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Abstract

Accurate water segmentation plays a vital role in ensuring the safe and autonomous
navigation of unmanned surface vehicles (USVs), allowing them to effectively differentiate
between water surfaces and potential obstacles. This functionality is essential for key
operational tasks such as route planning and collision prevention in dynamic maritime
environments. While RADAR and LIDAR technologies are widely used, vision-based
systems present a more cost-efficient yet dependable alternative.

This thesis explores computer vision-based water segmentation techniques tailored to the
marine conditions of the Gulf of Finland, focusing on their application in USVs.

The study begins with an evaluation of a range of segmentation strategies, from conven-
tional image processing techniques based on color and shape, to modern deep learning-
based approaches. Following an extensive literature review, the focus was narrowed to
neural network-driven methods due to their superior accuracy and flexibility. Five dis-
tinct model architectures were selected for experimental comparison using a custom-built
dataset.

This dataset combines images from the Tampere-WaterSeg and USVInland collections,
supplemented by 226 frames captured along the Estonian coastline. Model performance
was assessed using metrics such as Intersection over Union (IoU), precision, and F1-score,
along with inference speed to evaluate real-time feasibility.

A total of twelve neural network configurations were trained under the same conditions.
After thorough performance analysis, five models stood out: DeepLabV3+ with Xception
backbone, U-Net with ResNet34, WaSR-Net (pretrained), and SegNet with both VGG16
and MobileNetV3 backbones. These configurations demonstrated a strong balance between
segmentation accuracy and real-time processing capabilities.

However, testing on the Estonian dataset revealed certain limitations. Some models
misclassified elements such as the sky or nearby structures (e.g., piers) as water. To
mitigate this, the dataset was rebalanced to improve generalization. Retraining with
the updated dataset resulted in improved performance—most notably, the DeepLabV3+
model with Xception achieved an IoU exceeding 97%, outperforming the larger and more
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resource-intensive WaSR-Net.

The conducted experiments confirm that deep learning-based segmentation methods are
highly effective for distinguishing between aquatic and terrestrial regions. Among the
evaluated models, DeepLabV3+ with an Xception backbone delivered the best results,
making it a promising candidate for deployment in autonomous USV systems.

The thesis is written in English and is 58 pages long, including 4 chapters, 21 figures and 9
tables.
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Annotatsioon
Autonoomsete laevade veesegmenteerimise meetodite uurimine

Täpne vee segmenteerimine on ülioluline mehitamata veesõidukite (USV-de) ohutuks
ja autonoomseks navigeerimiseks, võimaldades neil eristada veepinda ümbritsevatest
takistustest. See võimekus toetab olulisi funktsioone, nagu liikumistee planeerimine ja
kokkupõrgete vältimine keerulises meremiljöös. Kuigi RADAR- ja LIDAR-tehnoloogiad
on laialdaselt kasutusel, pakuvad visioonipõhised lahendused kuluefektiivset ja usal-
dusväärset alternatiivi.

Käesolev magistritöö uurib visioonipõhiseid vee segmenteerimise meetodeid, mis on
kohandatud Soome lahe meretingimustele ning suunatud USV-dele.

Uurimistöö algab erinevate segmenteerimistehnikate analüüsiga, hõlmates nii traditsioonil-
isi, värvi- ja kujupõhiseid meetodeid kui ka kaasaegseid süvaõppepõhiseid lähenemisi.
Pärast põhjalikku kirjanduse ülevaadet keskenduti üksnes närvivõrkudel põhinevatele mee-
toditele, kuna need pakuvad suuremat täpsust ja kohanemisvõimet. Katsetamiseks valiti
viis erinevat mudelit, mida hinnati spetsiaalselt koostatud andmestiku põhjal.

Andmestik koosneb Tampere-WaterSeg ja USVInland pildikogumitest, mida täiendavad
226 kaadrit, mis on salvestatud Eesti rannikuvetes. Mudelite sooritust hinnati selliste näita-
jate alusel nagu IoU (katvuse indeks), täpsus (precision), F1-skoor ning järeldustekiirus, et
hinnata sobivust reaalajas kasutamiseks.

Kokku treeniti kaksteist närvivõrgupõhist mudelikonfiguratsiooni identsetes tingimustes.
Analüüsi tulemusena osutusid kõige sobivamateks DeepLabV3+ Xception-taustvõrguga,
U-Net ResNet34-ga, eeltreenitud WaSR-Net ning SegNet koos VGG16 ja MobileNetV3
taustvõrkudega. Need mudelid näitasid head tasakaalu täpsuse ja reaalajas töövõime vahel.

Testides mudeleid Eesti rannikul jäädvustatud piltidel ilmnesid siiski mõned probleemid.
Näiteks tuvastati valesti taevas veealana või vastupidi. Samuti tõlgendasid mudelid
mõnikord suuri lähedalasuvaid objekte – näiteks kai – ekslikult veepinnana, mis võib
põhjustada tõsiseid vigu stseeni mõistmisel.
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Nende probleemide lahendamiseks ja üldistamise võime parandamiseks tasakaalustati
andmestik ümber. Pärast mudelite uuesti treenimist paranesid tulemused oluliselt. Näiteks
DeepLabV3+ koos Xception-taustvõrguga saavutas üle 97% IoU tulemuse, edestades isegi
ressursimahukamat WaSR-Net mudelit.

Töö eksperimentide ja analüüsi põhjal võib kindlalt järeldada, et närvivõrkudel põhinevad
meetodid on väga tõhusad vee- ja maismaa-alade eristamisel. Testitud mudelitest osu-
tus parimaks DeepLabV3+ Xception-taustvõrguga, muutes selle tugevaks kandidaadiks
autonoomse veesõiduki pardasüsteemi integreerimiseks.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 58 leheküljel, 4 peatükki, 21
joonist, 9 tabelit.
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List of Abbreviations and Terms

ARM Attention Refinement Modules
ASV Autonomous Surface Vessels
ASPP Atrous Spatial Pyramid Pooling
DNN Deep Neural Networks
DSLR Digital Single-Lens Reflex camera
CNN Convolution Neural Networks
FCN Fully Convolutional Networks
FMM Feature Fusion Module
FN False Negatives
FPS Frames Per Second
FP False Positives
GPU Graphics Processing Unit
ICVDS IntCatch Vision Data Set
IMU Inertial Measurement Unit
IoU Intersection over Union
mIoU mean Intersection over Union
MLP Multi-Layer Perceptron
MNDWI Modified Normalized Difference Water Index
mPA mean Pixel Accuracy
NDWI Normalized Difference Water Index
LIDAR Light Detection And Ranging
LoRA Low-Rank Adaptation
RADAR Radio Detection And Ranging
RGB Red Green Blue
RIWA River Water Segmentation Dataset
HSV Hue, Saturation, and Value
SLIC Simple Linear Iterative Clustering
TN True Negatives
TP True Positives
UAV Unmanned Aerial Vehicle
USV Unmanned Surface Vehicle
ViTs Vision Transformers
WaSR Water-Obstacle Separation and Refinement Network
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1. Introduction

Accurate and reliable water segmentation is a fundamental capability for the safe and
effective operation of unmanned surface vehicles (USVs). This process, which involves
distinguishing the water surface from other elements in the environment such as land,
rocks, vessels, and other obstacles, provides the essential foundation for autonomous
navigation and informed decision-making. A fully autonomous system heavily relies on
a robust collision avoidance mechanism, and the ability to precisely identify navigable
water is paramount to minimizing risks to both life and assets within the complex marine
environment. Currently, the common approach implemented in obstacle avoidance systems
for marine vehicles are RADAR and LIDAR. A cheaper yet accurate and effective solution
possible is by applying vision-based detection.

However, achieving precise water segmentation in maritime settings presents a unique set
of challenges. Unlike controlled environments, the open sea and inland waterways are
subject to considerable variability. Existing methods that rely solely on monocular images
often struggle with fluctuations in illumination and adverse weather conditions. The visual
data acquired can be significantly affected by high variance in scene properties, including
differing light levels and the presence of reflections. Furthermore, the color characteristics
of water can vary greatly, sometimes exhibiting similarities to surrounding terrain like
brownish trees, which complicates visual classification tasks that heavily depend on color
information. The dynamic and unpredictable nature of the marine environment, influenced
by factors such as sun glare and sea fog, further underscores the complexity of developing
a dependable situational awareness system.

Chapter 2 presents the theoretical and contextual background of the study, Chapter 3 out-
lines the experimental results obtained under various conditions and model configurations,
and Chapter 4 offers a detailed conclusion based on the research findings and outcomes.
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2. Background

Segmenting water for autonomous vessels involves identifying water regions in images to
ensure safe navigation. The two primary approaches to data segmentation can be catego-
rized as traditional methods and those based on neural networks. Traditional methods, such
as edge detection and thresholding, are straightforward but often fail in complex maritime
settings. Neural networks, particularly deep learning models, provide superior accuracy
and adaptability, making them the preferred choice for modern autonomous vessels.

Traditional methods rely on hand-crafted rules to segment water. For example, edge
detection identifies boundaries, while thresholding separates water based on color or
intensity. These methods are fast and don’t need training data, but they struggle with
reflections, varying lighting, or complex scenes, leading to unreliable results in real-world
navigation.

Deep learning models like U-Net, SegNet, and WaSR-Net use convolutional neural net-
works to classify pixels as water or non-water. They learn from large datasets, achieving
high accuracy and handling diverse conditions. However, they require significant computa-
tional power and annotated data, which can be a challenge for smaller vessels.

In this chapter, an evaluation of both approaches will be conducted based on the reviewed
literature. The more suitable method will then be selected for further adaptation and
application to the specific conditions of the Baltic Sea coastline.

2.1 Overview of Traditional Architectures for Water Segmentation

While deep learning has shown significant promise, traditional computer vision techniques
also offer viable solutions for water segmentation in certain scenarios. These methods
often rely on analyzing specific image features and can be computationally less demanding
than neural networks.

2.1.1 Color-Based Segmentation

Color is an intuitive feature for distinguishing water from many non-water surfaces. Color-
based segmentation techniques typically involve defining a range of color values in a
specific color space (e.g., RGB, HSV) that correspond to water. Pixels falling within this
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range are classified as water, while others are classified as non-water [1]. However, the
effectiveness of this approach can be limited by variations in water color due to factors
like sediment, algae, and lighting conditions. Reflections of the sky or surrounding objects
on the water surface can also introduce colors that might lead to misclassifications [2].
Analyzing the robustness of different color spaces, such as RGB and HSV, can help in
selecting a representation that is less sensitive to certain types of variations.

2.1.2 Texture-Based Segmentation

Texture analysis examines the spatial arrangement of pixel intensities to identify patterns
that can differentiate between water and other surfaces. Water surfaces, especially when
calm, often exhibit a relatively smooth texture compared to land, rocks, or vegetation.
Techniques like wavelet texture analysis can be used to extract these textural features and
segment the image accordingly [3]. However, the presence of waves, ripples, or floating
debris can introduce complex textures on the water surface, potentially complicating the
segmentation process.

2.1.3 Edge Detection Techniques

Identifying the boundary between water and non-water regions is a crucial aspect of
segmentation. Edge detection algorithms aim to locate sharp changes in pixel intensity that
correspond to these boundaries. While these techniques can be effective in clearly defined
scenarios, they might be sensitive to noise and reflections, which can create spurious edges
and lead to fragmented or inaccurate water boundaries [4]. An edge-aware approach, as
seen in the ELNet method, suggests that incorporating edge information can enhance the
segmentation process.

2.1.4 Geometric Feature-Based Methods

Geometric features such as shape and size can sometimes be used to identify water bodies,
particularly in aerial views where the overall shape of lakes or rivers might be discernible.
However, for on-surface marine vehicles with a limited field of view, relying solely on
geometric features might be less practical as the entire extent of the water body might not
be visible [5].
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2.1.5 Water Index Methods (NDWI, MNDWI)

Water index methods, such as the Normalized Difference Water Index (NDWI) and the
Modified Normalized Difference Water Index (MNDWI), are commonly used in remote
sensing to detect water bodies from multispectral imagery. These indices utilize the
different spectral reflectance properties of water in specific bands of the electromagnetic
spectrum, typically involving green, near-infrared, and mid-infrared bands. NDWI, for
example, uses the green and near-infrared bands to enhance water features and suppress
vegetation [6]. MNDWI replaces the near-infrared band with the mid-infrared band to
reduce the influence of buildings and soil on water extraction . While these methods offer
fast computation and have been widely applied, they can still face challenges with shadows,
differentiating water from certain land covers, and require careful selection of optimal
thresholds, which can vary depending on the specific environment.

2.1.6 Advantages of Traditional Methods

Traditional computer vision techniques for image segmentation offer several advantages,
particularly in terms of computational efficiency and ease of implementation [7]. Compared
to the complex computations involved in deep learning, these methods often rely on
simpler mathematical operations, making them less costly in terms of processing power
and potentially more suitable for real-time applications on resource-constrained embedded
systems [8]. Their relative simplicity can also make them easier to understand and
implement.

2.1.7 Analysis and Discussion

Despite their advantages, traditional computer vision algorithms often have limitations
in robustness and scalability when faced with the complexities of real-world maritime
environments. They can struggle with varying environmental conditions, such as changes in
illumination and the presence of reflections, which can significantly impact their accuracy.
Many traditional methods require manual tuning of parameters and might rely on specific
assumptions about the scene that might not always hold true, limiting their adaptability
and generalization capabilities compared to the automatic feature learning of deep learning
approaches. For instance, thresholding techniques can be highly sensitive to noise and
might perform poorly when there is significant overlap in intensity values between the
water and non-water regions.
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2.2 Overview of Neural Network Architectures for Water Segmenta-
tion

Deep learning has emerged as a powerful paradigm for tackling complex computer vision
tasks, and water segmentation for autonomous marine vehicles is no exception. Among the
various neural network architectures, Convolutional Neural Networks (CNNs) designed
for semantic segmentation have shown significant promise. These networks aim to classify
each pixel in an image into predefined categories, such as water and non-water. Several
architectures have been extensively studied and applied to this specific problem.

Fully Convolutional Networks (FCNs) were among the pioneering deep learning models
adapted for semantic segmentation. These networks replace the fully connected layers of
traditional CNNs with convolutional layers, enabling them to process images of arbitrary
sizes and produce pixel-wise predictions. SegNet is another architecture that has gained
traction, known for its encoder-decoder structure and the use of pooling indices to achieve
efficient upsampling in the decoder, leading to precise segmentation maps. U-Net, with its
distinctive U-shaped architecture and skip connections between the encoder and decoder,
has also demonstrated remarkable effectiveness in various segmentation tasks, including
water segmentation. These skip connections facilitate the fusion of high-resolution features
from the encoder with the upsampled features from the decoder, preserving fine-grained
details crucial for accurate boundary delineation.

Additionally, models like DeepLabv3+ have been investigated for their ability to perform
semantic segmentation by employing techniques such as Atrous Spatial Pyramid Pooling
(ASPP) to capture contextual information at multiple scales. The trend towards developing
lighter network architectures suggests a growing emphasis on deploying these sophisti-
cated models on the embedded systems commonly found in autonomous vehicles, where
computational resources might be limited.

Below is a more detailed overview of the models that can be used to segment water from
non-water.

2.2.1 Fully Convolutional Network (FCN)

FCNs, introduced in 2015, are the seminal pixel-wise segmentation models introduced by
Long et al. [9] They replace a standard classification network’s fully-connected layers with
convolutional layers, allowing an input image of arbitrary size to produce a correspondingly-
sized dense output. In practice, FCNs are built on classification backbones (e.g. VGG,
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ResNet) and use learned upsampling (deconvolution) to recover full-resolution segmenta-
tions. They fuse coarse, deep semantic features with fine, shallow appearance features to
refine object boundaries.

The architecture of an FCN typically consists of two main paths: a downsampling path,
often referred to as the encoder, and an upsampling path, known as the decoder [10].
The downsampling path is responsible for extracting hierarchical features from the input
image, progressively reducing its spatial resolution while learning increasingly complex
representations. This part of the network often employs a series of convolutional layers
followed by pooling layers. The upsampling path then takes these low-resolution feature
maps and gradually increases their spatial resolution back to that of the original input
image, ultimately producing a dense segmentation map where each pixel is assigned a
class label. The Figure 1. shows the architecture visually:

Figure 1. FCN model architecture [9]

A key characteristic of FCNs is their ability to process input images of arbitrary sizes,
a direct consequence of the absence of fully connected layers which typically impose
fixed input dimensions [11]. Existing pre-trained classification networks, such as AlexNet,
VGG, and GoogLeNet, which have demonstrated strong performance on image recognition
tasks, can be effectively adapted into FCNs by converting their fully connected layers
into convolutional layers. The original paper on FCNs proposed three main variants:
FCN-32s, FCN-16s, and FCN-8s. These variants differ primarily in the output stride of the
network and the number of skip connections used, with FCN-8s being the most complex,
incorporating skip connections from earlier layers to produce more refined segmentation
maps [9].

Several studies have evaluated the performance of FCNs for water segmentation using
various datasets and metrics. Lopez-Fuentes et al. [12] reported an Mean Intersection
over Union (MIoU) of 70.05% for water segmentation using the FCN-8s variant. Mohd
Adam et al. [2] when tested on the IntCatch Vision Data Set (ICVDS), FCN demonstrated
an accuracy of 95.55%, a precision of 96.69%, a recall of 93.3%, and an F1-score of
94.09%, with an inference speed of 11 frames per second (FPS). However, when the same
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FCN model was evaluated on the unseen Malaysia ASV Dataset (MASVD), its accuracy
dropped significantly to 65.17% with an FPS of 4, indicating a lack of generalization to
new environments with different visual characteristics. It was also noted that FCN tended
to miss fine details near the boundaries between water and non-water regions, which
contributed to lower F1-scores compared to models like U-Net and SegNet when tested on
the ICVDS dataset.

In terms of advantages, FCNs are fully convolutional and relatively simple. They require
no post-processing and can be trained end-to-end with relatively few modifications to
standard classification nets. They also allow inputs of varying size and are efficient to run,
particularly with modern GPUs. HDespite these benefits, vanilla FCNs have important
limitations. The aggressive downsampling in the encoder causes loss of fine detail, making
FCNs poor at capturing small water regions, thin shorelines or fine edges [3]. FCNs also
tend to miss small obstacles or subtle transitions (e.g. wet patches or reflections) because
spatial detail is lost. In USV scenarios, where precise edge detection (waterline) and small
obstacle detection are critical, pure FCNs typically underperform.

2.2.2 U-Net

The U-Net is a symmetric encoder–decoder network originally developed for biomedical
image segmentation [13]. Its encoder (contracting path) is typically a standard CNN (often
with repeated conv+pool layers), while the decoder (expanding path) uses up-convolutions
to reconstruct the output. Crucially, U-Net introduces skip connections: feature maps
from each encoding layer are concatenated with the corresponding decoder layer. This “U”
shape allows high-level semantic features to combine with low-level spatial detail, thereby
preserving fine structures. In practice, for water segmentation a U-Net can be built with
any CNN backbone; the decoder’s skip connections help recover water boundary detail
lost in pooling.

The U-Net architecture Figure 2. offers several key advantages that make it highly suitable
for the task of water segmentation in images. It is known for producing accurate segmenta-
tion maps, particularly when working with high-resolution images or datasets with a large
number of classes. The skip connections, a defining feature of U-Net, play a crucial role
by allowing the model to incorporate both high-level semantic information from the deeper
layers and low-level spatial features from the shallower layers of the encoder. This fusion
of information enables precise localization of water boundaries, which is essential for
accurate segmentation. U-Net is also effective in handling multi-class image segmentation
tasks, making it capable of distinguishing water from various other elements in a scene.
The use of skip connections further contributes to the efficient utilization of training data,
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allowing the model to learn robust features even with smaller datasets. The architecture
is designed to capture both the overall context of the image and the precise location of
the objects of interest. In the context of water segmentation, U-Net has demonstrated its
ability to achieve high pixel accuracy in identifying water regions within images.

Figure 2. U-net model architecture [13]

Despite improvements over FCN, U-Net is still quite heavy and may not run in real-time
on embedded USV hardware without acceleration. The large number of feature maps in
decoder layers can incur significant computation and memory cost. Furthermore, while
skip connections preserve detail, directly concatenating features at different resolutions can
sometimes “confuse” the network if low- and high-level features are not balanced properly
[14]. This may require careful tuning (e.g. attention weighting) to avoid degrading accuracy.
Finally, like FCN, a plain U-Net lacks global context aggregation: it may still miss very
large-scale context compared to ASPP-based networks (like DeepLab) or transformer
models.

Vandaele et al. [15] have reported on the performance of U-Net for water segmentation
across various datasets. One study focused on transfer learning for river water segmentation
achieved a high pixel accuracy of 97.45% using a fully convolutional network based on
U-Net. Steccanella et al. [16] made improvements to SegNet and reported an impressive
pixel segmentation accuracy of 98.8% with an inference speed of 4.5 frames per second
(FPS) on 160 × 160 images. Alhadi et al. [17] used Sentinel-2 data, the validation accuracy
was 82.92% for water zone segmentation using U-Net architecture. A comparative analysis
of simple U-Net, Residual Attention U-Net, and VGG16-U-Net on Sentinel-2 imagery
revealed that VGG16-U-Net achieved the best mean-IoU score of 98.5%.

2.2.3 SegNet

SegNet is a deep learning architecture specifically designed for semantic segmentation
tasks, aiming to classify each pixel in an image into a predefined category. The model was
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realesed by Badrinarayanan et al. [18] in 2017. It follows an encoder-decoder neural net-
work structure which Figure 3. shows, which is tailored for pixel-wise image segmentation,
making it highly effective for tasks requiring detailed and precise segmentation of images.

The encoder network in SegNet is composed of 13 convolutional layers, mirroring the
first 13 convolutional layers of the VGG16 network, which was originally designed for
object classification. This design choice allows the encoder to benefit from the pre-
trained weights of VGG16, facilitating efficient initialization and faster convergence during
training. Similar to VGG16, the encoder performs convolution operations to extract
features from the input image, followed by batch normalization and ReLU activation
functions. Max-pooling operations are applied between blocks of convolutional layers
to progressively reduce the spatial dimensions of the feature maps while increasing their
depth.

A key innovation of SegNet lies in its decoder network, which is designed to upsam-
ple the low-resolution feature maps produced by the encoder back to the original input
resolution. Unlike other architectures that might use learnable deconvolution layers for
upsampling, SegNet utilizes the pooling indices computed during the max-pooling step in
the corresponding encoder layers to perform non-linear upsampling in the decoder. This
approach eliminates the need for the decoder to learn the upsampling process, making
SegNet more efficient in terms of both storage and computation. The upsampled fea-
ture maps are initially sparse, containing the feature values at the locations indicated by
the max-pooling indices, with other locations set to zero. These sparse maps are then
convolved with trainable decoder filters to produce dense, high-resolution feature maps.
Similar to FCNs, SegNet does not include any fully connected layers, making it a fully
convolutional network suitable for end-to-end pixel-wise prediction. This architecture is
designed to be efficient in terms of both memory usage and computational time during
inference, and it typically has a smaller number of trainable parameters compared to other
competing architectures.

Figure 3. SegNet model architecture [18]

SegNet still inherits many of U-Net’s downsides: it is a rather deep network and not
optimized for real-time on small devices. Also, while pooling indices help upsample,
SegNet does not explicitly fuse multi-scale context (no ASPP), so it may miss contextual
cues compared to DeepLab or transformer methods. In practice, SegNet often lags behind
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U-Net and more recent architectures in segmentation accuracy.

Ammar bin Mohd Adam et al. [2] have evaluated SegNet’s performance in water segmen-
tation tasks. On the IntCatch Vision Data Set, SegNet demonstrated high performance,
achieving the highest scores for precision 95.77% and recall 97.57% with an inference
speed of 32 frames per second (FPS) compared to FCN (11 frames) and U-Net (17 frames).
Muhadi et al. [19] have evaluated for river water segmentation using RGB sensors, SegNet
achieved a high accuracy of 98% and an IoU of 97% for both 256x256 and 512x512 input
resolution.

2.2.4 DeepLabV3+

DeepLabv3+ is a state-of-the-art semantic segmentation architecture that builds upon the
foundations of the DeepLab series, particularly DeepLabv3, by incorporating a simple yet
highly effective decoder module. This addition is primarily aimed at refining the segmenta-
tion results, especially along the boundaries of objects within an image. The architecture
follows an encoder-decoder structure, a common paradigm in semantic segmentation where
the encoder extracts semantic information and the decoder aims to recover spatial details.
[20]

A key component of DeepLabv3+ is the Atrous Spatial Pyramid Pooling (ASPP) module,
which is typically located within the encoder part of the network. Figure 4. shows
the architecture of DeepLabV3. ASPP is designed to capture multi-scale contextual
information from the input feature maps by applying several parallel atrous convolutions
with different dilation rates. Atrous convolution, also known as dilated convolution, allows
for the expansion of the receptive field of the convolutional filters without increasing the
number of parameters, which is crucial for understanding context at various scales.

Figure 4. DeepLabV3 model architecture [20]

For water vs. non-water segmentation, DeepLabv3+ offers high accuracy. The multi-scale
atrous filters help it capture complex shapes of water bodies, and the encoder–decoder
refinement sharpens edges. Compared to earlier architectures, DeepLabv3+ achieves very
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high IoU on many datasets. For instance in the work of Muhadi et al. [21], DeepLabv3+
achieved about 94.12% IoU. This was notably higher than SegNet’s 91.05%.

However, DeepLabv3+ has disadvantages in this domain. It is a large model with many
parameters and high computational cost. Using a deep backbone and dense ASPP means
inference is slower and needs more memory. This makes it less suitable for real-time
or embedded systems (unlike faster networks). In practice, DeepLabv3+ runs at only
a few FPS on standard GPUs for high-resolution images. For water segmentation, this
means limited applicability in resource-constrained environments. Another limitation is
that DeepLabv3+ may still struggle with very small water features if they are below the
scale of the atrous filters.

Numerous studies have evaluated the performance of DeepLabv3+ for water segmentation.
On surveillance images, DeepLabv3+ achieved accuracy and IoU metrics 96.72% and
94.12%, and a boundary F1 score around 82.4%, outperforming SegNet in the same
evaluation [21]. Xue et al. [22] presented a deep semantic segmentation model enhanced
with the Simple Linear Iterative Clustering (SLIC) superpixel algorithm. Where the model
was taken as DeepLabV3+ with ResNet101 backbone. The model achieved 90.1% of
mIoU. In another work by Han et al. [3], the model DeepLabV3 achieved 99.1% and
98.09% of mean pixel accuracy (mPA) and mIoU, respectively.

2.2.5 BiSeNet

The Bilateral Segmentation Network (BiSeNet) (Yu et al. [23]) was designed for real-time
semantic segmentation. BiSeNet employs a two-branch design: a Spatial Path and a
Context Path. The Spatial Path consists of a few convolutional layers with small stride to
preserve high-resolution spatial information. The Context Path is a lightweight backbone
(originally a truncated Xception) with fast downsampling to gather a large receptive field.
Features from both paths are fused via a Feature Fusion Module. The idea is to balance
rich spatial detail with contextual understanding efficiently. In application, a BiSeNet
model for USVs would feed the image into both branches simultaneously: the Spatial Path
keeps full image resolution, while the Context Path quickly compresses it. Their outputs
are then merged to produce the final segmentation mask. In the Figure 5. is shown the
architecture of BiSeNet:

BiSeNet offers significant advantages for water segmentation, primarily due to its design
that prioritizes real-time performance, making it suitable for applications where speed is
critical. The dual-path structure of BiSeNet is particularly beneficial for water segmentation
as it allows the network to simultaneously preserve the detailed spatial information, which
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Figure 5. BiSeNet model architecture [23]

is essential for accurately delineating water boundaries, while also capturing the broader
semantic context of the scene, which helps in distinguishing water from other spectrally
similar elements like shadows or certain types of land cover. This architecture enables
BiSeNet to achieve high frames per second (FPS) during inference while maintaining a
reasonable level of segmentation accuracy, making it well-suited for real-time applications
such as autonomous navigation on unmanned surface vehicles.

The flip side of BiSeNet’s design is that its accuracy is limited by the constraints of its
two-stream architecture. It may not reach the top accuracy of DeepLabv3+ or transformer
models, especially on very challenging fine structures. The shallow Spatial Path has few
layers, so its features may be too low-level. The original BiSeNet paper noted a trade-off:
to maintain real-time speed, spatial path width is limited, which can reduce segmentation
quality on very detailed images. In USV applications, BiSeNet might struggle with
extremely small obstacles or complex reflections compared to specialized networks.

Han et al. [4] have evaluated the performance of BiSeNet and its variants for water segmen-
tation. On the USVInland dataset with quantitative Evaluation of segmentation methods ,
BiSeNet achieved a precision of 97.89% and an F-score of 93.04%, while maintaining a
frame rate of 36.12 FPS. SA-BiSeNet is presented by Zhang et al. [24], a modification in-
corporating a swap attention mechanism, achieved a high Mean IoU of 93.65% on the same
USVInland dataset, with an inference speed comparable to the baseline BiSeNet (37.33
FPS). The study of Fan et al. [25] focusing on real-time performance, Rethinking BiSeNet
(using the STDC network), reported a mIoU of 71.9% on the Cityscapes test set with a
significantly faster speed of 250.4 FPS. Additionally, GFANet which was presented by Xie
et al. [26], which employs a lightweight backbone and shares architectural similarities
with BiSeNet in its aim for efficiency, achieved comparable segmentation accuracy to more
complex models with a fast inference speed of 154.98 FPS on the Riwa dataset (mIoU
82.29%, mPA 89.49%), and also showed comparable performance on the USVInland and
WaterSeg datasets.
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2.2.6 Habaek

The Habaek network is a recently proposed architecture specifically designed for achieving
high-performance water segmentation in images. The model was presented by Joo et
al. [27] in 2024. Its foundation lies in the SegFormer model, a framework that utilizes
Transformer networks for semantic segmentation. SegFormer itself is characterized by
a hierarchical Transformer encoder, which is capable of outputting multiscale features,
and a lightweight all-MLP (Multi-Layer Perceptron) decoder. A notable advantage of Seg-
Former is that it does not rely on positional encoding, which avoids potential performance
degradation when the resolution of the test image differs from that used during training.

The development of the Habaek network involves upgrading the SegFormer model, which
is shown in the Figure 6., through several key strategies. One of these is the use of data
augmentation techniques, employing additional datasets such as ADE20K and RIWA, to
enhance the model’s ability to generalize to a wider range of water-related imagery. The
research also examines the impact of inductive bias on attention-based models, noting that
Vision Transformers (ViTs), like the one used in SegFormer, typically have less inductive
bias compared to Convolutional Neural Networks (CNNs). This lower inductive bias allows
ViTs to learn more complex relationships from data but often requires larger datasets to
achieve optimal performance. To address the computational demands often associated with
Transformer models, Habaek utilizes Low-Rank Adaptation (LoRA). LoRA is a technique
that reduces the complexity of the model by decomposing the weight matrices into smaller,
lower-rank matrices, which are then updated during training while keeping the original
weights frozen. This approach allows for efficient adaptation of pre-trained models to
specific tasks like water segmentation without a significant increase in computational
resources.

Figure 6. SegFormer model architecture [27]

The Habaek network offers several compelling advantages for the task of water segmenta-
tion. Notably, it has been shown to outperform existing models in terms of segmentation
accuracy, achieving an impressive Intersection over Union (IoU) range of 91.986% to
94.397%. Furthermore, Habaek demonstrates superior performance compared to rival
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models across a range of evaluation metrics, including F1-score (97.09%), recall (96.71%),
overall accuracy (97.54), and precision (97.48%), indicating its robustness and effective-
ness in accurately identifying water bodies.

The disadvantages of Habaek stem from its complexity. Vision transformers are com-
putationally heavy and require more memory and data than CNNs. Even with LoRA,
Habaek may be slower at inference than compact CNNs, and it may not be real-time on
standard hardware. Furthermore, its reliance on large datasets could limit performance
if only limited water imagery is available (which is why it uses transfer from ADE20K).
Finally, because it is so new and designed for remote sensing, its behavior on onboard
USV imagery is untested; it may not incorporate IMU or edge priors the way WaSR or
ELNet do.

2.2.7 WaSR-Net (Water-Obstacle Separation and Refinement Net-
work)

WaSR, which stands for Water Segmentation and Refinement network, is a deep encoder-
decoder architecture specifically designed for the task of maritime obstacle detection
and accurate water segmentation in marine environments by Bovcon et al. [28]. The
development of WaSR is motivated by the challenges inherent in segmenting water in
maritime settings, such as the presence of strong reflections, wakes, and varying sea
conditions that can lead to inaccurate detection of water edges and false positives for
obstacles.

The encoder component of the WaSR network is based on a deep ResNet101 architecture,
incorporating atrous convolutions to enable the extraction of rich visual features from the
input images. Atrous convolutions help in increasing the receptive field of the network’s
filters without reducing the spatial resolution of the feature maps, which is crucial for
capturing both local and global context in the marine scene. The decoder part of the
WaSR network is designed to gradually fuse these visual features with inertial information
obtained from an Inertial Measurement Unit (IMU). This fusion of visual and inertial
data plays a key role in improving the segmentation accuracy of the water component,
particularly in situations where visual ambiguities, such as fog on the horizon or reflections
from the water surface, might otherwise lead to errors. The architecture of WaSR network
is shown in the Figure 7:

To effectively integrate the inertial information, WaSR constructs an IMU feature channel
that encodes the location of the horizon at a pixel level. This IMU-derived information
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Figure 7. WaSR model architecture [28]

serves as a prior probability for the location of water in the scene, aiding in the accurate
estimation of the water’s edge in the final segmentation output. The IMU mask is treated as
an externally generated feature channel that is fused with the encoder features at multiple
levels within the decoder. To handle the potential differences in scale between the IMU
channel and the encoder features, WaSR employs Attention Refinement Modules (ARM)
and Feature Fusion Modules (FFM), which are learned during training to determine the
optimal strategy for combining these two distinct types of information. The final block of
the decoder incorporates an Atrous Spatial Pyramid Pooling (ASPP) module, followed by
a softmax layer. The ASPP module is used to improve the segmentation of small structures,
such as buoys or other minor obstacles, and to produce the final semantic segmentation
mask.

This design gives WaSR strong advantages in water segmentation accuracy. By explicitly
using IMU information and a dedicated separation loss, WaSR greatly improves water-
edge estimation and obstacle detection under challenging conditions. Empirically, WaSR
“outperforms the current state-of-the-art by a large margin” in maritime segmentation. For
example, on the MODD2 benchmark, WaSR achieved 93.7% F1 with a water-edge pixel
error of only 9.6 pixels, far ahead of the next best methods (e.g. BiSeNet at 81.9% F1).
The authors report that WaSR increases true positives by 8% and greatly reduces false
positives/negatives compared to BiSeNet. Qualitatively, WaSR remains robust to severe
water reflections, wakes, and mirroring, where other models produce many false obstacles.
In summary, WaSR’s advantage is its very high segmentation accuracy and robust boundary
detection in marine environments, thanks to its sensor fusion and specialized loss.

However, WaSR has significant disadvantages in complexity and deployment. Its backbone
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and decoder make it a large, resource-intensive model. As noted in subsequent work,
“state-of-the-art models such as WaSR cannot be deployed to lightweight devices due to
memory limitations”. WaSR typically requires a powerful GPU for real-time inference;
on embedded hardware it fails altogether due to its size [29]. The original WaSR runs
at only 10 FPS on high-end GPUs, making it unsuitable for fast real-time on standard
devices. Furthermore, WaSR’s reliance on IMU means it requires synchronization of
sensor data and may be less applicable if IMU is unavailable or noisy. In summary, WaSR
achieves the highest accuracy on water segmentation tasks, but its disadvantage is extreme
computational cost, large memory footprint, and dependence on extra sensors.

2.2.8 Analysis and Discussion

The suitability of each network for water segmentation is contingent on the specific re-
quirements of the application. FCN, U-Net, SegNet and DeepLabv3+ generally provide a
simplicity and lightness of the model, as well as the ease of modification and deployment
on embedded devices, but the downside is the relatively low accuracy in segmentation, es-
pecially at the boundaries. BiSeNet offer a valuable trade-off between accuracy and speed,
making them particularly advantageous for real-time applications such as autonomous nav-
igation and rapid environmental monitoring. WaSR is uniquely tailored for the challenges
of maritime environments, where reflections and other visual ambiguities are common, but
it is a very resource-hungry model. Habaek has demonstrated the potential to achieve state-
of-the-art accuracy in water segmentation, especially when large datasets are available,
making it ideal for applications where the highest possible precision is required, but the
author does not provide any sources for the model itself or an exact description of how it
works.

2.3 Interim conclusion about the appropriate method for implemen-
tation

These methods are suitable for water segmentation tasks in embedded systems designed for
real-time processing. Their effectiveness has been demonstrated in a number of previous
studies [2] [3] [4] [28] [27] [23]. While traditional techniques are relatively easy to
implement, they often produce unreliable results when deployed in autonomous systems
without human supervision. This is largely due to the constantly changing environmental
conditions and a wide variety of influencing factors that must be considered—such as
water glare, reflections, and the variability of the underwater background. For example,
the presence of aquatic vegetation can shift the apparent water color toward green, while
sandy or silty bottoms may give it a yellowish or brownish tint.
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Given these challenges, traditional methods may be better suited as a preprocessing step
for neural network-based models rather than as standalone solutions [22]. Consequently,
such traditional approaches are excluded from the scope of this study.

As for neural networks, the choice of model for implementation is not so obvious and the
results of each model vary from work to work. In such a situation, it was decided to select
the most suitable models for testing and then implement them in our work.

For testing, it was decided to select all models except FCN and Habaek. FCN is a pioneer in
image segmentation, but it is quite outdated compared to its successors U-net and SegNet,
which show better results in various works [21], [2], [3]. Regarding Habaek, as mentioned
earlier, the author did not provide any links or clear instructions for implementing the
model. Therefore, it will not be possible to test this model on our data.

2.4 Datasets

Training a robust model for water segmentation, a crucial task for autonomous vessels to
perceive their environment, requires a carefully selected dataset. A good dataset should
contain a large number of diverse images or video frames, each meticulously labeled with
ground truth masks that precisely delineate the water region. The resolution of these images
is also an important factor, as higher resolutions can provide more detailed information
for the segmentation process. Without accurate and comprehensive ground truth data, a
model cannot learn to reliably distinguish water from other elements in a scene, which is
essential for safe and effective autonomous navigation.

2.4.1 IntCatch Vision Data Set (ICVDS)

ICVDS is a publicly available dataset designed for water segmentation presented by
Steccanella et al. [30] in 2019, particularly in the context of autonomous surface vessels
(ASV). It contains water images and videos with ground truth masks, following a format
similar to the DAVIS dataset. It has been used for benchmarking deep learning models for
binary semantic segmentation of water and non-water classes. While the exact resolution is
not consistently specified across sources, its use in ASV applications suggests a resolution
suitable for real-world navigation scenarios. In the Figure 13 example images from the
ICVDS Dataset.

This dataset consists of 318 annotated images, which is a relatively small size compared to
some other datasets available for similar tasks. The dataset is divided into three subsets:
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Figure 8. Example images from ICVDS dataset

191 images are allocated for training the models, 87 images are used for validation during
the training process, and 40 images are reserved for the final evaluation of the trained
models.

2.4.2 Lufi-Riversnap (River Water segmentation)

The LuFI-RiverSnap dataset focuses on close-range river scene images and was presented
Moghimi et al. [31]. It includes images obtained from various devices like UAVs, surveil-
lance cameras, smartphones, and handheld cameras, with sizes reported up to 4624 × 3468
pixels. The dataset incorporates social media images to increase diversity in river land-
scapes. It is designed for river water segmentation and includes pixel-wise segmentation
for river water.

Figure 9. Example images from Lufi-Riversnap dataset

This dataset offers a more substantial collection of images compared to ICVDS, containing
a total of 1092 images, all of which are accurately annotated with ground truth masks.
The dataset is further divided into subsets for different stages of model development and
evaluation: 657 images are designated for training the segmentation models, 202 images
are used for validation to tune model hyperparameters and monitor performance during
training, and 233 images are reserved for the final testing of the trained models.
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2.4.3 RIWA (River Water Segmentation Dataset)

RIWA is a dataset specifically created for river water segmentation. The dataset was
introduced Gorriz et al. [32] in 2023. It provides pixel-wise binary segmentation of river
water and includes images sourced from a variety of devices, such as smartphones, drones,
and DSLRs, as well as images from the AED20K dataset. The dataset is manually labeled
to ensure quality. While images may be processed into smaller patches (e.g., 512x512) for
model input in some studies, the original resolutions from diverse sources contribute to the
dataset’s variability.

Figure 10. Example images from RIWA dataset

This version of the RIWA dataset contains a total of 1632 images, divided into 1142 images
for training, 167 images for validation, and 323 images for testing the performance of
trained models.

2.4.4 Tampere-WaterSeg

The Tampere-WaterSeg dataset has been specifically created by Taipalmaa et al. [33] for the
task of water segmentation in images that were captured by an autonomous surface vehicle.
This dataset comprises 600 labeled images, all of which are in high definition with a
resolution of 1920 × 1080 pixels. The images were recorded using a GoPro Hero 4 Session
camera mounted on a USV operating on Lake Pyhäjärvi in Tampere, Finland, during the
wintertime. The dataset is further divided into three subcategories, each containing 200
images: open lake scenarios, channel area navigation, and docking situations.

The Tampere-WaterSeg dataset provides hand-annotated segmentation masks that accu-
rately delineate the water regions within each image. Given that the imagery in this dataset
was captured directly from a USV, it is highly relevant for training water segmentation
models that will be used in similar autonomous vessel applications. The high resolution of
the images allows for the capture of fine details of the water surface and the surrounding
environment, which can be beneficial for training accurate segmentation models. However,
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Figure 11. Example images from Tampere-WaterSeg dataset

it is important to note that the dataset focuses on winter conditions and a single lake envi-
ronment, which might limit the ability of a model trained solely on this data to generalize
effectively to other seasons and different types of water bodies.

2.4.5 USVInland

The USVInland dataset is a multi-sensor dataset which was introduced by Cheng et al.
[34] in 2021 that has been specifically created for research and development related to
unmanned surface vehicles operating in inland waterways, with water segmentation being
identified as one of the key tasks supported by the dataset. The data collection for this
dataset spanned over 26 kilometers of diverse real-world scenes in inland waterways. For
the specific task of water segmentation, the USVInland dataset includes approximately
1400 images, comprising 364 high-resolution images (1280 × 640 pixels) and 1036 low-
resolution images (640 × 320 pixels). The data was recorded using a self-driving boat
that was equipped with a comprehensive suite of sensors, including lidar, stereo cameras,
millimeter-wave radar, GPS, and inertial measurement units (IMUs).

Figure 12. Example images from USVInland dataset

The USVInland dataset provides comprehensive annotations for the entire water area within
the images, using polygons to accurately delineate the water boundaries. Given its specific
focus on inland waterways and the fact that the imagery was captured from a self-driving
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boat, this dataset is exceptionally relevant for training water segmentation models for
autonomous vessels that are intended to operate in such environments. While the dataset’s
multi-sensor nature extends its utility beyond just image-based water segmentation, the
availability of detailed water area annotations as polygons makes it directly applicable to
the user’s needs. The inclusion of images at both high and low resolutions offers flexibility
for training models that might need to operate under different computational constraints or
for evaluating the impact of image resolution on segmentation performance.

2.4.6 Waternet (WaterDataset)

Waternet, also referred to as WaterDataset, is a dataset that has been designed for water
segmentation in both still images and videos, with a particular focus on addressing the
challenges posed by the dynamically changing appearance of water. The dataset was
introduced by Liang et al. [35] in 2020. The latest version, WaterDataset v2, comprises
a substantial collection of 4413 images, of which 2392 contain labeled water objects.
Additionally, the dataset includes 20 evaluation videos that can be used for testing the
temporal consistency and robustness of water segmentation models. The image data is
split into a training set of 2188 images and a validation set of 2225 images. The Waternet
dataset incorporates a diverse range of water-related images sourced from the ADE20K
dataset and the RiverDataset, encompassing various types of water bodies such as lakes,
canals, rivers, oceans, and even floods. It also includes surveillance videos that capture
open water scenes and the dynamics of sea waves.

Figure 13. Example images from WaterDataset dataset

The annotations in the Waternet dataset provide pixel-level semantic segmentation for
water, clearly identifying the water regions within the images. The dataset’s large size and
the wide variety of water environments represented make it a strong candidate for training
water segmentation models that can be applied to autonomous vessels operating in diverse
conditions. The inclusion of different water body types, from calm lakes to turbulent
oceans, suggests that a model trained on this dataset could potentially achieve a high
degree of generalization across various operational environments. The video component
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of the dataset might also be valuable for developing models that can leverage temporal
information to improve the accuracy and stability of water segmentation in dynamic scenes.

2.4.7 Analysis and Discussion

To facilitate a direct comparison of the ten datasets based on their key features relevant to
water segmentation for autonomous vessels, Table 1. summarizes their approximate size
in terms of labeled images, image resolution, the type of annotation provided for water
regions, the diversity of water scenes captured, and their overall relevance to autonomous
vessel applications.

In summary, datasets like USVInland [34] and Tampere-WaterSeg [33], designed with
autonomous surface vessels in mind and providing detailed water segmentation masks
from a USV perspective, appear to be the most directly suitable for training models for
this specific application. Moreover, Tampere-WaterSeg Dataset is more suitable for our
latitudes with darker water in the seas and rivers, as well as gray and overcast clouds in the
sky. Other datasets focusing on various water environments with pixel-wise segmentation
also offer valuable data for developing robust water segmentation capabilities, but more
suitable for Unmanned Aerial Vehicle (UAV) or surveillance cameras than for Unmanned
Surface Vehicle (USV). The ICVDS dataset could also be suitable for our purposes;
however, the resources containing the dataset are no longer accessible, preventing its use
in this study.

Table 1. A table with datasets

Datasets Number
of
Images

Resolutions Water Scene Diversity

ICVDS 318 Not explicitly
stated

Single lake, various times of
day

Lufi-
Riversnap

1092 Up to 4624 ×
3468

Rivers from various locations
and sources

RIWA 1632 400 x 400 Rivers from various sources

Tampere-
WaterSeg

600 1920 × 1080 Lake in winter, USV perspec-
tive

USVInland 700 518 -> 640x320
182 -> 1280x640

Inland waterways, multi-
sensor data, USV perspective

Continues...
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Table 1 – Continues...

Datasets Number
of
Image

Resolutions Water Scene Diversity

WaterDataset 4413 313x472,
788x1144,
480x640,
256x256,
1632x1224

Diverse: lakes, canals, rivers,
oceans, floods

2.5 Metrics

For autonomous vessels to operate safely and effectively, the ability to accurately perceive
their surroundings is paramount. Given the complexities of aquatic environments, which
often involve variations in lighting and reflections, robust evaluation methods are necessary
to assess the performance of neural networks designed for this segmentation task. This
chapter aims to identify and justify suitable evaluation metrics for a neural network
performing water segmentation for USVs at a real-time processing speed of 30 frames
per second (FPS). The focus will be on metrics that quantify the quality of the generated
segmentation masks and the accuracy of pixel-wise classification.

A fundamental tool for understanding the performance of a semantic segmentation model
is the confusion matrix [36] [37] [38]. For the specific case of water segmentation,
the confusion matrix categorizes the model’s predictions into four types based on their
agreement with the ground truth for the water class: True Positives (TP), True Negatives
(TN), False Positives (FP), and False Negatives (FN). A True Positive occurs when a pixel
that is actually water in the ground truth is correctly identified as water by the model.
Conversely, a True Negative signifies a non-water pixel that is correctly classified as non-
water. Errors made by the model are represented by False Positives and False Negatives. A
False Positive happens when a non-water pixel is incorrectly identified as water, directly
relating to the frequency with which non-water pixels are misclassified. A False Negative
occurs when a water pixel is incorrectly identified as non-water, which is inversely related
to how often water pixels are correctly identified. Understanding these components of
the confusion matrix is essential for interpreting the various evaluation metrics used in
semantic segmentation.
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2.5.1 Intersection over Union (IoU) / Jaccard Index

Intersection over Union (IoU), also known as the Jaccard Index, is a widely used metric
that quantifies the degree of overlap between the predicted water mask and the ground
truth water mask [39]. It is calculated as the ratio of the area of intersection between the
two masks to the area of their union. The formula for IoU is given by:

IoU =
TP

(TP + FP + FN)
(2.1)

The value of IoU ranges from 0 to 1, where 0 indicates no overlap between the predicted
and ground truth masks, and 1 signifies a perfect match. A higher IoU score indicates better
segmentation quality, meaning the predicted water region closely aligns with the actual
water region in the ground truth. For USV navigation, IoU is a particularly suitable metric
as it directly measures the quality of the generated mask, which is crucial for determining
the precise navigable areas for the vessel.

2.5.2 Precision

Precision in semantic segmentation measures the proportion of correctly identified water
pixels among all the pixels that the model predicted as water [37] [38]. It addresses the
question of how often a non-water pixel is incorrectly identified as water. The formula for
precision is:

Precision =
TP

(TP + FP )
(2.2)

A high precision score, closer to 1, indicates that the model has a low false positive rate.
In the context of USV navigation, high precision is essential for safety. If the model
frequently misclassifies non-water areas, such as land or obstacles, as navigable water, it
could lead the USV into potentially hazardous situations.

2.5.3 Recall (Sensitivity, True Positive Rate)

Recall, also known as sensitivity or the true positive rate, measures the proportion of actual
water pixels in the ground truth that were correctly identified by the model as water [38]
[36]. It addresses how often a water pixel is correctly identified as water. The formula for
recall is:

Recall =
TP

(TP + FN)
(2.3)

A high recall score, closer to 1, signifies that the model has a low false negative rate,
meaning it correctly identifies most of the actual water pixels present in the scene. For

34



USV navigation, high recall is important for ensuring that the vessel identifies most of the
navigable water area and does not unnecessarily avoid safe regions due to misclassification
as non-water.

2.5.4 F1-score (Dice Coefficient)

The F1-score, also known as the Dice Coefficient or Sørensen–Dice index, is the harmonic
mean of precision and recall. It provides a single metric that balances the trade-off between
precision and recall, which is particularly useful when there is an imbalance in the number
of water and non-water pixels in the dataset [37] [40] [41]. The formula for the F1-score is:

F1− score =
2 ∗ (Precision ∗Recall)

(Precision+Recall)
=

2 ∗ TP
(2 ∗ TP + FP + FN)

(2.4)

The F1-score ranges from 0 to 1, with 1 indicating perfect precision and recall. For
USV navigation, this metric offers a comprehensive assessment of the segmentation
performance, reflecting the model’s ability to accurately identify navigable water while
also minimizing misclassifications of both water and non-water pixels, which is crucial for
reliable autonomous operation.
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3. Experimental Results

This chapter presents a comparative analysis of different water segmentation models,
evaluating their effectiveness under varying configurations. Key characteristics such as
precision, recall, processing speed, and size are examined. Through systematic assessment,
the analysis identifies optimal configurations that enhance segmentation accuracy while
maintaining computational feasibility. The findings provide insights into the trade-offs
between model complexity and performance, offering guidance for selecting appropriate
approaches in practical applications.

3.1 Parameters of Training

As mentioned previously, two datasets—USVInland and Tampere-WaterSeg—were se-
lected for training the models. After combining the datasets, a total of 1,300 images were
obtained and divided into training (60%, 781 images), validation (30%, 390 images), and
testing (10%, 129 images) sets. Additionally, 101 images collected in the Gulf of Finland
near Tallinn were included in the testing set. This resulted in a total of 230 images used for
testing. Figure 14 presents an example image from this dataset.

Figure 14. Example images from our dataset

All models were trained with the same parameters and on the same hardware. Table 2
shows all the parameters that were used during the training of the models.
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Table 2. Training Parameters

Parameters Values
Epochs 50

Learning
Rate

0.01

GPU GeForce
RTX
2070

Python 3.11.4

Optimizer Adam

Input Image
Size

512x512
pixels

3.2 The Crucial Role of Backbones in Semantic Segmentation for
USVs

Semantic segmentation, the task of classifying each pixel in an image, is fundamental
for Unmanned Surface Vehicles (USVs) to understand their environment, particularly for
identifying navigable water. Deep learning models like U-Net, SegNet, DeepLabV3+, and
BiSeNet are widely used for this purpose. At the core of these models lies the backbone, a
pre-trained convolutional neural network (CNN) that serves as the primary feature extractor.
Without a robust backbone, these segmentation networks would struggle to interpret the
visual information necessary for accurate pixel-level classification.

The backbone’s main function is to process the input image through a series of convo-
lutional and pooling layers, progressively extracting hierarchical features. Early layers
capture low-level details like edges and textures, while deeper layers learn more complex
and abstract representations corresponding to objects and regions. These extracted feature
maps are then passed to the rest of the segmentation network, which uses them to predict
the class label for each pixel.

3.2.1 Suitable Backbones for Water Segmentation on USVs

Selecting the right backbone for water segmentation on a USV requires considering the spe-
cific challenges of this environment, such as varying lighting conditions, reflections, waves,
and the need for real-time performance on potentially resource-constrained platforms.
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U-Net: For U-Net, backbones that offer a good balance between feature extraction power
and computational efficiency are desirable.

■ ResNet (e.g., ResNet-18, ResNet-34): ResNet variants are widely used and provide
strong feature representations. Smaller versions like ResNet-18 or ResNet-34 can
offer a good trade-off between performance and computational cost for USV deploy-
ment. Their residual connections help with training deeper networks, potentially
improving accuracy in challenging water scenes.

■ MobileNetV3: These are lightweight backbones designed for mobile and embedded
vision applications. They offer significantly reduced computation and parameters
compared to larger models while maintaining reasonable accuracy. This makes them
highly suitable for real-time performance on USVs with limited processing power.

SegNet: As SegNet often uses VGG, considering its variants or more efficient alternatives
as backbones is relevant for USVs.

■ VGG (e.g., VGG-16): While historically common, VGG is computationally more ex-
pensive than newer architectures. For USV applications where real-time performance
is critical, a lighter backbone would generally be preferred.

■ MobileNetV3: Similar to U-Net, MobileNet variants are excellent choices for SegNet
on a USV due to their efficiency, enabling faster inference times.

DeepLabV3+: DeepLabV3+ is known for its high accuracy, often at the cost of higher
computational requirements. Choosing an efficient backbone is key for USV deployment.

■ ResNet (e.g., ResNet-50, ResNet-101): While larger ResNet models (ResNet-101)
offer excellent accuracy, using smaller ResNet variants (ResNet-50) and incorpo-
rating atrous convolutions within the backbone itself can help capture multi-scale
information more efficiently for the ASPP module.

■ Xception: Xception’s depthwise separable convolutions can be more efficient than
standard convolutions. Adapting a smaller Xception model could be an option,
though careful consideration of its computational cost on the target USV hardware
is necessary.

BiSeNet: This architecture is explicitly designed for real-time performance, making
lightweight backbones the natural choice for its Context Path on a USV.

■ ResNet (e.g., ResNet-18, ResNet-101): These are highly suitable because of their
efficiency and ability to provide the necessary semantic context quickly.
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■ ShuffleNetV2: Another lightweight architecture designed for mobile devices, offer-
ing a good balance between speed and accuracy, making it a strong candidate for
BiSeNet’s backbone on a USV..

3.3 Model Performance Evaluation

This section presents a comparative evaluation of various semantic segmentation models
tailored for real-time water segmentation tasks. Each architecture — U-Net, SegNet,
DeepLabV3+, BiSeNet, and WaSR-Net were assessed using a consistent set of metrics, in-
cluding Intersection over Union (IoU), precision, recall, F1 score, model size, and inference
speed (FPS). The goal is to identify configurations that optimally balance segmentation
accuracy with computational efficiency for deployment in resource-constrained, real-time
environments such as unmanned surface vehicles (USVs). The following subsections detail
the performance outcomes for each model family, highlighting their strengths, limitations,
and suitability for different application scenarios.

3.3.1 Evaluation Results of U-Net

The U-net variants demonstrate a trade-off between accuracy and computational efficiency.
As shown in Table 3, the ResNet34 + U-net configuration achieves the highest IoU (91.98%)
and F1 score (95.39%) but has a larger model size (175.82 MB) and slower inference
speed (161.68 FPS). In contrast, MobileNet3 + U-net offers the fastest inference (226.36
FPS) and smallest model size (9.48 MB) but sacrifices accuracy (IoU: 81.01%). ResNet18
+ U-net balances these metrics moderately. For real-time applications requiring high
accuracy, ResNet34 + U-net is optimal.

Table 3. Evaluation Results of U-Net

Models/Results Model
Size

IoU Precision Recall F1
Score

Average
Inference
Time

ResNet18 + U-
Net

137.26
MB

85.47% 85.98% 99.29% 91.72% 5.14 ms ->
194.41 FPS

ResNet34 + U-
Net

175.82
MB

91.98% 92.88% 98.92% 95.39% 6.18 ms ->
161.68 FPS

MobileNetV3 +
U-Net

9.48
MB

81.01% 83.1% 97.02% 88.61% 4.42 ms ->
226.36 FPS
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3.3.2 Evaluation Results of SegNet

MobileNet3 + SegNet outperforms other SegNet configurations with the highest IoU
(94.24%) and F1 score (96.74%), despite its moderate inference speed (121.80 FPS). While
VGG + SegNet achieves faster inference (253.64 FPS) and SegNet without backbone has
the smallest size (71.79 MB), both exhibit significantly lower accuracy. MobileNet3 +
SegNet is the clear choice for SegNet models, balancing superior segmentation performance
with acceptable real-time capability. All results are shown in the Table 4.

Table 4. Evaluation Results of SegNet

Models/Results Model
Size

IoU Precision Recall F1
Score

Average
Inference
Time

SegNet without
Backbone

27.89
MB

77.67% 78.43% 98.69% 86.79% 3.94 ms ->
253.64 FPS

MobileNetV3 +
SegNet

71.79
MB

94.24% 94.98% 99.19% 96.74% 8.21 ms ->
121.8 FPS

VGG + SegNet 92.05
MB

88.42% 89.49% 98.35% 93.45% 3.94 ms ->
253.64 FPS

3.3.3 Evaluation Results of DeepLab3+

Xception + DeepLabV3+ provides the best balance in this category, achieving an IoU
of 94.59% and F1 score of 97.06% with fast inference (139.72 FPS). While ResNet50 +
DeepLabV3+ marginally outperforms Xception in IoU (95.23%), its lower FPS (126.98)
makes Xception more suitable for real-time applications. ResNet101 + DeepLabV3+
offers negligible accuracy gains but suffers from high computational latency (79.88 FPS),
rendering it impractical for real-time use.

Table 5. Evaluation Results of DeepLab3+

Models/Results Model
Size

IoU Precision Recall F1
Score

Average
Inference
Time

ResNet50 +
DeepLabV3+

160.21
MB

95.23% 96% 99.15% 97.42% 7.88 ms ->
126.98 FPS

Continues...
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Table 5 – Continues...

Models/Results Model
Size

IoU Precision Recall F1
Score

Average
Inference
Time

ResNet101 +
DeepLabV3+

232.66
MB

95.28% 96.82% 98.26% 97.43% 12.52 ms ->
79.88 FPS

Xception +
DeepLabV3+

143.59
MB

94.59% 95.01% 99.53% 97.06% 7.16 ms ->
139.72 FPS

3.3.4 Evaluation Results of BiSeNet

BiseNet variants underperform compared to other architectures. ResNet18 + BiseNet
achieves the highest IoU (77.53%) and F1 score (86.8%) in this group, with moderate
inference speed (168.52 FPS). ShufflenetV2 + BiseNet is lightweight (15.29 MB) but
exhibits poor accuracy (IoU: 65.04%). BiseNet configurations are generally less suited for
high-precision water segmentation tasks.

Table 6. Evaluation Results of BiSeNet

Models/Results Model
Size

IoU Precision Recall F1
Score

Average
Inference
Time

ResNet18 +
BiSeNet

55.49
MB

77.53% 81.43% 93.94% 86.8% 5.93 ms ->
168.52 FPS

ResNet101 +
BiSeNet

193.4
MB

73.84% 77.95% 93.31% 84.38% 13.04 ms ->
76.67 FPS

ShuffleNetV2 +
BiSeNet

15.29
MB

65.04% 70.14% 90.3% 78.12% 8.8 ms ->
113.63 FPS

3.3.5 Analysis of WaSR-Net for Real-Time Water Segmentation

The WaSR model, pre-trained by its original authors, demonstrates superior segmentation
performance compared to all other evaluated architectures, achieving an IoU of 96.36%,
precision of 97.11%, and an F1 score of 97.86%. These metrics indicate exceptional accu-
racy in water segmentation, likely due to specialized training on maritime environments.

However, the model’s practical deployment for real-time USV applications is severely
limited due to two critical drawbacks:
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1. Extremely Slow Inference Speed: With an average inference time of 299.15 ms
(0.33 FPS), WaSR is far too slow for dynamic environments like open water or
rivers, where rapid scene changes demand real-time processing (ideally > 30 FPS
for smooth operation)

2. Large Model Size: At 1.12 GB, WaSR is significantly bulkier than alternatives (e.g.,
MobileNet3 + U-net at 9.48 MB), making it unsuitable for edge devices with limited
storage and memory

Implications for USV Applications

While WaSR’s accuracy is unmatched, its computational inefficiency renders it impractical
for real-time use in unmanned surface vehicles. In maritime environments, where obstacles,
waves, and currents require sub-second reaction times, a delay of 300 ms per frame could
jeopardize navigation safety. For offline analysis (e.g., post-mission mapping), WaSR
could be viable, but lighter, faster models (e.g., Xception + DeepLabV3+ or MobileNet3 +
SegNet) remain preferable for live deployment.

3.4 Analysis of Results

For real-time water segmentation in USVs, model selection must prioritize a balance
between inference speed, accuracy, and deployability. Based on the analysis, the following
configurations are recommended:

Best Configurations per Model Type:

■ WaSR-Net: Pretrained model (Highest accuracy: IoU 97.11%, FPS 0.33)
■ U-net: ResNet34 + U-net (High accuracy with optimal speed: IoU 91.98%, FPS

161.68)
■ SegNet: MobileNet3 + SegNet (Optimal accuracy-speed balance: IoU 94.24%, FPS

121.80)
■ DeepLabV3+: Xception + DeepLabV3+ (Best overall performance: IoU 94.59%,

FPS 139.72)
■ BiseNet: ResNet18 + BiseNet (Best in category: IoU 77.53%, FPS 168.52)

Overall Ranking (Performance vs. Speed):

1. Xception + DeepLabV3+ (High accuracy, robust speed)
2. MobileNet3 + SegNet (Exceptional accuracy with moderate speed)
3. ResNet34 + U-net (High accuracy, moderate speed)
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4. VGG16 + SegNet (Fastest inference: 253.64 FPS, moderate accuracy)
5. WaSR-Net (Highest accuracy)

For edge deployment with strict size constraints, MobileNet3 + U-net (9.48 MB) and
MobileNet3 + SegNet (27.89 MB) are ideal. For high-accuracy scenarios, Xception
+ DeepLabV3+ and MobileNet3 + SegNet are superior. BiseNet architectures are not
recommended for precision-critical tasks.

3.5 Analysis of the Shortcomings of Trained Models

All four selected models demonstrate strong performance based on their average evaluation
metrics. However, analysis of individual predicted masks reveals limitations in accurately
detecting boundaries between water and non-water regions. In some cases, the models
also fail to correctly classify highlights or reflections on water surfaces, occasionally
misidentifying them as non-water areas.

The Figure 15 shows three examples of defective masks generated by the DeepLab3+
model. The top image shows that the model detects a concrete pier as part of the water,
and quite a large part of this pier. The middle image illustrates a case where certain regions
of the sky are incorrectly detected as water. In the last image, portions of the vessel are
misclassified as water.

Figure 15. Unsuccessful masks generation by Xception + DeepLab3+ model

Sky defects are found in all models except WaSR-Net, but most often in SegNet + VGG16,
where the model distinguishes water boundaries quite well, but its accuracy is spoiled by
its frequent recognition of clouds or a clear sky as water. Examples of these defective
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generations can be seen in the Figure 16.

Figure 16. Unsuccessful masks generation by VGG16 + SegNet model

U-Net + ResNet34 can sometimes distinguish water as part of land or in Figure 17 in the
topmost example you can see that it distinguishes most of the boat as water and behind the
boat water as not a boat. The same problem as DeepLabV3+ can’t distinguish part of the
ship as not water in the top and bottommost example.

Figure 17. Unsuccessful masks generation by ResNet34 + U-Net model

SegNet in the MobileNetV3 configuration is less susceptible to generation defects com-
pared to VGG16, but approximately at the same level as Xception + DeepLabV3+. You
can see examples of unsuccessful generations in Figure 18.

It can be noted that the above-mentioned mask generation errors are not found in WaSR-
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Figure 18. Unsuccessful masks generation by MobileNetV3 + SegNet model

Net on such a scale; for example, WaSR-Net has no particular problems with recognizing
the sky, since the model is trained to find 3 classes: sky, land and water, and there are
also no problems with finding such small objects as buoys. However, the model does not
always recognize, for example, a concrete pier as part of the land, as shown in Figure 19.

Figure 19. Unsuccessful masks generation by WaSR-Net model

3.6 Improving the Robustness of Models

The results from the previous section indicate that the trained models lack sufficient local
context to accurately recognize obstacles. USVInland and Tampere-WaterSeg Datasets
contain pictures of river views and the viewing angle is directed at the water rather than
into the distance, which is why the sky is mostly not visible and the models have no idea
what it is. Also, these Datasets do not contain objects in the middle of the water such as
buoys or other vessels, which confuses the models when they see some foreign objects in
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the water in our pictures and either do not recognize them at all, or define them as part of
existing land and, for example, define the water behind them as not water either.

To improve the accuracy of the models, it was decided to add even more labels to the
existing pictures from the Gulf of Finland and add them to Validation and retrain the
models with the expanded Dataset. The training parameters remained consistent with
the initial configuration; however, 129 images previously allocated to the test set were
reassigned to the training set, leaving only 101 images from the Gulf of Finland for testing.
Additionally, 125 newly annotated images from the Gulf of Finland were added to the
validation set.

As a result, this is what our Dataset looks like:

■ Train: 910 images
■ Validation: 515 images
■ Test: 101 images
■ Total: 1526 images

Improvements in all models from training them on the new Dataset did not bring any
significant changes. Table 7 shows the new results for the models and next to them in
brackets the difference with the old values. The size of all models remained the same, so it
was decided not to include this parameter in the new table. These figures indicate that the
new images constitute a relatively small portion of the validation set—approximately 24%
— and therefore have a minimal impact on the training process.

Table 7. Evaluation Results with New Labeled Data

Models/Results IoU Precision Recall F1
Score

Average Infer-
ence Time

ResNet34 + U-
Net

92.84%
(+0.86%)

93.11%
(+0.23%)

99.65%
(+0.73%)

95.92%
(+0.53%)

6.52 ms (+0.34)
-> (Equivalent
FPS: 153.41)

Xception +
DeepLabV3+

95.16%
(+0.57%)

95.8%
(+0.79%)

99.29%
(-0.24%)

97.39%
(+0.33%)

7.16 ms (+0.00)
-> (Equivalent
FPS: 139.72)

MobileNetV3
+ SegNet

95.1%
(+0.86%)

95.95%
(+0.97%)

99.01%
(-0.18%)

97.3%
(+0.56%)

7.94 ms (-0.27)
-> (Equivalent
FPS: 125.89)

Continues...
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Table 7 – Continues...

Models/Results IoU Precision Recall F1
Score

Average Infer-
ence Time

VGG16 + Seg-
Net

89.4%
(+0.98%)

90.18%
(+0.69%)

98.86%
(+0.51%)

94.1%
(+0.65%)

3.93 ms (-0.01)
-> (Equivalent
FPS: 254.46)

The next step is to try to increase the percentage of influence of our data on validation by
reducing the amount of data from validation. For the next training sessions, 295 images
were transferred from the validation set to the training set, increasing the percentage of
images in the validation set to 57%.

The new dataset now looks like this:

■ Train: 1205 images
■ Validation: 220 images
■ Test: 101 images
■ Total: 1526 images

Table 8 shows the performance of models with balanced Validation images towards the
Gulf of Finland images. The difference with the original data is given in brackets next to
the values. U-Net with ResNet34 shows a significant increase compared to the original
parameters. For example, the IoU value increased by 3.27% from 91.98% to 95.25%, and
the average increase was about 2% with the original results at the cost of 10 FPS. The
image segmentation quality of DeepLabV3+ with Xception exceeded 97% for all indicators
and at the same time slightly increased the processing time to 1 FPS. With SegNet, things
are worse, since for example with MobileNetV3 the IoU increase is less than 1 percent -
0.78% but the mask generation speed decreased by 6 FPS, which rather harmed the model
than improved it. SegNet with VGG16 showed the most dramatic results - IoU dropped by
9.85% from the initial values from 88.42% to 78.57%.

Table 8. Evaluation Results with Balancing Dataset

Models/Results IoU Precision Recall F1
Score

Average Infer-
ence Time

ResNet34 + U-
Net

95.25%
(+3.27%)

95.54%
(+2.66%)

99.67%
(+0.75%)

97.47%
(+2.08%)

6.62 ms (+0.44)
-> (Equivalent
FPS: 151)

Continues...
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Table 8 – Continues...

Models/Results IoU Precision Recall F1
Score

Average Infer-
ence Time

Xception +
DeepLabV3+

97.25%
(+2.66%)

97.66%
(+2.65%)

99.56%
(+0.03%)

98.58%
(+1.52%)

7.21 ms (+0.05)
-> (Equivalent
FPS: 138.72)

MobileNetV3
+ SegNet

95.02%
(+0.78%)

95.75%
(+0.77%)

99.18%
(-0.01%)

97.32%
(+0.58%)

8.63 ms (+0.42)
-> (Equivalent
FPS: 115.93)

VGG16 + Seg-
Net

78.57%
(-9.85%)

80.76% (-
8.73%)

96.98%
(-1.37%)

87.56%
(-5.89%)

4.19 ms (+0.25)
-> (Equivalent
FPS: 238.59)

From Figure 20, it is clear that the generated mask of SegNet with VGG16 looks more like
noise, where the probability of water is higher at the bottom and lower at the top.

Figure 20. Example of a generated mask using retrained SegNet + VGG16

3.7 Analysis and Discussion

In conclusion, based on the metrics presented in Table 8, the DeepLabV3+ model with the
Xception backbone demonstrates the best performance across most indicators. As a result,
this model was selected for further use.

For the final decision, the results will also be compared with those of WaSR-Net. Table 9
shows that DeepLab3V+ is ahead of WaSR-Net in all parameters. Which makes it an ideal
model for water segmentation in the conditions of the sea coast of the Gulf of Finland.
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Table 9. Comparisons of Xception + DeepLabV3+ with WaSR-Net

Models/Results Model
Size

IoU Precision Recall F1
Score

Average
Inference
Time

Xception +
DeepLabV3+

143.59
MB

97.25% 97.66% 99.56% 98.58% 7.21 ms ->
138.72 FPS

WaSR-Net 1.12
GB

96.36% 97.11% 99.14% 97.86% 299.15 ms -
> 0.33 FPS

However, upon examining specific examples of mask generation from different models, as
shown in Figure 21, it becomes evident that WaSR-Net generally outperforms DeepLabV3+
by 1-2%. Nevertheless, in the cases shown at the bottom of the figure, WaSR-Net experi-
ences a significant drop in prediction accuracy due to the concrete pier, while DeepLabV3+
also demonstrates some decline, though to a lesser extent. These images suggest that
WaSR-Net’s performance may be adversely affected by such features, contributing to its
lower average accuracy.
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Figure 21. Comparisons of mask generation on specific examples a) WaSR-Net b) Xception
+ DeepLabV3+
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4. Conclusion

In conclusion, this study has identified several key findings regarding object segmentation
in images, specifically focusing on the separation of water from non-water elements.

Firstly, neural networks demonstrated significant flexibility and adaptability in this task
compared to traditional image segmentation methods in computer vision. This makes them
highly suitable for real-time image processing applications. When properly configured,
neural network architectures can achieve high performance. In our case, the DeepLabV3+
model with an Xception backbone produced strong results, achieving 97.25% IoU and
98.58% F1 score, while maintaining a processing speed of 138.72 FPS. The combined
dataset of USVInland and Tampere-WaterSeg, which included 1300 images covering
various water and weather conditions, contributed to robust training outcomes.

Secondly, there exists a vast array of models and configurations within the realm of neural
networks suitable for image segmentation tasks. Through a literature review, seven models
were identified: FCN, U-Net, SegNet, DeepLabV3+, BiSeNet, Habaek, and WaSR-Net. Of
these, five were selected for further testing based on their relevance and feasibility. FCN
was excluded due to its outdated architecture and subpar performance in previous studies.
The Habaek model was also omitted because of insufficient documentation and lack of
publicly available implementation, making it unsuitable for this research.

Thirdly, for each selected model, except for WaSR-Net, numerous variants exist depending
on the chosen backbone—the core feature extraction component responsible for processing
input data and learning useful representations. In this study, three backbone configurations
were selected for each of the four models (U-Net, SegNet, DeepLabV3+, and BiSeNet).
For SegNet, one configuration without a backbone was also included for comparison. As
mentioned previously, the DeepLabV3+ model with the Xception backbone emerged as
the best-performing configuration.

Lastly, the WaSR-Net model, which was specifically developed for water segmentation,
achieved an IoU of 96.36% and an F1 score of 97.86% on the dataset prepared for this
project. While these results are slightly lower in terms of absolute metrics compared to
the DeepLabV3+ configuration, a qualitative analysis of processed frames revealed that
WaSR-Net often performs slightly better in practical scenarios. However, in specific cases,
such as when vessels are docked, the model mistakenly classifies the pier as water, which
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negatively impacts its overall accuracy.

Based on the text written above, the following conclusions can be drawn. DeepLabV3+,
with its Xception backbone, struggles to resolve fine details, often classifying them as
water or non-water based on spatial location rather than color cues. However, its high
performance and compact model size make it well-suited for resource-constrained em-
bedded systems and unmanned surface vehicles (USVs). Conversely, WaSR-Net offers
superior accuracy in obstacle detection and environmental analysis but requires substantial
computational resources, making it more appropriate for stationary surveillance systems or
large vessels with robust processing capabilities. It is safe to say that DeepLabV3+ with
Exception is well suited for the water detection conditions in the Baltic Sea.

The objective of segmenting water from non-water regions was successfully achieved using
the DeepLabV3+ model with the Xception backbone, demonstrating high effectiveness
under the specific environmental conditions of the Baltic Sea.

To enhance DeepLabV3+ for water segmentation, two strategies are particularly effective.
First, extending the training dataset with diverse water-related images—encompassing
varied lighting conditions, water textures, and small obstacles—can improve generalization
and fine-detail recognition, addressing current limitations. Second, replacing the Xception
backbone with advanced architectures like EfficientNet or ResNeXt can further optimize
performance. EfficientNet provides a scalable balance of accuracy and computational
efficiency, while ResNeXt enhances feature extraction through its cardinality-based design.
These modifications, combined with DeepLabV3+’s extensive configuration options, make
it a highly adaptable and effective solution for water segmentation in resource-limited
applications.

Following an in-depth analysis and extensive experimentation, it can be confidently stated
that neural network-based methods are highly effective in distinguishing between bodies
of water and land areas. Among the models evaluated, DeepLabV3+ with the Xception
backbone demonstrated the best performance, positioning it as a strong candidate for
integration into the onboard navigation system of a vessel.
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