than
any other paper that we have found.

 155

• Evaluation of the proposed designs that help to preserve semantics of
whole-part relationships in a database. We performed the evaluation in
terms of the secondary characteristics of whole-part relationships. Such
evaluation approach is also one novel result of our work.

• The extended principle of orthogonal database design. It takes into account
the use of complex data types in real relvars. This principle helps to avoid
data redundancy across different real relvars. We showed that some
existing database design guidelines (Soutou, 2001; Connolly and Begg,
2002) do not consider this principle. It leads to data redundancy in a
database.

• Two heuristic rules that help to avoid data redundancy within the value of a
real relvar that has an attribute with the declared type being a tuple type or
a relation type.

• Overview of the shortcomings of ORSQL and ORDBMSSQLs. These
shortcomings make it more difficult to implement the designs that were
presented in this chapter.

One of the main advantages of ORDBMSs is the possibility to define new
data types. Main conclusion of this chapter is that the so-called "traditional"
database designs (that do not have attributes with complex data types in real
relvars) together with the special values, integrity constraints and views that use
complex data types offer actually more freedom and flexibility to designers than
the designs that use complex data types in real relvars. This finding supports
the guideline that is presented by Date (2003, p. 374). According to this
guideline, real relvars without relation-valued attributes should be preferred.
We also add that real relvars without tuple-valued attributes should be
preferred.

Some necessary features like views and constraints are not object-oriented.
They were required by the SQL standard long before the incorporation of
object-oriented features to SQL. Current ORDBMSSQLs do not implement views
and constraints correctly or do not implement them at all. These shortcomings
cause criticism towards SQL and relational model. They cause addition of new
features to the SQL standard and dialects that would be unnecessary if SQL
fully conforms to the relational model.

 156

4 REPOSITORY SYSTEM WITH A FIXED
DATABASE SCHEMA

Successful development of an information system takes a lot of effort.
Important part of this work is modeling of the system. Common approach is to
create different types of models that describe different aspects (dimensions) of a
system with a different level of abstraction. An example is the Zachman
framework for the information systems architecture (Zachman, 1987). Each
model type is used in order to describe one aspect of a system. For example, a
system is described in terms of different views in case of the visual modeling
language UML. Each view has one or more corresponding diagram types. UML
version 1.5 specifies nine types of diagrams (OMG formal/03-03-01) and UML
2.0 specifies thirteen types of diagrams (OMG formal/05-07-04). In different
projects, only subsets of these diagram types are used, depending on the goals.
However, more than one type of diagrams is needed in order to describe static
structure as well as behaviour of a system. For example, Larman (2002)
presents a possible structure of a system analysis specification. The
specification must contain UML diagrams (visual models) as well as textual
models. These models are:
• Use case model (diagrams and textual specification of use-cases).
• Domain model (diagrams and textual specification of conceptual classes

and attributes).
• System sequence diagram.
• Contracts of the system operations.

These models together also constitute a model. Final versions of the models
that describe a system have to be syntactically and semantically correct,
complete and consistent within itself and with each other in order to be most
useful. If a model is the combination of diagrams and textual description, then
there can be inconsistencies between these components.

Examples of the inconsistencies within one model:
1. Use cases/actors have different names in a diagram and in a text.
2. There are different amount of use cases/actors in a diagram and in a text.
3. A use case is associated with the different actors in a diagram and in a text.

Examples of the inconsistencies across different models:
• Names of the actors are different in a use case model and in the sequence

diagrams that describe system operations.
• Names of the elements of a domain model differ from the names that are

used in the pre- or post conditions of the contracts of the system operations.
Examples of the completeness problems:

• A domain model is missing.
• A use case diagram is not accompanied with a textual specification.

 157

• An operation contract does not have the post-conditions.
Checking of the models in order to find such problems can be at least

partially automated by a software system. Models could be inconsistent and
incomplete during the development process. It should be possible at any time to
get information about these problems. It helps to gradually improve the quality
of the models. Pedagogical pattern Built in Failure (Eckstein et al., 2006)
suggests that teacher should remove the fear of failure as a barrier to learning by
making failure a part of the learning process.

The hypothesis that must be controlled in the future is that the checking
functionality would also change a modeling tool to a valuable learning tool. It is
because continuous feedback from the system instead of a teacher reduces fear
to make mistakes. This fear hampers the learning process. It also eases the work
of a teacher who does not have to check consistency and completeness (CC)
problems manually.

However, CASE systems today do not provide enough support for checking
consistency between different types of models (Richters and Gogolla, 2000),
(Delen et al., 2005) and between evolving versions of models (Straeten et al.,
2003). Nentwich et al. (2003) note that in many CASE systems the constraints
are hard-coded into the tool and it is not possible to choose to ignore a
constraint or delay its checking. Due to the limitations of CASE tools, the
constraint checking is often manual work and takes quite a long time and a lot
of effort. It is a "daunting tasks beyond anyone’s cognitive ability" (Dori, 2002),
even if CASE tools provide some support because of big amount of different
types of models.

The author of this dissertation teaches database design in a university. A part
of the course work is a term project. Students have to create a strategic- and
detailed analysis of an information system and a prototype of its software.
Current structure of the project documentation has been used during the last
four years. For example, 75 projects were presented in the spring of 2005.
Teacher reviewed projects together with their authors and pointed to the
mistakes. Average length of a review of one project was about 20 minutes.
Average interval between first checking of a project by the teacher and
acceptance of the project was 4.2 days. Students improved their projects during
this period and sometimes they did it repeatedly. Students used word processor
in order to write textual models and CASE-tools or diagram editors in order to
draw visual models. These systems do not support automatic consistency and
completeness checks. The presented projects reflected this situation and
contained many such deficiencies. Another problem is that students have
difficulties to understand how all these different models are connected with
each other. Therefore, a system is needed that gives fast and precise feedback to
the students.

Delen et al. (2005) write: "Second, there is a need for a completely Web-
based integrated modeling environment for distributed collaborative users."
This chapter describes the system analysis environment that allows us to

 158

perform strategic- and detailed analysis of a database-centric information
system without using complicated visual notations. This system should ease
creation of an independent work by the students and correction of it by the
teachers. It can also be used in the real-world information system development
projects. The system should support methodological framework for the
Enterprise Information System (EIS) strategic analysis (Roost et al., 2004). A
person with the modeler role will record system specification in a database as an
integrated model using one tool. A modeler does not have to create a collection
of weakly connected models by using different tools any more. A modeler will
use the modeling language that is simplified synthesis of the different system
specification languages (UML (OMG formal/03-03-01), SMX (Jäderlund,
1981) and OPM (Dori, 2002) among others). The structure of the database will
be derived from the fixed metamodel of this language. This system will be more
similar to a CASE than to a Meta-CASE tool because of the fixed metamodel.
Data about the various aspects of a system will be recorded in a database using
a form-based and web-based user interface. We plan to use a DBMS that allows
us to use SQL language. We propose queries that find consistency or
completeness (CC) problems that are present in a specification. Our approach
eliminates problems with the inconsistencies between the diagrammatic and
textual representations. Diagrams and textual models are kind of views to the
information in the database that could be generated by the system at any time.
We do not have yet completely implemented the system but have started to
create its prototype (see "Appendix D: The location of prototype system"). We
think that such system will help students/teachers in the learning/teaching
process. It will also help to improve quality of the result of the real development
projects.

4.1 Related Works

UML is nowadays de facto standard for describing the information systems.
Problems of consistency between UML diagrams have, for example, been
acknowledged by Engels and Groewegen (2000) who describe open issues in
the object-oriented development.

A modeler has to learn a lot of different notations, rules and guidelines that
are used in the different types of models. UML 1.1 contains 233 discrete
concepts (McLeod, 2000). Still he proposes rich visual notation for process
models that could replace UML dynamic diagrams. If we study one UML
model or other similar model, then we have to constantly look the other models
in order to understand it fully. Switching between different pages/files/packages
is inconvenient as well as mentally challenging and wearying. "Multiplicity of
representational styles impedes communication between modeling professionals
and their clients." (Geoffrion, 1989) Visual models are usually created with
different CASE or model drawing tools (Rational Rose, ERWin, ArgoUML,

 159

Visio, Dia etc.) and are accompanied with textual specifications that are created
using a text editor. We have to have this software in our computer if we want to
thoroughly study these models or modify them. Modification of one model
requires modifications of dependent models as well. Multiplicity of modeling
software and files that contain models often causes creation of a model from
scratch instead of reusing existing models. Next, we list some approaches that
are used in order to achieve correct and consistent models:
1. Formulation of guiding rules that a modeler should follow. For example,

Glinz (2000) describes rules that help to minimize inconsistencies between
a class model and a use case model.

2. The use of cross-references between different types of models. For
example, Glinz (2000) proposes to use references to a class model in
scenarios of use cases.

3. The use of specific models that contain cross-references between other
models. An example of such model is a CRUD matrix. It presents
associations between object types and processes (Brandon, 2002) and helps
to check their consistency.

4. The use of systems that evaluate models that are created by using CASE
tools.

5. The use of systems that actively assist users of CASE tools and provide
intelligent help.

6. The use of modeling notations and systems that use one type of model in
order to specify multiple aspects of a system.

A drawback of the approaches 2 and 3 is that without a tool support,
references in a model or new kinds of models may themselves have CC
problems. CASE systems can have supporting tools that check models or
provide active assistance to its users (approach 4 and 5). They may transform
diagrams into some other form of representation in order to analyze them. For
example, generated description logics statements (Straeten et al., 2003) are
analysed by using description logic query tool. Richters and Gogolla (2000)
describe a system that translates UML models to statements of UML-based
Specification Environment language. The models are then analyzed by
simulating that the model elements have instances. Framework xlinkit
(Nentwich et al., 2003) that allows us to check consistency of distributed,
heterogeneous documents is yet another example of the approach 4. The system
allows us to express constraints between documents by using constraint
language. This language is based on first order logic. The system also contains a
constraint engine, which task is to check these constraints.

An example of the approach 5 is agents based system WayPointer (Racko,
2004). It monitors use case models that are created by using some CASE tool,
for completeness, consistency and correctness. It can point to problems and
offer recommendations. Another example is system ISEA (Intelligent Software
Engineering Advisor) (Virvou and Tourtoglou, 2006), "which is a software tool
for constructing UML diagrams and at the same time support the manager and

 160

software engineers adaptively." It evaluates user actions and offers feedback
according to performance type and personality of users.

Agarwal and Sinha (2003) conclude that developers do not rate any of the
UML diagrams as very high in terms of usability. It could be caused by the use
of several model types that leads to the inconsistencies between various parts of
system specification (Dori, 2002), (Dori et al., 2003). In addition, UML is a
complex language. Siau and Cao (2003) evaluate the complexity of UML using
complexity metrics and write: "Our findings suggest that each diagram in UML
is not distinctly more complex than techniques in other modeling methods. But
as a whole, UML is very complex-2-11 times more complex than other
modeling methods."

People have been aware of "model multiplicity problem" for a long time. A
single model-based approach is superior to multiple model approaches for late
requirements engineering through implementation according to Paige and
Ostroff (2001). Already Jäderlund (1981) describes a methodology for holistic
system development that uses so-called system matrices in order to describe a
system. A system matrix (SMX) incorporates multiple views of a system. An
accompanying software tool provides methods for checking correctness,
completeness, and consistency (CCC check) of a system.

More recently, the model multiplicity problem has been addressed by
introducing Object-Process Methodology (OPM) (Dori, 2002), (Dori et al.,
2003) that is a holistic system modeling, development and evolution approach.
OPM uses Object-Process Diagrams (OP diagrams) for graphic specification
and Object-Process Language (OPL) for textual specification of a system. OPM
uses one integrated type of model in order to describe structural, functional and
behavioural aspects of a system (Dori, 2002). CASE tool Object-Process Case
Tool (OPCAT) that supports OPM has been developed (Dori et al., 2003).

Another example of a modeling languages that corresponds to the single-
model principle is Eiffel (Paige and Ostroff, 2001). Delen et al. (2005) propose
system Modelmosaic that allows us to create different types of models. It
records models and relationships between elements of different types of models
in a single integrated information base. These relationships, that are recorded as
business rues, allow us to generate new models from the existing ones.

4.2 Description of the Modeling Language

A model is created by using some language. Specification of a semi-formal
language should contain descriptions of the abstract syntax, well-formedness
rules and semantics (Greenfield et al., 2004). For example, a metamodel that
describes the abstract syntax of UML is presented as a set of class diagrams
(OMG formal/03-03-01; OMG formal/05-07-04). Well-formedness rules of
UML are expressed using OCL constraints and its semantics are described using
free-form text. In this section, we present the metamodel of the language that

 161

will be used for specifying information systems in our proposed system.
Diagrams that present fragments of the metamodel are accompanied with the
free-form textual descriptions that explain some of the underlying concepts. The
structure of the database for recording specifications of information systems
will be derived from this metamodel. In section 4.3, we present queries that help
to check well-formedness of the recorded specifications.

Interested parties can participate in the development project of information
system in the different roles (see Figure 67).

An information system (IS) is described using three types of subsystems
according to the methodological framework for the Enterprise Information
System (EIS) strategic analysis (Roost et al., 2004). These types are: areas of
competence, functional subsystems and data centric subsystems that are also
called registers (see Figure 68). A functional subsystem corresponds to one or
more business processes (Roost et al., 2004). "A register is a logical data-centric
view of a business object that holds the state and transactions data of the object
and provides related recording and query services." (Roost et al., 2004)
Administrative subsystems help to perform administrative tasks of the
organizations. The examples are subsystems for the management of data about
the workers and documents. These kinds of subsystems are part of many
different information systems. Business subsystems help to perform specific
business tasks of the organizations. These tasks are the reason why this
organization is founded. For example, university IS has subsystems for the
management of data about students, curriculums and study results.

-name : String

Project

-first_name : String
-last_name : String

Person

Participant_role_type

Partipation_in_project

1 0..*

-participant

1

0..*

1

0..*1..*

0..1

Information system

Party

-business_name : String

Organization

0..* 0..*

works for

-username : String
-password : String

User

1

0..1

-name : String

-name_ENG : String

Classifier

Figure 67 Metamodel of projects and participants

Functional subsystems use the services of one or more registers by reading
and modifying data in them. Subjects who have some role in an IS use the
services of one or more functional subsystems that belong to the area of
competence of their role (Roost et al., 2004).

 We provide possibility to specify non-functional requirements of a system
(see Figure 69) by using the form that is described in Volere Requirements
Model (Robertson and Robertson, 1999).

Functional requirements of an information system can be specified as use
cases. Corresponding fragment of the metamodel (see Figure 69) is created

 162

based on the guidelines of Larman (2002) and Cockburn (1998). Each use case
belongs to some functional subsystem (see Figure 68).

Subsystem

Functional subsystem RegisterArea of competence

Task category

1

0..*

Information system

1 0..*

-user

0..* 0..*

For the administrative tasks of the organization

For the business tasks of the organization

1

0..*

Usage of register

0..* 0..*

1

0..*

Type of non-functonal requirement

-description : String

-rationale : String

-fit criterion : String

-customer satisfaction : Int

-customer dissatisfaction : Int

-supporting materials : String

Requirement
0..*

0..*

-text : String

System goal

1

0..*

-name : String

-background : String

System

Create

Read

Update

Delete

Look and Feel

Usability

Performance

Operational

Maintainability and Portability

Security

Cultural and Political

Legal

0..*

0..*

conflicting

-dependent0..*

0..*

{Mandatory,

Or}

-name : String

-name_ENG : String

Classifier

-name : String

-name_ENG : String

Classifier

Type of operation

-name : String

-name_ENG

Artifact -contains related inf.

0..*

0..*

Figure 68 Metamodel of subsystems

-name : String

Actor

-name : String

-goal : String

-short description : String

-performance suggestion : String

-is_essential_UC : Boolean

Use Case

-description : String

Interest1

0..*

1

0..*

-description : String

-problem identification time : Date

Open_issue

1 0..*
-description : String

Action

0..*

1

0..*

-Performer

0..1

-extension

0..*

0..1

Functional subsystem

Area of competence

0..1
1

AgentInstrument

Actor_role_type1

0..*

Primary actor

Supporting actor

Offstage actor

0..*
0..*

extension
0..*

0..*

inclusion

Action_at_any_time

-seq_nr : Int

Action_in_sequence

included
extending

-description : String

-solving time : Date

Solution

1
0..1

1

0..*

-trigger

1

0..*

Scope

1
0..*

Inside the scope of IS

Adjacent (external)

ext. point

Activity type

1

0..*

Manual

Computer suported

Fully automated

Embedded

-value

UC metrics

1

0..* UC metric type

priority ranking

max freq. during a day

avg freq. during a day

min. duration

avg. duration

max. duration

1

0..*

-name : String

-name_ENG : String

Classifier

-name : String

-name_ENG : String

Classifier

-text : String

-is_triggered_by_time : Boolean

Event

Figure 69 Metamodel of use cases

 163

Each use case describes scenarios that consist of actions. Most actions are
performed sequentially. Some actions can be performed at any point of the
scenario. Use cases can be related by using either extension or inclusion
relationships.

-name : String

Data element

-definition : String

Object type

Relationship type

-Object type A

1

0..*

-Object type B

1

0..*

Register

1
0..*

Substance_type

0..1

0..*

Abstract object

Physical object
Multiplicity

-A1

0..*

-B

1

0..*

-a_is_generalization : Boolean
-b_is_generalization : Boolean

Generalization

-role_of_object_A : String
-role_of_object_B : String

-text_a_b : String

-text_b_a : String
-a_is_aggregate : Boolean

-b_is_aggregate : Boolean
-a_is_composite : Boolean

-b_is_composite : Boolean

Association

{Mandatory,
Or}

-name : String
-name_ENG : String

Classifier

Figure 70 Metamodel of data elements

-name : String

Data element

-name : String

Database operation

Type of operation

Postcondition

1 0..*

1

0..*

0..*
1

-description : String

Action

-result 0..*

-cause

0..*

Create

Read

Update

Delete

-value is input0..*
0..*

-value

Operation metrics

1

0..*

Operation metrics type

Amt. per operation

Avg. amt. per hour

Max. amt. per hour

1
0..*

-name : String

-name_ENG : String

Classifier

Figure 71 Metamodel of database operations

-text : String

-is_triggered_by_time : Boolean

Event

-name : String

-is_start_state : Boolean

-is_final_state : Boolean

State

State change

-trigger

1
0..*

-before 1

0..*

-after

1

0..*

10..*

{States before and after
are the states of the same

object type}

-definition : String

Object type

Figure 72 Metamodel of state changes

 164

An actor who is either an agent or an instrument may perform the actions.

An agent corresponds to an area of competence. Registers are specified in terms
of the data elements (object types and relationship types)(see Figure 70) and
contracts of the database operations (see Figure 71). An action that is part of a
use case can cause execution of a database operation. Result of the operation is
described in terms of the post-conditions. A use case is triggered by an event
(see Figure 69). An object type may have associated state changes. Each state
change is caused by an event (see Figure 72).

4.3 Queries

The system analysis environment must allow users to specify and execute
database queries (see Figure 73).

-name : String

-sql_statement : String

-description : String

Query

Query_purpose_type

0..*
1

-name : String

-name_ENG : String

Classifier

Completness check query

Consistency check query

Metric query

Metric-based defect discovery

General information

View_to_system

0..*

1..*

Subsystem view

Object view

Functional view

Database operations view

Event view

Project view

Query_scope_type

0..*

1

Query over all IS specifications

Query based on specification of one IS

-name

Test

0..*
0..* -expected_result : Boolean

Simple_CC_query

Query_result_type

0..*

1

Scalar value

Relation

-base0..*

-realated

0..*

{expected_result IN (true, false)}

Metric_defect_query

-min_value : Decimal

-max_value : Decimal

-description : String

Metric_interval1

0..*

-min_expected_value : Decimal

-max_expected_value : Decimal

Metric_query_in_test

0..* 0..*

Figure 73 Metamodel of queries

The purpose of a query depends on the information that it helps to find:
• Completeness or consistency (CC) problem of a model (see section 4.3.1).
• Value of metrics. For example, Kim and Boldyreff (2002) present software

metrics that are applicable to UML models. Choizon and Ueda (2006)
summarize the existing work about object-oriented design metrics.
Examples of metrics that are usable in this system are amount of areas of
competence, amount of functional subsystems, amount of registers and
average amount of use cases in functional subsystems.

 165

• Value of metrics that helps to find defects in a model. A metrics can have
associated threshold. If a metrics value is not between some predefined
values, then it indicates existence of a problem in a model. Choinzon and
Ueda (2006) present thresholds on metrics of object-oriented design that
determine whether metrics values indicate critical situations or not. For
example, we can count amount of use cases in different functional
subsystems (FS). If some FS has a big amount of use cases compared to
others, then it shows that we have to decompose this big FS.

• Some other information that can be found from a model. Queries can be
used in order to classify elements of a model. For example, it is possible to
determine whether a use case is concrete, abstract, base or addition use case
(Larman, 2002, p. 388) by making query about its relationships with other
use cases. Another example is that we do not have to separately record the
events that influence a register but we can find them by using a query. A
use-case case is triggered by an event. A step of a use-case can refer to a
database operation, which creates/reads/modifies/deletes a data element
that belongs to a register.

A query can give information about different aspects of a modeled system
(see class View_to_system in Figure 73). For example, a query that finds
average amount of use cases in functional subsystems is about subsystems view
as well as about functional view. Query scope is either a specific model or all
the models that are managed by our system. Result of a query can be either a
scalar value or a relation. For example, the result of a simple CC check query is
a (scalar) Boolean value.

A query that helps to find defects based on some metrics can have multiple
intervals of associated values. These intervals correspond to the different
severity-levels of a defect. For example, Choinzon and Ueda (2006) present the
metrics "number of methods in a class" that has threshold of undesirable values
"20-30 little bad, 31-50 bad, 50< very bad". A query, the result of which is a
scalar value can belong to one or more tests. If one or more queries that belong
to a test do not give an expected result, then it points to a defect in a model. The
expected results of the queries are:

• All simple CC queries return a value that is the same as their expected
value.

• All metrics queries that help to find defects return a value that is
between minimum and maximum expected value.

4.3.1 Consistency and Completeness Checks
Structure of the database of the system analysis environment determines the
elements that can be associated. It also enforces the relationship constraints
according to which participation and/or cardinality is one.

However, the general principle of our system is that consistency and
completeness of the models will not be ensured by the database constraints.
This "tolerant" approach gives more freedom to a modeler. Occurrences of each

 166

consistency or completeness rule violation will be found by using a query or a
set of queries. It must be possible to use these queries at any moment.

Examples of the completeness rules are:
1. An IS contains at least one area of competence (AC).
2. An IS contains at least one functional subsystem (FS).
3. An IS contains at least one registry subsystem (RS).
4. An AC has exactly one corresponding actor.
5. An actor (and therefore an AC) uses services of at least one FS.
6. Services of a FS are used by at least one actor.
7. An IS (through some of its FS) is used by at least one non-adjacent actor.
8. A FS uses services of at least one RS.
9. A RS has at least one FS that reads its data.
10. A RS has at least one FS that adds new data to it.
11. An IS has at least one administrative FS.
12. An IS has at least one administrative RS.
13. An IS has at least one business FS.
14. An IS has at least one business RS.
15. An IS (as a whole or through some of its FS) has at least one non-functional

requirement from each of the different requirements types.
16. Functional requirements to a FS are described by using at least one use

case.
17. A use case is associated with the description of the interest of a primary

actor of this use case.
18. Ideally, all the open issues of a use case are solved.
19. A use case that is not an essential use case (Larman, 2002, p. 68) is

associated with at least one database operation through some action.
20. A data element is created by at least one database operation (association

through a post-condition).
21. A data element is read by at least one database operation (association

through a post-condition).
22. A database operation has at least one post-condition.
23. A database operation is associated with at least one action that is part of a

non-essential use case. Each database operation is used by at least one use
case.

24. A register has at least one associated object type that has associated state-
transition description.

25. An object type that has associated state-transition description has exactly
one start state.

26. An object type that has associated state-transition description has one or
more end-states.

27. It is possible to get from the start state of an object to any other state of an
object by using state transitions.

28. A relationship has a mark about aggregation/composition/generalization at
most at one end. In this case, the other end has no such marks.

 167

29. A relationship end can either have mark about aggregation, composition or
generalization but not more than one of them.
Examples of the consistency rules are:

30. If there is a relationship between a FS and a RS according to which the FS
creates/reads/updates/deletes data in the RS, then there must exist at least
one use case that belongs to the FS so that this use case
creates/reads/updates/ deletes a data element that belongs to the RS.

Completeness and consistency rules are well-formedness rules. Next, we
present examples of the queries that could be constructed based on these rules:
1. A query where the result is a Boolean value. If the result of the query is the

same as the expected result (see class Simple_CC_query in Figure 73), then
it means that the specification of selected information system conforms to
this rule. For example: "Find whether a model satisfies the rule that each
area of competence has exactly one corresponding actor."

2. A query where the result is a relation:
• Queries that find parts of a model that do not conform to a CC rule. For

example: "Find areas of competence that do not have exactly one
corresponding actor."

• Queries that find parts of a model that conform to a CC rule. For example:
"Find areas of competence that have exactly one corresponding actor."

Queries can also be used in order to find suspicious parts of a model that
may or may not be the mistakes. For example, a query can search registers and
data elements that are not subject of the update or delete operations.

4.4 Discussion and Comparisons

This system does not follow the popular approach according to which systems
have to be specified by using a visual language. There exist researchers who
think that a system specification does not have to be created by using a visual
language. Brooks (1987) writes in his paper about the "silver-bullets" in
software engineering: "In spite of progress in restricting and simplifying the
structures of software, they remain inherently unvisualizable."

However, UML is nowadays widely used notation and therefore it is
reasonable to teach it even after we start to use this system. For the teaching and
presentation purposes, it is sometimes useful to see system specifications in the
form of UML diagrams. A possible solution is a functionality of our system that
allows us to generate XMI files based on the data in the database. These files,
that contain UML models, can be opened in a CASE tool. Paige and Ostroff
(2003) also support the idea that a modeling system must be able to produce
multiple views from a single model.

The use of a central database and a web-based and form-based modeling
interface are not unique features of our system. Commercial system EA
WebModeler (EA Web Modeler, 2006) provides form-based and web-based

 168

user interface for creating models. Habela (2000) describes a system that allows
us to extend a metamodel through form-based interface. Commercial systems
Modelmosaic (Delen et al., 2005) and EA WebModeler also record models in a
database. Ritter and Steiert (2000) present UML Repository. It allows us to
record UML models in a centralized database that is created by using an
ORDBMSSQL. They see many advantages of such approach including more easy
cooperation between developers, possibility to detect design errors by using
database constraints and possibility to analyse the models by using the query
facilities. Chapter 2 contains references to much more software engineering
systems that use the help of a DBMS. "Appendix C: Comparison of some
systems that record models in a database" compares our system analysis
environment with UML repository (Ritter and Steiert, 2000) and UML Model
Measurement Tool (UMMT) (Lavazza and Agostini, 2005).

The database of our system uses the schema design "Non-encapsulated
Artifact Element Types" (see section 3.1.2). For the checking of the well-
formedness rules we use the approach according to which a model can be
checked by using queries (see approach 1 in section 3.2.4). Such solution is
partially forced by the fact that we use ORDBMSSQL PostgreSQL. It provides
limited means for creating declarative database constraints (see section 3.5.2).

For example, the purpose of the following query (58) is CC (consistency and
completeness) check, its result is a scalar (Boolean) value and its scope is one
information system. The query checks whether an information system consists
of at least one functional subsystem.

SELECT IS_EMPTY('SELECT 1 FROM functional_subsystem
WHERE information_system_id=#IS#') AS result;

(58)

As you can see, we use IS_EMPTY function (see section 3.5) that is
implemented as an SQL-invoked function. Its argument is a SQL SELECT
statement. This statement contains placeholder "#IS#" that is replaced with the
identifier of an information system if this query is executed.

The purpose of the following query (59) is CC check, its result is a relation
and its scope is one information system. The query finds the names of
functional subsystems that do not have associated use cases.

SELECT name AS result FROM functional_subsystem AS FS
WHERE information_system_id= #IS# AND NOT EXISTS

(SELECT 1 FROM use_case AS UC WHERE
FS.functional_subsystem_id=UC.functional_subsystem_id);

(59)

Metamodel of the language that is used in our system, contains whole-part
relationships. We do not implement these relationships by using complex types
(constructed multiset or row types or user-defined structured types) as declared
types of columns in base tables. Firstly, our research shows that in case of using
complex types we have to create constraints or queries that are more complex
(see section 3.3.2.3) than in case of not using these types. In addition,

 169

PostgreSQL currently does not follow the SQL standard completely and
therefore it is not possible to implement all the designs (see section 3.3.2.2) that
use complex types as attribute types.

We have created a partial prototype of the system. This prototype allows us
to manage subsystems (see Figure 68). It also makes possible the management
and execution of the queries (see section 4.3). "Appendix D: The location of
prototype system" describes the location and extent of the prototype in more
detail.

A modelling language that follows the principle of the single model must
satisfy the following three criteria: conceptual integrity, consistency of views,
wide spectrum applicability (Paige and Ostroff, 2001). Our proposed solution
satisfies the "conceptual integrity" criterion because models are recorded in one
database. Each model element is recorded only once. Our proposed solution
satisfies the "consistency of views" criterion because checking of the
consistency of different views of a model is automated. Our proposed solution
partly satisfies the "wide-spectrum applicability" criterion. This system is used
in order to perform strategic- and detailed analysis of the system but not design
or implementation. The system could be extended so that it could generate
stored procedures based on the database operations and table specifications
based on the data-elements.

Why cannot we use existing free software in order to model systems by
using a single model type? Examples of such systems are SystemSpecifier
(Systematik holistik metodik, 2006) that allows us to create system matrices and
OPCAT (Dori et al., 2003) that allows us to create OPM models. The first
reason is that they do not fully support the methodological framework for the
Enterprise Information System (EIS) strategic analysis. They do not allow us to
specify different types of subsystems and their interconnections. In addition, the
proposed system uses the help of a DBMS but OPCAT and SystemSpecifier are
file-based systems. The use of a DBMS helps to avoid well-known problems of
the file-based systems like separation-, isolation- and duplication of data. More
than one modeler can work with the same model at a time. A problem of an
older version of OPCAT (for example ver. 2.55) is that it does not provide
explicitly CCC checks functionality.

The use of the integrated model prevents repeating recording of the same
information and thus helps to avoid inconsistencies. Our proposed system can
also be used in order to collect information about the work amount and
performance of modelers. It would also be a useful e-learning tool because it is
planned to be a web-based system.

Barghouti et al. (1996) specify requirements to the information management
component of Process-Centered Software Engineering Environment (PSEE).
Next, we compare our proposed system with some of these requirements.

The data types that are used in a PSEE database might not be only "simple"
predefined data types. In the database of our system, we use only predefined
data types. Therefore, we do not use methods in order to access encapsulated

 170

data. Barghouti et al. (1996), on the other hand, propose the use of SQL-
invoked methods as one well-established mean of preserving data integrity.
Firstly, we use the schema design "Non-encapsulated Artifact Element Types"
(see section 3.1.2). It causes creation of many base tables with many columns
that use either predefined- or user-defined distinct types. In addition, the DBMS
that we use provides limited support to user-defined data types (see Table 19).
Finally, results of section 3.3 show that the use of complex data types in base
tables has some disadvantages.

Barghouti et al. (1996) have the position that data of a PSEE does not have
to be in a single database. Instead, a PSEE may use heterogeneous means for
data management (see section 2.2.2) by incorporating different storage systems
(files, DBMS). The system that is proposed in this chapter records data in a
single database that is created and managed by using an ORDBMSSQL.

Barghouti et al. (1996) think that the information management component of
a PSEE must provide "a facility that supports abstract views of the data". Our
system is built on top of the ORDBMSSQL that allows us to create views.
Unfortunately, these views are not updateable without further programming (see
Table 19). In addition, our system allows creating, recording and executing
named queries that find information from the database.

Users of a PSEE start long-lasting sessions where actions cannot be
determined a priori and where information flow between a user and the system
is bidirectional (Barghouti et al., 1996). The latter property indicates that the
PSEE is an interactive system.

Users perform actions in our system in order to fulfil their tasks. For
example, a user can create a functional subsystem, modify name of a use case or
delete a non-functional requirement. Conceptually a session consists of
sequence of actions that are performed by a user during some period. A user
action causes execution of one or more data manipulation statements that
belong to one transaction. The database of our system contains only the minimal
set of database constraints and therefore permits inconsistent and incomplete
models. Each table has a primary key constraint. Values of a primary key are
generated by the system. In addition, we have created foreign key constraints.
These constraints enforce certain order of actions because a modeler must
register data in a parent table (table without foreign key) before registering data
in a child table (table with the foreign key). For example, it is not possible to
create a use case before registration of the functional subsystem that contains
this use case.

A DBMS ensures that data in a database satisfies the database constraints
after each action. However, the database of our system can contain a model that
does not satisfy some well-formedness rules. "A PSEE repository reaches global
consistency incrementally as the sessions corresponding to the task’s subtasks
complete." (Barghouti et al., 1996)

In our system, a user can execute at any moment queries in order to find
violations of the well-formedness rules (see section 4.3). Results of these

 171

queries give information that helps to improve the model and to move gradually
towards the complete and consistent model. Barghouti et al. (1996), on the other
hand, propose to use integrity constraints that are implemented by using triggers
in order to check the well-formedness of software engineering artifacts.

The execution of a query in our system does not block concurrent data
modification because our system is built on top of a DBMS (PostgreSQL 8.0)
that uses Multi Version Concurrency Control mechanism (Weikum and Vossen,
2002). The modification of a data item (a row) does not block concurrent
reading of this data item and vice versa.

The sessions in PSEE must share data collaboratively (Barghouti et al.,
1996). It is also possible in our system because the results of performing an
action become visible after the corresponding transaction is committed.

4.5 Summary

In this chapter, we described the principles of the system that help to perform
strategic- and detailed analysis of information systems. We used the findings of
previous chapters in order to design it.

This system allows us to record one integrated model of a system into a
database by using the form-based and web-based user interface. The system
provides predefined queries for finding consistency and completeness (CC)
problems of a model. These queries can be used at any moment during the
modeling process. The system allows us to specify additional queries, if needed.
Some of these queries might not be for CC checks but, for example, could find
metrics values.

We have also created a prototype of part of the system by using
ORDBMSSQL PostgreSQL and PHP language.

 172

CONCLUSIONS

This chapter summarizes the results of the dissertation and outlines future work.

Summary of Contributions

We investigated two data models – the underlying data model of the SQL:2003
standard (ORSQL) and the data model that is explained in The Third Manifesto
(ORTTM). The dissertation had eight objectives. We will give a summary of
these objectives and explain what we have done in order to achieve these aims.

Siau and Rossi (1998) describe methods for evaluating information modeling
methods (see section 1.2). One of the comparison methods is a metamodel-
based comparison. If we have metamodels of data models, then we can use the
same method in order to compare the data models.

The first objective was to present a comparison of ORSQL and ORTTM based
on their metamodels. Firstly, we proposed the method for such comparison (see
section 1.3.1). The comparison is presented in sections 1.3.2 - 1.3.7. One
precondition of this kind of work is the existence of metamodels of data models
(in this case metamodels of ORSQL and ORTTM). Melton (2003b) writes: "The
structure of the Definition Schema is a representation of the data model of
SQL." The specification of the Definition Schema contains a logical design data
model (meaning 2) of a database catalog in the form of DDL statements
(Melton, 2003c). On the other hand, a metamodel should present a conceptual
model with all the important relationships (including generalization and whole-
part) in order to help to understand the meaning of constructs in a data model
and interconnections of these constructs. It is not possible to understand ORSQL
only based on the Definition Schema description. Therefore, we had to study
Part 2: SQL/Foundation (Melton, 2003) as well, in order to create the
metamodel. Obviously, SQL:2003 does not provide a clear and compact
specification of ORSQL. In this regard, our work is somewhat similar to the work
of Codd and Date (1975). They had to create definitions of the concepts of the
network data model based on CODASYL DBTG language proposals in order to
be able to compare the network and the relational data model.

There are works (OMG ad/01-02-01), (Calero et al., 2006), (Pedro et al.,
2006), (DMTF CIM, 2006) that present some parts of a metamodel or an
ontology of SQL (see section 1.4) This dissertation extends these works and
presents the ORSQL metamodel that covers data types, data structures, data
operators, and data integrity rules. Section 1.4.5 explains which parts of SQL
are not covered by the ORSQL metamodel. We are not aware of any existence of
the ORTTM metamodel and therefore we present it as well.

 173

The metamodel-based comparison of ORSQL and ORTTM consists of the
following parts:
• Mapping between the metaclasses of the ORSQL and ORTTM metamodels. A

pair of metaclasses presents the constructs that have exactly the same
semantics (semantic equivalence) or quite similar semantics.

• Report of discrepancies between the data models (ORSQL and ORTTM).
• Metrics values that are calculated based on the metamodels. These values

show the relative complexity of the data models. We calculated the metrics
values for ORTTM and ORSQL and for the underlying data model of
SQL:1992.

• Examples of violations of the orthogonality principle by ORSQL. We
discovered these violations by observing the ORSQL metamodel.

The use of metamodel-based comparisons is not a new idea. However, the
use of this kind of a method in order to compare data models is a novel result of
our work. There are discrepancies between ORSQL and ORTTM.

Some metaclasses of the ORTTM metamodel do not have a corresponding
metaclass in the ORSQL metamodel. This may be caused by different reasons:
• ORTTM does not specify a construct but its authors do not prohibit it.
• Authors of ORTTM deliberately do not specify a construct because they think

that existing constructs are sufficient and the additional construct increases
complexity without increasing the expressive power.

In the first case, creators of ORTTM think that features that correspond to the
missing metaclasses, are orthogonal to the data model. For example, ORSQL
specifies a large amount of predefined data types but ORTTM requires only the
data type Boolean. However, it does not prohibit other predefined data types but
DBMS vendors can choose which types to implement.

An example of the second case is that the authors of ORTTM think that the use
of constructed reference types is a mistake because it leads back to the
complexities with the pointers. For the same reasons they do not support the use
of typed tables. They also think that a generalization relationship between the
two tables can be implemented by using virtual relvars (viewed tables) (see
section 3.3.1) and the use of supertable-subtable feature of ORSQL is
unnecessary.

Some metaclassess in ORTTM do not have a corresponding metaclass in
ORSQL. For example, it is not possible to create declarative transition constraints
and use RELATION Gen type generator in ORSQL.

Some metaclasses in ORSQL have more than one corresponding metaclass in
ORTTM. For example, ORTTM distinguishes between the concepts relvar value
(loosely speaking the table value that consists of rows that are in the table) and
relvar (loosely speaking the specification of a table structure). On the other
hand, ORSQL uses the concept table in both cases. If we use the ORSQL concept
"table", then we have to explain what the exact meaning of this concept is in a
particular context (for example, whether we want to update table structure or
data in the table).

 174

Some metaclasses in ORTTM have more than one corresponding metaclass in
ORSQL. For example, the ORSQL metamodel contains metaclasses Assertion,
CHECK constraint, Table check constraint and Table constraint, but their
corresponding metaclass in the ORTTM metamodel is Database constraint. In
this case, the metamodel of ORSQL is overly complicated. For example, why do
we have to distinguish between table constraints and assertions? The possible
result is that we currently cannot use assertions in any DBMS (Türker and
Gertz, 2001).

We inspected visual structures in the ORSQL metamodel and discovered some
violations of the orthogonality principle (see section 1.3.8). These violations are
an addition to the examples that have already been presented in the literature
(see the work of Date and Darwen (2000)). We did not create the metamodel of
entire SQL language (see section 1.4.5). Nevertheless, the amount of
metaclasses in the ORSQL metamodel is larger than in the ORTTM metamodel. In
addition, the metaclasses of the ORSQL metamodel have many more attributes.
Metrics values show that ORSQL is more complex than ORTTM. A programming
language that displays orthogonality must provide a comparatively small set of
primitive constructs. We conclude that the designers of ORTTM have paid more
attention to the principle of orthogonality as compared to the designers of
ORSQL.

The metrics values (see section 1.3.7) show relative complexity of the data
models but they do not show their "goodness". Metrics values of underlying
data model of SQL:1992 are smaller as compared to ORSQL and ORTTM. This
data model has many shortcomings (see section 2.3). Metrics values of ORTTM
are smaller as compared to ORSQL. However, difficulties in creating the ORSQL
metamodel (see section 1.3.6), violations of the orthogonality principle in
ORSQL (see section 1.3.8) and discrepancies between ORSQL and ORTTM (see
section 1.3) are small proofs that the ORSQL data model has shortcomings that
can cause difficulties in using ORDBMSSQLs in software engineering systems
(and in any other system as well). Demonstration of these shortcomings was the
fourth objective of this dissertation.

The second objective was to find out what the problems of using RDBMSs
and ORDBMSs in software engineering systems according to the existing
research literature are. Chapter 2 presents a literature-based study of the
software engineering systems that use the help of a DBMS. We found (as
expected) that many researchers think that the relational data model and
RDBMSs are not a suitable platform for software engineering systems.
However, these opinions are based on the interpretation of the relational model
by the SQL standard and the implementation of the standard by the
RDBMSSQLs. In addition, existing overviews about software engineering
systems refer to few systems that use a RDBMSSQL. It confirms that the
relational model is not suitable for the engineering systems. However, we found
many software engineering systems that use a RDBMSSQL. We found more
systems that use a RDBMSSQL than systems that use an ORDBMSSQL. One

 175

reason is that ORDBMSSQLs have been available for shorter time as compared
to RDBMSSQLs. On the other hand, some papers about the systems that use a
RDBMSSQL have been published after the ORDBMSSQLs came into existence.
The main results of this chapter are:
• We presented a more thorough list of software engineering systems that use

a RDBMSSQL or an ORDBMSSQL (see sections 2.2.4.1 and 2.2.4.3) than the
existing overview papers. We found 16 systems that use only a RDBMSSQL
and 6 systems that use only an ORDBMSSQL.

• Based on the literature study we compiled the lists of problems of the
relational data model and RDBMSSQLs. These problems make the use of the
relational model and RDBMSSQLs in the software engineering systems
more difficult (see section 2.3). We found that many of these problems are
orthogonal to the relational data model (as defined by The Third Manifesto)
or are caused by the shortcomings of implementation of the relational
model in the current standards and systems.

In addition, we found that existing research papers about the software
engineering systems that use an ORDBMSSQL pay little attention to the
discussion of problems of ORSQL and ORDBMSSQLs.

The third objective was to describe the design alternatives of databases of
software engineering systems that will be implemented by using an ORDBMS.
Firstly, in section 2.2.4.3 we described some of the software engineering
systems that use an ORDBMSSQL. In Chapter 3, we presented different
approaches to repository schema design (see section 3.1.1). We also presented
different approaches how to check well-formedness of artifacts (see section 3.2)
and one possible approach how to perform versioning (see section 3.2.4.1). In
sections 3.1 and 3.2 we described approaches that are usable in an
ORDBMSTTM database as well as in an ORDBMSSQL database. We analyzed the
"Universal Database Design" approach (see section 3.1.4) and concluded that it
has many more disadvantages than advantages. Despite that, this kind of design
is sometimes used in the ORDBMSSQL databases. Existing literature usually
refers to only some problems of this design (query complexity, performance).
We found thirteen different types of problems.

We worked out principles of the system that helps to perform strategic and
detailed analysis of information systems (see Chapter 4). It allowed us to put
some of the ideas from the third chapter into action. This system uses the
approach according to which artifact element types are not encapsulated and
have corresponding tables (see section 3.1.2). In addition, system allows us to
check well-formedness of the artifacts by using the queries (see section 3.2.4).
We created a partial prototype of this system in order to prove the concept (see
"Appendix D: The location of prototype system").

The fourth objective was to demonstrate that the ORSQL data model has
shortcomings that cause difficulties in using ORDBMSSQLs in the software
engineering systems. The papers that describe the use of the ORSQL data model
and ORDBMSSQLs, concentrate mostly on the positive aspects of this model and

 176

the authors apply their new features as much as possible (see section 2.2.4.3 and
3.3.2.1). Therefore, we thought that a more balanced treatment of ORSQL and
ORDBMSSQLs is needed. Section 3.5.2 describes the problems of the ORSQL
data model that occur if we try to implement a software engineering system. In
conclusion, we can say that there are many problems.

In addition, we referred to the specific problems that occur if we use two
ORDBMSSQLs – PostgreSQL8.0 and Oracle 10g. As an example, we
constructed a table (Table 19) that demonstrates the problems that make it more
difficult to implement whole-part relationships in a database.

Therefore, this section also helped to demonstrate that there is a gap between
the principles of ORSQL and the actual implementation (practice) in current
ORDBMSSQLs. This was our fifth objective. This gap causes additional
problems to the designers of software engineering systems. These problems
occur during the development of any system, not only a software engineering
system.

The sixth objective was to demonstrate that the ORTTM data model is a
suitable basis for a DBMS so that this DBMS can be used in a software
engineering system (SES). We did not implement a SES on top of an
ORDBMSTTM. Instead, we presented examples of relvars and constraints that
were created by using ORDBMSTTM Rel (Voorish, 2005). Unfortunately, this
system was not mature enough and therefore we were not able to test all the
examples (see beginning of Chapter 3). Despite that, we think that we have
achieved this objective. Firstly, in sections 3.1 - 3.4 we described possible
designs in terms of constructs of the ORTTM data model. Secondly, in Chapter 2
we found that many SESs have successfully used the help of an ORDBMSSQL or
even a RDBMSSQL. If we can use an ORDBMSSQL, then why cannot we use an
ORDBMSTTM? The reason could be that ORSQL provides constructs that are
necessary in order to build up a SES but they are missing in ORTTM. We found a
mapping between the metaclasses of the ORSQL and ORTTM metamodels and
discrepancies of these data models. One type of discrepancy is that a metaclass
in the ORSQL metamodel does not have a corresponding metaclass in the ORTTM
metamodel. ORSQL constructs (typed table, REF Con., Reference type) that are
sometimes used in the SESs (see section 2.2.4.3) do not have a counterpart in
ORTTM. However, existing research already shows that it is not actually a
limitation because these features increase the complexity of a data model
without providing clear advantages (Date and Darwen, 2000, Appendix J; Date,
2003 chapters 25 and 26). We have no reason to doubt in that based on sections
3.1 - 3.4. We do not claim that the ORTTM data model is "silver-bullet" (Brooks,
1987) but we think that it makes the use of DBMSs in the software engineering
systems easier and more comfortable.

Date and Darwen (2000, p. xiv) write: "Thus, we regard our Manifesto as
being very much in spirit of Codd's original work and continuing along the path
he originally laid down." Our research demonstrates that the relational model

 177

is not outdated and based on that it is possible to create systems that manage
complex data.

The seventh objective was to propose a set of designs for preserving the
semantics of whole-part relationships in a database that is created by an
ORDBMSTTM and guidelines explaining when to use these designs. Firstly, we
investigated existing research about this topic (see section 3.3.2.1). It is a
widespread opinion that it is advantageous to preserve whole-part relationship at
the logical database level by having containment hierarchy within a base
table/real relation. We presented six possible designs for implementing whole-
part relationships (see section 3.3.2.2). Four of them use relvar attributes that
have complex data types. We evaluated the alternatives in terms of some of the
values of the whole-part relationship secondary characteristics (see section
3.3.2.3). We gave marks to the designs based on the amount of work that is
needed in order to enforce all necessary integrity constraints that are imposed by
the values of the secondary characteristics. After that, we constructed the
comparison table and reorganized it by using the "minus technique" algorithm
(see Table 18). This evaluation method is also a novel result of our work. We
found that the designs that use complex data types in real relvars, have stricter
usage restrictions and a greater need for the accompanying constraints and
special values than the designs that do not use these types in real relvars. If it is
necessary to present to a user an artifact so that it is part of one relation, then it
can be achieved by creating a virtual relvar.

The eighth objective was to extend the Principle of Orthogonal Database
Design (Date and McGoveran, 1994) so that it would take into account the use
of real relvars that have attributes with complex types. Application of this
principle helps to avoid data redundancy across different relvars. We presented
a motivating example (see section 3.4.1), the extended principle and examples
of its usage (see section 3.4.2). We discovered that some database design
guidelines that are presented in the literature do not follow this principle. In
addition, we presented two heuristic rules that help to prevent data redundancy
within the value of a real relvar, if this relvar has an attribute with a relation- or
tuple type (see section 3.4.3).

Date and Darwen (2000, Appendix C) write: "in general, types should
correspond to properties and relvars to entities." Existing research mainly
focuses on the positive aspects of having complex types as declared types of
columns in base tables. The so-called "traditional" designs do not use columns
that have complex types. Our research shows that the "traditional" designs
together with the special values, integrity constraints and views, that use
attributes with complex types, offer actually more freedom and flexibility to the
designers. Some of the reasons for preferring the "traditional" designs are: the
need of virtual relvars (see section 3.1.1), integrity constraints (see sections
3.3.2.3 and 3.4.3) and difficulties to discover violations of the principle of
orthogonal database design (see section 3.4.2).

 178

Directions for Further Research

We have to complete the specification of the ORTTM and ORSQL data models.
This includes the formal specification of constraints that correspond to the well-
formedness rules by using OCL or other languages. For example, one
possibility would be to use the relational language Tutorial D. The comparison
method that was used in this dissertation is not ideal. For example, one well-
known problem of using UML class diagrams is that it is sometimes difficult to
decide whether to model some real-world construct as a class or as an attribute.
Therefore, different modelers could model the same data model construct as a
metaclass or an attribute of metaclass. It is better to use metaclasses and
attributes in order to create a mapping between different metamodels. In
addition, mapping between the attributes of two metamodels is itself a subject
of interest. In this dissertation, we do not use attributes in the mapping due to
space restrictions. We think that it is not a major problem because both
metamodels are created by the same modeler by following the same modeling
conventions. An alternative is to use some modeling notation that does not
distinguish classes/entity types and attributes. For example, we could use
Object-Role Modeling (ORM) notation (Halpin, 2001). An additional advantage
is that ORM allows us to specify more constraints visually in the metamodel
compared to UML (Halpin, 2001, p. 401). It might be useful if we use the
metamodel as a teaching tool in order to explain data models.

A possible future study could cover the creation of short and clear
specification of the ORSQL data model that uses a structure similar to that of The
Third Manifesto (by describing prescriptions, proscriptions and suggestions).
This kind of specification would be, for example, useful for pedagogical
purposes.

One direction of research is to compare ORSQL and ORTTM with other data
models by using the metamodel-based comparison. Firstly, we have to find or
create metamodels of these data models. Probably it will give ideas how to
improve the comparison method of data models. Therefore, in this case we will
also perform method engineering by using an action research.

In the evaluation of the whole-part relationships, we did not consider some
secondary characteristics of them: transitivity, configurationality, mutability.
Future studies must take these characteristics into account. We must also study
how transition constraints help to implement operational properties of
relationships. We have to investigate how to implement model management
operations (match, difference, merge, composition, apply, copy ModelGen
(Bernstein, 2003)) if a repository is implemented as an ORDBMSTTM database.

Implementation of a software engineering system based on an ORDBMSTTM
is needed in order to prove the validity of the design guidelines that were
presented in this dissertation. We need suitable ORDBMSTTMs for this task.

One direction of work is to create a small expert system that is able to assist
database designers. For example, a database designer has to: (a) choose the type

 179

of a DBMS (ORDBMSSQL or ORDBMSTTM), (b) choose the type of a
relationship (whole-part or generalization), (c) determine the properties of this
relationship (for example, in case of whole-part relationship – one optional
locally exclusive part with mandatory wholes), (d) specify the participants in
this relationship (names of the tables/relvars, their columns/attributes and types
of columns/attributes), (e) optionally specify whether or not he or she prefers to
use columns/attributes with complex data types in base tables/real relvars.

The system generates DDL statements. These statements create database
objects that implement this relationship. The system could generate a code
according to different design alternatives.

It would be very useful if a DBMS or some separate tool would be able to
analyze the relvars/tables in a database in order to find violations of the
Principle of Orthogonal Design (POOD). We are currently not aware of any
such tool. Clearly, it is more difficult to find the predicate of a table in
ORDBMSSQL databases because many constraints are implemented by using
triggers or SQL-invoked routines and database developers tend to use
predefined types. We think that it is worth to investigate whether it is possible
to use POOD in case of virtual relvars. Celko (2005) notes that a large amount
of views (virtual relvars) leads to schema management problems. Current
DBMSs allow us to create two or more distinct views that have the same
subquery. They allow us to create two or more distinct views that have different
subqueries, but the results of these subqueries are exactly the same. In other
words, they have the same predicate but different names. On the other hand, it
does not seem right to completely prohibit the views with the overlapping
meanings because the representatives of different roles may use them.

We have to complete the implementation of the system that was presented in
Chapter 4. After the system will be ready, we can perform the usability study in
order to evaluate which way users prefer to describe the system – using visual
diagrams with little support to CC check or using textual descriptions with the
extensive CC checks. We can also investigate how a modeling system, which
allows at any time to check a model, changes the learning experience and habits
of the students who use it.

One possible extension of this system is to integrate with it a subsystem that
helps to record and retrieve patterns. Its user interface should be web-based and
it should record its data in a central database. Then it is possible to create a
reference between a pattern and an information system specification (that is
created by using our proposed system). This reference could refer to the fact
that the specification applies this pattern. The specification could be an example
that stresses the need of using this pattern. The pattern management system can
take advantage of a query facility (see section 4.3). Eessaar (2004b) presents
some possible queries from the database of patterns.

In Chapter 4, we mentioned that the system should support metrics queries
that have associated thresholds. Development of these queries is also one
direction of our future work. We have to find metrics values that allow us to

 180

find defects in a model. After that, we have to find their thresholds, test them in
real development projects and change the thresholds if necessary. We could use
existing system specification documents in order to find average values of the
selected metrics. It helps to determine the thresholds on these metrics. For
example, the pattern "Seven Plus or Minus Two" that is part of UML pattern
language (Evitts, 2000) proposes a solution: "Limit the number of elements in
any given diagram to the magic number of seven, give or take two elements."
Maybe it is also usable in case of use cases? If the amount of steps in a use-case
main success scenario is fewer than five, then it could indicate that a use case is
defined at a too low level "that is, as a single step, subfunction, or subtask
within an Elementary Business Process." (Larman, 2002, p. 60) If the amount of
steps is more than nine, then it could indicate that the use-case has become too
large. In this case it maybe useful to split it.

In this dissertation, we presented a system where a SES user cannot change a
repository schema. However, we have also proposed a metadata driven
repository system (Pattern Management Software System) that allows users to
dynamically extend the database schema (Eessaar, 2004a; Eessaar, 2005b). It
has built-in support for evolution. It makes it possible to dynamically add
support for the management of new types of software engineering artifacts. We
do not want to design its repository according to the "Universal Data Model"
design (see section 3.1.4) because of its numerous problems. Instead, we use the
design "Non-encapsulated Artifact Element Types" (see section 3.1.2). This
means that each metamodel element has a corresponding base table. The general
idea of the system is that the user can specify the abstract syntax of languages as
metamodels. The system records a metamodel in the database tables. In
addition, it immediately generates and executes DDL statements based on the
changes in the metamodel. For example, the creation of a metaclass causes at
least the generation of a CREATE TABLE statement and execution of it. The
system also creates triggers if a metaclass is associated with other metaclass by
generalization relationship (see the work of Pokrajac et al. (2004) about how to
implement this kind of relationship in PostgreSQL). The generated tables make
possible to record artifacts that have been created by using this particular
language. The system records data about the created database objects as well as
mapping between the database objects and metamodel elements. Therefore, the
system can make changes in the database schema if we modify the metamodel.
Further development (including implementation) of this system is yet another
possible direction of our work. Among other things, this system needs
integrated user-interface generator. If we make some changes in the metamodel
and the system modifies the database structure, then it should modify the user-
interface as well. We think that such a system could take advantage of the
approach, according to which HTML pages are dynamically generated based on
the specification that is recorded in a database. In this case, it is possible to
change user-interface by changing its specification that is recorded in a
database.

 181

KOKKUVÕTE

Relatsioonilised- ja objekt-relatsioonilised andmebaasisüsteemid kui
tarkvaraarenduse tulemite haldamise platvorm.

Mõiste "andmemudel" on ülekoormatud ja sellel on erinevates kontekstides
erinev tähendus. Antud töös käsitletakse mõistet "andmemudel" kui
spetsifikatsiooni, mis kirjeldab andmebaasi looja käsutuses olevaid
universaalseid ehitusplokke, reegleid, mis tagavad plokkidest moodustatava
struktuuri kvaliteedi ning operatsioone, mida saab teha nende struktuuridega.
Andmemudelite näited on hierarhiline-, võrk-, relatsiooniline- ja objekt-
relatsiooniline andmemudel. Tuleb öelda, et tegu on üldnimedega, sest
eksisteerib erinevaid nägemusi, kuidas peaks üks või teine selline andmemudel
olema üles ehitatud ning milliseid võimalusi oma kasutajatele pakkuma.

Relatsioonilise andmemudeli idee pakkus laiale avalikkusele välja E.F Codd
oma 1970. aastal avaldatud artiklis. Tema ideid arvesse võttes töötati välja SQL
keel millest sai ajapikku standard. Andmebaasisüsteemid, mis kasutavad seda
keelt muutusid populaarseks ja laialdaselt kasutatavaks ning on seda tänaseni.
Kuid paljud uurijad ning arendajad väidavad, et relatsiooniline mudel on ajale
jalgu jäämas, sest sellel põhinevaid andmebaase on raske kui mitte võimatu
kasutada keeruka struktuuriga andmete hoidmiseks ja töötlemiseks. Üheks
rakenduse tüübiks, mis kasutavad ja loovad taolisi andmeid on tarkvaraarenduse
süsteemid.

Tulenevalt relatsioonilise mudeli väidetavast sobimatusest mõningate
rakenduste jaoks on pakutud välja uusi andmemudeleid. Antud töös
keskendutakse objekt-relatsioonilisele andmemudelile, mis peaks endas
ühendama relatsioonilise andmemudeli ja objekt-orienteeritud
programmeerimisest tuntud võtted. Töö autor uurib kahte objekt-relatsioonilist
andmemudelit – SQL:2003 standardi aluseks olev mudel (edaspidi kasutatakse
selle tähistamiseks lühendit "ORSQL") ja mudel mida kirjeldatakse Kolmandas
Manifestis (edaspidi kasutatakse selle tähistamiseks lühendit "OR3MF").

Alates SQL standardi versioonist SQL:1999 on SQL keelde lisatud objekt-
orienteeritud programmeerimiskeeltest tuntud vahendeid (tüüpide
deklareerimine, tabelite deklareerimine tüüpide põhjal, "tüübitud" tabelite
vahelise pärimise võimaldamine jne.).

Kolmanda Manifesti loojad seevastu leiavad, et SQL sisaldab liiga palju
puudusi ja kõrvalekaldeid relatsioonilise mudeli põhimõtetest ning et need ei
ole mitte ainult teoreetilise arutelu teemaks vaid tekitavad ka raskusi reaalsete
süsteemide loomisel. Kolmanda Manifesti autorite mõtteviisi kohaselt on kõiki
häid omadusi, mida oodatakse objekt-relatsiooniliselt andmemudelilt, võimalik
realiseerida relatsioonilise mudeli raamistikus.

 182

Käesoleva töö alguses püstitati kaheksa eesmärki. Järgnevalt kirjeldatakse,
mida on nende saavutamiseks tehtud.

Esimeseks eesmärgiks on esitada ORSQL ja OR3MF andmemudelite
metamudelitel põhinev võrdlus. Taolise meetodi järgi võrdlemist on kasutatud
näiteks ontoloogiate ja modelleerimismeetodite võrdlemiseks. Antud töö üks
uudne tulemus on, et sellist meetodit kohaldatakse andmemudelite võrdlemiseks
(peatükk 1.2). Selleks, et oleks võimalik võrdlust läbi viia tuleb kõigepealt luua
andmemudelite metamudelid. UML'i klassidiagrammide abil esitatud
metamudelid on peatükkides 1.3.2-1.3.5. Lisaks sisaldavad need peatükid
andmemudelite võrdlust, mille käigus esitatakse erinevatesse metamudelitesse
kuuluvate metaklasside paarid. Paarid moodustuvad sellistest metaklassidest,
mis modelleerivad semantiliselt ekvivalentseid või väga sarnaseid
andmemudelite konstruktsioone. Paljudele metaklassidele ei õnnestu teise
andmemudeli metamudelist paarilist leida või siis vastab ühele metaklassile
mitu metaklassi. See on viide andmemudelite lahknevusele. Peatükis 1.3.7
esitatakse metamudelite põhjal väljaarvutatud meetrikate väärtused, mis
võimaldavad hinnata andmemudelite suhtelist keerukust. Vaadeldavateks
meetrikateks on metaklasside arv, metaklasside atribuutide arv ning nende kahe
arvu summa. Esitatud väärtuste kohaselt on ORSQL suhteliselt keerukam
võrreldes OR3MFga kuid see ei tähenda veel, et ORSQL on parem. Peatükis 1.3.8
esitatakse ORSQL metamudeli inspekteerimisel leitud probleemid, mis viitavad,
et ORSQL andmemudel ei pea piisavalt kinni hea programmeerimiskeele disaini
põhimõtetest.

Teiseks eesmärgiks on teha olemasolevate teadustööde põhjal kindlaks,
millised on relatsiooniliste ja objekt-relatsiooniliste andmebaasisüsteemide
puudused, mis raskendavad nende kasutamist tarkvaraarenduse süsteemides.
Peatükis 2 esitatakse ülevaade tarkvaaraarenduse süsteemidest, mis kasutavad
andmebaasisüsteemide abi. Kirjeldatakse süsteeme, mis kasutavad
relatsioonilist- (vt. peatükk 2.2.4.1), objekt-relatsioonilist- (vt. peatükk 2.2.4.3),
objekt-orienteeritud- (vt. peatükk 2.2.4.2) või spetsiaalselt inseneritarkvara
jaoks mõeldud andmebaasisüsteemi (vt. peatükk 2.2.3). Leidub ka
heterogeenseid süsteeme, mille üks osa andmetest on andmebaasis ning teine
osa on failides, mida andmebaasisüsteemi poolt ei hallata (vt. peatükk 2.2.2).
Käesoleva töö puhul on uudne, et olemasolevad ülevaate artiklid viitavad
suhteliselt väikesele arvule tarkvaraarenduse süsteemidele, mis kasutavad
relatsioonilisi- või objekt-relatsioonilisi andmebaasisüsteeme. Antud töös on
aga selliseid süsteeme leitud tunduvalt rohkem (16, mis kasutavad ainult
relatsioonilist ja 6, mis kasutavad ainult objekt-relatsioonilist
andmebaasisüsteemi). Kõik need süsteemid kasutavad andmebaasisüsteeme kus
on tarvitusel SQL keel. Leitud teadustööd süsteemide kohta, mis kasutavad
SQL keelt võimaldavad kokku panna nimekirja probleemidest, mida tuuakse
välja relatsioonilise andmemudeli ja relatsiooniliste andmebaasisüsteemide
kohta (vt. peatükk 2.3). Tegelikult on need kriitikaks SQL'i ning seda

 183

kasutavate andmebaasisüsteemide kohta, sest Kolmanda Manifesti põhimõtteid
järgides taolisi probleeme ei tekiks.

Kolmandaks eesmärgiks on kirjeldada tarkvaraarenduse süsteemi
andmebaasi alternatiivseid disainilahendusi juhul kui kasutusel on objekt-
relatsiooniline andmebaasisüsteem. Kolmandas peatükis kirjeldatakse erinevaid
andmebaasi skeemi disainilahendusi (vt. peatükk 3.1). Muuhulgas analüüsitakse
peatükis 3.1.4 nn. "universaalse andmebaasi disaini" lahendust ja jõutakse
järeldusele, et tema puudused kaaluvad üle võimalikud eelised. Samuti
kirjeldatakse kolmandas peatükis kuidas saaks kontrollida andmete (sealhulgas
tarkvaraarenduse tulemite) vastavust reeglitele (vt. peatükk 3.2) ning esitatakse
disainilahendus versioonide haldamiseks (vt. peatükk 3.2.4.1). Mõningaid
kolmandas peatükis välja pakutud kavandeid kasutatakse neljandas peatükis
esitatud süsteemianalüüsi keskkonna loomisel. Veebikeskkonnas töötavad
kasutajad registreerivad süsteemi kirjelduse serveris paikneva ORSQL
andmemudelil põhineva objekt-relatsioonilise andmebaasi tabelitesse. Loodud
spetsifikatsioonist vigade otsimiseks on võimalik kasutada päringuid.

Neljandaks eesmärgiks on demonstreerida, et ORSQL andmemudelil on
puuduseid võrreldes OR3MF andmemudeliga. Need puudused muudavad ORSQL
andmemudelil põhinevate andmebaaside loomise ja kasutamise raskemaks.
Peatükis 3.5.2 kirjeldatakse ORSQL andmemudeli probleeme, mis ilmnevad kui
sellel mudelil põhinevaid andmebaasisüsteeme soovitakse kasutada
tarkvaraarenduse süsteemide loomiseks. Kokkuvõttena võib öelda, et neid
probleeme on palju.

Viiendaks eesmärgiks on demonstreerida, et erinevused ORSQL andmemudeli
ning seda mudelit järgivates andmebaasisüsteemides esineva praktika vahel
muudavad selliste andmebaasisüsteemide kasutamise tarkvaraarenduse
süsteemides veel raskemaks. Peatükis 3.5 vaadeldakse muuhulgas võimalusi,
mida kaks objekt-relatsioonilist andmebaasisüsteemi (Oracle 10g ja
PostgreSQL8.0) pakuvad andmebaasi programmeerijale, et realiseerida
kolmanda peatüki eelmistes alapeatükkides kirjeldatud andmebaasi
disainilahendusi. Näitena esitab tabel "Table 19" puudused, mis ei lase
realiseerida osa-terviku seoseid peatükis 3.3.2 kirjeldatud viisil. Tuleb tõdeda, et
need näited kinnitavad eesmärgis sõnastatud probleemi olemasolu.

Kuuendaks eesmärgiks on demonstreerida, et OR3MF andmemudelil põhinev
andmebaasisüsteem on tarkvaraarenduse süsteemides kasutamiseks sobiv.
Käesoleva töö raames ei realiseerita tarkvaraarenduse süsteemi kasutades
OR3MF andmemudelil põhinevat andmebaasisüsteemi. Vaatamata sellele võib
öelda, et eesmärk on saavutatud. Töös kirjeldatakse andmebaasi disaini
põhimõtteid kasutades OR3MF andmemudeli mõisteid (vt. peatükid 3.1-3.4) ning
tuuakse koodinäiteid kasutades Tutorial D keelt. Teises peatükis viidatakse
mitmetele tarkvaraarenduse süsteemidele, mis kasutavad ORSQL andmemudelil
põhineva andmebaasisüsteemi abi. Põhjus miks OR3MF andmemudelil põhinev
andmebaasisüsteem selliseks ülesandeks ei sobi võib olla, et ORSQL

andmemudel pakub hädavajalikke konstruktsioone, mis OR3MF andmemudelis

 184

puuduvad. Metamudelitesse kuuluvate metaklasside vaheliste vastavuste
analüüs näitab, et OR3MF andmemudel ei toeta viite tüübi konstruktoreid ja
"tüübitud tabeleid". Kuid olemasolevad uuringud näitavad, et see ei ole
tegelikult puudus ja piirang, sest need võimalused suurendavad mudeli
keerukust samas ilma selget eelist pakkumata (vaadake Date, 2003 ptk. 25 ja 26;
Date and Darwen, 2000, Appendix J).

Seitsmendaks eesmärgiks on pakkuda välja disainisoovitused, mis
juhendavad andmebaasi struktuuri, kitsenduste ja operaatorite kavandamist
sellisel juhul, kui kontseptuaalses andmemudelis esineb osa-terviku seos. ORSQL
andmemudeli puhul soovitavad mitmed uuringud osa-terviku seoste
realiseerimiseks kasutada baastabelite veerge, millel on kasutaja-defineeritud
struktuurne andmetüüp või ROW või MULTISET tüübikonstruktori abil
konstrueeritud andmetüüp (vt peatükk 3.3.2.1). Töös pakutakse välja kuus
võimalikku kavandit, millest neljas kasutatakse nn. keerukaid andmetüüpe -
korteeži tüüp, relatsiooni tüüp ja kasutaja-defineeritud skalaarne tüüp. Seejärel
hinnatakse kavandeid vastavalt sellele kui palju tuleb näha vaeva, et jõustada
kõik vajalikud andmete terviklikkuse reeglid (vt. peatükk 3.3.2.3). Need reeglid
tulenevad osa-terviku seose nn. teiseste karakteristikute väärtustest. Hinnete
põhjal koostatakse tabel "Table 18" ning reorganiseeritakse see kasutades
miinustehnika algoritmi. Järelduseks on, et disainilahendused mille korral
baasrelatsioonides kasutatakse keerukate tüüpidega atribuute nõuavad
keerukamaid terviklikkuse kitsendusi ja rohkem spetsiaalväärtuseid kui
disainilahendused, mis selliseid tüüpe baasrelatsioonides ei kasuta. Kui on vaja
esitada kasutajale andmeid ühte relatsiooni kuuluvana, siis võib seda teha
kasutades virtuaalseid relatsioone mille atribuudid on mõnda keerukat tüüpi.

Kaheksandaks eesmärgiks on esitada laiendatud ortogonaalse andmebaasi
disaini printsiip. Selle printsiibi järgimine aitab vältida olukorda, kus
andmebaasis on ühe ja sama olemi kohta käivad ühte tüüpi andmed mitmes
erinevas relatsioonis. Printsiibi originaalversioon ei võta arvesse võimalust, et
baasrelatsioonides kasutatakse keerukaid andmetüüpe kuid laiendatud printsiip
(vt. peatükk 3.4.2) võtab selle arvesse. Lisaks esitatakse peatükis 3.4.3 kaks
heuristilist reeglit, mida võib kasutada andmete liiasuse vältimiseks ühe
baasrelatsiooni piires juhul kui selles relatsioonis on atribuut, millel on korteeži
või relatsiooni tüüp.

Enamik siiani avaldatud uurimustest objekt-relatsiooniliste andmebaaside
kohta rõhutab, et keerukate andmetüüpide kasutamine baastabelites on kasulik.
Kuid käesolev uurimistöö demonstreerib, et "traditsiooniline" disain (mis ei
kasuta keerukaid andmetüüpe baastabelites) koos kitsenduste ja vaadetega
pakuvad kasutajatele palju rohkem paindlikust. Selliste lahenduste kasutamise
eelduseks on andmebaasisüsteemi poolne ulatuslik toetus deklaratiivsete
kitsenduste ja vaadete loomisele. Vaadete kaudu peab saama muuta andmeid
baastabelites. Paraku tänapäeva SQL keelt kasutavad süsteemid on selles osas
ebapiisavad ning sellest tuleneb ka vajadus relatsioonilist andmemudelit
"laiendada" ja lisada sinna uuendusi, mida muidu ei oleks vaja.

 185

REFERENCES

1. Agarwal, R., Sinha, A. P. 2003. Object-oriented modeling with UML: a
study of developers' perceptions. Communications of the ACM, Vol. 46,
No. 9, pp. 248-256.

2. Agrawal, R., Jagadish, H. V. 1987. Direct Algorithms for Computing the
Transitive Closure of Database Relations. In: Proceedings of the 13th
International Conference on Very Large Data Bases, 1-4 September 1987
Brighton, England. Morgan Kaufmann. pp. 255-266.

3. Ahnøj, J. 2003. Generic Design of Web-Based Clinical Databases. Journal
of Medical Internet Research, Vol. 5, Issue 4. Retrieved 21 July, 2006, from
http://www.jmir.org/2003/4/e27/

4. Albrecht, M. Buchholz, E. Duesterhoeft, A. Thalheim, B. 1998. An
Informal and Efficient Approach for Obtaining Semantic Constraints Using
Sample Data and Natural Language Processing. Semantics in Databases,
LNCS Vol. 1358/1998. pp. 1-28.

5. Allsop, D.J., Harrison, A., Sheppard, C. 2002. A database architecture for
reusable CommonKADS agent specification components. Knowledge-
Based Systems Journal. Elsevier Science, Vol. 15, Issues 5-6, July 2002. pp.
275-283.

6. Alphora. Dataphor 2.0. Retrieved April 08, 2006, from
http://alphora.com./tiern.asp?ID=DATAPHOR2

7. Althoff, K.D., Birk, A., Hartkopf, S., Müller, W., Nick, M., Surmann,
D., Tautz, C. 1999. Systematic Population, Utilization, and Maintenance of
a Repository for Comprehensive Reuse. In: Proceedings of the 11th
International Conference on Software Engineering and Knowledge
Engineering, Learning Software Organizations Methodology and
Applications, LNCS Issue 1756. Germany: Springer-Verlag, pp. 25 – 50.

8. Ambriola, V., Conradi, R., Fugetta, A. 1997. Assessing Process-centered
Software Engineering Environments. ACM Transactions on Software
Engineering and Methodology, Vol. 6, No. 3. pp. 283 – 328.

9. Astrova, I. 2003. On Integration of Object-oriented Applications with
Relational Databases. Doctoral Thesis on Informatics and System
Engineering, Tallinn University of Technology, TTU Press.

10. Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K., Maier, D.,
Zdonik, S. 1989. The Object-Oriented Database System Manifesto. In:
Proceedings of the First International Conference on Deductive and Object-
Oriented Databases, Vol. 57.

11. Barbier, F., Henderson-Sellers, B., Le Parc-Lacayrelle, A., Bruel, J.M.
2003. Formalization of the Whole-Part Relationship in the Unified
Modeling Language. IEEE Transactions on Software Engineering, Vol. 29,
No. 5, pp. 459-470.

 186

12. Barghouti, N.S., Emmerich, W., Schaefer, W., Skarra, A. 1996.
Information Management in Process-Centered Software Engineering
Environments. In: Software Process. Trends in Software. Wiley. pp. 53-87.

13. Basili, V.R., Caldiera, G., Rombach, H.D. 1994. The Experience Factory.
In: Encyclopedia of Software Engineering, New York: John Wiley & Sons,
1994. pp. 469-476. Retrieved August 22, 2006, from
ftp://ftp.cs.umd.edu/pub/sel/papers/fact.pdf

14. Baskerville, R., Pries-Heje, J. 2001. Racing the e-bomb: how the Internet
is redefining information system development methodology. In: Realigning
Research and Practice in Information System Development, Proceedings of
the IFIP TC8/WG8.2 Working Conference, July 27-29, Boise, Idaho, USA,
pp. 49-68.

15. Batory, D., Thomas, J. 1997. P2: A Lightweight DBMS Generator.
Journal of Intelligent Information Systems, Vol. 9, No. 2, pp. 107-124.

16. Bećarević, D., Roantree, M. 2004. A Metadata Approach to Multimedia
Database Federations. Information and Software Technology, Vol. 46, No.
3., pp. 195-207.

17. Bednárek, D., Obdržálek, D., Yaghob, J., Zavoral, F. 2005. Data
Integration Using DataPile Structure. In: Proceedings of the 9th East-
European Conference on Advances in Databases and Information Systems,
12-15 September 2005 Tallinn, Estonia. Tallinn: Institute of Cybernetics at
Tallinn University of Technology, pp. 178-188.

18. Behle, A. 1998. An Internet-based information system for cooperative
software reuse. In: Proceedings of the 5th International Conference on
Software Reuse, 02 – 05 June 1998. IEEE Computer Society, pp. 236-245.

19. Bernstein, P.A. 1998. Repositories and ObjectOriented Databases.
SIGMOD Record. Vol. 27, No. 1 (Mar. 1998), pp. 88-96.

20. Bernstein, P.A. 2003. Applying Model Management to Classical Meta
Data Problems. In: Proceedings of the Conference on Innovative Data
Systems Research. pp. 209-220.

21. Bernstein, P.A., Dayal, U. 1994. An Overview of Repository Technology.
In: Proceedings of the 20th International Conference on Very Large Data
Bases, 12-15 September 1994 Santiago de Chile, Chile. Morgan Kaufmann,
pp. 705-713.

22. Bernstein, P.A., Harry, B., Sanders, P., Shutt, D., Zander, J. 1997. The
Microsoft Repository. In: Proceedings of the 23rd International Conference
on Very Large Data Bases, 25-29 August 1997 Athens, Greece. Morgan
Kaufmann, pp. 3-12.

23. Bernstein, P.A., Halevy, A.Y., Pottinger, R. 2000. A Vision of
Management of Complex Models. SIGMOD Record. Vol. 29, Part 4, pp.
55-63.

24. Blaha, M., LaPlant, D., Marvak, E. 1998. Requirements for Repository
Software. In: Proceedings of the Working Conference on Reverse

 187

Engineering, Honolulu, Hawaii, USA. IEEE Computer Society Press. IEEE
Computer Society, pp. 164-173.

25. Blanning, R.W. 1982. Data management and model management: a
relational synthesis. In: Proceedings of the 20th annual Southeast regional
conference. New York: ACM Press, pp. 139-147.

26. Boisvert, R.F. 1994. Architecture of an intelligent virtual mathematical
software repository system. Mathematics and Computers in Simulation,
Vol. 36, No. 4, pp. 269-279.

27. Boldyreff, C., Nutter, D., Rank, S. 2002. Active Artefact Management for
Distributed Software Engineering. In: Proceedings of the 26th Annual
International Computer Software and Applications Conference 26-29
August 2002, IEEE Computer Press, pp. 1081-1086.

28. Boyd, S.W., Keromytis, A. 2004. SQLrand: Preventing SQL Injection
Attacks. In: Proceedings of the 2nd Applied Cryptography and Network
Security (ACNS) Conference, LNCS Vol. 3089/2004. Germany: Springer
Berlin, pp. 292–302.

29. Brandon, D. 2002. Crud matrices for detailed object oriented design. J The
Journal of Computing in Small Colleges, Vol. 18, No. 2 (Dec. 2002), pp.
306-322.

30. Brash, D., Stirna, J. 1999. Describing Best Business Practices: A Pattern-
based Approach for Knowledge Sharing. In: Proceedings of the 1999 ACM
SIGCPR conference on Computer personnel research, Brisbane,
Queensland, Australia. New York: ACM Press, pp. 57-60.

31. Braz, L.M. 1990. Visual syntax diagrams for programming language
statements. In: Proceedings of the 8th Annual international Conference on
Systems Documentation, Little Rock, Arkansas, United States. New York:
ACM Press, pp. 23-27.

32. Brooks, F.P. 1987. No Silver Bullet: Essence and Accidents of
SoftwareEngineering. IEEE Computer, Vol. 20, No. 4, pp. 10-19.

33. Brown, J.W. 2000. AntiPatterns in Project Management. John Wiley &
Sons.

34. Calero, C., Ruiz, F., Baroni, A.L., Brito e Abreu, F., Piattini, M. 2006.
An Ontological Approach to Describe the SQL:2003 Object-Relational
Features. Journal of Computer Standards & Interfaces, Vol. 28, Issue 6,
September 2006, pp. 695-713. Retrieved July 31, 2006, from
http://ctp.di.fct.unl.pt/QUASAR/Resources/Papers/2005/baroniCSIinPress.pdf

35. Celko, J. 2005. Joe Celko's SQL Programming Style. Morgan Kaufmann.
36. Ceri, S., Cochrane, R., Widom, J. 2000. Practical Applications of

Triggers and Constraints: Success and Lingering Issues. In: Proceedings of
the 26th international Conference on Very Large Data Bases, 10 – 14
September 2000 Cairo, Egypt. Morgan Kaufmann, pp. 254-262.

37. Chandrasekaran, B., Josephson, J.R., Benjamins, V.R. 1999. What Are
Ontologies, and Why Do We Need Them? IEEE Intelligent Systems and
their Applications, Vol. 14, No. 1, January/February 1999, pp. 20-26.

 188

38. Chaudhuri, S., Weikum, G. 2000. Rethinking Database System
Architecture: Towards a Self-tuning RISC-style Database System. In:
Proceedings of the 26th international Conference on Very Large Data
Bases. Morgan Kaufmann, pp. 1-10.

39. Chen, R.S., Nadkarni, P., Marenco, L., Levin, F., Erdos, J., Miller, P.L.
2000. Exploring Performance Issues for a Clinical Database Organized
Using an Entity-Attribute-Value Representation. Journal Of The American
Medical Informatics Association, 2000 Sep-Oct; Vol. 7, Part 5, pp. 475-87.

40. Chen, Y.F., Nishimoto, M.Z., Ramamoorthy, C.V. 1990. The C
Information Abstraction System. IEEE Transactions on Software
Engineering, Vol.16, No. 3, pp. 325-334.

41. Chisholm, M. 2003. How to Build a Business Rules Engine: Extending
Application Functionality through Metadata Engineering. Morgan
Kaufmann Publishers, Elsevier.

42. Choinzon, M., Ueda, Y. 2006. Design Defects in Object Oriented Designs
Using Design Metrics. In: Proceedings of the Joint Conference on
Knowledge-Based Software Engineering, 28-31 August 2006 Tallinn,
Estonia. IOS Press. pp. 61-72.

43. Cochrane, R., Pirahesh, H., Mattos, N.M. 1996. Integrating triggers and
declarative constraints in SQL database systems. In: Proceedings of the 22th
International Conference on Very Large Data Bases, 03 – 06 September
1996 Mumbai (Bombay), India. USA:IEEE, pp. 567–579.

44. Cockburn, A. 1998. Basic Use Case Template, Version 2, October 26,
1998, Retrieved March 11, 2006, from
http://alistair.cockburn.us/usecases/uctempla.doc

45. Codd, E.F. 1970. A relational model of large shared data banks.
Communications of the ACM, Vol. 13, No. 6, pp. 377-387.

46. Codd, E.F. 1981 Data models in database management. In: Proceedings of
the workshop on Data abstraction, databases and conceptual modelling.
ACM SIGART Bulletin, Issue 74 (Jan. 1981), pp. 112-114.

47. Codd, E.F., Date, C.J. 1975. Interactive support for non-programmers: The
relational and network approaches. In: Proceedings of the 1975 ACM
SIGFIDET (now SIGMOD) workshop on Data description, access and
control. New York: ACM Press, pp. 11-41.

48. Connolly, T.M., Begg, C.E. 2002. Database systems. A Practical Approach
to Design, Implementation and Management. 3rd edn. Pearson/ Addison
Wesley.

49. Conradi, R., Westfechtel, B. 1998. Version models for Software
Configuration Management. ACM Computing Surveys, Vol. 30, No. 2, pp.
232-282.

50. Consens, M., Mendelzon, A., Ryman, A. 1992. Visualizing and querying
software structures. In: Proceedings of the 14th international Conference on
Software Engineering, 11 – 15 May 1992 Melbourne, Australia. New York:
ACM Press, pp. 138-156.

 189

51. Constantopoulos, P., Jarke, M., Mylopoulos, J., Vassiliou, Y. 1995. The
Software Information Base: A Server for Reuse. VLDB Journal, Vol. 4, No.
1, pp. 1- 43.

52. Conte, F.A., Hassine, I., Rieu, D., Tastet, L. 2004. An Information
System Development Tool Based on Pattern Reuse. In: Proceedings of the
Sixth International Conference on Enterprise Information Systems, 14 – 17
April 2004 Porto, Portugal, Vol. 3. pp. 548 - 551.

53. Cox, A., Clarke, C., Sim, S. 1999. A model independent source code
repository. In: Proceedings of the 1999 conference of the Centre for
Advanced Studies on Collaborative research, 08 – 11 November 1999
Mississauga, Ontario, Canada. IBM Press.

54. Darwen, H. 2003. How To Handle Missing Information Without Using
Nulls. Presentation in Warwick University. Retrieved September 7, 2006,
from
http://www.dcs.warwick.ac.uk/~hugh/TTM/Missing-info-without-nulls.pdf

55. Date, C.J. 1995. Relational database writings, 1991-1994. Addison Wesley.
56. Date, C.J. 1998. Relational database writings, 1994-1997 / by C. J. Date:

with special contributions by Hugh Darwen and David McGoveran.
Addison Wesley.

57. Date, C.J. 2001. The Database Relational Model: A Retrospective Review
and Analysis: A historical account and assessment of E. F. Codd's
contribution to the field of database technology. Addison-Wesley.

58. Date, C.J. 2003. An Introduction to Database Systems. 8th edn.
Pearson/Addison Wesley.

59. Date, C.J. 2005 Database in Depth: Relational Theory for Practitioners.
O'Reilly. Chapter 1 – Introduction. Retrieved August 13, 2006, from
http://searchoracle.techtarget.com/searchOracle/downloads/
Database_in_Depth_Chapter_1.pdf

60. Date, C.J. 2006. The Relational Database Dictionary: A Comprehensive
Glossary of Relational Terms and Concepts, with Illustrative Examples.
O'Reilly Media.

61. Date, C.J., Codd, E.F. 1975. The relational and network approaches:
Comparison of the application programming interfaces. In: Proceedings of
the 1975 ACM SIGFIDET (now SIGMOD) workshop on Data description,
access and control. New York: ACM Press, pp. 83-113.

62. Date, C.J., Darwen, H. 1992. Relational Database Writings 1989-1991.
Addison Wesley.

63. Date, C.J., Darwen, H. 2000. Foundation for Future Database Systems:
The Third Manifesto, 2nd edn. Addison-Wesley.

64. Date, C.J., Darwen, H. 2006. Databases, Types and the Relational Model,
3rd edn. Addison Wesley. Chapter 4 – The Third Manifesto. Retrieved
August 13, 2006, from
http://www.dcs.warwick.ac.uk/~hugh/TTM/CHAP04.pdf

 190

65. Date, C.J., Darwen, H., Lorentzos, N.A. 2003 Temporal Data and the
Relational Model: A Detailed Investigation into the Application of Interval
and Relation Theory to the Problem of Temporal Database Management.
Morgan Kaufmann.

66. Date, C.J., McGoveran, D. 1994. The Principle of Orthogonal Design.
Database Programming & Design 7, No. 6 (June 1994). Retrieved
December 10, 2005,from http://www.dbdebunk.com/page/page/622331.htm

67. Davies, I., Green, P., Milton, S., Rosemann, M. 2003. Using Meta
Models for the Comparison of Ontologies. In: Proceedings Evaluation of
Modeling Methods in Systems Analysis and Design Workshop -
EMMSAD'03, Klagenfurt/Velden.

68. de Freitas Sodré, V., Jugurta, L. F., Vilela, V. M., and Andrade, M. V.
2005. Improving Productivity and Quality of GIS Databases Design using
an Analysis Pattern Catalog. In: Proceedings of the Second Asia-Pacific
Conference on Conceptual Modelling, ACM International Conference
Proceeding Series, Vol. 107. Australia: Australian Computer Society, pp.
107-114.

69. Delen, D., Dalal, N. P., Benjamin P. C. 2005. Integrated modeling: the key
to holistic understanding of the enterprise. Communications of ACM. Vol.
48, No. 4, pp. 107-112.

70. Demuth, B., Hussmann, H. 1999. Using UML/OCL Constraints for
Relational Database Design. In: Proceedings of the 2nd International
Conference on the Unified Modeling Language, October 28-30 1999 Fort
Collins, Colorado, USA, LNCS Vol. 1723/1999. Springer, pp. 598-613.

71. Dittrich, K., Tombros, D., Geppert, A. 2000. Databases in Software
Engineering: a roadmap. In: Proceedings of the Conference on the Future of
Software Engineering, 04 – 11 June 2000 Limerick, Ireland. New York:
ACM Press, pp. 293-302.

72. DMTF Common Information Model (CIM) Standards. CIM Schema Ver.
2.13. Database specification. Retrieved October 16, 2006, from
http://www.dmtf.org/standards/cim/cim_schema_v213/CIM_Database.pdf

73. Do, H.H., Rahm, E. 2004. Flexible Integration of Molecular-Biological
Annotation Data: The GenMapper Approach. In: Proceedings of the 9th
International Conference on Extending Database Technology 14-18 March
2004 Heraklion, Greece, LNCS Vol. 2992/2004. Germany: Springer Berlin,
pp. 811 – 822.

74. Dori, D. 2002. Why Significant Change in UML is Unlikely.
Communications of the ACM, Nov.2002, pp. 82-85.

75. Dori, D., Reinhartz-Berger, I., Sturm, A. 2003. OPCAT - A Bimodal
CASE Tool for Object- Process Based System Development. In:
Proceedings of the Fifth International Conference on Enterprise Information
Systems. pp. 286-291.

76. EA Web Modeler. Agilense Enterprise Architecture Frameworks. Retrieved
March 12, 2006, from

 191

http://www.agilense.com/documents/agilense_frameworks.doc
77. Eckstein, J., Bergin, J., Marquardt, K., Manns, M. L., Sharp, H.,

Wallingford, E. 2001. Patterns for Experimental Learning, Proceedings of
EuroPLoP 2001, Retrieved March 16, 2006, from
http://www.pedagogicalpatterns.org/current/experientiallearning.pdf

78. Eessaar, E. 2004a. Towards Pattern Management System. In: Proceedings
of the Sixth International Conference on Enterprise Information Systems,
14 – 17 April 2004 Porto, Portugal. Vol. 3. pp. 655 – 658.

79. Eessaar, E. 2004b. Methods for Searching Patterns from the Database of
Patterns. In: The 16th Conference on Advanced Information Systems
Engineering Forum Proceedings, 7-11 June 2004 Riga, Latvia. pp. 103 –
111.

80. Eessaar, E. 2005a. Truly Relational Databases as a Platform for the
Artifact Management. In: Proceedings of the Fourteenth International
Conference on Information Systems Development: Pre-Conference 14-17
August 2005 Karlstad, Sweden. pp. 207-218.

81. Eessaar, E. 2005b. Architecture of Pattern Management Software System.
In: Proceedings of the 9th East-European Conference on Advances in
Databases and Information Systems, 12-15 September 2005 Tallinn,
Estonia. Tallinn: Institute of Cybernetics at Tallinn University of
Technology, pp. 189-207.

82. Eessaar, E. 2006a. Extended Principle of Orthogonal Database Design. In:
Proceedings of the 5th WSEAS International Conference on Artificial
Intelligence, Knowledge Engineering and Data Bases, 15-17 February 2006
Madrid, Spain. pp. 360-365. CD-ROM.

83. Eessaar, E. 2006b. Guidelines about Usage of the Complex Data Types in
a Database. WSEAS Transactions on Information Science and Applications,
Vol. 3, Issue 4, April 2006, pp. 712-719.

84. Eessaar, E. 2006c. Using Relational Databases in the Engineering
Repository Systems. In: Proceedings of the Eighth International Conference
on Enterprise Information Systems, 23 –27 May 2006 Paphos, Cyprus. Vol.
Databases and Information Systems Integration. pp. 30 – 37.

85. Eessaar, E. 2006d. Whole-Part Relationships in the Object-Relational
Databases. In: Proceedings of the 10th WSEAS International Conference on
COMPUTERS, 13-15 July 2006 Vouliagmeni, Athens, Greece. pp. 1263-
1268. CD-ROM.

86. Eessaar, E. 2006e. SQL or Third Manifesto Compliant Object-Relational
Database Management Systems as the Platforms for Maintaining the
Whole-Part Relationships in a Database. WSEAS Transactions on
Computers, Vol. 5, Issue 10, October 2006, pp. 2440-2447.

87. Eessaar, E. 2006f. Integrated System Analysis Environment for the
Continuous and Completeness Checking. In: Proceedings of the Joint
Conference on Knowledge-Based Software Engineering 2006, 28-31
August 2006 Tallinn, Estonia. IOS Press. pp. 96-105.

 192

88. Eessaar, E. 2006g. Preserving Semantics of the Whole-Part Relationships
in the Object-Relational Databases. In: Proceedings of the 15th
International Conference on Information Systems Development, August 31
- September 2 2006 Budapest, Hungary. Springer. (forthcoming).

89. Eessaar, E. 2006h. Metamodel-based Comparison of Data Models. In:
Proceedings of the International Conference on Systems, Computing
Sciences and Software Engineering (SCS2 06). Springer. (accepted paper).

90. Eessaar, E. 2007. Using Metamodeling in order to Evaluate Data Models.
In: Proceedings of the 6th WSEAS International Conference on Artificial
Intelligence, Knowledge Engineering and Data Bases, 16-19 February 2007
Corfu, Greece. (accepted paper).

91. Emmerich, W. 1995. Tool Construction for Process-Centred Software
Development Environments based on Object Databases. PhD Thesis.
University of Paderborn, Germany. Retrieved September 10, 2006, from
http://www.cs.ucl.ac.uk/staff/W.Emmerich/publications/
PHDTHESIS/thesis.pdf

92. Emmerich, W., Schäfer, W., Welsh, J. 1992. Suitable Databases for
Process-centred Environments Do not yet Exist. In: Proceedings of the
Second European Workshop on Software Process Technology. UK:
Springer-Verlag London, pp. 94-98.

93. Engels, G., Groenewegen, L. 2000. Object-oriented modeling: a roadmap.
In: Proceedings of the Conference on the Future of Software Engineering,
04 – 11 June 2000 Limerick, Ireland. New York: ACM Press, pp.105–116.

94. Engle, P. 2003. Data Modeling – Left and Right. The Data Administration
Newsletter. Retrieved October 07, 2005, from
http://www.tdan.com/i024hy03.htm

95. Englebert, V., Hainaut, J.L. 1999. DB-MAIN: A next generation meta-
CASE. Journal of Information Systems, Vol. 24, No. 2, April 1999, pp. 99-
112.

96. Evitts, P. 2000. UML Pattern Language. Macmillian Technical Publishing.
97. Feldmann, R.L. 1999. Developing a Tailored Reuse Repository Structure -

Experience and First Results. In: Proceedings of the Workshop on Learning
Software Organizations, 16 June 1999 Kaiserslautern.

98. Ferguson, E. 2003. Object-oriented concept mapping using UML class
diagrams. Journal of Computing Sciences in Colleges, Vol.18, Issue 4 (Apr.
2003), pp. 344-354.

99. Fernström, C. 1993. Process WEAVER: Adding Process Support to
UNIX. In: Proceedings of the 2nd International Conference on the Software
Process, 25-26 February 1993 Berlin, Germany. IEEE CS Press. pp. 12–26.

100. Florijn, G., Meijers, M., Winsen, P.V. 1997. Tool support for object-
oriented patterns. In: Proceedings of 11th European Conference on Object-
Oriented Programming, 9–13 June 1997 Jyväskylä, Finland, LNCS Vol.
1241/1997. Germany: Springer Berlin, pp. 472-495.

 193

101. Fowler, M. 1997. Analysis Patterns: Reusable Object Models. Addison
Wesley Professional.

102. Gamma, E., Helm, R., Johnson, R., Vlissides, J. 1995. Design
Patterns: Elements of Reusable Object-Oriented Software, Addison Wesley
Professional.

103. Geoffrion, A. M. 1989. Computer-based modeling environments.
European Journal on Operational Research, Vol. 41, No. 1, pp. 33–43.

104. Glinz, M. 2000. A Lightweight Approach to Consistency of Scenarios
and Class Models. In: Proceedings of the 4th International Conference on
Requirements Engineering, 19-23 June 2000 Schaumburg, IL, USA. pp. 49-
58.

105. Gray, P. 1997. CASE tool construction for a parallel software
development methodology. Information and Software Technology, Vol. 39,
No. 4, pp. 235-252.

106. Gray, P., Welland, R. 1999. Increasing the flexibility of modelling
tools via constraint-based specification. In: Proceedings of the 1999
conference of the Centre for Advanced Studies on Collaborative research,
08 – 11 November 1999 Mississauga, Ontario, Canada. IBM Press. p. 3.

107. Greenfield, J., Short, K., Cook, S., Kent, S. 2004. Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools.
Wiley Publishing, Inc.

108. Gruber, T.R. 1995. Towards principles for the design of ontologies
used for knowledge sharing. International Journal of Human Computer
Studies, Vol. 43, No. 5/6, pp. 907-928.

109. Gruhn, V., Schneider, M. 1998. Workflow Management Based on
Process Model Repositories. In: Proceedings of the 20th international
Conference on Software Engineering, 19 – 25 April 1998 Kyoto, Japan.
USA: IEEE Computer Society, pp. 379-388.

110. Guizzardi, G. 2005. Ontological Foundations for Structural Conceptual
Models. Telematica Instituut Fundamental Research Series No. 15. Ph.D.
thesis, University of Twente. Retrieved April 5, 2006, from
https://doc.freeband.nl/dscgi/ds.py/Get/File-56338

111. Gulutzan, P., Pelzer, T. 1999. SQL-99 Complete, Really. CMP Books.
112. Guo, J., Luqi, A. 2000. A Survey of Software Reuse Repositories. In:

Proceedings of the 7th IEEE International Conference and Workshop on the
Engineering of Computer Based Systems, 3-7 April 2000. USA: IEEE
Computer Society. pp 92 -100.

113. Habela, P. 2002. Metamodel for Object-Oriented Database
Management Systems. PhD Thesis. Polish Academy of Sciences, Warsaw,
Poland August 2002. Retrieved August 3 2006, from
http://www.planetmde.org/phds/phds/MetamodelForObject
OrientedDatabaseManagementSystems.pdf

114. Hageman, D., Reeves, D.M. 2001. net-Trials TM Clinical Trials
Information System. In: Proceedings of 14th IEEE Symposium on

 194

Computer-Based Medical Systems, 26-27 July 2001 Bethesda, MD, USA.
pp. 141-145.

115. Halpin, T. 2001. Information Modeling and Relational Databases:
From Conceptual Analysis to Logical Design. Morgan Kaufman Publishers.

116. Halpin, T., Bloesch, A. 2000. Modeling Collection in UML and ORM.
In: Proceedings of the 5th IFlP WG8.1 International Workshop on
Evaluation of Modeling Method in System Analysis and Design.

117. Hammer, M., Mc Leod, D. 1981. Database description with SDM: A
Semantic Database Model. ACM Transactions on Database Systems. Vol.
6, No. 3 (Sep. 1981), pp. 351-386.

118. Hardwick, M. 1984. Extending the relational database data model for
design applications. In: Proceedings of the 21st Conference on Design
Automation, 25 – 27 June 1984 Albuquerque, New Mexico, US. USA, NJ:
IEEE Press Piscataway, pp. 110-116.

119. Hardwick, M., Samaras, G. 1989. Using a relational database as an
index to a distributed object database in engineering design systems. In:
Proceedings of the Second International Conference on Data and
Knowledge Systems for Manufacturing and Engineering, 16-18 October
1989 Gaithersburg, MD, USA. pp. 4-11.

120. Hardwick, M., Spooner, D.L. 1989. The ROSE data manager: Using
object technology to support interactive engineering applications. IEEE
Transactions on Knowledge and Data Engineering, Vol. 1, No. 2, pp. 285-
289.

121. Harrison, W., Ossher, H., Tarr, P. 2000. Software Engineering Tools
and Environments: A Roadmap. In: Proceedings of the Conference on the
Future of Software Engineering, 04 – 11 June 2000 Limerick, Ireland. New
York: ACM Press, pp. 261-277.

122. Haskin, R.L., Lorie, R.A. 1982. On extending the functions of a
relational database system. In: Proceedings of the ACM SIGMOD
International Conference on Management of data. New York: ACM Press,
pp. 207-212.

123. Hay, D.C. 1996. Data model patterns: conventions of thought, New
York: Dorset House Pub.

124. Haynie, M.N. 1981. The relational/network Hybrid data model for
Design Automation Databases. In: Proceedings of the 18th Conference on
Design Automation June 29 - July 01 1981 Nashville, Tennessee, US. NJ:
IEEE Press Piscataway, pp. 646-652.

125. Henderson-Sellers, B., Barbier, F. 1999. Black and White Diamonds.
In: Proceedings of the Second International Conference "UML" '99 - The
Unified Modeling Language: Beyond the Standard, October 1999 Fort
Collins, CO, USA, LNCS Vol. 1723/1999. Germany: Springer Berlin, pp.
550-565.

126. Henderson-Sellers, B., Atkinson, C., Kühne, T., Gonzalez-Perez, C.
2003. Understanding Meta-modelling. Tutorial in 22nd International

 195

Conference on Conceptual Modeling ER2003, 15 October 2003. Retrieved
November 20, 2004, from
http://www.er.byu.edu/er2003/slides/ER2003T1HendersonSellers.pdf

127. Henninger, S. 2001. Turning Development Standards into a Repository
of Experiences. Software Process Improvement and Practice, Vol. 6, No. 3,
pp. 141-155.

128. Herbst, H. 1996. Business rules in systems analysis: A meta-model and
repository system. Information Systems, Vol. 21, Issue 2, April 1996, pp.
147-166.

129. Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H. 1999. TANE:
An Efficient Algorithm for Discovering Functional and Approximate
Dependencies. The Computer Journal, Vol. 42, No. 2, pp. 100–111.

130. Härder, T., Meyer-Wegener, K., Mitschang, B., Sikeler, A. 1987.
PRIMA-a DBMS Prototype Supporting Engineering Applications. In:
Proceedings of the International Conference on Very Large Data Bases 1-4
September 1987 Brighton, England. Morgan Kaufmann, pp. 433—442.

131. Härder, T., Mahnke, W., Ritter, N., Steiert, H.P. 2000. Generating
Versioning Facilities for a Design-data Repository Supporting Cooperative
Applications. In: International Journal of Cooperative Information Systems,
Vol. 9, Part. 1/2, 2000, pp. 117–146.

132. Jasper, H. 1994. Active Databases for Active Repositories. In:
Proceedings of the 10th International Conference on Data Engineering, 14 –
18 February 1994 Houston, TX, USA. IEEE Computer Society, pp. 375-
384.

133. Jäderlund, C. 1981. Systematrix. Complete SMX handbook.
Stockholm.

134. Kaiser, G.E., Barghouti, N.S., Feiler, P.H., Schwanke, R.W. 1988.
Database Support for Knowledge Based Engineering Environment. IEEE
Expert, Vol. 3, No. 2, pp. 18-32.

135. Kalnins, A. Barzdins, J. Celms, E. 2005. In: Model Driven
Architecture. LNCS Vol. 3599/2005. pp. 62-76.

136. Katz, R.H. 1990. Toward a Unified Framework for Version Modeling
in Engineering Databases. ACM Computing Surveys, Vol. 22, No. 4, pp.
375– 409.

137. Keller, R.K., Bedard, J.F, Saint-Denis, G. 2001. Design and
Implementation of a UML-Based Design Repository. In: Proceedings of the
13th International Conference on Advanced Information Systems
Engineering, June 4-8 June 2001 Interlaken, Switzerland, LNCS Vol.
2068/2001. Germany: Springer Berlin, pp. 448 – 464.

138. Kemper, A., Lockemann, P.C., Wallrath, M. 1987. An object-
oriented system for engineering applications. In: Proceedings of the 1987
ACM SIGMOD international Conference on Management of Data, 27 – 29
May 1987 San Francisco, California, United States. New York: ACM Press,
pp. 299-310.

 196

139. Keqin, L., Lifeng, G., Hong, M., Fuqing, Y. 1997. An Overview of
JB (Jade Bird) Component Library System JBCL. In: Proceedings of the
Technology of Object-Oriented Languages and Systems-Tools-24, 01 – 01
September 1997. Washington, DC: IEEE Computer Society, pp. 206.

140. Kiesel, N., Schürr, A., Westfechtel, B. 1995. GRAS, a Graph-Oriented
(Software) Engineering Database System. Information Systems, Vol. 20,
No. 1, pp. 21-52.

141. Kim, H., Boldyreff, C. 2002. Developing software metrics applicable
to UML Models. In: Proceedings of the 6th International Workshop on
Quantitative Approaches in Object–Oriented Software Engineering, 10-14
June 2002 Málaga, Spain. Germany: Springer Berlin, pp. 147-153.

142. Kolovos, D. S., Paige, R. F., and Polack, F. A. 2006. Model
comparison: a foundation for model composition and model transformation
testing. In: Proceedings of the 2006 international Workshop on Global
integrated Model Management, 22 May 2006 Shanghai, China. New York:
ACM Press, pp. 13-20.

143. Kovse, J., Härder, T., Ritter, N. 2002. Supporting Mass
Customization by Generating Adjusted Repositories for Product
Configuration. In: Proceedings of the International Conference CAD 2002 -
Corporate Engineering Research, 04-05 March 2002. pp. 17-26.

144. Kyte, T. 2001. Expert One-on-One Oracle, Wrox Press.
145. Kyte, T. 2003. Effective Oracle by Design. Oracle Press, McGraw-

Hill/Osborne.
146. Lange, C., Sneed, H.M., Winter, A. 2001. Comparing Graph-based

Program Comprehension Tools to Relational Database-based Tools. In:
Proceedings of the 9th International Workshop on Program Comprehension
12-13 May 2001 Toronto, Canada. IEEE Computer Society. pp. 209-218.

147. Larman, C. 2002. Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and the Unified Process. 2nd edn.
Prentice Hall, Upper Saddle River, USA.

148. Lavazza, L., Agostini, A. 2005. Automated Measurement of UML
Models: an open toolset approach. Journal of Object Technology. Vol. 4,
No. 4, May-June 2005.

149. Leff, A., Rayfield, J. T. 2006. IBM Research Report. Relational
Blocks: Fully Declarative Visual Application Assembly. RC23908 (W0603-
069) March 9, 2006 Computer Science. Retrieved October 6, 2006, from
http://domino.research.ibm.com/library/cyberdig.nsf/papers/A3CB4C1C249
9057A852571370059465D/$File/rc23908.pdf

150. Lejter, M., Meyers, S., Reiss, S.P. 1992. Support for Maintaining
Object-Oriented Programs. IEEE Transactions on Software Engineering.
Vol. 18, Issue 12 (Dec. 1992), pp. 1045-1052.

151. Levy, A.Y., Rajaraman, A.,Ullman, J.D. 1996. Answering Queries
Using Limited External Query Processors. In: Proceedings of the Fifteenth

 197

ACM SIGACT-SIGMOD-SIGART symposium on Principles of database
systems, ACM Press, pp. 227-237.

152. Li, J.L., Li, M.X., Deng, H.Y, Duffy, P.E., Deng, H.W. 2005. PhD: a
web database application for phenotype data management. Bioinformatics,
Vol. 21, No. 16, pp. 3443-3444.

153. Linton, M.A. 1984. Implementing relational views of programs. In:
Proceedings of the first ACM SIGSOFT/SIGPLAN software engineering
symposium on Practical software development environments. New York:
ACM Press, pp. 132-140.

154. Liu, C., Li, H., Orlowska, M.E. 1996. Object-Oriented Design of
Repository for Enterprise Workflows. CRC for Distributed Systems
Technology and Computer Science Department, The University of
Queensland, 1996. Retrieved October 5, 2005, from
http://www.dstc.uq.edu.au/Research /Distributed_Databases/papers/Liu-
OOD-1996.ps

155. Lloyd, J. W. 1994. Practical Advantages of Declarative Programming.
Invited Lecture, GULP-PRODE '94, Peñiscola, Spain. Retrieved November
08, 2006, from ftp://clip.dia.fi.upm.es/pub/papers/PARFORCE/
second_review/D.WP3.1.M2.3.ps.Z

156. Lopez, O., Laguna, M.A., Garcıa, F.J. 2002. Reuse based analysis
and clustering of requirements diagrams. In: the Pre-Proceedings of the
Eighth International Workshop on Requirements Engineering: Foundation
for Software Quality. pp. 71–82.

157. Ma, H., Johansson, H., Orsborn, K. 2005. Distribution and
synchronisation of engineering information using active database
technology. Advances in Engineering Software. Vol. 36, No. 11-12,
November-December 2005, pp. 720-728.

158. Mahnke, W., Ritter, N. 2002. The ORDB-based SFB-501-Reuse-
Repository. In: Proceedings of the 8th International Conference on
Extending Database Technology, 25-27 March 2002 Prague, Czech
Republic, LNCS Vol. 2287/2002. Germany: Springer Berlin, pp. 745-748.

159. Marcos, E., Vela, B., Cavero, J.M. 2001. Extending UML for Object-
Relational Database Design. In: Proceedings of the 4th international
Conference on the Unified Modeling Language, Modeling Languages,
Concepts, and Tools, 1-5 October 2001 Toronto, Canada, LNCS Vol.
2185/2001. Germany: Springer Berlin, pp. 225-239.

160. Marenco, L., Tosches, N., Crasto, C., Shepherd, G., Miller, P.L.,
Nadkarni, P.M. 2003. Achieving Evolvable Web-Database Bioscience
Applications Using the EAV/CR Framework: Recent Advances. Journal of
American Medical Informatics Association, Vol. 10, Sep-Oct 2003, pp.
444–453.

161. Matjás, L. 2006. Catalogue of Design Patterns. In: Proceedings of the
Joint Conference on Knowledge-Based Software Engineering 2006, 28-31
August 2006 Tallinn, Estonia. IOS Press. pp. 139-142.

 198

162. Mattos, N., DeMichiel, L.G. 1994. Recent design trade-offs in SQL3.
SIGMOD Record, Vol. 23, No. 4, Dec. 1994, pp. 84-90.

163. McLeod, G. 2000. Beyond Use Cases. In: Proceedings of 5th
International Workshop on Evaluation of Modeling Methods in Systems
Analysis and Design (EMMSAD'00) at CAiSE, Stockholm, Sweden.

164. Melton, J. 2003. ISO/IEC 9075-2:2003 (E) Information technology —
Database languages — SQL — Part 2: Foundation (SQL/Foundation).
August, 2003. Retrieved December 26, 2004, from
http://www.wiscorp.com/SQLStandards.html

165. Melton, J. 2003b. ISO/IEC 9075-1:2003 (E) Information technology —
Database languages — SQL — Part 1: Framework (SQL/Framework). July,
2003. Retrieved December 26, 2004, from
http://www.wiscorp.com/SQLStandards.html

166. Melton, J. 2003c. ISO/IEC 9075-11:2003 (E) Information technology
— Database languages — SQL — Part 11: Information and Definition
Schemas (SQL/Schemata). July, 2003. Retrieved December 26, 2004, from
http://www.wiscorp.com/SQLStandards.html

167. Miguel, L., Kim, M.H., Ramamoorthy, C.V. 1990. A Knowledge and
Data Base for Software Systems. In: Proceedings of the 2nd International
IEEE Conference on Tools for Artificial Intelligence. 6-9 November 1990
Herndon, VA, USA. pp. 417-423.

168. Mocko, G., Malak Jr, R., Paradis, C., Peak, R. 2004. A Knowledge
Repository for Behavioral Models in Engineering Design. In: Proceedings
of 24th ASME Computers and Information in Engineering Conference 28
September – October 3 2004 Salt Lake City, Utah.

169. Mok, W.Y., Ng, Y., Embley, D.W. 1996. A Normal Form for
Precisely Characterizing Redundancy in Nested Relations. ACM
Transactions on Database Systems, Vol. 21, No. 1, pp. 77-106.

170. Montero, M.G., Wright, P.K., Séquin, C.H. 2002. Managing
Complexity in the Design of Electromechanical Products. In: Proceedings
of the 2002 NSF Design, Service and Mfg. Grantees and Research
Conference, Jan. 2002. Retrieved November 10, 2005, from
 http://www.ifm.eng.cam.ac.uk/mcn/pdf_files/part8_1.pdf

171. Mühlen, M. 1999. Evaluation of Workflow Management Systems
Using Meta Models. In: Proceedings of the 32nd Hawaii International
Conference on System Sciences, 5-8 January 1999 Maui, HI, USA, Vol.
Track5. pp. 1-11.

172. Mylopoulos, J., Stanley, M., Wong, K., Bernstein, M., De Mori, R.,
Ewart, G., Kontogiannis, K., Merlo, E., Müller, H., Tilley, S., Tomic,
M. 1994. Towards an integrated toolset for program understanding. In:
Proceedings of the Conference of the Centre for Advanced Studies on
Collaborative Research, October 31 - November 03 1994 Toronto, Ontario,
Canada. IBM Press, pp. 48.

 199

173. Nentwich, C., Emmerich, W., Finkelstein, A., Elmer, E. 2003.
Flexible Consistency Checking. ACM Transactions on Software
Engineering and Methodology, Vol. 12, No. 1, pp. 28-63.

174. Ng, K.W., Ma, J., Nam, G. 1993. A class library management system
for object-oriented programming. In: Proceedings of the 1993
ACM/SIGAPP Symposium on Applied Computing: States of the Art and
Practice, 14 – 16 February 1993 Indianapolis, Indiana, US. New York:
ACM Press, pp. 445-451.

175. ObjectVenture. Pattern and Component Markup Language. Draft 3.
Retrieved June 19, 2003, from
http://www.objectventure.net/files/docs/PCMLSpecification.pdf

176. Oinas-Kukkonen, H., Rossi, G. 1999. On Two Approaches to
Software Repositories and Hypertext Functionality. Journal of Digital
Information, Vol. 1, No. 4.

177. OMG Common Warehouse Metamodel Specification formal/03-03-02.
March 2003. Version 1.1. Retrieved October 23, 2006, from
http://www.omg.org/technology/documents/formal/cwm_mip.htm

178. OMG OCL 2.0 OMG Adopted Specification formal/2006-05-01.
Retrieved October 23, 2006, from
http://www.omg.org/technology/documents/formal/ocl.htm

179. OMG Reusable Asset Specification. OMG Adopted Specification
ptc/04-06-06. Retrieved March 1, 2005, from
http://www.omg.org/technology/documents/formal/ras.htm

180. OMG Unified Modeling Language Specification formal/03-03-01.
March 2003. Version 1.5.

181. OMG UML 2.0 Superstructure Specification, formal/05-07-04.
Retrieved September 25, 2006, from
http://www.omg.org/technology/documents/formal/uml.htm

182. Opdahl, A.L., Henderson-Sellers, B. 2002. Ontological Evaluation of
the UML Using the Bunge–Wand–Weber Model. Software and Systems
Modeling, Vol. 1, No. 1, Sep 2002, pp. 43 – 67.

183. Oracle® Database SQL Reference 10g Release 1 (10.1) Part Number
B10759-01. Retrieved October 4, 2005, from
http://download-

west.oracle.com/docs/cd/B14117_01/server.101/b10759/toc.htm
184. Paige, R. F., Ostroff, J. S. 2001. The Single Model Principle. In:

Proceedings of the Fifth IEEE International Symposium on Requirements
Engineering. IEEE Computer Society, pp. 292-293.

185. Pardede, E., Rahayu, J.W., Taniar, D. 2003. Normalization of Single
Level Nested Structure in Object-Relational Data Model. In: Proceedings of
the International Conference on Informatics, Cybernetics and Systems,
Kaoshiung, Taiwan, 2003. IEEE, pp.1884-1889,

186. Pardede, E., Rahayu, J.W., Taniar, D. 2004. Mapping Methods and
Query for Aggregation and Association in Object-Relational Database using

 200

Collection. In: Proceedings of the International Conference on Information
Technology: Coding and Computing, 5-7 April 2004, Vol.1. IEEE
Computer Society, pp. 539-543.

187. Pardede, E., Rahayu, J.W., Taniar, D. 2005. Composition in Object-
Relational Database. Encyclopedia of Information Science and Technology,
IDEA Publishing, pp. 488-494.

188. Park, H.C., Lee, W.B., Kim, T.G. 1994. A relational algebraic
framework for models management. In: Proceedings of the 26th conference
on Winter simulation, 11-14 Dec. 1994. pp. 649-656.

189. Pascal, F. 2000. Practical issues in Database Management. A Reference
for the Thinking Practitioner. Addison-Wesley.

190. Pascal, F., Darwen, H., McGoveran, D. 2005. On POFN and POOD –
two complementary database design principles. Retrieved October 01, 2006,
from http://www.dbdebunk.com/page/page/3010532.htm

191. Pedro, L., Lucio, L., Buchs, D. 2006. Principles for System Prototype
and Verification using metamodel based Transformations. In: Proceedings
of the Seventeenth IEEE International Workshop on Rapid System
Prototyping, 14-16 June 2006. pp. 10- 17.

192. Penedo, M.H. 1987. Prototyping a project master database for software
engineering environments. SIGPLAN Not. Vol. 22, No. 1 (Jan. 1987), pp.
1-11.

193. Pokrajac, D., Patel, H., Rasamny, M. 2004. Inheritance Constraints
Implementation in PostgreSQL. Proc. 48 thETRAN Conference.

194. PostgreSQL 8.0.3 Documentation. Retrieved October 4, 2005, from
http://www.postgresql.org/docs/8.0/interactive/index.html

195. Purao, S. 1998. APSARA: A Tool to Automate Systems design via
Intelligent Pattern Retrieval and Synthesis. The Data Base for Advances in
Information Systems – Fall, Vol. 29, No. 4.

196. Racko, R. 2004. A Cool Tool Tool. Software Development Magazine,
May 2004, Vol. 12, Part 5, pp. 21-26.

197. Rahayu, W., Chang, E., Dillon, T.S. 1998. Implementation of Object-
Oriented Association Relationships in Relational Databases. In:
Proceedings of the International Database Engineering and Applications
Symposium, 8-10 Jul 1998 Cardiff, UK. IEEE Computer Society, pp. 254-
263.

198. Rahayu, J.W., Taniar, D. 2002. Preserving Aggregation in an Object-
Relational DBMS. In: Proceedings of the Second International Conference
on Advances in Information Systems, 23-25 October 2002 Izmir, Turkey,
LNCS Vol. 2457/2002. Germany: Springer Berlin, pp. 1-10.

199. Rashid, A., Loughran, N. 2003. Relational Database Support for
Aspect-Oriented Programming. In: Proceedings of the International
Conference NetObjectDays, 7-10 October 2002 Erfurt, Germany, LNCS
Vol. 2591/2003. Germany: Springer Berlin, pp. 233 – 247.

 201

200. Rasmussen, R.W. 2005. A framework for the UML meta model.
Retrieved March 26, 2005, from
http://www.ii.uib.no/~rolfwr/thesisdoc/main1.html

201. Richters, M., Gogolla, M. 1999. A Metamodel for OCL. In:
Proceedings of UML '99: the Unified Modeling Language: beyond the
standard, 28-30 October 1999 Fort Collins CO, USA, LNCS Vol. 1723.
Germany: Springer Berlin, pp. 156-171.

202. Richters, M., Gogolla, M. 2000. Validating UML Models and OCL
Constraints. In: Proceedings of the Third International Conference UML
2000 - The Unified Modeling Language. Advancing the Standard, October
2000 York, UK, LNCS Vol. 1939/2000. Germany: Springer Berlin, pp.
265-277.

203. Rising, L. 2000. The Pattern Almanac 2000. Addison Wesley.
204. Ritter, N., Steiert, H.P., Mahnke, W., Feldmann, R.,L. 1999. An

Object-Relational SE-Repository with Generated Services. In Proceedings
of the 1999 Information Resources Management Association International
Conference, May 16-19, 1999, Hershey, Pennsylvania, USA. IDEA Group
Publications.

205. Ritter, N., Steiert, H.P. 2000. Enforcing modeling guidelines in an
ORDBMS-based UML-repository. In: Proceedings of the 2000 information
Resources Management Association International Conference on
Challenges of Information Technology Management in the 21st Century,
May 2000 Anchorage, Alaska, US. pp. 269-273.

206. Rittgen, P. 2006. Translating Metaphors into Design Patterns.
Advances in Information Systems Development. Bridging the Gap between
Academia and Industry, Vol. 1. Springer. pp. 425-436.

207. Robertson, S., Robertson, J. 1999. Mastering the requirements
process. Addison-Wesley.

208. Roost, M., Kuusik, R., Rava, K., Veskioja, T. 2004 Enterprise
Information System Strategic Analysis and Development: Forming
Information System Development Space in an Enterprise. In: Proceedings
of the International Conference on Computational Intelligence, pp. 215-219.

209. Rossi, M., Brinkkemper, S. 1996. Complexity Metrics for Systems
Development Methods and Techniques. Information Systems, Vol. 21, No.
2, pp. 209-227.

210. Ruggia, R., Ambrosio, A.P. 1997. A Toolkit for Reuse in Conceptual
Modelling. In: Proceedings of the 9th International Conference on
Advanced Information Systems Engineering, 16 – 20 June 1997, LNCS
Vol. 1250/1997. Germany: Springer Berlin, pp. 173-186.

211. Sapia, C., Blaschka, M., Höfling, G. 2000. GraMMi: Using a Standard
Repository Management System to Build a Generic Graphical Modeling
Tool. In: Proceedings of the 33rd Hawaii International Conference on
System Sciences, 04 – 07 January 2000. IEEE Computer Society, pp. 10.

 202

212. Savnik, I., Mohorič, T., Dolenc, T., Novak, F. 1993. Database model
for design data. SIGPLAN OOPS Messenger, Vol. 4, No. 3, Jul. 1993, pp.
26-40.

213. Seacord, R.C. Hissam, S.A. Wallnau, K.C. 1998. AGORA: a search
engine for software components. IEEE Internet Computing, Vol.2, No.6,
Nov/Dec 1998, pp.62-.

214. Seaman, C., Mendonça, M., Basili, V.R., Kim, Y.M. 1999. An
Experience Management System for a Software Consulting Organization.
In: Proceedings of the 24th SEL Workshop, Greenbelt, MD, USA.

215. Seidewitz, E. 2003. What models mean. IEEE Software, Vol. 20, Issue
5, Sept.-Oct. 2003, pp. 26-31,

216. Serrano, J.A. 1999. Formal Specifications of Software Design
Methods. In: Proceedings of the 3rd Irish Workshop on Formal Methods, 1-
2 July 1999 Ireland, Galway.

217. Seshadri, P. 1998. Enhanced abstract data types in object-relational
databases. The VLDB Journal, Vol. 7, No. 3, pp. 130-140.

218. Sheth, A.P., Larson, A.J. 1990. Federated Database Systems for
Managing Distributed, Heterogeneous, and Autonomous Databases. ACM
Computing Surveys, Vol. 22, No. 3.

219. Siau, K., Cao, Q. 2002. How complex is the unified modeling
language? In Advanced Topics in Database Research Vol. 1, pp. 294-306.

220. Siau, K., Rossi, M. 1998. Evaluation of Information Modeling
Methods - A Review. In: Proceedings of the 31st Annual Hawaii
International Conference on System Sciences, Vol. 5. USA: IEEE
Computer Society, pp. 314-322.

221. Sidle, T.W. 1980. Weaknesses of commercial data base management
systems in engineering applications. In: Proceedings of the 17th Conference
on Design Automation 23 – 25 June 1980 Minneapolis, Minnesota, US.
New York: ACM Press, pp. 57-61.

222. Silverston, L. 2001. The Data Model Resource Book: A Library of
Universal Data Models for All Enterprises. Vol. 1. Wiley Computer
Publishing.

223. Singh, H., Han, J. 1996. Requirements for Object Management in
Software Engineering Environments. Technical Report 96-02, Peninsula
School of Computing, Monash University, Melbourne, Australia, February
1996. Retrieved July 24, 2005, from http://citeseer.ist.psu.edu/113414.html

224. Skatulla, S., Dorendorf, S. 2003. Optimization of Storage Structures
of Complex Types in Object-Relational Database Systems. Advances in
Databases and Information Systems, LNCS Vol. 2798/2003. Germany,
Springer Berlin. pp. 220-235.

225. Smith, J.M., Smith, D.C. 1977. Database abstractions: aggregation,
Communications of the ACM, Vol. 20, No. 6, June 1977, pp. 405-413.

226. Sneed, H., Dombovari, T. 1999. Comprehending a complex,
distributed, object-oriented software System - a Report from the Field. In:

 203

Proceedings of the Seventh International Workshop on Program
Comprehension, 5-7 May 1999. Pittsburgh: IEEE Computer Society Press,
pp. 218-225.

227. Soutou, C. 2001. Modeling relationships in object-relational databases.
Data and Knowledge Engineering, Vol. 36, Issue 1, pp. 79-107.

228. Stonebraker, M., Rowe, L. A., Lindsay, B., Gray, J., Carey, M.,
Brodie, M., Bernstein, P., Beech, D. 1991. Third-generation database
system manifesto. Comput. Stand. Interfaces. Vol. 13, No.1-3 (Oct. 1991),
pp. 41-54.

229. Straeten, R., Mens, T., Simmonds, J., Jonckers, V. 2003. Using
Description Logic to Maintain Consistency between UML Models. “UML”
2003 - The Unified Modeling Language, LNCS Vol. 2863/2003. Germany:
Springer Berlin, pp. 326-340.

230. Szykman, S. Sriram, R. D. Bochenek, C. Racz, J. W. Senfaute, J.
2000. Design Repositories: Engineering Design's New Knowledge Base
IEEE Intelligent Systems and their Applications, Vol. 15, No. 3., pp. 48-55.

231. Systematik holistik metodik. Retrieved March 5, 2006, from
http://www.systematik.se/

232. Taylor, R.N., Belz, F.C., Clarke, L.A., Osterweil, L., Selby, R.W.,
Wileden, J.C., Wolf, A.L., Young, M. 1988. Foundations for the Arcadia
environment architecture. In: Proceedings of the Third ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, 28 – 30 November 1988, Boston,
Massachusetts, US. New York: ACM Press, pp. 1-13.

233. Tombros, D., Geppert, A. 1995. A survey of database support for
process centered software development environments, Technical report
95.28, Universität Zürich. Retrieved October 18, 2006, from
http://historical.ncstrl.org/litesite-data/unizh_ifi/ifi-95.28.ps.gz

234. Tsai, Y.C. 2001. Comparative analysis of model management and
relational database management. Omega, Vol. 29, No. 2, pp. 157–170.

235. Turns, J. Atman, C. J. Adams, R. 2000. Concept Maps for
Engineering Education: A Cognitively Motivated Tool Supporting Varied
Assessment Functions. IEEE Transactions on Education. Vol. 43; Part 2, pp
164-173.

236. Türker, C., Gertz, M. 2001. Semantic integrity support in SQL:1999
and commercial (object-) relational database management systems. The
VLDB Journal, Vol. 10, No. 4, pp. 241–269.

237. Vincent, M.W. 1998. Redundancy Elimination and a New Normal
Form for Relational Database Design. Semantics in Databases, LNCS Vol.
1358/1998. Germany: Springer-Verlag, pp. 247-264.

238. Virvou, M., Tourtoglou, K. 2006. Intelligent Help for Managing and
Training UML Software Engineering Teams. In: Proceedings of the Joint
Conference on Knowledge-Based Software Engineering, 28-31 August
2006 Tallinn, Estonia. IOS Press, pp. 11-20.

 204

239. Voorish, D. 2005. An Implementation of Date and Darwen's "Tutorial
D". Retrieved March 26, 2005, from
http://dbappbuilder.sourceforge.net/Rel.html

240. Võhandu, L., Kuusik, R., Torim, A., Aab, E., Lind, G. 2006. Some
Monotone Systems Algorithms for Data Mining. WSEAS Transactions on
Information Science & Applications. Vol. 3, Issue 4, pp. 802-809.

241. Wang, S.A., Yang, F., Huey, C., Pecjak, F., Upender, B., Frazin, A.,
Lingam, R., Chintala, S., Wang, G., Kellog, M., Martino, R.L.,
Johnson, C.A. 2004. Performance of using Oracle XMLDB in the
evaluation of CDISC ODM for a clinical study informatics system. In:
Proceedings of the 17th IEEE Symposium on Computer-Based Medical
Systems. pp. 594- 599.

242. Weikum, G., Vossen, G. 2002. Transactional information systems:
Theory, Algorithms, and the Practice of Concurrency Control and
Recovery. USA: Morgan Kaufman Publishers, Academic Press.

243. Wurden, F.L. 1997. Content Is King (If You Can Find It): A New
Model for Knowledge Storage and Retrieval. In: Proceedings of the 13th
International IEEE Conference on Data Engineering 7-11 April 1997. pp.
149-157.

244. Yen, I.L., Khan, L., Prabhakaran, B., Bastani, F.B., Linn, J. 2001.
An On-line Repository for Embedded Software. In: Proceedings of the 13th
IEEE international Conference on Tools with Artificial Intelligence, 07 – 09
November 2001. pp. 314-321.

245. Zachman, J.A. 1987. A framework for information systems
architecture. IBM Systems Journal, Vol. 26, No. 3, pp. 276 – 292.

246. Zhang, N., Ritter, N., Härder, T. 2001. Enriched Relationship
Processing in Object-Relational Database Management Systems. In:
Proceedings of the Third International Symposium on Cooperative
Database Systems for Advanced Applications, 23-24 April 2001 Beijing,
China. pp. 50-59.

247. Zhang, Z., Lyytinen, K. 2001. A Framework for Component Reuse in
a Metamodelling-Based Software Development. Requirements Engineering,
Vol. 6, Part 2, pp. 116 – 131.

248. Zimbrão, G., Miranda, R., Souza, J.M., Estolano, M.H., Neto, F.P.
2003. Enforcement of Business Rules in Relational Databases Using
Constraints. XVIII Simpósio Brasileiro de Banco de Dados - 2003 -
Manaus, AM, Brasil. pp. 129-141.

 205

APPENDIX A: SOME PROPERTIES OF EXISTING SOFTWARE
ENGINEERING SYSTEMS THAT USE THE HELP OF A DBMS

Development phase where
the content is used

Type of content Location
of content

Reference DBMS
type

Ana-
lysis

Design Imple-
ment

models project
data

experi-
ences

code inf.
about
code

in
DB

out-
side
DB

Linton (1984) RDBMS + + +
Ng et al. (1993) RDBMS + + +
Mylopoulos et al. (1994) RDBMS + + +
Gray (1997) RDBMS + + +
Keqin et al. (1997) RDBMS + + +
Blaha et al. (1998) RDBMS + + + +
Purao (1998) RDBMS + + + +
Gruhn and Schneider (1998) RDBMS + + + +
Seaman et al. (1999) RDBMS + + + + +
Sneed and Dombovari
(1999)

RDBMS + + + + +

Henninger (2001) RDBMS + + + + +
Lopez et al. (2002) RDBMS + + +
Rashid and Loughran (2003) RDBMS + + + +
Chisholm (2005) RDBMS + + +
Lavazza and Agostini (2005) RDBMS + + + +
Penedo (1987) RDBMS + + + + + +
Chen et al. (1990) RDBMS + + + + +

 206

Appendix A continued
Development phase where

the content is used
Type of content Location

of content
Reference DBMS

type
Ana-
lysis

Design Imple-
ment

model project
data

experi-
ences

code inf.
about
code

in
DB

out-
side
DB

Lejter et al. (1992) RDBMS + + + + +
Boisvert (1994) RDBMS + + + + +
Behle (1998) RDBMS + + + +
Seacord et al. (1998) + + + + +
Boldyreff et al. (2002) + + + + + + + + +
Conte et al. (2004) + + + + +
Ambriola et al. (1997) EDBMS + + + +
Cox et al. (1999) EDBMS + + + +
Ambriola et al. (1997) OODBMS + + + +
Liu et al. (1996) OODBMS + + +
Keller et al. (2001) OODBMS + + +
Miguel et al. (1990) ORDBMS + + +
Althoff et al. (1999) ORDBMS + + + + + +
Yen et al. (2001) ORDBMS + + + +
Allsop et al. (2002) ORDBMS + + +
Mahnke and Ritter (2002) ORDBMS + + + + +
Kovse et al. (2002) ORDBMS + + +
Ritter and Steiert (2000) ORDBMS + + + +

 207

APPENDIX B: SOME SECONDARY CHARACTERISTICS OF WHOLE-PART
RELATIONSHIPS

Type of secondary characteristic

Value of sec.
characteristic

Description of the value of the secondary characteristic

Locally
exclusive part

A part object is related through a type of whole-part relationship to at most one
whole object. ([W]-<>-..1------------[P])

Locally
shareable part

A part object can be related through a type of whole-part relationship to more
than one whole object. ([W]-<>-..n------------[P] n>1)

Globally
exclusive part

A part object type cannot be related through whole-part relationship types to more
than one whole object type. ([W]-<>-------------[P])

Shareability: "the ability of the
part to belong to two or more
wholes at the same time"
(Henderson-Sellers and Barbier,
1999)

Globally
shareable part

A part object type can be related through whole-part relationship types to more
than one whole object type. ([W]-<>-----------[P]-----------<>-[W'])

Essential part A whole object must have the specific associated part object(s) and is existentially
dependent on it (them) (Guizzardi, 2005, p. 343). ([W]-<>-----1..-[P])

Existential dependency: the
existence of part/whole objects
depends on the existence of
whole/part objects.

Inseparable
part

A part object cannot be disconnected (separated) from the whole object(s) and is
existentially dependent on it (them) (Guizzardi, 2005, p. 343).
 ([W]-<>-1..------[P])

Mandatory
whole

A part object must be associated with a whole object (but not with any specific
object). ([W]-<>-m..------[P] m>=1)

Mandatory
part

A whole object must be associated with a part object (but not with any specific
object). ([W]-<>-------n..-[P] n>=1)

Optional
whole

A part object can be disconnected from a whole object and does not have to have
associated whole object. ([W]-<>-0..------------[P])

Separability: "piece(s) can be
removed from the whole
without destroying either"
(Henderson-Sellers and Barbier,
1999)

Optional part A whole object can be disconnected from a part object and does not have to have
associated part object. ([W]-<>-------------0..-[P])

 208

APPENDIX C: COMPARISON OF SOME SYSTEMS THAT RECORD
MODELS IN A DATABASE

 System analysis environment
(proposed in Chapter 4)

UML Repository (Ritter and
Steiert, 2000)

UML Model Measurement Tool
(Lavazza and Agostini, 2005)

Purpose of the
system

Allows us to create a system
specification and to validate it.

Allows us to record UML models
in order to later reuse them,
analyse them, share them between
developers and generate code
based on them.

Allows us to record UML models in
order to find metrics values.

Metamodel Repository schema is based on the
metamodel of a language that is
specifically worked out in order to
support methodological framework
for the Enterprise Information
System (EIS) strategic analysis
(Roost et al., 2004).

Repository schema is based on
UML metamodel.

Repository schema is based on
simplified UML metamodel
(supports subset of class and state
models).

DBMS type ORDBMSSQL ORDBMSSQL RDBMSSQL
The use of ORSQL
specific solutions -
typed tables and
table inheritance

No Yes No

 209

Appendix C continued
 System analysis environment

(proposed in Chapter 4)
UML Repository (Ritter and
Steiert, 2000)

UML Model Measurement Tool
(Lavazza and Agostini, 2005)

The use of database
constraints

Uses minimal amount of database
constraints – only primary and
foreign keys. Uses queries in order
to find violations of consistency
and completeness rules.

Uses CHECK constraints and
triggers in order to preserve the
consistency of UML models and
enforce design rules and
guidelines.

Does not mention the use of
database constraints. Probably does
not use them because the system
must be able to calculate metrics
values based on any model –
correct or incorrect.

Constraint checking
on demand

Yes Yes Does not mention the use of
database constraints.

Source of
constraints

Worked out by us OCL invariants that accompany
UML metamodel, global design
guidelines and process-related
design rules.

Does not mention the use of
database constraints.

Built-in queries Yes Does not mention Yes
User-defined
queries

System users can define new
queries by using SQL.

System users can specify the
constraints by using OCL. System
converts them to SQL.

System users can define new
queries by using SQL.

User can specify
queries which find
metrics values.

Yes Does not mention Yes

User-interface for
accessing models

Custom-built web-based and form
based interface.

Database administration tool Database administration tool

210

APPENDIX D: THE LOCATION OF
PROTOTYPE SYSTEM

Chapter 4 presents the system that can be used in order to create a system
analysis specification, check its consistency and completeness and calculate
metrics values.

We have implemented a partial prototype of this system. This web-based
system can be found from: http://viktor.ld.ttu.ee/modeler/index.php

This prototype is created by using PHP language and uses the help of
ORDBMSSQL PostgreSQL 8.0.4. The prototype implements partially two
functional subsystems of our system – query management and subsystems
management. It is possible to register new users, which is functionality of the
user management subsystem. It is also possible to specify names of the use
cases, which is functionality of the scenario management subsystem.

The prototype was developed in collaboration with my student Erko Aaberg
who created it as part of his bachelor thesis. The author of this dissertation has
created the following parts of the prototype:
• Part of the query subsystem that allows us to manage and execute detailed

CCC checks, metrics queries and general queries. The author of this
dissertation has also worked out these queries.

• IS_EMPTY scalar operator that is used by many queries. We have
implemented it by using PL/pgSQL language.

A query manager can manage (create/read/update/delete) queries, including
their SQL statements. A system viewer can see specifications, execute queries
and see the results. A system describer can see and modify the specifications,
execute queries and see the results.

The database contains partial specification of an IS in order to make possible
the testing of these queries.

211

APPENDIX E: CURRICULUM VITAE

1. Personal Data
 Name: Erki Eessaar
 Date of birth and place: 09.03.1977, Tallinn, Estonia
 Citizenship: Estonian
 Maritual status: unmarried
 Children: -

2. Contact Data
 Address: Raja 15-409, Tallinn, 12618
 Phone: +372 6202306 (at work)
 E-mail: eessaar@staff.ttu.ee;Erki.Eessaar@mail.ee

3. Education

4. Language Skills (basic, intermediate or high level)

Language Level

Estonian High Level (mother tongue)

English High Level

Russian Intermediate Level

5. Special courses: -

Educational

Institution

Graduation time Speciality / grade

Tallinn Technical

University

1999 Informatics / Bachelor of

technical science

Tallinn Technical

University

2001 Informatics / Master of

technical science

212

6. Professional employment

Period Institution Position

9/1999-8/2002 Tallinn Technical

University, Institute of

Informatics

Assistant

9/2002- Tallinn University of

Technology (former Tallinn

Technical University),

Institute of Informatics

Lecturer

7. Scientific Work

Eessaar, E. 2002. Patterns as Reusable Fragments of Knowledge. In:
Proceedings of the Fifth International Baltic Conference on Databases and
Information Systems, 3-6 June 2002 Tallinn, Estonia. Tallinn: Institute of
Cybernetics at Tallinn University of Technology, pp. 243 - 248.

Eessaar, E. 2004a. Towards Pattern Management System. In: Proceedings of the
Sixth International Conference on Enterprise Information Systems, 14 – 17
April 2004 Porto, Portugal. Vol. 3. pp. 655 – 658.

Eessaar, E. 2004b. Methods for Searching Patterns from the Database of
Patterns. In: The 16th Conference on Advanced Information Systems
Engineering Forum Proceedings, 7-11 June 2004 Riga, Latvia. pp. 103 – 111.

Eessaar, E. 2005a. Truly Relational Databases as a Platform for the Artifact
Management. In: Proceedings of the Fourteenth International Conference on
Information Systems Development: Pre-Conference 14-17 August 2005
Karlstad, Sweden. pp. 207-218.

Eessaar, E. 2005b. Architecture of Pattern Management Software System. In:
Proceedings of the 9th East-European Conference on Advances in Databases
and Information Systems, 12-15 September 2005 Tallinn, Estonia. Tallinn:
Institute of Cybernetics at Tallinn University of Technology, pp. 189-207.

Eessaar, E. 2006a. Extended Principle of Orthogonal Database Design. In:
Proceedings of the 5th WSEAS International Conference on Artificial
Intelligence, Knowledge Engineering and Data Bases, 15-17 February 2006
Madrid, Spain. pp. 360-365. CD-ROM.

213

Eessaar, E. 2006b. Guidelines about Usage of the Complex Data Types in a
Database. WSEAS Transactions on Information Science and Applications, Vol.
3, Issue 4, April 2006, pp. 712-719.

Eessaar, E. 2006c. Using Relational Databases in the Engineering Repository
Systems. In: Proceedings of the Eighth International Conference on Enterprise
Information Systems, 23 –27 May 2006 Paphos, Cyprus. Vol. Databases and
Information Systems Integration. pp. 30 – 37.

Eessaar, E. 2006d. Whole-Part Relationships in the Object-Relational
Databases. In: Proceedings of the 10th WSEAS International Conference on
COMPUTERS, 13-15 July 2006 Vouliagmeni, Athens, Greece. pp. 1263-1268.
CD-ROM.

Eessaar, E. 2006e. SQL or Third Manifesto Compliant Object-Relational
Database Management Systems as the Platforms for Maintaining the Whole-
Part Relationships in a Database. WSEAS Transactions on Computers, Vol. 5,
Issue 10, October 2006, pp. 2440-2447.

Eessaar, E. 2006f. Integrated System Analysis Environment for the Continuous
and Completeness Checking. In: Proceedings of the Joint Conference on
Knowledge-Based Software Engineering 2006, 28-31 August 2006 Tallinn,
Estonia. IOS Press. pp. 96-105.

Eessaar, E. 2006g. Preserving Semantics of the Whole-Part Relationships in the
Object-Relational Databases. In: Proceedings of the 15th International
Conference on Information Systems Development, August 31 - September 2
2006 Budapest, Hungary. Springer. (forthcoming).

8. Theses Accomplished and Defended

B. Sc. Thesis (1999): Strategic Analysis of Information System for

Managing Data About the Estonian Repressed Persons.

M. Sc. Thesis (2001): Pattern Based Development of the System that

Assists Usage of Patterns.

9. Research Interests: Data models, database design, repositories, Meta-

CASE, metamodeling, patterns.

10. Research projects: -

Signature: Date: 14.11.2006

214

APPENDIX F: ELULOOKIRJELDUS (CV IN
ESTONIAN)

1. Isikuandmed
 Ees- ja perekonnanimi: Erki Eessaar
 Sünniaeg ja –koht: 09.03.1977, Tallinn, Eesti
 Kodakondsus: Eesti
 Perekonnaseis: vallaline
 Lapsed: puuduvad

2. Kontaktandmed
 Aadress: Raja 15-409, Tallinn, 12618
 Telefon: +372 6202306 (tööl)
 E-posti aadress: eessaar@staff.ttu.ee;Erki.Eessaar@mail.ee

3. Hariduskäik

4. Keelteoskus (alg-, kesk- või kõrgtase)

Keel Tase

Eesti Kõrgtase (emakeel)

Inglise Kõrgtase

Vene Kesktase

5. Täiendõpe: -

Õppeasutus

(nimetus lõpetamise ajal)

Lõpetamise aeg Haridus

(eriala/kraad)

Tallinna

Tehnikaülikool

1999 Informaatika / tehnikateaduste

bakalaureus

Tallinna

Tehnikaülikool

2001 Informaatika / tehnikateaduste

magister

215

6. Teenistuskäik

Töötamise aeg Ülikooli, teadusasutuse või

muu organisatsiooni nimetus

Ametikoht

9/1999-8/2002 Tallinna Tehnikaülikool,

Informaatikainstituut

Assistent

9/2002- Tallinna Tehnikaülikool,

Informaatikainstituut

Lektor

7. Teadustegevus

Eessaar, E. 2002. Patterns as Reusable Fragments of Knowledge. In:
Proceedings of the Fifth International Baltic Conference on Databases and
Information Systems, 3-6 June 2002 Tallinn, Estonia. Tallinn: Institute of
Cybernetics at Tallinn University of Technology, pp. 243 - 248.

Eessaar, E. 2004a. Towards Pattern Management System. In: Proceedings of the
Sixth International Conference on Enterprise Information Systems, 14 – 17
April 2004 Porto, Portugal. Vol. 3. pp. 655 – 658.

Eessaar, E. 2004b. Methods for Searching Patterns from the Database of
Patterns. In: The 16th Conference on Advanced Information Systems
Engineering Forum Proceedings, 7-11 June 2004 Riga, Latvia. pp. 103 – 111.

Eessaar, E. 2005a. Truly Relational Databases as a Platform for the Artifact
Management. In: Proceedings of the Fourteenth International Conference on
Information Systems Development: Pre-Conference 14-17 August 2005
Karlstad, Sweden. pp. 207-218.

Eessaar, E. 2005b. Architecture of Pattern Management Software System. In:
Proceedings of the 9th East-European Conference on Advances in Databases
and Information Systems, 12-15 September 2005 Tallinn, Estonia. Tallinn:
Institute of Cybernetics at Tallinn University of Technology, pp. 189-207.

Eessaar, E. 2006a. Extended Principle of Orthogonal Database Design. In:
Proceedings of the 5th WSEAS International Conference on Artificial
Intelligence, Knowledge Engineering and Data Bases, 15-17 February 2006
Madrid, Spain. pp. 360-365. CD-ROM.

Eessaar, E. 2006b. Guidelines about Usage of the Complex Data Types in a
Database. WSEAS Transactions on Information Science and Applications, Vol.
3, Issue 4, April 2006, pp. 712-719.

216

Eessaar, E. 2006c. Using Relational Databases in the Engineering Repository
Systems. In: Proceedings of the Eighth International Conference on Enterprise
Information Systems, 23 –27 May 2006 Paphos, Cyprus. Vol. Databases and
Information Systems Integration. pp. 30 – 37.

Eessaar, E. 2006d. Whole-Part Relationships in the Object-Relational
Databases. In: Proceedings of the 10th WSEAS International Conference on
COMPUTERS, 13-15 July 2006 Vouliagmeni, Athens, Greece. pp. 1263-1268.
CD-ROM.

Eessaar, E. 2006e. SQL or Third Manifesto Compliant Object-Relational
Database Management Systems as the Platforms for Maintaining the Whole-
Part Relationships in a Database. WSEAS Transactions on Computers, Vol. 5,
Issue 10, October 2006, pp. 2440-2447.

Eessaar, E. 2006f. Integrated System Analysis Environment for the Continuous
and Completeness Checking. In: Proceedings of the Joint Conference on
Knowledge-Based Software Engineering 2006, 28-31 August 2006 Tallinn,
Estonia. IOS Press. pp. 96-105.

Eessaar, E. 2006g. Preserving Semantics of the Whole-Part Relationships in the
Object-Relational Databases. In: Proceedings of the 15th International
Conference on Information Systems Development, August 31 - September 2
2006 Budapest, Hungary. Springer. (forthcoming).

8. Kaitstud lõputööd

Bakalaureusetöö (1999): Eesti Represseeritute Registri haldamise

infosüsteemi strateegiline analüüs.

Magistritöö (2001): Mustrite kasutamist abistava süsteemi mustritel

põhinev projekteerimine.

9. Teadustöö põhisuunad: Andemudelid, andmebaasi disain, teadmusbaasid,

Meta-CASE, metamodelleerimine, mustrid.

10. Teised uurimisprojektid: -

Allkiri: Kuupäev: 14.11.2006

