ISSN 0868-4081 0868-4367

TALLINNA TEHNIKAÜLIKOOLI

2 712

TOIMETISED

ТРУДЫ ТАЛЛИННСКОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА

TRANSACTIONS OF TALLINN TECHNICAL UNIVERSITY

> ИЗНОСОСТОЙКИЕ СПЕЧЕННЫЕ МАТЕРИАЛЫ И ПОКРЫТИЯ

> > TALLINN 1990

ALUSTATUD 1937

TALLINNA TEHNIKAÜLIKOOLI TOIMETISED

TRANSACTIONS OF TALLINN TECHNICAL UNIVERSITY

ТРУДЫ ТАЛЛИННСКОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА

УДК 621.762

ИЗНОСОСТОЙКИЕ СПЕЧЕННЫЕ МАТЕРИАЛЫ И ПОКРЫТИЯ

Порошковая металлургия 1Х

TALLINN 1990

Содержание

I.	D.D. Пирсо, П.К. Каллас, Д.Н. Клауч,	
	М.Е. Кущева. Износ твердосплавных кондук-	
	торных втулок	3
2.	Д.С. Аренсбургер, С.М. Летунович. Свойства	
	и применение спеченных сплавов Си-Сг	12
3.	Д.С. Аренсбургер, Т.А. Пихл, А.А. Рыук.	
	Перспективы использования защитно-износо-	
	стойких покрытий на заводе "Ильмарине"	19
4.	П.А. Кулу, Я.А. Халлинг. Защитные покрытия	
	на порошковых сталях	28
5.	Я.П. Кюбарсепп, Х.И. Аннука, Л.Э. Вальдма	
	Влияние термообработки на свойства карби-	
	досталей	36
6.	Л.Э. Вальдма, П.К. Каллас. Модернизирова-	
	ние ротационной горелки с применением	
	метода порошковой металлургки	44
7.	А.А. Лаансоо, В.Я. Лийманн, Р.А. Сиймар,	
	А.Э. Ритсо. Влияние технологических фак-	
	торов на свойства магнитомягких компози-	
	ционных материалов	52
8.	D.D. Пирсо. Влияние содержания молибдена на	
>	свойства твердого сплава Тіс-Ni-Мо	63
2 9.	A. Laansoo, V. Liiman, A. Ritso, R. Siimar	
551	Magnetischweiche Kompositionsmaterialien	
00	(MWKM) für elektrische Motoren	69
Z 10.	Я.П. Крбарсепп. Упрочнение и восстановление	
1.5	поверхностей запорных вентилей ТЭС и АЭС	
8	методом пропитки-пайки	82
II.	С.М. Летунович. П.Э. Венникас. Оптимизация	
	состава термически обрабатываемого порош-	
	кового медного сплава	91
		-
13HOCOCT	СКИИ ТЕХНИЧЕСКИИ УНИВЕРСИТЕТ. Труды ТТУ № 712 ГОЙКИЕ СПЕЧЕННЫЕ МАТЕРИАЛЫ И ПОКРЫТИЯ	

Порошковая металлургия 1Х

REAMATUR

На русск. и немец. языках. Отв. редактор: А.Пярнапуу, Д.Аренсбургер Техн. редактор: А.Андриевская. Сборник утвержден коллегией Трудов ТТУ 22.05.90. Подписано к печати 5 декабря 1990 г. Формат 60х90/16. Печ. л. 6,25+ 40,5 приложение. Уч.-изд.л. 5,42. Тираж 300. Зак. № 878. Цена 2 руб. 70 коп. Таллиниский технический университет 200108 Таллинн, Эхитаяте теэ, 5 Ротапринт ТТУ 200006 Таллинн, ул. Коскла, 2/8

 \bigcirc

Таллиннский технический университет, 1990

Nº 712

TALLINNA TEHNIKAÜLIKOOLI TOIMETISED

ТРУДЫ ТАЛЛИННСКОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА

УДК 621.762:621.891

Ю.Ю. Пирсо, П.К. Каллас, Д.Н. Клауч, М.Е. Кущева

ИЗНОС ТВЕРДОСПЛАВНЫХ КОНДУКТОРНЫХ ВТУЛОК.

В работе [I] приведены результать испытаний группы твердосплавных материалов на машине типа 2070 СМТ-I в условиях, близких к условиям эксплуатации кондукторных этулок глубокого сверления. Однако при испытании по схеме дискдиск образцы вращались в разных направлениях и при максимально возможном проскальзывании (n₁/n₂= I,24I4) машина не позволяла получить желаемую скорость относительного скольжения 70 м/мин. Для увеличения возможностей машины в каретку была вмонтирована вместо передачи из двух зубчатых колес с равными числами зубьев новая зубчатая передача из трех шестерен с равными числами зубьев, которая изменила направление вращения верхнего образца на обратное (рис. I,a). По такой схеме испытания относительная скорость скольжения (м/мин) дисков в контакте определяется по формуле:

$$v = 10^{-3} \pi (d_1 n_1 + d_2 n_2),$$

где d₁,d₂ - диаметры нижнего и верхнего образца соответственно, мм;

n₁, n₂ - частоты вращения нижнего и верхнего образца соответственно, об/мин.

Используем максимально возможное соотношение $n_1/n_2 =$ = I,24I4. Эта схема позволяет испытать имеющиеся диски при скорости относительного скольжения 70 м/мин. Верхний образец был из сплава ВК60М толщиной 5 мм, нижний обравец имел большую толщину, так что длина контактной линии составляла 5 мм. Нагрузка на верхний образец 200 Н. Смазочно-охлаждающая жидкость МРЗ, нижний образец находился в жидкости. Интенсивность изнашивания определяли на осно-

Рис. 1. Схема испытания диск-диск на машине 2070СМТ-1: а) n₁/n₂ = 1...1,2414 б) n₁/n₂ = 1500 (1...1,2414).

ве потери массы образца. Путь трения определяли отдельно для нижнего и верхнего образцов. Поскольку момент трения стабилизируется через несколько минут и изнашивание происходит интенсивно, приработка не была произведена. Результаты экспериментов приведены в табл. І. Время испытания не превышало 9 часов. Эксперимент прекращали раньше в случаях, когда вследствие неравномерного износа образцов возникала сильная вибрация каретки. Минимальное время испытания было у пары трения 469-ВК60М, всего 49 минут. 3a это время диаметр диска из сплава 469 уменьшился на I,4 мм, а биение возросло до 0,3 мм. Температура при испытании не превышала 50 °С. Состав исследованных сплавов приведен в [I] кроме сплавов А42 (50 TiC - 33 Ni-17 Mo) и A43 (50Tic-25Ni-25Mo) (Mac.%).

Сравнение данных таблиц 5 [1] и I показывает, что изменение направления вращения верхнего образца и увеличение скорости относительного скольжения образцов привело к

LOPER 1	Salara Milliotor Titua Sa	Характери	астики т	оп кинес	схеме а (рис. I)	Та (блица I
Пара трения	ним/до	Путь тре- ния, IO ³ м	Плот- ность г/см ³	Потеря массы, мг	Интенсивность из- нашивания, мм ³ /м	Момент трения, Н.м	Относительная износостой- кость
I	~	3	4	IJ	9	2	В
BK8	324	13,613	14,5	653,3	3,3097 · 10 ⁻³	I,3-I,5	I,9 ^x
BFGOM		I0,075	I4,9	468,3	3,1196.10 ⁻³		
XI2	374	13,3866	7,69	7,5	7,286 · 10 ⁻⁵	0,2-0,4	86
BKGOM		I2,963		Ι	5, I69 , I0 ⁻⁶		
452	325	I6,2429	5,7	I619, I	I,729 . I0 ⁻²	0,6-0,8	0,36 ^x
BHGOM		12,113		31, I	I,723.I0 ⁻⁴		
46I	325	3,0321	5,6	4077,6	0,24014	I,2-I,5	0,026 ^x
BRGOM		2,2423		97,6	2,921. 10 ⁻³		
469	326	2,0987	5,6	2504,6	0,2I3I	I,3-I,5	0,03
BRGOM		I,5547		73,5	3,173. I0 ⁻³		
473	325	6, 07908	9	2558,6	7,0148 · 10 ⁻²	I,5-I,7	60*0
BHGOM		4,493I		43,4	$6,483 \cdot 10^{-4}$		
522	326	2,916	5,7	2929,7	0,17626	I,2-I,5	0,036
BKGOM		2,1596		75,2	2, 337 . I0 ⁻³		
A38	324	I5,04	5,8	225,I	2,581 · 10 ⁻³	0,5-0,6	2,4
BHGOM		II,038		LI.7	7, 114 · 10 ⁻⁵		

ł

5

3	o c	2	0.036		5.4	- 5	11	10101 10101	5.8	25	F	· .
5	0.5-0.7		1.1-1.5		0.4-0.6		0.4-0.5		0.3-0.5		0.4-0.6	
6	7.022 I0 ⁻³	I,659 I0 ⁻⁴	0,17544	4,062 I0 ⁻³	I,1696 I0 ⁻³	4,43 I0 ⁻⁵	5,733 I0 ⁻⁴	I,965 I0 ⁻⁵	I,08 I0 ⁻³	3,065 I0 ⁻⁵	6,289 I0 ⁻³	2,563 I0 ⁻⁵
5	656	29.5	3673,I	I60,8	44,2	2,9	83,6	2 2	174:2	8,5	524,3	3,1
4	5, 8		5,8		6,4		6,4		6,4		7,6	
S	I6,I06	11,935	3,6097	2,6565	5,9049	4,3934	22,7835	I6,908	25,203	I8,6I	10,9692 <i>b</i>	8, II76
S	326		325		326		326		326		328	
I	A39	BK60M	A40	BKGOM	A4I	BKGOM	A42	BK60M	A43	BK60M	XI2M	BK60M

* Износостойкость занижена вследствие выкрашивания кромок образца

тому, что в последнем случае интенсивность изнашивания возрастала на 2-5 порядков. Это подтверждает исключительную важность выбора условий изнашивания при моделировании реальных пар трения [2]. Очень большая разница выявилась в износе сталей XI2 и XI2M, которую можно объяснить изменением условий изнашивания вследствие того, что диаметр образца из стали XI2 был примерно на I0 мм меньше, чем диаметр образцов из остальных материалов, диаметры которых отличались между собой незначительно. Износостойкость выше у сплавов A42, A43 и A4I, содержащих 50 % карбида титана.

Учитывая то обстоятельство, что концукторная втулка не вращается, а при данной схеме изнашивания (рис. I,a) оба образца вращаются с близкими скоростями, в целях дальнейшего приближения условий испытания к условиям работы кондукторных втулок была уменьшена скорость вращения верхнего вала в 1500 раз путем замены кулачковой муфты трехступенчатым редуктором. После этого изменилось направление вращения верхнего вала и была получена схема испытания, показанная на рис. І,б. Применяем соотношение n,/n, = 1500, принимаем скорость скольжения нижнего образца 70 м/мин, проскальзывание в контакте, ввиду малости скорости вращения верхнего образца, не учитываем. Результаты экспериментов приведены в табл. 2. Продолжительность приработки около I часа, основного опыта - 5 часов. В табл. 2 приведены данные основных опытов кроме сплавов А40 и TH20, для которых основной опыт не был произведен, поскольку вследствие неравномерного износа появилась сильная вибрация каретки.

Стали XI2 и XI2М имеют близкие значения износостойкости. Это указывает на то, что при данной схеме испытания изменение диаметра образца существенно на результат испытания не влияет. Относительно низкую износостойкость показывает карбидовольфрамовый сплав ВК8. Это объясняется близким составом трущихся тел (ВК8 и ВК6ОМ) [2]. Высокую износостойкость имеют сплавы 473, 522 и 452 на основе карбида титана. Эти сплавы можно рекомендовать для изготовления опытных кондукторных втулок, чтобы испытать их в эксплуатационных условиях. Сравнение данных таблиц I и 2 показывает, что разница в интенсивностях изнашивания одинаковых пар трения достигает 4 порядков несмотря на то, что изменилость только распределение относительной скорости

7

Таблица 2

Характеристика трения по схеме б (рис. I)

					正義が成功が	教師がの一方一日	
Пара трения	ним/до	Путь тре- ния, IO ³ м	Temnepa- Typa ^B Kamepe, oC	Потеря массы, мг	Интенсивность изнашивения, мм ³ /м	Момент трения, Н.м	Относитель- ная изно- состой- кость
I	2	3	4	5	6		α
BKB BK60M	570	27,319	43,5	1318,9 654.8	6,662 · 10 ⁻³	0,8-I,2	0,42
XI2 BK60M	768	21,961	34	329,I 0.4	I,949 · I0 ⁻³	0,I-0,2	I,43
452 BK60M	563	22,323	31	3,2	2,515 · 10 ⁻⁵	0,1-0,3	III
46I BKCOM	607	23,059	32	25,3 T.8	ب ⁴ ,959 · 10 ⁻⁴	0,2-0,3	I4,2
469 BK60M	593	22,019	33	79,3	6,431 · 10 ⁻⁴	0,2-0,3	4,3
473 BK60M	59I	22,147	31	0,9	6,773 I0 ⁻⁶	0,1-0,2	411
522 BRGOM	602	22,144	31,5	2,5	I,98I · I0 ⁻⁵	0,1-0,2	I4I
A38 BK60M	573	22,219	31 S	4.0 4.0	5,665 · 10 ⁻⁵	0,15-0,25	49

-										
8	Ø.	0,083	ດ	9, I	24,5	0,033	I			
7	0,2-0,4	0,5-0,8	0,3-0,5	0,2-0,4	0,2-0,3	I-I,2	0,40,6			
6	3,474 · 10 ⁻⁴	3,349. I0 ⁻²	5,561 · 10 ⁻⁴	3,067 · I0 ⁻⁴	I, I38 • I0 ⁻⁴	6,473.10 ⁻²	2,784 · I0 ⁻³			
5	45	1,5 931,5	40,8 79,8	45,9	0,9 I6,4	0,2 2245,5	70,5 399,5	Ι,4		
4	33	32	32	33	32,5	32,5	35			
3	22,33I	4,795	22,422	23,382	22,516	4,775	I5,853			
2	574	594.	571	570	570	619	577			
I	A39	BK60M A40	A4I A4I	A42	BK60M A43	BK60M TH20	BK60M XI2M	BH60M		

скольжения между нижним и верхним дисками. Общим для обеих схем испытания является то, что момент трения ниже в тех парах трения, в которых износостойкость выше.

Выводы

I. Разработаны и реализованы 2 дополнительные схемы испытания на трение и износ на машине типа 2070 СМТ-I.

2. Испытана группа порошковых твердых сплавов по 2 схемам. Контр-телом служил диск из сплава ВК60М.

3. Разница в интенсивностях изнашивания одинаковых пар трения по разным схемам достигает 4 порядков. Момент трения ниже в тех парах трения, в которых износостойкость выше.

Литература

I. Пирсо Ю.Ю., Каллас П.К., КлаучД.Н. Кущева М.Н. Выбор твердого сплава для кондукторных втулок // Тр. Таллиннск. техн. ун-та. 1989. № 690. С. 53--62.

2. Крагельский И.В. Добычин М.Н., Комбалов В.С. Основы расчетов на трение и износ. М.: Машиностроение, 1977. 526 с.

J. Pirso, P. Kallas, D. Klautš, M. Kuštševa

Kovasulamist konduktoripukside kulumine

Kokkuvôte

Tuuakse andmed rea kõvasulamite kulumise kohta libisemisel vastu sulamit BK 6 katsemasinal 2070 CMT-1 modelleeritud tingimustes. Suhtelise libisemise kiirusel 70 m/min andsid katsed kahe skeemi järgi erinevad tulemused.

> Y. Pirso, P. Kallas, D. Klauch, M. Kuscheva

Wear of Hard Alloy Jig Bushings

Abstract

Wear data on tester 2070 CMT-I-under modelled conditions for series of hard alloys sliding on alloy BK 6 are given. The tests gave different results according to 2 schemes at the relative speed 70 m/min.

TALLINNA TEHNIKAÜLIKOOLI TOIMETISED

ТРУЛЫ ТАЛЛИННСКОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА

УДК 621.762

Д.С. Аренсбургер, С.И. Летунович

СВОЙСТВА И ПРИМЕНЕНИЕ СПЕЧЕННЫХ СПЛАВОВ CU-Cr

В настоящей работе исследовались двойные Си-Сг сплавы, содержащие 0,8 % Сг. Уточнялись особенности термообработки сплавов и связанные с этим некоторые вопросы их практического использования.

Рис. 1. Профиль линии (420) с сплава Сu-0,8Сг, спекание 960 °С 2 часа, закалка, деформация, а-г - заключительная операция: а - старение 400 °С, 1+9 продолжительность старения; б - старение 300 °С, 1+9 продолжительность старения; в - деформация, 1+9 продолжительность нагрева под закалку, г - закалка, 1+9 продолжительность нагрева под закалку, 1-10, 2-60, 3-300, 4-600, 5-1000, 6-1500, 7-10⁴, 8-7-10⁴, 9-10 мин,

Сплавы готовились по традиционной технологии механического смешивания порошков, холодного прессования, спекания в водороде при 900 ^ОС, непосредственно после которого производилась закалка образцов в воде, далее следовало прямое прессование (выдавливание) заготовок со степенью поперечного обжатия до 90 %, полученные проволоки диаметром 3 мм, длиной 250 мм подвергались старению при 300 – 400 °C, затем с помощью моста РЗІ6 на них измерялось электрическое сопротивление. Параллельно с этим для рентгенографических исследований готовились таблетки с той же степенью обжатия, что и проволоки, с которых на дифрактометре ДРОН-2 в Сu-нефильтрованном излучении снимался профиль линии (420) меди. Полученные результаты представлены на рисунках I и 2.

Рис. I показывает влияние продолжительности спекания (нагрева под закалку) и старения на четкость дублета α_1, α_2 линии (420) сплава, что позволяет судить о степени искаженности его кристаллической структуры.

Из сравнения кривых а и б отличающихся температурами старения, следует, что стабилизация структуры после закалки и старения при 400 °С идет много быстрее, чем при 300 °С, практически заканчиваясь уже в течение первых 10-ти минут старения, дальнейшая выдержка приводит лишь к небольшому росту интенсивности пиков Ф1, Ф2 И уменьшению их ширины. Принципиально иначе вытлядит кинетика пересыщенного рараспада створа при 300 °С. Более-менее четко разделение дублета

Рис. 2. Зависимость удельного электросопротивления сплава Си-0,8 Скот режима термообработки, спекание 900 °С деформация, 1+4 заключительная операция: 1 - после спекания; 2 - спекание 10' старение 400 °С; 3 - спекание 60' старение 300 °С; 4 - спекание 1500' старение 400 °С, τ - продолжительность заключительной операции, мин.

возникает лишь после первых IO-ти часов старения, а сравнимая с кривыми распада при 400 $^{\rm O}$ С интенсивность и ширина получаются только после IO⁵ минут выдержки. Из этого следует, что старение при 400 $^{\rm O}$ С ведет к появлению более крупных выделений хрома, чем при 300 $^{\rm O}$ С, и из трех возможных при старении типов выделений: образования зон Гинье-Престона, выделений когерентно связанных с кристаллической решеткой матрицы и некогерентных с ней, распад при 300 °С вероятнее всего соответствует предпоследней, а при 400 °С - последней стадии старения.

Кривые в и г относятся к образцам, не подвергавшимся старению, у которых менялась очередность операций закалки и деформаций. Как и следовало ожидать, деформация закаленных образцов без последующего старения (кривая в) приводит к сильному размытию профиля линии, независимо от продолжительности спекания. Если же последней операцией была закалка (кривая г), то по мере увеличения продолжительности нагрева под закалку происходит растворение хрома в основе, что вызывает снижение четкости дублета, а затем вновь его некоторый рост по мере улучшения гомогенности твердого раствора.

В хорошем соответствии с рис. I находятся данные об изменении электросопротивления сплавов на рис. 2.

Сплав, не подвергавшийся старению, после закалки (кривая I) имеет немонотонную зависимость электросопротивления. Его максимум наблюдается после примерно (4-5) IO³--минутной выдержки при спекании, ему на рис. I соответствует наименьшая интенсивность пика (420) у кривых г. Лучшая проводимость сплавов справа от пика связана с более равномерным растворением хрома в основе, а слева от пика - проводимость определяется самой матрицей.

Кривые 2 и 4 на рис. 2 показывают влияние времени спекания на электросопротивление. При кратковременном спекании – кривая 2, хром не успевает в должной мере раствориться в меди, в силу чего – последующее старение сравнительно мало изменяет электросопротивление (примерно на 0,5 мкОм см), после же длительного спекания – кривая 4 изменение сопротивления почти вдвое больше и после старения оно такое же, как у чистой спеченной меди. К такому же уровню приходит электросопротивление сплава после старения при 300 С – кривая 3.

С учетом известных положений о кинетике распада пересыщенных твердых растворов при старении и свойствах получаемых сплавов, можно заключить, что старение при 300 ^оС соответствует более высокому уровню прочностных свойств при комнатной температуре, а при 400 ^оС, когда этот распад происходит интенсивнее и завершается быстрее, сплавы лучше сохраняют свои свойства при нагревании. Уровень электросопротивления при этом в обоих случаях будет одинаковым.

Большой интерес представляет знание усилий выдавливания материала, которые в общем случае зависят от механических свойств загстовки, смазки, гесметрии и шероховатости рабочих частей инструмента и, конечно, в первую очередь от степени деформации. Задача их аналитического расчета до конца не решена для беспористых заготовок [4] и тем более спеченных, в силу уже упоминавшегося более сложного механизма их деформации.

Рис. 3. Зависимость усллия выдавливания сплава Си – 0,8 Сг от степени поперечного обжатия $\phi = \Delta F/F_0$ – 1, то же сринца – 2. Сверху схема выдавлявания.

С целью оценки величины этих усилий было проведено выдавливание закаленных в воде образцов сплава Си – 0,8 Сг. Результаты представлены на рис. 3. Размеры образцов и геометрия матрицы, через которую их продавливали, изображена в верхней части рисунка. Пористость образцов для выдавливания после спекания при 900 ^ОС в течение 2-х часов была 8-IO %, шероховатость рабочих частей матрицы соответствовала 0,63 Rc, в качестве смазки был использован животный жир (свиное сало), диаметр выходного отверстия матрицы менялся черев I мм в пределах 3 - II мм, что дало возможнссть изменять степень поперечной деформации $\Delta F/$ Fo от 35 до 95 %. Выдавливание проводили на испытательной машине растяжения-сжатия с записью диаграммы.

Все кривые имеют однотипный характер – I, для сравнения выдавливались заготовки из свинца – 2, вначале быстрый рост давления, затем его стабилизация и некоторый спад на установившейся стадии выдавливания, в конце которой резкий подъем давления, когда происходит исчерпание запаса материала заготовки под пуансоном и его торец приближается к матрице. В этот момент образуется так называемая утяжина и пресс-остаток.

По величинам максимальных усилий построена зависимость удельного давления прессования от степени поперечной деформации (слева сверху) (рис. 3). При этом оказалось,что усилия выдавливания сплава (а) практически совпадают с усилиями выдавливания чистой спеченной меди (б), отличаются они лишь при очень значительном ($\Delta F/Fo = 80\%$) обжатии.

Приняв допустимые напряжения сжатия для пуансона из стали XI2M-XI2Ф равными примерно 4 ГПа [4], можно убедиться, что даже при большом обжатии удельное давление вдвое меньше, чем может выдержать материал пуансона.

Рис. 4. Схема установки контактных наконечников в держателе проволоки при сварке под флюсом:

а - однопозиционный контакт из литого медного проката; б - 4-позиционный спеченный контакт из спеченной и выдавленной заготовки.

 держатель; 2 - пружичная струбцина; 3 - контактные наконечники; 4 - сварочная проволока,

Сравнительно просто решается выдавливанием задача получения деталей с отверстиями малого диаметра, представляющая значительную сложность при их высверливании в мягком и вязком медном сплаве. Типичными в этом смысле являются мундштуки сварочных горелок для газовой и электрической сварки. Другой характерной деталью оказались контактные наконечники машин автоматической сварки под флюсом. К ним предъявляются требования электропроводности на уровне 60-70 % от электропроводности меди, должно быть более высокое, чем у меди, сопротивление истиранию. На рис. 4 представлен разработанный нами контакт для сварочных машин. Конструктивной особенностью спеченного контакта, обусловленной технологией его получения, является наличие четырех направляющих канавок для сварочной проволоки, в отличие от одной при его получении из медного проката обработкой резанием. Предложенный контакт 5 имел четыре рабочих грани, может использоваться повторно после износа направляющей канавки путем поворота сопряженной пары в следующую рабочую позицию.

Получение контактов методом выдавливания предварительно спеченной заготовки взамен обработки резанием дает кроме всего возможность делать их биметаллическими с износостойкостью внутренней рабочей поверхности из термообрабатываемого медного сплава (например, Cu-Cr, Cu-Zr и др.) и медной наружной частью, к тому же пустотелыми.

Выводы

Исследовано влияние режимов термо-механической обработки спеченных сплавов Си-Ср на их структуру и электросопротивление. Определены усилия выдавливания спеченных заготовок и описана конструкция электроконтакта.

Литература

I. Аренсбургер Д.С., ЛетуновичС.М. Свойства слеченных дисперсионно-твердеющих медных сплавов// Порошковая металлургия. 1986. № 7. С. 27-32.

2. А ренсбургер Д.С. Свойства дисперсионнотвердеющих порошковых медных сплавов. Порошновая металлургия. 1988. № 2. С. 37-41. 3. Николаев А.К., Розенберг В.М. Сплавы для электродов контактной сварки. М.: Металлургия, 1978.

4. Фаворский В.Е. Холодная штемповка выдавливанием. Л.: Машиностроение, 1966.

5. А.с. № II99522 СССР.Устройство для дуговой сварки плавящимся электродом. Аренсбургер Д.С., Летунович С.М., Ершов Ю.Б., Саарсе Я.М. Опубл. 23.12.85. Бюлл. № 47.

D. Arensburger, S. Letunovits

Paagutatud Cu-Cr-sulamite omadused ja kasutamine

Kokkuvõte

Artikli autorid on uurinud niisuguse sulami paagutamise ja termilise töötlemise režiime, mille koostis on Cu-O,8 Cr. On maaratud vajalikud jõud nende kulmekstrudeerimiseks. Kirjeldatakse rabustialuse keevitamise puhul kasutatava automaadi otsikut.

D. Arensburger, S. Letunovich

Properties and Application of Cu-Cr Sintered Alloys

Abstract

Problems of structure formation of powder-made Cu--0.8 Cr specimens in the course of sintering and heattreatment are discussed. Forces required for cold pressing have been estimated and an electric contact intended for submerged arc-welding machine has been described. M 712

TAILINNA TEHNIKAÜLIKOOLI TOIMETISED

ТРУДЫ ТАЛЛИННСКОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА

УДК 621.762

Д.С. Аренсбургер, Т.А. Пихл, А.А. Рыук

ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ ЗАЩИТНО-ИЗНОСОСТОЙКИХ ПОКРЫТИЙ НА ЗАВОДЕ "ИЛЬМАРИНЕ"

Возможности защитных покрытий для увеличения срока службы деталей машин в настоящее время достаточно широки. Главным обстоятельством, благоприятствующим их внедрению в заводскую практику, является доступность промышленного оборудования для нанесения покрытий, в том числе выпускаемого совместными советско-зарубежными фирмами ("Интерфакел," "Техникорд" и др.). Несколько таллиннских предприятий начали использовать защитные покрытия, для чего организовали соответствующие производственные участки, роль и число которых по мере освоения новых технологий будет возрастать.

Совместная работа ТТУ и завода "Ильмарине" по использованию защитных покрытий в последние годы, позволила получить первые положительные результаты как в изготовлении отдельных конкретных деталей, так и в оценке перспективности защитных покрытий на заводе в целом.

В настоящее время ТТУ располагает возможностями для нанесения покрытий.

I. Порошковые покрытия, наносимые газопламенным методом.

2. Плазменные покрытия.

3. Ионно-плазменные покрытия, наносимые в установке "Булат".

4. Электро-искровые покрытия.

В результате ознакомления с проблемами завода постепенно определился круг вопросов, в решении которых защитные покрытия могут дать ощутимый эффект. Все перспективные для покрытий детали условно разделены на три группы: оснастка, инструменты и собственная продукция завода.

I. Инструменты. Перспективно применение ионно-плазменных покрытий, наносимых в установке "Булат" типа нитридов и карбонитридов титана, хрома, алюминия и других металлов толщиной в несколько мкм для увеличения долговечности режущих инструментов за счет повышения поверхностной твердости и снижения наростообразования при резании. Хорошие результаты дает покрытие на сменных твердосплавных пластинах, а также инструментах из быстрорежущей стали, хотя в последнем случае следует иметь в виду возможность отпуска инструмента из-за нагрева до 300-400 °С при нанесении покрытия. После переточки инструмента покрытие следует возобновить, для чего на заводе должен быть налажен сбор и централизованная переточка отработанных инструментов и пла-CTHH.

Рис. 1. Подающая и зажимная цанги шестишпиндельного токарного автомата.

2. Оснастка. Цанги и кулачки (рис. I). Весьма трудоемкой в изготовлении и быстро выходящей из строя вследствие износа деталью оснастки является зажимная цанга токарных автоматов и полуавтоматов, особенно шестишпиндельных. Цанга изготовлена из пружинной стали 65Г, подвергается закалке и среднему отпуску, часто трескается в ходе тєрмообработки, а при работе в течение 3-4 месяцев у нее изнашивается поверхность отверстия, она перестает держать заготовку и поэтому выбрасывается. Способом снижения потерь от брака при термообработке является замена материала цанги на более трещиностойкий: пружинную сталь 40ХФА или инструментальную ХВГ, ХГ и др. Однако это мало повлияет на износ цанг в работе.

Опытным путем было установлено, что покрытие изношенной поверхности цанги газопламенным способом с помощью износостойких порошков слоем толщиной 0,5-I мм позволяет полностью восстановить ее работоспособность. Испытание изношенных и восстановленных цанг на шестишпиндельных токарных автоматах показало, что они проработали полтора года и продолжают работать, в то время как новые цанги выдержали лишь 3-4 месяца эксплуатации.

Дополнительным преимуществом цанг с нанесенным износостойким покрытием является возможность не закаливать их на слишком высокую твердость 50-52 НРС, т.к. износостойкость обеспечивается не твердостью, а покрытием.

В настоящее время на заводе все изношенные цанги покрываются защитным покрытием, а в дальнейшем планируется наносить их на новые цанги.

Аналогичная задача стоит при увеличении срока службы зажимных кулачков к труборезным станкам.

Кокили и пресс-формы для литься под давлением.

На заводе изготовляется много отливок из алюминиевых сплавов методом кокильного литья и под давлением.

Кокили делаются из собственного чугунного литья, а пресс-формы из покупных легированных отливок. Срок работы кокилей ограничен – примерно 1000 отливок, пресс-формы работают дольше, но тоже выходят из строя из-за появления разгарных трещин.

Очевидным споссбом увеличения их рабочего ресурса явилось бы нанесение защитных покрытий, вероятнее всего типа оксидных, плазменным методом. В настоящее время опыт использования таких покрытий имеет завод "Вольта", где покрытием из двуокиси алюминия защищают поверхность стальных кокилей для отливки чугунных фланцев электродвигателя. Технология покрытий включает следующие операции:

- обдувка рабочей поверхности кокиля чугунной дробью,

- металлизация слоем нержавеющего покрытия электродуговой горелкой,

- покрытие слоем окиси алюминия плазменной горелкой толщиной 0,2-0,3 мм.

Кокили с покрытием выдерживают примерно неделю эксплуатации, без покрытия – один день.

Очевидно, что этот опыт в принципе может быть использован на заводе "Ильмарине". Причиной, сдерживающей его использование, является большая масса кокилей (IOD-200 кг) и отсутствие ь лаборатории подъемных устройств.

3. Заводская продукция. Сопловые головки и стаканы центробежных распылителей

Типичной деталью, где можно использовать методы защитных покрытий для повышения качества заводской продукции является сопловая головка обдувочных аппаратов (рис. 2).

Рис. 2. Сопловая головка обдувочного автомата.

Головка обдувочного аппарата работает в условиях газоабразивного износа при температуре 450-500 ^оС. В качестве обдувочного агента используется перегретый пар под давлением I,3-2,5 МПа и температурой до 350 ^оС [I]. Выявлено, что срок службы сопловых головок обдувочных аппаратов недостаточен (4 месяца), но для нормальной эксплуатации следует его довести до I,5-2 лет.

В настоящее время в котлах для обдувки поверхностей нагрева используются головки двух типов:

I) сопловая головка типа ОМ со сварным наконечником,

2) сопловая головка ОГ с горячештампованным наконечником.

С целью повышения срока службы сопловых головок были исследованы различные плазменные и газоплазменные способы нанесения защитных покрытий. Для исследования были выбраны следующие типы порошков:

I. Порошок термореагирующий ПТ-ЮНХІ5СР2, нанесенный плазменным напылением.

2. Порошок интерметаллоидный ПН851015, нанесенный плазменным напылением.

3. Порошок интерметаллоидный ПТ88Н12, нанесенный плазменным напылением.

4. Порошок самофлюсующийся сплава IIP-H70XI7C4P4, нанесенный газопламенным напылением.

Толщина напыленных плазменных и газопламенных покрытий в пределах 0,5-1,0 мм. Проведены испытания вышеперечисленных покрытий на окалиностойкость. Образцы из стали 20 размерами Ø 20, длиной 45 мм и радиусом конца I0 мм.

Образцы с покрытиями нагревали до температуры 800 °С в муфельной печи типа СНОЛ и выдерживали при этой температуре 100 часов. Для определения изменения веса и визуального осмотра образцы вынимались из печи после 5, 10, 20, 30, 50, 75 и 100 часов. Для сравнения был взят эталонный образец без покрытия.

Изменение веса после 100 часов испытаний приведены в таблице 1.

Для выбора оптимальной конструкции сопловой головки и способа нанесения покрытия были проведены испытания конструкции и покрытий на термостойкость [2]. Термостойкость оценивали по числу циклов, которые выдерживали образцы без разрушения покрытия. В качестве образцов применяли сопловые головки типа ОМ и ОГ из стали 20 производства завода "Ильмарине". Эталоном для сравнения была взята заводская сопловая головка без покрытия. Сопловые головки с покрытиями и эталон нагревали до температуры 800 ^ОС в муфельной печи типа СНОЛ выдерживали при этой температуре, а затем охлаждали в воде до температуры 20 ^ОС. Испытания проводили до появления на поверхности покрытия дефектов (трещин, вспучивания, отслаивания).

Таблица І

№ образца тип покрытия	Изменение веса, г	Результат визуального осмотра
0 _I сталь 20	-16,8134	поверхность образцов
0 ₂ сталь 20	-15,8882	сильно корродирована.
I _I газопламенное с по- I ₂ следующим оплав…е- нием горелкой ПР-Н70X17С4Р4	+0,402I +0,2687	поверхность образцов без повреждения
2 ₁ плазменное	+0,4959	поверхность образцов
2 ₂ ПН65Ю15	+0,5229	без повреждения
3 ₁ плазменное	после 30 ча	сов испытания
3 ₂ ПТ66Н12	покрытия сг	орели

В таблице 2 приведены результаты испытаний порошковых покрытий на термостойкость.

Таблица 2

Тип сопловой головки	№ го- ловки	Тип покрытия и способ нанесения	Термостой- кость число циклов
	0	Эталон	150
Сопловая го÷ ловка типа ОГ	I	ПР-Н7ОХІ7С4Р4. Газопла- менное оплавление в печи в среде водорода	25
	2	ПН85Ю15, плазменное	3
	0	Эталон	150
Сопловая го- ловка типа ОМ	I	ПР-Н7ОХІ7С4Р4, газопла- менное оплавление в печи в среде водорода	150

Тип сопловой головки	№ го- ловки	Тип покрытия и способ нанесения	Термостой- кость, число циклов
ATONANOTA	2	ПН85Ю15, плазменное	4
	3	ПТ-ЮХІБСР2. плазменное	70

Как видно из таблицы термостойкость покрытий на сопловых головках типа ОГ из алюмината никеля составила 3 цикла, а из самофлюсующегося – 25 циклов до появления первой трещины.

Термостойкость покрытий на сопловых головках типа ОМ из алюмината никеля составила 4 цикла, из самофлюсующегося сплава – 150 циклов, и из термореагирующего сплава – 70 циклов до появления первой трещины.

Рис. 3. Стакан распылителя ротационной горелки.

Перспективной для защиты деталью покрытия является также стакан вращающейся ротационной горелки для сжигания мазута (рис. 3). Стакан изготовляют из легированной нержавеющей стали, чтобы он не ржавел из-за присутствующей в топочном мазуте воды. Стакан вращается с частотой 5000 об мин и поэтому покрытие не должно нарушить его балансировки. Из этих соображений наиболее подходящим для этой цели являются ионноплазменные покрытия, получаемые на установке "Булат". Эта работа продолжается и в настоящее время. Ее цель заменить дефицитную легированную сталь на обычную малоуглеродистую.

Выводы

I. Обследование технологического процесса и выпускаемой продукции завода "Ильмарине" показало перспективность применения защитных покрытий для повышения рабочего ресурса инструментов, оснастки и выпускаемой заводом продукции.

2. С технической точки зрения наибольшего эффекта удалось достичь при защите от износа зажимных цанг к станкамавтоматам и сопловых головок обдувочных аппаратов.

3. Ряд перспективных для применения защитных покрытий объектов: чугунные кокили и пресс-формы для литься под давлением, может быть испытан при условии решения вопроса об оснащении участка нанесения покрытий подъемным оборудованием.

Литература

I. Аппараты обдувки глубоковыдвижные. Таллинн, 1983. "Ильмарине". 25 с.

2. Чевела О.Б., Панырев Ю.К. Напыление покрытий из ZrO₂ с малых дистанций // Порошковая металлургия. 1988. № 10. С. 42-45. D. Arensburger, T. Pihl, A. Rouk

Kulumiskindlate pulberkatete kasutamisvõimalustest tehases "Ilmarine"

Kokkuvôte

Artikli autorid on uurinud kulumiskindlate pulberkatete kasutemisvõimalust tehases "Ilmarine" rakiste ja toodangu tööea pikendamiseks ja taastamiseks.

D. Arensburger, T. Pihl, A. Rouk

> Anwendungsperspektive der verschleißfestigen Schutzschichten im Maschinenbaubetrieb "Ilmarine"

Zusammenfassung

Zur Erhöhung der Dauerfestigkeit der Werkzeuge und der herzustellenden Produktion des Maschinenbaubetriebes "Ilmarine" wird die Analyse der Anwendungsprobleme der verschleißfestigen Schutzschichten in der beilegenden Arbeit durchgeführt.

M 712

TALLINNA TEHNIKAÜLIKOOLI TOIMETISED TPYZH TAJJUHHCKOFC TEXHUYECKOFO YHUJEPCUTETA

УДК 620.178.167:621.762 П.А. Кулу, Я.А. Халлинг

ЗАЩИТНЫЕ ПОКРЫТИЯ НА ПОРОШКОВЫХ СТАЛЯХ

I. Введение

Для расширения номенклатуры изделий, изготовляемых методом порошковой металлургии на железной осноге, важную роль играют способы, позволяющие получать изделия с минимальной пористостью. На промышленную арену вышел мотод прессования с последующим спеканием и детормацией пористых 38готовок. Однако по физико-механическим характеристикам порошковые материалы на основе железа не могут превосходить аналогичные литые материалы [1]. Нанесение покрытий на ПОрошковые исделия является средством, которое позволяет peшать задачи повыления их износостойкости. Учитывая, что нанесением покрытий можно в несколько раз увеличить CDOK службы изделий и обеспечить им ряд других дополнительных полезных характеристик [2, 3], то можно сказать, что эта технология может явиться одним из основных направлений развития порошковой металлургии железа.

2. Исследуемые покрытия и их износостойкость

С целью повышения износостойкости при абразивной эрозии (эрозионной стойкости) порошковой стали, нами были изучены способы поверхностного упрочнения, а именно диффузионное насыщение и нанесение порошковых покрытий.

Из изученных методов химико-термической обработки (цементация, борирование и хгомирование) более перспективным с точки зрения износостойкости в условиях абразивной эрозии оказалось диффузионное хромирование, позволяющее увеличить износостойкость порошковой стали почти в два раза (относительная износостойкость по сравнению с компактной сталью 45 доходит до I,5). Цементация и борирование порошковых сталей понижают износостойкость, которую можно объяснить повышенными значениями микротвердосчи и остаточных напряжений в поверхностных слоях (табл. I). Таблица I

Вид ХТО	Порис- тость	Толщи- на	Твєр- дость	Напряже-	Относите износост	ойкость
	осно- вы, %	слоя, мм	нv5, ГПа	покрытии MIIa	$\alpha = 30^{\circ}$	$\propto =90^{\circ}$
Хромирование	0	0,10	0,98,	500	<u>Mar</u> T	Поподон
	5	0,15	I,9	650	I,5	I,I
	25	0,20		275	-	e <u>1</u> Ouror renor sett
Борирование	0	0,25		1220	-	- OBRONH
	5	0,3	6,8	810	0,3	0,06
	25	0,4		310		-

Свойства диффузионных покрытий

Из способов нанесения порошковых покрытий на порошковую сталь изучены как способы газотермического напыления, так и наплавки. Исследована износостойкость газотермических покрытий, полученных газопламенной и плазменной наплавкой порошков самоблюсующихся сплавов на основе никеля; покрытий, полученных газопламенным, плазменным и детонационным на плением порошков легированных сталей и сплавов, интерметаллидов, карбидов и смесей на их основе. При этом толщина наплагленных газопламенных и плазменных покрытий находится в пределах 0,7-1 мм, а толщина напыленных плазменных и детонационных покрытий – в пределах 0,2-0,4 мм.

По износостсйкости из напыленных покрытий лучшими являются детонационные покрытия. По данным табл. 2 покрытия из твердосплавного порошка 3. Эс по износостойкости в 3-4 раза при малюх углах атаки абразивных частиц превышают сталь 45. Износостойкость покрытий из механических твердосплавных смесей (на основе карбида вольфрама и хрома) значительно ниже. При больших углах атаки лучшие по износостойкости детонационные покрытия остаются на уровне стали 45. Низкая износостойкость плазменных покрытий в струе абразивных частиц обусловлена в основном их высокой остаточной пористостью и хрупкостью изученных окисных и интерметаллидных покрытий, а также высокими остаточными напряжениями растяжесия в них (табл. 2).

Таблица 2

Свойства напыленных порошковых покрытий

Способ напы- ления и мате-	Пори- стость основы,	Тол- щина по-	Твер- дость	Проч- ность сцепл.	Напряж. в покр. MIla	Относи износо кость	ит. остой-
phan norphinn	%	крыт. мм	ГIIa	покр. МПа	20. 1794. J	$\alpha = 30_0$	$\alpha = 90^{\circ}$
Газопламен-	C	a on Tugyor AllM	HOCTO AVA, INS,	23,7	-22,0 ^{I)}	A. RAA	e PATRA
ПТ-НА-01 (подслой ПТ-19Н-01	+5 25	0,5	2,8	19,9 23,6	-22,I -18,4	04	0,1
Плазменный ПН701030	0 5 25	0,8	2,8	19,0 21,6 24,4	-81,6 -80,8 -78,5	0,3	0,1
Детонационный ВК9с	0 5 25	0,3	I3,I	38,5 59,0 52,6	98,3 95,5 86,9	3 , I	I,I

I) напряжения растяжения со знаком "-

По и насосстойкости наплавленные покрытия из порошков самоўлюсующихся сплавов на основе никеля превышают в 1,5 раза износостойкость стали 45 при малых углах атаки (табл. 3).

Наблюдается тенденция увеличения микротвердости наплавленных покрытий с увеличением пористости основы (табл. 3) Объясняется это тем, что пористая основа способствует инфильтрации легкоплавящегося компонента покрытия в основу, а тем самым образованию переходной пропитанной зоны в основе и обогащенного тверднми составляющими покрытия. Наблюдается также тенденция уменьшения напряжений в покрытии с увеличением пористости основы.

Если на структуру, а также на твердость покрытий, нанесенных наплавкой, оказывали влияние материал основы и способ наплавки, то влияние их на износостойкость покрытий в абразивной струе незначительное (табл. 3).

30

Таблица З

Способ нанесевия покрытия	Порис- тость осно- вы, %	Твер- дость нv0.05 ГПа	Модель упруго- сти, МПа	Напря- жен. в покрыт МПа	Относи износо кость «=30°	ательная остой- а =90 ⁰
Газопламенный	0	4,I	44I	74,8	I,3	0,8
	5	4,3	275	49,0	I,3	0,6
	25	4,6	329	44,7	I.2	0,6
Плазменный	0	3,9	000-00		I,5	I.3
	5	4,0	auco-on de	00-1015	I,4	I,3
	25	4.7	-		I.3	T.2

Свойства наплавленных порошковых покрытий

В целом эрозионная стойкость газотермических порошковых покрытий не высока, несмотря на то, что их твердость варьируется в широком ингервале (от 2,4 до I2 ГПа). Порошковые покрытия, полученные различными способами, но имеющие одинаковую твердость, по износостойкости в одних и тех же условиях отличаются на порядок. При этом влияние твердости покрытий на их износостойкость разнозначное (рис. 1).

Рис. 1. Зависимость относительной объемной износостойкости от твердости порошковых покрытий:

наплавленные газопламенные; 2 - напыленные детонационные;
напыленные плазменные соответственно при углах атаки 30°,
н 90°.

Для наплавленных и напыленных детонационных покрытий при малых и средних углах атаки (< ≤ 45°) абразивных частиц с увеличением твердости покрытий наблюдается тенденция к повышению износостойкости (при этом є > J), при больших углах атаки (< > 45°), наоборот - увеличение твердости покрытий приводит к уменьшению их износостойкости (при этом ε ≤ I). При напыленных газопламенных и плазменных покрытиях увеличение их твердости как пр. малых, так и при больших углах атаки приводит к уменьшению износостойкости покрытий (при этом E«I). Разное влияние твердости при малых и больших углах атаки абразивных частиц на износостойкость покрытий объясняется в первую очередь разными механизмами изнашивания при разных углах атаки.

3. Механизм эрозионного изнашивания покрытий

Изучение механизма изнашивания при абразивной эрозии порошковых как в меньшей, так и в большей степени пористых и гетерогенных покрытий показало, что удаление материала при изнашивании происходит по двум основным механизмам.

При малых и средних углах атаки ($\alpha \leq 45^{\circ}$) изнашивание наплавленных и малопористых напыленных металлических покрытий (до пористости 5-8%), например, детонационных, происходит по пластическому механизму разрушения (удаление материала в результате микрорезания), напыленных керамических и среднепористых металлических покрытий (пористость свыше 8-10%), например газопламенных и плазменных – по хрупкому механизму разрушения (за счет прямого или полидеформационного разрушения).

При прямых углах атаки изнашивание порошковых покрытий происходит в результате хрупкого разрушения. На основе изучения износостойкости порошковых покрытий в абразивах различной твердости выявлено, что возможность прямого разрушения приближенно можно оценить критерием твердости абразива $K_{TA} = H_M/H_A$ (H_M и H_A соответственно твердости материала и абразива). Покрытия противостоят эрозионному изнашиванию только при соблюдении $K_{TA} \ge I$.

32

Принципы управления эрозионной стойкостью порошковых покрытий

На основании изучения эрозионной стойкости порошковых покрытий, выявления влияния пористости, формы пор,твердости и других свойств покрытий на их износостойкость представлена структурная модель эрозионностойких порошковых покрытий: гетерогенная матричная с объемной долей армирующей фазы более 0,5 для работы при малых и средних углах атаки абразивных частиц; матричная с объемной долей армирующей фазы менее 0,5 – при прямых углах атаки с критерием твердости структуры К_{тс} (отношение твердости матрицы к твердости армирующей фазы) 0,4-0,6 и 0,2-0,3 соответственно.

Сформулированы основные принципы управления эрозионной стойкостью порошковых покрытий, включающие материаловедческие и триботехнические аспекты: оптимизация пористости (2-3 % для конструкционных, 25-30 % для проницаемых изделий), гетерогенизация структуры с оптимальным комплексом свойств "твердость - пластичность" (с большим содержанием армирующей фазы и критерием твердости структуры К для покрытий для работы при малых и средних углах атаки, с меньшим содержанием армирующей составляющей и критерием твердости структуры К для покрытий для работы при углах, ближе к прямым); стабилизация структуры и сфероидизация структурных составляющих; соблюдение закона S-кривых (К_{та} > I-I,2) и энергетический принцип (обеспечение максимальной энергоемкости сдвига е,/т, являющейся одним из основных параметров при прогнозировании износа [4]).

5. Выводы

На основании экспериментальных исследований износостойкости и механизма эрозионного изнашивания и предложенчах принципов управления эрозионной стойкостью порошковых материалов и покрытий разработаны пути повышения их износостойкости и получения эрозионностойких порошковых покрытий, обеспечивающих минимальную пористость, гетерогенную и сфероидизированную структуру. Высокая эрозионная стойкость порошковых покрытий может быть обеспечена применением порошковых композиций с оптимальным комплексом свойств "твердость – пластичность" и использованием технологических приемов, способствующих уменьшению пористости и образованию гетерогенных структур.

Литература

I. К у л у П.А. Пути повышения износостойкости порошковой стали // Металловедение и термическая обработка. 1987. М З. С. 23-25.

2. Кулу П.А., Халлинг Я.А. Газотермические порошковые покрытия на порошковых материалах. Сообщение I. Напыленные покрытия // Порошковая металлургия. 986. 28. С. 75-60.

3. Кулу П.А., Халлинг Я.А. Газотермические порошковые покрытия на порошковых материалах. Сооб-

щение 2. Наплавленные покрытия // Порошковая металлургия. 1966. № 9. С. 60-64.

4. Кулу П.А. Прогнозирование износостойкости порошковых материалов и покрытий в условиях абразивной эрозии // Трение и износ. 1986. Т. 9. № 5. С. 919-925.
P. Kulu, J. Halling

Kaitsekatted pulberterastel

Kokkuvôte

Artikli autorid on uurinud kaitsepinnete saamise võimalusi erinevatel terastel.

On uuritud nii alusmaterjali poorsuse mõju difusiconja pulberpinnete paksusele, struktuurile, nakketugevusele, kõvadusele ja kulumiskindlusele kui ka pinnete kulumiskindluse sõltuvust nende kõvadusest. On selgitatud välja difusioon- ja pulberpinnete pulberterastele pealekandmise iseärasused. Esitatud on kaitsepinnete erosioonikindluse reguleerimise põhimõtted.

P. Kulu, Y. Halling

Protective Coatings on Powder Steels

Abstract

The possibilities of laying protective coatings on various steels have been examined. Both the influence of base body porosity on the thickness, structure, cohesion strength, hardness and wear resistance of coatings and the influence of coatings hardness on their wear resistance have been studied.

Some peculiarities of laying diffusion and powder coatings on powder steels have been studied.

Regulation ways of protective coatings wear resistance under abrasive erosion conditions have been offered. N 712

TALLINNA TEHNIKAÜLIKOOLI TOIMETISED

ТРУДЫ ТАЛЛИННСКОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА

УДК 621.762

Я.П. Кюбарсепп, Х.И. Аннука, Л.Э. Вальдма

ВЛИЯНИЕ ТЕРМООБРАБОТКИ НА СВОИСТВА КАРБИДОСТАЛЕЙ

В литературе обычно приводят данные только о влиянии тер: ообработки на твердость. Влияние термообработки на абразивную износостойкость нами уже исследовано [1]. Выявлено, что износостойкость карбидосталей можно повышать как увеличением содержания твердой фазы (карбида титана TiC),

ак и термообработкой. Важным оказался не метод повышения износостойкости (термообработка, увеличение содержания TiC), а уровень достигаемой твердости. Если же при одинаковой твердости, сравнить износостойкость сплавов со связками разных типов (с преобладанием мартенсита либо аустенита), то их износостойкость практически равна при условии, что твердость сплавов ниже твердости абразива (HV ~ I200). При больших значениях твердости, заметное преимущество имеют термоупрочненные карбидостали с более твердыми связками при равной твердости образцов.

Известно, что предел прочности на разрыв о углегодистых и легированных сталей после закалки, вследствие напряженного состояния стали в закаленном состоянии, получается пониженным. Отпуск при температурах до 300 °С (углеродистые стали) или до 200 °С (легированные стали) приводит к повышению кач от, так и предела текучести и предела упругости. При дальнейшем повышении температуры отпуска, прочностные характеристики понижаются вместе с понижением твердости. Ударная вязкость углеродистых сталей сохраняется низкой, вплоть до температуры отпуска 400 °С. Более того, как у углеродистых, так и у легированных сталей наблюдается понижение ударной вязкости при температуре отпуска около 300 °C (отпускная хрупкость I-го рода). Интенсивное повышение ударной вязкости начинается при температурах отпуска свыше 400 °С и максимум ее достигает-

36

ся при 600...650 ^оС. У легированных сталей быстрое повышение ударной вязкости при росте температуры отпуска свыше 300...400 ^оС наблюдается лишь в случае быстрого охлаждения. В случае медленного охлаждения, после отпуска при ~ 550 ^оС, наблюдается охрупчивание стали (отпускная хрупкость II-го рода).

Рис. 1. Прочность при изгибе бо закаленных карбидосталей в зависимости от томпературы отпуска: О - сплав 50 TiC - Fe, • - сплав 50 TiC - сталь X15C1,5, • - сплав 60 TiC - сталь C2.

Исследование влияния температуры отпуска закаленных карбидосталей на прочность при изгибе σ_u , ударную вязкость $d_{H,a}$ также твердость HRA проводилась на трех термически обрабатываемых карбидосталях состава (мас.%): 50 % TiC - 50 % среднеуглеродистой стали (сплав 50 % TiC-Fe), 50 % TiC - 50 % среднеуглеродистой хромистой стали XI5CI,5 (15 % Cr, I,5 % Si), (сплав 50 TiC - XI5CI,5) и 60 % TiC- - 40 % высокоуглеродистой стали C2 (2 % Si) (сплав 60 TiC -C2). Углерод был добавлен только в порошковую шихту сплавов 50 TiC-Fe (0,25 % в связку) и 60 TiC-C2 (I % в связку). Немалое количество углерода попадаег в стальную связку всех карбидосталей путем растворения в нем свободного углерода из карбида титана. В то же время часть углерода расходуется на восстановление окислов в процессе спекания. По этим причинам точное количество углерода в связке исследованных спеченных сплавов неизвестно.

Рис. 2. Ударная вязкость а_н закаленных карбидосталей в зависимости от температуры отпуска: • - сплав 50 TiC - сталь X15C1,5, • - сплав 60 TiC - сталь C2.

Исследованные карбидостали были закалены при соблюдении оптимальных температур закалки в масле, и отпущены при температурах 200, 300, 400, 500, 600 и 700 °C. Свойства сплавов после отпуска при разных температурах представлены на рис. I, 2, 3.

Рис. 3. Твердость по Роквеллу НКА закаленных карбицосталей в зависимости от температуры отпуска: о - сплав 50 TiC - Fe. • - сплав 50 TiC - сталь X15C1,5. • - сплав 60 TiC сталь C2.

Прочность при изгибе карбидосталей (рис. 1) изменяется приблизительно по такой же зависимости, как прочность на разрыв сталей: при темлературе до 300 °С наблюдается рост прочности, затем следует быстрое ее понижение. Сплавы 50 Тіс- Fe обладают после закалки в масле низкой твердостью (рис. 3), что может быть объяснено тем, что скорость охлаждения в масле недостаточна для получения мартенситной структуры углеродистой стали, применяемой в ка честве связки. В отличие от двух других сплавов, связка этого сплава содержит относительно небольшое количество углерода, а следовательно, и карбидной фазы (цемента), выделяемой при распаде аустенита. Очевидно, по этим причинам максимум сплавов 50 Тіс- Fe наблюдается при температуре отпуска 500 °С. Повышение прочности при изгибе, вплоть до температуры отпуска 500 °C, наблюдается также для карбидосталей с относительно небольшим содержанием ТіС-составов 33 % ТіС - сталь X3M3 и 30 ТіС - быстрорежущая сталь [2, 3].

Если прочность карбидосталей имеет максимум при некоторой температуре отпуска, как и у сталей, то изменение ударной вязкости в зависимости от температуры отпуска сушественно отличается от изменения вязкости сталей. В то время как у сталей ударная вязкость повышается с повышением температуры, после отпуска свыне 400 °С, у карбидосталей наоборот - она резко понижается (рис. 2) несмотря на одновременное понижение твердости (рис. 3). Это можно объяснить особенностями структуры карбидосталей, содержащей большое количество карбидной составляющей. Очевидно, ухудшение ударной вязкости С., а также частично и прочности при изгибе, при повышении гемпературы отпуска выше 400 °С, связано с распадом мартенсита на грубую феррито-цементитную смесь. Грубая карбидная фаза на основе карбидов железа или хрома между зернами ТіС облегчает переход разрушающей трещины из одного карбидного зерна ТіС в другое. Таким же образом, укрупнение интерметаллидной фазы в связке сплавсв Тіс-мартенситностареющая сталь (или аустенитная дисперсионнотвердеющая сталь), наблюдаемое при старении при температуре выше оптимальной, приводит к одновременному понижению как твердости, так и прочности и вязкости [4]. Образование грубой карбидной фазы в связке карбидосталей, содержащих большое количество TiC, очевидно влияет более неблагоприятно, чем в сплавах, содержащих меньше Тіс. Возможно, это является одной из причин повышения о, карбидосталей, содержащих около 30 мас. % ТіС, при повышении температуры до 500 °C, в то время как о карбидосталей, содержащих 50...60 мас. « TiC, повышается только до 300 °C.

Наилучшим комплексом с_и, с_н и НRA обладают сплавы после закалки с последующим отпуском при температуре, при которой карбидные (интерметаллидные) выделения в связке мелкодисперсны и твердость существенно не понижается: около 300, ⁰С для сплава с низколегированной стальной связкой 60 TiC-C2 и 400 ⁰С для сплава с высоколегированной стальной связкой 50 TiC-XI5CI, 5.

При применении в качестве связки карбидосталей низкоуглеродистых Fe-Ni сплавов (например, сталей HI5 и H2O), механические свойства практически не зависят от режимов термообработки. После закалки таких сплавов мартенситное

40

превращение не идет до конца. Известно, что для полного превращения и увеличения твердости и прочности сплавы WC-(Fe,Ni), с аналогичными по составу связками, подвергаются дополнительной обработке холодом в жидком азоте (CM. напр. [5]). Такая же обработка сплавов Тіс-(Fe,Ni) приводит, при небольшом повышении твердости, к значительному увеличению прочности при сжатии ос, в то время как о и с, а также износостойкость значительно уменьшаются. Подобные изменения свойств нельзя объяснить только изменением фазового состава стальной связки, а также значениями термических напряжений в карбидной и металлической фазах. Существуют и другие примеры, показывающие что далеко не все вопросы, связанные с влиянием термообработки на свойства карбидосталей, ясны. В частности, в работе [6] указывается на большое влияние температуры закалки на величину пластической деформации при сжатии 2. В то время как предел текучести при сжатии О.1 и твердость НRC, сплавов 35 % ТіС- сталь ХЗМЗДЗ с разным содержанием углерода, закаленных с 1173 и 1433 К, практически не различаются, величина Е, значительно (в 2 раза) выше у сплавов, закаленных с 1423 К. Подобные изменения пластичности также не удается объяснить с помощью закономерностей, проявляющихся при закалке сталей при разных температурах.

Литература

I. Кюбарсепп Я.П., Вальдма Л.Э., Аннука Х.И. Некоторые пути повышения износостойкости твердых сплавов TiC - сталь в абразивной струе // Трение и износ. 1985. Т. 6. № 4. С. 696-701.

2. E p n e r M., G r e g o r y E. Some properties and metallography of steel-bonded titanium garbide // Trans. Metallurgical Soc. AIME 1960. Vol. 218, N 1. P. 117-121.

3. F r e h n F. Pulvermetallurgisch erzugter Werkstoff mit hohem karbidgehalt für werkzeuge und Verchleissteile // DEW-Technishe Berichte. 1968. Bd. 8, N 4. S. 257-263.

4. Влияние термической обработки спеченных материалов ТіС-мартенситностареющая сталь на их свойства / В.К. Нарва, Б.Г. Коршунов, Фам Тхао и др. // Исслед. и разработка

4I

теоретических проблем в области порошковой металлургии и защитных покрытий: Матер. Всессюзн. конф. Минск, 1984. 4°. С. 137-140.

5. M c s k c w i t z D., F o r d M., H u m e n i k J. High strength tungsten carbides // Mod. Develop. Powder Met. 1971. Vol. 5. P. 225-234.

6. Эйдук О.М., Липкес О.Я. Исследование влияния содержания углерода в связке сплава "ферротикар" марки ТС-65 на его свойства // Производство и применение твердых сплавов: Науч. тр. ВНИИТС. М.: Металлургия, 1962. С. 42-46. J. Kubarsepp, H. Annuka, L. Valdma

Termotootluse moju karbiidteraste omadustele

Kokkuvôte

On uuritud noolutustemperatuuri mõju mõningate karastatud karbiidteraste mehaanilistele omadustele. Uuritud karbiidteraste (terassideainega kõvasulamite) paindetugevuse sõltuvus noolutustemperatuurist on lähedane teraste omale: maksimaalne tugevus on umbes temperatuuri 300 °C juures. Erinevalt terastest langeb karbiidteraste löögisitkus kiirelt noolutustemperatuuride tõustes üle 400 °C.

Y. Kübarsepp, H. Annuka, L. Valdma

Heat Treatment Effect on the Properties of TIC-Steel Hardmetals

Abstract

The tempering temperature effect on some properties of quenched TiC-steel hardmetals has been investigated. The dependence of transverse rupture strength on tempering temperature of the TiC-steel hardmetals is similar to that of steels: the maximum strength is achieved at the tempering temperature of about 300 °C. Unlike the steels, impact strength of TiC-steel hardmetals decreases in the case of increasing the tempering temperature above 400 °C. # 7I2

TALLINNA TEHNIKAÜLIKOOLI TOIMETISED

ТРУЛЫ ТАЛЛИННСКОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА

удк 621.43.037:621.762

Л.Э. Вальдма, П.К. Каллас

МОДЕРНИЗАЦИЯ РОТАЦИОННОЙ ГОРЕЛКИ С ПРИМЕНЕНИЕМ МЕТОДА ПОРОШКОВОЙ МЕТАЛЛУРГИИ

Ротационные горелки используются главным образом для распыления вязких жидкостей и суспензий в химической промышленности, а также в маломощных топках энергетических установок. Жидкостная пленка создается вращением диска или барабана, во внутреннюю полость которого подается жидкость. Эта пленка при стекании с кромки диска или барабана становится неустойчивой и распадается на капли.

В работе приведены примеры перевода некоторых деталей горелки РМГ-I (изготовитель завод "Ильмарине") на порошковое исполнение с целью уменьшения металлоемкости и повышения качества продукции в условиях серийного производства (10000 горелок в год).

Горелка РМГ-І предназначена для сжигания топочных мазутов по ГОСТ 10585-75 в топках котлов типа Е-I-9М [I]. Предусмотрен также автоматизированный вариант эксплуатации горелки путем двухпозиционного регулирования подачи топлива, и с применением запальнозащитного устройства ЗЗУ-6М. Управление горелкой осуществляется со щита ЩУГ, входящего в комплект поставки. Горелка состоит из ротационной форсунки (рис. I) и воздухонаправляющего короба.

Ротационная форсунка состоит из электродвигателя мощностью 0,75 кВт (I), клиноременной передачи (2, 3) червячной передачи (4), топливного шестеренчатого насоса (5), вентилятора (6), питателя топлива (7), распылителя (8).

Топливная система ротационной форсунки включает в себя ручной регулятор подачи топлива (9), электромагнитный клапан-отсекатель (10), электромагнитный регулируемый клапан (II) и перепускной клапан (I2). Клапан-отсекатель (IO) служит для автоматического прекращения подачи топлива при аварийном выключении форсунки. Рядом с клапаном-отсекателем находится регулируемый электромагнитный клапан (II), при помощи которого устанавливается режим "малого горения." Переход с "малого горения" на номинальную нагрузку производится подачей на катушку этого клапана напряжения.

Рис. 1. Схема ротационной горелки РМГ-1.

От регулируемого электромагнитного клапана топливо подается в полость вала форсунки и выходит из распылителя (8). Под действием центробежной силы вращающегося распылителя – стакана (8) топливо распределяется на внутренней поверхности стакана и вытекает в виде тонкой пленки. Топливная пленка распыляется воздухом, поступающим через кольцевое сопло, образованное внешней поверхностью стакана и внутренней поверхностью конфузора.

Опыт показал, что на порошковое исполнение целесообразно перевести следующие детали:

I) шестерни топливного насоса (m = 4 мм, Z = 8, годовая программа 20000 шт., рис. 2);

 магнитопроводы магнитных клапанов (годовая программа 20000 шт., рис. 3, а);

3) сердечники магнитных клапанов (годовая программа 20000 шт., рис. 3,6);

4) магнитопровод сетевого трансформатора запально-защитного устройства ЗЗУ-М (годовая программа 20000 шт., рис. 3,в).

Рис. 2. Шестерни топливного насоса из порошковой стали: а - прессованная и спеченная заготовка; б - калиброванная деталь.

I. Для выбора состава порошковых шестерен насоса в опытном цехе Таллиннского завода "Пионер" были использованы 3 смеси [2] со следующим составом: ЖГрІДЗ, ЖГрІН2Д и ЖГрІН2ДМО,3. Шестерни прессовали под давлением 600 -700 МПа и спекали в водороде при температуре II00 °С с выдержкой 20 мин. После спекания боковые поверхности заготовок шлифовали, внутреннее отверстие обрабатывали на токарном, а шпоночный паз на долбежном станках. Испытания

Рис. 3. Детали из магнитомягкого композиционного материала: а – магнитопровод магнитных клапанов; б – сердечник магнитных клапанов; в – магнитопровод сетевого трансформатора запальнозащитного устройства ЗЗУ-М.

проводились в эксплуатационных условиях в горелке РМГ-I котла № 9277, типа Е-I,0-9М-I, который находится в цехе "Макра" опытно-показательного рыболовецкого колхоза имени С.М. Кирова. Предварительные опыты показали, что по долговечности шестерни из выбранных трех составов не отличаются. Поэтому для дальнейших испытаний был выбран состав, имеющий минимальное содержание легирующих добавок ЖГрІЛЗ (96 % железа, I % графита, 3 % меди). Механические свойства шестерни: твердость НВ 1150...1450 МПа, пористость 15 %, прочность на разрыв 350...390 МПа, прочность на изгиб 670...820 МПа, относительное удлинение 0,8..1,2 %, ударная вязкость 75...100 кДж/м².

Эксплуатационные испытания шестерен были начаты 25. II. 1987 г. Проверка 16. 05. 1988 г. показала, что технические характеристики горелки в течение этого времени не изменились. Топливом служил топливный мазут М40 (ГОСТ 10585-75). При разборке насоса и проверке размеров зубьев длина общей нормали уменьшилась на 10 мкм. Такое изменение размеров позволяет прогнозировать гарантийный срок службы насоса не менее 3-х лет. В настоящее время испытания тех же шестерен продолжаются.

2. Магнитопровод магнитных клапанов, сердечник клапана и магнитопровод трансформатора устройства ЗЗУ-М были изготовлены из железного порошка и малого количества (0,5 ...I,0 % от массы порошка) изолирующе-связующего вещества путем формования в пресс-формах и низкотемпературной обработки [3].

Электрические и тепловые характеристики сравниваемых вариантов конструкций клапанов определились в лабораторных условиях при комнатной температуре, без воздействия гидравлической системы, с которой они связаны в ротационном распылителе топлива. Механическое воздействие топлива на сердечник клапана было смоделировано при помощи динамоментра специальной конструкции. Для сравнения заводского магнитопровода клапана, сделанного из листовой электротехнической стальной рамы и стального компактного сердечника с клапанами, в которых рама и сердечник были заменены на порошковые изделия, были выбраны следующие характеристики:

- I) потребляемый ток при открытом клапане, А I
- 2) потребляемый ток при закрытом клапане, А I,
- 3) потребляемая из сети мощность, Вт Р
- сопротивление обмотки электромагнита в холодном и нагретом состоянии, Ом - R, R,
- 5) превышение температуры обмотки после І часа работы, ^оС – Δ Т

По ГОСТ 19294-84 & Т определяется по формуле

$$\Delta T = \frac{R_2 - R_1}{R_1} (X + T_1) - (T_2 - T_1),$$

где X = 234,5 для медной обмотки;

- ^ТI температура окружающей среды в начале испытания, ^оС;
- T_2 температура окружающей среды в конце испытания, ^оС (в данных условиях $T_1 = T_2 = 20$ ^оС).

6) потери мощности в обмотке, Вт - Р

$$P_0 = I_0^2 R_2$$

7) относительное значение силы, действующей на сердечник закрытого клапана (определяется как отношение входных величин электродинамического преобразователя силы при исследуемом и стандартном клапане) – Р_{отн}

Данные, полученные при сравнении заводского и порошкового клапана, приведены в таблице I.

Таблица І

Результаты испытаний электромагнитных клапанов горелки РМГ-I с различными элементами магнитной системы

Тип клапана	Io	P	R ₂	ΔT	Po	I ₃	P _{oth}
Магнитопровод клапана из листовой ста- ли, сердечник из компактной стали	0,215	21,0	195	98	9,0	0,47	I,0
Магнитопровод клапана и сердечника из порошкового материала (имин)	0,215	15,0	184	78	6,5	0,46	I,08

Магнитный клапан с элементами из порошкового магнитомягкого композиционного материала (ММКМ) подвергали эксплуатационному испытанию в горелке РМГ-І котла № 8678 типа Е-I,0-9М-І колхоза им. С.М. Кирова начиная с I0.09.1989 г. В течение 5 месяцев работы отказов не было.

3. Сравнение параметров сетевых трансформаторов для запально-защитного устройства ЗЗУ-М, магнитопроводы которых были изготовлены из листовой трансформаторной стали и по технологии порошковой металлургии проводились 5.09.1989 года в лаборатории надежности ОГК завода "Ильмарине". Испытания проводили при напряжении питания 220 ±5 В. Первичная обмотка намотана проводом ПЭВ-2 диаметром 0,112 мм и состоит из 4000 витков, вторичная обмотка намотана проводом ПЭВ-2 диаметром 0,335 мм из 500 витков. Данные, полученные при измерении заводского и испытуемого трансформатора, приведены в таблице 2.

Таблица 2

Результаты испытания сетевых трансформаторов запально-защитного устройства ЗЗУ-М с различными магнитопроводами

Ток на- грузки ¹ 2, мА	Электрические характе	Магнитопровод Из листово- порошка го желе- (ММКМ) за		
0	Первичный ток I _I , мА Вторичное напряжение Потребляемая мощность	U ₂ , B P ₁ , B _T	17 28,8 0,7	38 28,I 3,0
200	Вторичное напряжение	U ₂ , B	24,I	23,3

С I2.01.1990 г. трансформатор устройства ЗЗУ-М с поровковым магнитопроводом подвергался эксплуатационному испытанию в Таллиннской теплосети.

Заключение

Лабораторные и эксплуатационные испытания показали, что разработанные порошковые элементы ротационной горелки РМГ-I по техническим характеристикам мало отличаются от элементов серийного производства завода "Ильмарине". Вопрос применения порошковой металлургии для изготовления шестерен топливного насоса, магнитопроводов магнитных клапанов и трансформаторов защитно-запального устройства решается экономией материальных и трудовых ресурсов.

Метод порошковой металлургии значительно упрощает производственный цикл и трудоемкость вследствие уменьшения числа операции и сокрещения их продолжительности. Технологические процессы легко автоматизируемы, в результате этого производительность труда повышается в 2...3 раза, себестоимость понижается в 2...4 раза (шестерни прессуют автоматическим прессом).

Литература

I. Горелка РМГ-І.Инструкция по эксплуатации 964.00.000 // Ид. 1989. 12 с.

2. Порошковая металлургия и непыление покрытия / Под ред. Б.С. Митина. М.: Металлургия, 1987. 792 с. 3. Магнитомягкие композиционные материалы (ММКМ). Таллиннский политехнический институт. Проспект ВДНХ. 1986. 2 с.

L. Valdma, P. Kallas

Rotatsiconpõleti moderniseerimine pulbermetallurgiameetodi abil

Kokkuvote

Artiklis käsitletakse tehases "Ilmarine" seeriaviisiliselt toodetava rotatsioonpõleti PMF-1 detailide (kütusepumba hammasrataste, kütuse magnetklappide ja süütekaitseseadme magnetjuhtide) valmistamisvõimalusi pulbermetallurgiameetodil. Tehti kindlaks, et nende detailide tehnilised karakteristikud õigustavad pulbermetallurgiameetodi kasutamist.

L. Valdma, P. Kallas

Modernizing Rotary Burners with Powder Metallurgy Method

Abstract

The article deals with the components of rotary burner PMI-I, made by the plant "Ilmarine" as a stock-produced itemfuel pump gears, fuel magnetic valves and ignition-protection torch magnetic circuits. Their production possibilities with the aid of the powder metallurgy method are observed. The technical characteristics of the above have proved that the use of the powder metallurgy method is justified.

Nº 712

TALLINNA TEHNIKAÜLIKOOLI TOIMETISED

ТРУЛЫ ТАЛЛИННСКОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА

УДК 621.762

А.А. Лаансоо, В.Я. Лийманн, Р.А. Сиймар, А.Э. Ритсо

ВЛИЯНИЕ ТЕХНОЛОГИЧЕСКИХ ФАКТОРОВ НА СВОЙСТВА МАГНИТОМЯГКИХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

Магнитомягкие композиционные материалы (ММКМ) состоят из двух разнородных компонентов – частиц ферромагнитного порошка и изолирующего-связующего вещества, слабо взаимодействующих между собой. Это позволяет оптимизировать магнитные и электрические свойства ММКМ изменением состава исходных материалов и параметров технологического режима в довольно широких пределах. Одним из важнейших вопросов изготовления ММКМ является выбор подходящего изолирующесвязующего материала и способа его равномерного распределения на частицах порошка ввиду малого вводимого количества (0,5-I,0 мас.%).

Авторами настоящей работы в качестве низкотемпературного связующего материала использовались жидкие эпоксидные смолы и компаунды. В качестве представителя высокотемпературного связующего материала использовали коллоидный раствор кремнезема в виде этилсиликата. Недостатком указанных связующих материалов является использование в них в качестве растворителя ацетона, а также невозможность обеспечения требуемого электросопротивления ММКМ при темепературах нагрева прессовок свыше 600 °C. Нанесенные из растворов электроизоляционные пленки на частицах железа при прессовании разрушаются, о чем свидетельствует резкое уменьшение электросопротивления порошковых смесей во время уплотнения (рис. 1). Измерения были проведены с помощью пресс-формы из текстолита по методике, разработанной в МИФИ.

В работах КуАИ [I, 2] сообщается об успешном нанесении электроизоляционной пленки на частицы железа при изго-

Рис. 2. Свойства ММКМ при разных температурах оксидирования частиц железного порошка без связующего материала:

непрокатанный порошок;
чешуйчатый порошок.

товлении ММКМ методом термического оксидирования. Данный метод успешно применяется при изготовлении магнитопрозодов из листовой электротехнической стали.

При нагреве порошка железа до 290 °С на воздухе в течение 20 минут в 5 раз повышается электросопротивление MMKM (рис. 2). Расчетная толщина магнетита, определенная по методике [I], составляла при температуре нагрева 500 °С для чещуйчатого порошка 0,23 мкм, для равноосного порошка 0,47 мкм. Из рис. 2 следует, что по магнитным потерям MMKM из оксидированного порошка заметно превышает материал с этилсиликатом, что, по-видимому, вызвано полупроводниковыми свойствами пленки окислов на поверхности железа и разрушением при уплотнении (рис. I). Прочность при изгибе материала удовлетворительная (II0-I60 МПа). Для работы в переменных магнитных полях к оксидированному железному порошку необходимо добавить дополнительную изолящию.

Оксидирование порошка нагревом на воздухе при 200 – 400 °C с последующим прибавлением 0,5 % кремнезема-этилсиликата практически не влияло на магнитную индукцию, проницаемость и удельные потери чешуйчатого материала. Удельное электросопротивление материала повышалось в 2 раза. Окси-

53

дирование порошка на воздухе при 550 ^оС привело к уменьшению магнитных характеристик и повышению потерь на перемагничивание чешуйчатого материала в I,5-I,7 раза по сравнению с образцами из неоксидированного порошка.

Установлено, что после добавления к порошку железа 3-10 % тонкого порошка феррита марки 600 НН и спекании материала при 550-600 °С повышалось электросопротивление материала, но заметно ухудшались другие характеристики из--за малой плотности прессовок. Только при малых индукциях (менее 0,4 Тл) магнитные потери уменьшились на 10-15 %. При высокотемпературном спекании (свыше 1000 °С) электроизоляционные свойства феррита практически теряются.

В высокомастотной технике используют двухслойную изоляцию частиц – первоначально порошок обрабатывают ортофосфорной кислотой, а далее прикрывают слоем жидкого стекла или бакелитовым лаком, т.е. проводят 2 операции вместо одной.

Предварительная обработка железного порошка ортофосфорной кислотой уменьшает магнитную проницаемость И ПОВЫШАЕТ ЭЛЕКТРОСОПРОТИВление материала (рис. 3). Наиболее существенное влияние оказывает фосфатирование на электросопротивление B направлении, перпендикулярном слоям чещуек. Рабочая частота материала повышается до 10 кГц, но усложняется и становится дороже технологический процесс.

Важное значение при внедрении порошковых магнитопроводов присбретает заполняемость (автоматических) пресс-форм порошком, например, в случае объемной дозировки с помощью кассеты-пи-

Рис. 3. Влияние количества ортофосфорной кислоты на свойства образдов из чешуйчатого железного порошка с добавлением 0,5 % кремнезема. 1 - удельное электросопротивление в направлении прессования; 2 - удельное электросопротивление в направлении чешуйчатых частип; 3 магнитная проницаемость. тателя. Сердечники имеют сложную форму с тонкими участками до 1,5 мм, что резко ухудшает заполняемость пресс-форм и вызывает неравномерность распределения плотности и магнитных свойств магнитопроводов. Известными методами испытаний на насыпную плотность и текучесть установлено ухудшение указанных параметров в случае использования связующих материалов и чешуйчатых порошков. К сожалению, получаемые результаты трудно использовать на практике. Специалистами международной организации по стандартизации ИСО [3] отмечено отсутствие единой и надежной методики определения заполняемости пресс-форм. Нами испытана методика шведских исследователей, основывающаяся на определении плотности заполнения ряда цилиндрических матриц с диаметром от I до 32 мм.

В плите длиной 600 мм и толщиной 30 мм из текстолита были установлены II втулок из стали ХВГ разного диаметра. Снизу отверстия закрывались пластинкой. При перемещении кассеты – питателя по плите с двумя разными скоростями заполняются отверстия матрицы порошком в взвешивается количество порошка в них.

Рис. 4. Влияние скорости кассеты-питателя и диаметра матрицы на плотность заполнения.

Плотность заполнения зависит от скорости перемещения кассеты при диаметрах матрицы менее 8 мм (рис. 4). Двойной ход кассеты (реверсивное движение) увеличил плотность заполнения для порошка ПЖРВ 3.450.28 на 6,1 %, для чешуйчатого порошка на 2 %. При малых диаметрах отмечается заметный разброс по плотности заполнения.

В статье [3] приведена формула для нахождения критического диаметра матрицы, с которой заполнение не увеличивается:

$$d_{\kappa} = 11,31 + 5,63 \frac{0,98 \gamma_{11} - \gamma_{6}}{\gamma_{8} - \gamma_{6}},$$

где индекс у указывает номер матрицы

По этой формуле рассчитаны критические диаметры для испытанных порошков и композиций (рис. 5).

Рис. 5. Плотность заполнения при разных диаметрах матриц распыленных порошков и композиций.

Композиция с эпоксидной смолой имеет критический диаметр 9,5 мм, то есть на 3,4 мм больше, чем чистый порошок. Отверстия меньше 2 мм при использовании порошка ПЖРВ 3.450.28 заполняются очень плохо, плотность заполнения примерно вдвое хуже, чем при остальных отверстиях, порошок имеет критический диаметр 6,1 мм. Для получения одинаковой плотности прессовок не следовало бы проектировать прессформу диаметром менее 6,1 мм.

Чещуйчатые порошки в зависимости от среднего диаметра чещуек имеют критический диаметр в пределах от 10,4 до 12,6 мм и отверстия диаметром меньше 4 мм заполняются очень плохо, т.е. использование пресс-форм с размером меньше 4 мм приведет к значительному уменьшению плотности в этих участках при автоматическом заполнении.

В опубликованных исследованиях приведены магнитные свойства ММКМ, но сведения о применении материала весьма малочисленны. Поэтому ниже приводятся результаты испытаний ММКМ в разных электротехнических устройствах.

В аппаратуре сжигания жидкого топлива в котлах, выпускаемых заводом "Ильмарине" (г. Таллинн), используется 2 электромагнитных клапана. Технологический процесс изготовления клапана сопровождается большими отходами и отличается трудоемкостью. Во время эксплуатации отмечается перегрев катушек клапанов,

Рис. 6. Схема магнитной цепи электромагнитного клапана: 1 – рама; 2 – сердечник; 3 – полюсный наконечник; 4 – трубочка.

что снижает их надежность. Магнитопровод электромагнитного клапана состоит из рамы, сердечника и полосного наконечни-

Рис. 7. Фотографии магнитопроводов, изготовленных из ММКМ. Сердечник трансформатора, дросселя, электродинамической головки, коллекториого двигателя.

ка (рис. 6). Рама изготавливается из пластин электротехнической стали (высота пакета 25 мм), сердечники и полюсный наконечник из стали марки IO. Сердечник находится в трубе из нержавеющей стали. Величина рабочего воздушного зазора при невключенном клапане составляет 5 мм. KOHструктивный зазор бк между сердечником и рамой 5_к = 1,5 мм. Измерения показали, что потребляемая из сети активная мощность (22 Вт) распределялась следуршим образом: обмотка - 9 Вт, сердечник - 8 Вт, трубка - 4 Вт, рама – I Вт. Наибольшие резервы по снижению потерь в клапане имеются в уменьшении потерь в сердечнике, что можно обеспечить увеличением его диаметра до I4,5 мм вместо I3 мм у серийного клапана.

Таблица І

Параметры электромагнитного клапана при разных конструкциях и материалах магнитопровода

№ констр. варианта	Ток А	Потребл. из сети мощность Вт	Ρ _{οδΜ} Βτ	Перегрев об- мотки, ^о С	
I	0,215	21,0	9,0	98	
П	0,205	20,0	8,0	89	
Ш	0,204	14,5	5,9	74	
IY	0,120	9,5	2,3	43	

I вариант – заводская конструкция, трубка 🖉 I4 мм, сердечник IIхII мм,

II вариант – рама из ММКМ, сердечник заводской конструкции IIxII мм, трубка ∮ I4 мм,

Ш вариант - рама и сердечник о́ I3 мм из ММКМ, трубка I4 мм, IУ вариант - рама и сердечник о́ I4,5 мм из ММКМ, трубка о́ I6 мм.

Рама и сердечник были изготовлены из порошка ПЖРВ 2.450 с добавлением 0,6 % эпоксидной смолы. Результаты электрических испытаний клапанов с разными магнитопроводами представлены в табл. I

Как следует из данных таблицы I, замена рамы из электротехнической стали на порошковую значительно не влияет на перегрев обмотки, но замена стального сердечника на порошковый уже заметно понижает перегрев обмотки. Все параметры клапана значительно улучшаются в случае увеличения диаметра поперечного сечения порошкового сердечника до I4,5 мм.

Из ММКМ были изготовлены броневые сердечники типоразмера Б-36 импульсных трансформаторов преобразователей постоянного тока для тиристорной системы зажигания автомобилей. В импульсном трансформаторе такого типа ММКМ работает в условиях однополярного перемагничивания пилообразными импульсами тока, повторяющимися с частотой в несколько кГц. Поэтому основным требованием к материалу является его высокое удельное электросопротивление. С другой стороны, сердечники должны иметь достаточно линейную вольт-амперную характеристику, чтобы были обеспечены условия возникновения автоколебаний с требуемой частотой. Было проведено сравнение с сердечниками стандартной формы из феррита марки 2000 НН. Вторичное напряжение трансформатора с сердечником из феррита составляло на холостом ходу 430 В, при нагрузке IO8 В, у трансформатора с сердечником из ММКМ соответственно 400 и IO6 В. Перегрев обмоток составил 33 ^оС и 46 ^оС. Параметры трансформатора были приемлемы для работы в приборах электронного зажигания.

Дроссель с броневым ММКМ - сердечником был предложен взамен дросселя с П-образным витым сердечником с воздушным зазором. Необходимость в этом возникла в связи с большими габаритными размерами и большими полями рассеяния, не позволяющими вмонтировать их в переносные малогабаритные тиристорные источники питания телевизионных прожекторов. Использование изотропности магнитных свойств и возможности линеаризации вольт-амперной характеристики ММКМ позволило выбрать закрытую броневую конструкцию магнитопровода с наружным диаметром 80 мм и высотой 40 мм и тем самым минимизировать габаритные размеры дросселя и уменьшить поля рассеяния.

Дроссели были предназначены для максимального тока 25 А и в случае использования ММКМ являлись практически бесшумными. Поэтому их можно применять непосредственно в прожекторах, что позволяет заметно сократить длину присоединительных кабелей.

Из непрокатанного железного порошка марки IMPB 3.315 с добавлением эпоксидной смолы были изготовлены сердечники якоря коллекторного двигателя постоянного тока типа МП, разработанного для ПО "Армэлектродвигатель". Сердечники якорей с высотой пакета 15,5 мм и диаметром & 14,4 мм при средней плотности 6900 кг/м³ обеспечили требуемые ТУ 16-523.684-87 характеристики двигателей (табл. 2). Обмотки якоря были оптимизированы в ВЗИСИ (г. Москва), а испытания двигателей проведены в НИИ Электромаш (г. Ереван).

59

Таблица 2

Характеристики двигателей типа МП

Сердечники якоря	Холостой з	сод	При номинальном моменте IO Гсм			
	A I xx ?	п _{хх} , об/мин	In, A	п _н , об/мин	КПД	
ММКМ Эл. техн.	0,17-0,19	6000-6500	0,31	5360-5600	49–50	
сталь (по ТУ)	0,25	7500	0,4	5000 <u>+</u> I5 %	40	

Из ММКМ и из спеченного сплава железо-фосфор были изготовлены сердечники головок динамических громкоговорителей серийной конструкции и новых акустических систем. Измерялись магнитная индукция в собранной магнитной системе и звуковое давление. В головках типа ІОГДВ-20 при воздушном зазоре 0,8 мм магнитная индукция с сердечником из электротехнической стали марки 20895 и ММКМ составляла I.40 Тл. из спеченного сплава I.5 Тл. В магнитных системах головок 20 ГДС-І (зазор 0,95 мм) магнитная индукция NOI использовании MMKM и стали примерно I,03 Тл, из сплава Fe-P - I, I4 Тл. Таким образом, при сохранении электроакустических характеристик систем отмечалось уменьшение объема механической обработки магнитопроводов в 8 раз и отходов в 6-8 раз. Промышленное внедрение головок сдерживается отсутствием мощного прессового оборудования.

Литература

I. Орехов Ю.П., Бойков В.К., Веселов В.Г. Исследование свойств магнитомягкого материала из оксидированного железного порошка // Порошковая металлургия. 1966. № 9. С. 57-62.

2. Аксенов Г.И., Орехов Ю.П. и др. А.с. 1425737 (СССР) Способ получения магнитомягкого металлокерамического материала. Опубл. в Б.И. 1975. № 6.

3. R i c e E.R., T e n g z e l i u s J. Die filling characteristics of metal powders // Powder metallurgy. 1986. Vol. 29. N 3. P. 183-194.

A. Laansoo, V. Liimann, R. Siimar, A. Ritso

Tehnoloogiliste tegurite mõju magnetpehme liitmaterjali (MLM) omadustele

Kokkuvõte

Kaesoleva too autorid on uurinud elektriisolatsioonkile saamise võimalusi rauapulbri osakestel termilise hapendamisega ja fosfaatimisega.

On kindlaks tehtud pulberliitmaterjali elektritakistuse muutumine tihenemisel: isoleermaterjali koguse kasvades elektritakistus suureneb, väheneb aga saadava pressise tihedus.

Pressvormide konstrueerimisel omab suurt tähtsust teadmine, kuidas pressvormi mõõtmed mõjutavad pressvormi täitumist. Antud küsimust uuriti täitumistiheduse mõõteseadmetega, mis on valmistatud rootsi pulbermetallurgiaspetsielistide soovituse järgi.

Pulberliitmaterjalist magnetahelaid kasutatakse elektromagnetklapi, transformaatori, alalisvoolu-mikromootori ja elektroakustilise seadme magnetahelates.

A. Laansoo, V. Liimann, R. Siimar, A. Ritso

The Effect of Technological Factors on the Properties of Softmagnetic Composition Materials

Abstract

The ways of obtaining insulation layers on ferromagnetic particles by thermal oxidation or phosphatization are discussed.

It has been established that the resistivity of a composition material depends on its density so that the building-up of insulating material results in an increase of the resistivity accompanied with the reduction of compact density.

For die design, the die filling characteristics must be determined. The filling density of a Swedish filling plate for Fe-powders and compositions was measured and plotted against the die diameter.

The magnetic properties of powdered magnetic cores of transformers, solenoid valves, d.c. microdrivers and loudspeakers are given. ₩ 7I2

TALLINNA TEHNIKAÜLIKOOLI TOIMETISED TPYJH TAJJUHHCKOFO TEXHIYECKOFO YHIBEPCUTETA

УДК 621.762

Ю. Пирсо

ВЛИЯНИЕ СОДЕРЖАНИЯ МОЛИБДЕНА НА СВОИСТВА ТВЕРДОГО СПЛАВА ТІС-NI-MO

В настоящее время твердые сплавы на основе карбида титана с никель-молибденовой связкой используются в основном для изготовления режущего инструмента, заменяя ряд марок твердых сплавов типа ТК и ТТК. Расширяется применение карбидотитановых твердых сплавов в качестве износостойкого конструкционного материала (сопла пескоструйных аппаратов, распылители жидкого топлива и т.д.)

Известно, что свойства твердых сплавов определяются химическим составом и физико-химическими характеристиками тугоплавкой основы и связки, а также структурой, сформировавшейся в процессе спекания. Введение молибдена благоприятно сказывается на физико-механических и эксплуатационных свойствах TiC-Ni сплава, так как происходит упрочнение связующей фазы за счет растворения в ней молибдена, снижения хрупкости карбидной составляющей вследствие образования "кольцевой" структуры, уменьшения пористости и размера зерна карбидной фазы [I-3].

В настоящей работе изучено влияние соотношения никеля и молибдена в связующей фазе на износостойкость в струе кварцевого песка, а также на прочность при изгибе и твердость. Порошковые твердые сплавы были изготовлены по общеизвестной технологии, принятой на твердосплавном производстве. Порошки карбида титана, никеля и молибдена размалывали в шаровой мельнице в среде этилового спирта в течение 72 часов. Соотношение варьировались на трех уровнях (Ni:Mo) = 4:I, 2:I и I:I. Размолотую шихту просушивали, пластифицировали 4%-ным раствором синтетического каучука в бензине. Затем вновь просушивали, просеивали и прессовали под давлением 80 МПА. Прессовки подвергали сначала пред-

варительному спеканию в среде водорода, а затем окончательному спеканию в вакууме при температуре I380-I420 °C в зависимости от количества связующей фазы.

Прочность при изгибе и твердость определялись согласно ГОСТ. Износостойкость в струе абразивных частиц определили на установке ЦУК-ЗМ при скорости встречи 20 и 80 м/с при углах атаки 30 и 90°. Абразивом являлся кварцевый цесок фракции 0, І...0, 3 мм.

Прочность при изгибе непрерывно возрастает и твердость понижается с увеличением содержания связующей фазы от 20 до 50 % (рис. I).

Рис. 1. Зависимости прочности при изгибе и твердости от содержания связки. прочность при кзгибе. твердость.

Прочность сплавов понижается и твердость повышается с увеличением содержания молибдена в связующей фазе. Это объ-

ясняется образованием твердых и хрупких интерметаллидов МоNi₄ и MoNi₃, а также Ni₃Ti. Известно, что часть молибдена "расходуется" на образование двойного карбида

(Ti, Mo)C, о чем свидетельствует появление "кольцевой" структуры на зернах карбида титана. При растворении молибдена в карбиде титана, часть атомов титана вытесняется в никелевую связку. Установлено, что в никеле может растворяться 6-7 % титана, а при большем количестве титана образуется фаза Ni₃Ti.

Интенсивность изнашивания растет с увеличением C0держания связующей фазы при всех условиях изнашивания (рис. 2). Это объясняется понижением твердости в результате уменьшения твердой карбидной фазы. Увеличение содержания молибдена в сплаве повышает твердость сплава, а особенно связующей фазы, которая является самым слабым звеном структуры при абразивном изнашивании. Как показали микроскопические исследования изнашивание начинается С удаления связующей фазы, а затем идет выкрашивание оголенных карбидных зерен. Поэтому наиболее износостойкими являются сплавы, которые содержат первоначально 50 % молибдена в связующей фазе. В ходе спекания ее количество Heсколько понижается в результате растворения в карбиде титана и образования двойного карбида (Ті, Мо)С. Но с другой стороны, такие сплавы являются слишком хрупкими, что препятствует их применению. По-видимому, в зависимости от внешних условий наиболее оптимальными эксплуатационными свойствами обладают сплавы, содержащие в исходной смеси около 30 % молибдена.

Литература

I. Самсонов Г.В., Дзодзиев Г.Т., Клячко Л.И., Витрянюк В.К. Влияние молибдена на свойства металлокерамических твердых сплавов **тic-Ni** // Порошковая металлургия. 1972. № 4. С. II-I7.

2. Ковальченко М.С., Середа Н.Н., Цыбань В.А. Влияние состава и количества никель-молибденовой связки на свойства карбидотитанового твердого сплава // Порошковая металлургия. 1985. № 4. С. 18-21. 3. Середа Н.Н., Ковальченко М.С., Бондарь Л.Н. и др. Особенности структуры твердых сплавов на основе карбида титана // Порошковая металлургия. 1985. № 11. С. 98-103.

J. Pirso

Molubdeenisisalduse mõju TiC-Ni-Mokõvasulamite omadustele

Kokkuvõte

Tõõ autor on uurinud molubdeenisisalduse mõju TiC--Ni-kõvasulamite paindetugevusele, kõvadusele ja kulumiskindlusele. On näidatud, et optimaalsete omadustega on kõvasulamid, mille sideaines on 33 % molubdeeni.

J. Pirso

The Influence of Molybdenum Content on the Properties of the TiC-Ni-Mo Hard Metals Alloys

Abstract

The influence of molybdenum content in the binder phase on the hardmetal hardness, transverse rupture strength and abrasive resistance have been studied. The optimum properties have been received in case of alloys, with the contents of 33 % of molybdenum by weight in the binder phase.

TALLINNA TEHNIKAÜLIKOOLI TOIMETISED TRANSACTIONS OF TALLINN TECHNICAL UNIVERSITY

UDC 621.763;621.3.042 A. Laansoo, V. Liimann, A. Ritso, R. Siimar

MAGNETISCHWEICHE KOMPOSITIONSMATERIALIEN (MWKM) FÜR ELEKTRISCHE MOTOREN

Bei der Schaffung neuer elektrischer Maschinen kommt es oft vor, daß magnetischweiche Bauteile aus technologischen und technischen Gründen überhaupt nicht oder sehr schwierig aus elektrotechnischem Blech herzustellen sind. In diesen Fällen, und auch im Kleinmotorenbau, ist es zweckmäßig MWKM zu verwenden. Magnetischweiche Kompositionsmaterialien werden aus pulverförmiger Ferromagnetik unter kleinem Zusatz von einem Bindeisolationsmittel (ungefähr 0,5-1,0%), durch Korpusformung und Temperaturbehandlung bei Temperaturen 180-600 ^OC hergestellt.

Die magnetischweichen Körper aus MWKM bestehen im allgemeinen aus Teilchen von reinem Eisenpulver, deren Oberfläche mit dünner Schicht (0,1-1,0 µm) eines Bindeisolationsmittels bedeckt ist. Bei der Herstellung der MWKM-Körper ist es möglich, einen volumenelektrischen Widerstand in großem Intervall (von einigen Zehnteln bis mehrere Hunderte µG2·m) vorzusehen.

Die msgnetischweichen Körper aus elektrotechnischem Blech haben längs der Richtung der Fläche kleinen elektrischen Widerstand und große Permeabilität, in Richtung perpendikulär der Fläche aber großen elektrischen Widerstand und kleine Permeabilität. Die magnetischweichen Körper aus MWKM sind dagegen mehr isotropisch, und die Differenzen in Richtung und perpendikulär des Pressdruckes sind weniger bemerkbar.

Den elektrischen Volumenwiderstand beeinflussen die Eigenschaften des Bindeisolationsmittels, die Figur der Eisenpulverteilchen und die Anfertigungstechnologie des MWKM-Körpers.

Obwohl die MWKM-Korper kleine Wirbelstromverluste aufweisen, haben sie hohe Hysteresisverluste, In diesem Zusammenhang wachsen die Gesamtverluste der Ummagnetisierung langsamer als bei den Korpern aus elektrotechnischem Blech. Die MWKM erreichen die Sattigungsinduktion bei höheren Feldstarken als elektrotechnisches Blech. Da die MWKM großen volumenelektrischen Widerstand haben, muß man anerkennen, daß die Induktion in bestimmtem Bereich bei höheren Frequenzen und unveranderter magnetischer Feldstarke konstant bleibt. Je größer der volumenelektrische Widerstand ist, desto tiefer dringt der magnetische Feldverlauf in die MWKM-Korper und desto höher sind die Frequenzen, bei denen das Sturzen der Induktion beginnt.

Die gleichweise geringere magnetische Induktion des MWKM wirkt sich oft im Elektromotorenbau nicht nachteilig aus, weil infolge der Luftspalte zwischen dem Stator und Rotor der magnetische Kreis schon hinreichend gesichert ist.

Wie vorher dargestellt, werden die MWKM-Körper aus solchen magnetischweichen Pulverteilchen hergestellt, welche mit dünner Isolationsschicht aus nichtmagnetischem Bindeisolationsmaterial bedeckt sind. Diesen Film können wir annäherungsweise als dünne Luftspalte betrachten. Bei Summierung dieser Filme können wir sie unter gewissen Bedingungen als einen konzentrierten Luftspalt ansehen, wie es in den Elektromotoren zwischen dem Rotor und Stator der Fall ist.

Im Rahmen dieser Arbeit wurde der Einfluß der Breite des konzentrierten Luftspalts auf die magnetischen Eigenschaften des MWKM untersucht. Für diese Zwecke wurden kreisförmige Versuchskörper mit Dimensionen von 50/40x5 mm und 80/60x10 mm aus MWKM und aus elektrotechnischem Blech angefertigt.

Nach den magnetischen Messungen wurden die kreisförmigen Körper durchsägt und neue Messungen beim unterschiedlichen Luftspalt durchgeführt. Zu genanntem Zweck bekam man zwei Halbkreise, die zu magnetischen Kreisen mit zwei Luftspalten komplettiert wurden. Zur Regulierung des Luftspaltes wurden zwischen den Halbkreisen nichtmagnetische Blätter mit der Dicke von 0,07; 0,19; 0,48 und 1,15 mm angebracht. Da sich in jedem magnetischen Kreis

70
nun zwei konzentrierte Luftspalte befanden, war die Gesamtbreite des Luftspaltes 0,14; 0,38; 0,96 und 2,3 mm. Die Messungen wurden auch bei minimalem Luftspalt, d.h. ohne angebrachte Isolationsblätter, durchgeführt.

Die Methodik der magnetischen Messungen wird in (1,2) beschrieben. Einige Isolationskurven der ungeteilten (ohne konzentrierten Luftspalt) Ringe sowie der Ringe mit verschiedenen Luftspalten siehe Figur 1. Es ist deutlich zu erkennen, daß man mit wachsenden Luftspalten für gleiche Induktionen höhere magnetische Feldstärke benötigt, und daß die Sättigungsinduktionen bei höheren Feldstärken stattfinden.

Fig. 1. 1 - ohne Luftspalt; 2 - min. Luftspalt; 3 - 2x0,07 mm Luftspalt; 4 - 2x0,19 mm Luftspalt; 5 -2x0,48 mm Luftspalt

Es ist bemerkenswert, daß bei minimalen Luftspalten die magnetische Induktion mit zunehmender Breite der Luftspalte bei Körpern aus Blech schneller sinkt als bei den Körpern aus MWKM.

Man unterscheidet folgende MWKM: 1. MWKM mit höherer magnetischer Induktion in Richtung perpendikulär dem Pressungsdruck bei Formung des Körpers. Aus diesem Material (siehe Mikroschliff Fig. 2) ist es zweckmäßig, Statoren und Rotoren kleiner Wechselstromkollektormotoren und kleiner einfasiger Asynchronmotoren herzustellen, sowie magnetische Bauteile einiger Apparate und Meßgeräte.

Fig. 2. Mikroschliffbild von MWKM mit größerer Permeabilität (Vergrößerung 17 x)

2. MWKM, bei dem die magnetische Induktion wenig von der Richtung des Pressungsdruckes abhängt. Aus diesem Material (siehe Mikroschliff Fig. 3) kann man solche Bauteile liefern, deren magnetischer Feldverlauf beliebigen Kurven folgt. Außerdem kann man kombinierte Bauteile konstruieren - mit dem vorherbeschriebenen MWKM mit höherer Induktion, oder mit elektrotechnischem Blech. Aus all den genannten Materialien können Anker der Mikrogleichstrommotoren, Statoren und Rotoren flacher Gleichstrommotoren ohne Bürsten, Bauteile linearer Motoren und Drosseln hergestellt werden.

Fig. 3. Mikroschliffbild von MWKM mit niedriger Anisotropie (Vergrößerung 17 x)

3. MWKM, bei denen die Körper bei höheren Temperaturen (bis 600 ^oC) in Betrieb sind. Solche Materialien benötigt man in Bauelementen der magnetischen hydrodynamischen Pumpen und auch in einigen Sondermotoren und Apparaten. 4. MWKM, bei denen der magnetische Feldverlauf bei hohen Volumen des elektrischen Widerstandes tief in den Körper eindringt, infolgedessen die magnetische Induktion mit zunehmenden Frequenzen (bis einige kHz) nicht fällt. So kann man aus diesem Material solche Bauteile und Geräte schaffen, bei denen die Permeabilität von der Frequenz nicht abhängt, sowie große magnetischweiche Bauteile.

Anschließend werden die Anwendungsmöglichkeiten der beschriebenen Materialien und die Resultate der Versuche mit den kleinen Wechselstromkollektormotoren und einfasigen Asynchronmotoren eingehender betrachtet. Die Versuche mit den Motoren wurden an der Technischen Universität Tallinn und in spezialisierten Organisationen in BSNCM Moskau, BO HMMMOM Wilnius und HMMOM Frunse durchgeführt.

Die Resultate der Versuche mit den Wechselstromkollektormotoren mit Staturen aus MWKM siehe Tabelle 1.

Die Wechselstromkollektormotoren KB-60 und seine Modifikation DK-58 werden von vielen Betrieben erzeugt. Die Konstruktion des in der Technischen Universität Tallinn angefertigten Stators aus MWKM unterscheidet sich von dem Stator aus elektrotechnischem Blech nur durch die kleinere Lauferbohrung. In gepreßten Statoren war der Durchmesser der Lauferbohrung 30,6 mm gegenüber 31 mm bei den aus elektrotechnischem Blech angefertigten Statoren. Des bedeutet, daß der Luftspalt zwischen dem Stator und Rotor 0,3 mm war, gegenuber 0,5 mm bei den in Serie gefertigten Rotoren und Statoren aus elektrotechnischem Blech. In diesem Fall war es zweckmäßig, die Zahl der Anregungswindungen um 8 % zu verringern, welcher Umstand die Einsparung des Kupferdrahtes mitsichbrachte.

Alle anderen Bauteile der Motoren KB-60 und DK-58 (außer Statoren) wurden in Betrieben angefertigt und in Betrieben oder Laboratorien montiert. Es sei bemerkt, daß die Konstruktion des Motors KB-60 unvollständig war, und daß die in Betrieben angefertigten Bauteile keine genügende Genauigkeit besaßen. So kam es, daß die Kennziffern der Versuche mit demontierten und neu montierten Motoren gewisse Streuung aufwiesen. Die Messungen erwiesen, daß einige KB-60 Elektromotoren die nominale Leistung - 60 W - nicht erreichten. Aus der Tabelle 1 kann man folgern, daß die Motoren mit dem MWKM-Stator eine Nutzleistung von 54,3 bis 63,2 Watt haben, der Wirkungsgrad aber von 35,9 bis 43,1 % besteht. Bei den Motoren mit dem Stator aus elektrotechnischem Blech sind die entsprechenden Kennziffern 50,6 bis 61,2 Watt und 30,8 bis 40,8 %.

Der Betrieb für Elektroapparatur in Lwow fertigt modernisierte Kollektormotoren DK-58 auf Basis von KB-60 an. In diesem neuen Elektromotor ließ man den magnetischweichen Stator unverändert. In demselben Betrieb wurde der neue Motor auch montiert und die elektromechanischen Versuche auch durchgeführt. Die Versuchsresultate ergaben, daß die Motoren mit Statoren aus MWKM eine höhere Nutzleistung - 61 W- und einen höheren Wirkungsgrad - 47 % - aufwiesen, als die Motoren mit Statoren aus elektrotechnischem Blech.

Im Institut HMMOM (Stadt Frunse) wurden die Wechselstromkollektormotoren DK-100-140-10 und DK-100-250-12 ausgearbeitet, Die DK-100-140-10 sind schon in Serienfertigung. Für beide genannten Motoren wurden an der Technischen Universitat Tallinn Statoren aus MWKM ausgearbeitet gepreßt, Einige der gepreßten Statoren waren bis % 8 langer als diejenigen aus elektrotechnischem Blech 2013. Der Durchmesser der Läuferbohrung (47 mm) und andere Konstruktionselemente wurden nicht geandert. Die Versuchsresultate (siehe Tab. 2 und 3 und Fig. 4) zeigten, daß die gepruften Elektromotoren die Nominalleistung und den nominalen Drehungsmoment erreichten, und daß auch andere Kennziffern den technischen Bedingungen entsprachen. Die Elektromotoren DK 100-140-10 mit MWKM-Statoren hatten bei Nominalleistung 140 W den Wirkungsgrad 57,5-68,3 % und diejenigen mit dem Stator aus elektrotechnischem Blech 63,0-65,5 %. Bei nominalem Drehungsmoment 0,199 Nom erreichten die Motoren DK-100-250-12 mit MWKM-Statoren den Wirkungsgrad 55-61 % und diejenigen mit dem Stator aus elektrotechnischem Blech 61-66 %.

Einige Betriebe stellen einfasige Asynchronmotoren AD-4-2/36 her, welche im Institut BENCN (Stadt Moskau) in Zusammenarbeit mit der TU Tallinn modernisiert wurden. Dabei wurden der Stator und die Schunten aus MWKM angefertigt. Die Versuche mit den Motoren fanden in den Insti-

Tabelle 1

mit Statoren aus MWKM und elektrotechnischem Blech (Versuche durchgeführt Beispiele der Versuchsresultate der Wechselstromkollektormotoren KB-60 F - Frunse, W - Wilnius, M - Moskau)

	N 8	61,2	13900	0,70	40,8	
	N 6 M	54,9	11500	0,84	30,8	
s Blech	N S W	56,4	56,4 12800		57.1	
chnische	N N	50,6	11500	0,73	32,9	
lektrote	N 10 F	59,4	15100	0,73	37,1	
E	N 9 F	55,1	14000	0,71	36,7	
	N 376 M	63,2	13250	0,79	37,6	
	N 342 M	60,3	60,3 13700 0.79		35,9	
	N 365 W	55,2	18000	0,60	43,1	
MWKM	N 354 W	54,3	17700	0,65	39,9	
10 2.1 1 1 1 1	N 373 F	59,5	17200	0,67	41,0	
	N 358 F	56,3	14300	14.0	37,5	
Einheit	P.33	M	U/min	A	10	
Kennzeichen	150	Leistung Drehungan	geschwin- digkeit	Stromstärke Wirkungs-	grad n	

Die wichtigsten vergleichenden Versuchsresultate bei nominaler Leistung des Wechselstromkollektormotors DK-100-140-10 mit dem Stator aus MWKM und elektrotechnischem Blech 2013

Kenn-	Ein-	Bell II	MWKM	Elektrotechni- sches Blech		
zeichen	heit	N 373	N 329	N 320	N 12	N 10
Leistung P2	W	140	140	140	140	140
Drehungsge- schwindig- keit n	U/min	10250	8900	9900	9500	9200
Drehungsmo- ment M	N•m	0,132	0,15	0,115	0,136	0,122
Stromstärke I	A	1,15	1,25	1,115	1,07	1,11
Wirkungsgrad η Leistungsfaktor	% COS 4	59 0,92	57,5 0,88	68,3 0,91	65,5 0,89	63,0 0,91

Tabelle 3

Die wichtigsten vergleichenden Versuchsresultate bei nominalem Drehungsmoment des Wechselstromkollektormotors DK-100-250-12 mit dem Stator aus MWKM und elektrotechnischem Blech 2013

Kenn-	Ein-	ektrot	MV	VKM	Elekt	rotech Bleck	rotechni- Blech			
Zeronen	nero	N 1	N 2	N 20	N 17	N 1	N 17	N 20		
Leistung P2	W	282	258	250	280	266	276	270		
Drehungsge- schwindig- keit n	U/min	13600	12200	11900)	12860	12400	13300			
Drehungsmo- ment M	N•m	0,199 (0,199	0,199		0,199	0,199)		
ke I	A	2,29	1,94	2,16	2,15	2,00) 1,94	2,10		
Wirkungs- grad η Leistungs- faktor -	% 90 800	59 0,96	56 0,93	55 0,94	61 +	61 0,94	66 0,96	61		

tuten BSNCN (Stadt Moskau) und BO HNNMOM (Stadt Wilnius) statt.

Der größte Nachteil der serienweise angefertigten Motoren AD-4-2/36 ist der niedrige Anlassungsmoment, wobei nach dem TY-16-513.436-77 der Anlassungsmoment gegenüber dem nominalen Moment nicht weniger als 0,45-0,09 (das ist 0,45 bis 0,36) vorgesehen ist. Bei den Elektromotoren mit dem Stator und den Schunten aus MWKM ist diese Kennziffer bis 0,58. Da auch alle anderen Bedingungen der TY-16-513. 436-77 erfüllt sind, ist es sehr zweckmäßig, die nötigen magnetischweichen Bauteile aus MWKM anzufertigen.

Auch die Gleichstrommotoren N3-3 und БИД 1-2 mit Rotoren aus MWKM, bürstenlose Gleichstrommotoren, Asynchronmotoren mit flachem Stator und Rotor und verschiedene Linearmotoren aus MWKM haben sich als zufriedenstellend erwiesen.

Die vorherbeschriebenen Experimente mit magnetischweichen Bauteilen aus MWKM wurden ohne bemerkenswerte Veränderungen ihrer ehemaligen Konstruktion ausgeführt. Jedoch muß man auf die großen Unterschiede in der Innenstruktur der Körper aus MWKM und elektrotechnischem Blech achten, wodurch auch große Unterschiede in den elektromagnetischen und technologischen Eigenschaften dieser Werkstoffe und ihrer Anwendungsmöglichkeiten hervorgerufen sind.

Wenn man die Elektromotoren berechnet und konstruiert, muß man darauf achten, daß die Bedingungen der Ummagnetisierung und der Entwicklung von Wirbelstrom anders sind als in Bauteilen aus elektrotechnischem Blech. In diesem Zusammenhang muß man auch einsehen, daß der magnetische Feldverlauf beliebigen Kurven folgen kann, wie das z.B. in Bauteilen der flachen Elektromotoren und auch bei den Polschuhen der Fall ist.

Die Elektromotoren mit magnetischweichen Bauteilen aus MWKM sind geräuscharm,

Aus technologischen Grunden ist es erforderlich, daß der Unterschied zwischen der Länge und Breite der Scheidewand nicht zu groß wäre, sonst ist es beim Pressen des Körpers schwer, die nötige Dichte zu erreichen. Es ist wünschenswert zu beachten, daß im Körper keine kleinen Bohrungen vorgesehen werden. Weil die Lauferbohrung des MWKM-Stators größere Genauigkeit besitzt als der Stator aus elektrotechnischem Blech, ist es möglich, den Luftspalt zwischen dem Rotor und Stator zu verringern. Die Herstellung von weichmagnetischen Bauteilen ist durch kleinen Arbeits-, Metall- und Kapitalaufwand gekennzeichnet. Der technologische Prozeß läßt sich leicht automatisieren. Zur Zeit sind die MWKM-Bauteile im Kleinmotorenbau mit denen aus elektrotechnischen Blech schon konkurrenzfähig. Ihr Anwendungsgebiet erweitert sich fortwährend.

Literatur

Ритсо А.Э. и др. Магнитомягкий композиционный материал для магнитопроводов с пространственным распределением магнитного потока // Свойства и технология изготовления износостойких материалов. Порошковая металлургия IV. Тр. Таллиннск, политехн. ин-та. Таллинн, 1982.

A. Laansoo, V. Liimann,

A. Ritso, R. Siimar

Magnetpehmed liitmaterjalid elektrimootorite magnetahelates

Kokkuvote

Artiklis on kasitletud magnetpehmete liitmaterjalide (MPLM) omadusi ja kasutusalasid.

Eristatakse nelja liiki MPLM:

- 1) korgendatud magnetilise induktsiooniga,
- 2) vaiksema anisotroopsusega,
- 3) kõrgendatud termopusivusega,
- 4) suurendatud elektritakistusega.

On toodud vahelduvvoolu-kollektormootorite KB-60, DK-58-60-20, DK 100-140-10, DK 100-250-12 ja asunkroonmootori AD-4-2/36 katsetamise tulemused. MPLM-dest magnetahelad on täiesti konkurentsivõimelised ka paljudes teistes elektrimasinates ja aparaatides, nagu alalisvoolu-mikrolineaarmootorid, harjadeta kollektormootorid, lamemootorid, drosselid, spetsiaaltransformaatorid, magnethudrodunaamilised pumbad jne.

MPIM-st on võimalik konstrueerida selliseid magnetahelaid, mida on väga raske valmistada elektrotehnilisest terasplekist.

Et saavutada MPLM-de kasutamisel maksimaalset efekti, on vaja magnetahelaid kohandada uue materjali tehnoloogilistele isearasustele.

A. Laansoo, V. Liimann, A. Ritso, R. Siimar

Magnetischweiche Kompositionsmaterialien (MWKM) für elektrische Motoren

Zusammenfassung

In dem Aufsatz behandelt man die Eigenschaften des MWKM und die Möglichkeiten diesen Werkstoff in den elektrischen Motoren als magnetischweichen Körper zu verwenden.

Man unterscheidet folgende MWKM:

- 1) mit höherer Permeabilität.
- 2) mit kleinerer Anisotropie,
- 3) mit höherer Temperaturbeständigkeit.
- 4) mit höherem Volumen des elektrischen Widerstandes.

Die Resultate der Versuche der Wechselstromkollektormotoren KB-60, DK-58-60-20, DK 100-140-10, DK 100-250--12 und einfasiger Asynchronmotoren AD-4-2/36 mit Statoren aus MWKM zeigten, daß sie sich wenig von denselben Motoren mit Statoren aus elektrotechnischem Blech unterscheiden.

Es ist bemerkenswert, daß auch Gleichstrommikromotoren, Linearmotoren, flache Motoren, Drosseln, Spezialtransformatoren, magnetische hüdrodünamische Pumpen mit magnetischen Körpern aus MWKM konkurenzfähig sind mit den genannten elektrischen Maschinen und Apparaten, welche Körper aus elektrotechnischem Blech besitzen.

Aus MWKM ist es günstig solche magnetischweiche Körper anzufertigen die aus elektrotechnischem Blech unmöglich oder sehr schwer herzustellen sind.

Beim Konstruieren der magnetischen Körper mussen ihre technologischen Besonderheiten berücksichtigt werden um die besten magnetischen Eigenschaften zu erringen. M 712

TALLINNA TEHNIKAÜLIKOOLI TOIMETISED

ТРУДЫ ТАЛЛИННСКОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА

УДК 621.762

Я.П. Кюбарсепп

УПРОЧНЕНИЕ И ВОССТАНОВЛЕНИЕ ПОВЕРХНОСТЕИ ЗАПОРНЫХ ВЕНТИЛЕЙ ТЭС И АЭС МЕТОДОМ ПРОПИТКИ – ПАИКИ

Энергетическая арматура ТЭС и АЭС работает в очень напряженных условиях, характеризуемых высокими давлениями (до 40 МПа) и температурами (до 700 °С), высокими контактными напряжениями на уплотнительных поверхностях затворов (до 15,0 МПа) большими скоростями рабочей среды в зоне затворов (до 600 м/с при работе на паре и до 150 ... 200 м/с на воде) [I]. Наибольшее количество арматуры (запорной, запорно-дроссельной, дроссельной предохранительной и т.д.) на энергетических блоках составляют вентили, имеющие условный диаметр прохода Dy 6, 10, 20, 40, 65 мм (см. рис. I).

Основными сталями для изготовления корпусов запорной арматуры являются стали І2ХМФ, 20ХМФЛ и І5ХІМІФЛ. Особо высокие требования предъявляются к материалам уплотнительных поверхностей вентилей [I, 2, 3] высокая коррозионная и эрозионная стойкость, сохранение высокой твердости и предела прочности при высоких рабочих температурах (твердость на уровне HRC 40, предел прочности не менее 400... 500 МТа) сопротивляемость к воздействию тепловых ударов. высокая стойкость против задира при рабочих температурах, жаростойкость, достаточная пластичность, близкий к основному материалу коэффициент термического расширения. С технологической точки зрения к наплавляемому на уплотнительные поверхности материалу предъявляются требования [3]: обеспечение постоянства структуры и твердости по всей тол-ШИНЕ Наплавляемого слоя, постоянство химического состава и мехнических свойств на уплотнительных поверхностях ПО всей толщине слоя, хорошая наплавляемость и обрабатываемость точением, шлифованием.

Рис. 1. Вентили запорные с условными диаметрами $D_y = 10,20$ мм (a) и $D_y = 40,50$ и 65 мм (б):

1 - корпус, 2 - шток, 3 - сальниковое кольцо, 4 - набивка, 5 - ось, 6 - шарнирные болты, 7 - грундбукса, 8 - нажимная планка, 9 - гайка, 10 - шарик, 11 - бугель, 12 - рукоятка, 13 - штафт, 14 - резъбовая втулка, 15 - шпиндель, 16 - болты, 17 - гланка ползуна, 18 - болты, 19 - штифт, 20 - муфта соединительная, 21 - шайба, 22 - стопорный винт, 23 - муфта шарнирная.

Указанным требованиям могут отвечать лишь специальные сплавы, называемые наплавочными материалами или материалами для уплотнительных поверхностей. В СССР применяют 5 классов наплавочных материалов [2, 3]: хромистые нержавеющие стали ферритного класса, низколегированные стали, наплавочные материалы на основе железа, кобальта (т.н. стеллиты) или никеля (т.н. сплавы "колманой"). За рубежом основное применение нашли наплавочные материалы на основе кобальта или никеля. Твердость наплавочных материалов находится сбычно в пределах 40...45 HRC.

Эксплуатационная стойкость наплавленных уплотнительных поверхностей затворов зависит не только от свойств применяемых материалов, но и от совершенства способа их нанесения на детали затворов. При упрочнении поверхности арматуры находит применение большое разнообразие методов, которые можно разделить на три группы [1, 2, 3, 4]:

- наплавка упрочняющего материала прямо в корпус вентиля, проводимая ручным электродуговым и газопламенным методами, автоматической сваркой под слоем флюса и в среде защитных газов, плазменно-порошковым и индукционно-вакуумным методами; - припекание порошкообразного материала прямо в корпус вентилей при температурах ниже температуры плавления упрочняющего материала;

- установление готовых упрочняющих элементов в корпус вентиля различными способами: контактной сваркой, путем оплавления, пайки и другими методами.

Анализируя недостатки и преимущества уже разработанных материалов и методов упрочнения уплотнительных поверхностей и результаты исследований, проводимых автором дальнейшие исследования проводились в направлении нахождения высокопроизводительного метода нанесения армирующего слоя таким образом, чтобы были совмещены процессы образования и нанесения армирующего материала. Этот процесс был назван процессом одновременной пропитки и пайки. Предлагаемый метод пропитки-пайки заключается в запрессовке непосредственно прямо в корпус вентиля (при проведении исследования вентиль был смоделирован цилиндрическим стаканом) композиции на основе порошков тугоплавкого соединения

(TiC, Cr₃C₂ и др.) и металла (например Nⁱ) с последующей одновременной печной пропиткой и пайкой получаемого слоя легкоплавким никелевым припоем (наплавочный сплав типа "колманой"). Перед прессованием исходные порошковые смеси (смесь тугоплавкое соединение – металл и порошковый припой) пластифицировались каучуком с целью улучшения их прессуемости. В процессе пропитки происходит образование армирующего материала, а в процессе пайки его совмещенная припайка к поверхности уплотнения вентиля.

Таким образом в процессе пропитки – найки формируется композиция из трех компонентов: тугоплавкое соединение – металл с высокой температурой плавления – металл с более низкой температурой плавления (металл для пропитки и пайки). Предложенная технология имеет, кроме названных, еще одно преимущество, заключающееся в том, что прессованием порошков в корпус вентиля можно формировать в зацрессованном слое композиционного армирующего сплава необходимое центральное отверстие. Некоторые схемы технологии нанезения армирующего слоя представлены на рис. 2.

В качестве исходных материалов применялись порошки углетермического карбида титана TiC, двойного карбида ти-

тана и хрома (Ti,Cr)C, полученного методом самораспространяющегося высокотемпературного синтеза (CBC-метод) и порошок карбида хрома Cr₃C₂. Порошки отжигались предварительно при I300 ^OC с целью уменьшения газовыделения во время пропитки – пайки. В качестве металлических порошков применялись электролитический порошок никеля ПНЭ-I и порошок наплавочного никелевого сплава "колманой" ПГСР-2.

Рис. 2. Технолосические схемы нанесения армирующих слоев из композиционных материалов на уплотнительные поверхности запорных вентилей методом пропитки-пайки.

Технология нанесения армирующего слоя включает следующие этапы:

I. Размол - смешивание порошковых компонентов: тугоплавкое соединение - никель в среде этилового спирта.

2. Пластифицирование полученной порошковой смеси а также порошка легкоплавкого припоя каучуком.

3. Послойное прессование слоя карбид - никель и слоя из порошка ITCP-2 прямо в стальной корпус обоймы (стакана) согласно технологическим схемам на рис. 2.

4. Удаление пластификатора спеканием в среде водорода.

5. Пропитка тугоплавкого каркаса из карбидо-металлической композиции легкоплавким припоем, сопровождающаяся одновременной припайкой к стальному корпусу при 1090 °С в вакууме либо в водороде.

Пропитка – пайка композиции, содержащей TiC или (Ti, Cr)C, оказалась возможной только в вакууме из-за неудовлетворительной смачиваемости этих тугоплавких соединений металлами в водороде. Хорошее смачивание Cr_3C_2 наблюдается как в вакууме, так и в водороде. Пропитка при применении предложенных технологических схем на рис. 2 происходила хорошо, получались практически беспористые армирующие слои с твердостью 40...50 HRC на основе многокомпонентных комлсзиций (мас.%):

50 % (Ti,Cr) – 50 % Ni – ПСр2 и 35 % TiG-65 % Ni – ПСр2.

В то время как процесс пропитки происходит хорошо, одновременный процесс пайки к стальному корпусу по технологическим схемам № I и 2, изображенным на рис. 2, происходил только по нижней поверхности, между боковой поверхностью композиционного материала и стального корпуса образовался зазор, незаполненный припоем. Применение других технологических схем, представленных на рис. 2, не обеспечивал улучшение качества армирования. При этом неважно, каким образом этот зазор образовался: из-за различия в к.т.р. пористой композиции карбид- Ni и стального корпуса в процессе нагрева или из-за некоторой усадки образующегося армисуищего слоя во время пропитки. По этой причине дальнейшие усилия были направлены на устранение усадки армирующей композиции во время пропитки.

Степень усадки при спекании зависит от дисперсности применяемых порошковых компонентов. Такая же закономерность должна существовать при пропитке. Так как температура пропитки относитєльно невысокая (IO90...IIO0 °C), то дисперсность тугоплавкой фазы не должна практически влиять на усадку. Сильнее должна влиять дисперсность Ni-порошка. Поэтому проводился предварительный размол карбидной составляющей (TiC) в течение 24 часов с последующим совместным размолом порошковой смеси TiC-Ni.

Независимо от применяемой технологической схемы (#I ...4) практическое отсутствие усадки и, следовательно, качественное армирование достигается после совместного размола композиции TiC-Ni не менее 3 и не более I2 часов. При больших продолжительностях наблюдается некоторая усадка и образование бокового зазора. В то время как для композиции TiC-Ni оптимальной (с точки врения механических свойств слоя и качества армирования) оказался совместный размол в течение I2 часов, для композиции (Ti,Cr)C-Ni размол сверх 3 часов уже приводит к образованию бокового зазора. Качественные армирующие слои, полученные как пропиткой в водороде, так и в вакууме, формируются при применении порошковых композиций 50 % $Cr_3C_2 - 50 \%$ Ni, размолотые предварительно не свыше I2 часов.

Окончательное решение о применимости того или другого из предложенных тугоплавких соединений (TiC, (Ti, Cr)C, Cr₃C₂) можно принять лишь после исследования механических свойств полученных пропиткой композиций. Исследовались прочность при поперечном изгибе и твердость пропитанных припоем ПГСр2 композиции 35% TiC - 65% Ni , 50% (Ti, Cr)C - 50% Ni и 50% Cr₃C₂ - 50% Ni.

Исследования показали, что меньшей величиной усадки характеризуются сплавы, упрочненные карбидом титана и наибольшей сплавы на основе карбида хрома. Наиболее высокие прочностные свойства имели сплавы на основе TiC ($\sigma_{\rm u}$ до 865 МПа при твердости до 50 HRC) Высокие прочностные свойства могут приобрести также сплавы на основе $\rm Cr_3C_2(\sigma_{\rm u}$ до 520 МПа при твердости до 46 HRC), но только при продолжительном размоле, приводящем к значительной усадке.

Проведенные исследования позволяют сделать вывод, что наиболее простой и достаточно надежной можно признать схе-

Рис. 3. Поперечный разрез стальных стаканов с армирующими слоями, полученных методом пропитки-пайки в вакууме порошковой композиции TiC - Ni по технологической схеме № 1. Длительность совместного размола порошковой композиции (слева направо) 0, 5, 3, 6, 12, 24 и 48 часов.

му № I на рис. 2. Схемы № 2...4 не давали улучшения качества, а схемы № 5 и 6 привели к его ухудшению. В качестве композиции для упрочнения уплотнительных поверхностей вентилей можно рекомендовать достаточно высокопрочные композиции на основе TiC, размолотые перед прессованием в корпус вентиля с продолжительностью размола, предотвращающей усадку во время пропитки – пайки. Применение технологической схемы № I и композиции на основе TiC позволяет добиться качественного уплотнительных поверхностей.

Литература

I. Имбицкий М.И. Справочник по арматуре тепловых электростанций. М.: Энергоиздат, 1981. 304 с.

2. Имбицкий М.И. Повышение надежности энергетической арматуры. М.: ЦИНТИ Химнефтемал, 1982. 48 с.

3. Имбицкий М.И. Энергетическая арматура за рубежом. М.: ЦИНТИ Химнефтеман, 1984. 40 с.

4. Дорожкин Н.Н., Абрамович Т.М., Жорник В.И. Получение покрытий методом припекания. Минск: Наука и техника, 1980. 176 с.

J. Kubarsepp

<u>Soojus- ja aatomielektrijaamade sulgeventiilide</u> tööpindade tugevdamine ja taastamine immutamisjootmismeetodiga

Kokkuvôte

On valja pakutud sulgeventiilide tööpindade tugevdamise ja taastamise uus tehnoloogiline meetod: immutamisjootmismeetod. Meetod seisneb kõvafaasi (näiteks TiC) ja metalli (näiteks Ni) alusel poorse kihi immutamises kergsulava joodisega, millega kaasneb samaaegne jootmine ventiili teraskorpuse külge. On uuritud mitmete tehnoloogiliste skeemide ja pulberkomposiitide kõlblikkust. Uurimistulemuste põhjal on soovitatud tehnoloogiline skeem ja pulberkomposiitide koostis.

J. Kübarsepp

Reinforcement and Restoration of Cut-off Valve Surfaces of Thermal- and Atomic Power Stations by Means of the Impregnation and Soldering Method

Abstract

A new technological method for reinforcement and restoration of cut-off valves working surfaces is offered. The method consists of impregnation of the porous layer on the basis of refractory phase (for example TiC) and metal phase (for example Ni) by fusible solder. The processes of impregnation and soldering the reinforcing layer to the steel-body of the valve take place simultaneously. Some technological versions and compositions of reinforcing layer materials are investigated. Nº 712

TALLINNA TEHNIKAÜLIKOOLI TOIMETISED

ТРУДЫ ТАЛЛИННСКОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА

УДК 621.762:669.018.5

С.М. Летунович, П.Э. Венникас

ОПТИМИЗАЦИЯ СОСТАВА ТЕРМИЧЕСКИ ОБРАБАТЫВАЕМОГО ПОРОШКОВОГО МЕДНОГО СПЛАВА

В заключении статьи []] было отмечено, что перспективными легирующими элементами для дисперсионно-твердеющих порошковых медных сплавов могут быть Cr, Ti, Co. В данной работе производилась оптимизация состава сплава Cu-Cr, Ti-Co и исследование влияния неметаллических легирующих элементов на свойства выбранных сплавов.

Для оптимизации состава сплава Сu-Cr-Ti-Co был выбран симплекс-решетчатый математический план модели третьей степени [2], который в данном случае имеет вид:

 $\hat{\mathbf{y}} = \sum_{1 \leq i \leq q} \beta_i \mathbf{X}_i + \sum_{1 \leq i < j \leq q} \beta_{ij} \mathbf{X}_i \mathbf{X}_j \sum_{1 \leq i < j \leq q} \mathbf{Y}_{ij} \mathbf{X}_i \mathbf{X}_j (\mathbf{X}_i - \mathbf{X}_j) + \sum_{1 \leq i < j \leq k \leq q} \beta_{ijk} \mathbf{X}_i \mathbf{X}_j \mathbf{X}_k.$

Данный математический план включает IO сплавов, состав которых дан в табл. I.

Порошковые смеси готовились в баночном смесителе B течение 5 часов. Прессование образцов осуществлялось NOT давлении 500 МПа. Спекание производилось в вакуумной печи при 950 °С в течение І-го часа. Спеченные заготовки попрессовывались в той же пресс-форме при давлении 800 МПа. Нагрев под закалку вели в трубчатой водородной нечи и 38каливали в воду с температуры 950 °С. Затем одна часть образцов допрессовывалась в пресс-форме при давлении 800 МПа, а другая часть образцов экструдировалась в проволоку. Поскольку измерение твердости экструдированных проволок затруднительно, ее измеряли на образцах, полученных свободной осадкой (расплющиванием) закаленных брикетов между двумя пластинами. Степень осадки по высоте равнялась степени обжатия по диаметру при экструзии. Заключительной

Таблица I

Условия симплекс-решетчатого математического плана и свойства порошковых CTTRROP R PULPHONE CILCETICO

			10 BE	17 17	I7,5	6,7	23,4	9,8	19,2	7,2	22,9	I0,5	15,7	I0,5
0.	:00:	узия (осадка)	o'o'2 MIJa	I6	35I	562	194	. 528	311	554	224	537	402	469
			or Mila	15	493	886	336	63I	365	847	325	626	456	633
			HRB	I4	75	94	38	87	19	96	40	16	62	87
00		Экстр	28	I3	94,2	33,9	53,0	55,5	1,93	30,5	6I.7	30,2	63,4	62,2
1219	ୟ ୟ ୮.	0 1998	5000	I2	I0,5	2,0	21,6	3,7	I3,8	3,2	20,7	8,6	II,2	6,6
	BONG	Допрессовка	Co.2 MIIa	II	28I	38I	174	330	261	463	210	335	245	353
12.1	C		G B MIIa	IO	355	428	276	401	338	474	306	168	322	420
5.45			HRB	6	9 64	94 0	3 30	69 3	149	200	34	62	5 47	1 67
-			2%	Э	88.	27,(47,5	49,8	65,]	26,4	56,1	26,1	52,5	50,4
	TOB	альном	3	2	0	0	2,0	0	0,67	0	I,33	0,67	I,33	0,67
- 40	BJIEMEH		F	9	0	2,0	0	0,67	0	I,33	0	I,33	0,67	0,67
3	рующих	натур	S	5	2,0	0	0	I,33	I,33	0,67	0,67	0	0	0,67
	Jerio (itam,	x ₃	4	0	0	ч	0	I/3	0	2/3	I/3	2/3	I/3
	Hectbo B Ma	рованн едини	X2	3	0	н	0	1/3	0	2/3	0	2/3	I/3	I/3
CONTENTO	Игон	идоди	Τx	2	Н	0	0	2/3	2/3	1/3	1/3	0	0	I/3
10		N6 OIIbTTA	yann.	I	H (S	2	3	4	ß	9	1~	:0	6	10

операцией являлось остаривание образцов, которое осуществлялось в трубчатой водородной печи при температуре 450 °C в течение I-го часа. Полученные результаты приведены в табл. I.

Оценки коэффициентов модели определяли из полученных результатов по следующим формулам [2]:

I)
$$\beta_i = \gamma_i;$$

2)
$$\beta_{ij} = 9/4(y_{iij} + y_{ijj} - y_i - y_j);$$

3)
$$\chi_{ij} = 9/4 (3 \gamma_{iij} - 3 \gamma_{ijj} - \gamma_i + \gamma_j);$$

4)
$$\beta_{ij\kappa} = 27 y_{ij\kappa} - 27/4 (y_{iij} + y_{ijj} + y_{ii\kappa} + y_{i\kappa\kappa} + y_{jj\kappa} + y_{j\kappa\kappa}) + 9/2 (y_i + y_j + y_{\kappa}).$$

В результате были получены следующие модели:

$$\begin{aligned} & \int_{\mathcal{N}} = 88,9x_{\rm I} + 27x_2 + 47,3x_3 - 90,7x_{\rm I}x_2 - 33,8x_{\rm I}x_3 + \\ & + 9,7x_2x_3 + 14,6x_{\rm I}x_2(x_{\rm I}-x_2) - 32,9x_{\rm I}x_3(x_{\rm I}-x_3) - \\ & - 132,5x_2x_3(x_2-x_3) + 236,2x_{\rm I}x_2x_3; \end{aligned}$$

$$\hat{\mathbf{y}}_{\mathsf{HRB}} = 64\mathbf{x}_{\mathrm{I}} + 76\mathbf{x}_{2} + 30\mathbf{x}_{3} + 24, \mathbf{b}\mathbf{x}_{\mathrm{I}}\mathbf{x}_{2} - 24, \mathbf{b}\mathbf{x}_{\mathrm{I}}\mathbf{x}_{3} + 6, 8\mathbf{x}_{2}\mathbf{x}_{3} - 60, \mathbf{b}\mathbf{x}_{\mathrm{I}}\mathbf{x}_{2}(\mathbf{x}_{\mathrm{I}}-\mathbf{x}_{2}) + 24, \mathbf{b}\mathbf{x}_{\mathrm{I}}\mathbf{x}_{3}(\mathbf{x}_{\mathrm{I}}-\mathbf{x}_{3}) - 2, 3\mathbf{x}_{2}\mathbf{x}_{3}(\mathbf{x}_{2}-\mathbf{x}_{3}) + 255, 7\mathbf{x}_{\mathrm{I}}\mathbf{x}_{2}\mathbf{x}_{3};$$

$$\hat{y}_{\sigma_{B}} = 355x_{I} + 428x_{2} + 276x_{3} + 207x_{I}x_{2} + 29, 3x_{I}x_{3} + + 20, 3x_{2}x_{3} - 328, 5x_{I}x_{2}(x_{I}-x_{2}) + 38, 3x_{I}x_{3}(x_{I}-x_{3}) + + 123, 8x_{2}x_{3}(x_{2}-x_{3}) + 1039, 5x_{I}x_{2}x_{3};$$

$$\hat{\Psi}_{\sigma_{0,2}} = 28Ix_{I} + 38Ix_{2} + I74x_{3} + 294, 8x_{I}x_{2} + 36x_{I}x_{3} + 56, 3x_{2}x_{3} - 672, 8x_{I}x_{2}(x_{I}-x_{2}) + I03, 5x_{I}x_{3}(x_{I}-x_{3}) + I4I, 8x_{2}x_{3}(x_{2}-x_{3}) + 846x_{I}x_{2}x_{3};$$

$$\begin{split} y \, \delta_5 &= 10, 5x_1 + 2, 0x_2 + 21, 6x_3 - 12, 6x_1x_2 + 5, 4x_1x_3 - \\ &- 8, 6x_2x_3 - 15, 8x_1x_2(x_1 - x_2) - 21, 6x_1x_3(x_1 - x_3) + \\ &+ 26, 6x_2x_3(x_2 - x_3) - 81, 4x_1x_2x_3 \end{split}$$

2. Экструзия (осадка)

$$\hat{\mathbf{q}}_{\lambda} = 94, 2\mathbf{x}_{1} + 33, 9\mathbf{x}_{2} + 53\mathbf{x}_{3} - 94, 7\mathbf{x}_{1}\mathbf{x}_{2} - 36, 9\mathbf{x}_{1}\mathbf{x}_{3} + 15, 1\mathbf{x}_{2}\mathbf{x}_{3} + 33, 1\mathbf{x}_{1}\mathbf{x}_{2}(\mathbf{x}_{1}-\mathbf{x}_{2}) - 42, 8\mathbf{x}_{1}\mathbf{x}_{3}(\mathbf{x}_{1}-\mathbf{x}_{3}) - 181, 1\mathbf{x}_{2}\mathbf{x}_{3}(\mathbf{x}_{2}-\mathbf{x}_{3}) + 399, 2\mathbf{x}_{1}\mathbf{x}_{2}\mathbf{x}_{3};$$

$$\hat{\mathbf{y}}_{\text{HRB}} = 75\mathbf{x}_{\text{I}} + 94\mathbf{x}_{2} + 38\mathbf{x}_{3} + 31,5\mathbf{x}_{1}\mathbf{x}_{2} - 27\mathbf{x}_{1}\mathbf{x}_{3} - 81\mathbf{x}_{2}\mathbf{x}_{3} - 18\mathbf{x}_{1}\mathbf{x}_{2}(\mathbf{x}_{1}-\mathbf{x}_{2}) + 58,5\mathbf{x}_{1}\mathbf{x}_{3}(\mathbf{x}_{1}-\mathbf{x}_{3}) - 31,5\mathbf{x}_{2}\mathbf{x}_{3}(\mathbf{x}_{2}-\mathbf{x}_{3}) + 126\mathbf{x}_{1}\mathbf{x}_{2}\mathbf{x}_{3};$$

$$\hat{\mathbf{q}}_{\sigma_{\mathbf{b}}} = 493\mathbf{x}_{\mathbf{I}} + 886\mathbf{x}_{2} + 336\mathbf{x}_{3} + 222, 8\mathbf{x}_{\mathbf{I}}\mathbf{x}_{2} - 312, 8\mathbf{x}_{\mathbf{I}}\mathbf{x}_{3} - 315\mathbf{x}_{2}\mathbf{x}_{3} - 573, 8\mathbf{x}_{\mathbf{I}}\mathbf{x}_{2}(\mathbf{x}_{\mathbf{I}}-\mathbf{x}_{2}) - 83, 3\mathbf{x}_{\mathbf{I}}\mathbf{x}_{3}(\mathbf{x}_{\mathbf{I}}-\mathbf{x}_{3}) - 90\mathbf{x}_{2}\mathbf{x}_{3}(\mathbf{x}_{2}-\mathbf{x}_{3}) + 2871\mathbf{x}_{\mathbf{I}}\mathbf{x}_{2}\mathbf{x}_{3};$$

$$\hat{\mathbf{y}}_{\sigma_{0,2}} = 35\mathbf{I}\mathbf{x}_{\mathrm{I}} + 562\mathbf{x}_{2} + \mathbf{I}94\mathbf{x}_{3} + 380, 3\mathbf{x}_{\mathrm{I}}\mathbf{x}_{2} - 22, 5\mathbf{x}_{\mathrm{I}}\mathbf{x}_{3} + 4\mathbf{I}\mathbf{I}, 8\mathbf{x}_{2}\mathbf{x}_{3} + 299, 3\mathbf{x}_{\mathrm{I}}\mathbf{x}_{2}(\mathbf{x}_{\mathrm{I}}-\mathbf{x}_{2}) + 234\mathbf{x}_{\mathrm{I}}\mathbf{x}_{3}(\mathbf{x}_{\mathrm{I}}-\mathbf{x}_{3}) + 83, 3\mathbf{x}_{2}\mathbf{x}_{3}(\mathbf{x}_{2}-\mathbf{x}_{3}) + 39\mathbf{I}, 5\mathbf{x}_{\mathrm{I}}\mathbf{x}_{2}\mathbf{x}_{3};$$

$$\begin{aligned} y_{5_5} &= 17,5x_1 + 5,7x_2 + 23,4x_3 - 14x_1x_2 + 2,7x_1x_3 - \\ &- 6,5x_2x_3 - 9,0x_1x_2(x_1 - x_2) - 11,7x_1x_3(x_1 - x_3) + \\ &+ 4,7x_2x_3(x_2 - x_3) - 82,6x_1x_2x_3 \end{aligned}$$

По данным моделям были получены тройные диаграммы свойств, которые приведены на рис. І и 2.

Как видно, прочность и твердость повышаются с увеличением количества Ti, но электропроводность резко снижается. Лучшим сочетанием электропроводности и твердости обладают те сплавы, которые содержат большее количество Cr, чем Ti или Co. Поэтому для дальнейших исследований были выбраны следующие сплавы

-	Cu-	I,8 %	Cr	-	0,I	%	Ti	-0, I % Co,
-	Cu-	I,6 %	Cr	-	0,3	%	Ti	- 0,1 % Co.
-	Cu-	I,6 %	Cr	-	0,I	%	ті	- 0,3 % Co.

Для исследования влияния неметаллических легирующих эдементов были выбраны S¹, В и Р. Количество неметаллических легирующих элементов в сплаве составляло 0, I и 0,2 % по массе.

Рис. 1. Зависимости свойств допрессованных порошковых сплавов системы Со – Ср. – Ті – Со от состава: а – относительной электропроводности (%); б – твердости, в – предела прочности (МПа); г – предела текучести (МПа); д – относительного удлинения (%).

Полученные результаты приведены на рис. 3, 4, 5, 6 и 7. Как видно, выбранные неметаллические добавки снижают прочностные свойства данных сплавов системы Cu-Cr-Ti-Co-В наименьшей степени снижает твердость и прочность Si, а при сплаве Cu – I,6 Cr – 0,I Ti – 0,3 Co незначительно повышает их. Относительное удлинение повышается с увеличением количества В и Р. Добавление в данные сплавы Si резко снижает относительное удлинение. На относительную электропроводность неметаллические легирующие элементы влияют практически так же, как и на прочностные свойства,

Рис. 2. Зависимости свойств экструдированных порошковых сплавов системы Си-Сг-Ті-Со от состава: а - относительной электропроводности (%); б - твердости, в - предела текучести (МПа); г - предела текучести (МПа), д - стносительного улинения (%).

the second protocol and an antipological second

т.е. снижают ее. Добавки В и О, I % Р в некоторой степени повышают относительную электропроводность порошкового сплава Си – I,6 Cr – 0,3 Ti –0, I Co ·

Выводы

I. Лучшим сочетанием свойств (электропроводность, твердость) обладают те сплавы, которые содержат большее количества Cr, чем Ti или Co.

2. В общем неметаллические легирующие элементы (Si, B, P) оказывают отрицательное влияние на свойства иссле-

дуемых порошковых медных сплавов, снижают эффект дисперсионного твердения.

Рис. 3. Влияние 51, В, Р на относительную электропроводность порошковых сплавов системы Cu-Cr-Ti-Co: а - допрессовка; б - экструзия.

98

а - допрессовка; б - экструзия.

Литература

I. Летунович С.М., Пирсо Ю.Ю. Влияние состава на некоторые свойства порошковых сплавов на медной основе // Тр. Таллиннск. политехн. ин-та, 1988. № 665, с. 38-50.

2. Новик Ф.С. Планирование эксперимента на симплексе при изучении металлических систем. М.: Металлургия, 1985. 256 с.

S. Letunovits, P. Vennikas

Termiliselt töödeldud pulbrilise vasesulami koostise optimeerimine

Kokkuvõte

Optimeeriti termiliselt töödeldud pulbrilise vasesulami Cu-Cr-Ti-Co koostis. Uuriti mittemetalliliste legeerivate elementide (Si, B, P) mõju väljavalitud sulamite ekspluatatsiooniomadustele (suhteline elektrijuhtivus, kõvadus, tõmbetugevus, voolavuspiir, suhteline pikenemine).

S. Letunovitch, P. Vennikas

The Optimization of the Contents of Sintered and Precipitated Copper Alloys

Abstract

With the aid of mathematical methods of test planning the dependence of copper alloys properties on the composition is shown. The influence of these components on electric conductivity, hardness, tensile strength, yield point and elongation has been studied.

Цена 2 руб. 70 коп.

