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INTRODUCTION 
 
A structure is a combination of parts fastened together to create a supporting framework, 
which may be part of a building, ship, machine, space vehicle, road vehicle, engine or 
some other system. The vibration that occurs in most machines, structures and dynamic 
systems is undesirable, not only because of the resulting unpleasant motions, the noise 
and the dynamic stresses which may lead to fatigue and failure of the structure or 
machine, but also because of the energy losses and the reduction in performance that 
accompany the vibrations. It is therefore essential to carry out a vibration analysis of any 
proposed structure. Because of the very serious effects that unwanted vibrations can have 
on dynamic systems, it is essential that vibration analysis be carried out as an inherent 
part of their design; when necessary modifications can most easily be made to eliminate 
vibration or at least to reduce it as much as possible. 

It is usually much easier to analyze and modify a structure at the design stage than it 
is to modify a structure with undesirable vibration characteristics after it has been built. 
However, it is sometimes necessary to be able to reduce the vibration of existing 
structures brought about by inadequate initial design, by changing the function of the 
structure or by changing the environmental conditions, and therefore techniques for the 
analysis of structural vibration should be applicable to existing structures as well as to 
those in the design stage. It is the solution to vibration problems that may be different 
depending on whether or not the structure exists. 

There are two factors that control the amplitude and frequency of vibration in a 
structure: the excitation applied and the response of the structure to that particular 
excitation. Changing either the excitation or the dynamic characteristics of the 
structure will change the vibration stimulated. 

The excitation arises from external sources such as ground or foundation vibration, 
cross winds, waves and currents, earthquakes and sources internal to the structure such 
as moving loads and rotating or reciprocating engines and machinery. These excitation 
forces and motions can be periodic or harmonic in time, due to shock or impulse 
loadings, or even random in nature. 

The level of vibration in a structure can be attenuated by reducing either the 
excitation, or the response of the structure to that excitation or both. It is sometimes 
possible, at the design stage, to reduce the exciting force or motion by changing the 
equipment responsible, by relocating it within the structure or by isolating it from the 
structure so that the generated vibration is not transmitted to the supports. The 
structural response can be altered by changing the mass or stiffness of the structure, by 
moving the source of excitation to another location, or by increasing the damping in 
the structure. Naturally, careful analysis is necessary to predict all the effects of any 
such changes, whether at the design stage or as a modification to an existing structure.  
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It is necessary to analyze the vibration of structures in order to predict the natural 
frequencies and the response to the expected excitation. The natural frequencies of the 
structure must be found because if the structure is excited at one of these frequencies 
resonance occurs, with resulting high vibration amplitudes, dynamic stresses and noise 
levels. Accordingly resonance should be avoided and the structure designed so that it is 
not encountered during normal conditions; this often means that the structure need only 
be analyzed over the expected frequency range of excitation. Although it may be 
possible to analyze the complete structure, this often leads to a very complicated 
analysis and the production of much unwanted information. A simplified mathematical 
model of the structure is therefore usually sought that will, when analyzed, produce the 
desired information as economically as possible and with acceptable accuracy. The 
derivation of a simple mathematical model to represent the dynamics of a real structure 
is not easy, if the model is to produce useful and realistic information. It is often 
desirable for the model to predict the location of nodes in the structure. These are 
points of zero vibration amplitude and are thus useful locations for the assembly of 
particularly delicate equipment. Also, a particular mode of vibration cannot be excited 
by forces applied at one of its nodes. 
 
Problem settings 
 
A ladder frame is a combination of beams fastened together to create a supporting 
framework, which may be part of a building, ship, machine, space vehicle, road 
vehicle, engine or some other system. Ladder frames are composed mostly from beams 
of open cross-section, which generally have one or two axis of symmetry. There are 
many possibilities to form the layout of the ladder frames with same load carrying 
capacity sustained. It is possible to choose smaller cross-sectional dimensions of 
structural members and place them closer to each other or it is possible to choose larger 
cross-sectional dimensions and space them further from each other. Even load carrying 
capacity of ladder frames doesn’t change; the dynamic behavior of ladder frames will 
change essentially. Cross-sectional dimensions of longitudinal members and cross-
members and their corresponding mass influence directly the natural frequencies of 
whole ladder frame and corresponding modes of free vibration. It is important to 
choose stiffnesses and masses of structural members of ladder frames so that resonance 
or beating condition of structural members due to excitation cannot occur. In design 
layout of ladder frames it is desirable that cross-members and other parts are placed at 
the nodes of principal modes. It is possible, when reliable and easily used tool for the 
calculation of natural frequencies and corresponding modes is available, which assist a 
designer through design process. Final layout of ladder frames must be evaluated 
through the evaluation of forced response of ladder frames. 
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Forced response of ladder frames due to excitation is very important in final 
decision-making process of choosing the layout of ladder frames. Response of the 
ladder frames or another structure to some harmonic excitation without damping effect 
or in presence of viscous damping is well-studied. Response of ladder frames to 
another periodic loading of excitation in presence of hysteretic damping is 
considerably less dealt in scientific literature than in case of harmonic excitation.  

In design stage of ladder frames, it is very important to design it to withstand the 
so-called extreme statical and dynamical conditions, which are imposed to it due to 
foundation vibration, moving loads, rotating engines and/or other operational 
conditions. From the point of view of dynamical response of ladder frames, it is quite a 
complex issue due to variety of ladder frames designs available. Frame members can 
be straight uniform beams or tapered. Depending on the purpose of ladder frames, the 
cross-members could be covered by some covering panels/materials (further floor 
components), which can be plywood or wooden slabs or thin metal sheets or concrete. 
Main purpose of floor components is to form a load carrying area and distribute it to 
the members of ladder frames uniformly. Depending on the fastening method, floor 
components might influence the rigidity of crossed beams completely or partly. In this 
case, the reinforcing effect of the covering panels due to simplification is usually 
ignored in dynamical analysis. Another situation is raised, when ladder frames are 
covered with panels of thin metal plates by means of welding or concrete panels, then 
relative displacement between panels and structural members of ladder frames is 
restrained and reinforcing effect of the plate cannot be ignored. 

The study of free vibrational behavior of structural members of ladder frames is 
essential before study of forced response of structural members of ladder frames, 
because it gives a good reference to choose the right number and type of normal modes 
to be included in dynamic response analysis [1]. It is necessary to take into account 
that frequency spectrum of ladder frames is not continuous, but has isolated 
zones with highly packed frequencies. Also frequency values do not increase so 
quickly with the total number of frequencies.  In ladder frames, the values of 
natural frequencies are close to each other and corresponding modes could have 
different values at the nodes. Evaluation of natural frequencies of ladder frames and 
corresponding modes gives the designer a possibility to choose a better layout of 
ladder frames. 

 
Main objectives 
 
The main objectives of the doctoral thesis are as follows: 
 

1. To extend the theoretical analysis methods of free vibration of ladder frames 
that consists of uniform beams with one axis of symmetry and to study the 
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sensitivity of ladder frames by numerical examples. Main objective in case of 
thin-walled beams is to study the effect of warping onto the natural frequencies 
of ladder frames in two cases: I) when longitudinal members and cross-
members of ladder frames are adjoined at the nodes in plane and II) when 
beam members of ladder frames are adjoined at the nodes on each other. 

2. To extend a simplified alternative approach for calculation of forced vibration 
of ladder frames under the action of repeated loading in the presence of 
hysteretic damping. 

3. To propose the alternative approach for calculation of natural frequencies and 
corresponding mode shape of ladder frames in case, when reinforcing effect of 
the covering plate cannot be excluded from the dynamic analysis.   

 
To obtain the goal the following tasks have to be solved: 
 

1. To solve the governing differential equation of motion of continuous beam 
element with one axis of symmetry by the theories of massive-profiled beams 
and thin-walled beams in closed form in frequency domain. Once a solution is 
found, it is possible to evaluate analytical nodal end forces and moments to 
calculate natural frequencies of ladder frames and the corresponding mode 
shapes. To obtain the goal in case of thin-walled beams, the different warping 
constraints corresponding to different position of beam members to each other 
has to be taken account in calculation of natural frequencies. 

2. Repeated interrupted loading is discontinuous forcing function and thus a 
calculation of hysteretically damped response of structures to such kind of 
loading has to be performed taking into account loading time-history over the 
time of excitation. If the time interval to be analyzed is relatively long the 
analysis become laborious and time consuming. Analyses become more 
complex and laborious if structures with multi-degree-of-freedom have to be 
analyzed, because damping couples the system of differential of equations of 
MDOF systems and solution of system of differential equations is 
complicated. For practical use, it is possible to make some simplifications that 
lead to uncoupling of the system of differential equation of motion. Once 
system of differential equation of motion is uncoupled, the dynamic response 
of entire structure can be obtained by solving separately for response of each 
modal coordinate and then superposing these to obtain the total response in 
the original geometric coordinates.   

3. When the reinforcing effect of covering plates of ladder frames cannot be 
excluded from the composition of differential equation of motion, the 
orthotropic plate theory or more refined thin plate theory is usually used. Due 
to its simplicity the orthotropic plate theory is widely used. The orthotropic 
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plate theory is not exact and depends on geometrical representation of ladder 
frames. The discrete model of ladder frames reinforced with plate for 
calculation of natural frequencies is proposed instead of the orthotropic model 
one and compared with results received by calculation of orthotropic plate 
model 
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1 COUPLED FLEXURAL-TORSIONAL FREE VIBRATION 
OF LADDER FRAMES 

1.1 Background 
 
It is well known that when the cross-sections of the beam have two symmetrical axes, 
the shear center and centroid of the cross-section coincide, and all bending and 
torsional vibrations are independent of each other. This case represents no coupling at 
all. However, for large number of practical beams, the centroid and shear center of the 
cross-sections are non-coincidental. When the cross-sections of beams have one 
symmetrical axis, the bending vibration in the direction of symmetrical axis is 
independent of the other vibrations. But the bending vibration in the perpendicular 
direction of the symmetrical axis is coupled with torsional vibration. In accordance 
with the Saint-Venant’s theory of torsion, the warping displacement occurs in the 
cross-sections of the beams, except the beams with circular cross-sections [2]. For 
thick-walled or solid beams this warping influence is very small as a result of a fast 
diminishing of stress disturbances on the small parts of the beams that are close to their 
constrained sections. In thin-walled open section beams the warping effect 
considerably influence the warping displacements due to stresses produced by 
restrained warping with the self-equilibrating normal stress resultants that diminishes 
very slowly from their point of application.  

Because of the practical importance of the bending-torsion coupled beams, a few 
investigators have made efforts to deal with coupled static and dynamic model of this 
problem. Various methods for analyzing natural frequencies and mode shapes of the 
thin-walled beam such as the so-called continuum method, the finite element method, 
the other approximate methods and the dynamic stiffness method have been attempted. 
A literature survey revealed a wealth of literature on the dynamic characteristics of the 
coupled flexural-torsional vibration of uniform thin-walled beams standalone, but so-
there is much smaller number of so-called exact solutions that are based on solving 
differential equations. Same can be applied for massive-profiled beams too. The 
theories for coupled bending-torsional vibration of the beams firstly have been 
developed by Timoshenko [3] and Vlasov [4] separately. Timoshenko in the [3] 
obtained the exact modal solutions using the classical continuum method, but only 
with simple boundary conditions and no allowance was made for shear deformation 
effect, rotatory inertia and warping. Vlasov in the [4] developed a new approach to 
thin-walled beams introducing a new concept of sectorial properties of cross-section 
and sectorial warping. No allowance was made for shear deformation. Hallau et al in 
the [5] used the dynamic stiffness method to compute exact natural frequencies, mode 
shapes, and generalized masses for coupled bending–torsional vibration of an aircraft 
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wing that was represented as an assemblage of three beams. However, the author gave 
no allowance for the warping, shear deformation and rotatory inertia. Friberg in the [6] 
presented a numerical procedure that generates an exact frequency dependent dynamic 
stiffness matrix (neglecting warping stiffness) and subsequently evaluated the natural 
frequencies and mode shapes for a simply supported and clamped beam. Shear 
deformation and rotatory inertia were neglected. Dokumaci in the [7] determined the 
coupled free vibration frequencies of a cantilever beam. But he neglected the effect of 
warping stiffness. Bishop et al in the [8] extended the theory of [7] by including the 
warping stiffness influence. Friberg in the [9] and Leung in the [10] presented a 
numerical procedure for developing the exact dynamic stiffness matrix of a thin-walled 
beam based on Vlasov beam theory. Banerjee et al in the [11] derived the analytical 
expressions for the coupled bending-torsional dynamic stiffness matrix elements of an 
axially loaded uniform beam element with non-coincident mass center and shear 
center. The influence of axial force on the coupled bending–torsional frequencies of a 
cantilever beam with thin-walled section was demonstrated by numerical results. 
However the warping stiffness was considered to be negligible and was not included in 
their theory. Banerjee et al in the [12] formulated an exact dynamic stiffness matrix for 
an axially loaded Timoshenko beam element from established theory and linking this 
to a new and convenient procedure that extended the well-known Wittrick–Williams 
algorithm [13] to ensure convergence upon any desired natural frequency. They 
considered the effect of the warping stiffness and the axial force was included in the 
analysis. Banerjee in the [14] derived explicit frequency equation and mode shapes for 
cantilever beam using the classical continuum approach. The warping stiffness, shear 
deformation and rotatory inertia effects were neglected from formulations. Li et al in 
the [15] derived the analytical expression for axially loaded thin-walled beam using the 
dynamic transfer matrix approach. Later they included the effect of warping stiffness, 
shear deformation and rotatory inertia in governing equations of motion [16]. 
Senjanovich et al in the [17] derived analytical expressions of coupled flexural and 
torsional vibrations and used them in the investigation of free vibration of flexible 
barges. The rotatory inertia was excluded from formulations.  

In this thesis, the investigation of coupled flexural-torsional free vibration of ladder 
frames is based on Vlasov’s formulated dynamic differential equation of motions of 
uniform massive-profiled and thin-walled beams [4]. The free vibration in longitudinal 
direction is independent of other vibration of beam element and is neglected from 
differential equation of motion of massive-profiled and thin-walled beams both, but all 
other transverse flexural-torsional and rotation vibrations sustained. In case of massive-
profiled beams, the differential equation of motion includes secondary effects as 
rotatory inertia and shear deformation, but warping influence is neglected due to its 
local character [2]. Differential equation of motion by the theory of massive-profiled 
and thin-walled beams is solved in closed form; therefore the solutions can be 
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classified as so-called exact solutions. The solution of differential equation of motion 
represents the dynamic shape function and is used to evaluate dynamic nodal end 
moments and forces with proper end conditions and unit displacements. The slope-
deflection method is then used to compose system of canonical equation regarding to 
chosen displacements. In case of thin-walled beams the torsional stiffness and sectorial 
rotatory inertia of cross-section has excluded as to investigate two cases of connections 
of longitudinal and cross-members at nodes. It is well known that torsional stiffness of 
thin-walled beams are relatively low [18] and exclusion of torsional stiffness form 
governing differential equation is justified. As the conditions of conjunction according 
to the warping at the nodes, two cases are considered: (I) cross-sections of beams 
adjoining to the nodes are being warped equally and (II) cross-sections of beams 
adjoining to the nodes are being warped independently from each other and have 
different mode. In the first case the warping of node can be determined by one 
unknown and in the second case warping at node can be determined by two unknowns. 
Dependence of natural frequencies of ladder frames due to changes in length and 
moment area of inertia of beams through numerical examples is given as well.  

 
1.2 Basic parameters for slope-deflection method of continuous solid 

beams 
 
As a basis, we use triply coupled differential equations of motion of uniform beam 
element given by [4], where effects of shear distortion, rotatory inertia, warping 
stiffness and warping inertia are taken into account. Beam element with arbitrary cross-
section is depicted in Figure 1.1. 
 

x
ξ

η

θ

yz

C

S

xa

ya

 
Figure 1.1. Coordinate system of beam element 

 
A uniform straight beam element has length L. The shear center and centroid are 
denoted by S and C respectively, which are separated by distances ax and ay. In the left 
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handed Cartesian coordinate system used in Figure 1, the z axis is assumed to coincide 
with elastic axis (i.e. loci of the shear center of the cross-section). The bending 
translations of the centroid C are denoted by corresponding projections of ξ(z,t) and 
η(z,t) on the x and y axes respectively and the torsional rotation about z axis of shear 
center S is denoted by θ(z,t), where z and t denote distance from the origin and time 
respectively. The triply coupled differential equations of motion of uniform beam 
element are given then as follows [4]:  
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where 
 

x yEI and EI      - bending stiffnesses of beam, 
γ    - specific weight of gravity, 
G   - shear modulus of elasticity, 
EIφ   - warping stiffness, 

' '
x yk and k         - effective area coefficient in shear (shear coefficient or area reduction 

factor)  
A   - area of cross-section of the beam element, 

dGI   - Saint-Venant torsional stiffness, 
,x ya a            - coordinates of shear center of beam,  
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Iφ - geometrical parameter (bimoment of inertia),  

r   - geometrical parameter and defined as 
 

2 2 2x y
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I I
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+
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For free vibration of transversely loaded beam, a sinusoidal variation of 
( ) ( ), , , , ( , )z t z t z tξ η θ  with circular frequency ω is assumed to be of forms 
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where ( ) ( ),U z V z  and ( )zΘ  are the amplitudes of the sinusoidally varying bending 
translations and torsional rotation, respectively. Substitution of Eq. (1.3) into Eq. (1.1) 
gives the three simultaneous differential equations for U, V and Θ 
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Using notations 
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where (i) denote the order of differentiation with respect to (z), we can rewrite 
Eq. (1.4) in the following abbreviated form 
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IA A Aa V a U EI GI r
g g g g

φ
φ

γ γ γ ωγ ω γ ωω

γ γ γγ ω γ ωω ω

γ ωγ ω γ ω γ ω

⎛ ⎞
− + + + + Θ =⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞
⎜ ⎟− + + + − Θ =
⎜ ⎟
⎝ ⎠

− + Θ − Θ + Θ − Θ =

      (1.6) 

 
Beams with one or two axis of symmetry are most widely used in design of ladder 
frames. Vibration of ladder frames, which consist of beams with two axis of symmetry, 
is considerably well known, so henceforth we are focusing on the study of vibration of 
ladder frames, which consists of beams with one axis of symmetry. 
 

1.2.1  Continuous solid beams with one axis of symmetry 
 
Let us suppose arbitrarily that axis of symmetry of cross-section is axis OY. Due to 
symmetry of cross-section, the axis OY is principal axis and shear coordinate xa  
vanishes. System of ODE (ordinary differential equations) is then separated into two 
independent systems, one of which 
 

  ( ) ( )
2 42

4 22
' 2 ' 0x x x

x
x x

I EI IAEI V V V V
g g gk G g k G

γ γ γ ωγ ω ω
⎛ ⎞

− + + + =⎜ ⎟⎜ ⎟
⎝ ⎠

                     (1.7) 

 
describes transverse bending vibrations in the plane of symmetry and other ones 
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( ) ( )
22 2

4 22 4
' 2 ' 0y y y

y y
y y

I EI IA AEI U U U U a
g g ggk G g k G

γ γ γγ ω γ ωω ω
⎛ ⎞
⎜ ⎟− + + + − Θ =
⎜ ⎟
⎝ ⎠

 

(1.8) 

( ) ( ) ( )
22 2

4 2 2 2 0y d
IA Aa U EI GI r

g g g
φ

φ
γ ωγ ω γ ω

− + Θ − Θ + Θ − Θ =  

 
describes coupled bending-torsional vibrations. Eq. (1.7) is well known in-plane free 
vibration differential equation of one parameter Timoshenko beam and is extensively 
studied in the [19], [20], [21]. Solution of Eq. (1.7) is given in standard text books [3] 

and obtained by substitution of the trial solution ( )
z

lV z Ce
λη

=  into the Eq. (1.7). 
Solution of Eq. (1.7) can be written (without proofing) in nondimensionalized form as 
follows 

( ) 1 1 2 2
1 2 3 4cosh sinh cos sinV z C z C z C z C z

l l l l
η η η ηλ λ λ λ

= + + +          (1.9) 

where 
 

1 2 3 4, , ,C C C C  - constants that are to be determined from boundary conditions, 

1 2,η ηλ λ  - frequency parameters and are calculated as 

 

 

2 2 22 2 2
1

' 2 ' '

2 2 22 2 2
2

' ' 2 '

2 2

2 2

x x x x x

x x xx x x

x x x x x

x xx x x

I EI I I EIA
l g EI g EI g EIgk G g k G gk G

I EI I EI IA
l g EI g EI g Egk G gk G g k G

η

η

λ γ γ γ ω γ γω γ ω ω

λ γ γ γ γ γ ωω ω γ ω

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + − − +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + − + + −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ xI

 

(1.10)    
 

where 
ω - circular natural frequency of vibration 

 
Leaving the problem of uncoupled vibration, which is considerably well 
known, we turn our attention to the coupled bending-torsional behavior of beam 
element. 



20 

Eq. (1.8) can be combined into one equation by eliminating either U or Θ. Neglecting 
warping effect from Eq. (1.9), which for thick-walled beams is considerably small 
comparing to other parameters [2], we can rewrite Eq. (1.8) and Eq. (1.9) as follows 
 

22 2
(4) 2 (2) 4

' 2 ' 0y y y
y y

y y

I EI IA AEI U U U U a
g g ggk G g k G

γ γ γγ ω γ ωω ω
⎛ ⎞
⎜ ⎟− + + + − Θ =
⎜ ⎟
⎝ ⎠

  (1.11) 

2 2
(2) 2 0y d

A Aa U GI r
g g

γ ω γ ω
− − Θ − Θ =                                   (1.12) 

 
From Eq.(1.12)  
 

( )
2 2

2 2
y d

A Aa U GI r
g g

γ ω γ ω
= − Θ − Θ                                      (1.13) 

 
Using notations  
 

2 2
2, ,y d

A Aa m GI n r p
g g

γ ω γ ω
= = =                                (1.14) 

 
we receive 

 ( )2n pU
m m

= − Θ − Θ                                                      (1.15) 

 
Differentiating Eq. (1.15) with respect to (z), we receive 
 

(2) (4) (2)

(4) (6) (4)

n pU
m m
n pU
m m

= − Θ − Θ

= − Θ − Θ
                                              (1.16) 

 
Substituting Eq. (1.16) in Eq. (1.11) we receive sixth order differential equation 
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( ) ( ) ( )

( ) ( ) ( )

2
6 4 2

2 2
4 2 22 4

' 2 ' 0

y

y y y
y

y y

n p A n pEI
m m g m m

I EI In p n p Aa
g m m m m ggk G g k G

γ ω

γ γ γ γ ωω ω

⎛ ⎞ ⎛ ⎞− Θ − Θ − − Θ − Θ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟+ + − Θ − Θ + − Θ − Θ − Θ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠
(1.17) 

Substituting trial solution of ( )
z

lz e
ξλ

Θ =  into the Eq. (1.17) and after manipulation we 
can rewrite the Eq. (1.17) in abbreviated form as follows 
 

(6) (4) (2) 0aW bW cW d+ + − =                           (1.18) 
 
where by use of Eq.(1.14) 
W U= or Θ - differential operator 

1a =                                                                                                                          (1.19) 
2 2 21 1

'y y d

l r Ab
gEI E k G GI
ω γ ⎛ ⎞

= + −⎜ ⎟⎜ ⎟
⎝ ⎠

                                                                               (1.20) 

22 4 2 2

' '
y y y

y y y d

I I EIl r Ac A
g EI gk G g gk GI

γ ω γ γω γ ω⎡ ⎤⎛ ⎞
⎢ ⎥= − − +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

                                            (1.21) 

24 2 2 6
2 21

'
y

y
y y

IA ld r a
g EI gk GA

γ ωω γ ⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − − −
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

                                                         (1.22) 

 
From Eq. (1.18) we get characteristic equation as 
 

6 4 2 0b c dλ λ λ+ + − =                                               (1.23) 
 
Transforming Eq. (1.23) by substitution 

 
32 /bk −= λ                                                          (1.24)  

 
we receive it in condensed form as 
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0233 =−+ qkpk                                                 (1.25) 
where 

( )2

2

3

9

ac b
p

a

−
=  and  

3

3 2 227 6
b bc dq

aa a

⎛ ⎞
= − + +⎜ ⎟⎜ ⎟
⎝ ⎠

                              (1.26)  

 
Roots of third order polynomial can be determined using Cardano’s method. Three 
different types of solution of Eq. (1.24) are possible, depending on the sign of 
parameters p and D=q2+p3. In the considered case we assume that p<0. In that case 
roots of Eq. (1.25) read  

1

2

3

2 cos( )3

2 cos
3

2 cos
3

k R

k R

k R

ϕ

π ϕ

π ϕ

=

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

+⎛ ⎞= ⎜ ⎟
⎝ ⎠

                                                   (1.27) 

where  

1
3cos

R p

q
R

ϕ −

= ±

=
                                                       (1.28) 

 
The sign of R can be chosen so that k1>0. Numerical examples show that in that case 
k2<0 and k3<0 [22].  
Substituting Eq. (1.28) into Eq. (1.27) and then into Eq. (1.24), we receive the roots of 
characteristic equation as follows 
 

2
2 2

1 2 cos ,
3 3 3

b bcξ
φλ = − −                                                     (1.29) 

2
2 2
2 2 cos ,

3 3 3 3
b bcξ

π φλ ⎛ ⎞= − − +⎜ ⎟
⎝ ⎠

                                           (1.30) 
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2
2 2
3 2 cos

3 3 3 3
b bcξ

π φλ ⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

                                             (1.31) 

    
Then the six roots of characteristic equation (1.23) are  
 

1 1 2 2 3 3; ; ; ; ;i i i iξ ξ ξ ξ ξ ξλ λ λ λ λ λ− − −                                           (1.32) 
 

where 1i = − .  
Using hyperbolic and trigonometric identities, it follows that solution of Eq. (1.18) is 
of following form 
 

( ) 1 1 2 2
1 2 3 4

3 3
5 6

sinh cosh sin cos

sin cos

W z C z C z C z C z
l l l l

C z C z
l l

ξ ξ ξ ξ

ξ ξ

λ λ λ λ

λ λ

= + + + +

+ +

    (1.33)  

 
 ( )W z  in Eq. (1.33) represents the solution for both the transverse displacement 
U and the torsional rotation Θ with different constant values. Thus 
 

  
( ) 1 1 2 2

1 2 3 4

3 3
5 6

sinh cosh sin cos

sin cos

U z C z C z C z C z
l l l l

C z C z
l l

ξ ξ ξ ξ

ξ ξ

λ λ λ λ

λ λ

= + + + +

+ +

         (1.34) 

( ) 1 1 2 2
1 2 3 4

3 3
5 6

sinh cosh sin cos

sin cos

z A z A z A z A z
l l l l

A z A z
l l

ξ ξ ξ ξ

ξ ξ

λ λ λ λ

λ λ

Θ = + + + +

+ +

         (1.35) 

 
where C1-C6 and A1-A6 are two different sets of constants. It can be readily 
verified by substituting Eq. (1.34) and (1.35) into Eq. (1.11) and (1.12) 
respectively, that constants C1-C6 and A1-A6 are related in the following way: 
 

1 1 1 3 2 3 5 3 5

2 1 2 4 2 4 6 3 6

A C A C A C

A C A C A C

ρ ρ ρ

ρ ρ ρ

= = =

= = =
                                 (1.36) 
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where iρ  is a characteristic of principal modes of vibration and is expressed in form as  
 

( )
2 2 2

2
2 , 1,2,3i

i y d
ra A g GI i

gl
ξλ γωρ ω γ

⎛ ⎞
⎜ ⎟= + =
⎜ ⎟
⎝ ⎠

                   (1.37) 

 
The expressions for rotation of cross-section ψ(z), bending moment M(z), shear force 
Q(z) and the torque T(z) in terms of transverse displacement are depicted in Figure 1.2 
and are as follows: 
 
 

zhg

gT

hT
gM hM

gQ

x xhQ

 
Figure 1.2. Sign convention for positive internal forces and moments 

 
 
Rotation of cross-section ψ(z) 
 

( ) dUz
dz

ψ =                                                           (1.38) 

 
Bending moment M(z) 

 
( ) ( )2

2
y

M z d U z
EI dz

η

− =                                                         (1.39) 

 
Shear force Q(z) 
 

( ) ( )3

3
y

Q z d U z
EI dz

ξ

− =                                                          (1.40) 

 



25 

Torsion moment T(z) 
 

( ) ( )
d

T z d z
GJ dz

Θ
=                                                           (1.41)     

1.2.1.1 Boundary conditions and nodal end forces 
 
For evaluation of nodal end forces regarding to different boundary conditions, the sign 
convention given in Figure 1.3 is used.  

z

x

g
U

g

h

h
U

gQ−

gM
gΘ gT−

gψ
hψ

hQ

hM−

hT hΘ

 
Figure 1.3. End conditions for displacements and forces 

 
 
The nodal end forces are the holding actions at the end of the beam element when the 
beam is deformed as to have unit displacement with proper boundary conditions 
considered. The most common boundary conditions for planar structure are clamped-
hinged, clamped-free and clamped-clamped end conditions 
 
Clamped-hinged boundary conditions 
 
The clamped-hinged end conditions imply restraint against translation and torsional 
rotation at the hinged end, while bending moment is zero. The boundary conditions in 
this case are 

( )2 0g g g h h hU U U ψ=Θ = = = = Θ =                               (1.42)  
 

where superscript indicates the order of differentiation with respect to z and hinged end 
was taken at the left end of the beam arbitrarily. Substituting the Eq. (1.34), (1.35) and 
(1.38) into the Eq. (1.42), we receive the system of equations, which can be written in 
abbreviated form as               
 

  { } [ ]{ }H Cδ =                                              (1.43) 
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where 
{ }δ  - column vector of end displacements, 
[ ]H - matrix 6x6 of hyperbolic and trigonometric terms in system of Eq. (1.42), 
{ }C - column vector of integration constants Ci 

 
From Eq. (1.43) it is possible to express unknown integration constants Ci as  
 

{ } [ ] { }1C H δ−=                                           (1.44) 
 
Introducing unit displacements at once into the column vector of { }δ , we can 
find sets of integration constants Ci  due to the unit displacement at the ends of 
the beam in each particular case. Substituting the integration constants Ci into 
the Eq. (1.34) and (1.35), we receive the dynamic displacement functions. 
Finally, the nodal end forces and moments can be found by substitution of sets 
of dynamic displacement functions into the Eq. (1.39)-(1.41) and following sign 
convention given in Figure 1.3. 
 
Clamped-free boundary conditions 
 
The end condition for the clamped-free beam at the built-in end implies that 
translations and rotations are zero. At the free end the shear force, bending moment 
and torsion are zero (free end of the beam is chosen at the right side of the beam 
arbitrarily) 
 

0g g g h h hU Q M Tψ= = Θ = = = =                             (1.45) 
 
Analogously, following the procedure for clamped-hinged boundary conditions 
from Eq. (1.43)-(1.44), the sets of dynamic displacements functions and 
corresponding nodal end forces and moments can be evaluated. 
 
Clamped-clamped boundary conditions 
 
A hinged ends implies restraint against translations and rotations. The boundary 
conditions are as follows 
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0g g g h h hU Uψ ψ= = Θ = = = Θ =                              (1.46) 
 
Analogously, as in previous sections, the sets of dynamic displacement functions and 
corresponding nodal end forces and moments can be found. 

1.2.2 Thin-walled open cross-section beams 
 
System of governing differential equation of motion has the same structure for thin-
walled open cross-section beams as it was given for solid beams of Eq. (1.1). 
Neglecting from Eq. (1) a terms consisting of shear coefficient and changing term 
EIφ for EIω  (sectorial stiffness), we receive triply coupled system of differential 

equation of motion for thin-walled open-cross-section beams [4].  Using assumption of 
sinusoidal variation and procedure from Eq. (1.3)-(1.6) and using previously 
mentioned notices we receive a triply coupled system of DE of motion for twin-walled 
beams with separated variables. 

1.2.2.1 Thin-walled open cross-section beams with single axis of symmetry 
 

Let us suppose arbitrarily that axis of symmetry of cross-section is axis OY. Due to 
symmetry of cross-section, the axis OY is the principal axis and the shear coordinate 

xa  vanishes. The system of ODF (ordinary differential equations) is then separated 
into two independent systems, one of which 
 

( ) ( ) ( )4 222

4 2 0x
x

d z d zIAEI z
g gdz dz

η ηγ ωγ ω η− + =                      (1.47) 

 
describes bending vibration in the plane of symmetry and another one  
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 24 22

4 2

24 2 22 2 2
2

4 2 2

0

0

y y
y

y
d

I a Ad z d zAEI z z
g g gdz dz

a Ad z d z d zI r AEI GI z z
g g gdz dz dz
ϖ

ϖ

γ ω γ ωξ ξγ ω ξ θ

γ ωθ θ θγ ω γ ωω ξ θ

− + − =

− + − − =

     

(1.48) 
 
describes joint bending-torsional vibration at condition of restrained warping of cross-
section. New term entered in Eq. (1.48) is 
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EIϖ  - sectorial stiffness, 
 
Neglecting sectorial rotatory inertia of cross-section from Eq. (1.47), we receive the 
Euler-Bernoulli beam element in standard form. Then, solution of Eq. (1.47) is given 
in standard text books [3] and obtained by substitution of the trial solution 

( )
z

lV z Ce
λ

=  into the Eq. (1.47). Solution of Eq. (1.47) can be written (without 
proofing) in nondimensionalized form as follows 
 

( ) 1 2 3 4 sinz z z zz C ch C sh C cos C
l l l lη η η ηη λ λ λ λ= + + +               (1.49) 

 
where frequency parameter is expressed as 
 

2
4

x

Al
gEIη
γ ωλ =                                                              (1.50) 

 
Constants 1 2 3 4, , ,C C C C  can be found from boundary conditions in the usual way or 
from standard textbooks [23], [24]. 

Neglecting a torsional stiffness dGI and rotatory inertia of cross-section from Eq. 
(1.48) and following the procedure in the same manner as it was made through Eq. 
(1.13)-(1.22), we receive a characteristic equation in the following form 
 

( ) 22 22 2 4 2 4
*8 *4 0

y

y

r ar A l A l
gEI EI EI gϖ ϖ

γ ω γ ωλ λ
− ⎛ ⎞

− + =⎜ ⎟⎜ ⎟
⎝ ⎠

                             (1.51) 

 
where frequency parameters (roots) are expressed as 
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( )2 22 4 2
4

1

22 4
4

2 2

12 ,

2 1

y

y

y

y

a rA l r
g EI EI

aA l
gEI r

ϖ

γ ωλ

γ ωλ

∗

∗

⎡ ⎤−
⎢ ⎥= −
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥= −
⎢ ⎥⎣ ⎦

                                    (1.52) 

The roots of the Eq. (1.52) are real and are  
 

1 1 1 1 2 2 2 2; ; ; ; ; ; ;i i i iξ ξ ξ ξ ξ ξ ξ ξλ λ λ λ λ λ λ λ− − − −                             (1.53) 
 

where 1i = − .  
Using hyperbolic and trigonometric identities, it follows that solution of Eq. (1.48) is 
of the following form 
 

( ) 1 1 2 1 3 1 4 1

5 2 6 2 7 2 8 2

cos sin cosh sinh

cos sin cosh sinh

z z z zU z C C C C
l l l l

z z z zC C C C
l l l l

λ λ λ λ

λ λ λ λ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

= + + + +

+ + + +
               (1.54) 

( ) 1 1 2 1 3 1 4 1

5 2 6 2 7 2 8 2

cos sin cosh sinh

cos sin cosh sinh

z z z zz A A A A
l l l l

z z z zA A A A
l l l l

λ λ λ λ

λ λ λ λ

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

Θ = + + + +

+ + +
                (1.55) 

 
where C1-C8 and A1-A8 are two different sets of constants. It can be readily 
verified by substituting Eq. (1.54) and (1.55) into Eq. (1.48), those constants 
C1-C8 and A1-A8 are related in the following way: 
 

1 1 1 3 1 3 5 2 5 7 2 7

2 1 2 4 1 4 6 2 6 8 2 8

A C A C A C A C

A C A C A C A C

ρ ρ ρ ρ

ρ ρ ρ ρ

= = = =

= = = =
                         (1.56) 

 
where characteristics of principal modes are expressed as 
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2 2 2

1

2 2

/ / 2
,y y

y

y

I r I a r
a

a

r

ϖρ

ρ

∗

∗

+ −
=

= −

                                       (1.57) 

 
Expressions for rotation of cross-section ψ(z), bending moment M(z), shear force Q(z) 
and the bimoment B(z) in terms of transverse displacement using sign convention 
given in Figure 1.4, where subscript denotes the end of beam element.  
 

g h

gM hM

gQ

hQ

gT hT
gB hB

 
Figure 1.4. Sign convention for positive internal forces 

 and moments of thin-walled beam 
 
 
Rotation of cross-section ψ(z) 
 

( ) ( )dU z
z

dz
ψ =                                                           (1.58) 

 
Bending moment M(z) 

 
( ) ( )2

2
y

M z d U z
EI dz

− =                                                         (1.59) 

 
Shear force Q(z) 
 

( ) ( )3

3
y

Q z d U z
EI dz

− =                                                          (1.60) 
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Flexural-torsional moment Mω(z) 
 

( ) ( )3

3 3

d z d zEI I
M

gl dzl dz
ϖ ϖ

ϖ
γΘ Θ

− = −                                          (1.61) 

 
Bimoment B(z) 
 

( )2

2 2
d zEIB

l dz
ϖ

ϖ
Θ

− =                                           (1.62) 

 
Saint-Venant´ torsion moment T(z) 
 

( ) ( )
d

T z d z
GJ dz

Θ
=                                                      (1.63) 

 
Total torsional moment 
 

TM M Tϖ= +                                                      (1.64) 
 
 

1.2.2.2 Boundary conditions and nodal end forces 
 
For evaluation of nodal end forces regarding to different boundary conditions, the sign 
convention given in Figure 1.5 is used.  
 

z
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gMg
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hT hΘ

gB

hB−

 
Figure 1.5. Nodal end forces of thin-walled beams 

 
 



32 

Clamped-hinged boundary conditions 
 
The clamped-hinged end conditions imply restraint against translation and torsional 
rotation at the hinged end, but not against warping. The boundary conditions in this 
case are (hinged end taken arbitrarily at the left side of the beam element) 
 

( ) ( ) ( )12 2 0g g g g h h h hU U U ψ= Θ = = Θ = = = Θ = Θ =                         (1.65) 
 
where superscript indicates the order of differentiation with respect to z. The procedure 
for evaluation of integration constants Ci, dynamic displacement functions and nodal 
end moments and forces is similar to the procedure given in section 1.2.1.1 
 
Clamped-free boundary conditions 
 
The end condition for the clamped-free beam at the built-in end implies that 
translations and slopes are zero. At the free end the shear force, bending moment, 
bimoment and torsion are zero (free end of the beam is chosen at the right side of the 
beam arbitrarily) 
 

( )1 0g g g g h h h hU Q M B Tψ= = Θ = Θ = = = = =                       (1.66) 
 
Clamped-clamped boundary conditions 
 
A hinged ends imply restraint against translations and rotations. The boundary 
conditions are as follows 

( ) ( )11 0g g g g h h h hU Uψ ψ= = Θ = Θ = = = Θ = Θ =                    (1.67) 
 
The procedure for evaluation of integration constants Ci, the dynamic displacement 
functions and nodal end moments and forces is similar to procedure given in section 
1.2.1.1, keeping in mind the boundary conditions given in Eq. (1.65)-(1.67) and using 
sign convention depicted in Figure 1.4. 

1.2.3 Calculation of ladder frames by displacement method 
 
For calculation of free vibration of ladder frames made up from uniform shapes of 
beams the scheme depicted in Figure 1.6 is used. Let us suppose that the ladder frame 
under consideration consists of m longitudinal members and n cross-members, which 
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are placed at right angle to each other. The coordinate axis is placed at the first chosen 
node. Coordinate axis z is directed along the longitudinal member and x coordinate 
axis is directed along the cross-member of ladder frame. In this case, every node can be 
marked symbolically as (z,x), where x indicates the number of longitudinal member 
and z indicates the number of cross-member at the node.   
 

,z xl 1,z xl +1,z xl −

1zl − zl
xl

1
xl +

, 2z xl +1, 2z xl − +

1, 1z xl − +

2, 2z xl + +

, 1z xl +

1, 1z xl + +

,y z
x xI I

,x y
z zI I

 
Figure 1.6. Part of ladder frames in general 

 
Displacements due to deformations of node (z,x) according Figure 1.6 can be divided 
into the two groups: 
 

1. In plane displacements – , ,,z x z xU W and ,
y
z xγ , in direction of x and z coordinate 

axis respectively and angular displacement about y coordinate axis (superscript 
indicates the rotation axis) 

2. Out of plane displacements - , , , ,, , ,x z x
z x z x z x z xV γ γ Θ and ,

z
z xΘ , in transversal 

direction of y coordinate axis, angular and torsional angular displacements 
about x and z axis respectively (the last two one for thin-walled beams). 

 
In this thesis, the out of plane displacements will be considered only. According to the 
theory developed for uniform massive-profiled beams in section 1.2.1 we can compose 
for each node (x,z) of ladder frames three equations of equilibrium of dynamic end 
moments and forces 
 

, , ,, , ,
0; 0; 0x z

i j i j i ji j i j i j
M M QΣ = Σ = Σ =                                (1.68) 
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where superscript indicates the axis of rotation and subscript indicates the node. In case 
of thin-walled beams there exist two not well-defined antipodal cases for equilibrium 
equations: 
 

1. Cross-sections of beams adjoining to the nodes are being warped equally 
2. Cross-sections of beams adjoining to the nodes are being warped 

independently to each other and have different mode. This kind of connection 
can be described as hinged connection between the crossing members, where 
warping deflection is not restrained.  

 
In the first case the warping of node can be determined by one unknown. For each 
node ( ),z x  of a ladder frame it is possible to obtain four equations of equilibrium 
 

, , , ,, , , ,
0; 0; 0; 0x z

i j i j i j i ji j i j i j i j
M M Q BΣ = Σ = Σ = Σ =                  (1.69) 

 
In the second case, the warping of the nodes can be determined by two unknowns. 
Then five equations of equilibrium can be obtained for each node ( ),z x  of a ladder 
frame  
 

, , , , ,, , , , ,
0; 0; 0; 0;x z x z

i j i j i j i j i ji j i j i j i j i j
M M Q B BΣ = Σ = Σ = Σ = Σ           (1.70) 

 
The systems of Eq. (1.68), (1.69) and (1.70) are functions of out of plane 
displacements, which depend on boundary conditions of node equilibrium to be 
evaluated and boundary conditions of nodes it linked to. After evaluation of 
equilibrium conditions for every node in planar frame we receive a global system of 
equation, which can be written in abbreviate form as follows 
 

 { } [ ]{ }M F δ=                                                (1.71) 
 

where 
 
{ }M - zero column vector, 

[ ]F - functions of dynamic nodal end moments and forces, 

{ }δ - column vector of unknown out of plane displacements 
 



35 

The necessary and sufficient condition for non-zero elements in the column vector of 
{ }δ in Eq. (1.71) is that det(F)=0, and the vanishing of det(F) determines the natural 
frequencies of the system 
 

det( ) 0F =                                                     (1.72) 
 
The Eq. (1.72) is a transcendental equation of trigonometric and hyperbolic functions 
which contains the natural frequencies of ω of ladder frames. The roots of Eq. (1.72) 
may be obtained numerically by applying the standard iterative methods.  

For checking the correctness of the expansion of det(F) and to avoid any numerical 
problem in evaluation of det(F), the expression det(F)=0 at ω=0 can be used. 

Corresponding to particular value of natural frequency ωn the mode shapes can be 
found. For calculation of mode shapes it is necessary to substitute arbitrarily chosen 
displacement equal to unity in column vector of Eq. (1.71) and express all other 
displacement through it. 

1.2.4 Numerical results 
 
Let us consider for simplicity calculation examples of ladder frame consisting of two 
longitudinal n=2 and two cross girders m=2 made up of channel section beams. The 
system of ladder frames is given in Figure 1.7.  

zl1zl − 1zl +

1
xl +

1
xl −

xl

 
Figure 1.7. Dimensions and end conditions of ladder frame of  2x2 
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The properties of channel sections used for calculation are given in Table 1.1. For 
simplicity, ladder frames with hinged ends are considered, but can be extended to other 
end conditions. 

The calculations are executed according to two theories: the theory of thin-walled 
beams and the theory of massive-profiled beams 
 
  Table 1.1. Basic properties of ladder frame of 2x2 

 Channel section beams 
 Beam AB Beam CD Beam EF Beam GH 
Modulus of elasticity E, 
GPa 2,0·1011  

Shear modulus of 
elasticity G, GPa 7,7·1010  

Moment of inertia, Iz, Ix, 
m4 206,9·10-8  206,9·10-8  206,9·10-8  206,9·10-8  

Moment of inertia, Iy, m4 38,2·10-8  38,2·10-8  38,2·10-8  38,2·10-8  
Torsion moment of inertia 
Id, m4 2,727·10-8  2,727·10-8  2,727·10-8  2,727·10-8  

Sectorial moment of 
inertia Iω, m6 354,8·10-12  354,8·10-12  354,8·10-12  354,8·10-12  

Area of cross-section A, 
m2 12,5·10-4  12,5·10-4  12,5·10-4  12,5·10-4  

Mass per unit length m, 
kg/m 9,82  9,82  9,82  9,82  

Length of beams l, m lz-1=lz=lz+1=1  lx-1=lx=lx+1=1  
 
In case of thin-walled beams, two extreme cases are considered: (I) cross-sections of 
beams adjoining to the nodes are being warped equally; (II) cross-sections of beams 
adjoining to the nodes are being warped independently to each other and have different 
mode. For clarity the position of beams to each other in both cases is given in Figure 
1.8. 
 

 
Figure 1.8. Node conditions for warping  
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The results of calculations of natural frequencies are shown in Figure 1.10. Calculated 
natural frequencies with different mode shapes are given in Table 1.2. For notation of 
mode shapes corresponding to particular natural frequencies ωij, the two-index 
numbering is used. Here first index i means that longitudinal beams oscillate in the 
normal mode of vibration having (i-1) nodes, the second index j means that cross 
girder beams vibrate in the normal mode with (j-1) nodes.  

 
  Table 1.2.  Natural frequencies of ladder frame (2x2) 

Modes 
of 

vibration 

Natural 
frequencies by 

theory of 
massive beams 

in rad/s 

Natural frequencies by 
theory of thin-walled beams 

in rad/s 

maximum 
moment of 

inertia 

maximum moment of inertia 

i j warping with 
one unknown 

warping 
with two 

unknowns 
1 1 714,08 728,14 723,02 
1 2 2792,05 2887,09 2854,36 
2 1 1442,41 1481,31 1469,27 
2 2 2963,43 3069,78 3033,07 
3 1 3706,07 3851,93 3825,43 
3 2 3663,23 3798,45 3766,31 
4 1 8640,37 9113,56 9051,12 
4 2 5605,53 5883,24 5830,39 

 
The first four fundamental modes of vibrations are depicted in Figure 1.9.  

1 1ω − 1 2ω −

2 1ω − 2 2ω −

 
Figure 1.9. Fundamental mode shapes corresponding 

 to the first four natural frequencies 
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From the Table 1.2 it is seen that difference between the values of natural frequencies 
grows at higher frequency range.  In case of thin-walled beams it is interesting to note 
that values of natural frequencies depend on the position of structural members to each 
other. According to Figure 1.10, the values of natural frequencies are higher when 
members of ladder frame are in plane as it is shown in the left part of the Figure 1.8 
and lower when members are assembled as it is shown in the right part of Figure 1.8. 
The difference between natural frequencies is higher at higher frequencies. Thus, from 
the point of view of free vibration analysis of ladder frames it is important to consider 
the position of thin-walled structural members of ladder frames to each other at the 
nodes and take it into account in calculation of natural frequencies.  
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Figure 1.10. Natural frequencies of ladder frame made up of  

channel section beams (data Table 1.1) 
 
To explore free vibrational behavior of ladder frame of 2x2 by the theory of massive 
profiled beams and thin-walled beams, the natural frequencies are calculated with 
different lengths and moment area of inertias of the longitudinal and lateral beams 
(other properties as given in Table 1.2 are changed accordingly).  For comparison first 
four values of natural frequencies are given. Calculation results by TMPB (theory of 
massive profiled beams) are depicted through Figure 1.11 to Figure 1.18. Notations 
used in Figure 1.11…1.18 according to Figure 1.8 are as follows: L11=lz; L22=lx; 
L01=lz-1+lz+lz+1;   L02=lx-1+lx+lx+1; I1 – moment area of inertia of longitudinal beam; 
I2- moment are of inertia of lateral beam. As reference, the lengths of the longitudinal 
and lateral beam are taken L01 = 3 m and L02 = 2,55 m accordingly. Calculations of 
natural frequencies of ladder frame are performed at different values of moment area of 
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inertia and lengths of the middle parts of longitudinal and lateral beams. Results of 
calculation are depicted from Figure 1.11 to Figure 1.18. Two sets of lengths of middle 
part of lateral beams are used in calculations- 1 m and 1,3 m. The even number in 
figure indication represents the lengths of the middle part of lateral beams with length 
1 m and odd number represents the length of the middle part of lateral beams with 
length 1,3 m. Varying lengths of the middle part of longitudinal beams are the same for 
all figures and are depicted on them.  

As it is seen from Figure 1.11 to Figure 1.18 the values of natural frequencies are 
greatly affected by changes in length of the middle part of the lateral beams.  Anyway, 
with decrease of the middle part of longitudinal beams, the difference between natural 
frequencies increases accordingly. Based on the comparison of results given from 
Figure 1.11 to Figure 1.18, it can be concluded that changes of natural frequencies are 
more affected by decreasing of lengths of the middle parts of lateral and longitudinal 
beams than their increasing moment area of inertia.  

The spectrum of natural frequencies has highly packed zones, where magnitudes of 
frequencies are close on their values. The changes in lengths of middle part of 
longitudinal and lateral beams and moment area of inertia of beams affect greatly the 
packaged zones of the spectrum of natural frequencies. With decreasing the lengths of 
middle part of beams and increasing the moment area of inertia of beams, the spectrum 
of natural frequencies becomes more packaged to the zones compared to the cases, 
when the lengths of middle parts of beams increase and their moment area of inertia 
decrease accordingly. 

 

 
Figure 1.11. NF of ladder frame due to changes in lengths of middle  
part of longitudinal beams; I1=1063 cm4, I2=171 cm4, L22=1,0  m  
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Figure 1.12. NF of ladder frame due to changes in length of the middle  

part of longitudinal beams,  I1=1063 cm4,  I2=171 cm4, L22=1,3 m  
 

 
Figure 1.13. NF of ladder frame due to changes in lengths of middle part 

of longitudinal beams; I1=1505 cm4, I2=318 cm4, L22 = 1,0 m 
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Figure 1.14. NF of ladder frame due to changes in lengths of middle part 

of longitudinal beams,  I1=1505 cm4,  I2=318 cm4, L22=1,3 m 
 

 
Figure 1.15. NF of ladder frame due to changes in lengths of middle part 

       of longitudinal beams; I1=2792 cm4, I2=435 cm4, L22 = 1,0 m 
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Figure 1.16.  NF of ladder frame due to changes in lengths of middle part 

       of longitudinal beams,  I1=2792 cm4, I2=435 cm4,  L22=1,3 m 
 

 
Figure 1.17. NF of ladder frame due to changes of lengths of middle part 

       of longitudinal beams; I1=5790 cm4, I2=689 cm4, L22 = 1,0 m 
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Figure 1.18. NF of ladder frame due to changes of lengths of middle part 

       of longitudinal beams, I1=5790 cm4,  I2=689 cm4,  L22=1,3 m 

 
Figure 1.19. Comparison of NF calculated by TMPB and TWB with identical 

 properties of ladder frame, I1=1505 cm4, I2=318 cm4, L22=1,0 m 
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Figure 1.20. Comparison of NF calculated by TMPB and TWB with identical  

          properties of ladder frame, I1=2792 cm4, I2=495 cm4, L22=1,0 m 
 

 
Figure 1.21. Comparison of NF calculated by TMPB and TWB with identical   

          properties of ladder frame, I1=5790 cm4, I2=689 cm4, L22=1,0 m 
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Figure 1.22. Comparison of NF calculated by TMPB and TWB with different 

 radius of gyration of the beams, L22 = 1,0 m, L22 = 0,4 m 

 
Figure 1.23. Comparison of NF calculated by TMPB and TWB with different lengths 

 of the longitudinal beams LO1 and  middle parts L11,  
 I1 = 1505 cm4 = const,   I2 = 318 cm4 = const, LO2 = 2,55 m = const, L11 = 1,0 m = const 
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In the Figure 1.19 to 1.23 are depicted the values of natural frequencies calculated by 
TMPB and TWB (theory of thin-walled beams) at identical cross-sectional properties 
and lengths of the middle parts of beams. In case of calculations by TWB, the warping 
effect with one unknown was considered. As it is seen from depicted graphs in Figure 
1.19 to Figure 1.23 the values of natural frequencies are higher at identical parameters 
of the beams and the difference between natural frequencies increases with number of 
frequency.  

For comparison of natural frequencies (NF) in case of beams with two axis of 
symmetry, the calculations are performed by theories of massive-profiled beams and 
thin-walled beams both. For calculation of NF of ladder frames by theory of massive 
profiled beams, the dynamic end forces and moments provided by [32] were used.  In 
case of thin-walled beams the dynamic end forces and moments were derived from Eq. 
(1.47) and Eq. 1.48) taking into account that in case of beams with two axis of 
symmetry there are three independent differential equation of motion. Solutions of 
independent differential equations of motions for thin-walled beams with two axis of 
symmetry can be found from [4] and the derivation of dynamical end forces and 
moments doesn’t differ from procedure given above, so it is not repeated here. 
Especially, it was interest to check the natural frequencies of ladder frames made up 
from thin-walled beams, when longitudinal and lateral beams are in plane and out of 
plane as it has been shown in Figure 1.8. 
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Figure 1.24. NF of ladder frame made up from rectangular cross-section 
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Figure 1.25. NF of ladder frame made up from I-beams 
 
Calculations of natural frequencies by TMPB and TWB were executed with identical 
lengths of longitudinal and lateral beams of ladder frame given in Table 1.1. As an 
example, the rectangular cross-section beams and I-beams have been chosen. The 
cross-sectional properties of chosen beams are given in Table 1.3. 
 

Table 1.3. Cross-sectional properties of beams with two axis of symmetry 
 Rectangular cross-

section beam I-beam 

Moment of inertia, Iz, Ix, m4 1,125·10-8 317,8·10-8  
Moment of inertia, Iy, m4 0,03125·10-8  15,9·10-8  
Torsion moment of inertia Id, 
m4 0,1125·10-8  1,74·10-8  

Sectorial moment of inertia Iω, 
m4 0,0209·10-12  890,1·10-12  

Area of cross-section A, m2 1,5·10-4 13,2·10-4  
Mass per unit length m, kg/m 1,18  10,4  

 
The calculated NF of ladder frame made up from rectangular cross-section and I-
beams are depicted in Figure 1.24 and Figure 1.25. As it was assumed that, in case of 
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ladder frame made up from TW beams with two axis of symmetry, there is difference 
between the values of NF calculated for beams assembled in plane and on each other. 
The difference grows with growth of frequencies.  
 
1.3 Conclusions to the chapter 
 
The present chapter of this thesis presents derivation of dynamic displacement 
functions for beams with one axis of symmetry according to the massive-profiled and 
thin-walled beam theory for the slope-deflection method that was used for computation 
of natural frequencies and corresponding mode shapes of ladder frames in numerical 
examples.  While the derivation of dynamic displacement function is based on the 
solution of governing differential equation of motion in closed form, it belongs to the 
so-called “exact” methods and can be used for validation of approximate methods. 

In case of massive-profiled beams the effect of shear force and rotatory inertia was 
included, but the effect of warping was excluded due to its neglible effect [2]. In case 
of thin-walled beams, the effect of rotatory inertia and torsional stiffness was excluded 
to show the difference between values of natural frequencies when I) longitudinal and 
lateral beams of ladder frames are joined to each other in plane and II) beams are 
assembled to each other. Numerical examples are provided and sensitivity of natural 
frequencies of ladder frames is discussed.  

Numerical results calculated by both theories have shown that natural frequencies 
of ladder frames are more sensitive to changes of middle parts of the beams than to 
changes in the moment area of inertia. Differences between natural frequencies grow 
with the increase in the number of natural frequencies.  

The spectrum of natural frequencies of ladder frames has highly packaged zones, 
where magnitudes of natural frequencies are close in their values. With decrease of 
lengths of longitudinal and lateral beams and with increase of moment area of inertia 
of beams the spectrum of natural frequencies becomes more packaged to the zones, 
where magnitudes of natural frequencies are close in their values. Condensation of 
natural frequencies to the zones is more affected by decrease of the lengths of 
longitudinal and lateral beam members, rather than their increasing moment area of 
inertia.   

The provided numerical results show that natural frequencies of the ladder frames 
consisting of thin-walled beams differ from appropriate frequencies of the system with 
massive-profiled beams at identical bending-torsion characteristics of cross-section and 
lengths. The maximum difference of the values of frequencies takes place, when 
calculations by the theory of thin-walled beams have been executed taking into account 
of one constraint imposed on the warping of a node. Calculations were performed 
when two constraints are applied on the warping of a node and results are compared 
with that of one constraint are applied on the warping. It was defined that with the 
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growth of the frequency number the difference between the values of frequencies is 
increased and can achieve 12…16 %. 

Investigation of the free vibrations of the systems consisting of thin-walled beams 
with one and two axis of symmetry has shown that for nodal conjunctions where 
longitudinal members and cross-members of ladder frames are in the same plane of the 
system, the one constraint on the warping by calculation of the displacement method 
must be imposed. However in the case of nodal conjunctions, when beams are in 
different planes of the system, two constraints on the warping must be applied.  
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2 FORCED VIBRATION OF LADDER FRAMES UNDER 
THE ACTION OF REPEATED LOADING 

2.1 Background 
 
Response of the structures to the action of repeated interrupted loading is considerably 
less covered in scientific literature compared to analysis of response of structures due 
to instant impulses or due to periodic harmonic excitations. Repeated interrupted 
loading differ from instant impulses due to its relatively long lasting action of structure 
and it is mathematically discontinuous function. Due to the long lasting action of 
loading, the maximum response of ladder frames or resonance condition may occur 
during or after the excitation has ceased. Thus the forced response of ladder frames to 
the repeated interrupted loading is of practical interest. 

In this thesis the response of ladder frames under the action of repeated (periodic) 
interrupted loading in the presence of structural damping is considered. This kind of 
loading can be used for analysis of skeletal structures (ladder frames, grillages etc.) as 
machine foundation, vehicles and trailers frames, ship hulls etc. For formulation of the 
problem, a discrete scheme of ladder frames is used. Use of discrete schemes in 
analysis of response of structures has been widely used in seismological applications 
and it has been found that they give adequate accuracy for practical use. It is well 
known, that structural damping is an inherent property of structures and consists of 
energy losses due to friction in structural joints and hysteretic damping or material 
damping of structural members. Consideration of structural damping in response 
analysis of structures is not so straightforward due to complexity of mathematical 
modeling of energy losses in joints and due to variety of structural joints available 
[51].  It is therefore often general practice to test complicated and expensive specimens 
to measure structural damping properties and incorporate them into the model of 
differential equations, but measured damping properties will be usable only for 
particular type of structures and expansion of test data to other structures is limited 
[23]. 

Over the last decades many of hysteretic damping models have been developed 
[25], [26]. The most attractive due to its simplicity is the linear hysteretic damping 
model or the so-called complex stiffness model. It is easy to incorporate it to the 
equation of motion and to get solution in closed form.  Anyway, as it was pointed out 
by many authors [25], [27], [28] and [29] that use of the linear hysteretic damping 
model or the complex stiffness model in transient response analysis violates the 
requirement of causality: the system responses before exciting. To overcome this 
difficulty and investigate a transient response of structures it is accepted that the model 
of equivalent viscous damping can be used if the system with one-degree-of-freedom is 
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dealt with [25]. As to multi-degree-of-freedom systems, this model can be exploited 
for separate undamped modes of vibration, i.e., it is assumed that damping forces do 
not change the modes of vibration [30], [31]. Another widely used approach is to 
applying the Fourier transform or series to frequency domain response to obtain a time-
domain behavior of a system, which is an application of the superposition principle.  

In this thesis, for derivation of forced response of ladder frames under the action of 
periodic interrupted loading, the Sorokin’s complex internal friction theory is used 
[35]. The Sorokin’s internal friction theory is based on the assumption that hysteresis 
loop has a form of ellipsis and internal friction coefficient is independent of frequency 
and is constant over the period of loading. Response of a system under the action of 
periodic interrupted loading is derived in time-domain using “step-by-step” method for 
SDOF (single-degree-of-freedom).  The response during each step then is calculated 
from the initial conditions (displacement and velocity) existing at the beginning of the 
step and from the history of loading during the step. Thus the response for each step is 
an independent analysis problem, and there is no need to combine response 
contributions within the step. Response of system with SDOF to periodic repeated 
loading is extended to discrete MDOF (multiple-degree-of-freedom) system using the 
free vibration normal mode approach.  The normal mode approach allows to represent 
free-vibration mode shapes as independent displacement patterns, the amplitudes of 
which serve as generalized coordinates to express any set of displacements. The mode 
shapes thus serve the same purpose as the trigonometric functions in a Fourier series 
and they possess orthogonality properties.  

The use of mode shapes as generalized coordinates serves to transform the 
equations of motion from a set of simultaneous differential equations, which are 
coupled by the off-diagonal terms in the mass and stiffness matrices, to a set of 
independent geometric normal-coordinate equations. Therefore, the total displacements 
(in original geometric coordinates) of the system can be developed by superposing 
suitable amplitudes of the normal modes.  

For validation of approximate method resolving periodic interrupted loading onto 
the mode shapes of vibration the numerical calculation and results are provided.  

2.2 Differential equation of motion of discrete scheme of ladder frames 
 
Discrete scheme of ladder frame is represented in Figure 2.1 and for simplicity of 
system it consists of four masses concentrated at the nodes of lateral and longitudinal 
crossing beams with r = mn ⋅  degrees of freedom, where n – number of lateral beams, 
m – number of longitudinal beams. From Figure 2.1, n = m = 2. 

It is assumed that loads are applied to these concentrated masses. Such formulation 
of the problem does not change the general solution, because any load can be reduced 
to the points of concentration of the masses [32], [33]. Latest holds even in conditions, 
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when real disturbing forces are absent and support excitations occur. Structural 
damping and internal friction due to imperfect elasticity of vibrating bodies are the 
main factors of damping in the ladder frames. In general, structural damping depends 
on the definite type of construction and must be determined for every case separately. 

In this paper, it is assumed that structural damping and internal friction due the 
imperfect elasticity are linear. Therefore, for simplification of calculations it is 
accepted that the viscous damping factor γ is independent of frequency of cyclical 
strains, and includes the losses of structural damping [31]. 
 

 
Figure 2.1. Scheme of loading of ladder frame 

 
In Figure 2.2 the schedules of periodical repeated loadings which are acting on the 
ladder frame are shown. 

nτ 2nτ

2nτ

τ τ τ τ τ τ τ τ

 
Figure 2.2. Function of periodic loading 

 
Differential equations of forced vibrations taking into account resisting forces 
according to Sorokin’s complex internal friction theory [32] are given as 
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*
ky  – complex displacement of kth mass, 

kjC – stiffness coefficient of system,   
γ     – internal friction coefficient, 

kF   - forcing function.    
 
Solution of Eq. (2.1) for SDOF system consists of two parts  
 

( ) ( ) ( )c sy t y t y t= +                                                (2.3) 
 

in which ( )sy t  represents a steady-state response and ( )cy t  is a transient response of 
free vibration. Solution of transient response of free vibration can be found in the 
textbook [50] and taking into account that initial displacements are zero, it is 
represented as follows 
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γ ω
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ω
−

+
= = +                   (2.4) 

 
where  

*Re( )y  - real part of complex displacement, 
ω  - undamped natural frequency. 
 
Particular solution of Eq. (2.1) is found by using time-history of repeated loading 
represented in Figure 2.1 “step-by-step” method. In time step 0 t t≤ ∆ ≤ , the forcing 
function is constant over the step and general solution of Eq. (2.1) can be written as  
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In time step t t τ∆ ≤ ≤  the SDOF system performs free vibration with initial conditions 
given at the end of the last step. So for this time step solution of Eq. (2.1) is  
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(2.6) 
Following the procedure given in Eq. (2.4)-(2.6) we can write solution of Eq. (2.1) for 
any time step. The same procedure is applied to the solution of Eq. (2.1) when loading 
function with opposite sign is considered. Finally, due to the periodicity of the given 
excitation loadings, we obtain the expression for determining the displacements after 
(n+1)th load application 
 

* *
2
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= −                                          (2.7) 

 
where A* and B* are trigonometric functions and can be written as follows 
 

*

0
exp ( ) ( 1) cos ( ) sin ( )

2 2

n
A t t t t t tν

ν

γ γω ντ ω ντ ω ντ
=

⎡ ⎤ ⎧ ⎫= − − − ∆ − ⋅ − − ∆ + − − ∆⎨ ⎬⎢ ⎥⎣ ⎦ ⎩ ⎭
∑  

(2.8) 

( )* 1

0
exp ( ) ( 1) cos sin ( )

2 2

n
B t t tν

ν

γ γω ντ ω ντ ω ντ+

=

⎡ ⎤ ⎡ ⎤= − − − ⋅ − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑               (2.9) 

 
Multipliers ( ) ( ) 11 and 1ν ν +− −  in *A  and *B of Eq. (2.8) and Eq. (2.9) in case of 
repeated loading of the same sign are always equal to one.  

Previously given procedure for calculation of SDOF system response to repeated 
loading of the same sign and opposite sign can be extended to MDOF systems. The 
free vibration normal mode shapes constitute independent displacement patterns, the 
amplitudes of which may serve as generalized coordinates to express any set of 
displacements. It is well known that free vibrational mode shapes possess the 
orthogonality properties and they are efficient in the sense that they can describe all 
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displacements with sufficient accuracy employing only few shapes. Moreover, in 
practical problems, it can be assumed with sufficient accuracy that small resisting 
forces do not affect the frequencies and the modes of vibration. In this case, the load 
can be resolved into components of normal modes of vibrations [30]. Thus by use of 
normal modes it is possible to reduce the coupled equations of forced vibrations of a 
MDOF systems to a set of uncoupled equations, each involving just a single degree of 
freedom. Moreover, for sufficiently small damping and the region far from resonance 
we can neglect the phase difference between the separate vibrating masses of system 
and their normal modes. Such an approach gives the possibility to get convenient 
expressions for computer calculation. 
Eq. (2.1) written for MDOF systems in matrix form as 

 

  
..
( ) + ( ) ( ) = ( )t u iv t t+m y Cy F                                            (2.10) 

 
where bold letters represents system with r-degrees of freedom. 
Undamped natural frequencies can be found by substitution of trial solution i te ω=y Φ  
into the Eq. (2.10), which leads to   
 

2ω− + =mΦ CΦ 0                                               (2.11) 
 
Premultiplying Eq. (2.11) by inverse of mass matrix, we receive the eigenvalue and 
eigenvector problem in standard form as 
 

( )-1 ω− =m C I Φ 0                                              (2.12) 

 
Nontrivial solution of Eq. (2.12) is obtained by setting the determinant of Eq. (2.12) to 
zero 
 

-1det ω− =m C I 0                                             (2.13) 

 
For each eigenvalue corresponds the nontrivial eigenvector. Since the system is 
homogeneous and mode shapes are not unique, it is necessary to substitute arbitrarily 
chosen displacement equal to unity in column vector Φ of Eq. (2.12) and express all 
other displacement through it. The resulting matrix Φ of mode shapes is a square 
matrix made up from r mode shapes (rxr).  
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Displacement vector y can be developed by superposing suitable amplitudes of the 
normal modes [34] as  
 

=y ΦY                                                        (2.14) 
where  
Y – column matrix of principal coordinates (modal amplitude) 
 
Total displacement vector y is obtained by summing the modal vectors as expressed by 
 

1 1 2 2
1

...
r

r r i i
i

Y Y Y Yφ φ φ φ
=

= + + + =∑y                          (2.15) 

 
Thus, from Eq. (2.14) it is possible to evaluate the generalized principal coordinates as 
follows 
 

1− =Φ y Y                                                   (2.16) 

Introducing Eq. (2.14) and its second time derivative of 
.. ..
y =ΦY to Eq. (2.10) leads to 

 

( )( ) ( ) ( )t u iv t t+ + =
..

mΦY CΦY F                              (2.17) 
 

Premultiplying Eq. (2.17) by transpose of the ith mode-shape vector T
iφ , it becomes  

                                     ( )( ) ( ) ( )T T T
i i it u iv t tφ φ φ+ + =

..
mΦY CΦY F                     (2.18) 

 
Expanding the left terms in Eq. (2.18) as shown in Eq. (2.15), the all terms except the 
ith vanishes due to assumed orthogonality properties of mode shapes; hence the result is    
 

    ( )
..

( ) ( ) ( )T T T
ii i i i i iY t u iv Y t tφ φ φ φ φ+ + =m C F                          (2.19) 

 
The terms in left side of Eq. (2.19) are generalized mass and generalized complex 
stiffness for mode i respectively. The term in the right side is generalized force for 
mode i accordingly. Eq. (2.19) rewritten in generalized terms is  
 

..
( ) ( ) ( ) ( ), ( 1, 2,..., )i i i i iM Y t u iv C Y t F t i r+ + = =                    (2.20) 
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which is a differential equation describing the motion of SDOF equation for mode i. 
Thus, by use of procedure from Eq. (2.11) to (2.20) the system of differential equation 
of motion of MDOF system is reduced to the generalized system with SDOF. Thus, the 
solution of Eq. (2.20) for one discrete mass in r-degrees of freedom system is same as 
it was given in Eq. (2.7), (2.8) and (2.9) for SDOF. Solution of Eq. (2.20) for single 
discrete mass mk in r-degrees of freedom system after (n+1)th load application can be 
written in terms of matrix elements as follows 
 

( )1 * *

2 21

1

( )

r

ki j jir
j

k i ir
i

i j ji
j

y F y

y t A B

m yω

=

=

=

= −

∑
∑

∑
,  ( 1,2,...., )k r=           (2.21) 

where 
iω  - undamped natural frequencies of r- degree of freedom system,  
*
iA  and *

iB  - are trigonometric functions and can be written as follows 
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*
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0
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γ γω ντ ω ντ ω ντ
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=

⎡ ⎤ ⎡ ⎤= − − − ∆ − ⋅ − − ∆ + − − ∆⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= − − − ⋅ − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑

∑
 

(2.22) 
 

Thus, by use of assumptions given before, the displacement of each discrete mass in r-
degrees of freedom system can be described by Eq. (2.21) and (2.22). 
 
2.3 Calculation example 
 
Consider the calculation example of the of ladder frame of 2x2 given in Figure 2.1, 
where force F1 is applied to mass m1 only. The masses of longitudinal and lateral 
beams per unit length are 1,1927x ym m= =  kg/m, moments of inertia of the beams are      

8 40,03125 10 mx yI I −= = ⋅ , four equal masses 1 2 3 4 1,3775m m m m= = = = kg 
concentrated in the crossing nodes of the beams. The periodical repeated load F1=29,7 
N was applied to mass m1 (Figure 2.1), the duration of loading was ∆t = 0,08 s,   the 
interval between the repeated loading was  τ = 0,5 s. The normal mode method 
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requires the natural frequencies and modes of free vibrations to be known. Taking into 
consideration the discrete scheme with four degrees of freedom, we received the 
following natural frequencies of the ladder frame: ω 1 = 28,6 rad/s, ω2 = 53,3 rad/s,  ω 3 

= 104,0 rad/s, ω 4 = 112,0 rad/s and normal mode characteristics of vibrations are given 
in Table 2.1 
 

Table 2.1. Normal mode characteristics of vibrations 
 y11 = 1  y21 =  1  y31 =  1  y41 =  1 
y12 = 1  y22 =  1  y32 = -1  y42 = -1 
y13 = 1  y23 = -1  y33 =  1  y43  = -1 
y14 = 1  y24 = -1 y34 = -1  y44  =  1 

 
Substituting these values into the Eq. (2.21) and Eq. (2.22) we can obtain the 
magnitudes of forced vibrations in any interval of load action. For calculation of 
magnitudes of forced vibrations the different internal friction factor γ has been used. 
The values of internal friction factors are taken from [35]. In this case, it has been 
assumed that values of internal friction factors include losses of structural damping. 

The calculation results for mass m1 are depicted graphically in Figure 2.3 and 
Figure 2.4. The graphs of forced vibrations with different internal friction factor γ  
showed that due to damping the displacements become smaller. Such big influence of 
damping on the vibration displacements can be explained by the small duration ∆t of 
the load in comparison with the time interval τ  between repeating loading (Figure 
2.2,a). In consequence, the system vibrates freely for the large part of time interval  τ  
and due to presence of damping, the decaying of free vibrations occurs even faster. If 
the duration of loading ∆t >2.5Т1, where 11 2 ωπ=T  - the period of the first 
frequency of structure, then calculation will be reduced to the static one with 
equivalent load µF1, where  µ  = 2 for sudden loading and  µ  = 1 in the case of sudden 
unloading. 
However, if the duration of the loading ∆t < 0.1Тn, where nnT ωπ2=  is the period 
of the highest frequency in the spectrum of natural frequencies (the first order 
harmonics), then calculation will be reduced to the calculation for the instant impulses. 
If the period between repeated loadings is γτ 12T> , then calculation is for the 
single impulse. From this, we can conclude that when 10,1 2,5nT t T≤ ∆ ≤  and 

γτ∆ 12Tt ≤≤  the displacements under the action of repeating loading are 
determined by Eq. (2.3). 
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Figure 2.3. Forced vibrations of mass m1 taking into account 

the all principal modes  with different internal friction 
 factors:  a - γ = 0; b - γ  = 0.06; c - γ  = 0.2. 

 

 
Figure 2.4. Forced vibration of mass m1 taking into account  

different frictional factors of two principal modes 
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In order to find out how the highest modes influence the displacement magnitudes, 
calculation was carried out taking into account the first two modes only. The 
calculation results are given in Figure 2.4. It can be seen that these results are not much 
different from those on Figure 2.3, where all r normal modes of vibration were taken 
into account. However, in the case of resonance when the system has maximum 
displacements it is not enough to use the first two modes only. The necessity to take 
into account also the highest modes of vibrations is explained by the fact that the 
frequency spectrum of ladder frames is not continuous, but has isolated zones with 
highly packed frequencies. In addition, frequency values do not increase so quickly 
with the total number of frequencies. The absence of some these frequencies can lead 
to errors in calculations. 

2.4 Steady-state forced vibration 
 
It is seen from the graphs of the forced vibrations in Figure 2.4, that after some time 
stationary forced vibrations are established. Typically, the vibrations excited by 
suddenly applied periodic loading are not periodic. However, for simplification of 
solution the vibrations can be represented as a sum of periodical stationary vibrations 
with the period of exciting load  τ and free vibrations. The free vibrations caused by 
the presence of the initial conditions and action of repeated loading take place only for 
the initial transitive period of movement. After some time vibrations were gradually 
damped out due to resisting forces and finally steady-state periodical vibrations were 
established. Such problem has already been discussed for systems with one and two 
degrees of freedom [3], [30], [32]. In this thesis, this problem was extended to the 
system with multiple degrees of freedom. 

Taking into account the aforementioned simplifications and resolving the load into 
normal modes of vibration (the normal mode method), and then each mass 
displacement of the discrete scheme (Figure 2.1) in any interval τ of loading for each 
single mode of natural vibrations separately may be represented in the following form  
 

( ) ( )
( ) ( )

( )*
0 0

2exp 0 cos sin
2

ki i ki
ki i ki i i ki

i

y y
y t t y t t y t

γ ωγ ω ω ω
ω

∗

⎛ ⎞+⎜ ⎟⎛ ⎞= − ⋅ + ⋅ +⎜ ⎟⎜ ⎟
⎝ ⎠ ⎜ ⎟⎜ ⎟

⎝ ⎠

(2.23) 

(i, k =1, 2,3,…, r) , 
 

where the first two terms of this solution represent free vibrations depending on the 
initial conditions, but the third term represents vibrations produced by loading in the 
given time interval τ≤≤ ∗t0 . In order to ensure, that the steady-state forced 
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vibrations occur in each time interval,  we compared the displacements and velocities 
of masses at the beginning and the end of the interval for the each single mode of 
natural vibrations separately   ( ) ( )τkiki yy =0 , ( ) ( )τkiki yy =0 , ( )r,...,,,k,i 321= . 
Then it is possible to form two equations for the each mode separately, from which the 
initial conditions of the periodical vibration were determined. The total displacements 
of system in any time interval taking into account all modes of vibrations are the 
following  

( ) ( )
( ) ( )

( )
( ) ( )

( )

1

*

1 1

0 0
2exp 0 cos sin

2

0 0
2exp 0 cos sin
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k i ki i i
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r rki i ki
i ki i i ki
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y y
y t t y t t

y y
t y t t y t
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ω

γ ωγ ω ω ω
ω

=

∗ ∗ ∗ ∗

= =

⎡ ⎤+⎢ ⎥⎛ ⎞= − − ⋅ + ⋅ +⎢ ⎥⎜ ⎟
⎝ ⎠ ⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤+⎢ ⎥⎛ ⎞+ − ⋅ + ⋅ +⎢ ⎥⎜ ⎟

⎝ ⎠ ⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑ ∑

(2.24) 

(k = 1, 2, 3, …, r), 
 

where (0)(0) kiki y,y  - the initial conditions of the steady-state forced vibrations.  

γ γ γ γ

 
 

forced vibrations caused by action of repeated loading
steady‐state forced vibrations 
free vibrations depending on the initial conditions 
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The first two terms express free vibrations of system, the last one – the forced 
vibrations due to loading acting during time interval τ.  
The calculation results of steady-state forced vibrations of ladder frame (Figure 2.1) 
are represented in Figure 2.5. 
In comparison of calculated results, it is seen good correlation, especially in the case of 
large resistance. It is so because with increase of resistance the influence of free 
vibrations is decreased. These vibrations are determined by the first two terms in Eq. 
(2.27) for the total displacements. 

2.5 Conclusion to the chapter 
 
The discrete calculation scheme is given; it determines with a sufficient degree of 
accuracy the forced vibrations of ladder frames under the action of repeated interrupted 
loading. It is necessary to take into account resisting forces determined by internal 
friction factor γ  independent of frequency of cyclical strains. The magnitude of the 
factor γ  is common for the whole system. It was established that we can use 
generalized internal friction factor γ  taking into account structural damping. 

The expressions for determining steady-state periodical forced vibrations that allow 
considering only one time interval τ of loading has been devised. Such solution is 
especially convenient in the case of resonance when it is enough to take into account 
only one normal resonance mode. It has been shown that the frequency spectrum of 
such structure of ladder frames has zones, where frequency values are close to each 
other, but normal modes corresponding to them are different. Absence of some of these 
frequencies can lead to errors in calculations. 

Previously developed theory is applicable to use for calculation of amplitudes of 
forced vibration in the field of naval engineering, civil engineering, vehicle 
engineering etc. 
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3 STUDY OF FREE VIBRATION OF LADDER FRAMES 
REINFORCED WITH PLATE 

3.1 Background 
 
Floor systems that consist of continuous steel or concrete panel and steel frame in 
plane to reinforce it are very widely used in industrial and civil buildings and vehicle 
industry. Examples of this kind of orthotropic system in the vehicles industry are floor 
systems of tipping bodies of trucks and trailers, where bottom of tipping bodies 
generally consists of high wear resistant cold rolled metal sheets in general and these 
are reinforced with steel frame. In the field of industry and civil buildings, concrete 
floor with reinforcing ribs can be considered as an orthotropic floor system. Most 
common structures of reinforcing steel frames are ladder frames consisting of uniform 
straight beams of massive and/or thin-walled structural shapes. Covering steel or 
concrete plates enlarge rigidity of reinforcing frames or vice versa and so alter 
vibrational characteristics of all design. Taking into account that reinforcing frames, 
which might consist of beams with different cross- sectional dimensions and can be in 
plane or one beam can be situated above one another, then analytical calculation of free 
vibrations of such floor design is a quite complex calculation problem.  

In vibration analysis of stiffened plates, researchers have proposed many methods: 
orthotropic model [36], the grillage model [37], the Ritz or Rayleigh–Ritz method [38] 
and [39], the matrix method [40], the finite difference method [41], the finite element 
method [42], the differential quadrature method [43], mesh-free method [44], wave 
analysis [45] etc. Literature survey reveals that orthotropic plate model is still 
commonly used [46] due to its simple formulation [44]. According to the orthotropic 
plate model the structural behavior of stiffened plate is approximated by converting 
this system into a homogeneous plate of constant thickness using the stiffness 
properties of the beams (as additional layer) [47]. 

The orthotropic plate model does not represent real deformations of system [46], so 
calculated natural frequencies for orthotropic plate using this model differ from exact 
values within the range of 5%up to 70% [48]. 

In this thesis, a discrete model for calculation of natural frequencies of orthotropic 
floor systems is proposed. In case of the discrete model, an orthotropic floor system is 
replaced by a system of crossed beams (ladder frame) stiffened locally by plate and the 
last one as the continuous system is replaced by the discrete system of concentrated 
masses. 

Calculations by an orthotropic plate models and equivalent discrete systems are 
executed on real industrial floor systems to compare calculation results with existing 
data. In this case, the orthotropic floor system consists of concrete plate with 
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reinforcing ribs. Discrete model of orthotropic floor design leads to calculation of 
ladder frames and the effect of the plate is taken account using T-beams instead of ribs. 
Rigidity of plate is represented by the top section of T-beam. Determination of the 
proper dimensions of this top section has not been solved up until today. To determine 
the size of the top section, consecutive approximations are necessary. To assess the 
accuracy of considered models, the displacement method (slope deflection method) for 
continuous system [49], [32] of floor design and ANSYS program is used. Although 
floor system are used as the example, which consist of concrete plates and reinforcing 
steel ribs, calculations by discrete scheme can be extended to orthotropic floor systems, 
which consist of steel plates and frames to reinforce them. 

3.2 Basic concept of the discrete scheme 
 
Equations of the free vibrations of a discrete system with nth degrees of freedom have 
the form [48] 
 

( ) ( ) 0=+∑ tytym iiijiδ , (j =1,2, …, n)                       (3.1) 

where  
mi - value of ith concentrated mass, 
yi - displacement of ith concentrated mass, 
δij - unit displacements of system at the points of application of the concentrated 
masses.  
 
The static calculation is performed on ANSYS program. Calculation of free vibrations 
was carried out for two models of the orthotropic floor system. In calculations by the 
orthotropic plate model the joint deformation work of the plate and beams were taken 
into account. In calculation by discrete scheme, a system of crossed beams is 
considered instead of an orthotropic plate. To determine values of moment of inertia of 
cross-sections of main and auxiliary beams, the influence of plate is represented as 
rectangular cross-section with proper dimensions. After calculation of the unit 
displacements δij, the problem of calculation of natural frequencies and normal modes 
of the floor is reduced to a problem of eigenvalues and eigenvectors 
  

( ) 0B E yλ− =                                                     (3.2) 
 

where 
y - a column  vector, 
λ - frequency parameter, 
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B - square matrix, received as a result of multiplication of the matrix of unit 
displacements δij with the matrix of concentrated masses mi, 
Е - the unit matrix. 
 
For the solution of Eq. (3.2), methods of simultaneous iteration or direct iteration and 
MatLab programs are used. 

3.3 Calculation of rib floors as an orthotropic plate 
 
Let us consider a simply supported concrete panel (floor) reinforced with parallel 
symmetrically placed five concrete ribs (Figure 3.1). The floor has the following 
characteristics: the modulus of elasticity of concrete Еc=2,1.109 N/m2, thickness of the 
panel h = 0,1 m, width of the panel b = 5 m, length of the panel a = 10 m, density of 
concrete γc = 24 kN/m3, cross section of the ribs 0,3 х 0,5 m2,  
 

 
 
 
 
 
 
 
 

 
Figure 3.1. Panel reinforced with five ribs in one direction 

 
Canceling the masses and stiffnesses of the ribs on the whole panel, we get an 
orthotropic plate, the natural frequencies ωij of which are determined by the formulas 
[47] 
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1 2ij
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m c cb
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                        (3.3) 

 
where 

1D , 2D , 3D - flexural and torsional rigidities of orthotropic plate, 
m  - mass per unit area, 
a , b - the length and the width of the orthotropic plate respectively and ac b=  
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ijω  - frequency with i number of half sine waves in longitudinal direction and j is the 
number of half sine wave in transverse direction. 
 
In the case of plate reinforced with symmetrically placed ribs according to Figure 3.1, 
the rigidities in Eq. (3.3) are as follows [47] 
 

3
1

1 2 33 11
; ; 0

12( )
c rE a h E ID D D

aa t tα
= = =

− +
                       (3.4) 

 
where 

cE - modulus of elasticity of plate, 

rE - modulus of elasticity of ribs, 

1a  - spacing between ribs, 
t  -   width of the rib, 

h
Hα =  - where h- height of the plate only and H- total height (plate and rib), 

I - moment of inertia of equivalent T-beam with width of flange a1 respect to its 
centroid 

    
Same orthotropic floor system using discrete calculation scheme as system of the 
concentrated masses with ten degrees of freedom is given in Figure 3.2. 
 

 
 
 
 
 
 
 
 
 

 
 

Figure 3.2. Discrete calculation scheme of panel with 
 10 degrees of freedom 

 
The numerical results of the calculation are given in Table 3.1 and Figure 3.3, where 
the exact magnitudes [48] are given for comparison. 
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Table 3.1. Calculated natural frequencies of a panel reinforced 
with five ribs in rad/s 
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Figure 3.3. Natural frequencies of a panel reinforced with five ribs 
 
It can be seen from Table 3.1 and Figure 3.3 that the calculation using the model of an 
orthotropic plate gives rather large differences especially for the first frequency. The 
explanation for this is that for a panel reinforced by ribs placed parallel to each other in 
one direction the model of an orthotropic plate does not represent the real deformation 
of such a type of panel.  

Let to consider a concrete panel reinforced with four (auxiliary) secondary 
longitudinal and four main lateral (cross-girder) steel concrete beams given in Figure 
3.4. The characteristics of the floor structure are the following: modulus of elasticity: 
concrete Еc=2,1.109 N/m2, reinforcing rod Еr=200.109 N/m2, thickness of the plate h = 
0,1 m, width of the plate b = 5 m,  length of the plate a = 10 m, cross-section of the 
beams 0,3 х 0,5 m2. 

Nr. of 
frequency 

On 
orthotropic 

plate 

On 
discrete 
scheme 

Solution 
given in  [48] 

1 61,1 119,2 118,1 
2 123,8 126,3 124,9 
3 198,6 142,4 139,6 
4 224,4 176,4 168,1 
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Figure 3.4. Steel concrete panel reinforced by a 4х4 grid of ribs 

 
Canceling the masses and stiffness of the ribs of the whole panel, we get an orthotropic 
plate. The natural frequencies are calculated by use of Eq. (3.3). In the case of 
symmetrically placed main and auxiliary beams, the flexural and torsional rigidities in 
Eq. (3.3) are expressed as follows [47]  
 
 

3 3 3
1 2

1 2 32 2 21 1
; ;

12(1 ) 12(1 ) 12(1 )
c c cr rE h E h E hE I E ID D D

a bν ν ν
= + = + =

− − −
        (3.5) 

 
where 

1 2,I I  - moment of inertia of main and auxiliary beams parallel to the x and y-axis 
respectively 

1b -    spacing of auxiliary beams, 
ν -  Poisson ratio of plate. 
 
The discrete scheme with sixteen discrete masses concentrated at the nodes of 
intersection of the cross girders and longitudinal beams is given in the Figure 3.5. 
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Figure 3.5. Discrete calculation scheme of panel with 16 degrees of freedom 
 
 
Numerical results of the calculation of natural frequencies using the model of an 
orthotropic plate are given in Table 3.2 and Figure 3.6. In the same table, the results of 
the exact solution [48] as well as the results of calculation on the discrete scheme are 
given. 

For notation of natural frequencies ωij the two-index, numbering is used. Here, the 
first index i means that a longitudinal beam vibrates in the principal or normal mode of 
vibration having (i-1) nodes, the second index j means that a lateral (cross girder) beam 
vibrates in the normal mode with (j-1) nodes. Use of such kind of indexing allows to 
represent normal modes of a beam supported at two ends as a system of plane lines, 
which are in sections parallel to the supported contour and create a complicated curved 
surface of bending with [(i-1) + (j-1)] nodes corresponding to the natural frequency of 
crossed beams ωij. 

From Table 3.2, we can see that the maximum difference in calculation of the 
frequencies by theory of an orthotropic plate does not exceed 15 %. This shows that in 
the case of a panel reinforced with a grid of ribs calculation by the scheme of an 
orthotropic plate is quite satisfactory. 
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Table 3.2. Natural frequencies of steel concrete panel 
reinforced with a 4х4 grid of ribs in rad/s  

Nr. of 
frequency  

Normal 
mode  

On 
orthotropic 
plate [47] 

On 
discrete 
 scheme 

Exact solution  
on  [48] 

i j 
1 1 1 160,1 154,3 151,3 
2 2 1 172,5 171,3 169,8 
3 3 1 211,9 220,4 226,6 
4 4 1 289,6 322,4 330,4 
5 1 2 637,1 615,8 599,7 
6 2 2 640,2 627,4 606,1 
7 3 2 651,9 639,4 628,2 
8 4 2 681,1 691,2 679,3 

 
From Table 3.2 and Figure 3.6, it is seen that the maximum difference in calculation of 
the frequencies by theory of an orthotropic plate does not exceed 15 %. This shows 
that in the case of a panel reinforced with a grid of ribs calculation by the scheme of an 
orthotropic plate is quite satisfactory. 
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Figure 3.6. Natural frequencies of steel concrete panel reinforced with 4x4 grids of ribs 
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However, the discrete calculation scheme prescribed in Figure 3.5 in comparison with 
the model of an orthotropic plate gives results that are more exact. Though the ribs also 
render essential influence on the values of natural frequencies of the floor, this 
influence is much less significant, than it is in the case of static calculation of rib floors 
[47]. 

3.4 System of crossed beams (ladder frames) 
 
Let us consider ladder frame, which are a widely used structure in the field of 
industrial and civil buildings, vehicle industry and ship hulls. As an example is 
represented a frame of 2х2 prescribed in Figure 3.7 with the following characteristics: 
I1=I2=0,03125.10-4m4,  == 21 mm 1,1927 kg/m  
 

 
Figure 3.7. System of crossed beams (ladder frame) 2x2 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.8. Discrete scheme of the 2x2 crossed beams with 16 degrees of freedom 
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The results of calculation on the scheme of an orthotropic plate are given in Table 3.3 
and Figure 3.9. The results of calculation on the discrete scheme with sixteen degrees 
of freedom prescribed in Figure3.8 and the so-called exact solution based on the 
method of dynamic slope and deflection developed in paper I are given as well. 

The maximum calculated differences by the scheme of an orthotropic plate do not 
exceed 26 %. With the growth of frequency number the differences decrease. The 
exception is the second frequency, for which the difference is greater than for the first 
frequency. This instability of the calculation error is affected by approximation of the 
model considered as an orthotropic plate. 
 
 

Table 3.3. Natural frequencies of crossed beams 2x2, rad/s 
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Figure 3.9. Natural frequencies of ladder frame of 2x2 

Number of 
frequency 

Normal 
mode 

On orthotropic 
plate [47] 

On discrete 
scheme 

 
On ANSYS 

On displacement 
method  
Paper I i j 

1 1 1 31,6 26,4 26,5 26,2 
2 2 1 66,3 53,7 54,6 52,8 
3 1 2 113,9 103,2 105,2 103,2 
4 2 2 127,8 110,2 111,4 108,6 
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3.5 Calculation of continuous reinforced concrete floor of an  
industrial building 
 
Let us consider a real reinforced concrete floor designed for a churn machine. A churn 
machine supported with eight concrete columns and reinforced with six secondary 
longitudinal beams and four continuous cross girders. The initial data concerning the 
floor and churn machine is from [35]. The calculation scheme of the floor represents a 
discrete system of concentrated masses at the nodes of intersection of the longitudinal 
beams and cross girders and in the middle of spans of the secondary longitudinal 
beams. The discrete calculation scheme is presented in Figure 3.10. 

The magnitudes of the concentrated masses according to a lever rule are from 
Figure 3.10 

         mi = 130 kg, i =1…6,   13…18, 25…30,  37…42 
        mk = 240 kg, k =7…12, 19…24,  31…36, 43…48. 
 
Considering the weight of the churn machine, four additional masses m55 = m56 = m57 = 
m58 = 81 kg are located at support points on secondary longitudinal beams accordingly 
and represented in Figure 3.10. Magnitudes of these masses are not constant values. 
During the time, when a block butter falling inside the machine drum from height  H = 
1,3 m in 0,51 s, the weight of the churn machine decreases by the value of butter block 
G'=6 kN.  
 

 
Figure 3.10. Discrete calculation scheme 
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The magnitudes of the concentrated masses will decrease accordingly and will become 
m55 = m56 = m57 = m58 = 65,7 kg, i.e. during vibrations, there is a mass jump of the 
system. It is known, that in this case, dynamic calculation becomes considerably more 
complicated. Usually, this requires the use of the approximated calculation, where the 
change of physical constants of the system happens according to the step law. 
According to such a method, the dynamic calculation should be carried out with two 
different spectra of natural frequencies of vibrations of the floor according to different 
values of the system mass. However, in comparison to the whole mass of the system, 
the butter block mass falling inside the drum is very small and is 1/150 of the whole 
mass of the floor. Therefore, the values of frequencies, taking into account the butter 
mass, will differ from the corresponding values without the account of the weight of 
the butter no more than 0,3-0,4 %. Therefore, we can presume that the values of 
additional masses are: m55 = m56 = m57 = m58 = 81 kg = const. 
 

Table 3.4. Values of natural frequencies of reinforced concrete floor, rad/s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

No. of frequency  On method 
[35] 
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scheme 

Difference in 
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1 24,92 25,09 0,7 
2 25,00 25,38 1,3 
3 - 26,37 0 
4 28,10 28,36 1,0 
5 31,89 32,18 2,5 
6 - 32,85 - 
7 - 33,15 - 
8 35,82 34,57 -2,8 
9 43,00 46,51 7,4 
10 46,13 46,73 1,3 
11 - 47,47 - 
12 53,02 48,60 -9,0 
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13 94,50 96,50 2,1 
14 98,45 97,92 -0,5 
15 - 98,79 - 
16 100,01 99,27 -0,6 
17 106,05 106,85 0,7 
18 - 107,82 - 
19 110,27 108,32 -1,8 
20 120,11 122,33 1,8 
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The total number of the concentrated masses from Figure 3.10 is 58, i.e. we have the 
discrete calculation scheme as a system of the concentrated masses with 58 degrees of 
freedom. 

The results of calculation are shown in Table 3.4. In addition, the results received 
from calculation by [35] are given in this table.  

Table 3.4 shows that the values of natural frequencies of the floor calculated by 
method [35] and discrete calculation scheme are well in coherence. However, use of 
the discrete calculation scheme gives the more complete spectrum of the frequencies in 
comparison with the frequency spectrum received by method [35]. This especially 
concerns frequencies that are close in magnitude, parts of which are missed when 
calculation are performed by [35]. 

3.6 Conclusion to the chapter 
 
For floors reinforced by ribs placed parallel to each other in one direction, the model of 
an orthotropic plate does not represent the real deformation of such type of floors. In 
the case of floors reinforced with a grid of ribs, the calculation results based on the 
scheme of an orthotropic plate are quite satisfactory. The discrete calculation scheme 
provides a more complete spectrum of frequencies in comparison to a spectrum of 
frequencies received according to [35]. This concerns especially frequencies that are 
close in magnitude. The study has been shown that using consecutive approximation 
for refining the width of the top section of the T-beams for determination of the 
moment of inertias of cross-sections of the beams of the ladder frames gives to the 
discrete model a satisfactory degree of accuracy.    
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GENERAL CONCLUSIONS 
 
The generalized conclusions of the work are the following: 
 

1. Coupled flexural-torsional free vibration of ladder frames 
 

1.1. The governing differential equations of motion of massive-profiled 
and thin-walled beam elements with one axis of symmetry has been solved in 
closed form and nodal end forces and moments has been evaluated. The 
evaluated nodal end forces and moments were used for calculation of natural 
frequencies and corresponding mode shapes of ladder frames. In case of 
massive profiled beams, the effect of shearing force and rotatory inertia was 
taken into account in differential equation of motion.  

 
1.2. It has been established that the value of natural frequencies depends on 

the position of thin-walled longitudinal and lateral members at the nodes. 
When shear centers of longitudinal and lateral members of ladder frames 
coincide (left part of Figure 1-8), then the one constraint on the warping by 
calculation of the displacement method must be imposed. When shear centers 
of longitudinal and lateral members of ladder frames are in different plane 
(right part of Figure1-8), then two constraints on the warping must be applied. 
This conclusion is valid for beams with two axis of symmetry too. 

 
1.3. It has been established that the values of natural frequencies depend on 

theory used for calculation of natural frequencies.  The values of natural 
frequencies calculated by theory of massive-profiled beams have lower values 
compared to natural frequencies calculated by theory of thin-walled beams. 
The differences of values of natural frequencies grow with growth of the 
frequency numbers. 

 
1.4. The evaluated nodal end moments and forces can be used for 

theoretical studies of free vibration of ladder frames and for practical 
calculation of natural frequencies and corresponding mode shapes of ladder 
frames, especially when higher frequencies are needed. The evaluated nodal 
end moments and forces can be used for validation of approximate methods of 
calculation of natural frequencies and mode shapes. 
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2. Forced vibration of ladder frames under the action of repeated loading. 
 

2.1. An approach for determination of forced response of ladder frames to 
periodic interrupted loading in presence of hysteretic damping for practical use 
has been developed. The response of MDOF system to periodic interrupted 
loading with same sign and opposite sign was solved.  

 
2.2. It has been shown, that by use of frequency independent equivalent 

viscous damping, it is possible to describe the equation of motion of the 
system by normal coordinates and to use normal mode method for calculation 
of forced response of the multi-degree-of-freedom systems to periodic 
interrupted rectangular loading. 

 
2.3.  The expression for determination of steady-state forced vibrations that 

allow considering only one time interval τ of loading has been devised. It is 
especially convenient in the case of resonance, when it is enough to take into 
account only one normal resonance mode.  

 
2.4.  The proposed approach can be used for calculation of forced response 

of ladder frames to periodic interrupted loading.  
 

3. Study of free vibration of ladder frames. 
 

3.1. It has been shown that use of discrete model for calculation of natural 
frequencies of ladder frames reinforced with plate gives more complete 
spectrum of frequencies compared to orthotropic plate model.  

 
3.2. It has shown that rigidity of plate can be modeled as top section of T-

beam. 
 
3.3. The proposed alternative approach can be used for calculation of 

natural frequencies of ladder frames reinforced with plate for practical use.  
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KOKKUVÕTE 
RISTTALADEST TASANDRAAMIDE VÕNKUMISED 
Risttaladest tasandraamid on laialt levinud toestuskonstruktsioonid, mis võivad olla 
mingi osa ehitistest, sildadest, laevadest, suurte sõidukite raamidest jne. Paljudel 
juhtudel on nad koormatud vibratsioone või siis võnkumisi tekitavate seadmetega või 
avaldavad neile mõju teised keskkonnategurid, nagu näiteks lained laevadele, liikuvad 
sõidukid sildadele, teede ebatasasusest tekitatud võnkumised sõiduki raamidele, 
ehitiste vastupidavus maavärinatele jne. Tunduvalt lihtsam on teostada selliste tasand-
raamide võnkumiste või vibratsiooni analüüsi nende projekteerimise käigus, kui muuta 
konstruktsiooni peale nende valmimist. Seetõttu on iseloomulik, et sund- ja vabavõn-
kumiste analüüs on selliste dünaamiliselt koormatud konstruktsioonide projekteerimise 
üks lahutamatu osa. 

Tasandraamide võnkumiste korral üldistatuna eksisteerib kolm peamist faktorit, 
mida on võimalik projekteerimise käigus muuta või siis kontrollida ning mis 
kajastavad tasandraamide võnkumiste iseloomu. Need faktorid on risttalade massid, 
nende jäikused ja takistusjõudude suurused. Nad määravad ära tasandraamide omavõn-
kesagedused ja neile vastavad võnkevormid ning on eelkõige olulised resonantside 
vältimiseks.  

Doktoritöö „Risttaladest tasandraamide võnkumised“ keskendub risttaladest koos-
tatud tasandraamide sund- ja vabavõnkumiste erinevate dünaamiliste analüüside välja-
töötamisele.  

Käesoleva töö esimeses osas keskendutakse ühe sümmeetriateljega ja jaotatud 
massiga risttaladest koostatud tasandraamide dünaamilise analüüsi väljatöötamisele 
massiivsete profiilide ja õhukeseseinaliste profiilide omavõnkesageduste ja neile 
vastavate võnkevormide arvutamiseks. Massiivsete profiilide võnkumise diferentsiaal-
võrrandite lahendamisel on võetud arvesse lõikejõudude ja ristlõike pöörlemise inertsi 
mõju, kuid jäetud arvestamata deplanatsiooni mõju, mille mõju massiivsete profiilide 
teooria alusel on hüljatavalt väike. Õhukeseseinaliste profiilide võnkumise diferent-
siaalvõrrandite süsteemi lahendamisel on jäetud arvestamata risttala väändejäikuse ja 
sektoriaalse inertsijõu mõju, selleks et uurida deplanatsiooni mõju tasandraami 
omavõnkesagedustele risttalade omavahelise erinevates tasandites paiknemise korral.  

Võrdluseks on välja toodud ka omavõnkesageduste väärtused arvutatuna õhukese-
seinaliste profiilide teooria kohaselt. 
 
Käesoleva töö teises osas keskendutakse mitme vabadusastmega tasandraamide 
sundvõnkumiste dünaamilise analüüsi väljatöötamisele perioodiliselt muutuva rist-
küliku kujulise sundkoormuse mõjul, võttes arvesse hüstereetilisi takistusjõudusid. 
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Töö kolmandas osas keskendutakse risttaladest koostatud ja plaadiga tugevdatud 
tasandraamide dünaamilise analüüsi väljatöötamisele diskreetsete mudelite alusel. 
Diskreetse mudeli alusel arvutatud omavõnkesagedusi on võrreldud teiste kirjandus-
allikates avaldatud tulemustega. 
 
Doktoritöö üldistatud järeldused on järgnevad: 

1. Jaotatud massiga ja ühe sümmeetriateljega risttaladest moodustatud tasand-
raamide vabavõnkumised. 

1.1 Massiivsete ja õhukeseseinaliste profiilide võnkumiste diferent-
siaalvõrrandid on lahendatud kinnisel kujul. Võnkumise diferentsiaalvõrrandi 
lahendite põhjal on avaldatud ühikpaigutistest põhjustatud kinnitusmomendid 
ja jõud varda otstes sõltuvalt rajatingimustest, mille põhjal on koostatud 
tasandraami sõlmede tasakaaluvõrrandid ning leitud omavõnkesagedused ja 
võnkevormid. Massiivsete profiilide võnkumiste diferentsiaalvõrrandi lahenda-
misel ja kinnitusmomentide leidmisel ühikpaigutistest on võetud arvesse 
põikjõu ja ristlõike pöördinertsijõu mõju. 

1.2. Uurimise tulemusel on kindlaks tehtud, et õhukeseseinaliste profiilide 
korral sõltuvad omavõnkesageduste väärtused talade omavahelisest paikne-
misest sõlmedes. Kui õhukeseseinaliste profiilide lõikekeskmed paiknevad 
ühes tasapinnas, siis omavõnkesagedused omavad suuremaid väärtusi, võrrel-
des profiilidega, mille lõikekeskmed paiknevad erinevates tasandites samade 
kaalu- ja jäikusomaduste korral. Antud järeldus on kehtiv ka kahe 
sümmeetriateljega õhukeste profiilide korral. 

1.3. On kindlaks tehtud, et omavõnkesageduste väärtused erinevad nende 
arvutamiseks kasutatavate teooriate vahel. Massiivsete profiilide teooria põhjal 
arvutatud omavõnkesagedused omavad madalamat väärtust kui omavõnke-
sageduste väärtused arvutatuna õhukeseseinaliste profiilide teooria alusel. 
Erinevus võnkesageduste väärtuses kasvab võnkesageduse numbri suurenedes. 

1.4. Arendatud metoodikat on võimalik kasutada sellise risttaladest 
moodustatud tasandraamide omavõnkespektri ja vastavate võnkevormide arvu-
tamiseks, kus on nõutavad suuremad täpsused omavõnkesageduste kõrgematel 
väärtustel, ligilähedaste arvutusmeetodite kontrollarvutusteks, teoreetilisteks 
eesmärkideks ja praktilisteks arvutusteks. Omavõnkesageduste arvutamise 
metoodikat massiivsete profiilide teooria lausel on võimalik kasutada selliste 
risttaladest moodustatud tasandraamide korral, kus põikjõu mõju ei saa hüljata. 
Omavõnkesageduste arvutamise arendatud metoodikat on võimalik kasutada 
erinevas tasapinnas paiknevate risttalade omavõnkesageduste määramisel.  

 
2. Risttaladest moodustatud tasandraamide sundvõnkumine perioodiliselt muutu-

va mitte pideva sundkoormuse mõjul. 
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2.1 On välja töötatud arvutusmetoodika risttaladest moodustatud tasand-
raamide sundvõnkumiste määramiseks perioodiliselt muutuva mittepideva 
ristkülikukujulise sundkoormuse mõjul, arvestades väikeste hüstereetiliste 
takistusjõududega mitme vabadusastmega süsteemide jaoks. 

2.2 On näidatud, et sisemise hõõrdumise teguri asendamine võnkumiste 
sagedusest mittesõltuva ekvivalentse viskoossusteguriga väikeste hüstereeti-
liste takistusjõudude korral võimaldab kirjeldada süsteemi liikumisvõrrandeid 
normaalkoordinaatides ning kasutada modaalanalüüsi mitme vabadusastmega 
süsteemide sundvõnkumiste amplituudide arvutamiseks.  

2.3 On välja toodud lahend mitme vabadusastmega süsteemide jaoks 
väljakujunenud sundvõnkumiste amplituudide arvutamiseks, arvestades ainult 
ühte sundkoormuse mõju perioodi ja võnkevormi resonantsile lähedaste 
sageduste korral. 

2.4. Väljatöötatud diskreetseid skeeme on võimalik kasutada praktilisteks 
risttaladest moodustatud tasandraamide sundvõnkumiste amplituudide määra-
miseks: stantside ja hüdropresside aluskonstruktsioonid, laevade mootorite 
aluskonstruktsioonid, sõidukite sundvõnkumised auklikel teedel jne. 

 
3. Plaatidega tugevdatud risttaladest moodustatud tasandraamide vabavõnku-

mised. 
3.1. On näidatud, et diskreetsete mudelite kasutamine plaatidega tugev-

datud tasandraamide korral laialdaselt kasutatava ortotroopse plaadi asemel 
annab täiuslikuma omavõnkesageduste spektri. 

3.2. On näidatud, et plaadi mõju risttaladele võib asendada täiendava hori-
sontaalse vööna, mille laiuse määramiseks kasutatakse järkjärgulise lähene-
mise meetodit. 

3.3 Ortotroopsete plaatide diskreetseid mudeleid on võimalik kasutada 
plaatidega tugevdatud tasandraamide omavõnkesageduste arvutamiseks prakti-
listel eesmärkidel. 

 
Doktoritöö antud käsitluse keskseks teemaks on risttaladest moodustatud tasand-
raamide omavõnkesageduste ja omavõnkevormide määramine. Esimene osa võimaldab 
määrata tasandraamide omavõnkesageduste nn. „täpsustatud“ väärtusi, kuna need 
baseeruvad jaotatud massiga talade ristlõike liikumise diferentsiaalvõrrandite kinnistel 
lahendustel. Antud tulemused võimaldavad hinnata diskreetsetes mudelites kasuta-
tavate diskreetsete masside arvu ja asukohtasid, mida kasutatakse antud doktoritöö 
teises ja kolmandas osas. 
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ADVANCED DYNAMIC MODELS FOR ANALYSIS OF LADDER FRAMES 
 

PETRITSHENKO, A[ndres] & ARYASSOV, G[ennadi]* 
 
 

Abstract: The aim of this paper is to introduce an alternative 
method for calculating free vibration of ladder frame 
construction. Ladder frame constructions are widely used in 
trailers industry and are used especially as floor structures of 
trailers. Prediction of vibration behaviour of ladder frames of 
trailers provides valuable information in evaluating durability 
or reliability quantities in design process of trailers. 
Key words:  Bending – Torsion Vibrations, Trailers Floor 
Construction, Displacement method 
 
1. INTRODUCTION  
 
One of the most common structures in design of ladder frames 
are orthogonal grillages (systems of crossed beams attached at 
the nodes) consisting of uniform straight beams of both 
massive and thin-walled structural shapes. The system 
considered in this paper is made up of two orthogonal sets of 
beams strongly attached to each other at the nodes so that 
bending and torsion moments are transmitted from one set to 
the other. This system then can be considered as a 3D model 
for studying bending-torsion vibration of grillages.  
This paper studies the bending-torsion vibrations of orthogonal 
grillages consisting of uniform straight beams of both massive 
and thin-walled structural shapes. The free vibration analysis of 
grillages as a continuous system is carried out by the 
displacement method (Filippov 1970), (Koloushek 1967).  
Depending on the required precision, effect of shearing force 
and rotatory inertia on the free vibrations of grillages can either 
be excluded or included in the composition of the canonical 
equations that arise with this displacement method.  Symmetry 
in the plane of the grillages is taken into account, as long as the 
system is made up of two orthogonal sets of beams. Symmetry 
allows us to represent a determinant of the displacement 
method equations as a product of four determinants and to 
obtain four independent frequency equations.  
 
2. BASIC CALCULATION PARAMETERS 
 
2.1  Massive cross-section beam 
The differential equations of bending - torsion vibrations of a 
straight uniform beam (Fig.1) having one axis of symmetry are 
decomposed to two independent systems (Vlasov 1957), one of 
which 
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determines the bending-torsion vibrations, where ξ(z, t) and 
η(z, t) are deflections of the beam in the horizontal and vertical 
planes accordingly, θ(z, t) is a angle of rotation, EIx and EIy are 
flexural rigidity, γ is a material specific weight, ay is a 
coordinate of bending centre, GId  is a torsion rigidity,  and 

 are coefficients of cross section form for shearing force, A 

is a cross-sectional area; Iϕ  is a geometrical characteristic 
(bimoment of inertia), r  is a geometrical parameter, EIϕ  is a 
sectorial rigidity [6]. The solutions of Eq. (2) are 
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are characteristics of principal modes of vibration. Referring to 
Eq. (3,4) the basic parameters of the slope deflection method 
can be easily derived.  
 
2.2 Thin-walled cross-section  
The differential equations of bending-torsional vibrations of 
thin-walled beam having one axis of symmetry (Fig.2) can be 
obtained from Eq. (1) and Eq. (2) by substituting Iϕ for Iω  

(Vlasov 1957). Here Iω  is the sectorial moment of inertia. One 
of these equations determines the bending vibration in the plane 
of symmetry, solution of which is analogous to the solution of 
Eq. (1). The system describes the joint bending-torsional 
vibrations under the conditions of constrained warping of cross 
section. Following a well-known procedure, we write 

( , ) ( )sin ,z t z tξ ξ ω= ( , ) ( )sin ,z t z tθ θ ω=  where ( )zξ  and 

( )zθ  are amplitudes of assumed harmonic vibration. Hence 
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Neglecting torsional stiffness GId and rotatory inertia 
(Aryassov 1995), the solutions of Eq. (5) has the form 
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Referring to Eq. (3), (4) and (5), below we can obtain the nodal 
forces of the slope deflection method: the bending moment M, 
the shearing force Q, the bending-torsional bimoment B, and 
the general moment L. 
 
3.  CALCULATION OF GRILLAGES BY 
DISPLACEMENT METHOD 
 
3.1 Case of massive-profiled beam 
According to the displacement method we can compose for 
each node ( ),z x  of a grillage three equations of equilibrium of 
bending moments and shearing forces 

, , ,
0, 0, 0x z

ij ij ij
i j i j i j

M M Q= =∑ ∑ ∑ =                                         (7)                                                                    

Effect of shearing force and rotatory inertia are included and aft 
excluded in the composition of the canonical equations. In the 
last case the nodal forces will be functions of one frequency 
parameter. When effect of shearing force and rotatory inertia 
are included in the composition of the canonical equations, the 
nodal end-forces will be functions of two frequency parameters 
λ1 and λ2. Equalizing the determinant of homogeneous 
equations of displacement method to zero we obtain a 
frequency equation, from which can be determined the 
frequency spectrum of required length. 
 
3.2 Case of thin-walled beams 
In the case of thin-walled beams there exists the deflection in 
the plane of symmetry, transverse deflection   and the warping 
of nodes. As the conditions of conjunction according to the 
warping at the nodes there are two not well-defined antipodal 
cases are considered: (I) cross-sections of beams adjoining to 
the nodes are being warping equally and (II) cross-sections of 
beams adjoining to the nodes are being warping independently 
to each other and have different mode. 
In the first case the warping of node can be determined by one 
unknown. For each node ( ),z x  of a grillage can be obtained 
four equations of equilibrium 

, , , ,
0, 0, 0, 0x z

ij ij ij ij
i j i j i j i j

M M Q B= = =∑ ∑ ∑ ∑ =                      (8)                          

In the second case the warping of the nodes can be determined 
by two unknowns. Then for each node ( ),z x  of a grillage can 
be obtained five equations of equilibrium 

, , , , ,
0, 0, 0, 0, 0x z x

ij ij ij ij ij
i j i j i j i j i j

M M Q B Bz= = = =∑ ∑ ∑ ∑ ∑ =  (9)                         

These equations are correct either for beams having one axis of 
symmetry and for beams having two axes of symmetry. 
 
4. CONCLUSION 
 
The analysis has been shown that natural frequencies of 
vibration of the grillage consisting of thin-walled beams 
essentially differ from appropriate frequencies of the system 
with massive-profiled beams at identical bending and torsion 
characteristics of cross-section. The maximum difference of the 
values of frequencies takes place, when calculations by the 
theory of thin-walled beams have been executed taking into 
account of one constraint imposed on the warping of a node. 
The greater bending stiffness of the beams gives the greater 
difference between the values of natural frequencies, but it 
concerns of grillages consisting of thin-walled beams of 
channel section having one plane of symmetry, when two 
constraints on the warping of a node are imposed. It was 
defined that with the growth of frequency number the 
difference of the values of frequencies is increased and can 
achieve 12…16 per cent.  
Investigation of the free vibrations of the systems consisting of 
thin-walled beams has shown that for nodal conjunctions where 
longitudinal and cross girders are in the same plane of the 
system, therefore on the calculation by the displacement 
method on the warping one constraint must be imposed. 
However in the case of nodal conjunctions, when beams are in 
different planes of the system, two constraints must be applied. 
Results are obtained in previous analysis give the possibility to 
estimate accuracy of approximate calculations (Aryassov et al., 
1999), (Aryassov 1995) and (Engelbrecht & Henrych 1971). 
The results of theoretical investigations can be used for design 
of road train trailers with floor structures consisting of uniform 
straight beams of massive and thin-walled structural shapes 
both.  
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FORCED VIBRATION OF LADDER FRAMES UNDER  
THE ACTION OF REPEATED LOADING  

 
Aryassov, G; Petritshenko, A  

 
 

Abstract: In this paper, the forced 
vibration of ladder frames under the action 
of repeated interrupted loading are 
studied. This problem has not been yet 
considered in sufficient detail and width in 
technical and scientific literature. Often 
vibration of ladder frames under the action 
of instant impulses or periodical harmonic 
force has been considered. To solve a 
problem, a discrete scheme of concentrated 
masses with multi-degrees of freedom is 
proposed. More complex calculation 
schemes can lead to significant errors in 
the calculation; therefore, simplified 
discrete schemes based on experimental 
tests are used.  
Key words: Vibration, Discrete Scheme, 
Grillages, Repeating Loading, Experiment.  
 
1. INTRODUCTION  
 
In this paper, a discrete scheme of 
concentrated masses with multi-degrees of 
freedom is considered. The solution of 
problem is given via formulas applicable 
for computer calculation. The dynamic 
lateral deflections of grillages in any 
interval of loading and pure forced 
periodical displacements, which are 
repeated in every time interval, are 
determined. The problem is solved with 
and without taking into account the 
resisting forces. A survey of the 
experimental investigation of free and 
forced vibrations of grillages is given as 
well. A description of experimental 
mounting allowing receiving repeated 
loading of final duration is presented. The 
experimental results are in good agreement 

with the theoretical values taking into 
account the discrete scheme. 
 
2. FORCED VIBRATION  
 
Discrete scheme of grillages is represented 
in (Fig. 1) and it consists for simplicity of 
system with four masses concentrated at 
the nodes of lateral and longitudinal 
crossing beams with r = mn ⋅  degrees of 
freedom, where n – number of lateral 
beams, m – number of longitudinal beams. 
From Fig. 1, n = m = 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Scheme of loading of grillages in 
general 
 
It is assumed that loads are applied to these 
concentrated masses. Such formulation of 
the problem does not change a general 
solution, because any load can be reduced 
to the points of concentration of the masses 
[3, 4]. Latest holds even in conditions, when 
real disturbing forces are absent and 
support excitations occur. Structural 
damping and internal friction due to 
imperfect elasticity of vibrating bodies are 
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the main factors of damping in the 
grillages. In general, structural damping 
depends on the definite type of 
construction and must be determined for 
every case separately.  In this paper, it is 
assumed that structural damping and 
internal friction due the imperfect elasticity 
are linear. Therefore, for simplification of 
calculations it is accepted that the viscous 
damping factor γ is independent of 
frequency of cyclical strains, and includes 
the losses of structural damping. 
 
 
Fig. 2. Periodical repeated loading of the 
same sign 
 
 
 
 
 
 

 
 
Fig. 3. Periodical repeated loading of the 
opposite sign 
 
Differential equations of forced vibrations 
taking into account resisting forces 
according to Sorokin’s complex internal 
friction theory [3] are 
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*
ky  – complex displacement of kth mass, 

kjC – stiffness coefficient of system,  γ     – 
internal friction factor. 

In practical problems, it can be assumed 
with sufficient accuracy that small resisting 
forces do not affect the frequencies and the 
modes of vibration. In this case, the load 
can be resolved into components of normal 
modes of vibrations (normal mode method) 
[2]. Thus by use of normal modes we 
reduced the coupled equations of forced 
vibrations of a multi-degrees of freedom to 
a set of uncoupled equations, each 
involving just a single degree of freedom. 
Moreover, for sufficiently small damping 
and the region far from resonance we can 
neglect the phase difference between the 
separate vibrating masses of system and 
their normal modes. Such an approach 
gives the possibility to get convenient 
expressions for computer calculation. 
By integration of Eq.1 and taking into 
account, that initial conditions 
(displacements and velocities) are null, we 
obtain the expression for determining the 
displacements after (n+1)th load application 
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keeping in mind that the multipliers 
( ) ( ) 11and1 +−− νν  in  *

i
*
i BA and   in case 

of the repeated loading of the same sign are 
always equal to one.  
 
 
 
 



3. CALCULATION EXAMPLE 
 
Consider the calculation example of the 
grillages 2x2 given in Fig.1, where force F1 
is applied to mass m1 only. The masses of 
longitudinal and lateral beams per unit 
length are 19271.mm yx ==  kg/m, 
moments of inertia of the beams are      

48 m10031250 −⋅== .II yx , four equal 
masses 377514321 .mmmm ==== kg, 
concentrated in the crossing nodes of the 
beams. The periodical repeated load 
F1=29.7 N was applied to mass m1 (Fig.1), 
the duration of loading was Δt = 0.08 s,   
the interval between the repeated loading 
was  τ = 0.5 s. The normal mode method 
requires the natural frequencies and modes 
of free vibrations to be known. 
Taking into consideration the discrete 
scheme with four degrees of freedom, we 
received the following natural frequencies 
of the grillages:ω 1 = 28.6 s-1, ω 2 = 53.3 s-1, 
ω 3 = 104.0 s-1, ω 4 = 112.0 s-1 and normal 
mode characteristics of vibrations 
 
Table 1. Normal mode characteristics of 
vibrations 
 y11 = 1  y21 =  1  y31 =  1  y41 =  1 
y12 = 1  y22 =  1  y32 = -1  y42 = -1 
y13 = 1  y23 = -1  y33 =  1  y43  = -1 
y14 = 1  y24 = -1 y34 = -1  y44  =  1 

 
Substituting these values into the Eq. 4, we 
can obtain the magnitudes of forces 
vibrations in any interval of load action. 
The calculation results for mass m1 are 
depicted graphically in Figs. 4 and 5. 
The graphs of forced vibrations with 
different internal friction factor γ  showed 
that due to damping the displacements 
become smaller. 
Such big influence of damping on the 
vibration displacements can be explained 
by the small duration Δt of the load in 
comparison with the time interval τ  
between repeating loading (Fig. 2). In 
consequence, the system vibrates freely for 
the large part of time interval  τ  and due to 

presence of damping, the decaying of free 
vibrations occurs even faster.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.   Forced vibrations of mass m1 
taking into account the all principal modes  
with different internal friction factory:  a - 
γ = 0; b - γ  = 0.06; c - γ  = 0.2. 
 
If the duration of loading Δt > 2.5Т1, where  

11 2 ωπ=T  - the period of the first 
frequency of structure, then calculation 
will be reduced to the static one with 
equivalent load μF1, where  μ  = 2 for 
sudden loading and  μ  = 1 in the case of 
sudden unloading. However, if the duration 
of the loading Δt < 0.1Тn, where  

nnT ωπ2=  is the period of the highest 
frequency in spectrum of natural 
frequencies (the first order harmonics), 
then calculation will be reduced to the 
calculation for the instant impulses. If the 
period between repeated loadings 
is γτ 12T> , then calculation is for the 
single impulse. From this, we can conclude 
that when 15210 T.tT. n ≤≤ Δ   and  

γτΔ 12Tt ≤≤  the displacements under 
the action of repeating loading are 
determined by Eq.  3. 
In order to find out how the highest modes 
(the second order harmonics) influence the 
displacement magnitudes, calculation was 
carried out taking account the first two 
modes only. The calculation results are 
given in Fig.5. It can be seen that these 
results are not up to much differ from those 

t

y



on Fig.4, where all r normal modes of 
vibration were taken into account. 

Fig. 5. Forced vibration of mass m1 taking 
into account different frictional factors of 
two principal modes 
 
However, in the case of resonance when 
the system has maximum displacements it 
is not enough to use the first two modes 
only. The necessity to take into account 
also the highest modes of vibrations is 
explained by the fact that frequency 
spectrum of grillages is not continuous, but 
has isolated zones with highly packed 
frequencies [3, 4]. In addition, frequency 
values do not increase so quickly with the 
total number of frequencies. Absent of 
some these frequencies can lead to errors in 
calculations. 
 
4. PURE PERIODICAL FORCED 
VIBRATION 
 
It is seen from the graphs of the forced 
vibrations in Fig. 5, that after some time 
stationary forced vibrations are established. 
In typical case, the vibrations excited by 
suddenly applied periodical loading are not 
periodical. 
However, for simplification of solution the 
vibrations can be represented as a sum of 
periodical stationary vibrations with the 
period of exciting load  τ and free 
vibrations. The free vibrations caused by 
the presence of the initial conditions and 
action of repeated loading take place only 
for the initial transitive period of 
movement. After some time vibrations 
were gradually damped out due to resisting 

forces and finally pure force periodical 
vibrations were established. Such problem 
has already been discussed for systems 
with one and two degrees of freedom [1-3]. 
In this paper, this problem was extended to 
the system with multiple degrees of 
freedom. 
Taking into account fore mentioned 
simplifications and resolving the load into 
normal modes of vibration (the normal 
mode method), and then each mass 
displacement of the discrete scheme (Fig.1) 
in any interval τ of loading for each single 
mode of natural vibrations separately may 
be represented in the following form  
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where the first two terms of this solution 
represent free vibrations depending on the 
initial conditions, but the third term 
represents vibrations produced by loading 
in the given time interval τ≤≤ ∗t0 .  
In order to ensure, that the pure periodical 
repeated vibrations occur in each time 
interval,  we compared the displacements 
and velocities of masses at the beginning 
and the end of the interval for the each 
single mode of natural vibrations 
separately ( ) ( )τkiki yy =0 ,   

( ) ( )τkiki yy && =0 ,  ( )r,...,,,k,i 321= . Then 
it is possible to form two equations for the 
each mode separately, from which the 
initial conditions of the periodical vibration 
were determined. The total displacements 
of system in any time interval taking into 
account all modes of vibrations with zero 
initial conditions are following  
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(k  = 1, 2, 3, …, r), 
where (0)(0) kiki y,y &  - the initial conditions 
of the pure periodical vibrations the first 
two terms express free vibrations of 
system, the last three – the pure periodical 
vibrations. 
In the case of loading with different sign 
(Fig.3), the problem was solved by means 
of summing up the two solutions in the Eq. 
5), but with the second solution evaluated 
by replacing t by (t -τ). 
Comparing calculation results, it is seen 
good correlation, especially in the case of 
large resistance. It is so because with 
increasing of resistance the influence of 
free vibrations is decreased. These 
vibrations are determined by the first two 
terms in Eq. 5 for the total displacements. 
 
5. DESCRIPTION OF THE 
EXPERIMENTAL MOUNTING AND 
MEASURING METHOD 
 
The experimental mounting represents the 
system of crossed beams (grillages) the 
scheme and the sizes of which are given on 
Figure 1. 
The beams are made of steel bars of mark 
S235 in accordance with the standard EN-
10025 with rectangular cross-section 3х0.5 
cm and having at the ends cylindrical 
hinges. Bolts the tension of which can be 
regulated connect the lateral and 
longitudinal beams to each other. The 
support designs were made The beams are 
hinged at their ends to a massive 
rectangular frame of standard I beams 
IPE20 with precision providing minimum 
friction and excluding vibration and 
appearance of axial forces in the beams. 

For exiting vibration of grillages, two types 
of equipment were used. One of them 
creates a harmonic force produced by 
misbalanced rotor and was used in 
determination of frequencies of free 
vibration only and to ensure reliable 
results. The second type of the exciter is a 
permanent electromagnet creating of 
repeated interrupted loading. The operation 
of the electromagnet was carried out with 
help of an electronic relay, which allowed 
adjusting the duration of loading Δt from 
0.01 up to 0.16 s and period between the 
repeated loadings from 0.05 up to infinity. 
Four piezoelectric accelerometers were 
used (Fig. 1).  
The vibration analyzer SigLab 20.22A was 
used for measurements with special 
software in MATLAB, designed for multi-
channel investigations of vibroacoustic 
signals in the frequency band from 2 Hz to 
50 kHz.  
 
6. TEST RESULTS 
 
Free vibration. For determination of 
natural frequencies and modes of 
vibrations, the resonant method was used. 
The vibration of grillages was excited by 
harmonic and repeated interrupted loading. 
The experimental results for repeated 
interrupted loading are submitted in table 2 
where for comparisons are given results of 
the theoretical study, which has been 
carried out with the different calculation 
schemes. 
 
Table 2.  Natural frequencies of the 
grillages 2х2 [ s-1]. 
 

    N of 
frequency 

Experi-
ment 

On 
discrete 
scheme  

Exact 
solution  

 
1 25.4 28.6 26.2 
2 53.8 53.3 52.8 
3 102.8 104.0 102.4 
4 109.6 112.0 108.6 

 
The results of theoretical calculation 
carried out with taking into account the 
discrete scheme with four degrees of 



freedom (Fig.1) are in good correlation 
with the experimental results and with 
results of exact solution which is based on 
the method of slopes and deflections [4],    
[5]. The generalized internal friction factor 
γ also was determined. It is magnitude for 
the given design was within the range 0.06 
- 0.11. 
Forced vibration. The amplitudes of forced 
vibrations were measured with the help of 
the optical instruments, the state-pencils 
and piezoelectric accelerometers and the 
oscillograph, which records electrical 
vibrations on a film. A system factor was 
determined for decoding the oscillograms 
of vibrations taking into account sensitivity 
of all elements of the vibration 
measurement apparatus. On Fig.6 are 
shown the results of experiments and 
theoretical calculation for forced vibrations 
of mass m1. There is good correlation of the 
experimental and theoretical results. 
 

 
Fig. 6. Experimental and theoretical 
displacements of mass m1 in interval τ  
 
7. CONCLUSION 
 
The discrete calculation scheme is given 
which determines with a sufficient degree 
of accuracy the forced vibrations of 
grillages under the action of repeated 
interrupted loading. It is necessary to take 
into account resisting forces determined by 
internal friction factor γ  independent of 
frequency of cyclical strains. The 
magnitude of the factor γ  is common for 
the whole system and was accepted 
according to the first mode of vibrations. 
We devised the expressions for 
determining pure periodical forced 

vibrations that allow considering only one 
time interval τ of loading. Such solution is 
especially convenient in the case of 
resonance when it was enough to take into 
account only one normal resonance mode. 
Experimentally and theoretically has been 
shown that the frequency spectrum of such 
structure of grillages has zones, where 
frequency values are close to each other, 
but normal modes corresponding to them 
are different. Absent of some these 
frequencies can lead to errors in 
calculations. 
The experimental mounting and method for 
experimental investigations of vibrations of 
grillages was worked out. The comparison 
of experimental data with results of 
theoretical investigation shows their good 
correlation. 
It was established that we can use 
generalized internal friction factor γ taking 
into account structural damping. Obtained 
experimental magnitude of the generalized 
factor γ  was within 0.06-0.11 that correlate 
with magnitudes used in theoretical 
calculation. 
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Abstract. The aim of this paper is to develop a simplified method for analysis of free vibration of 
floor system consisting of continuous steel plate and steel frame in plane to reinforce it. The study 
of such orthotropic system is of practical interest and aimed at small businesses, which are not able 
to obtain expensive programs for performing such calculations. 

Introduction 

Floor systems that consist of continuous steel or concrete panel and steel frame in plane to reinforce 
it are very widely used in industrial and civil buildings and the vehicle industry. Examples of this 
kind of orthotropic system in vehicles industry are floor systems of tipping bodies of trucks and 
trailers, where bottom of tipping bodies consists of high wear resistant cold rolled metal sheets in 
general and these are reinforced with steel frame. In the field of industry and civil buildings, 
concrete floor with reinforcing ribs can be considered as orthotropic floor system. Most common 
structures of reinforcing steel frames are orthogonal grillages consisting of uniform straight beams 
of massive and/or thin-walled structural shapes. Covering steel or concrete plates enlarge rigidity of 
reinforcing frames or vice versa and so alter vibrational characteristics of all design. Taking into 
account that reinforcing frames, which might consist of beams with different cross- sectional 
dimensions and can be in plane or one beam can be situated above another, then analytical 
calculation of free vibrations of such floor design is a quite complex calculation problem. 

In most cases, calculations of free vibration are performed using the model of orthotropic plate. 
It leads to canceling out reinforcing frames and to the problem of calculation of stiffened plate [1]. 
Model of orthotropic plate does not represent real deformations of system, so calculated natural 
frequencies for orthotropic plate using this model differ from exact values within the range of 5% 
up to 70%. 

In this paper, a discrete model for calculation of natural frequencies of orthotropic floor systems 
is proposed. In case of discrete model, orthotropic floor system is replaced by system of crossed 
beams (grillages) stiffened locally by plate and the last one as continuous system is replaced by the 
discrete system of concentrated masses. 

Calculations by fore aft mentioned models are executed on real industrial floor systems to 
compare calculation results with existing data. In this case, orthotropic floor system consists of 
concrete plate with reinforcing ribs. Discrete model of orthotropic floor design leads to calculation 
of grillages and effect of the plate is taken account using T-beams instead of ribs. Rigidity of plate 
is represented by top section of T-beam. Determination of the proper dimensions of this top section 
has not been solved up today. For determination the size of top section, consecutive approximations 
are necessary. For assessing the accuracy of considered models, the displacement method (slope 
deflection method) for continuous system [2, 3] of floor design and ANSYS program is used. 
Although for examples are used floor system, which consist of concrete plates and reinforcing steel 
ribs, calculations by discrete scheme can be extended to orthotropic floor systems, which consist of 
steel plates and frames to reinforce them. 
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Basic concept of discrete scheme 

Equations of the free vibrations of a discrete system with nth degrees of freedom have the form [4] 

( ) ( ) 0=+∑ tytym iiiji &&δ , (j =1,2, …, n). (1) 

where  
mi - value of ith concentrated mass, 
yi - displacement of ith concentrated mass, 
δij - unit displacements of system at the points of application of the concentrated masses.  
The static calculation is performed on ANSYS program. Calculation of free vibrations was 

carried out for two models of the orthotropic floor system. In calculation by model of orthotropic 
plate the joint deformation work of the plate and beams were taken into account. In calculation by 
discrete scheme instead of orthotropic plate a system of crossed beams is considered. To determine 
values of moment of inertia of cross-sections of main and auxiliary beams, the influence of plate is 
represented as rectangular cross-section with proper dimensions. After calculation of the unit 
displacements δij, the problem of calculation of natural frequencies and normal modes of the floor is 
reduced to a problem of eigenvalues and eigenvectors 

( ) 0B E yλ− = . (2) 

where 
y - a column vector, 

λ - frequency parameter, 
B - square matrix, received as a result of multiplication of the matrix of unit displacements δij 

with the matrix of concentrated masses mi, 
Е - the unit matrix. 
For the solution of Eq. 2, a method of simultaneous iteration or direct iteration [4] and MatLab, 

MathWorks programs are used. 

Calculation of rib floors as an orthotropic plate 

Let us consider a simply supported concrete panel (floor) reinforced with five ribs. The floor has the 
following characteristics: the module of elasticity of concrete Еc=2.1.109 N/м2, thickness of the 
panel h = 0.1 м, width of the panel b = 5 м, length of the panel a = 10 м, density of concrete γc = 24 
кN/м3, cross section of the ribs 0,3 х 0,5 м2. Dimensions of floor are given in Fig. 1. 

 

  
 

Fig. 1. Panel reinforced with five ribs  
in one direction 

 
Fig. 2. Discrete calculation scheme  
of panel with 10 degrees of freedom 

 
Canceling the masses and stiffnessess of the ribs on the whole panel, we get an orthotropic plate, 

the natural frequenciesωij of which are determined by the formulas [1]. Same orthotropic floor 
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system using discrete calculation scheme as system of the concentrated masses with ten degrees of 
freedom is given in Fig. 2. 

The numerical results of the calculation are given in Table 1, where the exact magnitudes [4] are 
given for comparison. 

 
N of frequency On orthotropic plate On discrete scheme Exact solution on [5]  

1 61.1 119.2 118.1 
2 123.8 126.3 124.9 
3 198.6 142.4 139.6 
4 224.4 176.4 168.1 

Table 1. Calculated natural frequencies of a panel reinforced with five ribs [s-1] 
 
It can be seen from Table 1 that the calculation using the model of an orthotropic plate gives 

rather large errors especially for the first frequency. The explanation for this is that for a panel 
reinforced by ribs placed parallel to each other in one direction the model of an orthotropic plate 
does not represent the real deformation of such a type of panel.  

Let us consider a concrete panel reinforced with four (auxiliary) secondary longitudinal and four 
main lateral (cross-girder) steel concrete beams given in Fig. 3. Characteristics of floor structure are 
following: modules of elasticity: concrete Еc=21.109 N/м2, reinforcing rod Еr=200.109 N/м2, 
thickness of the plate h = 0,1 м, width of the plate b = 5 м, length of the plate a = 10 м, cross-
section of the beams 0. 3 х 0.5 m2. 

 

 
 

 
Fig, 3. Steel concrete panel reinforced  

by a 4х4 grid of ribs 

 
Fig. 4. Discrete calculation scheme of panel with 

16 degrees of freedom 
 
Canceling the masses and stiffness of the ribs of the whole panel, we get an orthotropic plate. 

The discrete scheme with sixteen discrete masses concentrated at the nodes of intersection of the 
cross girders and longitudinal beams is given on Fig. 4. Numerical results of the calculation of 
natural frequencies using the model of an orthotropic plate are given in Table 2. In the same table, 
the results of exact solution [4] as well as the results of calculation on the discrete scheme are given. 
For notation of natural frequencies ωij the two-index, numbering is used. Here first index i means 
that a longitudinal beam vibrates in the principal or normal mode of vibration having (i-1) nodes, 
the second index j means that a lateral (cross girder) beam vibrates in the normal mode with (j-1) 
nodes. Use of such kind of indexing allows to represent normal modes of a beam supported at two 
ends as system of plane lines, which are in sections parallel to the supported contour and create a 
complicated curved surface of bending with [(i-1) + (j-1)] nodes corresponding to the natural 
frequency of crossed beams ωij. 

From Table 2, we can see that the maximum error in calculation of the frequencies by theory of 
an orthotropic plate does not exceed 15 %. This shows that in the case of a panel reinforced with a 
grid of ribs calculation by the scheme of an orthotropic plate is quite satisfactory. 
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N of 
frequency  

Normal mode  On 
orthotropic 

plate 

On discrete 
 scheme  

Exact 
solution  
on [5] 

i j 

1 1 1 160.1 154.3 151.3 
2 2 1 172.5 171.3 169.8 
3 3 1 211.9 220.4 226.6 
4 4 1 289.6 322.4 330.4 
5 1 2 637.1 615.8 599.7 
6 2 2 640.2 627.4 606.1 
7 3 2 651.9 639.4 628.2 
8 4 2 681.1 691.2 679.3 

Table 2. Natural frequencies of steel concrete panel reinforced with a 4х4 grid of ribs [s-1]  
 
From Table 2, we can see that the maximum error in calculation of the frequencies by theory of 

an orthotropic plate does not exceed 15 %. This shows that in the case of a panel reinforced with a 
grid of ribs calculation by the scheme of an orthotropic plate is quite satisfactory. 

However, the discrete calculation scheme prescribed in Fig. 4 in comparison with the model of 
an orthotropic plate gives results that are more exact. Though the ribs also render essential influence 
on the values of natural frequencies of the floor, this influence is much less significant, than it is in 
the case of static calculation of rib floors [1]. 

System of crossed beams 

Let us consider a ladder frame, which is common structure in design of tipper and trailer’s floor 
systems. For example is represented a system of crossed beams 2х2 prescribed in Fig.5 with the 
following characteristics [5]: 

I1=I2=0.03125.10-4m4, == 21 mm 1.1927 kg/m  
 

  
 

Fig. 5. System of crossed beams 2x2 
 

Fig. 6. Discrete scheme of the 2x2 crossed 
beams with 16 degrees of freedom 

 
The results of calculation on the scheme of an orthotropic plate are given in Table 3. The results 

of calculation on the discrete scheme with sixteen degrees of freedom prescribed in Fig. 6 and the 
exact solution based on the method of dynamic slope and deflection [3] are given as well. 

The maximum calculation error by the scheme of an orthotropic plate does not exceed 26 
percent. With the growth of frequency number the calculation error decreases. The exception is the 
second frequency, for which the calculation error is greater than the calculation error for the first 
frequency. This instability of the calculation error is affected by approximation of the model 
considered as an orthotropic plate. 
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Table 3. Natural frequencies of system of crossed beams 2x2 [s-1] 

Calculation of continuous reinforced concrete floor of an industrial building 

Let us consider a real reinforced concrete floor designed for a churn machine. Churn machine 
supported with eight concrete columns and reinforced with six secondary longitudinal beams and 
four continuous cross girders. The initial data concerning the floor and churn machine is from [6]. 
The calculation scheme of the floor represents a discrete system of concentrated masses at the nodes 
of intersection of the longitudinal beams and cross girders and in the middle of spans of the 
secondary longitudinal beams. Discrete calculation scheme is presented in Fig. 7. 

The magnitudes of the concentrated masses according to a lever rule are from Fig. 7 
mi = 130 kg, i =1…6, 13…18, 25…30, 37…42 
mk = 240 kg, k =7…12, 19…24, 31…36, 43…48. 
Considering the weight of the churn machine, four additional masses m55 = m56 = m57 = m58 = 81 

kg are located at support points on secondary longitudinal beams accordingly and represented in 
Fig. 7. Magnitudes of these masses are not constant values. During the time, when a block butter 
falling inside the machine drum from height H = 1.3 m in 0.51 s, the weight of churn machine 
decreases by the value of butter block G'=6 kN. The magnitudes of the concentrated masses will 
accordingly decrease and will become m55 = m56 = m57 = m58 = 65.7 kg, i.e. during vibrations, there 
is a mass jump of the system. It is known, that in this case, dynamic calculation becomes 
considerably more complicated. Usually, this requires the use of the approximated calculation, 
where the change of physical constants of the system happens according to the step law. According 
to such method, the dynamic calculation should be carried out with two different spectra of natural 
frequencies of vibrations of the floor according to different values of the system mass. However, in 
comparison to the whole mass of the system, the butter block mass falling inside the drum is very 
small and is 1/150 of the whole mass of the floor. Therefore, the values of frequencies, taking into 
account the butter mass, will differ from the corresponding values without the account of the weight 
of the butter no more than 0.3-0.4 %. Therefore, we can presume that the values of additional 
masses are: m55 = m56 = m57 = m58 = 81 kg = const. 

The total number of the concentrated masses from Fig. 7 is 58, i.e. we have the discrete 
calculation scheme as a system of the concentrated masses with 58 degrees of freedom. 
The results of calculation are shown in Table 4. In addition, results received from calculation by [6] 
are given in this table. The comparisons of the natural frequencies, which have been determined by 
these two methods, are shown. 

Table 4 shows that the values of natural frequencies of the floor calculated by method [6] and 
discrete calculation scheme are well in coherence. However, use of discrete calculation scheme 
gives the more complete spectrum of the frequencies in comparison with the frequency spectrum 
received by method [6]. This especially concerns frequencies that are too close in magnitude, part 
of which is missed when calculating by [6]. 
  

Number of 
frequency 

Normal mode On 
orthotropic 

plate 

On discrete 
scheme 

 
On 

ANSYS 

On 
displacement 
method [2,3] 

i j 

1 1 1 31.6 26.4 26.5 26.2 
2 2 1 66.3 53.7 54.6 52.8 
3 1 2 113.9 103.2 105.2 103.2 
4 2 2 127.8 110.2 111.4 108.6 
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Conclusion 

For floors reinforced by ribs placed parallel to each other in one direction, the model of an 
orthotropic plate does not represent the real deformation of such type of floors. In the case of floors 
reinforced with a grid of ribs calculation results on the scheme of an orthotropic plate is quite 
satisfactory. However, the discrete calculation scheme gives results that are more exact. On the 
discrete calculation scheme, we receive a more complete spectrum of frequencies in comparison 
with a spectrum of frequencies received according to [6] and even in calculations performed by 
ANSYS program. This concerns especially frequencies that are too close in magnitude. The study 
has been shown that using consecutive approximation for refining the width of the top section of the 
T-beams for determination of the moment of inertias of cross-sections of the beams of the grillages 
gives to discrete model satisfactory degree of accuracy. Results of theoretical study by discrete 
method will be proved in future by experiments. 
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1 24.92 25.09 0.7 
2 25.00 25.38 1.3 
3 - 26.37 0 
4 28.10 28.36 1.0 
5 31.89 32.18 2.5 
6 - 32.85 - 
7 - 33.15 - 
8 35.82 34.57 -2.8 
9 43.00 46.51 7.4 
10 46.13 46.73 1.3 
11 - 47.47 - 
12 53.02 48.60 -9.0 
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13 94.50 96.50 2.1 
14 98.45 97.92 -0.5 
15 - 98.79 - 
16 100.01 99.27 -0.6 
17 106.05 106.85 0.7 
18 - 107.82 - 
19 110.27 108.32 -1.8 
20 120.11 122.33 1.8 

Fig. 7. Discrete calculation scheme of floor  Table 4. Values of natural frequencies of  
 reinforced concrete floor [s-1] 
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