
Tallinn 2020

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Dismas Ndubuisi Ezechukwu 184603IVEM

Capsule Neural Network and its

Implementation for Object Recognition in

Resource-limited Devices

Master's thesis

Supervisor: Yannick Le Moullec

PhD

 Co-Supervisors: Muhammad Mahtab

Alam

PhD

Abdul Mujeeb
MSc

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Dismas Ndubuisi Ezechukwu 184603IVEM

CAPSULE-TÜÜPI NÄRVIVÕRK NING SELLE

RAKENDAMINE OBJEKTIDE TU-

VASTAMISEKS PIIRATUD RESSURSSIDEGA

SEADMETES

Magistritöö

Juhendaja:

 Kaasjuhendajad

Yannick Le Moullec

PhD

Muhammad Mahtab

Alam

PhD

Abdul Mujeeb
MSc

3

4

Abstract

Image recognition is an important part of computer vision and it can be achieved with

deep learning techniques such as Convolutional Neural Network (CNN), which often

requires a lot of datasets in order to train the network to achieve good performance. So,

in cases where only small amounts of datasets are available or when the cost of acquiring

large amounts of datasets is high, alternatives should be considered. This thesis explores

the use of the novel Capsule Neural Network (CapsNet) on small datasets for image

recognition and the possibilities of implementing it on an embedded or edge device.

A literature review on machine learning and deep learning concepts is presented as a

preamble to understanding the CapsNet concepts presented afterwards. Image processing

and model compression required for deep learning deployment at the edge are also

presented. Then, a CapsNet model is designed and trained, exploring the effects of various

hyperparameters on its performance. A baseline CNN model is also prepared for

comparison purposes.

With a two-class dataset of 30 images per class, our CapsNet model is able to give both

training and validation accuracies of 70% after training on 35 epochs. But the model

begins to overfit if trained beyond this number of epochs. On the other hand, an equivalent

CNN model already overfits before 35 epochs, having a training and validation accuracies

of 99% and 66.70%, respectively. This means that with small amounts of datasets, a CNN

will overfit rapidly regardless of the number of epochs; on the other hand, we can design

a CapsNet model that performs considerably better on small numbers of datasets, if

properly tuned.

We also showed in this thesis that a CapsNet model can be made to run on an embedded

or edge device after undergoing the necessary compressions aimed at reducing its size

and complexity. All in all, this work highlights the value of CapsNets on small amounts

of datasets and is deployment at the edge.

This thesis is written in English language and it is 103 pages long, including 6 chapters,

45 figures and 13 tables.

5

Annotatsioon

Capsule neural network ning selle rakandamine süsteemi,

objekti tuvastamise jaoks.

Kujutise tuvastamine on oluline osa masinnägemisest ja see saavutatakse selliste sügavate

õppimistehnikate abil nagu Konvolutsiooniline närvivõrk (CNN), mis Sageli nõuab palju

andmekogumeid võrgu hea jõudluse saavutamiseks. Niisiis, kui on saadaval ainult väike

kogus andmekogumeid või kui suure hulga andmekogumi hankimise kulud on suured, ei

soovitata CNN-i antud juhul kasutada. Selles lõputöös uuritakse uudse kapselnärvivõrgu

(CapsNet) kasutamist väikestes andmekogumites piltide tuvastamiseks ja selle

rakendamise võimalusi manustatud või servaseadmel.

Masinõppe ja sügava õppe kontseptsioonide kirjanduse ülevaade esitati Sissejuhatusena

mõistmaks hiljem esitatud CapsNeti kontseptsioon. Samuti esitleti pildi töötlemist ja

mudeli tihendamist, mis on vajalik sügava õppimise juurutamiseks servas. Seejärel töötati

välja ja Treeniti CapsNet ja CNN-i baasmudel, uurides erinevate hüperparameetrite mõju

selle toimivusele.

Kahe klassi andmekogumiga, mis sisaldab 30 pilti klassi kohta, suutis meie CapsNeti

mudel anda 35 koolitusjärgse treeningu epohhi järel nii koolituse kui ka valideerimise

täpsuse 70%. Kuid see hakkab üle sobima, kui seda epohhe ületada. Teiselt poolt oli

samaväärne CNN juba 35 epohhil üle mahtunud, kelle koolituse ja valideerimise täpsus

on vastavalt 99% ja 66,70%. See tähendab, et väikese koguse andmekogumi korral läheb

CNN üle, olenemata epohhide hulgast, kuid saame CapsNeti, mis töötab korralikult

häälestatuna tunduvalt paremini.

6

Samuti näitasime selles uuringus, et CapsNeti mudeli saab panna tööle sisseehitatud või

servaseadmega pärast vajalike kompressioonide läbimist, mille eesmärk on vähendada

selle suurust ja keerukust.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 103 leheküljel,6 peatükki, 45

joonist, 13 tabelit.

7

List of abbreviations and terms

ANN

CapsNet

CNN

COCO

DT

FC

GPU

HCS

HOG

KNN

MAE

MBE

ML

MLP

MNIST

MSE

MTBF

OpenCV

PASCAL

PC

POC

POV

R-CNN

ReLU

RPN

SGD

SIFT

SMC

SPP-Net

SVM

TPU

USB

Artificial Neural Networks

Capsule Neural Networks

Convolutional Neural Networks

Common Object in Context

Decision Tree

Fully Connected

Graphic Processing Unit

Hyperparameter Configurations Structure

Histogram of Oriented Gradients

K-Nearest Neighbour

Mean Absolute Error

Mean Bias Error

Machine Learning

Multilayer Perceptron

Mixed National Institute for Standards and Technology

Mean Squared Error

Mean Time Before Failure

Open Computer Vision

Pattern Analysis Statistical and Computational Learning

Personal Computer

Point of Care

Visual Object Classes

Region-based Convolutional Neural Network

Rectified Linear Unit

Regional Proposal Network

Stochastic Gradient Descent

Scale-Invariant Feature Transform

Systems Man and Cybernetics

Spatial Pyramid Pooling-Neural Network

Support Vector Machine

Tensor Processing Unit

Universal Serial Bus

8

Table of contents

Abstract ... 4

Annotatsioon Capsule neural network ning selle rakandamine süsteemi, objekti

tuvastamise jaoks. ... 5

List of abbreviations and terms .. 7

Table of contents .. 8

List of figures ... 11

List of tables ... 14

1 Introduction .. 15

1.1 Problem Statement ... 16

1.2 Aims and Objectives .. 17

1.3 Methodology .. 18

1.4 Thesis organization .. 18

2 Background ... 20

2.1 State- of -the-Art in Image recognition .. 20

2.2 Machine Learning .. 22

2.2.2 Supervised Learning ... 25

2.2.3 Unsupervised Learning ... 25

2.2.4 Reinforcement Learning ... 26

2.2.5 Neural Networks ... 26

2.2.6 Training an ML Model ... 27

2.2.7 Overfitting and Underfitting ... 29

2.3 Convolutional Neural Network .. 29

2.3.1 Convolutional Layers ... 30

2.3.2 Non-Linearity (Activation Functions) .. 33

2.3.3 Pooling Layer ... 34

2.3.4 Fully Connected Layer ... 35

2.3.5 Popular CNN Architectures .. 36

2.4 Edge Computing .. 36

9

2.4.1 Reason for moving Processing to the Edge .. 37

2.5 Model Minimization Techniques ... 38

2.5.1 Pruning ... 39

2.5.2 Quantization ... 41

3 Capsule Neural Networks ... 44

3.1 What is a Capsule? ... 44

3.2 Architecture of a CapsNet .. 44

3.2.1 Encoder Part ... 44

3.2.2 The Loss Function .. 46

3.2.3 Decoder Part ... 47

3.3 CapsNet Forward-Pass Operations .. 49

3.3.1 Matrix Multiplication of Input Vectors .. 50

3.3.2 Scalar Weighting of Input Vectors ... 51

3.3.3 Sum of Weighted Input Vector ... 51

3.3.4 Squashing ... 51

3.4 Dynamic routing by agreement .. 52

3.4.1 Decoder ... 54

3.4.2 Losses ... 54

3.5 Drawbacks of CNN (Convolutional Neural Network) 55

3.6 Comparison of Neurons in CNN and Capsules in CapsNet 56

3.6.1 Invariance vs Equivariance ... 57

3.7 Performance Metrics .. 57

3.7.1 Training and validation ... 57

3.7.2 Loss and Accuracy.. 57

4 Implementation Workflow ... 59

4.1 Datasets, Training and Pre-processing ... 60

4.2 Image Processing ... 62

4.2.1 Conversion of RGB to Grayscale ... 62

4.2.2 Resizing of image (Image resampling) ... 63

4.3 Software Environment ... 64

4.4 Training CapsNet (Capsule Neural Network) ... 65

4.4.1 Decoder ... 66

4.5 Model Configuration and key hyperparameters .. 67

4.6 Model Conversion and Minimization .. 69

10

4.7 Embedded Hardware Deployment Setup ... 69

4.8 Brief Overview of the Baseline CNN .. 70

5 Results and Analysis ... 71

5.1 Model Training Results analysis .. 71

5.1.1 Number of Routing Iterations in the Routing by Agreement Algorithm . 71

5.1.2 Result of Two-Class Animal .. 72

5.1.3 Result of Eleven-Class Animal model ... 80

5.1.4 Model Minimization Results .. 85

5.2 Model Validation ... 85

5.3 Hardware Performance and Stability Analysis .. 86

6 Conclusion .. 88

6.1 Summary .. 88

1.1.1 Considerations with respect to the state of the art 89

6.2 Future work .. 89

11

List of figures

Figure 1 . Hierarchy between Artificial Intelligence, Machine Learning and Deep

Learning .. 23

Figure 2 Showing the various component in machine learning for classification task .. 23

Figure 3 Machine learning comprising of supervised, unsupervised and reinforcement

learning ... 24

Figure 4 Deep Learning used for image feature extraction and classification 24

Figure 5 Unsupervised learning (left) showing data clustering and Supervised Learning

showing classification .. 25

Figure 6 Showing how an agent operate in an environment as is the case with

reinforcement Learning .. 26

Figure 7 Neural Networks showing the connections of the from the input to output layer

 .. 27

Figure 8 Showing how the training of Machine Learning Model occurs 27

Figure 9 Convolutional Neural Networks structure and its components........................ 30

Figure 10 Illustration of the Receptive Fields of a neural network 31

Figure 11 An illustration of a 7x7 filter used to detect an edge 32

Figure 12 Input feature map and output feature map in a convolution operation [25] .. 32

Figure 13 Convolution with a stride of 1. Filter in light-blue [24] 33

Figure 14 Rectified Linear Unit (ReLU) graph shows that the output is zero when input

is less negative .. 34

Figure 15 Examples of pooling operations by using a 2×2 filters applied with a stride of

2 .. 34

Figure 16 Hierarchy of the cloud, Fog and Edge nodes ... 37

Figure 17 Process diagram of a network minimization scheme 39

Figure 18 Three-Step Training Pipeline showing the synapses and neurons before and

after pruning [39] .. 40

Figure 19 Trade-off curve for parameter reduction and loss in top-5 accuracy [39] 40

Figure 20 Applying the iterative training on AlexNet, trained with ImageNet dataset

[39] ... 41

Figure 21 Weight sharing by scalar quantization (top) and centroids fine-tuning

(bottom) [37] .. 42

file:///C:/Users/EliteBook/OneDrive%20-%20TalTech/1_MY_REAL_THESIS/_Send_Thesis/Dismas_Ndubuisi_EZECHUKWU__184603IVEM.docx%23_Toc60808152

12

Figure 22 Accuracy v.s. compression rate under different compression methods [37] . 43

Figure 23 Architectural structure of encoder part of CapsNet 45

Figure 24 Primary Capsule layer showing the vectoral property of the capsule [25] 46

Figure 25 Loss function for correct and incorrect output capsule [40]. 47

Figure 26 Architecture of encoder part of CapsNet [40] .. 48

Figure 27 Diagram showing the data flow operations in a Capsule 50

Figure 28 Simulated output of a squashing function .. 52

Figure 29 Neurons vs. Capsules showing the difference in the structure....................... 56

Figure 30 Implementation workflow of CapsNet model training and deployment on the

edge device ... 59

Figure 31 Results of converting RGB images (top left) to grayscale image using the

weighted method or luminosity method (top middle) and the average method (top right).

The bottom part show the red, green and blue channels of the RGB image. 63

Figure 32 Original and resized images using the nearest neighbour technique 64

Figure 33 Training Flow graph used to train the “Animal” CapsNet 65

Figure 34 Flowgraph showing the steps involved in the deployment of the trained model

on the edge device .. 69

Figure 35 Part 1 results of using large and small image resolution with HCS = (1000,

28, 3, 32, 100, 0.2), with channel resolution = 28 .. 74

Figure 36 Part 2 results of using large and small image resolution with HCS = (1000,

80, 3, 32, 100, 0.2), with channel resolution = 80 .. 74

Figure 37 Part 2 results of using RGB and Grayscale images with HCS = (12501, 28, 3,

32, 100, 0.2), RGB images used ... 76

Figure 38 Part 2 results of using RGB and Grayscale images with HCS = (12501, 28, 1,

32, 100, 0.2), Grayscale images used ... 77

Figure 39 Part 1 results of using large and small batch size with HCS = (12501, 32, 3,

256, 100, 0.2), Batch size used = 256. .. 78

Figure 40 Part 2 results of using large and small batch size with HCS = (12501, 32, 3,

32, 100, 0.2), Batch size used = 32. .. 78

Figure 41 Part 1 results of using small and very small validation split, with HCS =

(12501, 50, 3, 32, 100, 0.3), Validation split used = 0.3) ... 79

Figure 42 Part 2 results of using small and very small validation split, with HCS =

(12501, 50, 3, 32, 100, 0.1), Validation split used = 0.1 .. 79

13

Figure 43 Results of using 2 convolutional layers in CapsNet architecture HCS = (4000,

28, 3, 256, 200, 0.35), Green curve = 2 convolutional layer, and orange curve = 1

convolutional layer ... 81

Figure 44 Part 1 of plots showing final model for comparison between CapsNet and

CNN based on the amount of data used for training, with HCS = (30, 28, 3, 256, 60,

0.35), CapsNet shown here (see Figure 45 for CNN) .. 83

Figure 45 Part 2 of plots showing final model for comparison between CapsNet and

CNN based on the amount of data used for training, with HCS = (30, 28, 3, 256, 60,

0.35), CNN shown here (see Figure 44 for CapsNet) .. 84

14

List of tables

Table 1 Summary of the CapsNet structure for the recognition of handwritten digits

example ... 50

Table 2 Dynamic Routing by Agreement [45] ... 55

Table 3 . Comparison between Neurons and Capsules .. 60

Table 4 Showing datasets of the animal classes, their image sample and their respective

sources .. 64

Table 5 Summary of the CapsNet Architecture used for Animal classification 70

Table 6 Training parameters used for the two-class CapsNet model 71

Table 7 Summary of the baseline CNN Architecture used for “Animal” classification 74

Table 8 Results obtained from training a CapsNet with different algorithms for the

MNIST Dataset. .. 75

Table 9 Explanations of the captions used in the graphs generated by Tensorboard 77

Table 10 Results of training the CapsNet with CIFAR-10 dataset in both RGB and

grayscale ... 80

Table 11 Effect of applying the post training quantization method on models 90

Table 12 Effect of applying the post training quantization method on models 91

Table 13 .. 92

15

1 Introduction

Deep learning techniques, a subclass of machine learning, have now become one of the

main methods for performing various object recognition tasks. Machine learning

techniques have also proven to be useful in other fields such as forensics, machine vision,

robotics, drug discovery, medicine, and geographic information extraction to say but a

few [1]. Various tasks such as object detection and recognition, speech recognition, image

classification, object tracking, trend uncovering, and predictions for equipment failure,

weather conditions, financial trading are a few examples of machine learning

applications. Many applications of deep learning use artificial neural networks (ANN)

with multiple layers to achieve good performance in various tasks [2].

In supervised machine (deep) learning, data, together with its label(output), is usually fed

to the network so that it can “learn” these data and associate them with a particular label.

When this is done with a large amount of data for a particular label, the model would have

learned how to identify this kind of data and associate it with the corresponding label.

The above procedure is called training. Inference, on the other hand, is when the model

is only being fed with a completely new dataset, and it will have to associate a label to it

based on the experience it has gained during training.

Due to the large amount of computational power required for the training of deep learning

models, it is common that they are being run on a high-performance computer (mostly a

remote server). It is also common for deep learning inference to be run on these high-

performance computers which are mostly in a remote location (a server) to the data

source, but in recent times, many deep learning and machine learning inference are being

moved to the network edge as increasingly more applications are requiring in situ

processing. Although devices running deep learning algorithms at the edge may not be as

powerful as the processors in the servers, many factors have contributed to the migration

of many machines learning algorithms processing at the edge for certain application

categories or specific uses-cases. Factors such as latency, security issues, offline

processing capability, energy conservation are some of the reasons driving the trend of

16

edge/near sensor computing. Edge computing has been partially adopted in many areas

such as in smart homes, point of care (POC) devices, environmental monitoring systems,

smart grids and video surveillance systems [3].

Object detection and recognition-based systems have been mostly implemented through

convolutional neural networks (CNN) and excellent performances have been achieved in

recent years [4]. To do so, a plethora of data is usually needed which may not be available

or very difficult to come by for some applications. For instance, a common problem in

the Scandinavian and some countries in Northern Europe such as Estonia is the death of

some wild animals such as deers and reindeers due to collisions with vehicles on the

highways in the outskirt of major cities. To build a system that recognizes animals quickly

in such scenarios with a CNN-based system would require a lot of image/video data for

training; unfortunately, such data is scarce and difficult to acquire. Hence, it is important

to explore the use of alternative algorithms that can give a good performance using a

relatively small amount of data; capsule neural network (CapsNet) is such an alternative,

which has shown promising performance in e.g. in identifying handwritten characters[5].

Indeed, some problems with CNNs such as information loss in its pooling layers and its

translational invariant are some of the reasons for the adoption of capsule neural network

[5].

1.1 Problem Statement

One of the reasons why CNN requires a large amount of data is because the pooling

operation used as a routing method in CNN is fraught with problems, and as such makes

CNN translational and rotational invariant, making it non-responsive to different

variations of the same data sample.

On the other hand, Using CapsNet to solve this problem of enormous data requirement

has many challenges as well since it requires a lot more computations and at the end

produces a model with a large size which will be difficult to fit on an embedded device.

The challenges associated with fitting a model on embedded devices arise from their

limited memory and computational capacity.

17

It is worth noting that, as per the author’s best knowledge, CapsNets, which could offer

some solutions to the problems with CNNs, have not been tested out or deployed on an

embedded device (i.e. targeting edge devices) yet.

Given the above challenges, this thesis seeks to answer the following questions:

• How to efficiently implement machine learning models on the edge instead on

the cloud while making the model smaller and at the same time not compro-

mising too much on its performance?

• How to implement an object recognition model that requires a relatively small

number of data for training and also achieves good performance while apply-

ing model minimization techniques to the model?

• How to implement such a model on an embedded device such as the TPU-

based google-coral-range board?

1.2 Aims and Objectives

To answer the above questions, the overall aim of this work is to build a CapsNet-based

object recognition model and implement it on an embedded device. This can be achieved

by carrying out the following tasks:

• Study and understand the general concepts of machine learning and the exist-

ing work in this area, particularly deep learning algorithm.

• Obtain suitable datasets of objects to be recognized and perform the necessary

pre-processing needed.

• Building and training of a CapsNet model

• Build and train a baseline CNN model of similar capacity with the built Cap-

sNet for the purpose of comparison.

• Explore and implement suitable model optimization techniques and their suit-

ability of different embedded devices to support them.

• Implement the model on the suitable edge device and conduct proper testing

of the system performance.

18

1.3 Methodology

Building a capsule neural network on an edge device is quite a complex task and the

implementation of such is explored in this thesis work. The first step in this undertaking

is to thoroughly understand the architecture and the various building blocks of a CapsNet

and its mathematical implementation. Next, data is obtained, pre-processed, and then used

to train a pre-built CapsNet; the functionality of the model is then assessed and deployed

onto the chosen embedded device.

With the image dataset pre-processed, the CapsNet model is trained and its performance

is evaluated. After this, model minimization techniques such as quantization and pruning

are applied to reduce the size of the model since it will be run on an embedded device that

usually have memory and processing capability limitations as compared to server-based

processing machines. Since the model will be implemented on an embedded device, it is

needed to be converted to a TensorFlow-Lite model and then to C++ code.

The Tensor Processing Unit (TPU)-based Google Coral range board is chosen as the

embedded device of choice due to its high processing capability and low power

consumption. Image datasets are obtained using a digital camera, some other images were

also obtained from Kaggle (an online database) and by using a python script to convert

some video files into frames. TensorFlow and Keras are the main deep learning

frameworks used and many libraries such as OpenCV (Open Computer Vision) are also

used in the image pre-processing section.

After the model is trained and optimized, it is deployed on the target embedded device

and then the entire system is tested on new images to examine its performance after

deployment and adjustments are made where necessary to optimize its performance.

1.4 Thesis organization

This thesis contains introductory knowledge and background on deep learning and

particularly convolutional neural network. Capsule neural network and its architectural

analysis, the implementation and deployment details on an embedded device are explored

19

afterwards. This chapter (Chapter 1) provided an introduction to the object detection

algorithms, research statement and the intended aim of the thesis.

In Chapter 2, we delve further into the state-of-the-art related to image recognition and

explore existing works in this area. A general background of the concept of machine

learning, particularly CNN is explored; some techniques used for model minimization are

also examined in this chapter.

The drawback of CNN is briefly discussed in Chapter 3, while also introducing CapsNet

as an alternative to CNN. The general architectural components of CapsNet and the

routing algorithm are also discussed in this chapter.

In Chapter 4, we detail the methodology and implementation of CapsNet, showing its

overview, the image processing performed, the model conversion methods, the training

procedure, the software libraries and framework used, the key hyperparameters of the

model and the deployment strategy on an embedded device. The results of these processes

and their analyses are detailed in Chapter 5.

Finally, the last chapter gives a conclusive discussion about the work and suggest ideas

for future work that could be carried out based on the author’s recommendations.

20

2 Background

In this chapter, a background on the machine learning and CNN is presented, starting with

a state-of-the-art in object recognition and followed by subsections on machine learning,

CNN, edge computing, and model minimization.

2.1 State- of -the-Art in Image recognition

The use of a computer for the recognition of an image (or an object in an image) has been

a focus of research for a long time, and still is. The reason for this can be attributed to its

use in many facets of life [6]. It has found modern application in manufacturing,

agriculture, automotive vehicles and military surveillance to name a few. Traditional

image recognition methods that are based on manual underlying and high-level features

which can properly characterize an image have been used in the past. Such features are

SIFT (scale-invariant feature transform), HOG (Histogram of Oriented Gradients) etc.;

however, it is somewhat difficult to identify an image in a complex scene because these

traditional methods require designing of different features for every image recognition

problem [7]. So, in recent years, the advancement in deep learning has shifted the focus

to the use of machine learning techniques. Advancement, particularly in CNN, is a major

attributing factor to this success in recent years and it is important to realise that although

deep learning (or machine learning in general) have been around for a long time, it has

never been popularized and used the way it is been applied since the beginning of this

decade. There are two major reasons for this proliferation. The first reason is the

availability of vast amounts of data because of the increase in global internet penetration.

The second reason is the advancement in computer technologies in terms of hardware

speed and massive processing capability combined with development of tools that made

them easier [8]. Of a particular interest is the use of deep learning for object recognition

is CNN because it has been the deep learning workhorse for image recognition as it has

performed better than all other algorithms for this particular task [2]. In the simplest sense,

image recognition with deep learning is done by following steps: (i) data (or image)

acquisition, (ii) preparation or pre-processing of the dataset, (iii) definition of the training

algorithm, (iv) training of the model, and finally (v) testing and deployment [9]. Of

particular importance and probably the most important step in this is the acquisition of

the dataset itself as the algorithm cannot perform better than the dataset it was trained

21

with. The work of LeCun [8] in 1989 on processing grid-like topological data brought

CNN into limelight. CNN, which consists of artificial neurons arranged in layers, learns

through an algorithm known as backpropagation; here, an image is passed through a CNN

network (known as the forward pass), the low level features of the image is extracted with

the use of convolutional layers, which is propagated forward for further higher level

feature extraction. At the output, the loss function (a metric used to indicate the deviation

of an estimated output from the actual output) is calculated to know the accuracy of the

network and after that comes the backpropagation. During the backward pass

(backpropagation), the weights in the network get updated or adjusted so as to increase

the accuracy the next time the image is passed through the network. This whole process

known as training will continues back and forth until desired level of accuracy is

achieved.

There has been several CNN architectures designed that have achieved different levels of

accuracy. For example, R-CNN (Region-based Convolutional Neural Network) was

applied to a candidate box to extract feature vectors and it was trained on the ImageNet

international computer Vision Challenge (ILSVRC) and Pattern Analysis, Statistical

modelling and Computational learning Visual Object Classes (PASCAL VOC) dataset

[6]. Later came SPP-Net (Spatial Pyramid Pooling-Neural Network) which is an

improvement on the R-CNN; it uses spatial pyramid pooling to eliminate the constant-

size network constraint specifically, and the SPP layer is applied on top of the last

convolutional layer [10]. Trained on the PASCAL VOC dataset, SPP-Net is 30-170 times

faster than R-CNN. The fast R-CNN took care of the shortcoming of R-CNN and SPP-

Net [11]. by improving on detection quality and having the simultaneous loss function

for multiple tasks to achieve single-level training process[6]. During training, fast R-CNN

is 9 times and 3 times faster than R-CNN and SPP-Net, respectively. And during testing,

that number is 213 and 10 than for R-CNN and SPP-Net, respectively. The Fast R-CNN

and SPP-Net were made even faster (approximately 12 times faster) by the introduction

of Faster R-CNN [12]. It has two components which are a fully convolutional Region

Proposal Network (RPN) for proposing candidate regions, followed by Fast R-CNN

[13].

As pointed out before, a major reason for the ubiquity of deep learning for image

recognition is because of the vast amount of data collected used for training. Some for the

widely used dataset is the ImageNet dataset [14]; it consists of more than 14 million

22

images of more than 200,000 categories and has been used in many image classification

research works and a popular challenge knows as ILSVRC is based on it [15]. PASCAL

VOC which has images in 20 classes is another popular dataset used in image recognition

research [16]. Another common dataset is known as COCO (Common Object in Context)

dataset which is used in image segmentation, captioning and recognition [17]. Sponsored

by Microsoft, the COCO dataset has about 300,000 images encompassing 80 object

classes.

One common denominator of all image classification schemes based on CNN is their

proclivity for training using very large number of data; this is not necessarily a drawback,

but it renders them useless in situations where there are not just many data. A reason for

this is because CNN loses the spatial relationship between different parts in an image

during classification partly due to the use of the pooling operation and has hence having

viewpoint and scale variation. For this reason, CNN will have to be trained with a

mammoth of data to achieve an accurate prediction. To solve this problem, CapsNet has

been developed by Geofrey Hinton and have been applied to the National Institute of

Standards and Technology (MNIST) dataset and it has shown state-of-the-art

performance and considerable better than CNN on recognizing overlapping digits [5].

The MNIST dataset (grayscale, 28x28 pixel resolution handwritten characters) consist of

10 classes and 70,000 images [18]. However, CapsNet will have an accuracy lower than

that of CNN when it comes to using larger datasets and there is still much room for

improvement and some of this will be explored in this work. In the sections that follows,

some basic principles of machine learning and deep learning that are necessary for the

understanding of this work are discussed.

2.2 Machine Learning

Commonly, to make a system perform a task, it is given a set of explicit instructions on

how to perform them. Instead, in machine learning, the system learns how to perform a

task from experience. Here, learning to perform a task by the system is done by observing

a series of examples (training), the system then performs the task on a data that it has not

worked on before (testing and inference). Although machine learning is not new, the

increase in computing power and a vast amount of data being generated has made

machine learning more relevant now than ever in solving many complex problems in

23

recent times [19]. To fully put this thesis work into perspective, it is pertinent to explore

some traditional machine learning (ML) component and algorithms as this will give some

basis to the terms that will be used throughout this work. Hence, in the sub-sections to

follow, the machine learning fundamentals necessary to fully grasp this work are

presented.

Figure 1 . Hierarchy between Artificial Intelligence, Machine Learning and Deep Learning

Figure 2 Showing the various component in machine learning for classification task

24

Figure 3 Machine learning comprising of supervised, unsupervised and reinforcement learning

Artificial intelligence is used to define systems that rely on machine learning and deep

learning and large amount of data to perceive its environment after being trained and take

actions or make decisions in response. It is usually achieved with the use of machine

learning as the diagram in figure 1 shows.

As a subset of machine learning, deep learning uses ANNs with multiple layers to

important learn features from an input data [20]. Deep learning does not require feature

extraction to be done separately by human as in the case of classical machine learning, it

rather learns the feature using layers that are deeper (closer to the input) in the network,

as shown in Figure 4. How “deep” a network is related to the number of hidden layers it

has.

Figure 4 Deep Learning used for image feature extraction and classification

25

2.2.1.1 Algorithm

Algorithm is the set of instructions or recipe that will define how the model is to be trained

to perform a specific task.

2.2.1.2 Model

In the context of machine learning, a model is the output after running the algorithm

numerous times (training). It is basically a program that have been trained and now to be

deployed for usage (inference).

2.2.2 Supervised Learning

Supervised learning is a machine learning paradigm in which the training set includes the

data and the expected outcome of the task with the data. An analogy of this is like a

teacher giving a student series of tests questions to solve and also giving them the an-

swers to those problems. Later on, the teacher ask the stu-

dents to find out how to solve other problems that they will come across in the future

[19].

Figure 5 Unsupervised learning (left) showing data clustering and Supervised Learning showing

classification

2.2.3 Unsupervised Learning

Unlike in supervised learning where one trains a model by feeding it with labelled input,

in unsupervised learning one only feeds the model with raw data without label. The model

then figures out patterns that exist in the data, thereby generating analytic insight with

minimum human supervision [20]. This makes it very useful for clustering and

segmentation of data.

26

2.2.4 Reinforcement Learning

Reinforcement learning as the third subset of machine learning is a system whereby

software agents (or model) take actions in an environment so as to increase the reward it

gets. Now, the reward on a particular action it took can be either positive or negative in

the case of a positive reward, it “reinforces” that action that brought about the positive

reward [22]. In contrast, it also suppresses actions that brought about a negative reward

(punishment). As shown in Figure 6, the system keeps on doing this

reinforcement/suppression until the model (agent) is good enough to operate well in an

environment.

Figure 6 Showing how an agent operate in an environment as is the case with reinforcement Learning

2.2.5 Neural Networks

In simple terms, an (artificial) neural network can be defined as a series of algorithms that

consist of mathematical nodes (artificial neurons) arranged in layers which aims to

discover underlying relationship in data by trying to mimic the neural networks of a

human brain. It does this by a process called training. Usually, it has an input layer, an

output layer, and one or more hidden layers, as depicted in Figure 7.

27

Figure 7 Neural Networks showing the connections of the from the input to output layer

2.2.6 Training an ML Model

Training a machine learning model is the term used to refer to making the model learn. It

typically involves passing labelled data to the network in a process known as the forward

pass and taking data backwards in the network known as backward pass.

Figure 8 Showing how the training of Machine Learning Model occurs

As shown in Figure 8, during the forward pass, training data are fed to the model and the

output is determined; this is usually a classification probability. In the backward

propagation (backpropagation), an error or loss function such as cross entropy loss or

Mean Squared Error (MSE) is calculated based on the predicted output from the model;

28

then an optimization method like the Stochastic Gradient Descent (SGD) is used to update

the weights and biases of the connections in the network. These forward and backward

passes are performed on all the training dataset for a number of times, which is known as

the “epoch” until the model has reached the desired performance.

2.2.6.1 Loss Function

There are many types of loss functions used in training; the decision to use a particular

loss function depends on the task at hand and the computational capability that is available

[21]. Since it is the gradient of the loss function that will be used in the update of weights

during training, using a loss function that have an easier to calculate derivate such as the

Mean Squared Error (MSE) (also known as L2 or quadratic loss) can be enticing. See

Equation 2.1,

𝑀𝑆𝐸 =
∑ (𝑦𝑖 −ŷ𝑖)2𝑛

𝑖=1

𝑛
 (2.1)

where

 𝑦𝑖 is expected output and ŷ𝑖 is the predicted output and n is the number of classes

(number of neurons in the output layer).

Other loss functions include Mean Absolute Error (MAE) (also known as L1 loss), Mean

Bias Error (MBE) and cross entropy loss (see Equation 2.2) to name but a few.

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠 = −(𝑦𝑖 log(ŷ𝑖) + (1 − 𝑦𝑖)log (1 − ŷ𝑖)) (2.2)

2.2.6.2 Stochastic Gradient Descent

The stochastic gradient descent is a technique used to quickly update a solution (in our case,

the weights) in machine learning. This approach repeats the update of a solution, f(x) using

its gradient ∇f(x) of only a single partial objective function. And the update expression at the

n-th iteration is as in Equation 2.3:

 (2.3)

where n is known as timestep, and xn is the value of X at time n. The parameter α is known

as the learning rate and it decides the step size in time for this update. Hence, effort must

𝑥𝑛+1 = 𝑥𝑛 − 𝛼𝛻𝑓(𝑥𝑛)

29

be taken to set its value properly [22]. In doing this, experimentation is usually done with

different values for the learning rate in order to determine the best value that is peculiar

for our problem. The equation means that the new weight is gotten by subtracting the

product of the learning rate and the gradient from the old weight.

2.2.7 Overfitting and Underfitting

In machine learning, overfitting can occur if the model performs excellently on the dataset

used during training but poorly on the dataset used for validation testing. This happens

when the model memorizes the training dataset instead of learning it features and hence,

could not generalize on other datasets. One way to overcome overfitting is by training

with more datasets [23]. Underfitting on the other hand is a situation where the model

performs poorly on both training and other datasets. It is simply a case where the model

has not learnt enough. Further training and data augmentation will improve the

performance of the model in this case.

2.3 Convolutional Neural Network

As previously outlined in Section 2.1, convolutional neural network has been the

workhorse of deep learning and thus has been used in field such as pattern, voice and

image recognition, image processing and most importantly feature extraction from an

image. Problems that are solved by CNN have an important assumption, i.e. features

should not be spatially dependent [24]. Hence, CNN can simply tell whether an object is

present in an image or not, it cannot say where it is located in the image. This can lead to

some problems in some particular cases as what it means is that it can detect a human

face in an image even if the position of the mouth and nose were to be interchanged. This

problem will be solved with CapsNet.

30

Figure 9 Convolutional Neural Networks structure and its components

In CNN, abstract features are detected by deeper layers (closer to the input) and then

propagate forward, and then the higher layer detects higher level features. For example,

in detecting a human face, layer one could be detecting low level features such as edges,

layer two detects simple mouth, eyes and nose, and then layer three detects the human

face. As the features are being propagated, there are usually pooling layers (and non-

linearities introduced) in between the convolutional layers, as shown in Figure 9. At the

final layer, the network will now be flattened, and all points connected with a fully

connected (FC) layer (just a simple neural network) which will be responsible for the

classification work. To fully understand the CNN, we shall explore the components of

the CNN in the subsequent subsections.

2.3.1 Convolutional Layers

Convolutional layers usually form the first layer in a CNN and they are usually followed

a non-linearity function such as ReLU (Rectified Linear Unit) and subsequently the

pooling layer [24]. The convolution operation in itself is simply an element-wise

multiplication of the so-called filter and the input feature map (input data or image). To

31

further understand the CNN, some terms needs to be explained in the next sets of

subsections.

2.3.1.1 Receptive Fields

The receptive field of a particular neuron is the number of neurons that serve as an input

to it. For example, Figure 10 shows a simple multilayer perceptron (MLP), as can be seen

in the figure, each neuron in the middle layer have a receptive field size of 2 while the

single neuron in the output layer has a receptive field size of 5.

Figure 10 Illustration of the Receptive Fields of a neural network

2.3.1.2 Convolutional Kernels (Filters)

The convolutional kernel or filter is simply a mask or matrix of weights that are dedicated

to extracting a particular feature, as shown in Figure 11. Since the convolution is an

element-wise multiplication, the part of the filter that has zero will simply multiply-out

to zero and the result of the multiplication looks like the shape or edge it is designed to

detect. This is illustrated in Figure 11 where the feature (edge) to detect is a curved part

and then its pixel values are multiplied with the kernel to get a result which will be stored

in another matrix, known as the output feature map (or activation map). During training,

the values in the filter are updated to better extract the feature it is meant to extract.

32

Figure 11 An illustration of a 7x7 filter used to detect an edge

the convolution can be said to just be a multiplication of the filter with its receptive filed

and then the result is stored in the output feature map. For the next value in the output

feature map, the filter is moved by the stride value and the element-wise multiplication is

performed again. This is repeated until the convolution has been performed on the entire

area of the image (input feature map), as shown in Figure 12 An analogy to explain this

is the use of a flashlight to scan through all the areas of the input feature map.

Figure 12 Input feature map and output feature map in a convolution operation [25]

2.3.1.3 Stride

The stride in a CNN refers to the number of rows/columns that is moved in the input

feature map before convolving again to get the value of another neuron in the activation

map (output feature map). For example, in Figure 13, the filter moves one by one column

before performing another convolution, this means the stride used in the convolution is

1.

33

Figure 13 Convolution with a stride of 1. Filter in light-blue [24]

2.3.1.4 Padding

As can be seen in Figure 12, after convolution, the output feature map reduces in size as

compared to the input feature map. If reduction continue as we come across more

convolutional layers, we might end up losing important features in the image before

getting to the classification stage. Hence, we try to keep the size of the output feature map

from reducing by adding zeros at its edges. This process of adding zeros at the edges is

known as padding. It is not compulsorily used in CNN.

2.3.2 Non-Linearity (Activation Functions)

Activation functions are basically used to introduce non-linearity into our model. After

calculating the weighted sum of input and biases to a neuron, we then pass the result

through the activation function which will decide whether the neuron will fire (‘activate’)

or not [26]. This way, we try to mimic the biological neurons which also fire when there

is enough spike at the input to cause it to fire. There are numerous types of activation

functions and the choice to use one or the other often depends on experimentation and the

type of problem at hand; however, ReLU has become prominent as the most common for

many deep learning problems [27]. Other types of activation function include Sigmoid,

Tanh, leaky ReLU and SignReLU, just to name a few [28].

ReLU simply echoes the input when it is more than or equal to zero while it suppresses it

otherwise (i.e. sets it to zero when negative), see Equation 2.4. The graph in Figure 15

illustrates the ReLU operation.

𝑅𝑒𝐿𝑈, 𝑅(𝑧) = max(0, 𝑧) (2.4)

34

Figure 14 Rectified Linear Unit (ReLU) graph shows that the output is zero when input is less negative

2.3.3 Pooling Layer

Pooling in CNN simply means down-sampling, which is used to further reduce or

aggregate the features extracted in the output feature map of a CNN after the convolution

and nonlinear operation has been performed. Pooling is mainly done to reduce the model

spatial dimension [29] [30]. There are mainly two types of pooling: max pooling and

average pooling.

Figure 15 Examples of pooling operations by using a 2×2 filters applied with a stride of 2

35

In max pooling (as shown on the left-hand side in Figure 15), the maximum value in a

section of the activation map is used to represent the entire value of the region and thus

reducing the effect of the entire region to the effect of the maximum value. This is also

the case with average pooling (right-hand side in Figure 15), the only difference is that

instead of taking the maximum, we simply calculate the average of all the values in that

window as its representation. It is worthy of note that max pooling is the most commonly

used due to its simplicity as it does not require any calculation. These operations may lead

to loss some features in the input image, but it is negligible as CNN still performs very

well with it. But on the other hand, max pooling makes the model to be invariance to

slight rotation in the image.

2.3.4 Fully Connected Layer

The fully connected (FC) layer is essentially an MLP that takes in the final output from

the convolutional (and ReLU) layers and use them for classification. It flattens the content

of the output feature map from the final convolutional layer and connect them to the

individual neurons as may be required. The FC layer can be said to be where the

recognition itself happens, while the convolutional parts were only used for feature

extraction. The output layer of the FC layer is the output layer for the entire network. This

is where the classification probabilities (result) is given. Assuming that a complete CNN

is used to determine an image is that of a dog, goat or cat, the cumulative probability that

either of the three animals were recognized will be unity. Softmax (normalized

exponential function) function is used for this probability distribution [31]. Hence, if dog

was recognized with an accuracy of 90%, the output of the softmax layer might be [0.9,

0.04, 0.06] showing that goat and cat were recognized with a probability of 4% and 6 %,

respectively. This is expressed as per Equation 2.5.

𝑐𝑖𝑗 =
𝑒𝑥𝑝(𝑏𝑖𝑗)

∑ 𝑒𝑥𝑝(𝑏𝑖𝑘)
𝑘

 (2.5)

where

 𝑐𝑖𝑗 : softmax

 𝑏𝑖𝑗: input vector

36

𝑒𝑥𝑝(𝑏𝑖𝑗) ∶ standard exponential function for input vector

𝑘 : number of classes in the multi-class classifier

 𝑒𝑥𝑝(𝑏𝑖𝑘) : standard exponential function for output vector

2.3.5 Popular CNN Architectures

Due to the popularities and increasing application of CNN in computer vision tasks, the

deep learning community has come up with many CNN architectures and varieties of

CNN with different levels of optimizations. Some of these architectures have become

very popular and useful. Examples of such CNNs are LeNet-5 [32], AlexNet [33],

MobileNet [34] and many more. A brief summary of the concept of these network

architectures is presented in the next paragraph.

LeNet-5 is a CNN with 2 convolutional layers (each with a non-linear activation and

pooling layer) and 3 FC layers. It is not a complicated CNN architecture and the number

of parameters (for training) in the network is 60000. AlexNet on the other hand has 8

layers (5 Convolutional layers and 3 FC layers) and has 60 million parameters; ReLU was

also first introduced here [35]. MobileNet was developed by Google and it is optimized

for mobile application such as smart phones that have lower processing capacity.

2.4 Edge Computing

Data is going to be most important for making intelligent and critical decisions. Based on

the type of Internet of Things (IoT) connected device, speed and accuracy are going to be

very important – here comes “edge computing.” Edge computing is the processing and

analysis of data along a network edge, closest to the point of its collection, so that data

becomes actionable in real time without any latency (or with much smaller latency)

instead of processing in the cloud. The figure 16 shows the hierarchical nature of edge

fog and cloud computing.

37

Figure 16 Hierarchy of the cloud, Fog and Edge nodes

2.4.1 Reason for moving Processing to the Edge

The issues mentioned below led to the development of edge computing, the idea of

performing processing activities onboard of edge devices (devices at the “edge” of the

network). These devices are highly resource-constrained in terms of memory,

computation, and power, leading to the development of more efficient algorithms, data

structures, and computational methods. The traditional idea of IoT was that data would

be sent from a local device to the cloud for processing. Some individuals raised certain

concerns with this concept: privacy, latency, storage, and energy efficiency to name a

few.

2.4.1.1 Latency

For standard IoT devices, such as Amazon Alexa, these devices transmit data to the cloud

for processing and then return a response based on the algorithm’s output. In this sense,

the device is just a convenient gateway to a cloud model, like a carrier pigeon between

the device and Amazon’s servers. The device is pretty simple and fully dependent on the

speed of the internet to produce a result. If one has a slow internet connection, Amazon

Alexa will also become slow. For an intelligent IoT device with onboard automatic speech

recognition, the latency is reduced because there is reduced (if not no) dependence on

external communications.

38

2.4.1.1 Privacy and Security

Transmitting data opens the potential for privacy violations. Such data could be

intercepted by a malicious actor and becomes inherently less secure when warehoused in

a singular location (such as the cloud). By keeping data primarily on the device and

minimizing communications, this improves security and privacy.

2.4.1.1 Power Consumption

Transmitting data (via wires or wirelessly) is very energy-intensive, around an order of

magnitude more energy-intensive than onboard computations. Developing IoT systems

that can perform their own data processing is the most energy-efficient method. AI

pioneers have discussed this idea of “data-centric” computing (as opposed to the cloud

model’s “compute-centric”) for some time and we are now beginning to see it play out.

2.4.1.1 Communication Bandwidth

For many IoT devices, the data they are obtaining is of no merit as such. Imagine a

security camera recording the entrance of a building for 24 hours a day. For a large portion

of the day, the camera footage is of no utility, because nothing is happening. By having a

more intelligent system that only activates when necessary, lower storage capacity is

necessary, and the amount of data necessary to transmit to the cloud is reduced.

2.5 Model Minimization Techniques

Many deep learning models are usually run on very powerful computers usually in remote

locations (servers) with large memory capacity to store all the weights and activations.

However, as was discussed in Section 2.4, there have been many reasons for computations

(particularly inference) to be moved to the edge in some instances but most edge devices

(or embedded systems) are usually of lower capacity in terms of memory and compute

power available on them, making it difficult to have them run neural networks [38].

Hence, there is need to make the model smaller (and potentially retaining the same

efficiency) for them to be efficiently deployed at the edge. Although many model

minimization techniques have been devised and applied to neural networks, pruning and

quantization has been particularly useful and shall be briefly discussed in the subsequent

39

subsections. Figure 17 shows a process diagram of the post-training minimization

process.

It is also important to discuss regularization, which is a technique that helps reduce

overfitting in the network by penalizing for complexity. It does this by adding a penalty

term to the cost (or loss) function. Regularization makes the model to better generalize

well and perform better on unseen dataset. There are two common types of

regularizations, namely L1 and L2 regularization. Both regularizations are essentially the

same in operation, only that they have different effects on the model performance. In L1

regularization, the penalty term added to the cost function is the absolute weight, while

the square of the weight is added in the L2 regularization [36, p. 2].

2.5.1 Pruning

In simple term, pruning can be said to be the removal of redundant synapses (connections)

and or neurons from the network, reducing the size of memory required to store the

weights in the network. This also leads to faster computations as there are less parameters

present in the network [37] [38]. Pruning varies in types depending on what is being

pruned (weights or neurons and layers) and when it is being pruned (during or after

training). Figure 18 shows a 3-step iterative pruning process where after the initial

training, the system iteratively trains and prunes simultaneously.

Minimization (Pruning,

Quantization)

Original Network

Minimized(smaller)

model

About same accuracy

Figure 17 Process diagram of a network minimization scheme

40

Figure 18 Three-Step Training Pipeline showing the synapses and neurons before and after pruning [39]

Although pruning may lead to a slight loss in accuracy, research has shown that this

accuracy can be regained if the model is retrained with some regularization applied [37].

In Figure 19, a network that has had about 90% of the model pruned away was shown to

regained all lost accuracy after it was retrained with L2 regularization (colour red curve).

Figure 19 Trade-off curve for parameter reduction and loss in top-5 accuracy [39]

To prune a network after the architecture has been chosen and the model has been trained,

we have to first set a threshold for pruning (i.e. any weight less than that threshold will

be pruned away). Then the pruning is performed on weight magnitudes that are less than

that threshold; after this, the network is retrained until a reasonable accuracy is achieved.

If need be, pruning is performed again and the retraining follows again. Applying the

41

iterative pruning on AlexNet (Figure 20) reduces the number of parameters from 60

million to less than 8 million.

Figure 20 Applying the iterative training on AlexNet, trained with ImageNet dataset [39]

2.5.2 Quantization

Quantization is another common model minimization/optimization technique. Its aim is

also to reduce the size and complexity of a network without having an adverse effect on

the model accuracy. Quantization can be performed by rounding off many weights that

are close in magnitude and using a single value to represent them (scalar quantization).

With this, a single value can be used to represent the four different weights, thus reducing

the amount of memory required to store the weights. Quantization can also be in the form

of representing floating-point weights values with a fixed point representation. With this,

a 32-bit floating-point number can be represented with an 8- bit (or even less) fixed-point

number [38].

42

Figure 21 Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom) [37]

An illustration of quantization (by clustering) is shown in Figure 22. Here, weights that

are close (given same colour in the figure) are clustered together and represented with a

single value (their centroid). For example, four different weights (2.09, 2.12, 1.92 and

1.87) are represented with the value 2.00 and hence the number of bits required to

represent them reduces from 128 (32 bits times 4) to 34 (32 bits times one, plus 2 bits).

Additionally, a fine tuning is applied on the centroid so as to enable maintenance of the

clustering made. Fine tuning is performed by summing up the gradient for all the weights

that have the same centroid, and then subtracting this sum from each initial centroid to

get the new centroid.

More often than not, pruning and quantization are usually combined to obtain a very good

minimization/optimization of a neural network model. Figure 22 shows how this

combination (red curve) performs better than applying only one of them as it shows a

zero-accuracy loss even after the model size have been reduced to about 3% of its original

size [37].

43

Figure 22 Accuracy v.s. compression rate under different compression methods [37]

Since most embedded devices are not always as powerful as the high-end computers or

servers to run complex machine learning models (such as CapsNet or CNN), compressing

the model (model minimization) using the techniques described here (and more) is now

an important part of the pipeline edge computing paradigm.

44

3 Capsule Neural Networks

Capsule Neural Network (CapsNets in short) as the name implies is a form of neural

network that is composed of ‘capsules’ instead of the traditional artificial neurons. This

chapter presents how CapsNets work; first by explaining what a capsule is, and then

presenting the CapsNet’s architecture, and other essential characteristics.

3.1 What is a Capsule?

In vanilla neural networks, artificial neurons are used as the computation units and their

outputs are usually scalar in nature. Capsules, on the order hand, have vector outputs and

they can be defined as a group of neurons that store the instantiation parameters of an

object or object part with their activity vectors [5]. Here, the probability of existence of

an object is denoted by the length of the activity vector (of the capsule) while its

instantiation parameters are represented by the orientation of the vector. In the section

that follows, an architecture of a CapsNet used to recognize handwritten digits will be

explored and this will give the full workings of the capsule neural network.

3.2 Architecture of a CapsNet

The architecture of a Capsule neural network can be best described when explained in

two parts: encoder and decoder.

3.2.1 Encoder Part

Figure 23 shows a simple structure of the encoder part of a neural network used to detect

hand-written digits. The encoder takes as input an image of say 28 x 28 x 1 pixel resolu-

tion, passing it through the convolution layer and capsule layers, then it get encoded as a

16 - dimensional vector. Note that it does not have to be 16 in dimension, it can be any

amount of dimension as desired. But this number denotes how many properties of the

image will be encoded. The capsules are only present in the encoder part of the network

and the encoder structure also represent the structure used during inference. As can be

seen in the figure, the encoding part consists of the input image itself, a convolutional

45

layer, a primary capsule layer and an output capsule layer (called digit capsules in this

case). The prediction is then shown as the length of the output vector.

Figure 23 Architectural structure of encoder part of CapsNet

The operation of the encoder is such that we feed the image into the ReLU-activated

standard convolution layer, which then applies 256 different filters (9x9 kernels) on the

image and we have the output of the convolutional layer to have a 256 number of feature

maps (or channels). This output, which is now of 20x20 dimension per feature map, is

then fed into the primary capsule. In the primary capsule, the 256 feature maps are

grouped into 8 groups each and then we have 32 of such groups (this is represented in

Figure 24. Now, kernels of size 9x9x8 are then applied to each group to give us an 6x6

feature map with each element being 8-dimension, or (6x6=36) capsules of 8 dimension

each. Applying this across the 32 groups gives us 32 number of 8-D capsules across a 6x6

space thereby making the number of capsules to be 6x6x8x32.

46

Figure 24 Primary Capsule layer showing the vectoral property of the capsule [25]

In the digit capsule layer, each of the capsules in this layer takes input from all the cap-

sules in the primary capsule layer, i.e. 32x6x6 = 1152 of them in total. Each of these input

capsules (8-D vectors) is multiplied by transformation matrix with size 16x8 to convert

the 8-dimensional capsules to 16 dimensions for each of the 10 output capsules. A special

algorithm is used for routing the vectors from the primary capsules’ layers to the digit

capsule layers. This algorithm makes it possible for primary capsules to only route their

output to the capsules in the output layers that most likely agrees with it output. This

algorithm is known as the Dynamic Routing by Agreement Algorithm, as popularized by

Hinton [5] (see Section 3.4 for more information).

3.2.2 The Loss Function

As already discussed in Chapter 2, learning in a neural network is basically an optimiza-

tion process of minimizing a loss function. In the encoder part of the network, the loss

function is given by Equation 3.1. Capsules use a distinct margin loss Lc for each cate-

gory c digit shown in the image. The entire loss of the network during training is the sum

of the margin loss and weighted reconstruction loss.

𝐿𝑐 = 𝑇𝑐 max(0, 𝑚+ − ‖𝑢𝑐‖)2 + 𝜆(1 − 𝑇𝑐)𝑚𝑎𝑥(0, ‖𝑢𝑐‖ − 𝑚−)2 (3.1)

47

where Tc=1 if there is an object of class c. Furthermore, m+=0.9 and m−=0.1. The

weighting-factor λ, which is usually set at 0.5, stops learning so as to reduce the activ-

ity vectors in all category. And hence, the total loss is the sum of the losses of all classes.

The first term of the loss function equation is only executed if the input digit was properly

classified while the second part is executed in the event of misclassification. In a situation

where the correct output capsule is able to predict correct label with a probability that is

more than 0.9, we will have a zero loss, but if the probability is not up to 0.9, then we will

have a non-zero loss.

Figure 25 Loss function for correct and incorrect output capsule [40].

For the output capsules that are not in match with the correct labels, Tc will be equal to

zero and the only the second term of the equation will be executed (which corresponds

to the (1 — Tc) part). And in this scenario, we will still have a loss of zero provided that

the miss-prediction by the mismatching output capsule was made with a probability that

is less than 0.1, otherwise the error will have some values. Figure 25 illustrates these

scenarios properly.

3.2.3 Decoder Part

The decoder part of the CapsNet (as illustrated in Figure 26) is mainly fully connected

layers of conventional neural networks. It takes in as input the output of the correct output

capsule (or DigitCaps) and then decodes it into an image of the correctly predicted digit.

It learns all of this during training, and it does not try to decode it when the prediction is

not correct, it simply masks them off in that case. The Euclidean distance between the

48

reconstructed image and the original image is used as the loss function for the decoder

and the training is dine with the help of backpropagation. This decoding part forces the

CapsNet to learn features that are necessary in the reconstruction of the image. And the

overall loss function is given as the weighted some of the margin loss (from the output

capsule layer) and the reconstruction loss (obtained from the decoder network).

Figure 26 Architecture of encoder part of CapsNet [40]

A summary of the complete CapsNet structure for the recognition of handwritten digits

example is shown in Table 1

49

Table 1 Summary of the CapsNet structure for the recognition of handwritten digits example

Name of Layer Function
Shape of the out-

put

Input image Array of raw image data 28x28x1

ReLu-Activated

Convolution

Convolution layer, 9x9 kernels, output is a

256 channel feature map, stride 1, no pad-

ding with ReLU activation.

20x20x256

Primary Capsules

Convolution capsule layer with 9x9 kernel.

Output = 32x6x6 8-dimensional capsule,

stride 2 and there is no padding.

6x6x32x8

Output Capsule

(Digit Capsule)

Capsule output computed from

a Wij (16x8 matrix) be-

tween ui and vj (i from 1 to 32x6x6

and j from 1 to 10).

10x16

Fully connected

layer 1

Fully connected (ReLU-Activated)
512

Fully connected

layer 1

Fully connected (ReLU-Activated)
1024

Reconstructed out-

put image

Fully connected (Sigmoid-Activated)
784(1x28x28)

3.3 CapsNet Forward-Pass Operations

In this section, we look more closely to the operation that occur in a CapsNet during a

forward pass. The process describes various operations that take place when vectors are

being routed from a deeper (lower) capsule to a higher capsule (output capsule in this

case). Figure 27 helps illustrating these operations.

50

Figure 27 Diagram showing the data flow operations in a Capsule

For a lower capsule output, 𝑈𝑖 and an upper capsule with output 𝑉𝑖, the output of the lower

capsule serves as the input of the upper capsule and both outputs are vectors in nature.

Four basic operations are performed on the input to a capsule before we have the output

of such capsule. These operations are detailed in the subsections that follow.

3.3.1 Matrix Multiplication of Input Vectors

As shown in Figure 27, our capsule gets input vectors (𝑈1,𝑈2 𝑎𝑛𝑑 𝑈3,) from 3 lower-level

capsules. As explained before about capsules, the length of these lower-level capsules

represents the probability that the corresponding objects were detected by the low-level

capsules and the orientation of these capsules represent internal features or pose of these

objects. We now multiply these vectors with a weight matrix 𝑊𝑖𝑗, which encodes the

spatial information between these lower-level capsules (e.g. Nose, mouth, ear etc. in

images of humans) and the upper lever capsule (e.g. face). For example, the spatial

relationship between the mouth and nose can be encoded by 𝑊2𝑗. These encoded

relationship between the mouth and face might be for instance that the width of the face

is twice that of the mouth and that the mouth is located at the lower part of the face. The

same kind of encoding is done for other capsules in the lower layer. After these

multiplications with the weight matrix encoding spatial relationships, we now can now

have an output which is the predicted position of the higher-level features. That is,

û2 might represent the where the face should be according to the detected position of the

51

nose. The same goes for û3 and û1. And if all the three lower level agree to as to where the

position of the face is, then it must be a face. Equation 3.2 shows how these are calculated.

û𝑗|𝑖 = 𝑊𝑖𝑗𝑢𝑖 (3.2)

3.3.2 Scalar Weighting of Input Vectors

These predicted vectors are then weighted with a scalar value known as the coupling

coefficient, 𝐶𝑖𝑗. The values of these coefficients help the lower-level capsule decide which

higher-lever capsules it should be coupled to. This is done by first sending out its value

to every output capsule, and then determine the set of capsules that have high likelihood

or agree with it, and then adjust the weighs based on the likelihood calculated; this reduces

the weight between it and the higher-level capsules with lower likelihood or agreement,

and conversely increases the weight between it and the higher-level capsules with high

agreement. The values of the scalar matrix 𝐶𝑖𝑗 are learned during training, this time not

by backpropagation but by the dynamic routing by agreement algorithm which will be

explored in Section 3.4.

3.3.3 Sum of Weighted Input Vector

After the weighting has been performed for all lower-level capsule, at this time, all higher-

level capsules would have been coupled with all lower-level capsule although with

varying weights, now the sum of all the couplings a higher-level capsule has with all

lower level capsules. This is shown in Equation 3.3;

𝑆𝑗 = ∑ 𝑐𝑖𝑗û𝑗|𝑖𝑖 (3.3)

3.3.4 Squashing

The Squashing function, which takes in vector input and gives a vector output is a novel

nonlinearity introduced by G. Hinton [5]. After the input is squashed, its output is capped

at 1 (i.e. not more than unity) but its orientation is not changed. Its formula shown in

equation 3.4. In conventional neural network, the ReLU function nonlinear activation

would be used, but here a squashing function is used instead; one reason being that it can

take in vector input and give a vector output and also the fact that it forces the final length

52

to be at most unity, as shown in figure 28, which is good since the length of the vector is

a probability.

𝑉𝑗 =
‖𝑆𝑗‖

2

1+ ‖𝑆𝑗‖
2

𝑠𝑗

‖𝑆𝑗‖
2 (3.4)

Where;

 𝑉𝑗 = Capsule squashed output vector

𝑆𝑗 = Capsule output vector

Figure 28 Simulated output of a squashing function

3.4 Dynamic routing by agreement

In the conventional CNNs, the routing of data from a lower level layer, L, to an upper

level layer, L+1, is done by the pooling operation. But this is not the case in CapsNet. In

CapsNet, this routing is done in an iterative manner using an algorithm known as “routing

by agreement”. From the name, it means that there will be an agreement between two

capsules before data can be routed between them. So, the intuition behind this is that

capsules that are deeper in the network (lower level capsule) will only send their outputs

(to serve as inputs) to a higher level capsule that “agrees” with it [5] [41]. This way,

capsules from a lower level layer L will not have to send (route) outputs to all capsules

in the L+1 layer, and thereby reducing calculations and increasing the efficiency of the

53

network. Before we delve into how this algorithm works, a pseudocode form of the

algorithm is shown in Table 2.

Table 2 Dynamic Routing by Agreement [5]

Procedure 1: Routing Algorithm

1. Routing function (�̂�𝑗|𝑖, 𝑟, 𝑙)

2. for all capsule 𝑖 in layer 𝑙 and capsule 𝑗 in layer (𝑙 + 1): 𝑏𝑖𝑗 ← 0 .

3. for 𝑟 number of iterations: Loop

4. for all capsule 𝑖 in layer 𝑙: 𝑐𝑖 ← softmax(𝑏𝑖)

5. for all capsule 𝑗 in layer (𝑙 + 1): s𝑗 ← ∑ 𝑐𝑖𝑗�̂�𝑗|𝑖𝑖

6. for all capsule 𝑗 in layer (𝑙 + 1): v𝑗 ← squash(𝑠𝑗)

7. for all capsule 𝑖 in layer 𝑙 and capsule 𝑗 in layer (𝑙 + 1): 𝑏𝑖𝑗 ← 𝑏𝑖𝑗 + �̂�𝑗|𝑖.v𝑗 return v𝑗

where �̂�𝑗|𝑖 is the affine-transformed output of the layer L capsule (or input to the layer

L+1 capsule), and v𝑗 is the output of the layer L+1 capsule.

In line 2, 𝑏𝑖𝑗 is initialized to zero in the beginning. Then some operations are run in a loop

r number of times (the typical value of r is 3 [5]). Now, within the loop, each step is

explained below;

- 𝒄𝒊 = softmax(𝒃𝒊): The value of the vector 𝑐𝑖 is calculated and all routing weight

of the low-level layer capsules into probability (between 0 and 1) and also make

sure that their sum equals unity. This weight is what determines the “agreement-

level” of capsules, but at the first iteration, lower-level capsule have equal

agreement-level with all capsules in the higher level and this is the state of

maximum confusion.

- s𝑗 ← ∑ 𝑐𝑖𝑗�̂�𝑗|𝑖𝑖 : In the higher, level layer (L+1), the sum of the linear product of

the input vectors, and the weighting factor, 𝑐𝑖 is calculated for all capsules. After

this is done, the output s𝑗 is squashed (v𝑗 ← squash(𝑠𝑗)) to give the output vector

of each capsules in layer L+1. This squashing allows for the direction of the vector

be preserved while bounding its length between to 0 and 1 (of probability).

54

- 𝑏𝑖𝑗 ← 𝑏𝑖𝑗 + �̂�𝑗|𝑖.v𝑗 : Here, the initial weight is updated here. In the beginning of

the algorithm, the lower-level capsules are in a state of maximum confusion and

do not know which higher level capsules will agree with them, but after this update

here, the value of the weights will be adjusted and hence, lean towards some a

capsule in the upper level. This can be said to be the main part of this algorithm

as the output of the higher-level capsule v𝑗 and that of the lower level capsule �̂�𝑗|𝑖

are checked for similarity (the dot product �̂�𝑗|𝑖.v𝑗 is essentially the similarity

check). The new weight will be bigger between two capsules in agreement but

decreases between capsules that are not.

- These steps are repeated for a number of iterations (preferably 3) at which

capsules in the lower layers have learned which capsule in the higher layer agrees

with it and then subsequently only rout data to it.

3.4.1 Decoder

The decoder part of the flowgraph gets the vector of the predicted class(es) from the

prediction block (after masking with or without label) and then reconstruct the image (or

object) that was detected. The reason for masking is that we want to distinguish training

from testing of the network. Unlike testing period where the predicted class is just

reconstructed with calculation of loss, during training, the labels of the predicted class are

needed in order to find the reconstruction loss, but this is not needed during testing, so

we put a flag (called “Mask with Labels”) to distinguish this.

As already depicted in Figure 26, the decoder is simply a neural network (an MLP) that

takes in the predicted class vector and reconstructs the image from it. Hence, the number

of neurons in the output layer of the decoder must be equal to the total number of pixels

in the original image as each pixel will be generated by one neuron (i.e. for a 28x28x1

image, the number of neurons in the output layer of the decoder will be 784).

3.4.2 Losses

Next, we shall look at the losses of the network.

55

3.4.2.1 Margin Loss

The margin loss is the loss calculated based on the classification output of the output

capsules. The margin loss calculated separately for class in the output capsule and it is

given by the Equation 3.1 below as previously explained in Section 3.2.2.

3.4.2.2 Reconstruction Loss

On the other hand, the reconstruction loss is the squared difference between the original

image and the reconstructed image, as per Equation 3.6.

𝑅𝐿𝑜𝑠𝑠 = (𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒)2 − (𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒)2 (3.6)

with 𝑅𝐿𝑜𝑠𝑠 being the reconstruction loss.

3.4.2.3 Final Loss

The final loss is the sum of the of both margin and reconstruction losses. As we can see

already, the reconstruction loss depicts the difference in the predicted and the original

image and if it is left to dominate the loss, the network might end up trying to memorize

the particular image, making it difficult to generalize (i.e. leading to overfitting). Hence,

we scale down the effect of the reconstruction loss by a factor β so as to allow the margin

loss dominate training as can be seen in Equation 3.7.

𝐹𝐿𝑜𝑠𝑠 = (𝑀𝑎𝑟𝑔𝑖𝑛 𝐿𝑜𝑠𝑠) + β(𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠) (3.7)

with 𝐹Loss being the final loss and the value of the scaling factor, β, much smaller than

unity. A typical value will be about 0.0005 [42].

3.5 Drawbacks of CNN (Convolutional Neural Network)

To fully appreciate the advantages that CapsNet brings, it is important to look the

drawbacks that CNN has. Although CNN has seen rapid rise in application and are

performing excellently in many applications, it has some major challenges inherent in it

and some of these is motivation for the development of capsule networks. For instance,

CNN can predict the presence of an object in an image but cannot give the instantiation

parameters such as pose, texture and deformation of the object [5] [43]. Also, the pooling

56

operation used in CNN makes it lose some information about the object, so to train a CNN

model, a large amount of data will be required to achieve a good efficiency. In addition,

CNN does not keep the spatial relationships among object in an image, it simply gives a

probability value of the presence or absence of an object in an image. These makes CNN

invariant instead of being equivariant to translation in the image [43]. Lastly, as pointed

out by [44], CNN is prone to adversarial attack like pixel perturbation which can have

grave consequence if used it leads to wrong classification.

3.6 Comparison of Neurons in CNN and Capsules in CapsNet

A concise difference between the operations in CNN and CapsNet is presented in Table

3. Figure 29 also depicts this difference in the form of a diagram.

Figure 29 Neurons vs. Capsules showing the difference in the structure

Table 3 Comparison between Neurons and Capsules

57

3.6.1 Invariance vs Equivariance

Invariance in a model is the detection of the presence of (part of) an object without

translational or rotational variations in the original image. The pooling layer makes CNN

do this, although this was not the intention of the pooling layer. The way CNN recognizes

a high-level object such as a face is just to have neurons which recognize the low level

parts such as mouth, nose and eyes to get fired. This means that even if the mouth and the

ear positions are interchanged, a CNN would not know this, as long as it has been trained

with many translated or rotated examples of that part of the object. On the other hand,

CapNet is able to keep the spatial relationship among objects in an image so it can

extrapolate possible variants of an object without being trained with those rotated or

translated versions [45]. This is known as “Equivariance”. Thus, CNN requires much

more datasets of the same object for training as compared to capsule network to achieve

the same amount of efficiency.

3.7 Performance Metrics

In the next chapter, terms such as training loss, training accuracy, validation loss and

validation accuracy will be used in defining the performance of our model, and it is

important we explain them here.

3.7.1 Training and validation

The term “Training” is used to indicate when the model is learning (i.e. any action whose

overall effect led to the update of weights in the model). Validation, on the other hand, is

simply used to denote the evaluation of the model. Validation is similar to testing, the

difference is that testing is done after the model has been completely trained and while

validation is done during training and it helps in fine tuning the parameters of the model.

3.7.2 Loss and Accuracy

The accuracy of the network is simply the ratio (percentage) of the correctly classified

images to all the images used as given in Equation 3.8.

58

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑𝐼𝑚𝑎𝑔𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

∑𝐴𝑙𝑙 𝑖𝑚𝑎𝑔𝑒𝑠
 (3.8)

Loss is the sum of the errors made for each example in training or validation sets averaged

over the entire dataset. And unlike accuracy, it is not a percentage and expressions for it

has been previously given in Section 3.5.2.

This chapter has introduced the main elements and properties of the CapsNet. The next

chapter presents the implementation part of this study.

59

4 Implementation Workflow

This section contains the implementations and experimentations carried out in this pro-

ject; it begins by giving a flowgraph of the workflow from data collection till the deploy-

ment of the model on an edge device as depicted in Figure 30. Figure 30 shows the process

involved in this project implementation for a CapsNet. Moreover, a CNN model was also

built and trained to serve as our baseline for results comparison; it should be noted that

this same workflow depicted in Figure 30 was used for the CNN model as well, so there

will not be a separate discussion for the CNN model although a summary of its architec-

ture is presented later in this chapter.

Figure 30 Implementation workflow of CapsNet model training and deployment on the edge device

As shown in figure 30, the workflow begins with data collection and its processing, which

are further elaborated, then the CapsNet model is created, and then we tune its hyper

parameters to assess what works best, before the training of our actual model is

performed. When the training is done, we save the model and go ahead to optimize for

inferencing on an edge (i.e. embedded type) device. The training results are also collected

and analysed in Chapter 5.

60

4.1 Datasets, Training and Pre-processing

The datasets of thirteen (13) categories of animals were used for this study and they were

obtained from three different sources. Images of the following animals were used; female

deer, male deer, hare, polar bear, wolf, reindeer, elk, impala, zebra, lion, cheetah, cats and

dogs. That of cats and dogs were used for an initial model that was evaluated with the

aim of fine-tuning and obtaining appropriate hyperparameters that are suitable for training

CapsNet with animal images, while images of the eleven remaining animal categories

were used for the final training. Table 4 shows some images of the 11 animals and the

sources were these images were obtained as follows;

- Camera recording of video and then conversion of the video to frames.

- Snapshot Wisconsin dataset from the camera-trapped images used in the work

“Identifying Animal Species in Camera Trap Images using Deep Learning and

Citizen Science” [7].

- Lastly, web-scraping was done with a python script to get animal images from

Google.

These sources were used because these images are similar to real life datasets that deep

learning models are expected to see when deployed. After getting the images, there were

frames with either empty images of wrong images, these were identified and removed.

Then they were resized to resolutions of 28x28, 32x32, 50x50 and 80x80. Also,

conversions were made from RGB format to grayscale. Some techniques employed to do

the above are shown in the next sections. After the image processing part, the datasets

were divided into different classes and then converted to pickle format (as byte files)

before saving, to be used later for training.

61

Table 4 Showing datasets of the animal classes, their image sample and their respective sources

Class Image Source

Polar bear

Web scrapping with python script

Cat

Video to frame conversion

Zebra

Snapshot Wisconsin dataset

Lion Snapshot Wisconsin dataset

Cheetah

Snapshot Wisconsin dataset

Dog

Video to frame conversion

Elk

Snapshot Wisconsin dataset

Impala

Snapshot Wisconsin dataset

Rabbit Hare

Snapshot Wisconsin dataset

Reindeer

Web scrapping with python script

Female deer Web scrapping with python script

Male deer

Web scrapping with python script

Wolf

Web scrapping with python script

62

4.2 Image Processing

4.2.1 Conversion of RGB to Grayscale

Conversion of colour images (3 channels RGB) to grayscale (single channel) can be done

in either of the following ways;

1. Average method: This is a very trivial method whereby an average of the values

of three colors (Red, Green and Blue) are taken, and this gives us the grayscale

value. That is;

Image(grayscale) =
image(Red) + Image(Green) + Image(Blue)

3
 (4.1)

2. Weighted method or luminosity method: There is a problem with the above

average method; we only took the average of the colours, making each colour

have equal contribution. But in reality, each colour has a different wavelength[46]

and thus have different contribution to the image. So, in the Weighted method, the

contribution of the red color is decreased since it has a longer wavelength than the

green color, the contribution of the green colour is slightly increased and the blue

color will occupy the remaining contribution. A suitable factor is indicated in

Equation 4.2. The result of applying this method on a picture is shown in Figure

34.

Image(grayscale) =
0.3 x image(Red)+ 0.59 x Image(Green)+ 0.11 x Image(Blue)

1
 (4.2)

63

Figure 31 Results of converting RGB images (top left) to grayscale image using the weighted method or

luminosity method (top middle) and the average method (top right). The bottom part show the red, green

and blue channels of the RGB image.

4.2.2 Resizing of image (Image resampling)

The process of resizing an image is known as image resampling and there are three main

methods that can be used for this [47]. Viz;

1. Nearest neighbor: The output pixel (in the resized image) assumes the value of the

pixel nearest to it from the original pixel. Here, only one pixel from the original image

is used to generate the pixel in the output image.

2. Bilinear interpolation: Here, each pixel in the resized image is a weighted sum of

the 2-by-2 neighborhood pixels that are nearest to it in the original image.

3. Bicubic interpolation: Just like the bilinear interpolation method, the output of each

pixel in the resized image is a weighted sum of a 4-by-4 neighborhood pixels in the

original image.

In this project, the bicubic interpolation has been employed.

64

Figure 32 Original and resized images using the nearest neighbour technique

4.3 Software Environment

Image recognition tasks using deep learning usually involves very complex matrix

calculations, so a system with good configurations were required for this training of the

models. Three systems were used;

- Personal Computer (PC): Intel octa-core Core-i7-2630Q running at 2 GHz clock

speed with 8GB memory. This was used for the rather lighter training work. It

usually takes about 8 hours to train a 2-class CapsNet model of 12501 28x28x3

images per class for 100 epochs.

- Cloud: Google-Colaboratory platform which provided free access to CPU, GPU

and TPU for some limited amount of time. The training often gets interrupted so

requires constant monitoring. It usually takes about 5 hours to train a 2-class

CapsNet model of 12501 28x28x3 images per class for 100 epochs.

- A Hewlett-Packard (HP) workstation with 2.5 GHz intel Core-i7, memory of 16

GB DDR3, Nvidia Graphic Processing Unit (GPU) GeForce GTX 1080 with GPU

clock speed of 1888 MHz and GPU memory of 9028 MB. This was used and for

the more complex processing. It usually takes about 50 minutes hours to train a 2-

class CapsNet model of 12501 28x28x3 images per class for 100 epochs.

65

Python 3 was used as the programming language and the implementations were done in

the Jupyter - notebook which is available in the Anaconda 3.7 environment. Deep learning

frameworks Tensorflow-gpu 1.15 was used in both frontend and the backend while Keras

2.2.4 was used in the frontend. Tensorboard 1.5 was used for recording and visualizing

the model training logs and histories. Other packages that were used include Numpy,

Matplotlib, Pickle, and OpenCV libraries. And finally, to make the model run on the GPU,

several drivers and libraries were installed as specified by Nvidia [8] [1], they include the

Nvidia driver, CUDA Toolkit v10.1 and CuDNN v9.1.

4.4 Training CapsNet (Capsule Neural Network)

Training a neural network is always about updating weights and biases, but the

architecture is a little bit different in CapsNet and it shall be examined in the subsequent

subsections using Figure 31.

Figure 33 Training Flow graph used to train the “Animal” CapsNet

Figure 31 shows the flow graph for CapsNet training (with little modification for testing)

and as can be seen from the figure (bottom left side), it begins with an input image with

size (28x28x3) and then through a convolutional layer(256 channels, filter size = 9x9,

66

stride = 1) and then to the primary capsule layer. Now between the primary capsule and

output capsule is where the dynamic routing algorithm is takes place. It should be noted

that pooling was not used at all, even at the convolution layer. The output of the output

layer is an array of vectors for all classes. The length of these vectors are then calculated

in order to get the probability of a class (object) detection which now serves as the

predicted output. The flow just described can be used for only inference. But for training,

much more computations are required and the extra flows will be discussed in section that

follows.

4.4.1 Decoder

The decoder part of the flowgraph gets the vector of the predicted animal class from the

prediction block (after masking with or without label) and then reconstructed the animal

image (or object) that was detected. The reason for masking is that we want to distinguish

training from testing of the network. Unlike testing period where the predicted class is

just reconstructed with calculation of loss, during training, the labels of the predicted class

will be needed in order to find the reconstruction loss but this is not needed during testing,

so a flag was put (called “Mask with Labels”) to distinguish this.

As already depicted in figure 26, the decoder is simply a neural network (an MLP) that

takes in the predicted animal vector and reconstruct its image from it. Hence, the number

of neurons in the output layer of the decoder must be equal to the total number of pixels

in the original image as each pixel will be generated by one neuron (i.e for a 28x28x3

image, the number of neurons in the output layer of the decoder will be 2352). In

summary, the CapsNet architecture details is shown in table 4.

67

Table 5 Summary of the CapsNet Architecture used for Animal classification

CapsNet Layer Details

Input Image Width = 28, height = 28, channels = 3

Convolution Layer Filters = 256, kernel size = 9x9, stride = 1,

Activation = ReLU, with padding.

Primary Capsule Vector size = 8, channels = 32, kernel size =

9, stride = 2

Animal Capsule Vector size = 16, capsules = 11, routing = 3

Decoder Fully connected layer 1 512, ReLU

Decoder Fully connected layer 2 1024, ReLU

Decoder output layer 2352, sigmoid

4.5 Model Configuration and key hyperparameters

Hyperparameter tuning is necessary in order to find the best configuration for the main

model. First, a CapsNet model of two classes (cats and dogs) was developed and several

instances thereof were trained with various hyperparameter changes and the result was

monitored. The sizes of images, number of channels, batch size and validation split were

varied for different number of images per class. Table 5 shows the summary of the

parameters; their performance are analysed later in Chapter 5.

68

Table 6 Training parameters used for the two-class CapsNet model

Instance

No. of image

per class

Image size

(number of

pixels)

Number of chan-

nels (3 channels:

RGB; 1 channel:

grayscale)

Batch size

Validation split (ratio

of images for train-

ing/validation)

1 1000 32x32 3 32 0.1

2 1000 50x50 3 32 0.1

3 1000 50x50 3 32 0.2

4 1000 80x80 3 32 0.2

5 1000 80x80 3 32 0.2

6 1000 80x80 3 32 0.2

7 1000 32x32 3 32 0.3

8 1000 50x50 3 32 0.3

9 12501 28x28 3 32 0.2

10 12501 28x28 3 32 0.1

11 12501 28x28 1 32 0.2

12 12501 32x32 3 256 0.2

13 12501 32x32 3 32 0.3

14 12501 32x32 3 32 0.2

15 12501 50x50 3 32 0.2

16 12501 50x50 3 256 0.2

17 12501 50x50 3 32 0.1

18 12501 50x50 3 32 0.3

19 12501 50x50 3 64 0.2

20 12501 50x50 3 32 0.2

21 12501 50x50 3 32 0.2

22 12501 50x50 3 32 0.2

23 12501 80x80 3 32 0.2

After the training for the two classes-model was completed, the 11-class CapsNet model

was then trained as well with an image size of 28x28x3 with batch sizes 32, and 256. The

validation split (ratio of images for training/validation) was also varied.

69

4.6 Model Conversion and Minimization

After training of the models, minimization (quantization and pruning) of the model was

done to reduce its size and convert it to a Tensorflow-Lite (a Tensorflow version

optimized to run on mobile and embedded/edge devices) model before deploying to the

edge device. Post training quantization (as opposed to quantization-aware training) was

used as this was more straightforward in implementation and both methods leads to

similar reduction in size of the model as concluded from experimental observation.

4.7 Embedded Hardware Deployment Setup

After the above optimization of the trained model, it is now deployed on the edge device.

The steps used in deploying the model on the board are depicted in the flow graph in

Figure 34. The embedded hardware used is the Nvidia Jetson TX2 board, which is a GPU-

based power-efficient embedded AI computing edge device. It features and Nvidia Pascal

GPU architecture with 256 Compute Unified Device Architecture (CUDA)-cores,

together with it are dual-core Nvidia Denver 64-Bit CPU and ARM Cortex-A57 CPU.

Also, the Google coral range board containing an edge Tensor Processing Unit (TPU)

was initially experimented on but it was later dropped as it couldn’t work well because of

some limitations in the TPU. It does not support 4-dimensional tensors (which my model

has).

Figure 34 Flowgraph showing the steps involved in the deployment of the trained model on the edge device

As can be seen in Figure 32, the Jetson board is first set up with a host PC running Ubuntu

18.04 operating system (OS) and then the configurations and installation of packages

follow. The green coloured box showed the compressed model obtained after the model

70

has been trained and compressed, while the orange-coloured box shows the docker image

creation step. The docker image of the compressed model is created after the component

installations been performed. After this, a Universal Serial Bus (USB) camera is installed

and the docker image is executed. The entire process took a lot of hours (about 24) to get

them to work together.

4.8 Brief Overview of the Baseline CNN

As mentioned earlier, a CNN model was used as a baseline for comparison purposes; a

brief overview thereof is shown in Table 7. The architecture is carefully chosen because

it has a similar layout as that of the CapsNet model. It was trained on the GPU based HP

workstation.

Table 7 Summary of the baseline CNN Architecture used for “Animal” classification

Baseline CNN Layer Details

Input Image Width = 28, height = 28, channels = 3

Convolution Layer 1 Filters = 256, kernel size = 5x5, stride = 1,

Activation = ReLU, pooling = 2x2

Convolution Layer 2 Filters = 256, kernel size = 5x5, stride = 1,

Activation = ReLU, pooling = 2x2

Convolution Layer 3 Filters = 128, kernel size = 5x5, stride = 1,

Activation = ReLU, pooling = 2x2

Decoder Fully connected layer 1 328, ReLU

Decoder Fully connected layer 2 192, ReLU

Output layer 11, softmax

71

5 Results and Analysis

5.1 Model Training Results analysis

Having trained the models with several configurations (hyperparameters), a number of

results and corresponding plots were obtained; they are analysed in the following

subsections, each subsection focusing on different aspects of decisions made. Then

finally, a comparison is made between the CapsNet and CNN models’ performances.

5.1.1 Number of Routing Iterations in the Routing by Agreement Algorithm

This subsection focuses on the results obtained which inform the decision on the best

number of routing iterations to use in the entire CapsNet model training.

Table 8 Results obtained from training a CapsNet with different algorithms for the MNIST Dataset.

Serial

Number

Number

of

routing

iterations

Output

capsule

loss

(Training)

Output

capsule loss

(Validation)

Output

capsule

accuracy

(Training)

Output

capsule

accuracy

(Validation)

1 1 0.0130 0.0127 0.9914 0.9924

2 2 0.0139 0.0127 0.9920 0.9915

3 3 0.0120 0.0121 0.9924 0.9919

4 4 0.0121 0.0116 0.9920 0.9915

5 5 0.0121 0.0137 0.991 0.9889

Judging from the result presented in Table 8, it is not straightforward to decide which

number of routing iterations is best to be used in the dynamic routing by agreement

algorithms as their performances are not very different from each other. The decision was

72

made to use 3 routing iterations, which is explained in what follows. An insight is to look

at the validation loss; from here we can see that using 1, 2 and 3 routing iterations gives

the same result, so why use 3? The reason is because 3 routing iterations give a better

training accuracy than 1 and 2. A case can also be made for why 3 and 4 routing iterations

were not used, this is because there is no increase in accuracy gained using 4 and 5 routing

iterations although they have a lower validation loss.

5.1.2 Result of Two-Class Animal

Now that we have chosen the number of routing iterations, a model with 2 classes was

developed to further explore the effect of some hyperparameters that we shall eventually

justify. Subsections here explore and show the results of these studies.

Before we go into exploring the results, the structure used in denoting the

hyperparameters shall be explained. Since, there are quite a number of graphs with the

same structure but different values of hyperparameters, I decided to simplify the

presentation by creating a structure to represent the results without having to repeat

several lengthy sentences that are similar.

5.1.2.1 Training Configuration Structure

To simplify the results’ presentation, a configuration structure that will be used to present

the hyperparameters is presented below

Hyperparameter Configurations Structure (HCS) = (A, B, C, D, E, F).

where;

A = Number of images per class

B = Image resolution (Number of Pixels present in one dimension of the image)

C = Number of Channel (1 = Grayscale Image, 3 = Colour image)

D = Batch Size

E = Number of Epochs

F = Validation Split

73

Also, Tensorboard (a tool used to visualize tensorflow-trained models) does not explicitly

give intuitive names to the graphs, so the captions present in the graphs are explained in

Table 9. This is necessary in order to understand the graphs present in this chapter.

Table 9 Explanations of the captions used in the graphs generated by Tensorboard

Name

(y-axis) as can be seen on graphs

Meaning

“Output_capsule_acc” The capsule accuracy

“Output_capsule_loss” The capsule loss

“val_output_capsule_acc” The validation capsule accuracy

“val_output_capsule_loss” The validation capsule loss

“epoch_acc” The training accuracy of the CNN model

“epoch_loss” The training loss of the CNN model

“epoch_val_acc” The validation accuracy of the CNN model

“epoch_val_loss” The validation loss of the CNN model

Again, it is important to note that for all graphs presented in this section, the x-axis

denotes epoch (i.e. number of times the entire dataset is passed through the network

during training). The Tensorboard tool has a limitation in displaying it properly. And

lastly, the Tensorboard tool does not necessarily display the entire graph, it only displays

the area of interest (sometimes, it may cover the entire graph and sometimes it may not).

5.1.2.2 Image Resolution

Now that the structure of the HCS has been defined, we shall start looking at the effects

of resolution (width and height) of the images used for training.

74

Figure 35 Part 1 results of using large and small image resolution with HCS = (1000, 28, 3, 32, 100, 0.2),

with channel resolution = 28

Figure 36 Part 2 results of using large and small image resolution with HCS = (1000, 80, 3, 32, 100, 0.2),

with channel resolution = 80

Comparing figures 35 and 36, we can see that the output capsule accuracy in Figure 35 is

about 75% at an epoch of 40 and its corresponding validation capsule accuracy is about

70% at 40 epochs. This cannot be said of Figure 36 at that same epoch and even beyond.

75

In Figure 36, the training accuracy gradually ramps up and settles at about 98%, while

the validation accuracy remains at around 55% at 100 epoch. The stark difference

between the training and validation accuracy shows that the model is overfitting and

hence unable to generalize as the image resolution increases from 28 to 80. The losses

(training and validation) in Figure 36 shows the validation loss rising at about 30 epochs,

which shows that the model is about to start overfitting. The reason for this is not totally

clear but several experiments ran on this model shows this same trend. A possible

explanation could be that the higher resolution images has more information than the

model can learn considering its vector size.

Further research in CapsNet in the future could explore the effect of the vector sizes and

image resolution on CapsNet performance.

5.1.2.3 Red-Green-Blue (RGB) and Grayscale Images

Experimentation to show the effect of using grayscale images vis-à-vis RGB (colour

images) for training is shown with tables and graphs. In Table 10, the results show that

when the CapsNet model was trained with the CIFAR-10 (“Canadian Institute For

Advanced Research” datasets with 10 classes) datasets, better performance were obtained

by using RGB. RGB images gave a training accuracy of 73.06% while grayscale images

gave 62.46%. The same trend is also shown in the validation accuracy. Looking at the

losses, that of the RGB images are lower. Hence this justifies the reason for training the

model with RGB images going forward in this study.

Table 10 Results of training the CapsNet with CIFAR-10 dataset in both RGB and grayscale

Image

(channel) type

Output

Capsule loss

(Training)

Output

Capsule loss

(Validation)

Output Capsule

Accuracy

(Training)

Output

Capsule

Accuracy

(Validation)

Grayscale 0.2849 0.3112 0.6246 0.5721

RGB 0.2263 0.2824 7306 0.6345

The CIFAR-10 datasets used with 3 routing iterations has 10 classes and 6000 images per

class.

76

And as can also be seen in Figures 37 and 38, when RGB images are used, the

performance of the model is better (lower loss, higher accuracy in both training and

validation).

Figure 37 Part 2 results of using RGB and Grayscale images with HCS = (12501, 28, 3, 32, 100, 0.2),

RGB images used

77

Figure 38 Part 2 results of using RGB and Grayscale images with HCS = (12501, 28, 1, 32, 100, 0.2),

Grayscale images used

5.1.2.4 Batch Sizes Effects

Another study that was carried out in this work to explore the effect of having a different

batch sizes on the CapsNet model; after several experiments to determine this, the results

show that a higher batch size leads to better performance. This is evident in Figures 39

and 40. In Figure 39, 256 batch size was used, resulting in a capsule accuracy of 80% at

around 96 epochs and the loss also kept decreasing, which is desired. However, in Figure

40, a batch size of 32 was used and it appears to have a better accuracy of close to 100%,

but this is only overfitting, as the value of the loss tells us more about how good the model

is.

78

Figure 39 Part 1 results of using large and small batch size with HCS = (12501, 32, 3, 256, 100, 0.2),

Batch size used = 256.

Figure 40 Part 2 results of using large and small batch size with HCS = (12501, 32, 3, 32, 100, 0.2), Batch

size used = 32.

5.1.2.5 Validation split

Next, the effect of the validation split on the CapsNet model was also examined. The

validation split is the percentage of the entire datasets used for validation. For example, a

validation split of 0.4 means that 40% of the entire datasets is used for validation.

79

Figure 41 Part 1 results of using small and very small validation split, with HCS = (12501, 50, 3, 32, 100,

0.3), Validation split used = 0.3)

Figure 42 Part 2 results of using small and very small validation split, with HCS = (12501, 50, 3, 32, 100,

0.1), Validation split used = 0.1

In figures 41 and 42, a bigger validation split (0.3 as in Figure 41) shows better

performance as opposed to a validation split of 0.1 (shown in Figure 42). The loss remains

fairly constant in both Figures 41 and 42.

80

5.1.3 Result of Eleven-Class Animal model

Now that the results of the studies done in Section 5.1.2 have been analyzed, obtaining

better results in subsequent CapsNet models requires that we use the better performing

hyperparameters used in that section. Now, an 11-class CapsNet model is trained to be

used for comparison with a CNN model, which is one of the major studies in this thesis.

Unfortunately, the performance of this model was not recorded as it turns out that the

datasets needs significantly more pre-processing than the scope of this thesis permit. So,

decision was made to reduce the classes to 2 again, this time not for dog and cat images

but for polar bear and deer images. Although the choice of animals is irrelevant.

Further experiments are now conducted on this latest CapsNet animal model for extra

studies.

5.1.3.1 The use of two convolutional layers in the CapsNet Architecture

With the new CapsNet animal model, training was made with 4000 images, for each of

the two animal classes as depicted in the first argument of the HCS value in Figure 43.

81

Figure 43 Results of using 2 convolutional layers in CapsNet architecture HCS = (4000, 28, 3, 256, 200,

0.35), Green curve = 2 convolutional layer, and orange curve = 1 convolutional layer

Figure 43 shows the recorded performances (capsule accuracy and loss) of using 2

convolutional layers and one convolutional layer in the CapsNet animal model. In Figure

43, the green curve represents the result of using two convolutional layers while the pink

curve represents the result of 1 convolutional layer in the CapsNet. The effect of this study

is conspicuous as it shows that the CapsNet model with 2 convolutional layers optimized

faster than the model with 1 convolutional layer. It can be seen that the green curve

already has a 94% accuracy after 20 epochs, while the orange curve took about 95 epochs

to reach that same accuracy level. Although this study was not continued for even higher

number of convolutional layer (because more compute power is needed than I had access

to in order to do this study), the model is expected to converge faster with higher number

of convolutional layers because the convolutional layers inherently extract more higher

level features from the image before sending it to the first capsule layer in the network.

Of course, there is an expectation that there will be a limit to the number of convolutional

layers that can be added, a further study on capsule network can explore this.

82

5.1.3.2 CapsNet vs. CNN on small number of datasets

Figure 44 and 45 show the performances of a CapsNet and CNN models trained with 30

images obtained from a video-to-frame conversion of animal video clips of two animals.

As already explained in Chapters 2 and 3 of this thesis, the pooling operation used in

CNN makes it unable to extrapolate new orientation from a single image (it is viewpoint

invariant), hence it has to be trained with all orientations of an image it is expected to

recognize; this means a lot more data is required to train a CNN model than it is to train

a CapsNet model of the same complexity. The CapsNet is able to extrapolate new

viewpoints (viewpoint equivariance) because it already stored the instantiation

parameters of the object in its vector and can keep the relationship between objects in an

image due to the affine transformation matrix, as explained in Chapter 3 of this thesis.

83

Figure 44 Part 1 of plots showing final model for comparison between CapsNet and CNN based on the

amount of data used for training, with HCS = (30, 28, 3, 256, 60, 0.35), CapsNet shown here (see Figure

45 for CNN)

84

Figure 45 Part 2 of plots showing final model for comparison between CapsNet and CNN based on the

amount of data used for training, with HCS = (30, 28, 3, 256, 60, 0.35), CNN shown here (see Figure 44

for CapsNet)

With both Figures 44 and 45 having the same parameters in their HCS, the only difference

is the model used. Both models were trained for 60 epochs and they both had good

training accuracies at the end of this epoch (99.01% and 99.12% for the CNN and

CapsNet models, respectively); the catch is to look at the validation metrics (especially

the loss). The validation loss for the CNN model (Figure 45) is rather increasing, which

shows that the model is not really learning but memorizing the training datasets

(overfitting), but this is not the case in Figure 44 (CapsNet). Hence, this clearly shows

that CapsNet performs better on smaller datasets as compared to an ‘equivalent’ CNN,

making CapsNet a potential replacement for CNN in some applications where much data

is not necessarily available at the time of training, or where the cost of obtaining enough

datasets is prohibitive.

85

5.1.4 Model Minimization Results

After the model is trained, it is now compressed to be able to run on an edge device (with

small memory size). Quantization was performed on this model to get it reduced to half

its original sizes as shown in Table 11. The 32-bit weights and biases were converted to

16-bit. I initially set out to use the Google edge TPU, which would have made the model

even smaller (8-bit), but a limitation on the operations supported by the TPU (it does not

support 4-D tensors and some user defined functions in tensorflow) motivated the switch

to a GPU-based NVIDIA Jetson TX2 board (16-bit). The size of the model (before and

after compression) is shown in Table 11.

Table 11 Effect of applying the post training quantization method on models

S/N Model Input Image

Dimension

(pixels)

Size before

compression (MB)

Size After

Compression (MB)

1 CapsNet 28x28x1 27.9 13.8

2 CapsNet 28x28x3 34.5 17.25

3 CapsNet 32x32x3 97.8 48.9

4 CNN 28x28x1 13.9 6.95

5.2 Model Validation

Table 12 shows various validation accuracies gathered throughout the course of this

study. That of MNIST datasets performed the best in all, while the CapsNet animal model

performed better than the CNN animal model for reasons already explained in Section

5.1.3.1. It seems that both CapsNet and CNN animal models performed better than when

the CIFAR-10 dataset is used. The reason is because the datasets used for the animal

models are not as complex and diverse as the one found in CIFAR-10 dataset.

86

Table 12 Effect of applying the post training quantization method on models

Algorithm Model Validation Accuracy

CapsNet MNIST 99.23%

CapsNet CIFAR-10 63.45%

CapsNet 2-Class Animal Dataset 68.12%

CNN 2-Class Animal Dataset 67.50%

5.3 Hardware Performance and Stability Analysis

As indicated in Chapter 4 (Section 4.3) of this thesis, three different hardware platforms

were used in the training of the models used for this study, and their performance and

stability affected the pace of this research. Table 13 shows a brief analysis of their

performances and stability.

The mean time before failure (MTBF) concept is used for this analysis, as shown in

Equation 5.1.

𝑀𝑇𝐵𝐹 =
𝑇𝑊𝑇−𝑇𝐵𝑇

𝑁𝐵
 (5.1)

where;

TWT = Total working time

TBT = Total breakdown time

NB = Number of Breakdowns

87

Table 13 Showing the training hardware performance metric

Hardware CapsNet

Training

time (100

epoch)

Accessibility TWT TBT Nr.

Of

break

downs

MTBF

(hours)

Core i7 PC with 8

GB memory

23 hours Always 192 94 16 6.125

Cloud based CPU,

with 16 GB

memory: (Google-

Colaboratory)

18 hours Internet-

dependent

192 48 48 3

HP workstation

with NVIDIA

GeForce GTX

1080 GPU

2 hours Laboratory

status

192 30 5 32.4

The performances in Table 13 is based on the same model configuration, with HCS =

(12501, 28, 3, 32, 60, 0.2) monitored over a period of 192 hours. Overall, the HP

workstation with GPU is the best in terms of speed and reliability, although with a high

image dimension (like 80x80x3), it crashes and runs out of memory. This was a limiting

factor in this study as also pointed out earlier. While the problem of intermittent

disconnection can be solved by upgrading to the paid version of Google-Colaboratory,

this service is only available for users from north America (United States and Canada) for

now. The PC also was performing badly as it always becomes very hot and eventually

restarted which terminated the simulations.

This chapter presented the experimental results obtained in this thesis and illustrated the

value of CapsNet as compared to CNN for small datasets. Furthermore, compression of

the model has been performed as a first step towards implementing CapsNet on a re-

source-constrained edge device. The next chapter summarizes the main points of the

thesis and briefly outlines future work

88

6 Conclusion

6.1 Summary

The aim of this thesis is deemed to be largely fulfilled by implementing a CapsNet model

than can be deployed to the edge. A rather detailed overview of machine learning and

deep learning concepts have been presented as they are prime tools for object recognition.

The state of the art in object recognition has also been presented. The CapsNet was finally

presented as its understanding depends on the deep learning concepts. It was also

presented in such a way that the promises that it brings as to building an image recognition

system with minimal dataset was carefully introduced. This thesis has been implemented

with the help of GPU-based workstation available at the university. The author’s personal

computer and cloud-based deep learning platforms were also used for the study. Various

software packages and tools were used, particularly Tensorflow was used to program and

perform the implementation.

In particular, the question of how to implement (or move) machine learning model from

the cloud to the edge was explored and implemented due to various promises that the

edge holds in the future of machine learning. Image recognition system that can work

with minimal dataset, compressed and deployed to the edge was also explored and

implemented thanks to the special properties of the recent CapsNet. Although we set out

to implement the model on a TPU, this was not done because of limited support offered

by the Coral range TPU board from Google, and thus CapsNet was implemented on and

exploited the flexibility of and Nvidia Jetson TX2 board.

Various image processing techniques and data collection methods were used in the

project. A central part of the study involved the tuning of the CapsNet model

hyperparameters and exploration of its flexibility was done and presented. We found out

how changing various hyperparameters could affect the performance of the CapsNet

model, and a CNN of equivalent complexity was used as baseline to compare the results.

Lastly, in the process of presenting the results, a novel method to label a model according

to its configurations has been developed, i.e. the Hyperparameter Configuration Structure

(HCS). This method makes it easy to label the results of a model instance in details

without having to use lengthy sentences. Naturally, the HCS method can be expanded as

desired to include other parameters that were not considered here.

89

With an Hyperparameter Configuration Structure (HCS) value of (30,28,3,256,60,0.35),

a Capsule Network (CapsNet) was able to achieve a training accuracy of 99.12% at a

validation accuracy of 73% and training loss of 0.1 at a validation loss of 0.17. An

equivalent CNN achieved 99.01% and a validation accuracy of 67.5% and a training loss

of 0.05 at a validation loss of 4.5 (severe overfitting). Both of the results shows the model

has overfitted. But at an epoch of 35, the CapsNet model has both its training and

validation accuracies at 70% while the CNN model instead has a training accuracy of

98% but a validation accuracy of 66.70%. Meaning the CNN overfits on small dataset

regardless of the amount of epoch used but we can get a CapsNet that performs optimally

at 70% accuracy.

In conclusion, we have seen that CapsNet model, although new, has its advantages and

drawbacks. It can make image recognition with minimal dataset possible as well as permit

compression and implementation on the edge. On the other hand, CapsNet has some

challenges in its complexity and hence takes more time for training than the equivalent

CNN (about 10 times longer).

1.1.1 Considerations with respect to the state of the art

Deep neural networks such as CNN is still considered the state of the art in object recog-

nition [9]. And they certainly outperform CapsNet in object recognition. But CapsNet has

shown a capability to be useful where limited amounts of datasets are available. The study

in this thesis only compared CapsNet against an architecture of CNN that is comparable

to the CapsNet structure. Several other architectures of CNN outperform CapsNet, but

considering that CapsNet is relatively new and much research has not been done on it as

on CNN, it has the potential of becoming even more powerful and actually give a good

competition to CNNs that are very good at image recognition, especially in areas where

there are not large amounts of datasets.

6.2 Future work

The study presented in this thesis has its limitations, as for all the training done, none was

performed up to 100 epochs. This is because of the limitation in hardware resources

accessible for training. Also, the GPU-based workstation that was used for most of the

training did not have enough memory to handle higher image resolutions, hence, image

resolution beyond 80x80 pixels were not studied.

90

Further research into CapsNet can be directed towards the study of its behaviour with

very large image resolutions (like 1800x2000 pixels) to assess more thoroughly what

could be learnt from it, and at the same time, studying the effects of changing the vector

dimension. Also, using an object detection algorithm alongside the CapsNet will be in-

teresting to explore. Further studies can also be directed towards creating a platform that

can make deep leaning models be easily deployed at the edge. Lastly, as suggested in

Chapter 5, studies can be directed towards finding the limit of the number of convolu-

tional layers that can be embedded into the CapsNet and the effects thereof.

91

References

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,

pp. 436–444, May 2015, doi: 10.1038/nature14539.

[2] X. Du, Y. Cai, S. Wang, and L. Zhang, “Overview of deep learning,” in 2016 31st

Youth Academic Annual Conference of Chinese Association of Automation (YAC),

Nov. 2016, pp. 159–164, doi: 10.1109/YAC.2016.7804882.

[3] Hassan, S. Gillani, E. Ahmed, I. Yaqoob, and M. Imran, “The Role of Edge

Computing in Internet of Things,” IEEE Communications Magazine, vol. 56, no.

11, pp. 110–115, Nov. 2018, doi: 10.1109/MCOM.2018.1700906.

[4] Z.-Q. Zhao, P. Zheng, S. Xu, and X. Wu, “Object Detection with Deep Learning: A

Review,” arXiv:1807.05511 [cs], Apr. 2019, Accessed: Dec. 07, 2020. [Online].

Available: http://arxiv.org/abs/1807.05511.

[5] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic Routing Between Capsules,”

arXiv:1710.09829 [cs], Nov. 2017, Accessed: Feb. 14, 2020. [Online]. Available:

http://arxiv.org/abs/1710.09829.

[6] X. Zhou, W. Gong, W. Fu, and F. Du, “Application of deep learning in object

detection,” in 2017 IEEE/ACIS 16th International Conference on Computer and

Information Science (ICIS), May 2017, pp. 631–634, doi:

10.1109/ICIS.2017.7960069.

[7] C. Chen, J. Huang, C. Pan, and X. Yuan, “Military Image Scene Recognition Based

on CNN and Semantic Information,” in 2018 3rd International Conference on

Mechanical, Control and Computer Engineering (ICMCCE), Sep. 2018, pp. 573–

577, doi: 10.1109/ICMCCE.2018.00126.

[8] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent

architectures of deep convolutional neural networks,” Artif Intell Rev, vol. 53, no. 8,

pp. 5455–5516, Dec. 2020, doi: 10.1007/s10462-020-09825-6.

[9] H. Huang, Q. Li, and D. Zhang, “Deep learning based image recognition for crack

and leakage defects of metro shield tunnel,” Tunnelling and Underground Space

Technology, vol. 77, pp. 166–176, Jul. 2018, doi: 10.1016/j.tust.2018.04.002.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial Pyramid Pooling in Deep

Convolutional Networks for Visual Recognition,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 37, no. 9, pp. 1904–1916, Sep. 2015, doi:

10.1109/TPAMI.2015.2389824.

92

[11] R. Girshick, “Fast R-CNN,” 2015, pp. 1440–1448, Accessed: Dec. 25, 2020.

[Online]. Available:

https://openaccess.thecvf.com/content_iccv_2015/html/Girshick_Fast_R-

CNN_ICCV_2015_paper.html.

[12] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time

Object Detection with Region Proposal Networks,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, Jun. 2017, doi:

10.1109/TPAMI.2016.2577031.

[13] L. Zhang, L. Lin, X. Liang, and K. He, “Is Faster R-CNN Doing Well for

Pedestrian Detection?,” in Computer Vision – ECCV 2016, Cham, 2016, pp. 443–

457, doi: 10.1007/978-3-319-46475-6_28.

[14] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “ImageNet: A large-

scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision

and Pattern Recognition, Jun. 2009, pp. 248–255, doi:

10.1109/CVPR.2009.5206848.

[15] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,”

International Journal of Computer Vision, vol. 115, Sep. 2014, doi:

10.1007/s11263-015-0816-y.

[16] M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisserman, “The

Pascal Visual Object Classes (VOC) challenge,” International Journal of Computer

Vision, vol. 88, pp. 303–338, Jun. 2010, doi: 10.1007/s11263-009-0275-4.

[17] T.-Y. Lin et al., “Microsoft COCO: Common Objects in Context,” in Computer

Vision – ECCV 2014, Cham, 2014, pp. 740–755, doi: 10.1007/978-3-319-10602-

1_48.

[18] Z. Dan and C. Xu, “The Recognition of Handwritten Digits Based on BP Neural

Network and the Implementation on Android,” in 2013 Third International

Conference on Intelligent System Design and Engineering Applications, Jan. 2013,

pp. 1498–1501, doi: 10.1109/ISDEA.2012.359.

[19] P. Louridas and C. Ebert, “Machine Learning,” IEEE Software, vol. 33, no. 5,

pp. 110–115, Sep. 2016, doi: 10.1109/MS.2016.114.

[20] M. Usama et al., “Unsupervised Machine Learning for Networking: Techniques,

Applications and Research Challenges,” IEEE Access, vol. 7, pp. 65579–65615,

2019, doi: 10.1109/ACCESS.2019.2916648.

93

[21] K. Janocha and W. M. Czarnecki, “On Loss Functions for Deep Neural

Networks in Classification,” SI, vol. 1/2016, 2017, doi:

10.4467/20838476SI.16.004.6185.

[22] T. Watanabe and H. Iima, “Nonlinear Optimization Method Based on Stochastic

Gradient Descent for Fast Convergence,” in 2018 IEEE International Conference

on Systems, Man, and Cybernetics (SMC), Oct. 2018, pp. 4198–4203, doi:

10.1109/SMC.2018.00711.

[23] X. Ying, “An Overview of Overfitting and its Solutions,” Journal of Physics:

Conference Series, vol. 1168, p. 022022, Feb. 2019, doi: 10.1088/1742-

6596/1168/2/022022.

[24] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a

convolutional neural network,” in 2017 International Conference on Engineering

and Technology (ICET), Aug. 2017, pp. 1–6, doi:

10.1109/ICEngTechnol.2017.8308186.

[25] A. Deshpande, “A Beginner’s Guide To Understanding Convolutional Neural

Networks.” https://adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-

Convolutional-Neural-Networks/ (accessed Dec. 27, 2020).

[26] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation Functions:

Comparison of trends in Practice and Research for Deep Learning,”

arXiv:1811.03378 [cs], Nov. 2018, Accessed: Dec. 27, 2020. [Online]. Available:

http://arxiv.org/abs/1811.03378.

[27] P. Ramachandran, B. Zoph, and Q. Le, “Searching for Activation Functions,”

2018, Accessed: Dec. 27, 2020. [Online]. Available:

https://arxiv.org/pdf/1710.05941.pdf.

[28] G. Lin and W. Shen, “Research on convolutional neural network based on

improved Relu piecewise activation function,” Procedia Computer Science, vol.

131, pp. 977–984, Jan. 2018, doi: 10.1016/j.procs.2018.04.239.

[29] A. Muñío-Gracia, J. Fernández-Berni, R. Carmona-Galán, and Á. Rodríguez-

Vázquez, “Impact of CNNs Pooling Layer Implementation on FPGAs Accelerator

Design,” in Proceedings of the 13th International Conference on Distributed Smart

Cameras, New York, NY, USA, Sep. 2019, pp. 1–2, doi:

10.1145/3349801.3357130.

[30] J. Naranjo-Torres, M. Mora, R. Hernández-García, R. J. Barrientos, C. Fredes,

and A. Valenzuela, “A Review of Convolutional Neural Network Applied to Fruit

94

Image Processing,” Applied Sciences, vol. 10, no. 10, Art. no. 10, Jan. 2020, doi:

10.3390/app10103443.

[31] J. S. Bridle, “Probabilistic Interpretation of Feedforward Classification Network

Outputs, with Relationships to Statistical Pattern Recognition,” in Neurocomputing,

Berlin, Heidelberg, 1990, pp. 227–236, doi: 10.1007/978-3-642-76153-9_28.

[32] R. Karim, “Illustrated: 10 CNN Architectures,” Medium, Nov. 28, 2020.

https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d

(accessed Dec. 27, 2020).

[33] S. Arya and R. Singh, “A Comparative Study of CNN and AlexNet for

Detection of Disease in Potato and Mango leaf,” in 2019 International Conference

on Issues and Challenges in Intelligent Computing Techniques (ICICT), Sep. 2019,

vol. 1, pp. 1–6, doi: 10.1109/ICICT46931.2019.8977648.

[34] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for

Mobile Vision Applications,” arXiv:1704.04861 [cs], Apr. 2017, Accessed: Dec.

27, 2020. [Online]. Available: http://arxiv.org/abs/1704.04861.

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with

deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90,

May 2017, doi: 10.1145/3065386.

[36] Z. Liu, Y. Xu, and F. Dong, “L1-L2 Spatial Adaptive Regularization Method for

Electrical Tomography,” in 2019 Chinese Control Conference (CCC), Jul. 2019, pp.

3346–3351, doi: 10.23919/ChiCC.2019.8865488.

[37] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing Deep

Neural Networks with Pruning, Trained Quantization and Huffman Coding,”

arXiv:1510.00149 [cs], Feb. 2016, Accessed: Dec. 27, 2020. [Online]. Available:

http://arxiv.org/abs/1510.00149.

[38] S. Wang et al., “C-LSTM: Enabling Efficient LSTM using Structured

Compression Techniques on FPGAs,” in Proceedings of the 2018 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, New York, NY,

USA, Feb. 2018, pp. 11–20, doi: 10.1145/3174243.3174253.

[39] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both Weights and

Connections for Efficient Neural Networks,” arXiv:1506.02626 [cs], Oct. 2015,

Accessed: Feb. 22, 2020. [Online]. Available: http://arxiv.org/abs/1506.02626.

95

[40] M. Pechyonkin, “Understanding Hinton’s Capsule Networks. Part 4. CapsNet

Architecture.,” Max Pechyonkin. https://pechyonkin.me/capsules-4/ (accessed Dec.

25, 2020).

[41] B. Jia and Q. Huang, “DE-CapsNet: A Diverse Enhanced Capsule Network with

Disperse Dynamic Routing,” Applied Sciences, vol. 10, no. 3, Art. no. 3, Jan. 2020,

doi: 10.3390/app10030884.

[42] D. Amara, Novel Deep Learning Model for Traffic Sign Detection Using

Capsule Networks. 2018.

[43] M. Kwabena Patrick, A. Felix Adekoya, A. Abra Mighty, and B. Y. Edward,

“Capsule Networks – A survey,” Journal of King Saud University - Computer and

Information Sciences, Sep. 2019, doi: 10.1016/j.jksuci.2019.09.014.

[44] J. Su, D. V. Vargas, and K. Sakurai, “Attacking convolutional neural network

using differential evolution,” IPSJ Transactions on Computer Vision and

Applications, vol. 11, no. 1, p. 1, Feb. 2019, doi: 10.1186/s41074-019-0053-3.

[45] J. E. Lenssen, M. Fey, and P. Libuschewski, “Group Equivariant Capsule

Networks,” arXiv:1806.05086 [cs], Oct. 2018, Accessed: Dec. 28, 2020. [Online].

Available: http://arxiv.org/abs/1806.05086.

[46] “Grayscale to RGB Conversion - Tutorialspoint.”

https://www.tutorialspoint.com/dip/grayscale_to_rgb_conversion.htm (accessed

Mar. 01, 2020).

[47] A. Nasonov, K. Chesnakov, and A. Krylov, “Convolutional neural networks

based image resampling with noisy training set,” in 2016 IEEE 13th International

Conference on Signal Processing (ICSP), Nov. 2016, pp. 62–66, doi:

10.1109/ICSP.2016.7877797.

96

Appendix 1 - Code for image processing

import numpy as np #To do some array operations

import matplotlib.pyplot as plt #To do some plotings

import os #TO iterate through the directories

and join paths

import cv2 # To do some image operations

######configuratiosn##########

n_img_per_class = 12502

IMG_SIZE = 28

n_channel = 3 #...1 for grayscale, 3 for color

image_type = "RGB"

class_a = 'a_' + str(n_img_per_class)

class_b = 'b_' + str(n_img_per_class)

class_c = 'c_' + str(n_img_per_class)

class_d = 'd_' + str(n_img_per_class)

class_e = 'e_' + str(n_img_per_class)

class_f = 'f_' + str(n_img_per_class)

class_g = 'g_' + str(n_img_per_class)

class_h = 'h_' + str(n_img_per_class)

class_i = 'i_' + str(n_img_per_class)

class_j = 'j_' + str(n_img_per_class)

class_k = 'k_' + str(n_img_per_class)

CATEGORIES = [class_a, class_b, class_c, class_d, class_e, class_f, cl

ass_g, class_h, class_i, class_j, class_k]#, class_l, class_m, class_

n, class_o, class_p, class_q, class_r, class_s, class_t]

DATADIR = "Z:\Dataset\THESIS\Video_convert"

training_data = []

def create_training_data():

 for category in CATEGORIES:

 path = os.path.join(DATADIR, category) # #path to dog or cat

directories

 #convert the class names to a number

 class_num = CATEGORIES.index(category)

 print(class_num)

 for img in os.listdir(path):

 try:

 img_array = cv2.imread(os.path.join(path,img), cv2.IM

READ_COLOR) # for RGB

 #img_array = cv2.imread(os.path.join(path,img), cv2

.IMREAD_GRAYSCALE) # for grayscale

 new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE

)) # RESIZE THE IMAGE

 training_data.append([new_array, class_num])

 except Exception as e:

 #print(e)

 pass

create_training_data()

97

import random

random.shuffle(training_data)

#creating list for storing the pictures and their labels

X = [] #features (image)

Y = [] #labels (cat or dog, represented with 0 and 1)

for image, label in training_data:

 X.append(image)

 Y.append(label)

X = np.array(X).reshape(-1, IMG_SIZE, IMG_SIZE, n_channel) #the -1 ar

gument means anything... that is it can be any value

#So we don't have to be re processing our dataset any time we want

to run the network, we are going to import pickle to save it.

#we can as well use numpy.save()

import pickle

X_dataset_name = 'X_Datasets_' + str(n_img_per_class+7) + '_images_

per_class_' + str(image_type) + '_' + str(IMG_SIZE) + 'x' + str(IMG_

SIZE) + '_.pickle'

Y_dataset_name = 'Y_Datasets_' + str(n_img_per_class+7) + '_images_

per_class_' + str(image_type) + '_' + str(IMG_SIZE) + 'x' + str(IMG_

SIZE) + '_.pickle'

X_store = r"C:\Users\EliteBook\Anaconda3\envs\env1\prepared_datase

t\RGB\{}".format(X_dataset_name)

Y_store = r"C:\Users\EliteBook\Anaconda3\envs\env1\prepared_datase

t\RGB\{}".format(Y_dataset_name)

pickle_out = open(X_store, "wb")

pickle.dump(X, pickle_out)

pickle_out.close()

pickle_out = open(Y_store, "wb")

pickle.dump(Y, pickle_out)

pickle_out.close()

#END

Appendix 2 – Code for web-scrapping

import os

import requests

from bs4 import BeautifulSoup

Google_Image = \

 'https://www.google.com/search?site=&tbm=isch&source=hp&biw=187

3&bih=990&'

System = {

98

 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleW

ebKit/537.36 (KHTML, like Gecko) Chrome/85.0.4183.83 Safari/537.36'

,

 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.

9,*/*;q=0.8',

 'Accept-Charset': 'ISO-8859-1,utf-8;q=0.7,*;q=0.3',

 'Accept-Encoding': 'none',

 'Accept-Language': 'en-US,en;q=0.8',

 'Connection': 'keep-alive',

}

Destination = 'DISMAS_THESIS_IMAGES'

def main():

 if not os.path.exists(Destination):

 os.mkdir(Destination)

 Get_Animal_Images()

def Get_Animal_Images():

 data = input('Type the name of the animal you are looking for:

')

 quantity_of_animal_images = int(input('Type the amount of image

s you want : '))

 print('Looking....')

 _url = Google_Image + 'q=' + data

 response = requests.get(_url, headers=System)

 html = response.text

 b_soup = BeautifulSoup(html, 'html.parser')

 outcome = b_soup.findAll('img', {'class': 'rg_i Q4LuWd'})

 add_up = 0

 quantity = 0

 url= []

 for outs in outcome:

 try:

 link = outs['data-src']

 if (add_up >= 40):

 url.append(link)

 quantity = quantity + 1

 else:

 pass

 add_up = add_up + 1

 if (quantity >= quantity_of_animal_images):

 break

 except KeyError:

 continue

 print(f'Found {len(url)} Animal Images')

 print('Downloading...')

99

 for i, url in enumerate(url):

 response = requests.get(url)

 animalname = Image_Folder + '/' + data + str(i+1) + '.jpg'

 with open(animalname, 'wb') as file:

 file.write(response.content)

 print('Downloaded!')

 print(quantity)

 print(outcome)

if __name__ == '__main__':

 main()

Appendix 3 – Main code

100

101

102

103

Appendix

