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Abstract 

Many online communities today face growing problems of group polarization, 

radicalization, and fake news. These issues are being exacerbated by the phenomenon of 

bots – automated accounts that are becoming less and less distinguishable from real 

people. While methods exist to detect these bots, they are not perfect and may be 

vulnerable to manipulation. The field of data-science concerned with how this might be 

done is known as adversarial machine-learning. In the past researchers have drawn out 

frameworks for various adversarial machine-learning attacks involving altering the data 

that models are trained and tested on. However, there has been little research on 

applying these techniques to models for detecting automated social-media accounts, 

specifically on Twitter. Research to date has focused on how bots have changed their 

appearance or behavior in order to avoid detection. These kinds of ‘evasion attacks’ 

involve altering the data (the Twitter accounts) after a model has been trained. This 

research focuses on how attackers might carry out a ‘poisoning attack’ – altering the 

data before a model has been trained, with the goal of reducing that model’s accuracy in 

correctly identifying bots on Twitter. The results show that by introducing mislabeled 

data-points into a such a model’s training data, attackers can reduce its accuracy by up 

to twenty percent. In spite of these positive results, this research is still limited by the 

data available for testing and the attack methods capable of being tested on it. It is 

hoped that this paper will raise awareness of the potential for such data manipulation 

and encourage future studies to build off it, with the ultimate goal of mitigating bots and 

their ability to influence people on social-media.  

 

This thesis is written in English and is 72 pages long, including 6 chapters, 20 figures and 

10 tables. 
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Annotatsioon 

Mürgitatud andmete mõjuanalüüs Twitteri andmete 

turvaliigituse mudelite põhjal 

Täna seisavad paljud online-kommuunid vastamisi järgnevate probleemidega : gruppide 

polariseerumine, radikaliseerumine ja võltsuudised. Välja toodud probleeme võimendab 

võrgurobotite fenomen - automaatika põhiselt käituvad kontod, mis muutuvad järjest 

vähem äratuntavaks võrreldes pärisinimestega (päriskasutajatega). Võrgurobotite 

avastamiseks on olemas meetodid, mis aga ei ole täiuslikud ja mis võivad olla kaitsetud 

erinevate manipulatsioonide eest.  

Andmeteaduse uurimisvaldkond, mis käsitleb selliste meetodite väljatöötamist 

on tuntud kui vastaseõpe. Minevikus on uurijad loonud mitmeid raamistikke erinevate 

vastaseõppe rünnete kohta, mis põhinevad andmemudelite muutmistega, mille peal 

masinõppe andmemudelid on treenitud ja testitud. Vähe on sarnaseid uurimustöid tehtud 

selle kohta, kuidas neid raamistikke ja tehnikaid rakendada mudelite peal, mis on 

mõeldud automaatsete sotsiaalmeedia kontode tuvastamiseks, eriti Twitteri 

sotsiaalvõrgustiku kohta. Uurimustööd, mis on olemas, on keskendunud sellele, kuidas 

võrgurobotid on muutnud oma väljanägemist (visuaalset poolt) või käitumist, 

eesmärgiga vältida avastamist eelpool mainitud andmemudelite poolt. Sellised 

põikeründed põhinevad sisendandmete muutmises (selles kontekstis Twitteri kontod), 

peale seda, kui masinõppe andmemudelit on juba treenitud. 

Käesolev uurimustöö keskendub sellele, kuidas ründajad võivad kasutada 

mürgitamisrünnet - ehk muuta andmeid enne, kui andmemudel on välja treenitud, 

eesmärgiga, vähendada selle andmemudeli täpsust, kui hästi ta suudab Twitteri 

võrguroboteid identifitseerida. Uurimustöö tulemused näitavad, et tutvustades 

andmemudeli treenimissüsteemi andmetesse valesti markeeritud andmepunkte, suudab 

ründaja vähendada selle andmemudeli täpsust kuni 20 protsenti. Sellistest positiivsetest 

tulemutest sõltumatult, on see uurimustöö limiteeritud kättesaadava testitava 

andmestiku tõttu ja ründemeetodite jaoks vajaoleva riistvara ja tarkvara millega selliseid 

testitavad andmestikke rünnata puudumise tõttu,. Autor loodab, et see uurimustöö tõstab 
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teadlikkust selliste andmete manipulatsiooni võimalikkuse ja ohtude eest ning julgustab 

tulevikus tehtavaid töid olemasolevat aluseks võtma ja seda edasi arendama. Autori 

enda peamine eesmärk on võidelda vastu võrgurobotite olemasolule ja nende võimele 

mõjutada inimesi online sotsialmeedias. 

 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 72 leheküljel, 6 peatükki, 20 

joonist, 10 tabelit. 
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List of abbreviations and terms 

Misinformation False or misleading information that may be partially wrong or 

taken out of context 

Disinformation False information intentionally spread to deceive people 

Fake News Misinformation or Disinformation that mimics actual news 

media content in form but not in organizational process or 

intent 

Selective Exposure Phenomenon where people tend to prefer information that is 

consistent with their pre-existing attitudes 

Confirmation Bias Phenomenon where people view information that confirms their 

pre-existing beliefs as more persuasive than dissonant 

information that does not confirm them 

Desirability Bias Phenomenon where people are inclined to accept information 

that pleases them 

Group Polarization Phenomenon where biases within a group of like-minded 

people are shifted in an extreme direction due to Selective 

Exposure, Confirmation Bias, and Desirability Bias 

Supervised Machine 

Learning 

A type of machine-learning in which an algorithm generates a 

model based on labeled ‘training’ data which classifies 

unlabeled ‘test’ data.  

Adversarial Machine 

Learning 

A field of data-science concerned with how machine-learning 

algorithms may be vulnerable to deception and manipulation in 

an uncontrolled setting. 

Evasion Attack A type of adversarial machine-learning where the attacker 

modifies the test data to increase a model’s error rate 

Poisoning Attack A type of adversarial machine-learning where the attacker 

modifies the training data to increase a model’s error rate 

KNN Short for K-Nearest Neighbor. An algorithm in which an object 

is classified based on its position relative to a majority of some 

number K of its closest neighbors [citation-needed] 

GLM  Short for Generalized Linear Model; predicts the value of a 

class based on a linear combination of observed values; allows 

predicted values to vary linearly with observed values 

SVM Short for Support Vector Machine; a type of supervised-

learning algorithm that is trained to sort data into two categories 

with margins between the two as wide as possible 
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Social-Bot An automated social-media account that effectively mimics the 

behavior of a real human user 

Spambot An automated social-media account that frequently tweets or 

retweets spam 

Fake-Follower A social-media account that exists to artificially inflate a user’s 

follower-count and make them appear more popular  

Favourites_count The number of tweets a Twitter user has liked in their account’s 

lifetime 

Friends_count A variable in the Twitter account data that denotes how many 

Twitter accounts a user is following or ‘friends with’.  

Followers_count The number of Twitter accounts that are following a user 

Statuses_count The number of tweets (including retweets) issued by the user of 

a Twitter account  

Listed_count The number of public lists a user is a member of  

Geo_enabled When true, indicates the user has enabled the possibility of 

geotagging their tweets 

Protected Indicates whether or not a user has chosen to protect their 

tweets. Protected tweets can only be seen by a user’s followers.  

Verified Indicates whether or not a user has a verified account. Verified 

accounts are determined to be associated with public 

individuals, ie. diplomats, journalists, actors, etc. This helps 

distinguish authentic accounts from ones merely using that 

individual’s name.  

Follow_request_sent Indicates the authenticating user has sent a follow request to 

this account in order to see their tweets 

Following Indicates the authenticating user is following this account. This 

feature has 100% correlation with Follow_request_sent in the 

Cresci-2017 data-set. 

Notifications If true, indicates that the authenticating user has chosen to 

receive Tweets from this account by SMS. This feature has 

100% correlation with Follow_request_sent in the Cresci-2017 

data-set. 

Contributors_enabled If true, allows for Tweets issued by the user to be co-authored 

by another account. This feature has 100% correlation with 

Follow_request_sent in the Cresci-2017 data-set. 

Geo_follow_protect_verify A feature created to represent eight different combinations of 

values for four different binary features – Geo_enabled, 

Follow_request_sent, Protected, and Verified 

Lang The language the user’s account is in. This feature only pertains 

to the account’s user interface – the Tweets may be in a 

different language.  
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Time_zone The time zone that a user declares themselves to be in. This 

feature is no longer available in the Twitter API due to GDPR 

compliance.  

Utc_offset Number of hours subtracted from or added to Coordinated 

Universal Time for the user’s time zone This feature is no 

longer available in the Twitter API due to GDPR compliance. 

Created_at UTC Date and time a Twitter account was created at 

Authenticating user The user account that a Twitter API request is sent from. These 

API requests may be for automating an account or collecting 

data on other, public accounts.  

Mahalanobis Distance Measures the distance between a given data-point and the mean 

of every other point in the data-set using the values of two 

given features 
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1 Introduction 

Today, many people communicate through social media. This medium has become a 

ubiquitous part of society that is used by many to read the news, contact friends, and plan 

events. Social networks such as Facebook tend to recommend users to connect with 

people already within their social circle rather than with complete strangers. While on the 

surface this seems intuitive and convenient, this feature leads to a systemic problem in 

social-media, the effects of which are just now beginning to have effects in real-life 

spaces. The social structure resulting from this feature, where everyone knows one 

another and shares similar beliefs, can create a homogeneous social network. In such a 

setting, people’s tolerance of alternate views and their willingness to accept information 

that contradicts what they already believe are reduced. This is referred to as selective 

exposure. Research has shown that people find information that agrees with what they 

already think more persuasive, and that they are more inclined to accept information that 

pleases them. These are referred to as confirmation bias and desirability bias, respectively. 

According to David M.J. Lazer, it is within this context that fake news has been able to 

find a mass audience [1].  

It is important to clarify what is meant when discussing ‘fake news’ in the context of this 

paper. Originally the term was referred to misleading information or news stories spread 

online. However, in recent years many political figures have begun using the term to 

dismiss or cast doubt on stories that do not support their positions. Because of this, many 

researchers and media companies have come to believe that the term has lost all academic 

meaning. These people have instead decided to use the term ‘false news’ [2]. However, 

the term ‘fake news’ is far more familiar to the average person and helps draw attention 

to the political factors behind its use. This word will therefore be used throughout this 

paper as an all-encompassing term for misinformation or disinformation that “mimics 

actual news media content in form but not in organizational process or intent”. 

Misinformation is defined as false or misleading information that may be partially wrong 

or taken out of context. Disinformation is defined as “false information intentionally 

spread to deceive people”. These definitions are taken from the research overview “The 

Science of Fake News”, written by David M.J. Lazer [1]. 
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Thanks to selective exposure, confirmation bias, and desirability bias, fake news not 

only confirms but also reinforces and strengthens people’s beliefs. According to J. 

Ratkiewicz et al., “when politically active individuals can avoid people and information 

they would not have chosen in advance, their opinions are likely to become increasingly 

extreme as a result of being exposed to more homogeneous viewpoints and fewer 

credible opposing opinions” [3]. Political researcher Cass Sunstein refers to this 

phenomenon, where existing biases in a group are shifted in an extreme direction, as 

group polarization [4]. There can and have been grave consequences to this kind of 

group polarization. Research has shown that there is a strong link between the spread of 

fake news stories and the radicalization of terrorists [5]. Examples of terrorist acts that 

resulted from online radicalization include the Christchurch mosque shooting in March 

2019 as well as the ‘Pizza-gate’ shooting in Washington, D.C. in December 2016 [6], 

[7].  

Worryingly, research suggests that polarizing fake news can be spread faster by social 

bots. In one experiment, researcher Luca Maria Aiello created a bot in an online forum. 

According to Aiello, “our bot was widely mistaken as a human user and … triggered the 

polarization of opinions of community members”. Aiello believes that because of how 

often social bots post content they may be viewed as more trustworthy and be better at 

influencing groups of people [8].  This is supported in a more recent study by Shao et. 

al., in which the authors analyzed 14 million messages spreading 400 articles on Twitter 

from 2016 to 2017. The authors found that bots played a large role in amplifying the 

presences low-credibility content shortly before it went ‘viral’ [9].   

A large part of this problem is the increasing difficulty online users have in 

distinguishing bots and people. Many data-scientists have dealt with this by using 

machine-learning to detect social-media bots. However, there is a dearth of research on 

the opposite: how bots might avoid detection. According to Zhouhan et. al., there is an 

ongoing virtual arms race between creators of malicious bots on Twitter and the 

detection systems used by Twitter and data scientists. Many methods for detecting bots 

have become less effective as bot-programmers catch on and refactor them [10]. Rather 

than study how the behavior of bots may change over time, as Cresci et. al. did in “The 

Paradigm Shift of Social Spambots”, the goal of this research is to ascertain how 

effective a poisoning attack may be on reducing the effectiveness of existing 

methodologies in detecting bots on Twitter [11].  
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2 Background 

2.1 Using Machine Learning to detect Bots on Twitter 

When classifying social media accounts as genuine or automated, many data scientists 

use supervised machine learning algorithms. These algorithms are trained on data about 

social media accounts that have already been classified. By analyzing which account 

features strongly correlate with how social media accounts have been categorized in the 

past, these algorithms can predict how social media accounts in the future may be 

classified. For example, say that a model is given training data from several hundred 

Twitter user accounts. These accounts are all given a label of either ‘bot’, or ‘human’. 

After being given the training data, the machine-learning algorithms ‘learn’ that accounts 

with a high number of tweets are much more likely to be labelled as ‘bots’. These 

algorithms then create a predictive model based on this, which scientists run on a test 

data-set. The predictive accuracy of these models is given by the ratio of test data that it 

correctly labels as ‘bot’ or ‘human’ to the data it misclassifies. There are many different 

algorithms that scientists used to distinguish between genuine and automated accounts, 

several of which served as a foundation for the methodologies used in this thesis.   

In their paper “Don’t @ Me”, researchers Jordan Wright and Olabode Anise designed a 

supervised machine-learning algorithm that could classify individual accounts on Twitter 

as bots. Using Twitter’s streaming API, Wright and Anise were able to collect data on 19 

million different accounts. Their data consisted of the last 200 tweets of each account. 

The researchers noted that bot accounts tended to have a higher average number of active 

hours per day, and that they may frequently change their screen-name, geolocation, and 

profile image to try to avoid detection. They found that a high number of bots were only 

active in liking or following other accounts, to make them look legitimate. The 

researchers dubbed these accounts ‘amplification-bots’. Other researchers have instead 

used the term ‘fake-followers’ to describe these bots [11]. By following reply-threads and 

chains of bots following other accounts, the researchers ultimately discovered a massive 

botnet of Twitter accounts that were scamming users into buying fake crypto-currencies 

[12].  
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Efthimion et. al. also created their own supervised machine learning algorithm for 

classifying bots on Twitter. Their algorithm was trained using the Cresci-2017 dataset. 

They also trained their algorithm with an archive of 200,000 tweets and 400 user profiles 

confirmed to have engaged in malicious activity to influence the 2016 US Election [13]. 

One way that bots may avoid detection is by posting the same messages repeatably, but 

slightly reworded. Efthimion et. al. measured the Levenshtein distance between the text 

of different tweets made by the same account to determine how similar they were. Their 

algorithm had a 96.81% success rate in identifying social bots. For their data, the best 

indicators that an account was a human were if it had geo-location enabled and had less 

than 30 followers. The best indicators that an account was a bot were if the language was 

set to English, it didn’t have a profile picture, and it followed over 1000 people. A very 

similar 97.13% success rate was achieved in identifying traditional spambots based on 

similar factors. The algorithm was 100% successful at identifying amplification bots, with 

heaviest weighted factors being if the account had a profile picture, had at least 30 

followers, 50 tweets, and twice as many followers as friends. There was a high success 

rate of 99.87% at identifying bots from the NBC dataset, with the most important 

indicator again being whether or not an account had a profile picture [14]. 

The studies outlined above involve supervised-machine learning. However, a supervised 

machine-learning algorithm is limited by the data used to train it. Wright and Anise’s 

algorithm, for example, was trained on crypto-currency Twitter profiles, and was less 

accurate at classifying non-crypto bots [12]. In contrast, Zhouhan et. al. presented an 

unsupervised learning algorithm which did not require any training data and was not 

biased toward any language, keyword, or topic. Their approach was focused on detecting 

bots based on duplicate content over time and the use of shortened URL’s, such as 

TinyURL. Zhouhan et. al. used the supervised algorithm BotOrNot and the unsupervised 

algorithm DeBot as benchmarks. BotOrNot focused on identifying individual bots, but it 

misclassified 40% of the bots identified by the researcher’s own algorithm. The 

unsupervised learning algorithm DeBot only had a 7% overlap of identified bots with 

Zhouhan et. al.’s algorithm. DeBot mostly identified news-organization bots, based on 

the synchronicity of Twitter posts. While their algorithm was able to identify more diverse 

groups of bots, it failed to detect more sophisticated bots, especially on the individual 

level [10]. 
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Freitas et. al.’s motivation was to see what kinds of social bots were most likely to succeed 

on Twitter. To that end, they created 120 social-bot accounts on Twitter. These bots were 

implemented using the open-source ‘Real-boy’ project and used one of 12 distinct IP 

addresses. They were each given a custom profile, including a screen-name, biography, 

and background image. The bots initially followed a pre-selected set of Twitter profiles. 

To avoid following real spam-bots, these social bots only followed back users who had a 

friend-to-follower ratio of 1:2. These bots either reposted or retweeted already existing 

content, or synthetically generated tweets using a Markov generator. At the end of the 

study, Twitter suspended 38 of the 120 social-bots. Most of these were the last ones that 

had been created, likely because by that point, Twitter’s systems had become suspicious 

of several IP addresses used. Bots that tweeted synthetically-generated text were also 

more likely to be detected, whereas bots that retweeted or reposted content were more 

successful [15]. 

2.2 Adversarial Machine Learning 

Adversarial Machine Learning is the idea that machine-learning algorithms that are 

tested and trained in a controlled environment may not perform as well ‘in the wild’ and 

may in fact be more liable to deception and manipulation. Researchers Xiao et. al. 

developed a framework for describing this type of setting. This framework consists of 

two main types of attacks: evasion and poisoning. During an evasion attack, attackers 

try to cause the algorithms to misclassify data after they have already been deployed 

[16].   

One example of this kind of attack was demonstrated by researchers Hosseini et. al. 

against the Perspective API. The Perspective API is a project recently started by Google 

and Jigsaw API that uses machine learning to detect bullying, harassment, and abusive 

speech. This API assigns a toxicity score to strings of text.  Perspective was trained by 

taking millions of comments from different publishers and asking panels of ten people 

to rate the comments on a scale from ‘very toxic’ to ‘very healthy’. The researchers 

tested this API by modifying the example comments used to demonstrate it and 

measuring how different modifications altered the toxicity score. They showed that an 

adversary can subtly alter a toxic phrase so that the API will assign a lower toxicity 

score to it. For example, the comment “Climate change is happening and it’s not 
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changing in our favor. If you think differently, you’re an idiot.” has a toxicity score of 

84%, but the comment “Climate change is happening and it’s not changing in our 

favor. If you think differently, you’re an idiiot.” has a score of 20%.  Through repeating 

this pattern of modifying specific words, Hosseini et. al. observed that the Perspective 

API wrongly assigns high toxicity scores to apparently benign phrases. For example, the 

phrase “they are not stupid and wrong” receives a score of 83%. They also found that 

the API tended to give higher scores to misspelled words. Hosseini et. al. concluded that 

to improve the Perspective API and make it less susceptible to adversarial machine 

learning, it should be trained on modified versions of toxic words, as well as implement 

a spell-checker [17]. 

Xiao et. al. described a poisoning attack as a type of adversarial machine learning where 

adversaries are aware of what kind of data is being collected and are able to introduce 

maliciously crafted samples.  Xiao et. al. simulated a poisoning attack on algorithms 

meant to detect malware in PDFs, and found that by introducing only a few malicious 

data-points, they were able to increase the algorithm’s misclassification rate by ten 

times [16].  

Another example of how data may be poisoned was provided by researchers Morstatter 

et. al. Their research suggests that Twitter’s Sample API that many data scientists use to 

stream tweets and collect data may also be vulnerable to manipulation. Twitter’s 

Sample API returns a pseudo-random 1% sample of all public tweets. Each tweet has a 

unique ID number, which contains a millisecond level timestamp for when it was 

generated. The Sample API selects all tweets with a timestamp between 657 and 666 

milliseconds. While a human user would be unable to time their tweet to the exact 

millisecond, a bot would.  

Morstatter et. al. designed an experiment to see if the millisecond timestamp of a tweet 

can be predicted. They sent tweets every ten milliseconds and observed the resulting 

timestamps. After repeating this process 6 times, they found a strong linear correlation 

between the time the tweet was sent and the tweet’s millisecond timestamp. Based on 

this evidence, they were able to design an algorithm for a Twitter Bot to time their 

tweets to maximize the number that appeared in the Sample API. Attackers may try to 

abuse this to introduce their own poisoned samples to a classification algorithm at 

training time [8].  
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Research has been done, however, in detecting these kinds of attacks so that data can be 

pre-filtered. In 2018 Paudice et. al. proposed a defense mechanism to mitigate optimal 

poisoning attacks based on outlier detection. Paudice et. al. tested multiple outlier 

detection algorithms, based on distance between datapoints and distribution. In their 

methodology, they first curate a small fraction of trusted datapoints. These are split into 

several classes, which are used to train different outlier detectors. They computed the 

threshold to detect outliers based on the outlier-ness score of each trained algorithm 

using the Empirical Cumulative Distribution Function (ECDF). They then collect a new 

untrusted dataset and remove all samples with an outlier-ness score over the threshold. 

It should be noted that this methodology fails if the data used to train the outlier 

detectors is also poisoned. 

This methodology was tested on the Spam-base dataset, consisting of multiple spam 

emails. They showed that with 20% poisoned samples and without outlier detection, the 

machine learning classification error increases from 0.112 to 0.195. After pre-filtering 

the data with Outlier detection, however, the classification error went back down to 

0.112. Similar results were achieved when testing outlier detection defense on the 

MNIST dataset, which is used for training algorithms to recognize handwritten digits. 

When no defense was applied, the classification error is 0.391, but when defense was 

applied, the error drops to 0.07  [19]. Based on these results, the potential use of outlier 

filters to remove poisoned data is promising. 

3 Methodology 

This research is focused on experimenting with and determining the effectiveness of 

several poisoning attack methods.  This research mainly makes use of the Cresci-2017 

dataset, consisting of ‘genuine’ accounts as well as ‘social-spambots’ and ‘traditional 

spambots’ [11], [20]. This data is publicly available in the Bot Repository, an online 

data repository maintained by the Network Science Institute of Indiana University [21]. 

The analysis of the Cresci-2017 data as well as the training and testing of models based 

on this data is performed using R-Studio. 
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Initial analysis of the data consists of establishing a ground-truth for the accuracy, 

precision, recall, and F1 Score of models trained on the Cresci-2017 data. These same 

metrics will be measured after several different poisoning attacks, in order to gauge 

their effectiveness. This process is repeated for models trained by several different 

algorithms, including K-Nearest-Neighbor, Generalized Linear Models, and Support 

Vector Machines. One method for mitigating a  poisoning attack that has been proposed 

is using outlier detection algorithms to filter out poisoned samples [19]. After measuring 

the impact of several different poisoning attacks, the effectiveness of a distance-based 

outlier-detector in mitigating these attacks is tested. The most optimal attack method is 

determined based on the results of these methods, and is analyzed to determine how it 

would be implemented in a real-life scenario. These methods are explained in more 

detail below. 

3.1 Data Preparation 

The Cresci-2017 data-set was initially collected from eight different sources. Three of 

these sources included a social media campaign for an Italian political candidate, 

promotions for a mobile phone app, and advertisements for products on Amazon. In this 

research, the accounts from these sources were joined into a single group labeled ‘social-

bot’. Accounts labeled by Cresci et. al. as “traditional spambots” were collected from four 

different sources. The first set of spambots was used as a training-set in research by Yang 

et. al. [22]. The second source was accounts the spammed scam URLs in 2014. The third 

and fourth source for these kinds of bots were automated accounts spamming job offers 

in 2013 and 2009, respectively. In this study, the spambots from these sources were joined 

into a single group labeled ‘spambot’. In their paper “Fame for Sale”, Cresci et. al. studied 

in-depth the phenomenon of fake-followers on Twitter. They used three of the online 

markets covered in this study - fastfollowerz.com, intertwitter.com, and 

twittertechnology.com - to buy 3351 fake accounts [23]. For this research, these accounts 

are also labelled as ‘fake-followers’. Cresci et. al. obtained a set of accounts confirmed to 

be human by randomly contacting 3474 different accounts. These accounts have been 

labeled ‘genuine’ [11].  

For this study, models are trained to distinguish between each different type of bot 

(spambot, social-bot, fake-follower) and genuine accounts. Because of this, a common 
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set of features is required. There were initially 37 different features within the Cresci-

2017 data-set. Before determining which features to use, the accounts were labeled and 

merged into a single file. The data was then further prepared by removing several features 

deemed unimportant or that might cause the models to become overfit.  

Of the initial 37 features in the Cresci-2017 data-set, twelve were binary, having values 

of true or false. Six of these binary features mostly had null values, neither positive or 

negative. The binary features following, notifications, contributors_enabled, and 

follow_request_sent were found to have 100% correlation with each-other – meaning 

only one of them was needed to obtain information on the other three. Because of this, 

most of these binary features were dropped. The three remaining binary features were 

follow_request_sent, geo_enabled, protected, and verified.  

A dummy-variable was created to collectively represent the four remaining binary 

features. The true (1) or false (0) value for each variable was multiplied by a power of 

ten until all four could be added up into a four-digit number of zeroes and ones. This 

dummy-variable was named geo_follow_protect_verify. Two examples of how the value 

for this feature is obtained are shown in Table 1.  

Table 1. Examples of Creating Dummy-Variable. 

geo_enabled follow_request_sent protected verified geo_follow_protect_verify 

1 1 0 0 1100 

0 1 0 1 0101 

 

Features that are unique to every Twitter account, such as id or screen_name, and 

features that have thousands of unique values, such as url or profile_banner, can cause 

the models to become overfit. This means that models will be trained to recognize 

specific Twitter accounts as genuine or automated, and may not be so effective when 

looking at a different set of accounts. Such features were also dropped from the data-set.  

This leaves ten features to determine one class. The ten remaining features are 

statuses_count, followers_count, friends_count, favourites_count, listed_count, lang, 

time_zone, the dummy-variable geo_follow_protect_verify, utc_offset, and created_at. 

As of May 23rd, 2018, the time_zone and utc_offset features are no longer available 

through the Twitter API user endpoint, in order to be GDPR compliant [24]. More details 
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about each of these features are given in the list of abbreviations and terms, and are taken 

from Twitter’s online documentation [25], [26], [27]. 

3.2 Initial Data Analysis 

Before experimenting with poisoning the data, an initial data analysis must be performed. 

This means establishing baselines for how accurately the class of each account (Genuine, 

Spambot, Social-bot, Fake-follower) can be predicted when the data is not poisoned. To 

do this, the Cresci-2017 dataset was imported and split into training and testing subsets. 

These were used to train and test three different models – one based on a Generalized 

Linear Model, one based on K-Nearest-Neighbor, and one based on a Support Vector 

Machine. After training these models, a confusion matrix was used to check their 

accuracy, recall, precision, and F1 Score. This process was repeated several times to 

obtain the metrics for the models in distinguishing genuine human operated Twitter 

accounts from social-bots, fake-followers, and spambots, respectively. The effectiveness 

of the experimental poisoning attacks is measured against these baselines. 

When designing an optimal poisoning attack, the features with the most impact on the 

classification of an account must be considered. Knowing what these features are is also 

useful when filtering outliers to try to mitigate a poisoning attack. To this end, several 

methods were used to determine which features most heavily influenced the classification 

of an account. The first method was simply obtaining the Fisher scores for every feature. 

Features with a higher Fisher score tend to more heavily predict the classification outcome 

of a model. The second method was measuring the impact on the F1-Score when a feature 

was excluded from data when training and testing a model. Features were ranked from 

most to least important based on which exclusions lowered the F1-Score the most. The 

average rank for each feature was calculated based on its order placement in both tables. 

A series of decision trees were used to visualize the decision boundary for the top two 

features between Genuine accounts and Spambots, Social-bots, and Fake-followers. 

3.3 Data Poisoning 

After successfully establishing baselines to measure against, the next step is to measure 

the effectiveness of a poisoning attack. Several different methods of poisoning the data 

were used, based on previous research.  
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3.3.1 Label-Flipping 

The first and simplest method used was a label-flipping attack based on research by 

Biggio et. al. [28], [29]. In the label-flipping attack, the data was poisoned by changing 

the class of a random row from bot to genuine or vice versa. Random samples of N% of 

rows were taken from the Cresci-2017 data-set, from N=1 to N=20. These rows were 

copied and had their labels flipped before being inserted back into the data-set. The 

Support Vector Machine (SVM) , Generalized Linear Model (GLM), and K-Nearest 

Neighbor (KNN) algorithms were used to fit this poisoned data to several models, with 

a cross-validation of ten. After generating these models, the accuracy, recall, precision, 

and F1-score were measured. In order to avoid bias toward a specific set of random 

samples, this process was repeated three times with different random samples taken to 

train and poison the data.  

3.3.2 Feature Poisoning 

While a simple label flipping attack may be effective in raising the classification error of 

the data, it may be more optimal to poison the data by altering the values of one of the 

features. The effectiveness of this method will be tested by selecting one feature 

determined by the initial data analysis to have the most impact on the classification of 

Twitter accounts as genuine or as automated. Several metrics will be used to measure the 

effectiveness of this method. The first metric will be the percentage of points that must 

be poisoned, ranging from 0 to 30%. The second metric will be how much the targeted 

feature must be altered. For example, the value of feature X may be incremented by a 

number from 1 to 2500 for each poisoned row.  

The accuracy and F1-score will be used to measure each combination of percentage of 

poisoned rows and how much they are altered by. The accuracy plainly represents how 

many accounts were correctly identified as either class.  The F1-Score is used to make 

the results easier to understand, since it gives the harmonic average of both a model’s 

recall and precision. 

This method will be repeated for nine models using three different algorithms to detect 

three different kinds of bots – Spambots, Fake-followers, and Social-bots. Intense 

computation was needed to generate these models. Therefore, in order to put less strain 

on the available hardware, this method was limited to using the KNN, GLM, and SVM 
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algorithms to train the models. The results for each model will be visualized using a series 

of 3D surfaces.  

3.4 Outlier Detection as a Method for filtering Poisoned Data Rows 

Paudice et. al. described a method of filtering out poisoned data points by using outlier 

detection algorithms [19]. In this paper, the effectiveness outlier detection method based 

on the Mahalanobis distance function is tested. While many distance functions such as 

Manhattan distance or Euclidean distance measure the distance between two distinct data-

points, the Mahalanobis distance instead measures the distance between one point in a 

data-set and the mean of every other point. This effectively compares a data-point to the 

rest of the data-set, and therefore makes this distance function very useful for detecting 

outlier data-points that stand out from the rest of the data. Data-points are marked as an 

outlier based on the two features determined to have the most impact on classification. In 

the next section, we outline the two most important features for detecting each kind of 

bot. By obtaining the Mahalanobis distance of a data point based on the values of these 

two features, we may determine whether or not a data point is an outlier.  

After poisoning the data, we use this method to mark outlier points. Data-points above a 

threshold for 80% of the data are marked as outliers and removed from the data-set before 

the poisoned data is used to train the models. The accuracy and F1-Score of the filtered 

data models are measured against that of the unfiltered models in the results below. 

4 Results 

4.1 Initial Data Analysis 

In Table 2, three different models have been trained using the GLM, SVM, and KNN 

algorithms to classify Twitter accounts from the Cresci-2017 data-set as either Genuine 

human users or Social Bots mimicking human users. The metrics for accuracy, recall, 

precision and the F1-Score are given. This process was repeated in Table 3 to classify 

accounts as Genuine human users or Fake-Followers, and in Table 4 to classify accounts 

as Genuine or as Spambots. 
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Table 2. Results for Genuine/Social-Bot Classifier. 

Model accuracy recall precision F1 Score 

GLM 93% 91% 97% 94% 

KNN 98% 99% 98% 98% 

SVM 96% 96% 98% 97% 

Table 3. Results for Genuine/Fake-follower Classifier. 

Model accuracy recall precision F1 Score 

GLM 98% 96% 99% 98% 

KNN 95% 95% 95% 95% 

SVM 95% 95% 95% 95% 

Table 4. Results for Genuine/Spambot Classifier. 

Model accuracy recall precision F1 Score 

GLM 95% 91% 99% 95% 

KNN 98% 97% 98% 97% 

SVM 93% 94% 91% 92% 

 

The tables below show the results for the two different feature selection methods. In the 

first method, each F1-Score is calculated by excluding the respective feature from the 

training data. This indicates the negative impact of the exclusion of that feature on the 

model, and therefore its importance. Table 5 shows the results for calculating the F1-

Score using this method on the data for detecting Social Bots.  

Table 5. Calculated F1 Score for Excluding Each Feature, for Detecting Social Bots. 

Feature F1 Score without 

favourites_count 0.9448047 

geo_follow_protect_verify 0.9488607 

created_at 0.9589940 

time_zone 0.9597032 

friends_count 0.9607935 

utc_offset 0.9614000 

lang 0.9621306 

listed_count 0.9624317 

statuses_count 0.9626558 

followers_count 0.9637003 



27 

Table 6. Fisher Score of Each Feature, for Detecting Social Bots. 

 

 

 

 

 

 

Table 6 shows the Fisher Scores for each feature of that data. Table 7 shows the different 

features used to classify Twitter accounts as genuine or social bots in descending order, 

based on the mean order of importance of features in Table 5 and Table 6. 

Table 7. Features in Descending Order of Importance, for Detecting Social Bots. 

Feature 

Geo_follow_protect_verify 

favourites_count 

time_zone 

created_at 

statuses_count 

Lang 

utc_offset 

friends_count 

listed_count 

followers_count 

 

Based on the results in Table 7, the two most important features for classifying a Twitter 

account as a Social-bot are the dummy-variable geo_follow_protect_verify and 

favourites_count.  

Feature Fisher Score 

Geo_follow_protect_verify 1.6 

Time_zone 0.73 

created_at 0.52 

statuses_count 0.24 

favourites_count 0.16 

lang 0.057 

utc_offset 0.04 

Listed_count 0.012 

Followers_count 0.0018 

friends_count 0.00025 
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The decision tree for classifying accounts as genuine or as social bots is illustrated in 

Figure 1. The feature Favourites_count indicates how many tweets a Twitter user has 

liked. Geo_follow_protect_verify represents four different binary features: geo_enabled, 

follow_request_sent, protected, and verified. Looking at this, most Twitter accounts that 

have liked less than four tweets are classified as bots. At the next branch, Twitter accounts 

that have a factor level for Geo_follow_protect_verify less than three are overwhelmingly 

likely to be bots. The two lowest factor levels for Geo_follow_protect_verify are 1 and 0. 

These correspond to a negative value for follow_request_sent, geo_enabled, and 

protected, and either a positive or negative value for verified. This means that being geo-

enabled or protected are good indicators that an account is genuine. Interestingly, it also 

means that being verified does not necessarily indicate that an account is genuine.  

 

 

 

 

 

Figure 1. Decision Tree for Genuine vs Social-bot Classifier. 
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Table 8. Features in Descending Order of Importance, for Detecting Fake-followers. 

Feature 

favourites_count 

friends_count 

statuses_count 

time_zone 

Geo_follow_protect_verify 

created_at 

Lang 

listed_count 

utc_offset 

followers_count 

 

The feature selection methods are repeated for the data used to train models to detect 

Fake-followers. Table 8 gives the final order of importance, akin to Table 7. The results 

for the Fisher Score and F1 Score methods can be seen in Appendix 1. Likewise, the 

decision tree for classifying accounts as genuine or as fake-followers is illustrated in 

Figure 2.   

 

Figure 2. Decision Tree for Genuine vs Fake-Follower Classifier. 
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Based on Table 8 and Figure 2, the two most important features for classifying a Twitter 

account as a Fake-follower are the favourites_count and the friends_count. The 

friends_count is the number of Twitter accounts an account is following. There seems to 

be an inverse correlation between the number of accounts followed and the number of 

tweets liked. Specifically, Fake-followers tend to follow more Twitter accounts but like 

few to zero tweets. Conversely, Genuine accounts tend to like more tweets but follow less 

accounts. This can be summarized as a favourite/friend ratio, where accounts with a ratio 

less than 0.03 are Fake Followers. This type of behavior is reflected by name of this bot, 

Fake-followers. Their sole purpose is to follow other Twitter accounts to make them seem 

more popular. Many Fake-followers can be bought or sold in online markets [30].   

The methods outlined above are repeated again for the data used to train models to detect 

Spambots. Table 9 gives the final order of importance. The results for the Fisher Score 

and F1-Score methods are in Appendix 1. The decision tree for classifying accounts as 

genuine or as spambots is shown in Figure 3.   

Table 9. Features in Descending Order of Importance, for Detecting Spambots. 

Feature 

favourites_count 

statuses_count 

Lang 

utc_offset 

created_at 

friends_count 

time_zone 

followers_count 

Geo_follow_protect_verify 

listed_count 
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Based on the results in Table 9 and Figure 3, the two most important features for 

classifying a Twitter account as a Spambot are favourites_count and statuses_count. The 

feature statuses_count gives the number of tweets or retweets made by an account. 

Similar to Fake-followers, there appears to be an inverse correlation between 

favourites_count and statuses_count. Specifically, Spambots tend to make a lot of tweets, 

but like few to zero tweets. Conversely, genuine accounts tend to make far fewer tweets 

but like more tweets made by others. Summarized, accounts with a favourite/statuses ratio 

less than 0.000876 are classified as Spambots.  

It is very interesting to note that a common sign that an account is any of the three types 

of bots in the Cresci-2017 data-set is if it has liked a very low number of tweets.  

 

 

 

Figure 3. Decision Tree for Genuine vs Spambot Classifier. 
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4.2 Random Label Flipping 

The figures below represent a Random-Label-Flipping-Attack on Data used to classify 

Twitter Accounts as Genuine or as Social Bots. Figures 4 through 6 show the results on 

models trained using GLM, KNN, and SVM algorithms, respectively. 

In the random-label-flipping attack, the models that were most sensitive to this type of 

data-poisoning were trained using a Generalized Linear Model algorithm. The models 

that were most resilient were trained using the K-Nearest-Neighbor algorithm.  

 

  Figure 4.  Results of Random Label Flipping Attack on GLM-trained Model for Detecting Social-Bots. 

 

 

Figure 5.  Results of Random Label Flipping Attack on KNN-trained Model for Detecting Social-Bots. 
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Figure 6.  Results of Random Label Flipping Attack on SVM-trained Model for Detecting Social-Bots. 

 

Figures 7 and 8 show the results of Random Label Flipping Attack on models trained by 

a GLM algorithm to detect Fake-Followers and Spambots, respectively. The results for 

the corresponding attacks on models trained using KNN and SVM are overall very similar 

to Figure 5 and Figure 6, but can be seen in Appendix 2. 

 

 

Figure 7. Results of Random Label Flipping Attack on GLM-trained Model for Detecting Fake-

Followers. 
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Figure 8. Results of Random Label Flipping Attack on GLM-trained Model for Detecting Spambots. 

 

4.3 Direct Feature Poisoning Attack 

Based on the initial data analysis, the most influential feature for detecting each different 

kind of bot appears to be favourites_count. The one exception to this is social-bots, the 

most influential feature for which is geo_follow_protect_verify. However, since this 

feature only has discrete values, the way it is altered cannot be measured the same way 

as altering a continuous feature can. Because of this, the results for this method of attack 

are measured based on how much the favourites_count of each data-set is altered.  

Similar to the random-label-flipping attack, a random 1-30% of account data-points are 

cloned. For every bot in these cloned accounts, the favourites_count is incremented by a 

random number. This number is taken from a range of 50 integers, starting at 1-50, then 

50-100, and continuing up to a range from 2450-2500. The favourites_count for genuine 

accounts is not altered. This is because to achieve the same effect, the favourites_account 

would have to be decremented, which runs the risk of giving a negative value for the 

feature.  

Three different models were trained using GLM, KNN, and SVM to detect spambots, 

social-bots, and fake-followers, with a total of nine models overall. For eight out of 

these nine models, no significant drop in accuracy, recall, precision, or F1 score was 
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recorded. The sole exception was the model trained using GLM to classify accounts as 

spambots or genuine users.  

The 3D surface representing the impact on this model’s accuracy is shown in Figure 8. 

For this surface, the Y-axis represents the percent accuracy, the X-axis represents the 

percent of rows poisoned, and the Z-axis represents the value that favourites_count is 

incremented by.  

 

At first glance the surface in Figure 8 looks very unusual. What it shows is that there is 

an inverse correlation between the accuracy of the model and how much the accounts are 

poisoned. As a greater percent of accounts are poisoned, and as the value favourites_count 

is incremented by goes up, accuracy goes down. However, there are diminishing returns. 

Accuracy tends to stop decreasing after dropping to around 80%. There are some 

unusually sharp drops in accuracy, however, which will be explained in the section below.  

 

Figure 8: Surface representing Accuracy of a single GLM-trained model for detecting Spambots. 
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The surface in Figure 8 is based on poisoning a specific set of data-points. The surface in   

Figure 9 gives a more general idea of how many points need to be altered and by how 

much. This surface was generated from the results of poisoning ten different sets of data. 

The 3D surfaces for the models trained using different algorithms to detect different bots, 

as well as the surfaces that Figure 9 was averaged from, can be viewed in Appendix 4.  

There is still the possibility that the surface in Figure 9 is biased towards a specific data-

set. Focus is put on three different minima within the surface. In the table below, the 

accuracy of these points is given, as well as the percent of rows poisoned and how much 

the favourites_count of each row was poisoned. To test whether these averaged minima 

are truly representative or biased, corresponding results are taken from models trained on 

two different poisoned data-sets. The results can be seen in Table 10.  

 

 

Figure 9. Average Accuracy of Ten Different GLM-trained models for detecting Spambots. 
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Table 10. Local Minima for 3D Surface for the Accuracy a Poisoned GLM model for detecting Spambots. 

Favourites_count 
incremented by 
number between 

Percent 
of rows 
poisoned 

Accuracy 
(Average of 
1st ten 
models) 

Accuracy 
(11th model) 

Accuracy 
(12th 

model) 

1700:1750 22% 82% 82.6% 83% 

250:300 19% 77% 88% 87% 

150:200 3% 79.5% 93% 94% 
 

 

The first minimum is the most consistent no matter which data-points are poisoned. If 

the favourites_count of 22% of the rows is incremented by a number between 1700 and 

1750, the accuracy of a model trained on that data in detecting bots will decrease to 

roughly 83%.  

The second minimum is less consistent. While the average results of the first ten 

poisoned models show that the accuracy will decrease to 77% if the favourites_count of 

19% of the rows is increased by a number between 250 and 300, these results diverge 

for the 11th and 12th models trained on different poisoned data-sets. For these models, 

poisoning that many rows by that much has less negative impact on their accuracy in 

detecting bots. This inconsistency between models is also true for the third minimum.  

Although the results for the third minimum are not consistent between different sets of 

rows being poisoned, they illustrate something important. The results of an algorithm 

trained to detect Twitter spambots can be drastically reduced to 79.5% by increasing the 

favourites_count of less than 3% of the rows (140 spambots) by as little as 150. Because 

these results are inconsistent with those of the 11th and 12th models, there must exist a 

specific set of data-points that the model is sensitive to being altered. A more 

sophisticated poisoning method is needed to determine what these data-points are. 

Unfortunately, solving this problem requires far more computing power than is 

available for this study. Future researchers with better resources may have an easier 

time determining this.   
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4.4 Outlier Detection as a Method for filtering Poisoned Data Rows 

4.4.1 Results of filtering Outliers from Random Label Flipping Attack 

Figure 10 represents Random Label Flipping Attack on a model trained using a GLM 

algorithm to detect social-bots; the same as Figure 4. However, in this attack, data-points 

with the greatest Mahalanobis-distance are removed before the data is used to train the 

model. Figure 11 directly compares the accuracy of the results in Figure 4 and Figure 10. 

 

Figure 11. Accuracy of GLM-trained Models for detecting social-bots, poisoned by Random Label 

Flipping Attack, With & Without Outlier Filter. 
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Figure 10. Results of Random Label Flipping Attack on GLM-trained model for detecting Social-bots 

with Outlier Filter. 
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Figure 12 and Figure 13 correspond to the results of a Random Label Flipping attack on 

a KNN-trained model in Figure 5. The same distance-based outlier method as before is 

used to mitigate the impact of the poisoned data.   

 

Figure 13. Accuracy of Poisoned Social-Bot KNN-trained Models for detecting social-bots, poisoned by 

Random Label Flipping Attack, With & Without Outlier Filter. 
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Figure 12. Results of Random Label Flipping Attack on KNN-trained model for detecting Social-bots 

with Outlier Filter. 
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Figure 14 and Figure 15 correspond to Figure 6, which shows the results of Random Label 

Flipping Attacks on an SVM-trained model for detecting social-bots. Again, 

Mahalanobis-distance is used to filter out poisoned data.  

 

Figure 14. Results of Random Label Flipping Attack on SVM-trained model for 

detecting Social-bots with Outlier Filter. 

 

 

Figure 15. Accuracy of SVM-trained Models for detecting Social-bots, poisoned by Random Label 

Flipping Attack, With & Without Outlier Filter. 
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Figure 16 corresponds to Figure 7  and gives the accuracy of a model trained to detect 

Fake-followers with and without an outlier filter. Figure 17 corresponds to Figure 8 in 

the same way, for models trained to detect Spambots. More detailed results for models 

trained using a Mahalanobis-distance-based outlier filter can be found in Appendix 3. 

 

 

Figure 17. Accuracy of Poisoned Spambot GLM Models With & Without Outlier Filter. 
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Figure 16. Accuracy of Poisoned Fake-Follower GLM Models With & Without Outlier Filter. 
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4.4.2 Results of filtering Outliers from Direct Feature Poisoning Attack 

The same distance-based outlier method using Mahalanobis-distance was applied to the 

GLM model used to detect Spambots. Figure 18 represents the impact on accuracy a 

direct-feature poisoning attack has after filtering outliers. Figure 19 similarly shows the 

impact on the model’s F1 Score. The Z axis of both figures represents the number, from 

1 to 2500, by which the favourites_count of the Spambot accounts is incremented. The X 

axis represents the percent, from 0 to 30, of accounts targeted by the poisoning attack. the 

Y axis gives the accuracy.  

 

 

Figure 18. Surface of the Accuracy of a GLM-trained model for detecting Spambots, with Outliers 

filtered. 
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Figure 18 and Figure 19 show that there is a drastic reduction in the impact of poisoned 

data after using a Mahalanobis-distance-based outlier filter. The models even appear to 

become more effective at correctly identifying Spambots then before their training data 

was poisoned.  

5 Analysis 

After analyzing the results, the next step is to determine an optimal attack strategy based 

on them. When designing an attack strategy, it is important to keep in mind the two 

 

 

 

Figure 19. Surface of the F1-score of a GLM-trained model for detecting Spambots, with Outliers 

filtered. 
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different types of adversarial machine learning attacks. According to the framework 

developed by Xiao et. al., a poisoning attack occurs when an attacker is able to manipulate 

the data used to train an algorithm. According to the same framework, an evasion attack 

occurs when an attacker manipulates the test data [16]. In the experiments for this 

research, focus was put on altering the training data before it was used to create a model 

for classifying accounts as bots or humans. Experimenting with altering the test data 

would be interesting, but any information gleaned from modeling an evasion attack would 

likely be out of date. As mentioned before by Zhouhan et. al., data scientists who study 

automated accounts on social media and the people who create those accounts are 

engaging in a ‘virtual arms race’ [10]. The behavior of bots on Twitter and other social 

media sites changes almost as quickly as researchers learn how to detect them. Automated 

accounts are already changing their behavior to evade detection. This research is more 

concerned with how a poisoning attack may affect bot-detection models.  

The results of the experiments show that a Direct Feature Poisoning attack outlined in 

Section 3.3.2 can be very effective if it targets specific data-points determined to have a 

high impact on the model. However, such an attack would be very computationally 

intensive in order to determine what the optimal data-points to target are. Even if an 

optimal set of points is found, it has been shown that using a simple outlier filter based 

on Mahalanobis-distance is sufficient to negate the impact of the attack. Based on the 

results, the optimal attack method that is the least computer-intensive and takes the least 

time is the Random Label Flipping attack.  

In order to implement this method, an attacker must have knowledge of what training data 

is being collected, when it is being collected, and by whom. Since this attack method 

explicitly targets supervised-learning algorithms, the attacker must also know who is 

labeling the data. Many researchers use crowdsourcing from sites such as Amazon 

Mechanical Turk or Figure-Eight to create a ‘ground truth’ and efficiently label large 

data-sets [11]. By targeting and compromising this process, an attacker can potentially 

reduce the ultimate accuracy of a Twitter-bot detector to 75%. This attack is illustrated in 

Figure 20.  
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6 Conclusion 

The possibility of a poisoning attack against training data for Twitter Bot detection 

models deserves attention. Right now, these models are regularly retrained on new data 

as bots change their behavior to avoid detection. This training data is already difficult to 

collect. While obtaining Twitter account data using the Twitter API is relatively simple, 

finding pre-labeled data-sets of accounts confirmed to be human or bots is very difficult. 

The Cresci-2017 data-set used in this study contained a substantial set of Twitter 

accounts, but many of the automated accounts in the data-set were very old, some having 

been created as early as 2009 [11].  If someone influenced or altered this training data 

maliciously, it would make it even harder to train models to accurately spot automated 

accounts. 

 

Figure 20. Illustration of Proposed Attack Method for Targeting Crowdsourcing Process. 
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Analyzing the results of this research shows that such bot-detection models are indeed 

very vulnerable to poisoning attacks. By simply introducing mis-labeled data-points into 

the Cresci-2017 data-set, the accuracy, recall and precision of the models were lowered 

by as much as 20%. This label-flipping attack was determined to be the most optimal 

attack, since the impact was mostly consistent regardless of what data-points were mis-

labeled or what algorithm was being trained on them. One way an attacker could 

implement this method in real life is by participating directly in the crowdsourcing 

process that many researchers use to label Twitter accounts as humans or bots. 

Depending on what tools they have, attackers may be able to have an even greater 

negative impact on the accuracy of these models than the aforementioned label-flipping 

attack. Future researchers must investigate what these more optimal poisoning attack 

methods might be. Evidence for one such method was found in this study. By targeting a 

specific set of data-points in a poisoning attack instead of randomly-selected ones, an 

attacker could maximize their negative impact on the accuracy of a model in detecting 

bots. Hardware limitations prevented further investigation, but data scientists with more 

resources may find that the accuracy of a model for detecting bots may be lowered by as 

much as 50% after only poisoning less than a hundred data-points.  

Other avenues for future research include testing the resilience of different models besides 

the KNN, GLM, and SVM-trained models used in this study. While the Mahalanobis-

distance-based outlier filter was found to be very effective in removing poisoned data, it 

may not be as effective against more sophisticated poisoning attacks. Researchers should 

explore different kinds of methods for removing or mitigating the impact of poisoned data 

as well. This phenomenon is not limited to Twitter either. Bots have a presence across all 

forms of social-media, meaning there is the potential for similar poisoning attacks against 

models for detecting bots on Facebook, Reddit, or Instagram.  

By better understanding this form of adversarial-machine-learning, data scientists can 

make their own algorithms for detecting bots more resilient. In doing so, they can reduce 

the impact of these poisoning attacks, and ultimately mitigate the negative impact that 

malicious bots have on social-media. 
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Appendix 1 – Data Analysis  

Table 11. Calculated F1 Score for Excluding Each Feature, for Detecting Fake-Followers. 

Feature F1 Score 
without 

Friends_count 0.9584701 

favourites_count 0.9610283 

Lang 0.9612841 

Created_at 0.9613791 

Statuses_count 0.9627992 

Listed_count 0.9642820 

Time_zone  0.9651803 

Followers_count 0.9653676 

Geo_follow_protect_verify 0.9673579 

Utc_offset 0.9700938 

 

 

Table 12. Fisher Score of Each Feature, for Detecting Fake-Followers. 

Feature Fisher 
Score 

Geo_follow_protect_verify 1.2 

Time_zone 0.62 

statuses_count 0.3 

favourites_count 0.16 

friends_count 0.027 

Created_at 0.024 

Listed_count 0.015 

Utc_offset 0.013 

lang 0.0078 

Followers_count 0.0064 
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Table 13. Calculated F1 Score for Excluding Each Feature, for Detecting Spambots. 

Feature F1 Score without 

favourites_count 0.8945241 

Utc_offset 0.9224079 

Statuses_count 0.9261423 

friends_count 0.9352764 

Followers_count 0.9357285 

lang 0.9362008 

Listed_count  0.9362119 

Created_at 0.9365591 

Geo_follow_protect_verify 0.9371561 

Time_zone 0.9481067 

 

 

Table 14. Fisher Score of Each Feature, for Detecting Spambots. 

Feature Fisher Score 

Created_at 0.69 

Lang 0.42 

Statuses_count 0.2 

Favourites_count 0.16 

Time_zone 0.14 

Utc_offset 0.069 

Geo_follow_protect_verify 0.058 

Friends_count 0.0011 

Listed_count 0.00035 

Followers_count 0.000032 
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Appendix 2 – Label Flipping 

 

Figure 21. Results of Random Label Flipping Attack on KNN-trained Model for Detecting Fake-

Followers. 

 

 

 

Figure 22. Results of Random Label Flipping Attack on SVM-trained Model for Detecting Fake-

Followers. 
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Figure 23. Results of Random Label Flipping Attack on KNN-trainede Model for Detecting Spambots. 

 

 

 

Figure 24. Results of Random Label Flipping Attack on SVM-trained Model for Detecting Spambots. 

 

 

65%

70%

75%

80%

85%

90%

95%

100%

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15% 16% 17% 18% 19% 20%

PERCENT OF ROWS POISONED

Random Label Flipping Attack on KNN

accuracy recall precision F1 Score

65%

70%

75%

80%

85%

90%

95%

100%

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15% 16% 17% 18% 19% 20%

PERCENT OF ROWS POISONED

Random Label Flipping Attack on SVM

accuracy recall precision F1 Score



54 

Appendix 3 – Comparison Charts 

 

Figure 25.  Results of Random Label Flipping Attack with Outlier Filter on GLM-trained Model for 

Detecting Fake-followers 

 

 

Figure 26. Results of Random Label Flipping Attack with Outlier Filter on KNN-trained Model for 

Detecting Fake-followers 
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Figure 27. Accuracy of KNN-trained Models for detecting Fake-followers, poisoned by Random Label 

Flipping Attack, With & Without Outlier Filter. 

 

 

Figure 28. Results of Random Label Flipping Attack with Outlier Filter on SVM-trained model 

for detecting Fake Followers 
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Figure 29. Accuracy of SVM-trained Models for detecting Fake-followers, poisoned by Random Label 

Flipping Attack, With & Without Outlier Filter. 

 

Figure 30.  Results of Random Label Flipping Attack with Outlier Filter on GLM-trained model for 

detecting Spambots 
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Figure 32. Accuracy of KNN-trained Models for detecting Spambots, poisoned by Random Label 

Flipping Attack, With & Without Outlier Filter. 
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Figure 31.  Results of Random Label Flipping Attack with Outlier Filter on KNN-trained model for 

detecting Spambots 
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Figure 33. Results of Random Label Flipping Attack with Outlier Filter on SVM-trained model for 

detecting Spambots 

 

 

Figure 34. Accuracy of SVM-trained Models for detecting Spambots, poisoned by Random Label 

Flipping Attack, With & Without Outlier Filter. 
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Appendix 4 – Poisoned Surfaces 

 

Figure 35. F1 Score of GLM model trained to detect Fake-followers after Favourites_count is 

poisoned. 

 

Figure 36. Accuracy of GLM model trained to detect Fake-followers after Favourites_count is 

poisoned. 
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Figure 37. F1 Score of KNN Model trained to detect Fake-followers after Favourites_count is 

poisoned. 

 

Figure 38. Accuracy of KNN model trained to detect Fake-followers after Favourites_count is 

poisoned. 

 



61 

 

 

 

. 

 

Figure 39. F1 Score of SVM Model trained to detect Fake Followers after Favourites_count is 

poisoned 

 

Figure 40. Accuracy of SVM Model trained to detect Fake-followers after Favourites_count is 

poisoned. 
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Figure 41. F1 Score of GLM Model trained to detect Social-bots after Favourites_count is poisoned. 

 

Figure 42. Accuracy of GLM model trained to detect Social-bots after Favourites_count is poisoned. 
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Figure 43. F1 Score of KNN Model trained to detect Social-bots after Favourites_count is poisoned. 

 

Figure 44. Accuracy of KNN model trained to detect Social-bots after Favourites_count is poisoned. 
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Figure 45. F1 Score of SVM Model trained to detect Social-bots after Favourites_count is poisoned. 

 

 

Figure 46. Accuracy of SVM model trained to detect Social-bots after Favourites_count is poisoned. 
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Figure 47. F1 Score of KNN Model trained to detect Spambots after Favourites_count is poisoned. 

 

 

Figure 48. Accuracy of KNN model trained to detect Spambots after Favourites_count is poisoned. 
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Figure 49. F1 Score of SVM Model trained to detect Spambots after Favourites_count is poisoned. 

 

 

Figure 50. Accuracy of SVM model trained to detect Spambots after Favourites_count is poisoned. 
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Figure 51. F1 Score of GLM model trained to detect Spambots after favourites_count is poisoned 

 

Figure 52. Average F1 Score of Ten GLM Models trained to detect Spambots 
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Figure 53. Surface representing Accuracy of a GLM-trained model for detecting Spambots with the 1st 

alternate set of accounts poisoned. 

 

 

Figure 54. Surface representing Accuracy of a GLM-trained model for detecting Spambots with the 2nd 

alternate set of accounts poisoned. 
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Figure 55. Surface representing Accuracy of a GLM-trained model for detecting Spambots with the 3rd 

alternate set of accounts poisoned. 

 

Figure 56. Surface representing Accuracy of a GLM-trained model for detecting Spambots with the 4th 

alternate set of accounts poisoned. 
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Figure 57. Surface representing Accuracy of a GLM-trained model for detecting Spambots with the 5th 

alternate set of accounts poisoned. 

 

Figure 58. Surface representing Accuracy of a GLM-trained model for detecting Spambots with the 6th 

alternate set of accounts poisoned. 
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Figure 59. Surface representing Accuracy of a GLM-trained model for detecting Spambots with the 7th 

alternate set of accounts poisoned. 

 

Figure 60. Surface representing Accuracy of a GLM-trained model for detecting Spambots with the 8th 

alternate set of accounts poisoned. 
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Figure 61. Surface representing Accuracy of a GLM-trained model for detecting Spambots with the 9th 

alternate set of accounts poisoned. 

 


