
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Department of Software Science

Aleksei Gvozdev 176743 IAPM

PERFORMANCE TESTING OF AN

ASYNCHRONOUS MULTI-AGENT SYSTEM

Master’s thesis

Supervisor: Gunnar Piho

Docent

Tallinn 2019

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Tarkvarateaduse instituut

Aleksei Gvozdev 176743 IAPM

ASÜNKROONSE MULTI-AGENT SÜSTEEMI

KOORMUSTESTIMINE

Magistritöö

Juhendaja: Gunnar Piho

Dotsent

Tallinn 2019

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Aleksei Gvozdev

05.05.2019

3

Abstract

Nowadays web-based systems are used by thousands and millions of users. Large user

base throughout the world provides superior possibilities for companies to deliver their

products and services. However, alongside with possibilities large audience also brings its

risks: the larger is the number of users, the higher is the load to the system, and the higher

is the risk that the system will collapse under heavy load. In less severe but more common

cases poor performance of the system results in long response time. As a consequence,

this leads to dissatisfaction of end users, losing positions on the market, and diminishing

incomes. Discovering such problems in production means higher cost of fixing. That is

why before providing its services to the public, the business has to ensure that the system

is ready for intensive usage. Performance testing is used for his purpose.

There is sufficient number of open source tools and case studies about performance testing

of relatively simple monolith RESTful systems. However, these tools and case studies

usually do not cover all aspects which become critical in performance testing of more

complex systems. This is why sharing experience in this field is very important, and this

is exactly what the current work is about.

This thesis is written in English and is 57 pages long, including 5 chapters, 22 figures and

4 tables.

4

Annotatsioon

Tänapäeval veebipõhised süsteemid pakuvad äridele häid võimalusi oma toodete ja teenuste

müümiseks ning seetõttu on maailmas laialt levinud. Süsteemid erinevad kasutajate arvu

poolest. Suurema kasutajate arvuga süsteemid toovad suuremat tulu. Kuid mida suurem

on süsteemi kasutajate arv, seda suurem on tõenäosus, et süsteem ei pea koormusele

vastu. See tähendab, et parimal juhul toimub, kas jõudluse langus või halvemal juhul

süsteemi kokkuvarisemine. Tagajärjeks on lõppkasutajate rahulolu langus. Kuna töötava

süsteemi vigade parandamine on lõppkasutajatele kulukas, siis, enne kasutusse andmist,

tuleb veenduda, et süsteem suudab nõuetekohast piirkoormust taluda. Selleks kasutatakse

koormustestimist.

Avalikes allikates on saadaval info suhteliselt lihtsate RESTful monoliitsüsteemide koor-

mustestimiseks, kuid need lahendused ei ole sobivad keerukamate süsteemide jaoks.

Kõnealuse töö kirjutamise eesmärgiks oli jagada oma kogemusi keerukamate ärisüs-

teemide koormustestimise kohta.

Lõputöö on kirjutatud inglise keeles keeles ning sisaldab teksti 57 leheküljel, 5 peatükki,

22 joonist, 4 tabelit.

5

List of Abbreviations and Terms

API Application programming interface is a set of rules and constraints for

interaction between two systems

Asynchronous In programming, the process is asynchronous if it involves events hap-

pening independently of the main program flow in a non-blocking

scheme, allowing main program flow to continue execution [57]

CI Continuous integration is a practice in software development which

requires frequent code integration to the shared repository, followed by

builds and test execution for early detection of the problems

CMMI Capability Maturity Model Integration [44] is a model for processes

improvement and benchmarking

CRUD Create, read, update, delete are basic functions applicable for persistent

data

DBA Database Administrator is a role charged with design and maintenance

of database

DoS attack Denial of Service is a type of cyber attack where attackers are aiming to

reduce accessibility of the attacked service

HTTP Hypertext transfer protocol is application level data transfer protocol

according to ISO OSI reference model [49]

ISO/IEC 25010 Software product quality model

KPI Key Performance Indicators are measurable values demonstrating effi-

ciency in achieving business goals

Mutation testing Method for evaluation test quality. It is done by introducing a change

into the system and test cases are evaluated by their ability to detect the

change

6

Pipe-clean test Test for ensuring validity of performance test scripts [58]. In order to

conduct this kind of test, a testing scripts can be run one or few times

with a single user

Protobuf "Protocol buffers are Google’s language-neutral, platform-neutral, ex-

tensible mechanism for serializing structured data – think XML, but

smaller, faster, and simpler" [23]

Regression testing "Testing activity that is performed to provide confidence that changes

do not harm the existing of the software" [79]

RESTful API Web services which follow REST (Representational State Transfer) ar-

chitecture, proposed by Roy Fielding [7]

SLA Service level agreement is a contract between a service provider and

a user which contains description of a service, its quality, rights and

responsibilities of parties

System testing Testing of complete and integrated system

WebSocket Protocol over TCP which enables two-way communication between a

client and a server [25]

X-road "The data exchange layer for information systems, is a technological

and organizational environment enabling a secure Internet-based data

exchange between information systems" [8]

7

Contents

1 Introduction . 12

1.1 Problem Background . 13

1.2 Goal Setting . 13

1.3 Related Works . 14

1.4 Outline of the Thesis . 15

2 Methodology . 16

2.1 Types of Performance Tests . 16

2.2 Process of Performance Testing . 17

2.2.1 Non-Functional Requirements Capture 18

2.2.2 Performance Test Environment Build 19

2.2.3 Use-case Scripting . 19

2.2.4 Performance Test Scenario Build 20

2.2.5 Performance Test Execution . 20

2.2.6 Post-Test Analysis and Reporting 20

2.2.7 Other Steps . 20

2.3 Used Tools and Technologies . 21

3 Implementation and Results . 23

3.1 Bot-Server as a Load Generator . 23

3.2 Required Changes in Bot-Server . 24

3.3 Functional Tesing: System and Pipe-Clean Tests 25

3.3.1 Implementation . 25

3.3.2 Results . 26

3.4 Non-Functional Testing: Performance Tests 27

3.4.1 Non-Functional Requirements Capture 27

3.4.2 Generation of Test Data . 27

3.4.3 Implementation of Test Scenarios 28

3.4.4 Load Generator . 28

3.4.5 Collection of Metrics . 29

3.4.6 Performance Test Execution . 33

3.4.7 Post-Test Analysis . 34

8

4 Analysis . 38

4.1 Comparison with Other Solutions . 38

4.1.1 Apache JMeter . 38

4.1.2 Solution of Viktor Reinok . 39

4.1.3 Web Performance Load Tester 40

4.1.4 Previous Solution for Performance Testing 40

4.2 Consequences of Decision of Load Generation 41

4.3 Possible Design Patterns for Processing of Messages 42

4.4 Functional Testing: System and Pipe-Clean Tests 42

4.5 Non-Functional Testing: Performance Tests 43

4.5.1 Generation of Test Data . 43

4.5.2 Implementation of Test Scenarios 44

4.5.3 Performance of Load Generator 46

4.5.4 Ease of Running . 46

4.5.5 Reporting and Analysis . 47

4.6 Future Development . 48

5 Summary . 50

References . 51

9

List of Figures

1 Architecture of bot-server . 23

2 Communication between threads in functional tests 26

3 CPU utilization of the load generator at the highest load 29

4 Memory utilization of the load generator at the highest load 29

5 Usage of Micrometer’s Counter . 31

6 PromQL’s rate() function . 31

7 Usage of Micrometer’s Counter with Tags 31

8 Usage of Micrometer’s Gauge . 32

9 Usage of Micrometer’s Timer . 32

10 Checklist for performance test execution 33

11 Monitoring of number of concurrent virtual users 34

12 Monitoring of request rate . 35

13 Monitoring of request rate with tags . 35

14 Monitoring of response time . 36

15 Utilization of CPU by one of the system’s components 36

16 Utilization of memory by one of the system’s components 37

17 Graylog query for acquiring errors and warning generated during perfor-

mance testing . 37

18 Apache JMeter, UI for definition of test scenario [11] 39

19 Increased CPU utilization of load generator at performance test start . . . 44

20 Increased error rate at the start of the test 45

21 Smooth ramp-up implemented in this work 46

22 Query statistics for Oracle database . 48

10

List of Tables

1 Main types of performance tests . 16

2 Main steps in performance testing . 18

3 Results of system and pipe-clean tests 26

4 Metrics collected by designed solution 30

11

1 Introduction

Performance testing is an important step in quality assurance of large systems. For

critical systems it can assist to acquire required certification: performance testing is

capable of assuring if the system is meeting requirements for efficiency of ISO/IEC 25010

standard [9]. Performance testing is also the most important step in optimization of

resources utilization. Optimal resource utilization has several advantages: it not only

decreases price of cloud services [4], but also makes the system less vulnerable to DoS

attacks, as the most efficient their targets are the most resource-consuming parts of the

system.

The system under test is a distributed asynchronous system, which enables real-time

interaction between agents of different types. Interactions include large number of financial

transactions involving external system. The system uses Oracle database. It is also not

built with RESTful API constraints, foremost in the sense that the server does store context

between requests: this is required by the nature of services provided by the system. The

system is built using Java, which has been the most popular programming language since

2001 with only few exceptions [78]. Java is often used for building enterprise systems

serving large number of customers. Taking that into consideration, not only this work is

important for specific product, but it also creates experience valuable for the industry as a

whole.

The system under test is commercial and disclosing sensitive information should be

avoided. Therefore, many details like architecture of the systemunder test, domain-specific

aspects and definite results of performance testing are omitted in this work. Instead, the

principles of decision-making and general technical details used in this work are in the

focus, and this makes it possible to reproduce the result within similar constraints.

The work is not done by the author alone, but as a team project instead. All steps which

are mentioned in this work and which were done by other people are marked explicitly.

12

1.1 Problem Background

Performance testing is often a complex, non-trivial, costly, and sometimes ignored pro-

cedure. Whereas SLA usually has complete list of functional requirements, it is quite

common that non-functional requirements for performance are not defined at all. As a

result, system performance is not tested and performance issues are discovered only in

production, which leads to users’ dissatisfaction, monetary losses, and increased costs

of fixing. Sometimes even known performance issues remain unfixed. In severe cases

performance issues lead to system outages [2, 46].

Difficulty of performance testing depends on complexity of the system. Testing Word-

Press websites is a relatively simple task, which could be done using online tools such as

Load Impact [3]. Performance testing of web-applications is more complex, as it requires

necessary data stored in a database. Performance of such testing usually presumes CRUD

operations done by some number of authenticated users. Classical tools for performance

testing of web-applications include Apache JMeter [10] and Gatling [6]. Usually opti-

mization of access to database is the major factor of performance improvement of such

systems.

Performance testing of distributed systems becomes more costly as it requires more re-

sources for building test environment. Finally, stateful and asynchronous natures of the

system canmake its performance testingmore complex. In such systems concurrent issues,

like livelocks, deadlocks, race conditions, and others may come to the scene in stochastic

manner, which are able to make behavior of the system completely unpredictable. All in

all, the more complex and large is the system, the more costly performance testing is, and

the larger significance it has.

1.2 Goal Setting

The purpose of this work is to create a solution for performance testing of fully integrated

system in order to detect performance regressions between releases. From the perspective

of the author of current work it includes preparation of load generator, introducing collec-

tion of its metrics, and implementation of test scenarios. Preparation of test environment

13

and monitoring system is responsibility of other team members. Not all, but only key

use-cases must be covered in the scope of this work.

Main success criteria is reliability of result provided by tests: if the test passes, then no

issues in production should be encountered. It is also required to find the way to minimize

the cost of maintenance of designed performance tests. The tests should be easy to run and

provide results in convenient way for analysis: it should be easy to find cause of possible

failure. The solution should also be capable of conducting all major types of performance

tests.

1.3 Related Works

Ian Molyneaux in his book The Art of Application Performance Testing [57] described

fundamentals of performance testing: what need to be done prior to performance testing,

types of performance testing, available tools, how to design proper environment, how

to make results trustworthy, which metrics and KPIs to collect, and how to interpret

results. This is the main source of information for this work. Kinds and possible processes

of performance testing were also described in Performance Testing Guidance for Web

Applications published by Microsoft Press [54]. The book includes such information like

how to integrate performance testing into agile life cycle and how to make the process of

performance testing compliant with CMMI [44].

The field of performance testing has been also studied previously in Tallinn University

of Technology. In 2016 Kaarel Purde developed approach for performance testing of

a web-application in his Bachelor’s thesis [75]. The system used HTTP protocol and

Apache JMeter was used for load injection. Solution also contained a stub for external

system (X-road service). In the same year Viktor Reinok defended his Master’s thesis on

performance of Java applications [76]. Custom load injector was implemented. Such met-

rics as response time, number of database queries, and context tree depth were collected.

Integration with CI made the solution fully automated. Both theses describe performance

testing of a system of much smaller scale than the system under test in current work.

Using real-life experience is very important for this work. For this reason case studies

14

published by Web Performance deserve attention [40]. This is an outsourcing company

which specialize on functional and performance testing of web services, and it has shared

its experience. Case studies do not describe how the testing solutions were designed,

however, these works have good examples of performance requirements and test reports,

as well as description of discovered performance issues and how they were handled.

1.4 Outline of the Thesis

Section 2 of the thesis starts with description of types of performance tests the developed

solution is aimed to support. Section 2.2 describes process of performance testing, which

was followed during current work. Section 2.3 has brief description of toolset used during

this project which is also usable for performance testing of other large-scale Java systems.

The goal of Section 3 is to illustrate how the proposed process was followed and how re-

quired solution was implemented. It discloses implementation of system or pipe-clean and

performance tests. The section also demonstrates results of pipe-clean testing. However,

results of performance tests are not included due to confidentiality reasons.

Finally, Section 4 provides comparison with other works mentioned in Section 1.3, eval-

uation of gained results, and explanation of the logic behind decisions made during this

work. Advantages and drawbacks of designed solution are included, as well as description

of other possible options. At the end of the section things for future development are listed

and described.

15

2 Methodology

2.1 Types of Performance Tests

The goal of designed solution is to enable team to conduct threemajor types of performance

tests: load, stress, and endurance tests. Table 1 contains a brief description of these types

of tests.

Test type Definition

Load test Test non-functional requirements with the load anticipated

in production

Stress test Find at which load and how the system fails

Stability test Long-running test for detection of problems like memory

leaks

Table 1: Main types of performance tests

During load test the system under test is exposed to the load anticipated in production.

In other words, load tests are the closest approximation to the real-life application usage.

Performance requirements (availability, number of concurrent users, average or maximum

response time, etc) are tested with load tests.

Stress test is a category of performance test which aim is to expose the system under

test higher load than anticipated in production. Stress test provides such information

as capacity limits of the system, at which point and how does the system or one of its

components fail.

The objective of endurance test is to detect problems which may unveil themselves only

after extended time period, for example, memory leaks.

These are the main types of performance tests. Some authors distinguish other types as

well, for example, spike tests [53]. In context of current work the term regression test

should be mentioned as this is the major goal of the project. As a separate procedure

conducting maintenance works on the system being under load in testing environment

16

could be also mentioned: it not only assures viability of the system, but is also a useful

training for personnel. In practice, it is also possible to conduct isolated performance tests

for limited parts of the system. Conducting such tests is not the goal of the current work:

instead, the complete system is the subject of performance tests designed for this work.

2.2 Process of Performance Testing

The process proposed by Ian Molyneaux has been taken as the basis for current work [59].

Before proceeding to proposed steps, it is required to assure that the system meets func-

tional requirements. Other important thing is to allocate sufficient amount of resources

for performance testing: limited resources is the major reason why performance testing is

not done at all. Steps of the proposed process are explained briefly in Table 2.

17

Step Description

1 Non-functional requirements

capture

Testable

Include normal and peak loads

2 Performance test environment

build

Close replica of production environment

Similar to production database volume

Emulators of external systems

Consider load balancing strategy

3 Use-case scripting Behavior of users

Wait time considered

Usually version-dependent

4 Performance test scenario build Duration of the test

Number of concurrent users

Load injection profiling

5 Performance test execution Run pipe-clean tests before

Test environment should not be used by

others

6 Post-test analysis and reporting Use multiple statistics

Visual data representation

Log files, heap and thread dumps

Table 2: Main steps in performance testing

2.2.1 Non-Functional Requirements Capture

Performance requirements are mandatory features of the system: failing to meet require-

ments leads to delay of release. They could be obtained from SLA, significant stake-

holder [55], or from observations of functioning system in case of regression performance

testing. As any requirements, they should be testable. Here are a couple examples of good

requirements:

When N users login within one minute, 90% of all login requests should receive response

18

within X milliseconds.

When N users are executing use-case scenario X concurrently, then CPU utilization of

service Y should not exceed 70%.

Performance requirements should consider not only average load, but also peak load. For

example, usage of study information system is relatively low during most of the time, but

at certain periods of academic year, such as exam session, the number of concurrent users

increases significantly [60].

2.2.2 Performance Test Environment Build

Environment for performance testing should be as close replica of production environment

as possible. Only in this case results of performance tests are reliable. Practice shows,

that misconfiguration is a common reason of performance issues [47, 48], and it is only

possible to find such errors if testing and production environments are identical. The

problem is that replicating production environment can be costly for organization.

External systems could be replaced with emulators, like in the Bachelor’s thesis of Kaarel

Purde [75]. One should remember, that the external system itself might be the bottleneck

for performance. Furthermore, one should check if load balancing strategy [61] does not

prevent from conduction of performance tests, and that volumes of databases in testing

and production environments are similar.

2.2.3 Use-case Scripting

Use-case is a process done by user to achieve his or her goal. It usually includes logging in,

making some actions, and logging out. Wait time should be considered as well, as human

beings do not act in fractions of seconds. This wait time should not affect measuring of

response time.

Use-case scripts are usually version-dependent: new release is potentially able to partially

or completely invalidate this scripts [62]. This is the major concern from performance

tests’ maintenance point of view.

19

2.2.4 Performance Test Scenario Build

Performance test scenario [63] defines such parameters of test as number of concurrent

users and duration of the test. These are the key features which define type of performance

test being executed. In addition, test scenario is characterized by load injection profile, or

how users are connected. If the system serves n concurrent users, it does not mean that

all of them are logged in at the same moment. In this case load to the system may be too

high. For this reason connection of virtual users should be spread over time.

2.2.5 Performance Test Execution

Performance test execution is the most straightforward step. Ideally, it should be solely

a validation of performance targets, but not a bug-fixing activity. Before running perfor-

mance tests, the team should execute pipe-clean test to check validity of use-case scripts.

2.2.6 Post-Test Analysis and Reporting

Final step is analysis of test results and reporting [56, 64]. Report must provide clear

answer whether the system meets its performance requirements and provide clear starting

point for root cause analysis of detected problems. Visual data representation with graphs

is an advantage.

2.2.7 Other Steps

The process taken as a basis does not presume usage of a custom solution. As this is the

case in current work, a few details should be done: system for collection of metrics and

load generator.

For system performance analysis metrics like utilization of resources (CPU, RAM, etc)

of each component of the system under test, response time, request rate, and number of

concurrent users should be collected. When it comes to response time, only mean or

maximum response time is not enough. For example, there might be 10-fold difference

20

between 90th percentile and maximum response time.

Load generator is a common bottleneck of the performance testing process. For this reason

it should be thoroughly monitored as well. For large systems multiple load generators

might be required.

2.3 Used Tools and Technologies

There are number of tools and technologies for monitoring JVM applications which

can help during development, ranging from standard VisualVM [74] to commercial

XRebel [81]. Thesis of Viktor Reinok has overview of these tools [76]. For current

work VisualVM was used during optimization of load generator.

Zabbix [52] has been used for monitoring of utilization of resources of each component

of the system. For collecting metrics from load generator Spring Boot Actuator [37] was

used. Actuator enables endpoints, which provide information about Spring Boot [36]

Application. /metrics endpoint provides application’s performance metrics, like amount

of total and free memory, uptime, heap size, etc. Actuator also supports custom metrics:

gauges for single values, counters for measuring requests throughput, and timers for

measuring latency. These options were used for collecting metrics on response times and

error rates. Accessing /metrics endpoint only shows metrics at specific point in time.

However, for performance testing metrics values throughout the whole time period of test

are required.

Since version 2 of Spring Boot the Actuator relies on Micrometer [32], which is a facade

for instrumentation framework, for example, Prometheus [17], which was used in this

work. Prometheus makes regular requests to Actuator’s endpoints, fetches metrics, and

stores them in a time-series database. It enables to see values of collected metrics at

any point of time during observation. Even though acquired data can be displayed in

Prometheus itself, Grafana [50] is considered as a more decent tool for data visualization.

PromQL, or Prometheus Query Language has been used for building graphs [19].

Log analysis was done using Graylog [26]. It is a log aggregator which enables to analyze

logs from different machines in a single place.

21

As the solution is built using Java, it is important to remember about changes in licensing

of Oracle Java SE since 2019 and prefer OpenJDK over Oracle JDK [72].

22

3 Implementation and Results

System and performance tests were implemented using existing component called bot-

server. Before proceeding to implementation of tests themselves, the architecture of

bot-server is explained.

3.1 Bot-Server as a Load Generator

Figure 1: Architecture of bot-server

Bot-server is a system’s component designed for managing automated agents which are

using the system under test. They serve for number of purposes, and they are able to

interact with other agents or with human beings. When idea of using bot-server for

performance tests emerged, it was accepted by the team.

There are two types of agents in the system. Relatively small number of agents of type 1

23

interact with large number of agents of type 2. For this reason type 1 agents are launched

individually, and type 2 agents are launched in batches of up to 100 virtual users having the

same configuration. Automated agents of type 2 are configurable to run specific use-cases.

They also generate the largest part of load and transactions in the system.

While managing of automated agents is done with CRUD operations via RESTful API,

agents themselves communicate with the rest of the system via WebSocket [25]. There

is no communication between agents inside bot-server: all interactions are conducted via

the system under test. Also, communication is only possible between agents of different

types.

Asynchronous steps and requests in bot-server are implemented using Project Reactor [34]

and Google Guava’s ListenableFuture [21].

Initially the author of current work was one of ordinary contributors of the bot-server,

who implemented bots for few use-cases and fixed some defects. The architecture of the

bot-server was not designed by the author. However, as a result of current project the

author became one of the key maintainers of this component, who detects and fixes issues

in use-case scenarios and introduces new features.

3.2 Required Changes in Bot-Server

Bot-server has not been originally designed for system or performance tests. This fact

required introduction of few changes. Both system and performance tests presume pro-

cessing of incoming and outgoing requests: system tests for validation (some messages

should have expected values in specific fields, and other messages should not be sent or

received at all), and performance tests for collecting metrics, such as rate of requests or

response time. Observer design pattern [20] was used for acquiring requests and responses

from the automated agents; latter processing depended on type of test.

Use of Micrometer required migration of bot-server to Spring Boot.

24

3.3 Functional Tesing: System and Pipe-Clean Tests

Designed functional tests serve two purposes. Their major goal was system testing, and

they were also used for validation of use-case scenarios as discussed in Section 2.2.5.

There are 18 major use-case scenarios in the system, and the bot-server currently supports

12 of them. Architecture of the service allows to cover all of them with only one test

scenario script, which takes use-case as a parameter.

3.3.1 Implementation

The main idea of design of functional tests is based on running limited number of auto-

mated agents with strict validation of the most important incoming and outgoing requests.

Designed tests are triggered from Jenkins [45] with multiple parameters: duration, envi-

ronment to run in, number of virtual users, use-case scenario, and git branch.

The test was implemented using JUnit 5 [77]. Automated agents are launched in the main

thread, which is then paused by calling Object.wait(timeout) [69] on specific object. This

shared object is accessible from all threads and it notifies main thread in case of error,

and it also has a string field for storing details about error. After launching, automated

agents act asynchronously. Each automated agent has its own observer, were validation

of requests and responses occurs and which contains reference to shared object. In case

of any unexpected request or response, the error message is set to shared object and the

signal is passed to the main thread with Object.notify() [68]. Spurious invocations of

Object.notify() are handled by checking failure condition in while loop, as recommended

by Oracle [69]. Attributes of shared object are stored as atomic [73] variables, so that

the updated values are seen between threads. Described test flow is also demonstrated on

Figure 2.

25

Figure 2: Communication between threads in functional tests

3.3.2 Results

AsTable 3 shows, distribution of found errorswas unequal between two tested components:

much more errors were found in load generator’s use-case scripts than in the system under

test. As mentioned in Section 2.2.3, the reason was version-dependence of use-case

scenarios.

Two errors in the system under test were found, and one of them had large significance.

Functional tests had quite large number of false positive results. This was caused by usage

of shared environment. For example, some number of test failures were caused by the

system’s redeployment by other team members during the test. For this reason at some

stage both functional and non-functional testing has been completely moved to dedicated

environment.

Number of executions 85

Number of errors found in use-case scenarios 15

Number of errors found in the system under test 2

Number of false positives 12

Table 3: Results of system and pipe-clean tests

26

3.4 Non-Functional Testing: Performance Tests

This section describes how the solution for performance testing was implemented and

how performance testing is conducted, based on the process listed in Section 2.2. The

section does not describe how test environment was built, as it was done by other people.

This section also does not describe how use-case scenarios were implemented: existing

use-case scripts were reused and new ones were not created during this project; instead,

existing use-case scripts were fixed as a result of functional testing.

3.4.1 Non-Functional Requirements Capture

Main objective of designed performance tests is detection of possible performance re-

gressions. This means that major source of requirements is live operations team. For

confidentiality reasons collected requirements can not be listed in current work, however,

it is possible to provide an insight what do these requirements include. First thing was

to define scenarios which cause the highest load of the system in production. Scenarios

include name of business process, duration of the process, and number of concurrent users.

Names of interviewed persons were also included. Most critical requests and their error

rates in production have been considered as well.

Other important source of requirements is development team implementing architectural

changes. Processes, which were the most affected by architectural changes, were collected.

QA team provided detailed functional requirements. Deadlines were set by the head of

department.

3.4.2 Generation of Test Data

The database in testing environment has been populated by making copy from production

database with obfuscation of sensitive information, like usernames. This part has not been

done by the author of current work.

There was also need in database entries which are referenced in test scripts. At early stages

of the project required objects were created manually. However, the script for generating

27

INSERT SQL queries has been written later for automatic creation of any number of

required objects. The script was written for only one required use-case out of 12, and the

selection of the use-case was based on its importance in real life. Generated query created

objects with negative ID’s in order to avoid collisions with ID’s generated by database

sequences.

3.4.3 Implementation of Test Scenarios

Test scenarios are created with a web form by a tester before execution. Following fields

have to be filled: use-case, number of agents of type 1, number of agents of type 2, number

of iterations, and also time interval in seconds within which all virtual users are logged

in and start activity. In case multiple use-case scenarios need to be launched in parallel,

which is closer to real-life conditions, then the form is filled again.

3.4.4 Load Generator

Load generation is currently done with only one server. When it works at full capacity,

all crucial services in a cluster have from 80% to 90% of CPU utilization (Figure 15). All

services still remain responsive. At the same time, CPU utilization of the load generator

itself is approaching 100%, as demonstrated on Figure 3. Memory utilization is not a

bottleneck of the load generator, as shown on Figure 4 (green correspnds to eden space,

orange: old generation space, and blue: survivor space).

28

Figure 3: CPU utilization of the load generator at the highest load

Figure 4: Memory utilization of the load generator at the highest load

3.4.5 Collection of Metrics

Spring Boot Actuator with Micrometer was chosen for collection of metrics as a stan-

dard solution for Spring Boot Applications. It is thread safe, which is very important

29

for load generator as a concurrent environment. Request times were collected using

Timer.Sample [31], throughput of requests was collected with Counter [28], and number

of concurrent virtual users was measured with Gauge [29, 30].

System

under test

Load

Generator
Tool

Utilization of resources

(CPU, RAM, etc)

+ + Zabbix

Number of threads + VisualVM, Spring Boot Ad-

min

Number of concurrent

users

+ Micrometer, Grafana

Requests per minute + Micrometer, Grafana

Response time + Micrometer, Grafana

Table 4: Metrics collected by designed solution

Table 4 demonstrates main metrics collected by designed solution, which were observed

during trial performance tests and optimization of the load generator. There are much

more metrics related to resource utilization collected by Zabbix, however, these are the

starting point for analysis of performance tests’ results.

The author of current work was responsible for metrics collection from load generator.

Figures below demonstrate, how collection ofmetrics was introduced. Examples of graphs

produced by these samples are shown in Section 3.4.7.

For measuring requests rate per unit of time, theCounter [28] fromMicrometer framework

must first be introduced. Its usage is demonstrated on Figure 5.

30

p r i v a t e Me t e rReg i s t r y me t e rR e g i s t r y ;

p u b l i c vo id onUse rAc t i onReques t () {

me t e rR e g i s t r y . c o u n t e r (" u s e r . a c t i o n . r e q u e s t ") . i n c r emen t () ;

}

Figure 5: Usage of Micrometer’s Counter

Figure 5 also demonstrates correct usage of naming conventions [22].

In order to display result in Grafana, PromQL’s rate() [18] function was used, which is

shown on Figure 6.

r a t e (u s e r _ a c t i o n _ r e q u e s t [1m])

Figure 6: PromQL’s rate() function

In case of responses it was crucial to measure not only their rates, but also distribution by

response statuses. Response in this context means not HTTP status, but the logical status

which indicated result of request processing. This was achieved by using tags, like shown

on Figure 7.

p u b l i c vo id onUse rAc t ionResponse (Response r e s p on s e) {

me t e rR e g i s t r y . c o u n t e r (" u s e r . a c t i o n . r e s p on s e " , " s t a t u s " , r e s p on s e .

g e t S t a t u s () . name ()) . i n c r emen t () ;

}

Figure 7: Usage of Micrometer’s Counter with Tags

It is also important to count number of active users at each point of time during performance

testing. Gauge [30, 29] is the right class to achieve this. Figure 8 demonstrates how it was

used.

31

@Pos tCons t ruc t

p u b l i c vo id c oun tAc t i v eUs e r s () {

Gauge . b u i l d e r (" u s e r s . a c t i v e . coun t " , t h i s : : a c t i v eU s e r sCoun t)

. r e g i s t e r (m e t e rR e g i s t r y) ;

}

Figure 8: Usage of Micrometer’s Gauge

Finally, it is important to measure response times of the most critical queries. It was done

using Timer [33, 31], which is demonstrated on Figure 9.

p r i v a t e Timer . Sample u se rAc t i onSamp l e = bu i l dT ime r (" u s e r . a c t i o n .

r e sponse−t ime ") ;

p r i v a t e Timer bu i l dT ime r (S t r i n g name) {

r e t u r n Timer . b u i l d e r (name)

. p u b l i s h P e r c e n t i l e s (0 . 1 , 0 . 9)

. p u b l i s h P e r c e n t i l eH i s t o g r am ()

. d i s t r i b u t i o n S t a t i s t i c E x p i r y (Du r a t i o n . o fMinu t e s (3 0))

. minimumExpectedValue (Du r a t i o n . o fM i l l i s (1))

. maximumExpectedValue (Du r a t i o n . o fSeconds (1 0))

. r e g i s t e r (m e t e rR e g i s t r y) ;

}

p u b l i c vo id onUse rAc t i onnReques t () {

me t e rR e g i s t r y . c o u n t e r (" u s e r . a c t i o n . r e q u e s t ") . i n c r emen t () ;

u s e rAc t i onSamp l e = Timer . s t a r t () ;

}

p u b l i c vo id onUse rAc t ionResponse (Response r e s p on s e) {

u se rAc t i onSamp l e . s t o p (l og i nT ime r) ;

m e t e rR e g i s t r y . c o u n t e r (" u s e r . a c t i o n . r e s p on s e " , " s t a t u s " , r e s p on s e .

g e t S t a t u s () . name ()) . i n c r emen t () ;

}

Figure 9: Usage of Micrometer’s Timer

32

Figure 9 also demonstrates how publishing of percentiles was implemented.

3.4.6 Performance Test Execution

Checklist on Figure 10 enumerates all steps needed for execution of designed performance

tests.

1. Check that environment is not being used by other team members

2. Check that deployed version of the system is stable and passes unit and integration

tests and has no functional errors

3. Deploy required version of the system and load generator to testing environment

4. Check in Spring Boot Admin that all services are up and running

5. Check that system monitoring (Zabbix and Grafana) works properly

6. Check that Graylog receives logs from all services

7. Check that objects referenced in use-case scripts are stored in database

8. Execute pipe-clean tests for validation of use-case scenarios

9. Create testing scenario with web form and start the test

Figure 10: Checklist for performance test execution

Apparently, most of the steps are just checks. If they are done, then the team would not

encounter such cases like discovering that logging did not work correctly during testing

after long-running test, or struggling to detect issues only to find that the use-case scenarios

was non-valid.

33

3.4.7 Post-Test Analysis

This section describes the process facilitated by designed solution for performance testing.

Actual results are not added here for confidentiality reasons. However, some sample graphs

acquired by designed solution are present.

First thing to analyze in results of performance testing is number of concurrent users and

its change over the time. All other metrics should correlate with this graph. Each case

of decreased number of users may indicate some sort of failure caused by performance,

concurrency, or functional issue. An example is demonstrated on Figure 11.

Figure 11: Monitoring of number of concurrent virtual users

Next thing to analyze is a rate of request and responses during performance test. Figure 12

demonstrates how rates of clients’ incoming messages are monitored.

34

Figure 12: Monitoring of request rate

When it comes to requests sent by clients, not only request rate is important, but also

rate of responses with distribution by response status. This helps to check if permitted by

requirements error rate was exceeded or not. Upper green graphs on Figure 13 shows rate

of requests per minute, blue represents successful responses, and other colors stand for

responses with errors of different kinds.

Figure 13: Monitoring of request rate with tags

35

Figure 14 demonstrates how monitoring of response time was implemented. Currently, it

shows average, maximum response times, and also required percentiles. Percentiles to be

shown are defined by use of Micrometer’s Timer, which is shown on Figure 9.

Figure 14: Monitoring of response time

Then, utilization of resources is analyzed in Zabbix (Figure 15, Figure 16). This should

be checked for all components of the system under test including load generator.

Figure 15: Utilization of CPU by one of the system’s components

36

Figure 16: Utilization of memory by one of the system’s components

If the test has been conducted for sufficient period, then RAM utilization could be checked

for presence of any memory leak.

Another thing to check is whether the load is distributed equally between all servers in the

cluster. If not, this can indicate some sort of error in test scenario configuration, or even

in a load balancer.

Final step is log analysis, which is done using Graylog. One should select proper day

interval with UI date picker, and then insert search query [27] shown on Figure 17.

env i r onmen t : p e r f o rm a n c e _ t e s t i n g AND l e v e l : <6

Figure 17: Graylog query for acquiring errors and warning generated during performance

testing

Collectedmetrics are compared to values defined in non-functional requirements. Analysis

step also includes comparison of current and previous test results. In current solution

results of previous executions could be found in the same monitoring systems.

As a result of analysis it must be clear whether the sysem meets non-functional require-

ments and are there any performance regressions.

37

4 Analysis

4.1 Comparison with Other Solutions

4.1.1 Apache JMeter

This work would be complete without any comparison between designed solution and the

top tool for performance testing: Apache JMeter. It was used in Bachelor thesis of Kaarel

Purde [75]. Only response time of the system under test was analyzed in that work.

Apache JMeter is a standard tool, meaning support of community and its knowledge on

labor market. It is also extremely flexible. Initially it was designed for testing of web-

applications, however, today it is suitable for testing of more complex systems. Apache

JMeter supports multi-server load generators, where one instance is a master, and others

are slaves [14], which could be useful for current project. WebSocket support can be added

with plugins [80], as well as monitoring of utilization of resources [15]. Apache JMeter

provides reporting out of the box, however, if the team prefers Grafana, it is possible to

write test data to InfluxDB [1] and then display it with Grafana [13].

However, JMeter does has no support of Protobuf [23], used for serialization of messages

in the system. It is still possible to write test plans in Java rather than in .JMX format in

order to overcome this obstacle. It is doubtful though that such solution would be easier to

implement than a custom one, or bring any advantages. Moreover, it is also an advantage

if same monitoring system is used in production and testing environments. For these

reasons Apache JMeter has not been used for this project.

It is worth to mention that designed during this work solution supports similar definition of

test properties with UI, as Apache JMeter does, where properties are Number of Threads

(users), Ramp-Up Period (in seconds), and Loop Count [11, 12], which is demonstrated

on Figure 18:

38

Figure 18: Apache JMeter, UI for definition of test scenario [11]

4.1.2 Solution of Viktor Reinok

In 2016 in his Master’s thesis Viktor Reinok proposed solution for performance evaluation

of Java applications [76]. Not only HTTP request time is measured, but also program’s

context tree size and number of database queries per each request. Proposed solution also

compares acquired test result with previous one automatically. Moreover, the solution is

fully automated and can be integrated in CI. However, it is not clear whether the solution

differentiates between fetching data from database or from cache, which is implemented

in many projects using Spring [39], Hibernate [24] or Redis [51].

Utilization of resources is not measured in proposed solution. It was also designed for a

monolith application, which is not the case for current project. For this reason in context

of current work, such solution could be useful for isolated performance testing of some

services of the system.

39

4.1.3 Web Performance Load Tester

Web Performance conducts testing of less complex systems than one tested during this

work. The company is focused on testing of web-applications. Nevertheless, their case

studies [40] still deserve attention, because the company produced high-quality perfor-

mance testing tool for systems which should be able to handle thousands or even millions

of concurrent users, like a state-level election website [41]. The main question is whether

the developed solution is suitable for same-level performance analysis. Investigation in

provided case studies rely on the same metrics collected with current solution, so the

answer is yes: the designed solution is suitable for performance analysis of enterprise

scale systems.

It is important to note that provided case studies demonstrate that competence of perfor-

mance testers play crucial role in analysis: skills of DBA, live operations, and system

administration teams are required for detailed analysis. Also, the case studies demon-

strate that quite often the configuration is the reason of performance deficiencies [42], and

this proves why making testing environment a full copy of production environment is so

important.

Case studies stress the importance of database monitoring [42, 43]. This is the main thing

to improve in designed solution and process.

4.1.4 Previous Solution for Performance Testing

In the beginning of the project there were two options for load generation. First was

to use existing solution for performance testing. It has already been used for few years.

Moreover, the solution had simple implementation. At the same time the teamwas looking

for the way to diminish maintenance cost of performance testing solution. This is how

the idea of using bot-server appeared: in addition to its direct tasks, bot-server could be

also reused for load generation in performance testing. Being used in production means

thorough detection of errors and their fixing with high priority. Disadvantage of this

approach is its relative complexity compared to the first option. This disadvantage was

partially diminished by implementation of functional tests for use-case scripts and test

40

scenarios in new solution.

Besides simplicity and maintenance, two solutions have other differences. Firstly, virtual

users in the original solution had synchronous behavior: for example, all virtual users are

logged in at the same time, and when the login of the last one is done, then agents proceed

to the next step all together. On the contrary, in bot-server agents act asynchronously at

their own pace. This behavior is closer to real life.

Secondly, new solution provides wider range of metrics: while old solution collects

and analyzes only server response times, new solution also provides information about

utilization of resources by the system under test and load generator itself.

Both solutions highly depend on data entries, which should be stored in database prior to

starting of test. This work includes automated solution for generation of SQL scripts for

inserting this data.

Finally, while execution of newly developed performance tests is easy, it is still manual,

unlike previous solution, which had fully automated and scheduled test jobs.

4.2 Consequences of Decision of Load Generation

Intensive usage of bot-server in system and performance tests meant thorough testing of

bot-server itself. Shortly before start of this project the bot-server underwent fundamental

changes: its functionality was significantly enhanced. In addition, changes in communi-

cation protocol were made. Cost of such dramatic changes was introduction of new bugs.

Errors in bot-server, not in the system under test, were the first issues detected by designed

functional tests.

Decision to migrate bot-server to Spring Boot for enabling usage of Micrometer for

collection of metrics had positive impact. Deployment of bot-server became easier.

Furthermore, it enabled to use Spring Boot Admin [38] for management of the service.

41

4.3 Possible Design Patterns for Processing of Messages

Invocation of methods for collection of metrics could be added directly to the places

where they are required. Design of this approach is the simplest, however, it breaks

single responsibility principle for classes and methods. Moreover, this approach is highly

invasive, as the changes are required in large number of classes. Using Observer [20]

OOP design pattern and concentrating functionality for collection of metrics facilitates

its testing. Since an error in observer may violate main flow of a process, unit-testing

is important. Replacing Micrometer with other framework is also easier in this case,

even though its necessity is improbable. Final advantage of such approach is an ability

of storing state for collecting metrics, which in this case were timers, which started on

request, and stopped on responses. It was beneficial in cases when handling of requests

and responses is made in different classes. However, observer still needs to be invoked

from the points of interest. If intervention into existing code would not be possible, then

observers could be added and invoked using Javassist [5]. Same approach was used by

Viktor Reinok in his Master’s thesis [76].

Other possible approaches are based on using proxies. InvocationHandler [66] in Java

enables creation of dynamic proxies. This approach requires minimal changes in existing

code. Necessity to create relatively large number of new classes is a drawback.

Aspect-oriented programming could be another option. Like previous one, this approach

avoids changing existing code andmixing different-purpose functionality in samemethods

and classes. Its implementation in Java is based on proxies. While original implementation

is AspectJ [16], Spring AOP is easier to use [35]. However, the latter can only be applied

for beans managed by Spring container, whereas the former is applicable for all classes.

4.4 Functional Testing: System and Pipe-Clean Tests

Execution of system test requires existing entities in database. As the number of objects

is small, it is not a problem. Possibility to run tests with different Jenkins parameters is

an advantage, which makes these tests flexible. For this reason, there is a possibility of

scheduling automated launches of the tests. Another advantage is the fact that all use-

42

case scripts are able to be tested with the same test scenario due to generic nature of the

processes.

The tests though do require some investigations in case of failures, because some errors

are caused by the fact that tests run in environments used by other team members.

Currently, majority of errors discovered by designed functional tests are found in load

generator’s use-case scripts. To be more reliable and trustworthy source of information as

system tests, they need some history or working without any failures in load generator.

4.5 Non-Functional Testing: Performance Tests

4.5.1 Generation of Test Data

Making copy of production database is probably the best solution for populating database.

This makes results of performance tests sufficiently reliable, as the data has the same

volume as in production.

When it comes to data referenced directly in test scripts, then using scripts for automatic

generation is highly preferable overmanual input. The only advantage of the latter approach

is that it always produces valid results. However, database schema does not undergo

significant changes in such mature system as the system under test, so the importance

of this factor is rather negligible. Automatic generation of test data becomes critical if

necessity of resetting database to its initial state after execution of test occurs. Otherwise,

time-consuming routine of manual test data input has to be repeated before each launching

of performance tests.

At the same time it is beneficial that automatic data generation has not been used for

population of database to production volume: in this case production and testing databases

would have different distribution of saved entries over the data structure used for storing

data.

43

4.5.2 Implementation of Test Scenarios

Even without introduction of designed form for defining test scenarios, it was still possible

to run performance tests: as described in Section 3.1, automated agents could be launched

in batches of up to 100 virtual users. However, this approach was less convenient as

designed solution and it also was more error prone in terms of launching correct number

of virtual users.

Other problem that has been solved is too fast connection of virtual users at the beginning

of the test. Too fast starts produced the load higher than expected. Figure 19 demonstrates

spike in CPU utilization of load generator.

Figure 19: Increased CPU utilization of load generator at performance test start

Number of virtual users was almost the same throughout the test. Such spikes are accom-

panied by higher error rates in the system:

44

Figure 20: Increased error rate at the start of the test

Green graph on Figure 20 corresponds to requests, purple and blue lines correspond to

valid responses. Other lines in the beginning of graph correspond to errors caused by spike

of load. Such cases should only be tested if they are indeed anticipated in production.

Launching virtual users more smoothly as demonstrated on Figure 21 is more preferable

as it enables to avoid such spikes, which was done during this work.

45

Figure 21: Smooth ramp-up implemented in this work

4.5.3 Performance of Load Generator

In case of Micrometer, Timers require special attention as this is the most memory-

consuming metric [33]. For this reason response time is measured not for all, but only for

the most crucial requests. However, as Figure 4 demonstrates, currently the memory is

not a bottleneck of performance of load generator. On earlier stages of development CPU

utilization was smaller with the same number of virtual users. For this reason optimization

should be tried before adding more capacity or building multi-server load generator.

Taking that into consideration, designed solution is ready for load and endurance tests, but

for stress tests it requires more optimization.

4.5.4 Ease of Running

Launching of designed performance tests cannot be automated or scheduled. Manual

launching with UI of load generator is still easy.

46

The most significant bottleneck of the process was adding test data to database for entities

referenced from use-case scripts. Taking that into consideration, SQL scripts for test data

input should be prepared for all remaining use-case scenarios.

4.5.5 Reporting and Analysis

Current solution provides sufficient number of metrics for performance analysis of the

system. Despite the fact that only CPU and RAM monitoring by Zabbix was mentioned

so far in this work, the tool provides much wider range of metrics. It is possible to analyze

past test executions as well, however, if heap and thread dumps are required, they should

be done manually during the test.

Monitoring and reports have things which require improvement. Current solution only

makes high-level performance testing. Now it is impossible to detect minor performance

regressions due to statistical errors. For example, if performance of the system decreases

by 1% with some release, it is impossible to detect that with graphs unless performance

meets requirements. It is unlikely though that such minor regressions could be detected

with any performance test of fully integrated system at all. For more precise analysis,

isolated performance tests for each component are required.

Also, load of a database is currently not analyzed. It is highly desirable as the database is a

common bottleneck in system’s performance. For database analysis number of executions

of each query is required: the most frequent queries should be the first to be optimized.

Other thing to investigate is execution plan. Execution time of a query could only be

reliable metric only if a database in testing environment has the same volume as in

production. Otherwise, even non-optimal queries would require little time for execution.

For instance, a query running just 10 ms in development environment can cause severe

performance issues in production.

Information on Oracle database statistics can be obtained using dynamic performance

views [65], for example, V$SQL:

47

SELECT ∗ FROM V$SQL ;

Figure 22: Query statistics for Oracle database

Using query on Figure 22 information as number of executions, elapsed and CPU time,

and cost of specific query can be obtained [70].

Information on database performance can be also obtained in a more convenient way

using Oracle Enterprise Manager [71], which is a standard tool for Oracle database

monitoring and which relies on using dynamic performance views. Features of Automatic

Database Diagnostic Monitor (ADDM) are required for analyzing results of performance

testing [67]. ADDM enables to analyze real-time metrics, such as CPU usage, I/O

operations, and throughput of transactions. ADDM is also useful for optimization: it

provides such information as top SQL statements consuming the largest part of database

activity.

4.6 Future Development

Aside from its direct goal, this project had tremendous influence on the design of bot-

server. A lot of extra work need to be done though. To start with, plan for refactoring

of bot-server has been prepared: as it was developed by different people, in some places

it lacks consistency. Besides, fail-fast design approach is going to be implemented in

bot-server in order to make detection of errors during exploitation more easily.

In nearest future there is a plan to implement full set of use-case scenarios of the system

in load generator, so that tests would be able to provide complete information on system’s

performance.

Another thing remained undone is export of test reports. While data is can be displayed

graphically in monitoring systems in convenient ways, it is not stored there forever. This

means that if stakeholders require the report about how the performance of system changed

in one year, then this information might not be available until separate storage for acquired

data is implemented.

48

Mutation testing could make evaluation of designed solution more efficient, thus there are

plans to conduct this type of test after finishing all features mentioned above.

Finally, it is extremely necessary to optimize CPU utilization of the load generator to make

it suitable for stress testing.

49

5 Summary

The goal of this work was to develop a solution for performance testing for a system,

which usage is based on real-time interactions between agents. The solution was based

on classical approach for performance testing. The work has special focus on functional

testing of use-case scenarios, load generation, and collection of metrics.

For load generation an existing service has been used, and this decision had enormous

positive impact on its development. Load generator underwent thorough functional testing,

as well as the system under test itself, which enabled to detect large number of issues and

fix them with reduced cost.

Designed performance tests are triggered from UI of load generator. Test results can

then be observed using Zabbix (utilization of resources of the system under test) and

Grafana (number of concurrent users, rate of requests, response time). Functional issues

encountered during performance tests are observable as response statuses in Grafana or in

Graylog if details are required.

All in all, designed framework is able to provide detailed information about behavior of

the system under load and it is already being used for performance testing of real-life

enterprise system. Current results seem to be positive, however, the true value of designed

solution can only be assessed after months and years of usage. After the completion of

this thesis, the development of the solution is going to be continued.

50

References

[1] InfluxData. https://www.influxdata.com/. Accessed: 2019-04-28.

[2] Post-mortem on the Skype outage. https://beeyeas.blogspot.com/2014/01/

cio-update-post-mortem-on-skype-outage.html. Accessed: 2019-04-28.

[3] Load Impact AB. Load Impact. https://loadimpact.com/. Accessed: 2019-

04-28.

[4] Amazon. Amazon EC2 On-Demand Pricing. https://aws.amazon.com/ec2/

pricing/on-demand/. Accessed: 2019-04-28.

[5] Shigeru Chiba. Javassist. http://www.javassist.org/. Accessed: 2019-04-28.

[6] Gatling Corp. Gatling. https://gatling.io/. Accessed: 2019-04-28.

[7] RoyThomas Fielding. Architectural Styles and theDesign of Network-based Software

Architectures. PhD thesis, 2000. AAI9980887.

[8] The Nordic Institute for Interoperability Solutions (NIIS). X-Road. https://

github.com/nordic-institute/X-Road. Accessed: 2019-04-28.

[9] International Organization for Standardization. Systems and software engineering

– Systems and software Quality Requirements and Evaluation (SQuaRE) – System

and software quality models. https://www.iso.org/standard/35733.html.

Accessed: 2019-04-28.

[10] The Apache Software Foundation. Apache JMeter. https://jmeter.apache.

org/. Accessed: 2019-04-28.

[11] The Apache Software Foundation. Apache JMeter. Building aWeb Test Plan. Adding

Users. https://jmeter.apache.org/usermanual/build-web-test-plan.

html#adding_users. Accessed: 2019-04-28.

[12] The Apache Software Foundation. Apache JMeter. Elements of a Test Plan.

Thread Group. https://jmeter.apache.org/usermanual/test_plan.html#

thread_group. Accessed: 2019-04-28.

51

https://www.influxdata.com/
https://beeyeas.blogspot.com/2014/01/cio-update-post-mortem-on-skype-outage.html
https://beeyeas.blogspot.com/2014/01/cio-update-post-mortem-on-skype-outage.html
https://loadimpact.com/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
http://www.javassist.org/
https://gatling.io/
https://github.com/nordic-institute/X-Road
https://github.com/nordic-institute/X-Road
https://www.iso.org/standard/35733.html
https://jmeter.apache.org/
https://jmeter.apache.org/
https://jmeter.apache.org/usermanual/build-web-test-plan.html#adding_users
https://jmeter.apache.org/usermanual/build-web-test-plan.html#adding_users
https://jmeter.apache.org/usermanual/test_plan.html#thread_group
https://jmeter.apache.org/usermanual/test_plan.html#thread_group

[13] The Apache Software Foundation. Apache JMeter. InfluxDB database configura-

tion. https://jmeter.apache.org/usermanual/realtime-results.html#

influxdb_db_configuration. Accessed: 2019-04-28.

[14] The Apache Software Foundation. Apache JMeter. Remote Testing. https://

jmeter.apache.org/usermanual/remote-test.html. Accessed: 2019-04-28.

[15] The Apache Software Foundation. Apache JMeter. Servers PerformanceMonitoring.

https://jmeter-plugins.org/wiki/PerfMon/. Accessed: 2019-04-28.

[16] The Eclipse Foundation. The AspectJ Project. https://www.eclipse.org/

aspectj/. Accessed: 2019-04-28.

[17] The Linux Foundation. Prometheus. https://prometheus.io/. Accessed: 2019-

04-28.

[18] The Linux Foundation. Prometheus Query Functions. https://prometheus.io/

docs/prometheus/latest/querying/functions/#rate. Accessed: 2019-04-

28.

[19] The Linux Foundation. Querying Prometheus. https://prometheus.io/docs/

prometheus/latest/querying/basics/. Accessed: 2019-04-28.

[20] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software, chapter 5, pages 326–337. Addison-

Wesley, 1 edition, 1994.

[21] Google. ListenableFuture. https://github.com/google/guava/wiki/

ListenableFutureExplained. Accessed: 2019-04-28.

[22] Google. Micrometer Application Monitoring. Concepts. Naming Meters. https:

//micrometer.io/docs/concepts#_naming_meters. Accessed: 2019-04-28.

[23] Google. Protocol Buffers. https://developers.google.com/

protocol-buffers/. Accessed: 2019-04-28.

[24] Red Hat. Package org.hibernate.cache. https://docs.jboss.org/hibernate/

orm/3.2/api/org/hibernate/cache/package-summary.html. Accessed:

2019-04-28.

52

https://jmeter.apache.org/usermanual/realtime-results.html#influxdb_db_configuration
https://jmeter.apache.org/usermanual/realtime-results.html#influxdb_db_configuration
https://jmeter.apache.org/usermanual/remote-test.html
https://jmeter.apache.org/usermanual/remote-test.html
https://jmeter-plugins.org/wiki/PerfMon/
https://www.eclipse.org/aspectj/
https://www.eclipse.org/aspectj/
https://prometheus.io/
https://prometheus.io/docs/prometheus/latest/querying/functions/#rate
https://prometheus.io/docs/prometheus/latest/querying/functions/#rate
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://github.com/google/guava/wiki/ListenableFutureExplained
https://github.com/google/guava/wiki/ListenableFutureExplained
https://micrometer.io/docs/concepts#_naming_meters
https://micrometer.io/docs/concepts#_naming_meters
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://docs.jboss.org/hibernate/orm/3.2/api/org/hibernate/cache/package-summary.html
https://docs.jboss.org/hibernate/orm/3.2/api/org/hibernate/cache/package-summary.html

[25] Internet Engineering Task Force (IETF). The WebSocket Protocol. https://

tools.ietf.org/html/rfc6455. Accessed: 2019-04-28.

[26] Graylog Inc. Graylog. https://www.graylog.org/. Accessed: 2019-04-28.

[27] Graylog Inc. Graylog Searching Documentation. https://docs.graylog.org/

en/3.0/pages/queries.html. Accessed: 2019-04-28.

[28] Pivotal Software Inc. io.micrometer.core.instrument Counter. https://github.

com/micrometer-metrics/micrometer/blob/master/micrometer-core/

src/main/java/io/micrometer/core/instrument/Counter.java. Ac-

cessed: 2019-04-28.

[29] Pivotal Software Inc. io.micrometer.core.instrument Gauge. https://

micrometer.io/docs/concepts#_gauges. Accessed: 2019-04-28.

[30] Pivotal Software Inc. io.micrometer.core.instrument Gauge. https://github.

com/micrometer-metrics/micrometer/blob/master/micrometer-core/

src/main/java/io/micrometer/core/instrument/Gauge.java. Accessed:

2019-04-28.

[31] Pivotal Software Inc. io.micrometer.core.instrument Timer.Sample.

https://github.com/micrometer-metrics/micrometer/blob/master/

micrometer-core/src/main/java/io/micrometer/core/instrument/

Timer.java. Accessed: 2019-04-28.

[32] Pivotal Software Inc. Micrometer. https://micrometer.io/. Accessed: 2019-

04-28.

[33] Pivotal Software Inc. Micrometer Metrics: Timers. https://github.

com/micrometer-metrics/micrometer-docs/blob/master/src/docs/

concepts/timers.adoc. Accessed: 2019-04-28.

[34] Pivotal Software Inc. Project Reactor. https://projectreactor.io/. Accessed:

2019-04-28.

[35] Pivotal Software Inc. Spring AOP. https://docs.spring.io/spring/docs/2.

5.x/reference/aop.html. Accessed: 2019-04-28.

53

https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455
https://www.graylog.org/
https://docs.graylog.org/en/3.0/pages/queries.html
https://docs.graylog.org/en/3.0/pages/queries.html
https://github.com/micrometer-metrics/micrometer/blob/master/micrometer-core/src/main/java/io/micrometer/core/instrument/Counter.java
https://github.com/micrometer-metrics/micrometer/blob/master/micrometer-core/src/main/java/io/micrometer/core/instrument/Counter.java
https://github.com/micrometer-metrics/micrometer/blob/master/micrometer-core/src/main/java/io/micrometer/core/instrument/Counter.java
https://micrometer.io/docs/concepts#_gauges
https://micrometer.io/docs/concepts#_gauges
https://github.com/micrometer-metrics/micrometer/blob/master/micrometer-core/src/main/java/io/micrometer/core/instrument/Gauge.java
https://github.com/micrometer-metrics/micrometer/blob/master/micrometer-core/src/main/java/io/micrometer/core/instrument/Gauge.java
https://github.com/micrometer-metrics/micrometer/blob/master/micrometer-core/src/main/java/io/micrometer/core/instrument/Gauge.java
https://github.com/micrometer-metrics/micrometer/blob/master/micrometer-core/src/main/java/io/micrometer/core/instrument/Timer.java
https://github.com/micrometer-metrics/micrometer/blob/master/micrometer-core/src/main/java/io/micrometer/core/instrument/Timer.java
https://github.com/micrometer-metrics/micrometer/blob/master/micrometer-core/src/main/java/io/micrometer/core/instrument/Timer.java
https://micrometer.io/
https://github.com/micrometer-metrics/micrometer-docs/blob/master/src/docs/concepts/timers.adoc
https://github.com/micrometer-metrics/micrometer-docs/blob/master/src/docs/concepts/timers.adoc
https://github.com/micrometer-metrics/micrometer-docs/blob/master/src/docs/concepts/timers.adoc
https://projectreactor.io/
https://docs.spring.io/spring/docs/2.5.x/reference/aop.html
https://docs.spring.io/spring/docs/2.5.x/reference/aop.html

[36] Pivotal Software Inc. Spring Boot. https://spring.io/projects/

spring-boot. Accessed: 2019-04-28.

[37] Pivotal Software Inc. Spring Boot Actuator. https://github.com/

spring-projects/spring-boot/tree/master/spring-boot-project/

spring-boot-actuator. Accessed: 2019-04-28.

[38] Pivotal Software Inc. Spring Boot Admin. https://github.com/codecentric/

spring-boot-admin. Accessed: 2019-04-28.

[39] Pivotal Software Inc. Spring framework, package org.springframework.cache.

https://github.com/spring-projects/spring-framework/tree/

master/spring-context/src/main/java/org/springframework/cache.

Accessed: 2019-04-28.

[40] Web Performance Inc. Load testing case studies. https://www.webperformance.

com/library/casestudies/. Accessed: 2019-04-28.

[41] Web Performance Inc. Load testing with 5,000,000 concurrent users.

https://www.webperformance.com/load-testing-tools/blog/2016/

07/load-testing-with-millions-of-concurrent-users/. Accessed:

2019-04-28.

[42] Web Performance Inc. Sharepoint™ load testing services case study. https://www.

webperformance.com/library/casestudies/sharepoint/index.html. Ac-

cessed: 2019-04-28.

[43] Web Performance Inc. Site is slow under load, but the servers

aren’t busy. https://www.webperformance.com/library/casestudies/

sharepoint/index.html. Accessed: 2019-04-28.

[44] CMMI Institute. CMMI. https://cmmiinstitute.com/cmmi. Accessed: 2019-

04-28.

[45] Kohsuke Kawaguchi. Jenkins. https://jenkins.io/. Accessed: 2019-04-28.

[46] EdKorthof. Asana blog: Details on the January 22 outage. https://gatling.io/.

Accessed: 2019-04-28.

54

https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-actuator
https://github.com/codecentric/spring-boot-admin
https://github.com/codecentric/spring-boot-admin
https://github.com/spring-projects/spring-framework/tree/master/spring-context/src/main/java/org/springframework/cache
https://github.com/spring-projects/spring-framework/tree/master/spring-context/src/main/java/org/springframework/cache
https://www.webperformance.com/library/casestudies/
https://www.webperformance.com/library/casestudies/
https://www.webperformance.com/load-testing-tools/blog/2016/07/load-testing-with-millions-of-concurrent-users/
https://www.webperformance.com/load-testing-tools/blog/2016/07/load-testing-with-millions-of-concurrent-users/
https://www.webperformance.com/library/casestudies/sharepoint/index.html
https://www.webperformance.com/library/casestudies/sharepoint/index.html
https://www.webperformance.com/library/casestudies/sharepoint/index.html
https://www.webperformance.com/library/casestudies/sharepoint/index.html
https://cmmiinstitute.com/cmmi
https://jenkins.io/
https://gatling.io/

[47] EdKorthof. Facebook: MoreDetails onToday’sOutage. https://www.facebook.

com/notes/facebook-engineering/more-details-on-todays-outage/

431441338919/. Accessed: 2019-04-28.

[48] Ed Korthof. Facebook on Twitter about 2019 outage. https://twitter.com/

facebook/status/1106229690069442560. Accessed: 2019-04-28.

[49] James F. Kurose and Keith W. Ross. Computer Networking, chapter 48, page 50.

Pearson, 6 edition, 2011.

[50] Grafana Labs. Grafana. https://grafana.com/. Accessed: 2019-04-28.

[51] Redis Labs. Redis. https://redis.io/. Accessed: 2019-04-28.

[52] Zabbix LLC. Zabbix. https://www.zabbix.com/. Accessed: 2019-04-28.

[53] Testing Performance Ltd. Spike Testing And Load Testing Services. http://www.

testingperformance.org/definitions/what-is-spike-testing. Ac-

cessed: 2019-04-28.

[54] J.D. Meier, Carlos Farre, Prashant Bansode, Scott Barber, and Dennis Rea. Perfor-

mance Testing Guidance for Web Applications. Microsoft Press, 2007.

[55] J.D. Meier, Carlos Farre, Prashant Bansode, Scott Barber, and Dennis Rea. Perfor-

mance Testing Guidance for Web Applications, chapter 7, page 89. Microsoft Press,

2007.

[56] J.D. Meier, Carlos Farre, Prashant Bansode, Scott Barber, and Dennis Rea. Perfor-

mance TestingGuidance forWeb Applications, chapter 16, pages 185–204. Microsoft

Press, 2007.

[57] Ian Molyneaux. The Art of Application Performance Testing. O’Reilly Media, 2

edition, 2015.

[58] IanMolyneaux. The Art of Application Performance Testing, chapter 3, pages 50–51.

O’Reilly Media, 2 edition, 2015.

[59] Ian Molyneaux. The Art of Application Performance Testing, chapter 4, page 66.

O’Reilly Media, 2 edition, 2015.

55

https://www.facebook.com/notes/facebook-engineering/more-details-on-todays-outage/431441338919/
https://www.facebook.com/notes/facebook-engineering/more-details-on-todays-outage/431441338919/
https://www.facebook.com/notes/facebook-engineering/more-details-on-todays-outage/431441338919/
https://twitter.com/facebook/status/1106229690069442560
https://twitter.com/facebook/status/1106229690069442560
https://grafana.com/
https://redis.io/
https://www.zabbix.com/
http://www.testingperformance.org/definitions/what-is-spike-testing
http://www.testingperformance.org/definitions/what-is-spike-testing

[60] IanMolyneaux. The Art of Application Performance Testing, chapter 3, pages 37–43.

O’Reilly Media, 2 edition, 2015.

[61] IanMolyneaux. The Art of Application Performance Testing, chapter 3, pages 31–35.

O’Reilly Media, 2 edition, 2015.

[62] Ian Molyneaux. The Art of Application Performance Testing, chapter 3, page 25.

O’Reilly Media, 2 edition, 2015.

[63] IanMolyneaux. The Art of Application Performance Testing, chapter 4, pages 72–73.

O’Reilly Media, 2 edition, 2015.

[64] Ian Molyneaux. The Art of Application Performance Testing, chapter 5, pages 91–

116. O’Reilly Media, 2 edition, 2015.

[65] Oracle. Dynamic Performance (V$) Views. https://docs.oracle.com/

cd/B19306_01/server.102/b14237/dynviews_2113.htm#REFRN30246. Ac-

cessed: 2019-04-28.

[66] Oracle. Interface MeterRegistry. https://docs.oracle.com/javase/7/docs/

api/java/lang/reflect/InvocationHandler.html. Accessed: 2019-04-28.

[67] Oracle. Monitoring Real-Time Database Performance. https://docs.oracle.

com/cd/B28359_01/server.111/b28275/tdppt_realtime.htm#TDPPT033.

Accessed: 2019-04-28.

[68] Oracle. Object.notify(). https://docs.oracle.com/javase/8/docs/api/

java/lang/Object.html#notify--. Accessed: 2019-04-28.

[69] Oracle. Object.wait(). https://docs.oracle.com/javase/8/docs/api/

java/lang/Object.html#wait--. Accessed: 2019-04-28.

[70] Oracle. Oracle Database, V$SQL. https://docs.oracle.com/cd/B19306_01/

server.102/b14237/dynviews_2113.htm#REFRN30246. Accessed: 2019-04-

28.

[71] Oracle. Oracle Enterprise Manager. https://www.oracle.com/

enterprise-manager/. Accessed: 2019-04-28.

56

https://docs.oracle.com/cd/B19306_01/server.102/b14237/dynviews_2113.htm#REFRN30246
https://docs.oracle.com/cd/B19306_01/server.102/b14237/dynviews_2113.htm#REFRN30246
https://docs.oracle.com/javase/7/docs/api/java/lang/reflect/InvocationHandler.html
https://docs.oracle.com/javase/7/docs/api/java/lang/reflect/InvocationHandler.html
https://docs.oracle.com/cd/B28359_01/server.111/b28275/tdppt_realtime.htm#TDPPT033
https://docs.oracle.com/cd/B28359_01/server.111/b28275/tdppt_realtime.htm#TDPPT033
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#notify--
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#notify--
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#wait--
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#wait--
https://docs.oracle.com/cd/B19306_01/server.102/b14237/dynviews_2113.htm#REFRN30246
https://docs.oracle.com/cd/B19306_01/server.102/b14237/dynviews_2113.htm#REFRN30246
https://www.oracle.com/enterprise-manager/
https://www.oracle.com/enterprise-manager/

[72] Oracle. Oracle Java SE Licensing FAQ. https://www.oracle.com/

technetwork/java/javase/overview/oracle-jdk-faqs.html. Accessed:

2019-04-28.

[73] Oracle. Package java.util.concurrent.atomic. https://docs.oracle.com/

javase/8/docs/api/java/util/concurrent/atomic/package-summary.

html. Accessed: 2019-04-28.

[74] Oracle. VisualVM. https://visualvm.github.io/. Accessed: 2019-04-28.

[75] Kaarel Purde. Koormustestimise protsessi väljatöötamine ja läbiviimine Maakleri

rakenduse näitel, 2016. Bachelor’s thesis.

[76] Viktor Reinok. A framework for empirical evaluation of java application perfor-

mance. Master’s thesis, Tallinn University of Technology, 2016.

[77] The JUnit Team. JUnit 5. https://junit.org/junit5/. Accessed: 2019-04-28.

[78] TIOBE. TIOBE index of Java 2001 - 2019. https://www.tiobe.com/

tiobe-index/java/. Accessed: 2019-04-28.

[79] S. Yoo andM.Harman. Regression testingminimization, selection and prioritization:

a survey. Software Testing, Verification and Reliability, 2010.

[80] Maciej Zaleski. JMeter - WebSocket Sampler. https://github.com/

maciejzaleski/JMeter-WebSocketSampler. Accessed: 2019-04-28.

[81] ZeroTurnaround. XRebel. https://zeroturnaround.com/software/xrebel/.

Accessed: 2019-04-28.

57

https://www.oracle.com/technetwork/java/javase/overview/oracle-jdk-faqs.html
https://www.oracle.com/technetwork/java/javase/overview/oracle-jdk-faqs.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html
https://visualvm.github.io/
https://junit.org/junit5/
https://www.tiobe.com/tiobe-index/java/
https://www.tiobe.com/tiobe-index/java/
https://github.com/maciejzaleski/JMeter-WebSocketSampler
https://github.com/maciejzaleski/JMeter-WebSocketSampler
https://zeroturnaround.com/software/xrebel/

	Introduction
	Problem Background
	Goal Setting
	Related Works
	Outline of the Thesis

	Methodology
	Types of Performance Tests
	Process of Performance Testing
	Non-Functional Requirements Capture
	Performance Test Environment Build
	Use-case Scripting
	Performance Test Scenario Build
	Performance Test Execution
	Post-Test Analysis and Reporting
	Other Steps

	Used Tools and Technologies

	Implementation and Results
	Bot-Server as a Load Generator
	Required Changes in Bot-Server
	Functional Tesing: System and Pipe-Clean Tests
	Implementation
	Results

	Non-Functional Testing: Performance Tests
	Non-Functional Requirements Capture
	Generation of Test Data
	Implementation of Test Scenarios
	Load Generator
	Collection of Metrics
	Performance Test Execution
	Post-Test Analysis

	Analysis
	Comparison with Other Solutions
	Apache JMeter
	Solution of Viktor Reinok
	Web Performance Load Tester
	Previous Solution for Performance Testing

	Consequences of Decision of Load Generation
	Possible Design Patterns for Processing of Messages
	Functional Testing: System and Pipe-Clean Tests
	Non-Functional Testing: Performance Tests
	Generation of Test Data
	Implementation of Test Scenarios
	Performance of Load Generator
	Ease of Running
	Reporting and Analysis

	Future Development

	Summary
	References

