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Abstract 

Image recognition is an important part of computer vision and it can be achieved with 

deep learning techniques such as Convolutional Neural Network (CNN), which often 

requires a lot of datasets in order to train the network to achieve good performance. So, 

in cases where only small amounts of datasets are available or when the cost of acquiring 

large amounts of datasets is high, alternatives should be considered. This thesis explores 

the use of the novel Capsule Neural Network (CapsNet) on small datasets for image 

recognition and the possibilities of implementing it on an embedded or edge device. 

A literature review on machine learning and deep learning concepts is presented as a 

preamble to understanding the CapsNet concepts presented afterwards. Image processing 

and model compression required for deep learning deployment at the edge are also 

presented. Then, a CapsNet model is designed and trained, exploring the effects of various 

hyperparameters on its performance. A baseline CNN model is also prepared for 

comparison purposes.  

With a two-class dataset of 30 images per class, our CapsNet model is able to give both 

training and validation accuracies of 70% after training on 35 epochs. But the model 

begins to overfit if trained beyond this number of epochs. On the other hand, an equivalent 

CNN model already overfits before 35 epochs, having a training and validation accuracies 

of 99% and 66.70%, respectively. This means that with small amounts of datasets, a CNN 

will overfit rapidly regardless of the number of epochs; on the other hand, we can design 

a CapsNet model that performs considerably better on small numbers of datasets, if 

properly tuned.  

We also showed in this thesis that a CapsNet model can be made to run on an embedded 

or edge device after undergoing the necessary compressions aimed at reducing its size 

and complexity. All in all, this work highlights the value of CapsNets on small amounts 

of datasets and is deployment at the edge. 

This thesis is written in English language and it is 103 pages long, including 6 chapters, 

45 figures and 13 tables. 
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Annotatsioon 

Capsule neural network ning selle rakandamine süsteemi, 

objekti tuvastamise jaoks. 

Kujutise tuvastamine on oluline osa masinnägemisest ja see saavutatakse selliste sügavate 

õppimistehnikate abil nagu Konvolutsiooniline närvivõrk (CNN), mis Sageli nõuab palju 

andmekogumeid võrgu hea jõudluse saavutamiseks. Niisiis, kui on saadaval ainult väike 

kogus andmekogumeid või kui suure hulga andmekogumi hankimise kulud on suured, ei 

soovitata CNN-i antud juhul kasutada. Selles lõputöös uuritakse uudse kapselnärvivõrgu 

(CapsNet) kasutamist väikestes andmekogumites piltide tuvastamiseks ja selle 

rakendamise võimalusi manustatud või servaseadmel. 

Masinõppe ja sügava õppe kontseptsioonide kirjanduse ülevaade esitati Sissejuhatusena 

mõistmaks hiljem esitatud CapsNeti kontseptsioon. Samuti esitleti pildi töötlemist ja 

mudeli tihendamist, mis on vajalik sügava õppimise juurutamiseks servas. Seejärel töötati 

välja ja Treeniti CapsNet ja CNN-i baasmudel, uurides erinevate hüperparameetrite mõju 

selle toimivusele. 

Kahe klassi andmekogumiga, mis sisaldab 30 pilti klassi kohta, suutis meie CapsNeti 

mudel anda 35 koolitusjärgse treeningu epohhi järel nii koolituse kui ka valideerimise 

täpsuse 70%. Kuid see hakkab üle sobima, kui seda epohhe ületada. Teiselt poolt oli 

samaväärne CNN juba 35 epohhil üle mahtunud, kelle koolituse ja valideerimise täpsus 

on vastavalt 99% ja 66,70%. See tähendab, et väikese koguse andmekogumi korral läheb 

CNN üle, olenemata epohhide hulgast, kuid saame CapsNeti, mis töötab korralikult 

häälestatuna tunduvalt paremini. 
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Samuti näitasime selles uuringus, et CapsNeti mudeli saab panna tööle sisseehitatud või 

servaseadmega pärast vajalike kompressioonide läbimist, mille eesmärk on vähendada 

selle suurust ja keerukust. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 103 leheküljel,6 peatükki, 45 

joonist, 13 tabelit.
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1 Introduction 

Deep learning techniques, a subclass of machine learning, have now become one of the 

main methods for performing various object recognition tasks. Machine learning 

techniques have also proven to be useful in other fields such as forensics, machine vision, 

robotics, drug discovery, medicine, and geographic information extraction to say but a 

few [1]. Various tasks such as object detection and recognition, speech recognition, image 

classification, object tracking, trend uncovering, and predictions for equipment failure, 

weather conditions, financial trading are a few examples of machine learning 

applications. Many applications of deep learning use artificial neural networks (ANN) 

with multiple layers to achieve good performance in various tasks [2]. 

 

In supervised machine (deep) learning, data, together with its label(output), is usually fed 

to the network so that it can “learn” these data and associate them with a particular label. 

When this is done with a large amount of data for a particular label, the model would have 

learned how to identify this kind of data and associate it with the corresponding label. 

The above procedure is called training. Inference, on the other hand, is when the model 

is only being fed with a completely new dataset, and it will have to associate a label to it 

based on the experience it has gained during training. 

 

Due to the large amount of computational power required for the training of deep learning 

models, it is common that they are being run on a high-performance computer (mostly a 

remote server). It is also common for deep learning inference to be run on these high-

performance computers which are mostly in a remote location (a server) to the data 

source, but in recent times, many deep learning and machine learning inference are being 

moved to the network edge as increasingly more applications are requiring in situ 

processing. Although devices running deep learning algorithms at the edge may not be as 

powerful as the processors in the servers, many factors have contributed to the migration 

of many machines learning algorithms processing at the edge for certain application 

categories or specific uses-cases. Factors such as latency, security issues, offline 

processing capability, energy conservation are some of the reasons driving the trend of 
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edge/near sensor computing. Edge computing has been partially adopted in many areas 

such as in smart homes, point of care (POC) devices, environmental monitoring systems, 

smart grids and video surveillance systems [3].    

 

Object detection and recognition-based systems have been mostly implemented through 

convolutional neural networks (CNN) and excellent performances have been achieved in 

recent years [4]. To do so, a plethora of data is usually needed which may not be available 

or very difficult to come by for some applications. For instance, a common problem in 

the Scandinavian and some countries in Northern Europe such as Estonia is the death of 

some wild animals such as deers and reindeers due to collisions with vehicles on the 

highways in the outskirt of major cities. To build a system that recognizes animals quickly 

in such scenarios with a CNN-based system would require a lot of image/video data for 

training; unfortunately, such data is scarce and difficult to acquire. Hence, it is important 

to explore the use of alternative algorithms that can give a good performance using a 

relatively small amount of data; capsule neural network (CapsNet) is such an alternative, 

which has shown promising performance in e.g. in identifying handwritten characters[5]. 

Indeed, some problems with CNNs such as information loss in its pooling layers and its 

translational invariant are some of the reasons for the adoption of capsule neural network 

[5]. 

 

1.1 Problem Statement 

One of the reasons why CNN requires a large amount of data is because the pooling 

operation used as a routing method in CNN is fraught with problems, and as such makes 

CNN translational and rotational invariant, making it non-responsive to different 

variations of the same data sample.   

On the other hand, Using CapsNet to solve this problem of enormous data requirement 

has many challenges as well since it requires a lot more computations and at the end 

produces a model with a large size which will be difficult to fit on an embedded device.  

The challenges associated with fitting a model on embedded devices arise from their 

limited memory and computational capacity.   
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It is worth noting that, as per the author’s best knowledge, CapsNets, which could offer 

some solutions to the problems with CNNs, have not been tested out or deployed on an 

embedded device (i.e. targeting edge devices) yet.  

Given the above challenges, this thesis seeks to answer the following questions: 

• How to efficiently implement machine learning models on the edge instead on 

the cloud while making the model smaller and at the same time not compro-

mising too much on its performance?  

• How to implement an object recognition model that requires a relatively small 

number of data for training and also achieves good performance while apply-

ing model minimization techniques to the model? 

• How to implement such a model on an embedded device such as the TPU-

based google-coral-range board? 

 

1.2 Aims and Objectives   

To answer the above questions, the overall aim of this work is to build a CapsNet-based 

object recognition model and implement it on an embedded device. This can be achieved 

by carrying out the following tasks: 

• Study and understand the general concepts of machine learning and the exist-

ing work in this area, particularly deep learning algorithm. 

• Obtain suitable datasets of objects to be recognized and perform the necessary 

pre-processing needed. 

• Building and training of a CapsNet model 

• Build and train a baseline CNN model of similar capacity with the built Cap-

sNet for the purpose of comparison.   

• Explore and implement suitable model optimization techniques and their suit-

ability of different embedded devices to support them. 

• Implement the model on the suitable edge device and conduct proper testing 

of the system performance. 
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1.3 Methodology  

Building a capsule neural network on an edge device is quite a complex task and the 

implementation of such is explored in this thesis work. The first step in this undertaking 

is to thoroughly understand the architecture and the various building blocks of a CapsNet 

and its mathematical implementation. Next, data is obtained, pre-processed, and then used 

to train a pre-built CapsNet; the functionality of the model is then assessed and deployed 

onto the chosen embedded device. 

With the image dataset pre-processed, the CapsNet model is trained and its performance 

is evaluated. After this, model minimization techniques such as quantization and pruning 

are applied to reduce the size of the model since it will be run on an embedded device that 

usually have memory and processing capability limitations as compared to server-based 

processing machines. Since the model will be implemented on an embedded device, it is 

needed to be converted to a TensorFlow-Lite model and then to C++ code. 

The Tensor Processing Unit (TPU)-based Google Coral range board is chosen as the 

embedded device of choice due to its high processing capability and low power 

consumption. Image datasets are obtained using a digital camera, some other images were 

also obtained from Kaggle (an online database) and by using a python script to convert 

some video files into frames. TensorFlow and Keras are the main deep learning 

frameworks used and many libraries such as OpenCV (Open Computer Vision) are also 

used in the image pre-processing section. 

After the model is trained and optimized, it is deployed on the target embedded device 

and then the entire system is tested on new images to examine its performance after 

deployment and adjustments are made where necessary to optimize its performance. 

 

1.4 Thesis organization  

This thesis contains introductory knowledge and background on deep learning and 

particularly convolutional neural network. Capsule neural network and its architectural 

analysis, the implementation and deployment details on an embedded device are explored 
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afterwards. This chapter (Chapter 1) provided an introduction to the object detection 

algorithms, research statement and the intended aim of the thesis. 

In Chapter 2, we delve further into the state-of-the-art related to image recognition and 

explore existing works in this area. A general background of the concept of machine 

learning, particularly CNN is explored; some techniques used for model minimization are 

also examined in this chapter.  

The drawback of CNN is briefly discussed in Chapter 3, while also introducing CapsNet 

as an alternative to CNN. The general architectural components of CapsNet and the 

routing algorithm are also discussed in this chapter. 

In Chapter 4, we detail the methodology and implementation of CapsNet, showing its 

overview, the image processing performed, the model conversion methods, the training 

procedure, the software libraries and framework used, the key hyperparameters of the 

model and the deployment strategy on an embedded device. The results of these processes 

and their analyses are detailed in Chapter 5. 

Finally, the last chapter gives a conclusive discussion about the work and suggest ideas 

for future work that could be carried out based on the author’s recommendations. 
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2 Background 

In this chapter, a background on the machine learning and CNN is presented, starting with 

a state-of-the-art in object recognition and followed by subsections on machine learning, 

CNN, edge computing, and model minimization.  

2.1 State- of -the-Art in Image recognition 

The use of a computer for the recognition of an image (or an object in an image) has been 

a focus of research for a long time, and still is. The reason for this can be attributed to its 

use in many facets of life [6]. It has found modern application in manufacturing, 

agriculture, automotive vehicles and military surveillance to name a few. Traditional 

image recognition methods that are based on manual underlying and high-level features 

which can properly characterize an image have been used in the past. Such features are 

SIFT (scale-invariant feature transform), HOG (Histogram of Oriented Gradients) etc.; 

however, it is somewhat difficult to identify an image in a complex scene because these 

traditional methods require designing of different features for every image recognition 

problem [7]. So, in recent years, the advancement in deep learning has shifted the focus 

to the use of machine learning techniques. Advancement, particularly in CNN, is a major 

attributing factor to this success in recent years and it is important to realise that although 

deep learning (or machine learning in general) have been around for a long time, it has 

never been popularized and used the way it is been applied since the beginning of this 

decade.  There are two major reasons for this proliferation. The first reason is the 

availability of vast amounts of data  because of the increase in global internet penetration. 

The second reason is the advancement in computer technologies in terms of hardware 

speed and massive processing capability combined with development of tools that made 

them easier [8]. Of a particular interest is the use of deep learning for object recognition 

is CNN because it has been the deep learning workhorse for image recognition as it has 

performed better than all other algorithms for this particular task [2]. In the simplest sense, 

image recognition with deep learning is done by following steps: (i) data (or image) 

acquisition, (ii) preparation or pre-processing of the dataset, (iii) definition of the training 

algorithm, (iv) training of the model, and finally (v) testing and deployment [9]. Of 

particular importance and probably the most important step in this is the acquisition of 

the dataset itself as the algorithm cannot perform better than the dataset it was trained 
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with. The work of LeCun [8] in 1989 on processing grid-like topological data brought 

CNN into limelight. CNN, which consists of artificial neurons arranged in layers, learns 

through an algorithm known as backpropagation; here, an image is passed through a CNN 

network (known as the forward pass), the low level features of the image is extracted with 

the use of convolutional layers, which is propagated forward for further higher level 

feature extraction. At the output, the loss function (a metric used to indicate the deviation 

of an estimated output from the actual output) is calculated to know the accuracy of the 

network and after that comes the backpropagation. During the backward pass 

(backpropagation), the weights in the network get updated or adjusted so as to increase 

the accuracy the next time the image is passed through the network. This whole process 

known as training will continues back and forth until desired level of accuracy is 

achieved. 

There has been several CNN architectures designed that have achieved different levels of 

accuracy. For example, R-CNN (Region-based Convolutional Neural Network) was 

applied to a candidate box to extract feature vectors and it was trained on the ImageNet 

international computer Vision Challenge (ILSVRC) and Pattern Analysis, Statistical 

modelling and Computational learning Visual Object Classes (PASCAL VOC) dataset 

[6]. Later came SPP-Net (Spatial Pyramid Pooling-Neural Network) which is an 

improvement on the R-CNN; it uses spatial pyramid pooling to eliminate the constant-

size network constraint specifically, and the SPP layer is applied on top of the last 

convolutional layer [10]. Trained on the PASCAL VOC dataset, SPP-Net is 30-170 times 

faster than R-CNN. The fast R-CNN took care of the shortcoming of R-CNN and SPP-

Net [11]. by improving on detection quality and having the simultaneous loss function 

for multiple tasks to achieve single-level training process[6]. During training, fast R-CNN 

is 9 times and 3 times faster than R-CNN and SPP-Net, respectively. And during testing, 

that number is 213 and 10 than for R-CNN and SPP-Net, respectively. The Fast R-CNN 

and SPP-Net were made even faster (approximately 12 times faster) by the introduction 

of Faster R-CNN [12]. It has two components which are a fully convolutional Region 

Proposal Network (RPN) for proposing candidate regions, followed by Fast R-CNN 

[13]. 

As pointed out before, a major reason for the ubiquity of deep learning for image 

recognition is because of the vast amount of data collected used for training. Some for the 

widely used dataset is the ImageNet dataset [14]; it consists of more than 14 million 
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images of more than 200,000 categories and has been used in many image classification 

research works and a popular challenge knows as ILSVRC is based on it [15]. PASCAL 

VOC which has images in 20 classes is another popular dataset used in image recognition 

research [16].  Another common dataset is known as COCO (Common Object in Context) 

dataset which is used in image segmentation, captioning and recognition [17]. Sponsored 

by Microsoft, the COCO dataset has about 300,000 images encompassing 80 object 

classes. 

One common denominator of all image classification schemes based on CNN is their 

proclivity for training using very large number of data; this is not necessarily a drawback, 

but it renders them useless in situations where there are not just many data. A reason for 

this is because CNN loses the spatial relationship between different parts in an image 

during classification partly due to the use of the pooling operation and has hence having 

viewpoint and scale variation. For this reason, CNN will have to be trained with a 

mammoth of data to achieve an accurate prediction. To solve this problem, CapsNet has 

been developed by Geofrey Hinton and have been applied to the National Institute of 

Standards and Technology (MNIST) dataset and it has shown state-of-the-art 

performance and considerable better than CNN on recognizing overlapping digits [5]. 

The MNIST dataset (grayscale, 28x28 pixel resolution handwritten characters) consist of 

10 classes and 70,000 images [18]. However, CapsNet will have an accuracy lower than 

that of CNN when it comes to using larger datasets and there is still much room for 

improvement and some of this will be explored in this work. In the sections that follows, 

some basic principles of machine learning and deep learning that are necessary for the 

understanding of this work are discussed.   

2.2 Machine Learning 

Commonly, to make a system perform a task, it is given a set of explicit instructions on 

how to perform them. Instead, in machine learning, the system learns how to perform a 

task from experience. Here, learning to perform a task by the system is done by observing 

a series of examples (training), the system then performs the task on a data that it has not 

worked on before (testing and inference). Although machine learning is not new, the 

increase in computing power and a vast amount of data being generated has made 

machine learning more relevant now than ever in solving many complex problems in 
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recent times [19]. To fully put this thesis work into perspective, it is pertinent to explore 

some traditional machine learning (ML) component and algorithms as this will give some 

basis to the terms that will be used throughout this work. Hence, in the sub-sections to 

follow, the machine learning fundamentals necessary to fully grasp this work are 

presented. 

 

Figure 1 . Hierarchy between Artificial Intelligence, Machine Learning and Deep Learning 

 

 

Figure 2 Showing the various component in machine learning for classification task 
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Figure 3 Machine learning comprising of supervised, unsupervised and reinforcement learning 

 

 

Artificial intelligence is used to define systems that rely on machine learning and deep 

learning and large amount of data to perceive its environment after being trained and take 

actions or make decisions in response. It is usually achieved with the use of machine 

learning as the diagram in figure 1 shows. 

As a subset of machine learning, deep learning uses ANNs with multiple layers to 

important learn features from an input data [20]. Deep learning does not require feature 

extraction to be done separately by human as in the case of classical machine learning, it 

rather learns the feature using layers that are deeper (closer to the input) in the network, 

as shown in Figure 4. How “deep” a network is related to the number of hidden layers it 

has.  

 

 

Figure 4 Deep Learning used for image feature extraction and classification 
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2.2.1.1 Algorithm 

Algorithm is the set of instructions or recipe that will define how the model is to be trained 

to perform a specific task. 

2.2.1.2 Model 

In the context of machine learning, a model is the output after running the algorithm 

numerous times (training). It is basically a program that have been trained and now to be 

deployed for usage (inference). 

2.2.2 Supervised Learning 

Supervised learning is a machine learning paradigm in which the training set includes the 

data and the expected outcome of the task with the data. An analogy of this is like a 

teacher giving a student series of tests questions to solve and also giving them the an-

swers to those problems. Later on, the teacher ask  the stu-

dents to find out how to solve other problems that they will come across in the future 

[19]. 

 

 

 

Figure 5 Unsupervised learning (left) showing data clustering and Supervised Learning showing 

classification 

2.2.3 Unsupervised Learning 

Unlike in supervised learning where one trains a model by feeding it with labelled input, 

in unsupervised learning one only feeds the model with raw data without label. The model 

then figures out patterns that exist in the data, thereby generating analytic insight with 

minimum human supervision [20]. This makes it very useful for clustering and 

segmentation of data. 
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2.2.4 Reinforcement Learning 

Reinforcement learning as the third subset of machine learning is a system whereby 

software agents (or model) take actions in an environment so as to increase the reward it 

gets. Now, the reward on a particular action it took can be either positive or negative in 

the case of a positive reward, it “reinforces” that action that brought about the positive 

reward [22]. In contrast, it also suppresses actions that brought about a negative reward 

(punishment). As shown in Figure 6, the system keeps on doing this 

reinforcement/suppression until the model (agent) is good enough to operate well in an 

environment.  

 

Figure 6 Showing how an agent operate in an environment as is the case with reinforcement Learning 

 

2.2.5 Neural Networks 

In simple terms, an (artificial) neural network can be defined as a series of algorithms that 

consist of mathematical nodes (artificial neurons) arranged in layers which aims to 

discover underlying relationship in data by trying to mimic the neural networks of a 

human brain. It does this by a process called training. Usually, it has an input layer, an 

output layer, and one or more hidden layers, as depicted in Figure 7. 
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Figure 7 Neural Networks showing the connections of the from the input to output layer 

 

2.2.6 Training an ML Model  

Training a machine learning model is the term used to refer to making the model learn. It 

typically involves passing labelled data to the network in a process known as the forward 

pass and taking data backwards in the network known as backward pass.  

 

Figure 8 Showing how the training of Machine Learning Model occurs 

 

As shown in Figure 8, during the forward pass, training data are fed to the model and the 

output is determined; this is usually a classification probability. In the backward 

propagation (backpropagation), an error or loss function such as cross entropy loss or 

Mean Squared Error (MSE) is calculated based on the predicted output from the model; 
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then an optimization method like the Stochastic Gradient Descent (SGD) is used to update 

the weights and biases of the connections in the network. These forward and backward 

passes are performed on all the training dataset for a number of times, which is known as 

the “epoch” until the model has reached the desired performance. 

2.2.6.1 Loss Function 

There are many types of loss functions used in training; the decision to use a particular 

loss function depends on the task at hand and the computational capability that is available 

[21]. Since it is the gradient of the loss function that will be used in the update of weights 

during training, using a loss function that have an easier to calculate derivate such as the 

Mean Squared Error (MSE) (also known as L2 or quadratic loss) can be enticing. See 

Equation 2.1, 

𝑀𝑆𝐸 =  
∑ (𝑦𝑖 −ŷ𝑖)2𝑛

𝑖=1

𝑛
                                                (2.1) 

where 

 𝑦𝑖 is expected output and ŷ𝑖  is the predicted output and n is the number of classes 

(number of neurons in the output layer). 

Other loss functions include Mean Absolute Error (MAE) (also known as L1 loss), Mean 

Bias Error (MBE) and cross entropy loss (see Equation 2.2) to name but a few.  

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠 = −(𝑦𝑖 log(ŷ𝑖) + (1 − 𝑦𝑖)log (1 − ŷ𝑖))               (2.2) 

2.2.6.2 Stochastic Gradient Descent 

The stochastic gradient descent is a technique used to quickly update a solution (in our case, 

the weights) in machine learning. This approach repeats the update of a solution, f(x) using 

its gradient ∇f(x) of only a single partial objective function. And the update expression at the 

n-th iteration is as in Equation 2.3: 

 

                                             (2.3) 

                                                                                                                                             

where n is known as timestep, and xn is the value of X at time n. The parameter α is known 

as the learning rate and it decides the step size in time for this update. Hence, effort must 

𝑥𝑛+1 = 𝑥𝑛 − 𝛼𝛻𝑓(𝑥𝑛) 
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be taken to set its value properly [22]. In doing this, experimentation is usually done with 

different values for the learning rate in order to determine the best value that is peculiar 

for our problem. The equation means that the new weight is gotten by subtracting the 

product of the learning rate and the gradient from the old weight. 

 

2.2.7 Overfitting and Underfitting 

In machine learning, overfitting can occur if the model performs excellently on the dataset 

used during training but poorly on the dataset used for validation testing. This happens 

when the model memorizes the training dataset instead of learning it features and hence, 

could not generalize on other datasets. One way to overcome overfitting is by training 

with more datasets [23]. Underfitting on the other hand is a situation where the model 

performs poorly on both training and other datasets. It is simply a case where the model 

has not learnt enough. Further training and data augmentation will improve the 

performance of the model in this case. 

 

2.3 Convolutional Neural Network 

As previously outlined in Section 2.1, convolutional neural network has been the 

workhorse of deep learning and thus has been used in field such as pattern, voice and 

image recognition, image processing and most importantly feature extraction from an 

image. Problems that are solved by CNN have an important assumption, i.e. features 

should not be spatially dependent [24]. Hence, CNN can simply tell whether an object is 

present in an image or not, it cannot say where it is located in the image. This can lead to 

some problems in some particular cases as what it means is that it can detect a human 

face in an image even if the position of the mouth and nose were to be interchanged. This 

problem will be solved with CapsNet.     
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Figure 9 Convolutional Neural Networks structure and its components 

 

In CNN, abstract features are detected by deeper layers (closer to the input) and then 

propagate forward, and then the higher layer detects higher level features. For example, 

in detecting a human face, layer one could be detecting low level features such as edges, 

layer two detects simple mouth, eyes and nose, and then layer three detects the human 

face. As the features are being propagated, there are usually pooling layers (and non-

linearities introduced) in between the convolutional layers, as shown in Figure 9. At the 

final layer, the network will now be flattened, and all points connected with a fully 

connected (FC) layer (just a simple neural network) which will be responsible for the 

classification work. To fully understand the CNN, we shall explore the components of 

the CNN in the subsequent subsections. 

  

2.3.1 Convolutional Layers 

Convolutional layers usually form the first layer in a CNN and they are usually followed 

a non-linearity function such as ReLU (Rectified Linear Unit) and subsequently the 

pooling layer [24]. The convolution operation in itself is simply an element-wise 

multiplication of the so-called filter and the input feature map (input data or image). To 
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further understand the CNN, some terms needs to be explained in the next sets of 

subsections. 

  

2.3.1.1 Receptive Fields 

The receptive field of a particular neuron is the number of neurons that serve as an input 

to it. For example, Figure 10 shows a simple multilayer perceptron (MLP), as can be seen 

in the figure, each neuron in the middle layer have a receptive field size of 2 while the 

single neuron in the output layer has a receptive field size of 5. 

 

Figure 10 Illustration of the Receptive Fields of a neural network 

 

2.3.1.2 Convolutional Kernels (Filters) 

The convolutional kernel or filter is simply a mask or matrix of weights that are dedicated 

to extracting a particular feature, as shown in Figure 11. Since the convolution is an 

element-wise multiplication, the part of the filter that has zero will simply multiply-out 

to zero and the result of the multiplication looks like the shape or edge it is designed to 

detect. This is illustrated in Figure 11 where the feature (edge) to detect is a curved part 

and then its pixel values are multiplied with the kernel to get a result which will be stored 

in another matrix, known as the output feature map (or activation map). During training, 

the values in the filter are updated to better extract the feature it is meant to extract.   
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Figure 11 An illustration of a 7x7 filter used to detect an edge 

 

the convolution can be said to just be a multiplication of the filter with its receptive filed 

and then the result is stored in the output feature map. For the next value in the output 

feature map, the filter is moved by the stride value and the element-wise multiplication is 

performed again. This is repeated until the convolution has been performed on the entire 

area of the image (input feature map), as shown in Figure 12 An analogy to explain this 

is the use of a flashlight to scan through all the areas of the input feature map. 

 

Figure 12 Input feature map and output feature map in a convolution operation [25] 

 

2.3.1.3 Stride 

The stride in a CNN refers to the number of rows/columns that is moved in the input 

feature map before convolving again to get the value of another neuron in the activation 

map (output feature map). For example, in Figure 13, the filter moves one by one column 

before performing another convolution, this means the stride used in the convolution is 

1. 
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Figure 13 Convolution with a stride of 1. Filter in light-blue [24] 

 

2.3.1.4 Padding 

As can be seen in Figure 12, after convolution, the output feature map reduces in size as 

compared to the input feature map. If reduction continue as we come across more 

convolutional layers, we might end up losing important features in the image before 

getting to the classification stage. Hence, we try to keep the size of the output feature map 

from reducing by adding zeros at its edges. This process of adding zeros at the edges is 

known as padding. It is not compulsorily used in CNN. 

2.3.2  Non-Linearity (Activation Functions) 

Activation functions are basically used to introduce non-linearity into our model. After 

calculating the weighted sum of input and biases to a neuron, we then pass the result 

through the activation function which will decide whether the neuron will fire (‘activate’) 

or not [26]. This way, we try to mimic the biological neurons which also fire when there 

is enough spike at the input to cause it to fire. There are numerous types of activation 

functions and the choice to use one or the other often depends on experimentation and the 

type of problem at hand; however, ReLU has become prominent as the most common for 

many deep learning problems [27]. Other types of activation function include Sigmoid, 

Tanh, leaky ReLU and SignReLU, just to name a few [28]. 

ReLU simply echoes the input when it is more than or equal to zero while it suppresses it 

otherwise (i.e. sets it to zero when negative), see Equation 2.4. The graph in Figure 15 

illustrates the ReLU operation.  

𝑅𝑒𝐿𝑈, 𝑅(𝑧) = max(0, 𝑧)                                         (2.4) 
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Figure 14 Rectified Linear Unit (ReLU) graph shows that the output is zero when input is less negative 

 

2.3.3 Pooling Layer 

Pooling in CNN simply means down-sampling, which is used to further reduce or 

aggregate the features extracted in the output feature map of a CNN after the convolution 

and nonlinear operation has been performed. Pooling is mainly done to reduce the model 

spatial dimension [29] [30]. There are mainly two types of pooling: max pooling and 

average pooling. 

 

 

Figure 15 Examples of pooling operations by using a 2×2 filters applied with a stride of 2 
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In max pooling (as shown on the left-hand side in Figure 15), the maximum value in a 

section of the activation map is used to represent the entire value of the region and thus 

reducing the effect of the entire region to the effect of the maximum value. This is also 

the case with average pooling (right-hand side in Figure 15), the only difference is that 

instead of taking the maximum, we simply calculate the average of all the values in that 

window as its representation. It is worthy of note that max pooling is the most commonly 

used due to its simplicity as it does not require any calculation. These operations may lead 

to loss some features in the input image, but it is negligible as CNN still performs very 

well with it. But on the other hand, max pooling makes the model to be invariance to 

slight rotation in the image.  

 

2.3.4 Fully Connected Layer 

The fully connected (FC) layer is essentially an MLP that takes in the final output from 

the convolutional (and ReLU) layers and use them for classification. It flattens the content 

of the output feature map from the final convolutional layer and connect them to the 

individual neurons as may be required. The FC layer can be said to be where the 

recognition itself happens, while the convolutional parts were only used for feature 

extraction. The output layer of the FC layer is the output layer for the entire network. This 

is where the classification probabilities (result) is given. Assuming that a complete CNN 

is used to determine an image is that of a dog, goat or cat, the cumulative probability that 

either of the three animals were recognized will be unity. Softmax (normalized 

exponential function) function is used for this probability distribution [31]. Hence, if dog 

was recognized with an accuracy of 90%, the output of the softmax layer might be [0.9, 

0.04, 0.06] showing that goat and cat were recognized with a probability of 4% and 6 %, 

respectively. This is expressed as per Equation 2.5. 

𝑐𝑖𝑗 =
𝑒𝑥𝑝(𝑏𝑖𝑗)

∑ 𝑒𝑥𝑝(𝑏𝑖𝑘)
𝑘

                                              (2.5) 

where 

 𝑐𝑖𝑗 : softmax  

 𝑏𝑖𝑗: input vector  
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𝑒𝑥𝑝(𝑏𝑖𝑗) ∶ standard exponential function for input vector  

𝑘 : number of classes in the multi-class classifier  

 𝑒𝑥𝑝(𝑏𝑖𝑘)  : standard exponential function for output vector  

 

 

2.3.5 Popular CNN Architectures 

Due to the popularities and increasing application of CNN in computer vision tasks, the 

deep learning community has come up with many CNN architectures and varieties of 

CNN with different levels of optimizations. Some of these architectures have become 

very popular and useful. Examples of such CNNs are LeNet-5 [32], AlexNet [33], 

MobileNet [34] and many more. A brief summary of the concept of these network 

architectures is presented in the next paragraph.  

LeNet-5 is a CNN with 2 convolutional layers (each with a non-linear activation and 

pooling layer) and 3 FC layers. It is not a complicated CNN architecture and the number 

of parameters (for training) in the network is 60000. AlexNet on the other hand has 8 

layers (5 Convolutional layers and 3 FC layers) and has 60 million parameters; ReLU was 

also first introduced here [35]. MobileNet was developed by Google and it is optimized 

for mobile application such as smart phones that have lower processing capacity.  

2.4 Edge Computing  

Data is going to be most important for making intelligent and critical decisions. Based on 

the type of Internet of Things (IoT) connected device, speed and accuracy are going to be 

very important – here comes “edge computing.”  Edge computing is the processing and 

analysis of data along a network edge, closest to the point of its collection, so that data 

becomes actionable in real time without any latency (or with much smaller latency) 

instead of processing in the cloud. The figure 16 shows the hierarchical nature of edge 

fog and cloud computing. 

 



37 

 

 

Figure 16 Hierarchy of the cloud, Fog and Edge nodes 

 

2.4.1 Reason for moving Processing to the Edge 

The issues mentioned below led to the development of edge computing, the idea of 

performing processing activities onboard of edge devices (devices at the “edge” of the 

network). These devices are highly resource-constrained in terms of memory, 

computation, and power, leading to the development of more efficient algorithms, data 

structures, and computational methods. The traditional idea of IoT was that data would 

be sent from a local device to the cloud for processing. Some individuals raised certain 

concerns with this concept: privacy, latency, storage, and energy efficiency to name a 

few. 

2.4.1.1 Latency 

For standard IoT devices, such as Amazon Alexa, these devices transmit data to the cloud 

for processing and then return a response based on the algorithm’s output. In this sense, 

the device is just a convenient gateway to a cloud model, like a carrier pigeon between 

the device and Amazon’s servers. The device is pretty simple and fully dependent on the 

speed of the internet to produce a result. If one has a slow internet connection, Amazon 

Alexa will also become slow. For an intelligent IoT device with onboard automatic speech 

recognition, the latency is reduced because there is reduced (if not no) dependence on 

external communications. 
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2.4.1.1 Privacy and Security 

Transmitting data opens the potential for privacy violations. Such data could be 

intercepted by a malicious actor and becomes inherently less secure when warehoused in 

a singular location (such as the cloud). By keeping data primarily on the device and 

minimizing communications, this improves security and privacy. 

2.4.1.1 Power Consumption 

Transmitting data (via wires or wirelessly) is very energy-intensive, around an order of 

magnitude more energy-intensive than onboard computations. Developing IoT systems 

that can perform their own data processing is the most energy-efficient method. AI 

pioneers have discussed this idea of “data-centric” computing (as opposed to the cloud 

model’s “compute-centric”) for some time and we are now beginning to see it play out. 

2.4.1.1 Communication Bandwidth 

For many IoT devices, the data they are obtaining is of no merit as such. Imagine a 

security camera recording the entrance of a building for 24 hours a day. For a large portion 

of the day, the camera footage is of no utility, because nothing is happening. By having a 

more intelligent system that only activates when necessary, lower storage capacity is 

necessary, and the amount of data necessary to transmit to the cloud is reduced. 

 

2.5 Model Minimization Techniques  

Many deep learning models are usually run on very powerful computers usually in remote 

locations (servers) with large memory capacity to store all the weights and activations. 

However, as was discussed in Section 2.4, there have been many reasons for computations 

(particularly inference) to be moved to the edge in some instances but most edge devices 

(or embedded systems) are usually of lower capacity in terms of memory and compute 

power available on them, making it difficult to have them run neural networks [38]. 

Hence, there is need to make the model smaller (and potentially retaining the same 

efficiency) for them to be efficiently deployed at the edge. Although many model 

minimization techniques have been devised and applied to neural networks, pruning and 

quantization has been particularly useful and shall be briefly discussed in the subsequent 
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subsections. Figure 17 shows a process diagram of the post-training minimization 

process. 

 

 

 

 

 

It is also important to discuss regularization, which is a technique that helps reduce 

overfitting in the network by penalizing for complexity. It does this by adding a penalty 

term to the cost (or loss) function. Regularization makes the model to better generalize 

well and perform better on unseen dataset. There are two common types of 

regularizations, namely L1 and L2 regularization. Both regularizations are essentially the 

same in operation, only that they have different effects on the model performance. In L1 

regularization, the penalty term added to the cost function is the absolute weight, while 

the square of the weight is added in the L2 regularization [36, p. 2]. 

  

2.5.1 Pruning 

In simple term, pruning can be said to be the removal of redundant synapses (connections) 

and or neurons from the network, reducing the size of memory required to store the 

weights in the network. This also leads to faster computations as there are less parameters 

present in the network [37] [38]. Pruning varies in types depending on what is being 

pruned (weights or neurons and layers) and when it is being pruned (during or after 

training). Figure 18 shows a 3-step iterative pruning process where after the initial 

training, the system iteratively trains and prunes simultaneously. 

 

Minimization (Pruning, 

Quantization) 

Original Network 

Minimized(smaller) 

model 

About same accuracy 

Figure 17 Process diagram of a network minimization scheme 
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Figure 18 Three-Step Training Pipeline showing the synapses and neurons before and after pruning [39] 

 

Although pruning may lead to a slight loss in accuracy, research has shown that this 

accuracy can be regained if the model is retrained with some regularization applied [37]. 

In Figure 19, a network that has had about 90% of the model pruned away was shown to 

regained all lost accuracy after it was retrained with L2 regularization (colour red curve). 

 

 

Figure 19 Trade-off curve for parameter reduction and loss in top-5 accuracy [39] 

 

To prune a network after the architecture has been chosen and the model has been trained, 

we have to first set a threshold for pruning (i.e. any weight less than that threshold will 

be pruned away). Then the pruning is performed on weight magnitudes that are less than 

that threshold; after this, the network is retrained until a reasonable accuracy is achieved. 

If need be, pruning is performed again and the retraining follows again. Applying the 
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iterative pruning on AlexNet (Figure 20) reduces the number of parameters from 60 

million to less than 8 million.  

 

 

Figure 20 Applying the iterative training on AlexNet, trained with ImageNet dataset [39] 

 

2.5.2 Quantization 

Quantization is another common model minimization/optimization technique. Its aim is 

also to reduce the size and complexity of a network without having an adverse effect on 

the model accuracy. Quantization can be performed by rounding off many weights that 

are close in magnitude and using a single value to represent them (scalar quantization). 

With this, a single value can be used to represent the four different weights, thus reducing 

the amount of memory required to store the weights. Quantization can also be in the form 

of representing floating-point weights values with a fixed point representation. With this, 

a 32-bit floating-point number can be represented with an 8- bit (or even less) fixed-point 

number [38]. 
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Figure 21 Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom) [37] 

 

An illustration of quantization (by clustering) is shown in Figure 22. Here, weights that 

are close (given same colour in the figure) are clustered together and represented with a 

single value (their centroid). For example, four different weights (2.09, 2.12, 1.92 and 

1.87) are represented with the value 2.00 and hence the number of bits required to 

represent them reduces from 128 (32 bits times 4) to 34 (32 bits times one, plus 2 bits). 

Additionally, a fine tuning is applied on the centroid so as to enable maintenance of the 

clustering made. Fine tuning is performed by summing up the gradient for all the weights 

that have the same centroid, and then subtracting this sum from each initial centroid to 

get the new centroid. 

 

More often than not, pruning and quantization are usually combined to obtain a very good 

minimization/optimization of a neural network model. Figure 22 shows how this 

combination (red curve) performs better than applying only one of them as it shows a 

zero-accuracy loss even after the model size have been reduced to about 3% of its original 

size [37]. 
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Figure 22 Accuracy v.s. compression rate under different compression methods [37] 

 

Since most embedded devices are not always as powerful as the high-end computers or 

servers to run complex machine learning models (such as CapsNet or CNN), compressing 

the model (model minimization) using the techniques described here (and more) is now 

an important part of the pipeline edge computing paradigm.  
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3  Capsule Neural Networks 

Capsule Neural Network (CapsNets in short) as the name implies is a form of neural 

network that is composed of ‘capsules’ instead of the traditional artificial neurons. This 

chapter presents how CapsNets work; first by explaining what a capsule is, and then 

presenting the CapsNet’s architecture, and other essential characteristics.  

3.1 What is a Capsule? 

In vanilla neural networks, artificial neurons are used as the computation units and their 

outputs are usually scalar in nature. Capsules, on the order hand, have vector outputs and 

they can be defined as a group of neurons that store the instantiation parameters of an 

object or object part with their activity vectors [5]. Here, the probability of existence of 

an object is denoted by the length of the activity vector (of the capsule) while its 

instantiation parameters are represented by the orientation of the vector. In the section 

that follows, an architecture of a CapsNet used to recognize handwritten digits will be 

explored and this will give the full workings of the capsule neural network. 

 

3.2 Architecture of a CapsNet 

The architecture of a Capsule neural network can be best described when explained in 

two parts: encoder and decoder.   

3.2.1 Encoder Part 

Figure 23 shows a simple structure of the encoder part of a neural network used to detect 

hand-written digits. The encoder takes as input an image of say 28 x 28 x 1 pixel resolu-

tion, passing it through the convolution layer and capsule layers, then it get encoded as a 

16 - dimensional vector. Note that it does not have to be 16 in dimension, it can be any 

amount of dimension as desired. But this number denotes how many properties of the 

image will be encoded. The capsules are only present in the encoder part of the network 

and the encoder structure also represent the structure used during inference. As can be 

seen in the figure, the encoding part consists of the input image itself, a convolutional 
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layer, a primary capsule layer and an output capsule layer (called digit capsules in this 

case). The prediction is then shown as the length of the output vector. 

 

 

Figure 23 Architectural structure of encoder part of CapsNet 

 

The operation of the encoder is such that we feed the image into the ReLU-activated 

standard convolution layer, which then applies 256 different filters (9x9 kernels) on the 

image and we have the output of the convolutional layer to have a 256 number of feature 

maps (or channels). This output, which is now of 20x20 dimension per feature map, is 

then fed into the primary capsule. In the primary capsule, the 256 feature maps are 

grouped into 8 groups each and then we have 32 of such groups (this is represented in 

Figure 24. Now, kernels of size 9x9x8 are then applied to each group to give us an 6x6 

feature map with each element being 8-dimension, or (6x6=36) capsules of 8 dimension 

each. Applying this across the 32 groups gives us 32 number of 8-D capsules across a 6x6 

space thereby making the number of capsules to be 6x6x8x32.  
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Figure 24 Primary Capsule layer showing the vectoral property of the capsule [25] 

 

In the digit capsule layer, each of the capsules in this layer takes input from all the cap-

sules in the primary capsule layer, i.e. 32x6x6 = 1152 of them in total. Each of these input 

capsules (8-D vectors) is multiplied by transformation matrix with size 16x8 to convert 

the 8-dimensional capsules to 16 dimensions for each of the 10 output capsules. A special 

algorithm is used for routing the vectors from the primary capsules’ layers to the digit 

capsule layers. This algorithm makes it possible for primary capsules to only route their 

output to the capsules in the output layers that most likely agrees with it output. This 

algorithm is known as the Dynamic Routing by Agreement Algorithm, as popularized by 

Hinton [5] (see Section 3.4 for more information).  

 

 

3.2.2 The Loss Function 

As already discussed in Chapter 2, learning in a neural network is basically an optimiza-

tion process of minimizing a loss function. In the encoder part of the network, the loss 

function is given by Equation 3.1. Capsules use a distinct margin loss Lc for each cate-

gory c digit shown in the image. The entire loss of the network during training is the sum 

of the margin loss and weighted reconstruction loss. 

 

 

𝐿𝑐 = 𝑇𝑐 max(0, 𝑚+ −  ‖𝑢𝑐‖ )2  +  𝜆(1 − 𝑇𝑐)𝑚𝑎𝑥(0, ‖𝑢𝑐‖ − 𝑚−)2                 (3.1) 
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where Tc=1 if there is an object of class c. Furthermore, m+=0.9 and m−=0.1. The 

weighting-factor λ, which is usually set at 0.5, stops learning so as to reduce the activ-

ity vectors in all category. And hence, the total loss is the sum of the losses of all classes.  

The first term of the loss function equation is only executed if the input digit was properly 

classified while the second part is executed in the event of misclassification. In a situation 

where the correct output capsule is able to predict correct label with a probability that is 

more than 0.9, we will have a zero loss, but if the probability is not up to 0.9, then we will 

have a non-zero loss. 

 

 

Figure 25 Loss function for correct and incorrect output capsule [40]. 

 

For the output capsules that are not in match with the correct labels, Tc will be equal to 

zero and the only the second term of the equation will be executed (which corresponds 

to the (1 — Tc) part). And in this scenario, we will still have a loss of zero provided that 

the miss-prediction by the mismatching output capsule was made with a probability that 

is less than 0.1, otherwise the error will have some values. Figure 25 illustrates these 

scenarios properly. 

 

3.2.3 Decoder Part 

The decoder part of the CapsNet (as illustrated in Figure 26) is mainly fully connected 

layers of conventional neural networks. It takes in as input the output of the correct output 

capsule (or DigitCaps) and then decodes it into an image of the correctly predicted digit. 

It learns all of this during training, and it does not try to decode it when the prediction is 

not correct, it simply masks them off in that case. The Euclidean distance between the 
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reconstructed image and the original image is used as the loss function for the decoder 

and the training is dine with the help of backpropagation. This decoding part forces the 

CapsNet to learn features that are necessary in the reconstruction of the image. And the 

overall loss function is given as the weighted some of the margin loss (from the output 

capsule layer) and the reconstruction loss (obtained from the decoder network). 

 

 

 

Figure 26 Architecture of encoder part of CapsNet [40]  

 

A summary of the complete CapsNet structure for the recognition of handwritten digits 

example is shown in Table 1 
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Table 1 Summary of the CapsNet structure for the recognition of handwritten digits example 

Name of Layer  Function 
Shape of the out-

put 

Input image Array of raw image data 28x28x1 

ReLu-Activated 

Convolution 

Convolution layer, 9x9 kernels, output is a 

256 channel feature map, stride 1, no pad-

ding with ReLU activation. 

20x20x256 

Primary Capsules 

Convolution capsule layer with 9x9 kernel.  

Output = 32x6x6 8-dimensional capsule, 

stride 2 and there is no padding. 

6x6x32x8 

Output Capsule 

(Digit Capsule) 

Capsule output computed from 

a Wij (16x8 matrix) be-

tween ui and vj (i from 1 to 32x6x6 

and j from 1 to 10). 

10x16 

Fully connected 

layer 1 

Fully connected (ReLU-Activated) 
512 

Fully connected 

layer 1 

Fully connected (ReLU-Activated) 
1024 

Reconstructed out-

put image 

Fully connected (Sigmoid-Activated) 
784(1x28x28) 

 

3.3 CapsNet Forward-Pass Operations 

In this section, we look more closely to the operation that occur in a CapsNet during a 

forward pass. The process describes various operations that take place when vectors are 

being routed from a deeper (lower) capsule to a higher capsule (output capsule in this 

case). Figure 27 helps illustrating these operations. 
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Figure 27 Diagram showing the data flow operations in a Capsule 

 

For a lower capsule output, 𝑈𝑖 and an upper capsule with output 𝑉𝑖, the output of the lower 

capsule serves as the input of the upper capsule and both outputs are vectors in nature. 

Four basic operations are performed on the input to a capsule before we have the output 

of such capsule. These operations are detailed in the subsections that follow.  

 

3.3.1 Matrix Multiplication of Input Vectors 

As shown in Figure 27, our capsule gets input vectors (𝑈1,𝑈2 𝑎𝑛𝑑 𝑈3,) from 3 lower-level 

capsules. As explained before about capsules, the length of these lower-level capsules 

represents the probability that the corresponding objects were detected by the low-level 

capsules and the orientation of these capsules represent internal features or pose of these 

objects. We now multiply these vectors with a weight matrix 𝑊𝑖𝑗, which encodes the 

spatial information between these lower-level capsules (e.g. Nose, mouth, ear etc. in 

images of humans) and the upper lever capsule (e.g. face). For example, the spatial 

relationship between the mouth and nose can be encoded by 𝑊2𝑗. These encoded 

relationship between the mouth and face might be for instance that the width of the face 

is twice that of the mouth and that the mouth is located at the lower part of the face. The 

same kind of encoding is done for other capsules in the lower layer. After these 

multiplications with the weight matrix encoding spatial relationships, we now can now 

have an output which is the predicted position of the higher-level features. That is, 

û2 might represent the where the face should be according to the detected position of the 
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nose. The same goes for û3 and û1. And if all the three lower level agree to as to where the 

position of the face is, then it must be a face. Equation 3.2 shows how these are calculated. 

û𝑗|𝑖 = 𝑊𝑖𝑗𝑢𝑖 (3.2) 

3.3.2 Scalar Weighting of Input Vectors 

These predicted vectors are then weighted with a scalar value known as the coupling 

coefficient, 𝐶𝑖𝑗. The values of these coefficients help the lower-level capsule decide which 

higher-lever capsules it should be coupled to. This is done by first sending out its value 

to every output capsule, and then determine the set of capsules that have high likelihood 

or agree with it, and then adjust the weighs based on the likelihood calculated; this reduces 

the weight between it and the higher-level capsules with lower likelihood or agreement, 

and conversely increases the weight between it and the higher-level capsules with high 

agreement. The values of the scalar matrix  𝐶𝑖𝑗 are learned during training, this time not 

by backpropagation but by the dynamic routing by agreement algorithm which will be 

explored in Section 3.4. 

 

3.3.3 Sum of Weighted Input Vector 

After the weighting has been performed for all lower-level capsule, at this time, all higher-

level capsules would have been coupled with all lower-level capsule although with 

varying weights, now the sum of all the couplings a higher-level capsule has with all 

lower level capsules. This is shown in Equation 3.3; 

 

𝑆𝑗 = ∑ 𝑐𝑖𝑗û𝑗|𝑖𝑖                                                                                                                (3.3) 

3.3.4 Squashing 

The Squashing function, which takes in vector input and gives a vector output is a novel 

nonlinearity introduced by G. Hinton [5]. After the input is squashed, its output is capped 

at 1 (i.e. not more than unity) but its orientation is not changed. Its formula shown in 

equation 3.4. In conventional neural network, the ReLU function nonlinear activation 

would be used, but here a squashing function is used instead; one reason being that it can 

take in vector input and give a vector output and also the fact that it forces the final length 
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to be at most unity, as shown in figure 28, which is good since the length of the vector is 

a probability. 

𝑉𝑗 =  
‖𝑆𝑗‖

2

1+ ‖𝑆𝑗‖
2

𝑠𝑗

‖𝑆𝑗‖
2                                                        (3.4) 

Where; 

 𝑉𝑗 = Capsule squashed output vector 

𝑆𝑗 = Capsule output vector 

 

 

Figure 28 Simulated output of a squashing function 

3.4 Dynamic routing by agreement 

In the conventional CNNs, the routing of data from a lower level layer, L, to an upper 

level layer, L+1, is done by the pooling operation. But this is not the case in CapsNet. In 

CapsNet, this routing is done in an iterative manner using an algorithm known as “routing 

by agreement”. From the name, it means that there will be an agreement between two 

capsules before data can be routed between them. So, the intuition behind this is that 

capsules that are deeper in the network (lower level capsule) will only send their outputs 

(to serve as inputs) to a higher level capsule that “agrees” with it [5] [41]. This way, 

capsules from a lower level layer L will not have to send (route) outputs to all capsules 

in the L+1 layer, and thereby reducing calculations and increasing the efficiency of the 
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network. Before we delve into how this algorithm works, a pseudocode form of the 

algorithm is shown in Table 2. 

Table 2 Dynamic Routing by Agreement [5] 

Procedure 1: Routing Algorithm 

1. Routing function (�̂�𝑗|𝑖, 𝑟, 𝑙) 

2. for all capsule 𝑖 in layer 𝑙 and capsule 𝑗 in layer (𝑙 + 1): 𝑏𝑖𝑗 ← 0 . 

3.  for 𝑟  number of iterations: Loop   

4.  for all capsule 𝑖 in layer 𝑙: 𝑐𝑖 ← softmax(𝑏𝑖)               

5.  for all capsule 𝑗 in layer (𝑙 + 1): s𝑗 ← ∑ 𝑐𝑖𝑗�̂�𝑗|𝑖𝑖  

6.  for all capsule 𝑗 in layer (𝑙 + 1): v𝑗 ← squash(𝑠𝑗)             

7.  for all capsule 𝑖 in layer 𝑙 and capsule 𝑗 in layer (𝑙 + 1): 𝑏𝑖𝑗 ← 𝑏𝑖𝑗 + �̂�𝑗|𝑖.v𝑗  return v𝑗               

 

where �̂�𝑗|𝑖 is the affine-transformed output of the layer L capsule (or input to the layer 

L+1 capsule), and v𝑗  is the output of the layer L+1 capsule. 

In line 2, 𝑏𝑖𝑗 is initialized to zero in the beginning. Then some operations are run in a loop 

r number of times (the typical value of r is 3 [5]). Now, within the loop, each step is 

explained below; 

- 𝒄𝒊 = softmax(𝒃𝒊): The value of the vector 𝑐𝑖 is calculated and all routing weight 

of the low-level layer capsules into probability (between 0 and 1) and also make 

sure that their sum equals unity. This weight is what determines the “agreement-

level” of capsules, but at the first iteration, lower-level capsule have equal 

agreement-level with all capsules in the higher level and this is the state of 

maximum confusion.  

- s𝑗 ← ∑ 𝑐𝑖𝑗�̂�𝑗|𝑖𝑖  : In the higher, level layer (L+1), the sum of the linear product of 

the input vectors, and the weighting factor, 𝑐𝑖 is calculated for all capsules. After 

this is done, the output s𝑗 is squashed (v𝑗 ← squash(𝑠𝑗)) to give the output vector 

of each capsules in layer L+1. This squashing allows for the direction of the vector 

be preserved while bounding its length between to 0 and 1 (of probability).  
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- 𝑏𝑖𝑗 ← 𝑏𝑖𝑗 + �̂�𝑗|𝑖.v𝑗  : Here, the initial weight is updated here. In the beginning of 

the algorithm, the lower-level capsules are in a state of maximum confusion and 

do not know which higher level capsules will agree with them, but after this update 

here, the value of the weights will be adjusted and hence, lean towards some a 

capsule in the upper level. This can be said to be the main part of this algorithm 

as the output of the higher-level capsule v𝑗  and that of the lower level capsule �̂�𝑗|𝑖  

are checked for similarity (the dot product �̂�𝑗|𝑖.v𝑗  is essentially the similarity 

check). The new weight will be bigger between two capsules in agreement but 

decreases between capsules that are not. 

- These steps are repeated for a number of iterations (preferably 3) at which 

capsules in the lower layers have learned which capsule in the higher layer agrees 

with it and then subsequently only rout data to it.  

3.4.1 Decoder 

The decoder part of the flowgraph gets the vector of the predicted class(es) from the 

prediction block (after masking with or without label) and then reconstruct the image (or 

object) that was detected. The reason for masking is that we want to distinguish training 

from testing of the network. Unlike testing period where the predicted class is just 

reconstructed with calculation of loss, during training, the labels of the predicted class are 

needed in order to find the reconstruction loss, but this is not needed during testing, so 

we put a flag (called “Mask with Labels”) to distinguish this. 

As already depicted in Figure 26, the decoder is simply a neural network (an MLP) that 

takes in the predicted class vector and reconstructs the image from it. Hence, the number 

of neurons in the output layer of the decoder must be equal to the total number of pixels 

in the original image as each pixel will be generated by one neuron (i.e. for a 28x28x1 

image, the number of neurons in the output layer of the decoder will be 784). 

   

3.4.2 Losses 

Next, we shall look at the losses of the network. 
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3.4.2.1 Margin Loss 

The margin loss is the loss calculated based on the classification output of the output 

capsules. The margin loss calculated separately for class in the output capsule and it is 

given by the Equation 3.1 below as previously explained in Section 3.2.2.  

  

3.4.2.2 Reconstruction Loss 

On the other hand, the reconstruction loss is the squared difference between the original 

image and the reconstructed image, as per Equation 3.6.  

𝑅𝐿𝑜𝑠𝑠 =  (𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒)2 −  (𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒)2                                     (3.6) 

with 𝑅𝐿𝑜𝑠𝑠 being the reconstruction loss. 

3.4.2.3 Final Loss 

The final loss is the sum of the of both margin and reconstruction losses. As we can see 

already, the reconstruction loss depicts the difference in the predicted and the original 

image and if it is left to dominate the loss, the network might end up trying to memorize 

the particular image, making it difficult to generalize (i.e. leading to overfitting). Hence, 

we scale down the effect of the reconstruction loss by a factor β so as to allow the margin 

loss dominate training as can be seen in Equation 3.7. 

 

𝐹𝐿𝑜𝑠𝑠 = (𝑀𝑎𝑟𝑔𝑖𝑛 𝐿𝑜𝑠𝑠) +  β(𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠)                                                    (3.7) 

with 𝐹Loss being the final loss and the value of the scaling factor, β, much smaller than 

unity. A typical value will be about 0.0005  [42]. 

3.5 Drawbacks of CNN (Convolutional Neural Network) 

To fully appreciate the advantages that CapsNet brings, it is important to look the 

drawbacks that CNN has. Although CNN has seen rapid rise in application and are 

performing excellently in many applications, it has some major challenges inherent in it 

and some of these is motivation for the development of capsule networks. For instance, 

CNN can predict the presence of an object in an image but cannot give the instantiation 

parameters such as pose, texture and deformation of the object [5] [43]. Also, the pooling 
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operation used in CNN makes it lose some information about the object, so to train a CNN 

model, a large amount of data will be required to achieve a good efficiency. In addition, 

CNN does not keep the spatial relationships among object in an image, it simply gives a 

probability value of the presence or absence of an object in an image. These makes CNN 

invariant instead of being equivariant to translation in the image [43]. Lastly, as pointed 

out by [44], CNN is prone to adversarial attack like pixel perturbation which can have 

grave consequence if used it leads to wrong classification.  

3.6 Comparison of Neurons in CNN and Capsules in CapsNet  

A concise difference between the operations in CNN and CapsNet is presented in Table 

3. Figure 29 also depicts this difference in the form of a diagram. 

 

Figure 29 Neurons vs. Capsules showing the difference in the structure 

 

Table 3 Comparison between Neurons and Capsules 
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3.6.1 Invariance vs Equivariance 

Invariance in a model is the detection of the presence of (part of) an object without 

translational or rotational variations in the original image. The pooling layer makes CNN 

do this, although this was not the intention of the pooling layer. The way CNN recognizes 

a high-level object such as a face is just to have neurons which recognize the low level 

parts such as mouth, nose and eyes to get fired. This means that even if the mouth and the 

ear positions are interchanged, a CNN would not know this, as long as it has been trained 

with many translated or rotated examples of that part of the object. On the other hand, 

CapNet is able to keep the spatial relationship among objects in an image so it can 

extrapolate possible variants of an object without being trained with those rotated or 

translated versions [45]. This is known as “Equivariance”. Thus, CNN requires much 

more datasets of the same object for training as compared to capsule network to achieve 

the same amount of efficiency. 

3.7 Performance Metrics 

In the next chapter, terms such as training loss, training accuracy, validation loss and 

validation accuracy will be used in defining the performance of our model, and it is 

important we explain them here. 

3.7.1 Training and validation 

The term “Training” is used to indicate when the model is learning (i.e. any action whose 

overall effect led to the update of weights in the model). Validation, on the other hand, is 

simply used to denote the evaluation of the model. Validation is similar to testing, the 

difference is that testing is done after the model has been completely trained and while 

validation is done during training and it helps in fine tuning the parameters of the model. 

3.7.2 Loss and Accuracy 

The accuracy of the network is simply the ratio (percentage) of the correctly classified 

images to all the images used as given in Equation 3.8. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑𝐼𝑚𝑎𝑔𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

∑𝐴𝑙𝑙 𝑖𝑚𝑎𝑔𝑒𝑠 
                                    (3.8) 

 

 

Loss is the sum of the errors made for each example in training or validation sets averaged 

over the entire dataset. And unlike accuracy, it is not a percentage and expressions for it 

has been previously given in Section 3.5.2. 

 

This chapter has introduced the main elements and properties of the CapsNet. The next 

chapter presents the implementation part of this study.  
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4 Implementation Workflow  

This section contains the implementations and experimentations carried out in this pro-

ject; it begins by giving a flowgraph of the workflow from data collection till the deploy-

ment of the model on an edge device as depicted in Figure 30. Figure 30 shows the process 

involved in this project implementation for a CapsNet. Moreover, a CNN model was also 

built and trained to serve as our baseline for results comparison; it should be noted that 

this same workflow depicted in Figure 30 was used for the CNN model as well, so there 

will not be a separate discussion for the CNN model although a summary of its architec-

ture is presented later in this chapter. 

 

 

Figure 30 Implementation workflow of CapsNet model training and deployment on the edge device  

 

As shown in figure 30, the workflow begins with data collection and its processing, which 

are further elaborated, then the CapsNet model is created, and then we tune its hyper 

parameters to assess what works best, before the training of our actual model is 

performed. When the training is done, we save the model and go ahead to optimize for 

inferencing on an edge (i.e. embedded type) device. The training results are also collected 

and analysed in Chapter 5. 
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4.1 Datasets, Training and Pre-processing 

The datasets of thirteen (13) categories of animals were used for this study and they were 

obtained from three different sources. Images of the following animals were used; female 

deer, male deer, hare, polar bear, wolf, reindeer, elk, impala, zebra, lion, cheetah, cats and 

dogs. That of cats and dogs were used for an initial model that was evaluated with the 

aim of fine-tuning and obtaining appropriate hyperparameters that are suitable for training 

CapsNet with animal images, while images of the eleven remaining animal categories 

were used for the final training. Table 4 shows some images of the 11 animals and the 

sources were these images were obtained as follows;  

- Camera recording of video and then conversion of the video to frames. 

- Snapshot Wisconsin dataset from the camera-trapped images used in the work 

“Identifying Animal Species in Camera Trap Images using Deep Learning and 

Citizen Science” [7]. 

- Lastly, web-scraping was done with a python script to get animal images from 

Google.  

 

These sources were used because these images are similar to real life datasets that deep 

learning models are expected to see when deployed. After getting the images, there were 

frames with either empty images of wrong images, these were identified and removed. 

Then they were resized to resolutions of 28x28, 32x32, 50x50 and 80x80. Also, 

conversions were made from RGB format to grayscale. Some techniques employed to do 

the above are shown in the next sections. After the image processing part, the datasets 

were divided into different classes and then converted to pickle format (as byte files) 

before saving, to be used later for training. 

 

 



61 

 

 

 

 

Table 4 Showing datasets of the animal classes, their image sample and their respective sources 

Class Image Source 

Polar bear 

 

Web scrapping with python script 

Cat 

 

Video to frame conversion 

Zebra 

 

Snapshot Wisconsin dataset 

Lion  Snapshot Wisconsin dataset 

Cheetah 

 

Snapshot Wisconsin dataset 

Dog 

 

Video to frame conversion 

Elk 

 

Snapshot Wisconsin dataset 

Impala 

 

Snapshot Wisconsin dataset 

Rabbit Hare 

 

Snapshot Wisconsin dataset 

Reindeer 

 

Web scrapping with python script 

Female deer  Web scrapping with python script 

Male deer 

 

Web scrapping with python script 

Wolf 

 

Web scrapping with python script 
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4.2 Image Processing 

4.2.1 Conversion of RGB to Grayscale 

Conversion of colour images (3 channels RGB) to grayscale (single channel) can be done 

in either of the following ways;  

 

1. Average method: This is a very trivial method whereby an average of the values 

of three colors (Red, Green and Blue) are taken, and this gives us the grayscale 

value. That is;  

Image(grayscale) =  
image(Red) + Image(Green) + Image(Blue)

3
     (4.1) 

2. Weighted method or luminosity method: There is a problem with the above 

average method; we only took the average of the colours, making each colour 

have equal contribution. But in reality, each colour has a different wavelength[46] 

and thus have different contribution to the image. So, in the Weighted method, the 

contribution of the red color is decreased since it has a longer wavelength than the 

green color, the contribution of the green colour is slightly increased and the blue 

color will occupy the remaining contribution. A suitable factor is indicated in 

Equation 4.2. The result of applying this method on a picture is shown in Figure 

34.  

Image(grayscale) =  
0.3 x image(Red)+ 0.59 x Image(Green)+ 0.11 x Image(Blue)

1
     (4.2) 
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Figure 31 Results of converting RGB images (top left) to grayscale image using the weighted method or 

luminosity method (top middle) and the average method (top right). The bottom part show the red, green 

and blue channels of the RGB image.  

4.2.2 Resizing of image (Image resampling) 

The process of resizing an image is known as image resampling and there are three main 

methods that can be used for this [47]. Viz; 

1. Nearest neighbor: The output pixel (in the resized image) assumes the value of the 

pixel nearest to it from the original pixel. Here, only one pixel from the original image 

is used to generate the pixel in the output image. 

2. Bilinear interpolation: Here, each pixel in the resized image is a weighted sum of 

the 2-by-2 neighborhood pixels that are nearest to it in the original image. 

3. Bicubic interpolation: Just like the bilinear interpolation method, the output of each 

pixel in the resized image is a weighted sum of a 4-by-4 neighborhood pixels in the 

original image. 

In this project, the bicubic interpolation has been employed. 
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Figure 32 Original and resized images using the nearest neighbour technique  

 

4.3 Software Environment 

Image recognition tasks using deep learning usually involves very complex matrix 

calculations, so a system with good configurations were required for this training of the 

models. Three systems were used;  

- Personal Computer (PC): Intel octa-core Core-i7-2630Q running at 2 GHz clock 

speed with 8GB memory. This was used for the rather lighter training work. It 

usually takes about 8 hours to train a 2-class CapsNet model of 12501 28x28x3 

images per class for 100 epochs. 

- Cloud: Google-Colaboratory platform which provided free access to CPU, GPU 

and TPU for some limited amount of time. The training often gets interrupted so 

requires constant monitoring. It usually takes about 5 hours to train a 2-class 

CapsNet model of 12501 28x28x3 images per class for 100 epochs. 

- A Hewlett-Packard (HP) workstation with 2.5 GHz intel Core-i7, memory of 16 

GB DDR3, Nvidia Graphic Processing Unit (GPU) GeForce GTX 1080 with GPU 

clock speed of 1888 MHz and GPU memory of 9028 MB. This was used and for 

the more complex processing. It usually takes about 50 minutes hours to train a 2-

class CapsNet model of 12501 28x28x3 images per class for 100 epochs. 
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Python 3 was used as the programming language and the implementations were done in 

the Jupyter - notebook which is available in the Anaconda 3.7 environment. Deep learning 

frameworks Tensorflow-gpu 1.15 was used in both frontend and the backend while Keras 

2.2.4 was used in the frontend. Tensorboard 1.5 was used for recording and visualizing 

the model training logs and histories. Other packages that were used include Numpy, 

Matplotlib, Pickle, and OpenCV libraries. And finally, to make the model run on the GPU, 

several drivers and libraries were installed as specified by Nvidia [8] [1], they include the 

Nvidia driver, CUDA Toolkit v10.1 and CuDNN v9.1. 

  

4.4 Training CapsNet (Capsule Neural Network) 

Training a neural network is always about updating weights and biases, but the 

architecture is a little bit different in CapsNet and it shall be examined in the subsequent 

subsections using Figure 31. 

 

 

Figure 33 Training Flow graph used to train the “Animal” CapsNet  

 

Figure 31 shows the flow graph for CapsNet training (with little modification for testing) 

and as can be seen from the figure (bottom left side), it begins with an input image with 

size (28x28x3) and then through a convolutional layer(256 channels, filter size = 9x9, 
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stride = 1) and then to the primary capsule layer. Now between the primary capsule and 

output capsule is where the dynamic routing algorithm is takes place. It should be noted 

that pooling was not used at all, even at the convolution layer. The output of the output 

layer is an array of vectors for all classes. The length of these vectors are then calculated 

in order to get the probability of a class (object) detection which now serves as the 

predicted output. The flow just described can be used for only inference. But for training, 

much more computations are required and the extra flows will be discussed in section that 

follows.  

 

4.4.1 Decoder 

The decoder part of the flowgraph gets the vector of the predicted animal class from the 

prediction block (after masking with or without label) and then reconstructed the animal 

image (or object) that was detected. The reason for masking is that we want to distinguish 

training from testing of the network. Unlike testing period where the predicted class is 

just reconstructed with calculation of loss, during training, the labels of the predicted class 

will be needed in order to find the reconstruction loss but this is not needed during testing, 

so a flag was put (called “Mask with Labels”) to distinguish this. 

As already depicted in figure 26, the decoder is simply a neural network (an MLP) that 

takes in the predicted animal vector and reconstruct its image from it. Hence, the number 

of neurons in the output layer of the decoder must be equal to the total number of pixels 

in the original image as each pixel will be generated by one neuron (i.e for a 28x28x3 

image, the number of neurons in the output layer of the decoder will be 2352). In 

summary, the CapsNet architecture details is shown in table 4. 
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Table 5 Summary of the CapsNet Architecture used for Animal classification 

CapsNet Layer Details 

Input Image Width = 28, height = 28, channels = 3 

 

Convolution Layer Filters = 256, kernel size = 9x9, stride = 1, 

Activation = ReLU, with padding. 

 

Primary Capsule Vector size = 8, channels = 32, kernel size = 

9, stride = 2 

 

Animal Capsule Vector size = 16, capsules = 11, routing = 3 

 

Decoder Fully connected layer 1 512, ReLU 

 

Decoder Fully connected layer 2 1024, ReLU 

 

Decoder output layer 2352, sigmoid 

 

 

4.5 Model Configuration and key hyperparameters 

Hyperparameter tuning is necessary in order to find the best configuration for the main 

model. First, a CapsNet model of two classes (cats and dogs) was developed and several 

instances thereof were trained with various hyperparameter changes and the result was 

monitored. The sizes of images, number of channels, batch size and validation split were 

varied for different number of images per class. Table 5 shows the summary of the 

parameters; their performance are analysed later in Chapter 5.  
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Table 6 Training parameters used for the two-class CapsNet model 

Instance 

No. of image 

per class 

Image size 

(number of 

pixels) 

Number of chan-

nels (3 channels: 

RGB; 1 channel: 

grayscale) 

Batch size 

Validation split (ratio 

of images for train-

ing/validation) 

1 1000 32x32 3 32 0.1 

2 1000 50x50 3 32 0.1 

3 1000 50x50 3 32 0.2 

4 1000 80x80 3 32 0.2 

5 1000 80x80 3 32 0.2 

6 1000 80x80 3 32 0.2 

7 1000 32x32 3 32 0.3 

8 1000 50x50 3 32 0.3 

9 12501 28x28 3 32 0.2 

10 12501 28x28 3 32 0.1 

11 12501 28x28 1 32 0.2 

12 12501 32x32 3 256 0.2 

13 12501 32x32 3 32 0.3 

14 12501 32x32 3 32 0.2 

15 12501 50x50 3 32 0.2 

16 12501 50x50 3 256 0.2 

17 12501 50x50 3 32 0.1 

18 12501 50x50 3 32 0.3 

19 12501 50x50 3 64 0.2 

20 12501 50x50 3 32 0.2 

21 12501 50x50 3 32 0.2 

22 12501 50x50 3 32 0.2 

23 12501 80x80 3 32 0.2 

 

 

After the training for the two classes-model was completed, the 11-class CapsNet model 

was then trained as well with an image size of 28x28x3 with batch sizes 32, and 256. The 

validation split (ratio of images for training/validation) was also varied.   
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4.6 Model Conversion and Minimization 

After training of the models, minimization (quantization and pruning) of the model was 

done to reduce its size and convert it to a Tensorflow-Lite (a Tensorflow version 

optimized to run on mobile and embedded/edge devices) model before deploying to the 

edge device. Post training quantization (as opposed to quantization-aware training) was 

used as this was more straightforward in implementation and both methods leads to 

similar reduction in size of the model as concluded from experimental observation.  

4.7 Embedded Hardware Deployment Setup  

After the above optimization of the trained model, it is now deployed on the edge device. 

The steps used in deploying the model on the board are depicted in the flow graph in 

Figure 34. The embedded hardware used is the Nvidia Jetson TX2 board, which is a GPU-

based power-efficient embedded AI computing edge device. It features and Nvidia Pascal 

GPU architecture with 256 Compute Unified Device Architecture (CUDA)-cores, 

together with it are dual-core Nvidia Denver 64-Bit CPU and ARM Cortex-A57 CPU. 

Also, the Google coral range board containing an edge Tensor Processing Unit (TPU) 

was initially experimented on but it was later dropped as it couldn’t work well because of 

some limitations in the TPU. It does not support 4-dimensional tensors (which my model 

has). 

 

Figure 34 Flowgraph showing the steps involved in the deployment of the trained model on the edge device 

 

As can be seen in Figure 32, the Jetson board is first set up with a host PC running Ubuntu 

18.04 operating system (OS) and then the configurations and installation of packages 

follow. The green coloured box showed the compressed model obtained after the model 
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has been trained and compressed, while the orange-coloured box shows the docker image 

creation step. The docker image of the compressed model is created after the component 

installations been performed. After this, a Universal Serial Bus (USB) camera is installed 

and the docker image is executed. The entire process took a lot of hours (about 24) to get 

them to work together. 

4.8 Brief Overview of the Baseline CNN 

As mentioned earlier, a CNN model was used as a baseline for comparison purposes; a 

brief overview thereof is shown in Table 7. The architecture is carefully chosen because 

it has a similar layout as that of the CapsNet model. It was trained on the GPU based HP 

workstation. 

 

Table 7 Summary of the baseline CNN Architecture used for “Animal” classification 

Baseline CNN Layer Details 

Input Image Width = 28, height = 28, channels = 3 

 

Convolution Layer 1 Filters = 256, kernel size = 5x5, stride = 1, 

Activation = ReLU, pooling = 2x2 

Convolution Layer 2 Filters = 256, kernel size = 5x5, stride = 1, 

Activation = ReLU, pooling = 2x2 

Convolution Layer 3 Filters = 128, kernel size = 5x5, stride = 1, 

Activation = ReLU, pooling = 2x2 

Decoder Fully connected layer 1 328, ReLU 

 

Decoder Fully connected layer 2 192, ReLU 

 

Output layer  11, softmax 
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5 Results and Analysis 

5.1 Model Training Results analysis 

Having trained the models with several configurations (hyperparameters), a number of 

results and corresponding plots were obtained; they are analysed in the following 

subsections, each subsection focusing on different aspects of decisions made. Then 

finally, a comparison is made between the CapsNet and CNN models’ performances. 

 

5.1.1 Number of Routing Iterations in the Routing by Agreement Algorithm  

This subsection focuses on the results obtained which inform the decision on the best 

number of routing iterations to use in the entire CapsNet model training. 

 

Table 8 Results obtained from training a CapsNet with different algorithms for the MNIST Dataset. 

Serial 

Number 

Number 

of 

routing 

iterations 

Output 

capsule 

loss  

(Training) 

Output 

capsule loss 

(Validation) 

Output 

capsule 

accuracy 

(Training) 

Output 

capsule 

accuracy 

(Validation) 

1 1 0.0130 0.0127 0.9914 0.9924 

2 2 0.0139 0.0127 0.9920 0.9915  

3 3 0.0120 0.0121 0.9924 0.9919 

4 4 0.0121 0.0116 0.9920 0.9915 

5 5 0.0121 0.0137 0.991 0.9889 

 

Judging from the result presented in Table 8, it is not straightforward to decide which 

number of routing iterations is best to be used in the dynamic routing by agreement 

algorithms as their performances are not very different from each other. The decision was 
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made to use 3 routing iterations, which is explained in what follows. An insight is to look 

at the validation loss; from here we can see that using 1, 2 and 3 routing iterations gives 

the same result, so why use 3? The reason is because 3 routing iterations give a better 

training accuracy than 1 and 2. A case can also be made for why 3 and 4 routing iterations 

were not used, this is because there is no increase in accuracy gained using 4 and 5 routing 

iterations although they have a lower validation loss.  

  

5.1.2 Result of Two-Class Animal 

Now that we have chosen the number of routing iterations, a model with 2 classes was 

developed to further explore the effect of some hyperparameters that we shall eventually 

justify. Subsections here explore and show the results of these studies.  

Before we go into exploring the results, the structure used in denoting the 

hyperparameters shall be explained. Since, there are quite a number of graphs with the 

same structure but different values of hyperparameters, I decided to simplify the 

presentation by creating a structure to represent the results without having to repeat 

several lengthy sentences that are similar.  

5.1.2.1 Training Configuration Structure 

To simplify the results’ presentation, a configuration structure that will be used to present 

the hyperparameters is presented below 

 

Hyperparameter Configurations Structure (HCS) = (A, B, C, D, E, F). 

 

where; 

A = Number of images per class  

B = Image resolution (Number of Pixels present in one dimension of the image) 

C = Number of Channel (1 = Grayscale Image, 3 = Colour image) 

D = Batch Size  

E = Number of Epochs 

F = Validation Split  
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Also, Tensorboard (a tool used to visualize tensorflow-trained models) does not explicitly 

give intuitive names to the graphs, so the captions present in the graphs are explained in 

Table 9. This is necessary in order to understand the graphs present in this chapter.  

 

 

 

Table 9 Explanations of the captions used in the graphs generated by Tensorboard 

Name  

(y-axis) as can be seen on graphs 

Meaning 

“Output_capsule_acc” The capsule accuracy 

“Output_capsule_loss” The capsule loss 

“val_output_capsule_acc” The validation capsule accuracy 

“val_output_capsule_loss” The validation capsule loss 

“epoch_acc” The training accuracy of the CNN model 

“epoch_loss” The training loss of the CNN model 

“epoch_val_acc” The validation accuracy of the CNN model 

“epoch_val_loss” The validation loss of the CNN model 

 

 

Again, it is important to note that for all graphs presented in this section, the x-axis 

denotes epoch (i.e. number of times the entire dataset is passed through the network 

during training). The Tensorboard tool has a limitation in displaying it properly. And 

lastly, the Tensorboard tool does not necessarily display the entire graph, it only displays 

the area of interest (sometimes, it may cover the entire graph and sometimes it may not). 

  

 

5.1.2.2 Image Resolution  

Now that the structure of the HCS has been defined, we shall start looking at the effects 

of resolution (width and height) of the images used for training.  
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Figure 35 Part 1 results of using large and small image resolution with HCS = (1000, 28, 3, 32, 100, 0.2), 

with channel resolution = 28  

 

 

Figure 36 Part 2 results of using large and small image resolution with HCS = (1000, 80, 3, 32, 100, 0.2), 

with channel resolution = 80  

 

Comparing figures 35 and 36, we can see that the output capsule accuracy in Figure 35 is 

about 75% at an epoch of 40 and its corresponding validation capsule accuracy is about 

70% at 40 epochs. This cannot be said of Figure 36 at that same epoch and even beyond. 
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In Figure 36, the training accuracy gradually ramps up and settles at about 98%, while 

the validation accuracy remains at around 55% at 100 epoch. The stark difference 

between the training and validation accuracy shows that the model is overfitting and 

hence unable to generalize as the image resolution increases from 28 to 80.  The losses 

(training and validation) in Figure 36 shows the validation loss rising at about 30 epochs, 

which shows that the model is about to start overfitting.  The reason for this is not totally 

clear but several experiments ran on this model shows this same trend. A possible 

explanation could be that the higher resolution images has more information than the 

model can learn considering its vector size.  

Further research in CapsNet in the future could explore the effect of the vector sizes and 

image resolution on CapsNet performance. 

 

5.1.2.3 Red-Green-Blue (RGB) and Grayscale Images 

Experimentation to show the effect of using grayscale images vis-à-vis RGB (colour 

images) for training is shown with tables and graphs. In Table 10, the results show that 

when the CapsNet model was trained with the CIFAR-10 (“Canadian Institute For 

Advanced Research” datasets with 10 classes) datasets, better performance were obtained 

by using RGB. RGB images gave a training accuracy of 73.06% while grayscale images 

gave 62.46%. The same trend is also shown in the validation accuracy. Looking at the 

losses, that of the RGB images are lower. Hence this justifies the reason for training the 

model with RGB images going forward in this study. 

 

Table 10 Results of training the CapsNet with CIFAR-10 dataset in both RGB and grayscale 

Image 

(channel) type 

Output 

Capsule loss  

(Training) 

Output 

Capsule loss 

(Validation) 

Output Capsule 

Accuracy 

(Training) 

Output 

Capsule 

Accuracy 

(Validation) 

Grayscale 0.2849 0.3112 0.6246 0.5721 

RGB 0.2263 0.2824 7306 0.6345 

 

The CIFAR-10 datasets used with 3 routing iterations has 10 classes and 6000 images per 

class. 
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And as can also be seen in Figures 37 and 38, when RGB images are used, the 

performance of the model is better (lower loss, higher accuracy in both training and 

validation). 

 

 

Figure 37 Part 2 results of using RGB and Grayscale images with HCS = (12501, 28, 3, 32, 100, 0.2), 

RGB images used 

 

 

 



77 

 

Figure 38 Part 2 results of using RGB and Grayscale images with HCS = (12501, 28, 1, 32, 100, 0.2), 

Grayscale images used 

  

5.1.2.4 Batch Sizes Effects 

Another study that was carried out in this work to explore the effect of having a different 

batch sizes on the CapsNet model; after several experiments to determine this, the results 

show that a higher batch size leads to better performance. This is evident in Figures 39 

and 40. In Figure 39, 256 batch size was used, resulting in a capsule accuracy of 80% at 

around 96 epochs and the loss also kept decreasing, which is desired. However, in Figure 

40, a batch size of 32 was used and it appears to have a better accuracy of close to 100%, 

but this is only overfitting, as the value of the loss tells us more about how good the model 

is. 
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Figure 39 Part 1 results of using large and small batch size with HCS = (12501, 32, 3, 256, 100, 0.2), 

Batch size used = 256.  

 

 

 

Figure 40 Part 2 results of using large and small batch size with HCS = (12501, 32, 3, 32, 100, 0.2), Batch 

size used = 32.  

 

5.1.2.5 Validation split  

Next, the effect of the validation split on the CapsNet model was also examined. The 

validation split is the percentage of the entire datasets used for validation. For example, a 

validation split of 0.4 means that 40% of the entire datasets is used for validation. 
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Figure 41 Part 1 results of using small and very small validation split, with HCS = (12501, 50, 3, 32, 100, 

0.3), Validation split used = 0.3)  

 

 

Figure 42 Part 2 results of using small and very small validation split, with HCS = (12501, 50, 3, 32, 100, 

0.1), Validation split used = 0.1  

 

In figures 41 and 42, a bigger validation split (0.3 as in Figure 41) shows better 

performance as opposed to a validation split of 0.1 (shown in Figure 42). The loss remains 

fairly constant in both Figures 41 and 42. 
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5.1.3 Result of Eleven-Class Animal model  

Now that the results of the studies done in Section 5.1.2 have been analyzed, obtaining 

better results in subsequent CapsNet models requires that we use the better performing 

hyperparameters used in that section. Now, an 11-class CapsNet model is trained to be 

used for comparison with a CNN model, which is one of the major studies in this thesis. 

Unfortunately, the performance of this model was not recorded as it turns out that the 

datasets needs significantly more pre-processing than the scope of this thesis permit. So, 

decision was made to reduce the classes to 2 again, this time not for dog and cat images 

but for polar bear and deer images. Although the choice of animals is irrelevant. 

Further experiments are now conducted on this latest CapsNet animal model for extra 

studies.  

5.1.3.1 The use of two convolutional layers in the CapsNet Architecture 

With the new CapsNet animal model, training was made with 4000 images, for each of 

the two animal classes as depicted in the first argument of the HCS value in Figure 43. 
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Figure 43 Results of using 2 convolutional layers in CapsNet architecture HCS = (4000, 28, 3, 256, 200, 

0.35), Green curve = 2 convolutional layer, and orange curve = 1 convolutional layer 

 

Figure 43 shows the recorded performances (capsule accuracy and loss) of using 2 

convolutional layers and one convolutional layer in the CapsNet animal model. In Figure 

43, the green curve represents the result of using two convolutional layers while the pink 

curve represents the result of 1 convolutional layer in the CapsNet. The effect of this study 

is conspicuous as it shows that the CapsNet model with 2 convolutional layers optimized 

faster than the model with 1 convolutional layer. It can be seen that the green curve 

already has a 94% accuracy after 20 epochs, while the orange curve took about 95 epochs 

to reach that same accuracy level. Although this study was not continued for even higher 

number of convolutional layer (because more compute power is needed than I had access 

to in order to do this study), the model is expected to converge faster with higher number 

of convolutional layers because the convolutional layers inherently extract more higher 

level features from the image before sending it to the first capsule layer in the network. 

Of course, there is an expectation that there will be a limit to the number of convolutional 

layers that can be added, a further study on capsule network can explore this. 
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5.1.3.2 CapsNet vs. CNN on small number of datasets 

Figure 44 and 45 show the performances of a CapsNet and CNN models trained with 30 

images obtained from a video-to-frame conversion of animal video clips of two animals. 

As already explained in Chapters 2 and 3 of this thesis, the pooling operation used in 

CNN makes it unable to extrapolate new orientation from a single image (it is viewpoint 

invariant), hence it has to be trained with all orientations of an image it is expected to 

recognize; this means a lot more data is required to train a CNN model than it is to train 

a CapsNet model of the same complexity. The CapsNet is able to extrapolate new 

viewpoints (viewpoint equivariance) because it already stored the instantiation 

parameters of the object in its vector and can keep the relationship between objects in an 

image due to the affine transformation matrix, as explained in Chapter 3 of this thesis.  
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Figure 44 Part 1 of plots showing final model for comparison between CapsNet and CNN based on the 

amount of data used for training, with HCS = (30, 28, 3, 256, 60, 0.35), CapsNet shown here (see Figure 

45 for CNN)  
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Figure 45 Part 2 of plots showing final model for comparison between CapsNet and CNN based on the 

amount of data used for training, with HCS = (30, 28, 3, 256, 60, 0.35), CNN shown here (see Figure 44 

for CapsNet) 

 

With both Figures 44 and 45 having the same parameters in their HCS, the only difference 

is the model used. Both models were trained for 60 epochs and they both had good 

training accuracies at the end of this epoch (99.01% and 99.12% for the CNN and 

CapsNet models, respectively); the catch is to look at the validation metrics (especially 

the loss). The validation loss for the CNN model (Figure 45) is rather increasing, which 

shows that the model is not really learning but memorizing the training datasets 

(overfitting), but this is not the case in Figure 44 (CapsNet). Hence, this clearly shows 

that CapsNet performs better on smaller datasets as compared to an ‘equivalent’ CNN, 

making CapsNet a potential replacement for CNN in some applications where much data 

is not necessarily available at the time of training, or where the cost of obtaining enough 

datasets is prohibitive. 
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5.1.4 Model Minimization Results 

After the model is trained, it is now compressed to be able to run on an edge device (with 

small memory size). Quantization was performed on this model to get it reduced to half 

its original sizes as shown in Table 11. The 32-bit weights and biases were converted to 

16-bit. I initially set out to use the Google edge TPU, which would have made the model 

even smaller (8-bit), but a limitation on the operations supported by the TPU (it does not 

support 4-D tensors and some user defined functions in tensorflow) motivated the switch 

to a GPU-based NVIDIA Jetson TX2 board (16-bit). The size of the model (before and 

after compression) is shown in Table 11.  

Table 11 Effect of applying the post training quantization method on models 

S/N Model Input Image 

Dimension 

(pixels) 

Size before 

compression (MB) 

Size After 

Compression (MB) 

1 CapsNet 28x28x1 27.9 13.8 

2 CapsNet 28x28x3 34.5 17.25 

3 CapsNet 32x32x3 97.8 48.9 

4 CNN 28x28x1 13.9 6.95 

 

5.2 Model Validation 

Table 12 shows various validation accuracies gathered throughout the course of this 

study. That of MNIST datasets performed the best in all, while the CapsNet animal model 

performed better than the CNN animal model for reasons already explained in Section 

5.1.3.1. It seems that both CapsNet and CNN animal models performed better than when 

the CIFAR-10 dataset is used. The reason is because the datasets used for the animal 

models are not as complex and diverse as the one found in CIFAR-10 dataset. 
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Table 12 Effect of applying the post training quantization method on models 

Algorithm Model Validation Accuracy 

CapsNet MNIST 99.23% 

CapsNet CIFAR-10 63.45% 

CapsNet 2-Class Animal Dataset 68.12% 

CNN 2-Class Animal Dataset 67.50% 

 

5.3 Hardware Performance and Stability Analysis 

As indicated in Chapter 4 (Section 4.3) of this thesis, three different hardware platforms 

were used in the training of the models used for this study, and their performance and 

stability affected the pace of this research. Table 13 shows a brief analysis of their 

performances and stability. 

The mean time before failure (MTBF) concept is used for this analysis, as shown in 

Equation 5.1. 

𝑀𝑇𝐵𝐹 =  
𝑇𝑊𝑇−𝑇𝐵𝑇

𝑁𝐵
                                                                                                       (5.1)  

where; 

TWT = Total working time 

TBT = Total breakdown time 

NB = Number of Breakdowns 
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Table 13 Showing the training hardware performance metric  

Hardware CapsNet 

Training 

time (100 

epoch) 

Accessibility TWT TBT Nr. 

Of 

break 

downs 

MTBF 

(hours) 

Core i7 PC with 8 

GB memory 

23 hours Always 192 94 16 6.125 

Cloud based CPU, 

with   16 GB 

memory: (Google-

Colaboratory) 

18 hours Internet- 

dependent 

192 48 48 3 

HP workstation 

with NVIDIA 

GeForce GTX 

1080 GPU 

2 hours Laboratory 

status 

192 30 5 32.4 

 

The performances in Table 13 is based on the same model configuration, with HCS = 

(12501, 28, 3, 32, 60, 0.2) monitored over a period of 192 hours. Overall, the HP 

workstation with GPU is the best in terms of speed and reliability, although with a high 

image dimension (like 80x80x3), it crashes and runs out of memory. This was a limiting 

factor in this study as also pointed out earlier. While the problem of intermittent 

disconnection can be solved by upgrading to the paid version of Google-Colaboratory, 

this service is only available for users from north America (United States and Canada) for 

now. The PC also was performing badly as it always becomes very hot and eventually 

restarted which terminated the simulations. 

This chapter presented the experimental results obtained in this thesis and illustrated the 

value of CapsNet as compared to CNN for small datasets. Furthermore, compression of 

the model has been performed as a first step towards implementing CapsNet on a re-

source-constrained edge device. The next chapter summarizes the main points of the 

thesis and briefly outlines future work  
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6 Conclusion 

6.1 Summary  

The aim of this thesis is deemed to be largely fulfilled by implementing a CapsNet model 

than can be deployed to the edge. A rather detailed overview of machine learning and 

deep learning concepts have been presented as they are prime tools for object recognition. 

The state of the art in object recognition has also been presented. The CapsNet was finally 

presented as its understanding depends on the deep learning concepts. It was also 

presented in such a way that the promises that it brings as to building an image recognition 

system with minimal dataset was carefully introduced. This thesis has been implemented 

with the help of GPU-based workstation available at the university. The author’s personal 

computer and cloud-based deep learning platforms were also used for the study. Various 

software packages and tools were used, particularly Tensorflow was used to program and 

perform the implementation.  

In particular, the question of how to implement (or move) machine learning model from 

the cloud to the edge was explored and implemented due to various promises that the 

edge holds in the future of machine learning. Image recognition system that can work 

with minimal dataset, compressed and deployed to the edge was also explored and 

implemented thanks to the special properties of the recent CapsNet. Although we set out 

to implement the model on a TPU, this was not done because of limited support offered 

by the Coral range TPU board from Google, and thus CapsNet was implemented on and 

exploited the flexibility of and Nvidia Jetson TX2 board. 

Various image processing techniques and data collection methods were used in the 

project. A central part of the study involved the tuning of the CapsNet model 

hyperparameters and exploration of its flexibility was done and presented. We found out 

how changing various hyperparameters could affect the performance of the CapsNet 

model, and a CNN of equivalent complexity was used as baseline to compare the results. 

Lastly, in the process of presenting the results, a novel method to label a model according 

to its configurations has been developed, i.e. the Hyperparameter Configuration Structure 

(HCS). This method makes it easy to label the results of a model instance in details 

without having to use lengthy sentences. Naturally, the HCS method can be expanded as 

desired to include other parameters that were not considered here.  
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With an Hyperparameter Configuration Structure (HCS) value of (30,28,3,256,60,0.35), 

a Capsule Network (CapsNet) was able to achieve a training accuracy of 99.12% at a 

validation accuracy of 73% and training loss of 0.1 at a validation loss of 0.17. An 

equivalent CNN achieved 99.01% and a validation accuracy of 67.5% and a training loss 

of 0.05 at a validation loss of 4.5 (severe overfitting). Both of the results shows the model 

has overfitted. But at an epoch of 35, the CapsNet model has both its training and 

validation accuracies at 70% while the CNN model instead has a training accuracy of 

98% but a validation accuracy of 66.70%. Meaning the CNN overfits on small dataset 

regardless of the amount of epoch used but we can get a CapsNet that performs optimally 

at 70% accuracy. 

In conclusion, we have seen that CapsNet model, although new, has its advantages and 

drawbacks. It can make image recognition with minimal dataset possible as well as permit 

compression and implementation on the edge. On the other hand, CapsNet has some 

challenges in its complexity and hence takes more time for training than the equivalent 

CNN (about 10 times longer). 

1.1.1 Considerations with respect to the state of the art   

Deep neural networks such as CNN is still considered the state of the art in object recog-

nition [9]. And they certainly outperform CapsNet in object recognition. But CapsNet has 

shown a capability to be useful where limited amounts of datasets are available. The study 

in this thesis only compared CapsNet against an architecture of CNN that is comparable 

to the CapsNet structure. Several other architectures of CNN outperform CapsNet, but 

considering that CapsNet is relatively new and much research has not been done on it as 

on CNN, it has the potential of becoming even more powerful and actually give a good 

competition to CNNs that are very good at image recognition, especially in areas where 

there are not large amounts of datasets. 

6.2 Future work  

The study presented in this thesis has its limitations, as for all the training done, none was 

performed up to 100 epochs. This is because of the limitation in hardware resources 

accessible for training. Also, the GPU-based workstation that was used for most of the 

training did not have enough memory to handle higher image resolutions, hence, image 

resolution beyond 80x80 pixels were not studied. 
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Further research into CapsNet can be directed towards the study of its behaviour with 

very large image resolutions (like 1800x2000 pixels) to assess more thoroughly what 

could be learnt from it, and at the same time, studying the effects of changing the vector 

dimension. Also, using an object detection algorithm alongside the CapsNet will be in-

teresting to explore. Further studies can also be directed towards creating a platform that 

can make deep leaning models be easily deployed at the edge. Lastly, as suggested in 

Chapter 5, studies can be directed towards finding the limit of the number of convolu-

tional layers that can be embedded into the CapsNet and the effects thereof.  
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Appendix 1 - Code for image processing 

import numpy as np              #To do some array operations 

import matplotlib.pyplot as plt #To do some plotings 

import os                       #TO iterate through the directories 

and join paths 

import cv2                      # To do some image operations 

 

 

 

######configuratiosn########## 

n_img_per_class = 12502 

IMG_SIZE = 28 

n_channel = 3                     #...1 for grayscale, 3 for color 

image_type = "RGB" 

class_a = 'a_' + str(n_img_per_class) 

class_b = 'b_' + str(n_img_per_class) 

class_c = 'c_' + str(n_img_per_class) 

class_d = 'd_' + str(n_img_per_class) 

class_e = 'e_' + str(n_img_per_class) 

class_f = 'f_' + str(n_img_per_class) 

class_g = 'g_' + str(n_img_per_class) 

class_h = 'h_' + str(n_img_per_class) 

class_i = 'i_' + str(n_img_per_class) 

class_j = 'j_' + str(n_img_per_class) 

class_k = 'k_' + str(n_img_per_class) 

 

 

CATEGORIES = [class_a, class_b, class_c, class_d, class_e, class_f, cl

ass_g, class_h, class_i, class_j, class_k]#, class_l, class_m, class_

n, class_o, class_p, class_q, class_r, class_s, class_t] 

DATADIR = "Z:\Dataset\THESIS\Video_convert" 

 

 

training_data = [] 

 

def create_training_data(): 

    for category in CATEGORIES: 

        path = os.path.join(DATADIR, category) # #path to dog or cat 

directories 

        #convert the class names to a number 

        class_num = CATEGORIES.index(category) 

        print(class_num) 

        for img in os.listdir(path): 

            try: 

                img_array = cv2.imread(os.path.join(path,img), cv2.IM

READ_COLOR) # for RGB 

                #img_array = cv2.imread(os.path.join(path,img), cv2

.IMREAD_GRAYSCALE)      # for grayscale 

                new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE

))  # RESIZE THE IMAGE 

                training_data.append([new_array, class_num]) 

            except Exception as e: 

                #print(e) 

                pass 

             

create_training_data() 
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import random 

 

random.shuffle(training_data) 

 

#creating list for storing the pictures and their labels 

X = [] #features (image)  

Y = [] #labels (cat or dog, represented with 0 and 1) 

 

for image, label in training_data: 

    X.append(image) 

    Y.append(label) 

     

X = np.array(X).reshape(-1, IMG_SIZE, IMG_SIZE, n_channel) #the -1 ar

gument means anything... that is it can be any value 

 

 

#So we don't have to be re processing our dataset any time we want 

to run the network, we are going to import pickle to save it. 

#we can as well use numpy.save() 

 

import pickle 

X_dataset_name = 'X_Datasets_' +  str(n_img_per_class+7) + '_images_

per_class_' + str(image_type) + '_' + str(IMG_SIZE) + 'x' + str(IMG_

SIZE) + '_.pickle' 

Y_dataset_name = 'Y_Datasets_' +  str(n_img_per_class+7) + '_images_

per_class_' + str(image_type) + '_' + str(IMG_SIZE) + 'x' + str(IMG_

SIZE) + '_.pickle' 

 

X_store =  r"C:\Users\EliteBook\Anaconda3\envs\env1\prepared_datase

t\RGB\{}".format(X_dataset_name) 

Y_store =  r"C:\Users\EliteBook\Anaconda3\envs\env1\prepared_datase

t\RGB\{}".format(Y_dataset_name) 

 

pickle_out = open(X_store, "wb") 

pickle.dump(X, pickle_out) 

pickle_out.close() 

 

pickle_out = open(Y_store, "wb") 

pickle.dump(Y, pickle_out) 

pickle_out.close() 

 

#END 

  

Appendix 2 – Code for web-scrapping 

import os 

import requests  

from bs4 import BeautifulSoup  

 

Google_Image = \ 

    'https://www.google.com/search?site=&tbm=isch&source=hp&biw=187

3&bih=990&' 

 

 

System = { 
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    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleW

ebKit/537.36 (KHTML, like Gecko) Chrome/85.0.4183.83 Safari/537.36'

, 

    'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.

9,*/*;q=0.8', 

    'Accept-Charset': 'ISO-8859-1,utf-8;q=0.7,*;q=0.3', 

    'Accept-Encoding': 'none', 

    'Accept-Language': 'en-US,en;q=0.8', 

    'Connection': 'keep-alive', 

}  

 

Destination = 'DISMAS_THESIS_IMAGES' 

 

def main(): 

    if not os.path.exists(Destination): 

        os.mkdir(Destination) 

    Get_Animal_Images() 

 

def Get_Animal_Images(): 

    data = input('Type the name of the animal you are looking for: 

') 

    quantity_of_animal_images = int(input('Type the amount of image

s you want : ')) 

     

    print('Looking....') 

     

    _url = Google_Image + 'q=' + data  

     

    

    response = requests.get(_url, headers=System) 

    html = response.text  

     

    

    b_soup = BeautifulSoup(html, 'html.parser')  

    outcome = b_soup.findAll('img', {'class': 'rg_i Q4LuWd'}) 

     

    

    add_up = 0 

    quantity = 0 

    url= [] 

    for outs in outcome: 

        try: 

            link = outs['data-src'] 

            if (add_up >= 40): 

                url.append(link) 

                quantity = quantity + 1 

            else: 

                pass 

            add_up = add_up + 1 

            if (quantity >= quantity_of_animal_images): 

                break 

             

        except KeyError: 

            continue 

     

    print(f'Found {len(url)} Animal Images') 

    print('Downloading...') 
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    for i, url in enumerate(url): 

        

        response = requests.get(url) 

         

        animalname = Image_Folder + '/' + data + str(i+1) + '.jpg' 

        with open(animalname, 'wb') as file: 

            file.write(response.content) 

 

    print('Downloaded!') 

    print(quantity) 

    print(outcome) 

 

if __name__ == '__main__': 

    main() 

 

Appendix 3 – Main code 
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