
Tallinn 2018

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Department of Software Science

Artur Gummel 163303IAPM

MODEL-BASED TESTING WITH TESTIT:

THE ROBOT OPERATING SYSTEM CASE-

STUDY

Master’s thesis

Supervisor: Jüri Vain

 PhD

Co-supervisor: Gert Kanter

 PhD student

Tallinn 2018

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Tarkvarateaduse instituut

Artur Gummel 163303IAPM

MUDELI-PÕHINE TESTIMINE

KESKKONNAGA TESTIT: ROBOTITE

OPERATSIOONISÜSTEEMI

JUHTUMIUURING

magistritöö

Juhendaja: Jüri Vain

 Doktorikraad

Kaasjuhendaja: Gert Kanter

 Doktorant

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Artur Gummel

07.05.2018

4

Abstract

The aim of this thesis is to confirm the possibility of adaptation of model-based testing to

scalable long-term autonomy testing of ROS-based robot software.

This thesis includes the theoretical foundations of model-based testing, its usage in

robotics, and the tools – UPPAAL, UPPAAL TRON, DTRON used for testing real-time

systems. As for practical results of this thesis, the usability of test development toolchain

has been demonstrated together with the model-based testing workbench TestIt for its

application in robotics. The feasibility of studied approach has been proven by

implementing the full workflow from test model specification till test suite execution. The

implemented test cases achieved their goal by navigating an autonomous platform

simulation in the confined area.

The thesis is in English and contains 40 pages of text, 4 chapters, 20 figures, 1 table.

5

Annotatsioon

Mudeli-põhine testimine keskkonnaga TestIt: robotite

operatsioonisüsteemi juhtumiuuring

Käesoleva magistritöö eesmärgiks on mudelipõhise testimise kohandamine ROS-põhise

robotitarkavara pikaajalise autonoomia testimiseks.

Töö sisaldab mudelipõhist testimise teoreetilisi aluseid, mudelipõhise testimise

kasutamist robootikas ja testimise automatiseerimise vahendite UPPAAL, UPPAAL

TRON, DTRON rakendusvõimaluste uuringut. Selle töö praktilise tulemusena

demonstreeritakse robotite testimiskeskkonna TestIt kooskasutuse võimalusi ja

otstarbekust UPPAALi tööriistade perega ja seda just autonoomse navigatsiooni tarkvara

testimisel. Lähenemise otstarbekuse näitamiseks on implementeeritud testide

arendusprotsess testinõuete ja mudeli spetsifitseerimisest testide täitmiseni. Töös

demonstreeriti, et realiseeritud testid, mille käigus toimub autonoomse platvormi

navigeerimise piiratud alal, saavutavad oma eesmärgi.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 40 leheküljel, 4 peatükki, 20

joonist, 1 tabeli.

6

List of abbreviations and terms

Distributed system A distributed system is a set of autonomous computers that are

interconnected via a computer network and are equipped with

the software needed to create an integrated environment [1].

Determinism Determinism is a system property in which the output of the

system and its subsequent state are uniquely determined by this

state and input [2].

Non-Determinism Non-Determinism is a system property in which the output of

the system and its subsequent state are not uniquely determined

by this state and input [2].

Conformance testing Type of testing which purpose is to verify that the system

complies with the specified requirements [3].

MBT Model-Based Testing.

Adapter Helps to convert symbolic inputs of the model in MBT to the

format executable by SUT and SUT outputs back to symbolic

form.

Real-time system Type of hardware or software that works under time constraints.

Mission Critical system Systems whose failure might cause catastrophic consequences:

someone dying, damage to property, severe financial losses.

SUT System Under Test.

UPPAAL An integrated tool environment for modelling, simulation, and

verification of real-time systems developed by Uppsala and

Aalborg Universities [6].

UPPAAL TRON Testing tool suited for black-box conformance testing of timed

systems [7].

UPPAAL Model Model of a real-time system represented as a network of

extended timed automata.

UPTA Uppaal Timed Automata.

DTRON Distributed Testing Real-time systems Online is a command-

line application based on UPPAAL TRON and intended for

model-based testing of distributed systems [8].

ROS Robot Operating System [9].

TestIt A Scalable Long-Term Autonomy Testing Toolkit for ROS

[11].

7

Table of contents

1 Introduction ... 11

1.1 Motivation .. 11

1.2 Related work ... 14

1.3 Thesis problem statement and main assumptions... 15

1.4 Thesis structure ... 16

2 Preliminaries .. 17

2.1 Model-based testing .. 17

2.2 Uppaal Timed Automata .. 18

2.2.1 The Uppaal modelling language .. 20

2.2.2 Uppaal simulator ... 23

2.2.3 The Uppaal verifier .. 24

2.3 Uppaal TRON ... 26

2.4 DTRON .. 26

2.5 Behaviour trees ... 27

2.6 MBT for ROS-based robotics ... 29

3 Adaptation of the MBT workbench TestIt .. 31

3.1 TestIt architecture and design principles .. 31

3.2 Integrating DTRON with TestIt ... 32

3.2.1 Protocol buffers installation .. 32

3.2.2 Spread toolkit installation .. 33

3.2.3 Adapter .. 34

3.2.4 Dockerfile .. 38

3.3 Test generation for DTRON ... 38

3.3.1 Mapping topological maps to Uppaal TA ... 39

4 Case study: Autonomous platform navigating in the confined area 44

4.1 General description and test goals .. 44

4.2 Generating Uppaal TA models ... 45

4.3 Generating tests .. 45

4.4 Executing tests .. 46

8

4.5 Testing results ... 48

5 Summary .. 49

References .. 51

Appendix 1 – Example of Uppaal model ... 54

Appendix 2 – Dockerfile of the base image ... 56

Appendix 3 – Dockerfile of SUT ... 58

Appendix 4 – Dockerfile of testing base image ... 59

Appendix 5 – Oracle Test1 ... 60

Appendix 6 – Oracle Test2 ... 62

Appendix 7 – Oracle Test3 ... 63

Appendix 8 – Configuration file ... 64

Appendix 9 – Example of passed Test1 ... 67

9

List of figures

Figure 1. Model-based testing process [36].. 12

Figure 2. Example of the Model-based testing process. ... 17

Figure 3. Example of the automaton with locations and edge.. 20

Figure 4. Example of synchronisation expression. ... 21

Figure 5. Example of initial location. ... 21

Figure 6. Example of urgent location. .. 22

Figure 7. Example of committed location. ... 22

Figure 8. Example of invariant expression. .. 22

Figure 9. Example of guard expression. ... 22

Figure 10. Example of update expression. ... 23

Figure 11. Example of selection expression. .. 23

Figure 12. Example of reachability property. ... 25

Figure 13. Example of safety properties. .. 25

Figure 14. Example of liveness properties. .. 26

Figure 15. Example of DTRON configuration. .. 27

Figure 16. Relationships between DTRON, TRON AND SUT. 30

Figure 17. TestIt architecture.. 32

Figure 18. Example of willow garage map created by the author of this thesis (a) and

taken from turtlebot gazebo package (b). ... 41

Figure 19. Example of Uppaal model processes. ... 43

Figure 20. Example of node map. .. 45

10

List of tables

Table 1. The node types of the BT [31]. ... 29

11

1 Introduction

1.1 Motivation

Due to a high level of integration of heterogeneous components in autonomous robotics

reaching the sufficient level of quality presumes extensive testing of functional as well as

performance aspects of robot software. That is not possible without systematic

methodology supported by test automation tools.

The goal of using test automation tools is to simplify the preparation of tests as well as

executing the tests automatically and tracing the root causes of detected bugs.

According to different sources the testing and verification may take up to 50% of

development resources. In automotive and medical domain the system integration level

test and verification cause project delays respectively in 63% and in 66.7% of cases [34].

Under these considerations, any increase in productivity of testing methods and tools has

a strong impact on the productivity of the whole development process and on autonomous

systems software assurance in general.

The highest level of test automation has been achieved by means of model-based testing.

Model-based testing (MBT) is considered to be generally black-box testing. MBT is

divided into two types offline and online depending on whether tests suites are generated

before or during the test execution. Both types consist of such process steps as a system

and testing requirements specification, SUT modelling, test generation, test execution and

analysing results (Figure 1). MBT is typically a part of model-based development

techniques that provides the opportunities for test automation and reduces systems

validation and verification effort [35]. MBT suggests the use of a formal model for

specifying the expected behaviour of System Under Test (SUT) and the test purpose. For

instance, the behaviours or model elements to be covered by the test are subject to test

purpose specification. Both, the SUT model and test purpose specification are pre-

requisites for automatic test generation.

12

One standard use of MBT is conformance testing but it can be applied also in other

types of testing and monitoring such as mutation testing, runtime monitoring, etc.

Figure 1. Model-based testing process [36].

Model-based testing has own advantages and disadvantages. The main goal of MBT is to

check if real-time systems conform with requirements specification.

As advantages can be distinguished:

• model hides irrelevant details of implementation;

• automatic generation and execution of tests;

13

• easier test suite maintenance;

• systematic coverage of requirements;

• human errors are eliminated;

• relevant for regression testing where SUT model updates are much easier to do

than rewriting test scripts.

As for disadvantages, following can be outlined:

• modelling is not the simplest part;

• modelling overhead needs an understanding of functionality, its representation on

the right level of abstraction, knowledge of formal methods and test purpose;

• cannot verify all matches between environment and model.

Traditional testing or manual testing means executing the software in order to exercise

and discover error without using any automation tools.

Manual testing also has its advantages and disadvantages:

Advantages of manual testing:

• still most handy and common method in the software industry;

• the formal spec is not needed;

• applicable directly on executable software;

• depends on tester’s intuition and experience;

• can be done by any tester.

Disadvantages of manual testing:

• time-consuming, some automation tool exists (for running tests, organizing test

data and reporting);

• not exhaustive, errors often survive;

14

• hard to reach 100% test coverage.

The aim of this thesis is to confirm the possibility of adaptation of model-based testing to

scalable long-term autonomy testing of ROS-based robot software. To reach this goal the

thesis focuses on the development of the integration and conformance testing toolkit

TestIt.

1.2 Related work

This section gives an overview of the works that use model-based testing in distributed

real-time systems with such tools as UPPAAL, UPPAAL TRON and DTRON.

First, we have a look at the development of related tools for model-based online black-

box conformance testing of real-time systems.

To start with, the main primary tool used in this thesis is UPPAAL TRON. As reported

in [13] it was presented in 2005 as a recent addition to the UPPAAL environment. It is an

online testing tool which means that it is possible to generate and execute tests in real-

time without breaks. With TRON it became possible to check the compatibility of inputs

and outputs between a model and system under test. That functionality allows detecting

errors of interaction between environment and implementation models in the early stages

of design.

The paper [4] presents the DTRON tool which is a wrapper of UPPAAL TRON to support

multicast messaging between the distributed test components. In this paper also examples

of modelling and runtime limitations and considerations are given. The DTRON was

created because of the need to work with complex human-assistive robots such as Scrub

Nurse Robot [14]. There was a serious question how to be sure that software is at a high

level of quality and at the same time how to guarantee the safety of robot actions and the

development of this framework is adhered to these questions.

The paper [21] gives the complete overview of the DTRON framework. In the beginning,

there is a theoretical basis of Cyber-Physical Systems principles which are used in the

DTRON. Further, the DTRON software architecture with entire details of subsystems is

described. Subsystems include the integration mechanism and the communication model.

Most of the work is done by DTRON automatically. This concerns Reporters or Adapters

15

then communication via Spread toolkit and DTRON API. This makes developer’s life

easier because in TRON it would have to be done manually. DTRON has already been

used in three distributed testing case studies. These are city street light controller network,

interbank trading system and robot navigation system.

Next, we will consider the literature, which is directly related to model-based testing of

robots.

The paper [14] includes results of using DTRON model-based distributed control

framework for human-assistive robots. DTRON provided a flexible infrastructure to

integrate robot’s cognitive functions. Further, DTRON is easily adaptable and can be used

on multiple hardware and operating systems.

The paper [15] is based on a previous paper [14] and is an extension to the Scrub Nurse

Robot case-study. In this paper, authors are interested in conformance testing of using

UPPAAL TRON tool to check the correctness of the system which is verified by on-line

testing. In the article, the experience of researchers confirmed this.

The next paper [19] is closely related to this thesis. In this paper, model-based testing for

robots built using Robot Operating System was applied with the aim to improve the

software quality. According to the reported results, high code coverage was achieved.

This helped to find unrelated problems in configurations, so it demonstrated that DTRON

could be used as a validation tool as well. The main goal was to look at the robot

behaviour when the environment is changing around the robot. In other words, to make

the environment as close as possible to real conditions with which the robot needs to cope.

In the article, it is described how to automatically generate the model from the topological

map. This method should be adopted in this thesis as well and expanded to allow

modifying it by structural coverage items – traps in the map model. In addition, the article

gives an overview of other possible ways of testing robots built on ROS.

1.3 Thesis problem statement and main assumptions

The purpose of this thesis is to explore model-based testing tools for real-time distributed

systems by integrating them into a ROS-based scalable long-term autonomy testing

toolkit. The practical part of this thesis is to implement an adapter and interface between

Distributed Testing Real-time system ONline (DTRON) and Robot Operating System

16

(ROS). In order to test a robot with generated Uppaal models by running integration and

conformance tests, the Uppaal models should be generated automatically. Constructing

Uppaal models manually is labour-intensive and time-consuming. The workflow

incorporates mapping a topological map or the behaviour trees to model structures on the

basis of which a full model will be created by adding timing and synchronization

attributes. The input would be the behaviour of the robot, and as an output Uppaal model

to which can add structural coverage items – traps. This approach is interesting because

it should be possible to control the system under test with the aim to test it as fast as

possible and to find as much as possible “defective” behaviours.

1.4 Thesis structure

The thesis is divided into four chapters. The first chapter gives an overview of the benefits

of using model-based testing in comparison with manual testing, also provides an

overview of using model-based testing in related works. The second chapter includes the

theoretical foundations of model-based testing, its use in robotics, and the tools used in

this work UPPAAL, UPPAAL TRON, DTRON, and behaviour trees. The third chapter

includes the practical results about the adaptation of the model-based testing workbench

TestIt. The fourth chapter contains a general description and test goals of autonomous

platform navigating in the confined area.

17

2 Preliminaries

2.1 Model-based testing

A model is an abstract description of a system’s behaviour. The model-based testing is a

testing technique where the test cases are obtained from a formal specification or a model.

MBT is typically black-box testing since models are usually built on the basis of the

requirements that specify expected behaviour observable on the external interfaces of the

system under test (SUT). The diagram of MBT main steps is depicted in Figure 2.

The purpose of modelling in conformance testing is to describe the system requirements.

The model could be specialized depending on the tests cases, test environments and test

strategies, but the model can be also more general covering several test cases. Test

requirements are needed for test design. Based on the test requirements and model

specification tests generation takes place. During the test execution, the output from the

SUT is compared with the expected output described in the model. Depending on the

result of the comparison, the test is completed with the result test decision passed or

failed.

Figure 2. Example of the Model-based testing process.

Model-based testing is considered to be generally black-box testing which includes

functional and non-functional tests without access to the internal structure of the SUT.

18

That means there is no knowledge of how the system is built, what code is running in it.

We could only change the inputs and observe the behaviour of the system by outputs. The

main purpose of black-box testing is error checking in functional and non-functional

requirements of the SUT.

There are two types of model-based testing depending on how the test planning is done

and test stimuli are generated. The first one is offline testing which means that the test

suites are generated before executing the test while online testing means that the test suites

are generated during the test execution.

We will consider online testing. It has several advantages. It is possible to run tests for

several days. It is needed, for example, if we want to perform stress testing. Stress testing

is a type of testing focused on determining how the system will perform under increased

loads. Then, online testing can be easily adapted to non-determinism in real-time models

that allows expecting an output in some interval of time and one more important feature

the transition to the next step is carried out only after the output was obtained from the

previous step.

The main reasons why it is worth using model-based testing are

- easier test suite maintenance because it is possible to link all the tests to system

requirements.

- Human errors are eliminated since tests are generated automatically.

- With model-based testing, we could improve test quality since the computer can

generate much more complex combinations of behaviours for the system under

test compared to that a person can comprehend.

- When testing nondeterministic systems with online model-based testing the test

suites could run as long as needed.

2.2 Uppaal Timed Automata

Uppaal is a toolkit for modelling, simulation (validation) and verification of real-time

systems. It is jointly developed by Uppsala and Aalborg Universities [6]. “Real-time

systems are defined as systems in which the correctness of an operation depends not only

19

on the logical result of computation, but also on the time at which the results are

produced” [25].

Uppaal has three main parts a simulator, a model-checker engine and a graphical editor.

The simulator allows to validate the system behaviour and determine at an early stage

mismatch in the model because if there are errors in the model it is impossible to run the

simulation. The model-checker engine helps to verify if the model satisfies certain

correctness criteria expressed in Timed Computation Tree Logic (TCTL). The model

description language used in the model editor was created to describe a nondeterministic

system behaviour as networks of automata and it was extended with clock and data

variables in order to be able to describe real-time systems.

The next definitions describe syntax and semantics on which the Uppaal model-checker

is based:

“Definition 1 (Timed Automaton). A timed automaton is a tuple (𝐿, 𝑙0, 𝐶, 𝐴, 𝐸, 𝐼), where

L is a set of locations, 𝑙0 ∈ 𝐿 is the initial location, C is the set of clocks, A is a set of

actions, co-actions and the internal 𝜏-action, 𝐸 ⊆ 𝐿 × 𝐴 × 𝐵(𝐶) × 2𝐶 × 𝐿 is a set

of edges between locations with an action, a guard and a set of clocks to be reset, and

𝐼: 𝐿 → 𝐵(𝐶) assigns invariants to location” [26].

“Definition 2 (Semantics of TA). Let (𝐿, 𝑙0, 𝐶, 𝐴, 𝐸, 𝐼) be a timed automaton. The

semantics is defined as a labelled transition system 〈𝑆, 𝑠0, →〉, where 𝑆 ⊆ 𝐿 × ℝ𝐶 is the

set of states, 𝑠0 = (𝑙0, 𝑢0) is the initial state, and → ⊆ 𝑆 × (ℝ≥0 ∪ 𝐴) × 𝑆 is the

transition relation such that:

- (𝑙, 𝑢)
𝑑
→ (𝑙, 𝑢 + 𝑑) 𝑖𝑓 ∀ 𝑑′: 0 ≤ 𝑑′ ≤ 𝑑 ⇒ 𝑢 + 𝑑′ ∈ 𝐼(𝑙), 𝑎𝑛𝑑

- (𝑙, 𝑢)
𝑎
→ (𝑙′, 𝑢′) 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑒 = (𝑙, 𝑎, 𝑔, 𝑟, 𝑙′) ∈ 𝐸 𝑠. 𝑡. 𝑢 ∈ 𝑔, 𝑢′ = [𝑟 ↦

0]𝑢, 𝑎𝑛𝑑 𝑢′ ∈ 𝐼(𝑙′),

where for 𝑑 ∈ ℝ≥0, 𝑢 + 𝑑 maps each clock x in C to the value 𝑢(𝑥) + 𝑑, and

[𝑟 ↦ 0]𝑢 denotes the clock valuation which maps each clock in r to 0 and agrees

with u over 𝐶 \𝑟” [26].

20

2.2.1 The Uppaal modelling language

To support the model construction and update, the Uppaal modelling language has

graphical form:

• A timed-automaton is defined as a graph with locations as nodes and edges as arcs

between nodes (Figure 3).

Figure 3. Example of the automaton with locations and edge.

• Templates are extended timed automata which can be instantiated with a set of

parameters. The instances of templates are called processes. The executable

model, defined in system declarations section can include one or more instances

of each automaton template:

Example of system declaration: 𝑠𝑦𝑠𝑡𝑒𝑚 𝐴, 𝐵;

Example of parameter declaration: 𝑖𝑛𝑡 𝑎, 𝑐ℎ𝑎𝑛 𝑏, 𝑐𝑙𝑜𝑐𝑘 𝑐;

Example of instantiation: 𝐴 ≔ 𝐵(𝑖, 0, 1);

• Constants must be of type integer:

Example of constant a with value 1 of type integer: 𝑐𝑜𝑛𝑠𝑡 𝑖𝑛𝑡 𝑎 = 1;

• Arrays could be used for integer values, clocks, constants, and channels:

Example of array declaration: 𝑐ℎ𝑎𝑛 𝑐[5]; 𝑖𝑛𝑡[1,4] 𝑢;

• Initialisers are needed to initialise integer variables and arrays.

Example of initialization: 𝑖𝑛𝑡 𝑏 ∶= 2; 𝑖𝑛𝑡 𝑑[2] ∶= {1, 2};

By default, each variable is initialized with the minimal element of its type.

• Bounded integer variable with a range from -32768 to 32768 could be used in

guards, invariants, assignments. The variables min and max bounds within this

21

range can be defined also in the declarations section and must be always satisfied,

otherwise exceeding the bounds of type will cause an error.

Example of a bounded integer variable: 𝑖𝑛𝑡[5, 10] 𝑑;

• Broadcast channels consist of one sender and many receivers, the sender is never

blocked.

Example of broadcast channel declaration: 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 𝑐ℎ𝑎𝑛 𝑐;

• The binary synchronisation occurs when two synchronization actions with the

same name, for example, channel c, from different processes synchronise where

one is emitting (c!) and the other is receiving (c?), Figure 4.

Figure 4. Example of synchronisation expression.

• Initial location in the template is used for initialisation of processes. The template

must have only one location with the initial state and it is identified with a double

circle, Figure 5.

Figure 5. Example of initial location.

To support immediate actions the Uppaal modelling language has following features:

• Urgent synchronisation channels. It excludes any delay if a transition with

urgent synchronisation action is enabled. It is not allowed to use clock guards on

synchronisation transition with urgent actions, but invariants and data-variable

guards are admissible.

22

• Urgent Locations. It excludes any delay in urgent location and because of that

time is not allowed to pass. Urgent locations are identified with a “U” in a circle,

Figure 6.

Figure 6. Example of urgent location.

• Committed locations. They exclude any delay in the location. The next transition

must be taken from at least one of the committed locations and all other parallel

automata executions in that time will be blocked. Committed locations are

identified with a “C” in a circle, Figure 7.

Figure 7. Example of committed location.

Uppaal modelling language has following expressions:

• Invariant specifies the condition under which the automaton can stay in that

location, Figure 8.

Figure 8. Example of invariant expression.

• Guard. Any expression that must be satisfied when passing from one location to

another is a guard, Figure 9.

Figure 9. Example of guard expression.

23

• Update. By executing the transition from one state to another with update

expression, a new value to the variable is calculated by the right-hand side

expression of assignment and the variable is updated (Figure 10).

Figure 10. Example of update expression.

• Selection. During the transition from one state to another with selection

expression, we could non-deterministically bind a value from a given range to an

identifier, Figure 11.

Figure 11. Example of selection expression.

2.2.2 Uppaal simulator

There are three possibilities how to use the simulator. The first way is to run the

simulation manually by choosing which transition when and how to take next and by this

to validate if that model works as supposed. The second opportunity is to simulate a

system with a random mode, the simulator picks different transitions randomly. The third

one is to import the file of witness or diagnostic trace that is produced by the verifier.

This verification trace can be saved and used after verification for bug tracking.

The simulator window has four parts:

• The control part includes enabled transitions of the system, then simulation trace

of different locations and buttons to control the simulation run either in manual or

random mode.

24

• The variable view displays the values of integer and Boolean variables. The clock

constraints are shown in interval form since the trace may have infinitely many

time points for control and data states.

• In the system view all instantiated automata are displayed and active locations of

their current states are highlighted.

• The message sequence chart is represented as a sequence diagram with

transitions from one location to another and synchronisations between processes

are visualized.

2.2.3 The Uppaal verifier

The Uppaal query language uses a simplified version of Timed Computation Tree Logic

(TCTL). The syntax of a subset of the Timed Computation Tree Logic is defined as

follows:

𝑝 ∷= 𝑎. 𝑙|𝑥 + 𝑐 ≤ 𝑦 + 𝑑|¬𝑝|𝑝1 ∨ 𝑝2|𝐴[] 𝑝1|𝐴 <> 𝑝1|𝐸[] 𝑝1|𝑧 𝑖𝑛 𝑝

• p is a local property;

• 𝛼 is process name and 𝑙 is location;

• 𝑥, 𝑦 are the variables or clocks;

• 𝑧 is a clock;

• 𝑐, 𝑑 ∈ ℕ are the constants;

• 𝑝1, 𝑝2 are the TCTL formulae in Uppaal;

• The modality 𝐴 means for all paths;

• The modality 𝐸 means that exists a path;

The query language includes path formulae which quantify over traces or path and state

formulae which describes individual states. With the state formulae, we could check if

the timed automaton is in the location 𝑙, then check that value of a clock or some variable

25

satisfies value constraints and finally verify that there is no deadlock in the model. System

is deadlocked if there is no transition from the current state or any of its delay successors.

The verifier is used to verify model with different properties:

• Reachability properties. 𝐸 <> 𝑝 “Exists eventually p” means it is possible to

reach a state in which p is satisfied. P must be found in at least one reachable state.

An example is shown in the following Figure 12.

Figure 12. Example of reachability property.

• Safety properties assure that something bad will never happen. 𝐴[] 𝑝 “p holds

invariantly” that means p is true in all reachable states and 𝐸[] 𝑝 “p is potentially

always true” means there is still can be found a path in which p is true in all states.

Example of safety properties is shown in the Figure 13.

Figure 13. Example of safety properties.

• Liveness properties generally mean that after some action something should

happen. 𝐴 <> 𝑝 “inevitable p” that means for automaton it is possible to reach

a state in all paths where p is true. 𝑝−→ 𝑞 “p lead to q”, meaning in all paths

where p becomes true then q will inevitable become true as well. Example of

liveness properties is shown in the Figure 14.

26

Figure 14. Example of liveness properties.

2.3 Uppaal TRON

Uppaal Testing Real-time systems ONline or simply TRON is an extension of the Uppaal

engine for timed model-based testing. Real-time systems can be modelled, validated, and

verified with Uppaal tool, but TRON is suitable for checking that the system under test

behaves the same way as described in the Uppaal model.

The main point is on testing time and functional properties, where time properties are

expressed in terms of time constraints. System input and output messages can be

transmitted at different time points but must be controlled by TRON that it happens in the

state with right invariant. TRON can use a different type of models for testing. This means

that models can be both deterministic and non-deterministic.

In addition to generating test stimuli, TRON also works as an oracle, i.e. it monitors SUT

inputs, outputs and checks their compatibility with those of the model.

2.4 DTRON

Distributed Testing Real-time systems ONline or DTRON is a command line application

which extends TRON by enabling coordination and synchronisation of distributed tester

components.

DTRON works together with Spread message serialisation service and Network Time

Protocol. That co-use allows giving global timestamps to all events that arrive to the

adapter of the system under test and via Spread service distribute these events to other

subscribers. Thereby DTRON takes care of configuring the group memberships and

message configuration.

27

The Spread toolkit provides a high performance messaging service that is resilient to

faults across external or internal networks. Spread functions as a unified message bus for

distributed applications, and provides highly tuned application-level multicast and group

communication support. Spread services range from reliable message passing to fully

ordered messages with delivery guarantees [30].

To start using DTRON it is necessary to create the Uppaal model and configure Spread

toolkit. The DTRON starts to parse the model and searches for the input and output

channels and related to them variables. Uppaal TRON API and Spread Group service

register all found channels with prefix “i_” (inputs) and “o_” (outputs). Similarly, integer

variables with their values could be registered to the publishable channel. This is done by

appending a variable name to the channel name “i/o_channel name_variable name”.

When the adapter receives a message through the Spread it will transmit the data between

the input and output channels. The data in Spread is transmitted in byte array form. That

allows transporting any type of data from different applications. DTRON configuration

for remote testing is shown in the Figure 15.

Figure 15. Example of DTRON configuration.

2.5 Behaviour trees

The Behaviour tree (BT) is an alternative Finite-State Machine (FSM) to represent the

switching between different scenarios. The BT is presented as a directed rooted tree,

whose nodes are possible variants of the agent behaviour, where the width of the tree

indicates the number of available actions and the length of its branches define their

complexity.

The BT was developed in the game industry as an alternative way to FSM to develop

intelligent agents because while using FSM the complexity of the states increases rapidly.

28

The BT architecture is lacking this problem since for each state we do not need to

prescribe its own decision logic.

The BT also has not less significant improvements over the FSM such as maintainability,

scalability, reusability, goal-orientation, and parallelisation. Since the BT is represented

as a tree structure, the structure defines transitions as well. This allows making nodes

independent of each other that helps to change the code or modify tree structure without

any difficulty. It is possible to make behaviour subtrees. As a result, that raises readability

of the BT. Another feature due to independence of nodes and subtrees is reusability which

means we could use the same piece of code or a structure in any other projects and do not

have to write the same behaviours of agents from scratch. With goal-oriented feature we

could create specific agent goal, add it to the subtree and the flexibility of the behaviour

tree will not be affected. Not less important feature is parallelisation. With it, we could

define which nodes with their all children will work in parallel and with that not lose the

control of the BT. This is achieved due to the fact that parallel nodes work independently

from each other.

The BT consists of control flow nodes and execution nodes. Each node has a parent except

the root node and each parent has at least one child. The control flow nodes are divided

into four categories fallback, sequence, parallel, and decorator while execution nodes

have only two categories action and condition.

Execution nodes do not have any child they are necessary for calculations and returning

the status value. A condition node monitors states and checks if an expected state has

been met or not. It will return success if the state has been met and fail if not. An action

node is responsible for changing the agent state. If it is possible to change the state then

it will return success otherwise fail. The decorator node has a single child and it tries to

change the behaviour of the child by changing the signal frequency or playing around

with the return value. The parallel node sends a signal to all its 𝑁 children to work in

parallel and it will succeed only if 𝑀 children defined by user return status success, fail

if 𝑁 − 𝑀 + 1 return fail. In all other options, the status will be running. The sequence

node ticks its children from the left to the right until one of them returns fail or running.

If all children return status success only then the sequence also will return success.

Otherwise, it will return fail or running looking at what status the parent has. The Fallback

node works in opposite way compared with the sequence node. It returns fail if all

29

children return fail otherwise success or running if one of the children return success or

running [31]. The summary of node types and how they work could be found in Table 1.

Table 1. The node types of the BT [31].

Node type Symbol Succeeds Fails Running

Fallback

If one child

succeeds

If all children

fail

If one child

return Running

Sequence

If all children

succeed

If one child fails If one child

returns Running

Parallel

If ≥ 𝑀 children

succeed

If > 𝑁 − 𝑀 + 1

children fail

If < 𝑀 children

succeed or

If < 𝑁 − 𝑀 + 1

children fail

Decorator

Custom Custom Custom

Action

Upon

completion

If impossible to

complete

During

completion

Condition

If true If false Never

2.6 MBT for ROS-based robotics

The Robot Operating System (ROS) is a collection of tools that gives the possibility to

implement the necessary behaviour of the robot to perform a specific task. The ROS

quality assurance process requires that all packages should be tested. ROS supports

different types of testing starting from the basic unit testing and finishing with integration

tests.

Our task is to test a robot using model-based testing. To make it possible it will be

necessary to implement a separate adapter for the communication between DTRON and

ROS. For testing also a model of the topological map or behaviour tree, the environment

has to be created where the robot will be tested. The following Figure 16 shows the

required components for testing: the model, TRON, adapter, DTRON and ROS which in

this case is a system under test.

30

Figure 16. Relationships between DTRON, TRON AND SUT.

31

3 Adaptation of the MBT workbench TestIt

3.1 TestIt architecture and design principles

TestIt is a scalable long-term autonomy testing toolkit for robot operating system. Before

proceeding with the design principles of TestIt, it is necessary to consider Docker

platform because the TestIt has a similar one.

Docker is an open platform for developing, shipping, and running applications. With

Docker, it is possible to separate application that allows to deliver software quickly and

to be sure that on any machine it will work equally [33]. Docker uses a client-server

architecture, communication between the client and the server is carried out through the

REST API. All the commands from the client side are sent using command line interface

(CLI) to the REST API to control or interact with the interfaces of Docker server.

What about TestIt here is an analogy with Docker. TestIt represents a daemon process

which is a type of long-running program. Commands are also transmitted through

command line interface. TestIt has its own qualities such as using parallel test servers so

that testing is more efficient. The second feature is that TestIt does not depend on the

simulator software and allows testing a robot developed in any simulation environment

such as Gazebo, Morse, V-REP, Stage, UWSim. The model of robot behaviour can be

created on the basis of the behaviour trees or SMACH [37]. Later the model could be

converted to the specific model checker, for example, NModel, DIVINE or Uppaal. The

main point of TestIt is a possibility to test systems with any models and any simulation

environments without restrictions. The TestIt architecture is shown in Figure 17.

32

Figure 17. TestIt architecture.

3.2 Integrating DTRON with TestIt

The whole development will take place in Docker container platform. With Docker, we

can describe the instruction of all commands in the file which must be executed in order

to install required software or launch necessary services. This is done in order to facilitate

the opportunity for other people to repeat the same actions to run tests with TestIt toolkit,

as well as, reduce the number of errors when using the toolkit on different platforms.

To make communication between DTRON and SUT possible we need to create an

adapter. The adapter will be responsible for sending and receiving messages in a suitable

type and the Spread service will transmit these messages between two systems. Since

Spread sends data in byte array form, it is necessary to structure it for easier processing.

For this protocol buffers from Google will be used. Protocol buffers perform the function

of serializing structured data. They are not based on any platform and programming

language. Protocol buffers are also faster, smaller, and simpler than XML.

3.2.1 Protocol buffers installation

First, we need to build and install Protocol buffers version 2.3.0. This can be done using

the following commands:

33

Now we need to define message formats in a .proto file. At the beginning of the file we

need to specify the version of protocol buffers since our version is 2.3.0, so we will

indicate syntax as “proto2”. Then we need to add a message to each data structure that

we want to serialize. Each field in the message must have a name and a type. We are

going to have synchronization messages with the sender name and its variables where

each variable will have a name and a value.

The protocol buffers file has the following structure:

The next step is to compile this file. Because the adapter is implemented in C++ language,

then the classes need to be generated in C++ as well.

This generates header and source files from protocol buffers file.

3.2.2 Spread toolkit installation

The next step is the installation of Spread toolkit. This can be done with the next

commands:

$ git clone https://github.com/ooici/protobuf-2.3.0.git

$ cd protobuf-2.3.0

$./autogen.sh && ./configure

$ make && make check && make install

syntax = "proto2";

message Variable {

 required string name = 1;

 required sint32 value = 2;

}

message Sync {

 required string name = 1;

 repeated Variable variables = 2;

}

$ protoc -I=“PATH_to_src_directory” --cpp_out=“PATH_to_destination”
“PATH_to_proto_file”

$ git clone https://github.com/glycerine/spread-src-4.4.0.git

$ cd spread-src-4.4.0

$./configure && make && make install

https://github.com/ooici/protobuf-2.3.0.git
https://github.com/glycerine/spread-src-4.4.0.git

34

After installation, it is necessary to configure the spread configuration file. The template

of that file could be found in “etc” directory. Spread service needs to work with

administrator rights that is why we need to make the following changes.

Open “spread.conf” file with any text editor, delete comment symbol # before the lines:

After saving the configuration file need to create a new user and group in Ubuntu

operating system, then add that user to the created group.

To run Spread daemon as root also needs to create the runtime directory:

Now we can start the Spread daemon and be sure that it runs as root successfully.

3.2.3 Adapter

Adapter between SUT and DTRON is written in C++ language. The adapter converts

incoming and outcoming messages to the appropriate format using protocol buffers. To

implement the test adapter the adapter template was used as a basis. That template was

created during the research of “Model-based integration testing of ROS packages: a

mobile robot case study” [19].

At the very beginning, we need to establish a connection with Spread service to be sure

that the service is running.

#DaemonUser = spread

#DaemonGroup = spread

$ useradd spread && addgroup add spread

$ usermod -a -G spread spread

$ mkdir -m 777 /var/run/spread

$ cd spread-src-4.4.0/sbin

$./spread -c /spread-src-4.4.0/etc/spread.conf

35

We need to remember that for each synchronized channel different adapters need to be

implemented. But since we will only use one synchronized channel, then this does not

concern us. Therefore, to receive messages from the inside and outside, we need to add

channels to the group. This can be done by calling next function:

Now we consider how to convert message data to the protocol buffers format and then

send it. We will need to include generated header proto file from chapter 3.2.1 for message

data serialization. And then using the Spread multicast function we can send the message

to the specific group.

Reading the messages is almost as simple as sending. At first, we need to specify message

structure to simplify message parsing.

#include "sp.h"

bool ConnectionActive;

int ret;

ret = SP_connect(Spread_name, User, 0, 1, &Mbox, Private_group);

if(ret < 0) {

ConnectionActive = false;

} else {

 ConnectionActive = true;

}

SP_join(*Mbox, channel_name);

#include <xtaproto.pb.h>

#include "sp.h"

int ret;

Sync response;

response.set_name(group);

std::string data = “”;

response.SerializeToString(&data);

ret = SP_multicast(*Mbox, AGREED_MESS, group, 1, strlen(data.c_str()),
data.c_str());

36

Then via the Spread functions, we get the message and parse it, and lead to a readable

form.

struct SpreadMessage {

 int Type;

 char* Sender;

 char* Group;

 char* Msg;

};

SpreadMessage spreadMessage;

static char message[102400];

char sender[MAX_GROUP_NAME];

char target_groups[100][MAX_GROUP_NAME];

int num_groups, service_type, endian_mismatch, ret;

membership_info memb_info;

int16 mess_type;

service_type = 0;

ret = SP_receive(*Mbox, &service_type, sender, 100, &num_groups,
target_groups, &mess_type, &endian_mismatch, sizeof(message), message);

if(ret < 0) {

 SP_error(ret);

}

if(Is_regular_mess(service_type)) {

 message[ret] = 0;

} else if(Is_membership_mess(service_type)){

 ret = SP_get_memb_info(message, service_type, &memb_info);

 if (ret < 0) {

 SP_error(ret);

 }

}

spreadMessage.Type = service_type;

spreadMessage.Sender = new char[MAX_GROUP_NAME];

spreadMessage.Sender = sender;

spreadMessage.Group = new char[MAX_GROUP_NAME];

spreadMessage.Group = target_groups[0];

spreadMessage.Msg = new char[102400];

spreadMessage.Msg = message;

Sync sync;

sync.ParseFromString(spreadMessage.Msg);

if (sync.name() != "") {

printf("[Google protocol buffers]: Channel: '%s', Sender: '%s',
VariableName: '%s' VariableValue: '%d'\n", sync.name().c_str(), sender,
sync.variables(0).name().c_str(), sync.variables(0).value());

} else{

printf("Received incorrectly formed message from %s in %s: %s\n", sender,
spreadMessage.Group, message);

}

37

We figured out how to send and receive messages. Now it is possible to establish

communication with ROS for sending test inputs to the robot. The target may be the

location on a map at which the robot needs to arrive and with the help of ROS move_base

action server or topological_navigation, this can be done. After the adapter sends the

coordinates of the location to the robot, it will wait for confirmation whether the robot

reached this place or not. This will be necessary for further testing. If the robot was able

to reach the intended location, the following location as navigation goal will be sent. If

not, then the test will fail.

Following code is an example of the implementation of the robot navigation test scenario

using move_base action server.

ROS_INFO("Received a message - %s!", name.c_str());

actionlib::SimpleActionClient<move_base_msgs::MoveBaseAction> ac_;

std::string state =boost::lexical_cast<std::string>(args["state"]);

std::string node_name = node_map_[state];

move_base_msgs::MoveBaseGoal goal;

double x, y;

nh_.getParam(node_name + "/x", x);

nh_.getParam(node_name + "/y", y);

goal.target_pose.header.frame_id = "/map";

goal.target_pose.pose.position.x = x;

goal.target_pose.pose.position.y = y;

goal.target_pose.pose.position.z = 0;

goal.target_pose.pose.orientation.x = 0;

goal.target_pose.pose.orientation.y = 0;

goal.target_pose.pose.orientation.z = 0;

goal.target_pose.pose.orientation.w = 1;

if (ac_.isServerConnected()) {

 ac_.sendGoal(goal);

 ac_.waitForResult();

 actionlib::SimpleClientGoalState state = ac_.getState();

 if (state == actionlib::SimpleClientGoalState::SUCCEEDED) {

 ROS_INFO("Robot reached goal x: %.3f y: %.3f", x, y);

 } else {

 ROS_ERROR("Action result was not SUCCEEDED!");

 }

} else {

 ROS_ERROR("Action server not connected!");

}

38

3.2.4 Dockerfile

The installation of necessary components of TestIt can be built automatically with Docker

by reading the instructions from a Dockerfile which can be viewed in Appendix 2 –

Dockerfile or in GitHub [41].

The instruction includes not only integration but also an example of using this toolkit.

That example can be used as a template for testing any other robots with different

behaviour scenarios. And expanded to be used with different simulators, simulation

environments, and model checkers. Note that it will be necessary to download TRON

manually. Impossible to download it directly because it is required to fill out the license

form on the website. An instruction on how to do this is available at the end of the

Appendix 2 – Dockerfile

For testing, separate Dockerfiles are prepared. The examples of how the installation

instructions of testing and SUT look like can be viewed in Appendix 3 – Dockerfile of

SUT and Appendix 4 – Dockerfile of testing base image respectively.

First, one has to check if Docker has been installed. Then you need to save instructions

from Appendix 2 – 4 with names “Dockerfile” and type “File”. After that navigate to the

directory where you saved the base image file and build it by typing:

To build SUT and testing images type next commands:

3.3 Test generation for DTRON

With an aim to test successful integration of DTRON with TestIt, and to provide an

example of how TestIt toolkit can be used the following models will be created and tested.

$ docker build –no-cache -t testit:latest .

$ docker build --no-cache -t testit_tb_sut .

$ docker build --no-cache -t testit_tb_testit .

39

3.3.1 Mapping topological maps to Uppaal TA

First of all, it is necessary to create a topological map. Topological maps could be

represented using discrete units – waypoints represented graphically as nodes. The nodes

connected with edges generally define a topological map.

The topological map used in this thesis is built with software stack developed in the

STRANDS project. Before creating a topological map, we need a file of robot waypoints.

Waypoints are specified by coordinates of locations to where the robot will have to go in

the future while testing it. To run STRANDS project software ROS Kinetic Kame is used.

For a robot navigation simulation, Gazebo simulator (version 7.12.0) is used which makes

it possible to rapidly check if the waypoints are located at the right place or not and edit

the environment for test needs.

As a map “willow-2010-02-18-0.10” was chosen and as a world “willowgarage_world”

was selected. The term “world” is used to describe a collection of robots and objects (such

as buildings, tables, and lights), and global parameters including the sky, ambient light,

and physics properties [32]. The map, in turn, describes the virtual world in which the

robot can navigate around.

It is possible to create own map but then it is necessary to consider the capabilities of the

computer used for simulation. The system requirements for running gazebo simulator can

be checked in gazebo official webpage.

First, one has to check if ROS kinetic release has been installed and it has

“turtlebot_gazebo” package. Then you need the source files to have access to the ROS

commands.

Now you can launch gazebo simulator with existing world file:

To navigate the robot in the simulator you need to open a new terminal and run the next

command:

$ source /opt/ros/kinetic/setup.bash

$ roslaunch turtlebot_gazebo turtlebot_world.launch
world_file:=“PATH_to_world_file”

40

To start creating map open new terminal and type:

Rviz tool can be used to visualize the map building process. For that, open new terminal

and type:

Now one can navigate the robot around the world and build a relevant map. When the

map is satisfying, you will have to save it.

Remember that after saving the map and closing all terminals, it will be impossible to

open the map file and continue building it. You have to start all over again. If your

computer does not meet the minimum requirements of map building service then you

should not waste time creating a map. For instance, for the author of this thesis it took

eight hours to build that piece of map that can be seen in Figure 18 (a) and if to compare

with Figure 18 (b) then clearly it was not worth of it, because in such an incomplete map

as (a) the robot very often will lose the path and return errors. I used a computer with the

next specifications Intel® Core™ i3-2350M CPU 2.30GHz, 8GB RAM, Intel® HD

Graphics 3000.

$ roslaunch kobuki_keyop keyop.launch

$ roslaunch turtlebot_gazebo gmapping_demo.launch

$ roslaunch turtlebot_rviz launchers view_navigation.launch

$ rosrun map_server map_server -f “map_name”

41

To generate the waypoints for the topological map we will navigate a robot around the

world and in certain places ask the robot to return the position coordinates.

Source ROS files, export world and map files paths to parameters and launch gazebo

simulator:

In the new terminal launch keyboard teleoperation:

We could manually call command to get robot position from the map and then save it to

the file.

Another way is to use a script that will automatically, for example, save robot position

every 10 seconds to the file in the following format:

(a) (b)

Figure 18. Example of willow garage map created by the author of this thesis (a) and taken from turtlebot

gazebo package (b).

$ source /opt/ros/kinetic/setup.bash

$ export TURTLEBOT_GAZEBO_WORLD_FILE=“PATH_to_world_file”

$ export TURTLEBOT_GAZEBO_MAP_FILE=“PATH_to_map_file”

$ roslaunch turtlebot_gazebo turtlebot_world.launch

$ roslaunch kobuki_keyop keyop.launch

$ rosrun tf tf_echo /map /base_link

42

Example of that script could be found in GitHub [39].

Now we can create a topological map file from the waypoint file using next command

where “input_file.csv” is waypoints file name and “output_file.tmap” is the name of the

topological map file.

The topological map file has following structure:

To be able to use topological navigation the topological map need to be added to the

database.

Create a directory for your database to be stored and launch MongoDB:

position.x,position.y,position.z,orientation.x,orientation.y,orientation.
z,orientation.w

$ rosrun topological_utils tmap_from_waypoints.py input_file.csv
output_file.tmap

node:

 #node name

 WayPoint1

 waypoint:

 #position of the node

position.x,position.y,position.z,orientation.x,

orientation.y,orientation.z,orientation.w

 edges:

 #list of connections from this node, action

 WayPoint2, move_base

 vertices:

 #positions around the node

 position.x1,position.y1

 position.x2,position.y2

position.x3,position.y3

position.x4,position.y4

position.x5,position.y5

position.x6,position.y6

$ mkdir /opt/ros/mongodb_store

$ roslaunch mongodb_store mongodb_store.launch
db_path:=/opt/ros/mongodb_store

43

Insert topological map to the database with the following command where

“PATH_to_TMAP” is the path to the topological map file, “dataset_name” is the name

of the dataset for the database, and “map name” is the topological map name for the

database:

Eventually, when the topological map is generated, we can create a model from that. For

this purpose, a program in Java language was written. The source code is available in

GitHub [38].

To generate the Uppaal model type next command where “input_file.tmap” has to be

replaced with your topological map file name.

As a result, Uppaal model file will be generated with the structure shown in Appendix 1

– Example of Uppaal model. In this example only two waypoints between which the robot

can move are shown. The model includes two processes as depicted in Figure 19. The

first process displays the set of waypoints and relationships between them, and the second

process synchronises channels to move the robot from one location to another.

Figure 19. Example of Uppaal model processes.

$ rosrun topological_utils insert_map.py “PATH_to_TMAP” “dataset_name”
“map_name”

$ java -jar generateModelFromTmap.jar input_file.tmap

44

4 Case study: Autonomous platform navigating in the

confined area

4.1 General description and test goals

After the required models, files, scripts, adapters were created, it is necessary to test

successful integration of DTRON with TestIt toolkit. For this purpose, an example was

created.

In the example, we determined that we will use Gazebo simulator, as an autonomous

platform Turtlebot 2 is used and navigation takes place in one part of the willow garage

world. The system under test uses ROS Kinetic Kame to run the simulation. The whole

system works under Ubuntu 16.04 xenial that runs in the Docker container.

Since we are working with Docker, we can guarantee that it will work on all devices in

the same way. But only if all the required components are installed during the Docker

image build process. In order to exclude the possibility of an error during the installation

of a component, the components should be installed in the order of the queue or before

the component will be used by another component. This is implemented in the form of

using symbol “&&” between installation commands of different components in

Dockerfile. If an error occurs, then the build process will stop, otherwise, we will be able

to successfully run a Docker image.

Further, it was necessary to cover the world with waypoints to which the robot should

get. Waypoints are located not only in the open space but also behind all possible

obstacles. This allows testing whether the robot will find a way to the waypoint if

suddenly there will be an obstacle on the way.

The major goals of current testing are as follows:

• To ensure that during the Docker build process there will be no errors.

• To make sure that TestIt starts testing after the SUT has been fully loaded.

45

• Communication between DTRON and SUT is established.

• The robot can reach a certain waypoint on the map described in the Uppaal model.

• Using a topological map navigation, the robot must first reach the intermediate

waypoints before reaching the end waypoint.

4.2 Generating Uppaal TA models

For the current example in order to cover the map a model consisting of 31 waypoints

was created. An example of the node map is shown in the Figure 20. In this case, nodes

are connected in series, but for more thorough testing of the robot behaviour, the route

needs to be changed. That is realizable by mixing waypoints from the source file and

generating a new model. If we use a topological map navigation, then we need to change

“edges” in the topological map file and therefore update the data in the database.

Figure 20. Example of node map.

How to generate the topological map and Uppaal model are described in subsection 3.3.1.

All the generated files used for this example are available in GitHub [40].

4.3 Generating tests

The test Oracle monitors the navigation of the robot. We can transfer the waypoint

coordinates which we want to check to the Oracle. If the robot reaches the waypoint, then

46

the test will return “pass”, and if not then the test will return “fail”. The test will also fail

if the response timeout from the test is exceeded. The example of this test is shown in

Appendix 5 – Oracle Test1.

For example, we want to check whether the robot can reach the “WayPoint5” with

coordinates (𝑥: 15.568, 𝑦: 18.316). The test can be started with the following command:

We can leave the test running for a long time and at this time to test other robot behaviours

since TestIt allows to run tests in parallel. During the test, the robot is navigating from

waypoint to waypoint that takes a specified time interval. The Oracle will monitor

whether the robot always succeeds in reaching the waypoint or not. The source code of

that test is shown in Appendix 6 – Oracle Test2.

Using topological navigation it is even easier to find out if the robot has reached a certain

waypoint because before reaching the endpoint, it is necessary to pass intermediate

waypoints. Therefore, if the endpoint is reached, then the test will succeed, otherwise, it

fails. Implementation of this test is available in Appendix 7 – Oracle Test3.

For example, if we want to make sure that the robot can get from the initial waypoint to

the “WayPoint8” passing through intermediate points, the test can be started with the

following command:

4.4 Executing tests

To run the tests with TestIt, it is necessary to describe the execution instructions in the

configuration file. For example, we need to specify in the file how to run SUT and test

images, where the test scripts are located, what parameters need to be transferred to the

scripts, duration, timeout and other parameters. Sample configuration file with

explanations is given in Appendix 8 – Configuration file.

$ python oracle.py 15.568 18.316

$ python oracle.py WayPoint8

47

The precondition for running the tests is successfully installed TestIt base, SUT and TestIt

test images. Further, configuration file needs to be generated. Then, using the following

commands, we can begin testing.

Run with docker TestIt base image:

It is necessary to mount Docker socket to run docker commands inside the container.

Navigate to the “catkin_ws” directory and source files:

To start TestIt daemon, type next command:

The file for navigation with simple move_base action server is specified by default. But

it can be changed by passing the path to the configuration file in the parameter.

For example, if we want to test topological navigation:

To set the state and to bring up open new terminal and type:

And finally, to start the test type:

$ docker run --name testit -v /var/run/docker.sock:/var/run/docker.sock -
it testit bash

$ cd /catkin_ws

$ source devel/setup.bash

$ roslaunch dtron turtlebot.launch

$ roslaunch dtron turtlebot.launch
config:=/catkin_ws/src/testit/dtron/turtlebot/cfg/config_top_nav.yaml

$ rosrun testit testit_command.py bringup

$ rosrun testit testit_command.py test

48

4.5 Testing results

At the time of writing this thesis, the Docker build process of the images succeeds. In the

future, may need to update the versions of the required software.

During testing was determined that it takes 160 seconds to start SUT, and 30 seconds to

start TestIt tests. This was taken into account in the configuration file. Thus, we can be

sure that Testit starts testing after the SUT has been fully loaded.

Since we were able to test the robot using move_base and topological_navigation action

servers, then no errors were found with the communication between SUT and DTRON.

It takes an hour and a half for the robot to get around all the 31 waypoints defined in this

example. In consequence, the conformance test was performed for ten hours. During this

time the robot managed to make practically seven complete laps around the map and there

was no error. Seven times to get around the map is certainly not enough, because an error

can be detected on the 500th lap. This requires powerful computing resources and time,

but this was not the purpose of this work. It should be noted that from time to time the

robot can suddenly not understand where it is or where was not a wall the robot would

think that there is a wall. But this is due to the simulator and has nothing to do with the

use of TestIt toolkit.

Using a topological navigation, the robot was successfully able to reach the goal

bypassing at first intermediate waypoints. And just like the move_base testing, the time

required to get passed all waypoints is large. But here it takes even more time because of

the many connections between the waypoints. These connections can be removed, but

then it will not be different from the move_base navigation.

49

5 Summary

The thesis provides an overview of the benefits of using model-based testing in robotics

in comparison with manual testing. The main advantages of MBT are that the tests are

generated and executed automatically. Consequently, the human errors are eliminated,

and the test suite maintenance is simple because of possibility to link all the test cases to

system requirements.

In the work it is described in detail how Uppaal toolkit is applied for modelling,

simulation, and verification of real-time systems. The toolchain used also includes a

description of the TRON which is an extension of the Uppaal engine for timed model-

based testing. Its performs conformance testing by checking if the SUT behaves the same

way as described in the Uppaal model. The extension of TRON is DTRON. DTRON

extends TRON by enabling coordination and synchronization of distributed tester

components.

To describe the behaviour of the robot, it is possible to use behaviour tree which is an

alternative Finite-State Machine to represent the switching between different scenarios.

The main advantage of using behaviour tree is that for each state there is no need to create

its own logic. Thereby, the complexity of the states does not increase rapidly, as it occurs

in the FSM.

The practical part describes the adaptation of the MBT workbench TestIt which is a

scalable long-term autonomy testing toolkit for robot operating system. The main point

of TestIt is a possibility to test systems in parallel with any models and any simulation

environments without restrictions.

Due to the fact that the model is generated automatically based on the required behaviour

of the robot it is necessary to establish a connection between DTRON and SUT using test

adapters. If the test inputs are not given simultaneously it is enough to create one adapter

to receive messages from and send messages to SUT using only one synchronization

channel. The adapter is responsible for sending and receiving messages in a suitable type

and the Spread service transmits these messages between two systems. The data in Spread

50

is transmitted in byte array form and in order to have messages in standard format Google

protocol buffers are used. Google protocol buffers do not restrict using any specific

platform or programming language.

The Dockerfile includes the instructions of all necessary steps to install and configure

required components of TestIt. This gives the opportunity to new users to proceed directly

to testing the systems as quickly as possible rather than installing the necessary software

and fixing the errors that occurred during the configuration.

To test the successful integration of DTRON with TestIt, and to provide an example of

how TestIt toolkit can be used a topological map was created on the basis of which a

model was created. To cover the map 31 waypoints were used between which the robot

can move using topological_navigation and move_base action servers. For this were

involved STRANDS project to build the topological map and Gazebo simulator to

navigate the robot. Both methods were tested within ten hours, during which the robot

did seven full tours around the map, and no error was detected. This does not mean that

there are no defects in the SUT, we just made sure that the integration was successful,

and it can be used for testing. But for more thorough testing this requires powerful

computing resources and time.

51

References

[1] Soome, Toomas. Hajussüsteemid, 2004. [WWW] http://kodu.ut.ee/~mroos/hs/hs2.pdf

[2] Markvardt, Maili. Sissejuhatus mudelipõhisesse testimisse. [WWW]

http://193.40.251.102/tiki-download_wiki_attachment.php?attId=314 (19.03.2018)

[3] Tšukrejeva, Jekaterina. Tarkvarasüsteemi kvaliteet ja testimine. [WWW]

http://maurus.ttu.ee/sts/wp-content/uploads/2015/10/IDK0071-Loeng-7-Kvaliteet-ja-

testimine.pdf (19.03.2018)

[4] Anier, Aivo. Model Based Framework for Distributed Control and Testing of Cyber-

Physical Systems, 2016. [WWW] https://digi.lib.ttu.ee/i/?6133

[5] Kruusamägi, Age. Model-based testing of distributed systems: Tallinn streetlight system

case-study, 2016. [WWW] https://digi.lib.ttu.ee/i/?7133

[6] UPPAAL web page. [WWW] http://uppaal.org/ (19.03.2018)

[7] UPPAAL TRON web page. [WWW] http://people.cs.aau.dk/~marius/tron/index.html

(19.03.2018)

[8] DTRON web page. [WWW] https://cs.ttu.ee/dtron/ (19.03.2018)

[9] ROS web page. [WWW] http://www.ros.org/ (19.03.2018)

[10] Topological Map. [WWW]

http://strands.readthedocs.io/en/latest/strands_navigation/wiki/Topological-Map-

Definition.html (19.03.2018)

[11] TestIt. [WWW] https://github.com/GertKanter/testit (19.03.2018)

[12] T-UPPAAL: Online Model-based Testing of Real-time Systems.

http://people.cs.aau.dk/~marius/tron/ASE2004.pdf (21.03.2018)

[13] K. G. Larsen, M. Mikucionis, B. Nielsen, A. Skou. Testing Real-time Embedded

Software using UPPAAL-TRON an industrial case study. [WWW]

http://people.cs.aau.dk/~marius/tron/emsoft05.pdf (22.03.2018)

[14] A. Anier, J. Vain. Model Based continual planning and control for assistive robots.

[WWW] http://dijkstra.cs.ttu.ee/~aivo/dtron/publications/healthinf-cr.pdf (22.03.2018)

[15] A. Anier, J. Vain. Timed automata based provably correct robot control. [WWW]

https://cs.ttu.ee/dtron/publications/Aivo_bec2010_v6-final.pdf (21.03.2018)

[16] A. Hessel, K. G. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson, A. Skou. Testing

Real-Time Systems Using UPPAAL. [WWW]

https://pdfs.semanticscholar.org/2067/a094dd7839d66ee7863c0255e50d2ebf8604.pdf

(21.03.2018)

[17] J. Ernits, M. Veanes, J. Helander. Model-Based Testing of Robots with NModel.

[WWW] https://www.microsoft.com/en-us/research/wp-

content/uploads/2016/02/mbtora.pdf (21.03.2018)

[18] K. G. Larsen, M. Mikucionis, B. Nielsen. Online Testing of Real-time Systems Using

UPPAAL. [WWW]

http://kodu.ut.ee/~mroos/hs/hs2.pdf
http://193.40.251.102/tiki-download_wiki_attachment.php?attId=314%20
http://maurus.ttu.ee/sts/wp-content/uploads/2015/10/IDK0071-Loeng-7-Kvaliteet-ja-testimine.pdf
http://maurus.ttu.ee/sts/wp-content/uploads/2015/10/IDK0071-Loeng-7-Kvaliteet-ja-testimine.pdf
https://digi.lib.ttu.ee/i/?6133
https://digi.lib.ttu.ee/i/?7133
http://uppaal.org/
http://people.cs.aau.dk/~marius/tron/index.html
https://cs.ttu.ee/dtron/
http://www.ros.org/
http://strands.readthedocs.io/en/latest/strands_navigation/wiki/Topological-Map-Definition.html
http://strands.readthedocs.io/en/latest/strands_navigation/wiki/Topological-Map-Definition.html
https://github.com/GertKanter/testit
http://people.cs.aau.dk/~marius/tron/ASE2004.pdf
http://people.cs.aau.dk/~marius/tron/emsoft05.pdf
http://dijkstra.cs.ttu.ee/~aivo/dtron/publications/healthinf-cr.pdf
https://cs.ttu.ee/dtron/publications/Aivo_bec2010_v6-final.pdf
https://pdfs.semanticscholar.org/2067/a094dd7839d66ee7863c0255e50d2ebf8604.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/mbtora.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/mbtora.pdf

52

https://pdfs.semanticscholar.org/33ae/a20c39800cde2466aafe0f01d341c2a09bfb.pdf

(21.03.2018)

[19] J. Ernits, E. Halling, G. Kanter, J. Vain. Model-based integration testing of ROS

packages: a mobile robot case study. In 2015 IEEE European Conference on Mobile

Robots.

[20] Marko Kääramees. A Symbolic Approach to Model-based Online Testing, 2012.

[WWW] https://digi.lib.ttu.ee/i/?806

[21] A. Anier, J. Vain, L. Tsiopoulos. DTRON: a tool for distributed model-based testing of

time critical applications. [WWW]

http://www.kirj.ee/public/proceedings_pdf/2017/issue_1/proc-2017-1-75-88.pdf

(22.03.2018)

[22] Dejanira Araiza-Illan, Anthony G. Pipe and Kerstin Eder. Model-based Test Generation

for Robotic Software Automata versus Belief-Desire-Intention Agents. [WWW]

https://arxiv.org/pdf/1609.08439.pdf

[23] Dejanira Araiza-Illan, Tony Pipe, Kerstin Eder. Model-Based Testing, Using Belief-

Desire-Intentions Agents, of Control Code for Robots in Collaborative Human-Robot

Interactions. [WWW] https://arxiv.org/pdf/1603.00656.pdf (21.03.2018)

[24] Olli-Pekka Puolitaival. Model-based testing tools. [WWW]

https://www.cs.tut.fi/tapahtumat/testaus08/Olli-Pekka.pdf (20.04.2018)

[25] Professor John A. Stankovic. Real-Time Computing. [WWW]

https://pdfs.semanticscholar.org/0195/c0b09a69cfbca2d50e74671a82f224779653.pdf

(20.04.2018)

[26] G. Behrmann, A. David, K. G. Larsen. A Tutorial on UPPAAL 4.0. [WWW]

https://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf (20.04.2018)

[27] G. Behrmann, K. Larsen. Into to Uppaal. [WWW]

http://people.cs.aau.dk/~adavid/RTSS05/uppaal-intro.pdf (21.04.2018)

[28] Tomáš Poch. Uppaal. [WWW] http://d3s.mff.cuni.cz/seminar/download/2007-10-03-

Poch-uppaal.pdf (21.04.2018)

[29] Julián Proenza. The Uppaal Model Checker. [WWW]

http://ppedreiras.av.it.pt/resources/empse0809/slides/TheUppaalModelChecker-Julian.pdf

(21.04.2018)

[30] The Spread Toolkit. [WWW] http://www.spread.org/ (21.04.2018)

[31] M. Colledanchise and P. Ögren. Behavior Trees in Robotics and AI. [WWW]

https://arxiv.org/pdf/1709.00084.pdf (22.04.2018)

[32] Gazebo terminology. [WWW] http://gazebosim.org/tutorials?tut=build_world

(21.04.2018)

[33] Docker overview. [WWW] https://docs.docker.com/engine/docker-overview/#the-

docker-platform (23.04.2018)

[34] “EU SPEEDS project. INRIA research report n. 8147 November 2012” [WWW]

https://hal-univ-tlse2.archives-ouvertes.fr/hal-01178467/document (24.04.2018)

[35] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based testing

approaches,” Softw. Test., Verif. Reliab., vol. 22, no. 5, pp. 297–312, 2012. [WWW]

https://doi.org/10.1002/stvr.456 (24.04.2018)

[36] M. Utting and B. Legeard. “Practical model-based testing : a tools approach”.

Morgan Kaufmann Publishers, 2006.

https://pdfs.semanticscholar.org/33ae/a20c39800cde2466aafe0f01d341c2a09bfb.pdf
https://digi.lib.ttu.ee/i/?806
http://www.kirj.ee/public/proceedings_pdf/2017/issue_1/proc-2017-1-75-88.pdf
https://arxiv.org/pdf/1609.08439.pdf
https://arxiv.org/pdf/1603.00656.pdf
https://pdfs.semanticscholar.org/0195/c0b09a69cfbca2d50e74671a82f224779653.pdf
https://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
http://people.cs.aau.dk/~adavid/RTSS05/uppaal-intro.pdf
http://d3s.mff.cuni.cz/seminar/download/2007-10-03-Poch-uppaal.pdf
http://d3s.mff.cuni.cz/seminar/download/2007-10-03-Poch-uppaal.pdf
http://ppedreiras.av.it.pt/resources/empse0809/slides/TheUppaalModelChecker-Julian.pdf
http://www.spread.org/
https://arxiv.org/pdf/1709.00084.pdf
http://gazebosim.org/tutorials?tut=build_world
https://docs.docker.com/engine/docker-overview/#the-docker-platform
https://docs.docker.com/engine/docker-overview/#the-docker-platform
https://hal-univ-tlse2.archives-ouvertes.fr/hal-01178467/document
https://doi.org/10.1002/stvr.456

53

[37] SMACH. [WWW] http://wiki.ros.org/smach (30.04.2018)

[38] Source code of generating Uppaal model from tmap. [WWW]

https://github.com/arturgummel/dtronpack/tree/master/generateModelFromTmap

[39] Source code of saving robot position to the file. [WWW]

https://github.com/arturgummel/dtronpack/blob/master/pose_publisher.cpp

[40] Generated files (waypoints, map, model) [WWW]

https://github.com/arturgummel/dtronpack/tree/master/generateModelFromTmap/examples

[41] Integration package with example. [WWW] https://github.com/arturgummel/dtrontestit

http://wiki.ros.org/smach
https://github.com/arturgummel/dtronpack/tree/master/generateModelFromTmap
https://github.com/arturgummel/dtronpack/blob/master/pose_publisher.cpp
https://github.com/arturgummel/dtronpack/tree/master/generateModelFromTmap/examples
https://github.com/arturgummel/dtrontestit

54

Appendix 1 – Example of Uppaal model

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE nta PUBLIC "-//Uppaal Team//DTD Flat System 1.1//EN"
"http://www.it.uu.se/research/group/darts/uppaal/flat-1_2.dtd">
<nta>
 <declaration>chan i_goto, o_response; int i_goto_state;</declaration>
 <template>
 <name x="5" y="5">robot_map</name>
 <declaration>// Place local declarations here.</declaration>
 <location id="id1" x="17" y="17">
 <name>ChargingPoint</name>
 </location>
 <location id="id2">
 <name>ChargingPoint_Res</name>
 </location>
 <location id="id3" x="18" y="15">
 <name>WayPoint1</name>
 </location>
 <location id="id4">
 <name>WayPoint1_Res</name>
 </location>
 <init ref="id1"/>
 <transition>
 <source ref="id1"/>
 <target ref="id2"/>
 <label kind="synchronisation">i_goto!</label>
 <label kind="assignment">i_goto_state=3</label>
 </transition>
 <transition>
 <source ref="id2"/>
 <target ref="id3"/>
 <label kind="synchronisation">o_response?</label>
 </transition>
 <transition>
 <source ref="id3"/>
 <target ref="id4"/>
 <label kind="synchronisation">i_goto!</label>
 <label kind="assignment">i_goto_state=1</label>
 </transition>
 <transition>
 <source ref="id4"/>
 <target ref="id1"/>
 <label kind="synchronisation">o_response?</label>
 </transition>
 </template>
 <template>
 <name>sut</name>
 <location id="id3" x="0" y="0"/>
 <init ref="id3"/>
 <transition>

55

 <source ref="id3"/>
 <target ref="id3"/>
 <label kind="synchronisation" x="10" y="93">i_goto?</label>
 <nail x="-8" y="-102"/>
 <nail x="127" y="-51"/>
 </transition>
 <transition>
 <source ref="id3"/>
 <target ref="id3"/>
 <label kind="synchronisation" x="-170" y="68">

 o_response!

 </label>
 <nail x="8" y="119"/>
 <nail x="-119" y="42"/>
 </transition>
 </template>
 <system>
 Process1 = robot_map();
 Process2 = sut();
 system Process1, Process2;
 </system>
 <queries/>
</nta>

56

Appendix 2 – Dockerfile of the base image

VERSION 0.0.1

FROM ubuntu:xenial

MAINTAINER Artur Gummel <artur.gummel@ttu.ee>

LABEL Description="TestIt! ROS Testing toolkit base docker image"

RUN apt-get update && \

#install wget, vim, git, autoconf and scons

 apt-get install -y wget vim git autoconf scons && \

#install ROS Lunar desktop full

 sh -c 'echo "deb http://packages.ros.org/ros/ubuntu xenial main" >
/etc/apt/sources.list.d/ros-latest.list' && \

 sh -c 'apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80
--recv-key 421C365BD9FF1F717815A3895523BAEEB01FA116' && \

 apt-get update && \

 apt-get install -y ros-lunar-desktop-full && \

 rosdep init && \

 rosdep update && \

#create project directory and clone TestIt

 mkdir -p /catkin_ws/src && \

 /bin/bash -c "source /opt/ros/lunar/setup.bash && cd /catkin_ws/src
&& catkin_init_workspace" && \

 cd /catkin_ws/src && \

 git clone https://github.com/GertKanter/testit.git && \

#install Java 8, Lunar packages, mongodb

 apt-get install software-properties-common -y && \

 add-apt-repository ppa:webupd8team/java -y && \

 apt-get update && \

 echo debconf shared/accepted-oracle-license-v1-1 select true |
debconf-set-selections && \

 echo debconf shared/accepted-oracle-license-v1-1 seen true |
debconf-set-selections && \

 apt-get install oracle-java8-installer -y && \

 apt-get install -y ros-lunar-rviz && \

 apt-get install -y ros-lunar-map-server && \

 apt-get install -y ros-lunar-move-base-msgs && \

 apt-get install -y python-pymongo mongodb && \

 mkdir /opt/ros/mongodb_store && \

 apt-get install -y ros-lunar-navfn && \

 apt-get install -y ros-lunar-costmap-2d && \

#clone example for TestIt and STRANDS packages

 git clone https://github.com/arturgummel/dtrontestit.git
/catkin_ws/src/testit/dtron && \

 git clone https://github.com/arturgummel/dtronpack.git
/catkin_ws/dtronpack && \

57

 /bin/bash -c "/catkin_ws/src/testit/dtron/scripts/build_stuff.sh"
&& \

 cd /catkin_ws/src && \

 git clone https://github.com/strands-project/strands_navigation.git
&& \

 git clone https://github.com/strands-project/mongodb_store.git && \

 git clone https://github.com/strands-project/strands_apps.git && \

 git clone https://github.com/strands-project/strands_movebase && \

 git clone https://github.com/strands-project/fremen.git && \

 mv /catkin_ws/src/fremen/FremenServer
/catkin_ws/src/strands_navigation/ && \

 rm -r /catkin_ws/src/fremen && \

 git clone https://github.com/GT-RAIL/robot_pose_publisher.git && \

 /bin/bash -c "source /opt/ros/lunar/setup.bash && cd /catkin_ws &&
catkin_make" && \

#configure Spread

 useradd spread && usermod -a -G spread spread && \

 mkdir -m 777 /var/run/spread && \

 echo 'export PATH=$PATH:/catkin_ws/spread/sbin' >> ~/.bashrc && \

 echo 'source /opt/ros/lunar/setup.bash' >> ~/.bashrc && \

#install docker

 apt-get update && \

 apt-get -y install apt-transport-https \

 ca-certificates \

 curl \

 gnupg2 \

 software-properties-common && \

 curl -fsSL https://download.docker.com/linux/$(. /etc/os-release;
echo "$ID")/gpg > /tmp/dkey; apt-key add /tmp/dkey && \

 add-apt-repository \

 "deb [arch=amd64] https://download.docker.com/linux/$(. /etc/os-
release; echo "$ID") \

 $(lsb_release -cs) \

 stable" && \

 apt-get update && \

 apt-get -y install docker-ce && \

#install required architecture for running TRON

 dpkg --add-architecture i386 && \

 apt-get update && \

 apt-get install -y libc6:i386 libncurses5:i386 libstdc++6:i386

CMD bash

#download UPPAAL TRON manually from
http://people.cs.aau.dk/~marius/tron/download.html

#You will need to accept the license!

#unzip uppaal-tron-1.5-linux.zip in dtronpack directory:

#cd /catkin_ws/dtronpack && unzip uppaal-tron-1.5-linux.zip

58

Appendix 3 – Dockerfile of SUT

FROM ros:kinetic-robot-xenial

MAINTAINER Gert Kanter <gert.kanter@ttu.ee>

LABEL Description="TestIt! ROS Testing toolkit tutorial SUT image"

RUN apt-get update && \

 apt-get install -y ros-kinetic-turtlebot-navigation ros-kinetic-
turtlebot-gazebo wget xvfb && \

 /bin/bash -c "echo \"deb
http://packages.osrfoundation.org/gazebo/ubuntu-stable `lsb_release -cs`
main\" > /etc/apt/sources.list.d/gazebo-stable.list" && \

 wget http://packages.osrfoundation.org/gazebo.key -O - | apt-key
add - && \

 apt-get update && \

 apt-get upgrade -y && \

 mkdir -p /catkin_ws/src && \

 /bin/bash -c "source /opt/ros/kinetic/setup.bash && cd
/catkin_ws/src && catkin_init_workspace" && \

 cd /catkin_ws/src && \

 git clone https://github.com/mission-control-ros/mission_control &&
\

 git clone https://github.com/ros/executive_smach.git && \

 git clone https://github.com/ros-perception/slam_gmapping.git && \

 cd slam_gmapping && \

 git fetch origin pull/56/head:nodelet_fix && \

 git checkout nodelet_fix && \

 cd .. && \

 /bin/bash -c "source /opt/ros/kinetic/setup.bash && cd /catkin_ws
&& catkin_make"

CMD ['/bin/bash', ' -c "source /catkin_ws/devel/setup.bash && rosrun
mission_control start_move_base_in_docker.sh && tail -f /dev/null"']

59

Appendix 4 – Dockerfile of testing base image

FROM testit:latest

MAINTAINER Artur Gummel <artur.gummel@ttu.ee>

LABEL Description="TestIt! ROS Testing toolkit docker image"

ARG DEBIAN_FRONTEND=noninteractive

RUN apt-get update && apt-get install -y --no-install-recommends apt-
utils && \

 echo 'export PATH=$PATH:/catkin_ws/spread/sbin' >> ~/.bashrc && \

 echo 'source /opt/ros/lunar/setup.bash' >> ~/.bashrc && \

#insert map to database

 /bin/bash -c "/catkin_ws/src/testit/dtron/scripts/insertmap.sh"

CMD bash

60

Appendix 5 – Oracle Test1

#!/usr/bin/python

import roslib

import actionlib

import rospy

import testit_oracles.testit_gazebo

import sys

from move_base_msgs.msg import *

from geometry_msgs.msg import PoseStamped

def resultCallback(data):

 goalStatus = data.status.text

 rospy.loginfo(goalStatus)

 if goalStatus == 'Goal reached.':

 return True

 else:

 return False

def goalCallback(data, waypointX, waypointY):

 x = float(data.pose.position.x)

 y = float(data.pose.position.y)

 rospy.loginfo('Current goal X: %f Y: %f', x, y)

 if waypointX - 0.1 <= x <= waypointX + 0.1 and waypointY - 0.1 <= y \

 <= waypointY + 0.1:

 msgResult = rospy.wait_for_message('/move_base/result',

 MoveBaseActionResult)

 reachedLocation = resultCallback(msgResult)

 if reachedLocation:

 rospy.loginfo('WayPoint x: %f y: %f reached successfully',

 x, y)

 return 0 #success

 else:

 rospy.loginfo('Did not reach WayPoint x: %f y: %f', x, y)

 return 1 #fail

 else:

 rospy.loginfo('Wait for a next goal')

 return 3 #continue

if __name__ == '__main__':

 rospy.init_node('testit_tb_tutorial')

 rate = rospy.Rate(2)

 waypointX = float(sys.argv[1])

 waypointY = float(sys.argv[2])

61

 while not rospy.is_shutdown():

 msg = rospy.wait_for_message('/move_base/current_goal',

 PoseStamped)

 result = goalCallback(msg, waypointX, waypointY)

 if result == 0:

 sys.exit(0) #success

 elif result == 1:

 sys.exit(1) #fail

 rate.sleep()

62

Appendix 6 – Oracle Test2

#!/usr/bin/python

import roslib

import rospy

import sys

from move_base_msgs.msg import *

from geometry_msgs.msg import PoseStamped

def resultCallback(data):

 goalStatus = data.status.text

 if goalStatus == "Failed to find a valid plan. Even after executing
recovery behaviors.":

 return False

 else:

 return True

def goalCallback(data):

 x = float(data.pose.position.x)

 y = float(data.pose.position.y)

 rospy.loginfo('Current goal X: %f Y: %f', x, y)

 msgResult = rospy.wait_for_message("/move_base/result",
MoveBaseActionResult)

 reachedLocation = resultCallback(msgResult)

 if not reachedLocation:

 rospy.loginfo("Did not reach WayPoint x: %f y: %f", x, y)

 return 1 #fail

 else:

 return 3 #continue

if __name__ == "__main__":

 rospy.init_node("testit_tb_tutorial")

 rate = rospy.Rate(2)

counter = 10

 if len(sys.argv) == 2:

 counter = int(sys.argv[1])

 while not rospy.is_shutdown():

 msg = rospy.wait_for_message("/move_base/current_goal",
PoseStamped)

 result = goalCallback(msg)

 if result == 3:

 counter -= 1

 if counter <= 0:

 sys.exit(0) #success

 elif result == 1:

 sys.exit(1) #fail

 rate.sleep()

63

Appendix 7 – Oracle Test3

#!/usr/bin/python

import roslib

import actionlib

import rospy

import sys

from topological_navigation.msg import *

def goalCallback(data):

 target = data.goal.target

 goalId = data.goal_id.id

 rospy.loginfo('Current goal %s', target)

 msgResult = rospy.wait_for_message('/topological_navigation/result'

 , GotoNodeActionResult)

 rospy.loginfo(msgResult)

 reachedLocation = msgResult.result.success

 reachedTargetId = msgResult.status.goal_id.id

 if reachedLocation and goalId == reachedTargetId:

 rospy.loginfo('%s reached successfully', target)

 return 0 #success

 elif not reachedLocation and goalId == reachedTargetId:

 rospy.loginfo('Did not reach %s', target)

 return 1 #fail

 else:

 rospy.loginfo('Wait for a next goal')

 return 3 #continue

if __name__ == '__main__':

 rospy.init_node('testit_tb_tutorial')

 reachWayPoint = sys.argv[1]

 rate = rospy.Rate(2)

 while not rospy.is_shutdown():

 msg = rospy.wait_for_message('/topological_navigation/goal',

 GotoNodeActionGoal)

 if reachWayPoint == msg.goal.target:

 result = goalCallback(msg)

 if result == 0:

 sys.exit(0) #success

 elif result == 1:

 sys.exit(1) #fail

 rate.sleep()

64

Appendix 8 – Configuration file

tests:

 - tag: "Scenario #1" # identifier for reporting

 pipeline: "" # empty for any

 source: "/testit_tests/01" # test scenario source directory (SMACH
state machine, UPPAAL model etc) inside TestIt docker container

 launch: "" # how to execute this test (run command) in TestIt
container, if empty, then assumed that test is not explicitly executed
(already started at runSUT and oracle is used to determine pass/fail)

 oracle: "./testit_tests/01/oracle/oracle.py 16.646 21.344" #
determining whether pass/fail, if empty = "launch" execution result will
be used to determine pass/fail

 timeout: 300 # time in seconds for timeout (0 for no timeout)

 timeoutVerdict: False # if timeout occurs, declare the test as this
(False = fail, True = success)

 bagMaxSplits: "" # empty = use default

 bagDuration: "" # empty = use default

 - tag: "Scenario #2" # identifier for reporting

 pipeline: "" # empty for any

 source: "/testit_tests/01" # test scenario source directory (SMACH
state machine, UPPAAL model etc) inside TestIt docker container

 launch: "" # how to execute this test (run command) in TestIt
container, if empty, then assumed that test is not explicitly executed
(already started at runSUT and oracle is used to determine pass/fail)

 oracle: "./testit_tests/01/oracle/oracle.py 25.226 27.470" #
determining whether pass/fail, if empty = "launch" execution result will
be used to determine pass/fail

 timeout: 1200 # time in seconds for timeout (0 for no timeout)

 timeoutVerdict: False # if timeout occurs, declare the test as this
(False = fail, True = success)

 bagMaxSplits: "" # empty = use default

 bagDuration: "" # empty = use default

 - tag: "Scenario #3" # identifier for reporting

 pipeline: "" # empty for any

 source: "/testit_tests/02" # test scenario source directory (SMACH
state machine, UPPAAL model etc) inside TestIt docker container

 launch: "" # how to execute this test (run command) in TestIt
container, if empty, then assumed that test is not explicitly executed
(already started at runSUT and oracle is used to determine pass/fail)

 oracle: "./testit_tests/02/oracle/oracle.py" # determining whether
pass/fail, if empty = "launch" execution result will be used to determine
pass/fail

 timeout: 1800 # time in seconds for timeout (0 for no timeout)

 timeoutVerdict: False # if timeout occurs, declare the test as this
(False = fail, True = success)

 bagMaxSplits: "" # empty = use default

 bagDuration: "" # empty = use default

65

configuration:

 bringupSUT: "" # how to bring up a pipeline server/docker SUT (general
case), you can use "[[]]" for replacing

 bringupSUTDelay: 0 # duration to wait after command

 bringupSUTTimeout: 1 # seconds (0 for no timeout, but you have to
specify bringup_finish_trigger then or tests will not be run)

 bringupSUTFinishTrigger: "-" # command to test whether startup is
finished, "-" = no trigger

 runSUT: "docker run --rm --net=rosnetwork --env
ROS_HOSTNAME=[[masterHost]] --env
ROS_MASTER_URI=http://[[masterHost]]:11311 --name [[masterHost]] -dt
testit_tb_sut:latest /bin/bash -c \"source /catkin_ws/devel/setup.bash &&
rosrun mission_control start_move_base_in_docker.sh && tail -f
/dev/null\"" # run SUT

 runSUTDelay: 90 # duration to wait for SUT to come up (roscore
initialization)

 runSUTTimeout: 90

 runSUTFinishTrigger: "-"

 stopSUT: "docker kill [[masterHost]]"

 stopSUTDelay: 0 # duration to wait after stopping the SUT

 stopSUTTimeout: 5

 stopSUTFinishTrigger: "-"

 teardownSUT: "" # how to clean up after finishing (shut down
server/docker) (general case)

 teardownSUTDelay: 0 # duration to wait after teardown

 teardownSUTTimeout: 5

 teardownSUTFinishTrigger: "-"

 bringupTestIt: "" # bring up the pipeline server (in the cloud for
example)

 bringupTestItDelay: 0 # duration to wait after command

 bringupTestItTimeout: 1

 bringupTestItFinishTrigger: "-"

 runTestIt: "docker run --rm --
volume=/catkin_ws/src/testit/dtron/turtlebot/testit_tests/:/testit_tests
--net=rosnetwork --env ROS_VERSION=[[rosVersion]] --env
ROS_HOSTNAME=[[testitHost]] --env
ROS_MASTER_URI=http://[[masterHost]]:11311 --name [[testitHost]] -dt
testit_tb_testit /bin/bash -c \"
/catkin_ws/src/testit/dtron/turtlebot/scripts/run_adapter.sh && tail -f
/dev/null\"" # how to bring up a pipeline TestIt (general case), you can
use "[[]]" for replacing

 runTestItDelay: 10 # duration to wait after command

 runTestItTimeout: 10

 runTestItFinishTrigger: "-"

 stopTestIt: "docker kill [[testitHost]]" # general case pipeline
stopping

 stopTestItDelay: 0 # duration to wait after command

 stopTestItTimeout: 5

 stopTestItFinishTrigger: "-"

 teardownTestItDelay: 0 # duration to wait after command

 teardownTestItTimeout: 5 # empty string = use default

 teardownTestItFinishTrigger: "-" # command to test whether startup is
finished, "-" = no trigger

66

 bagEnabled: False # True=rosbag record, False=don't bag

 bagMaxSplits: 5 # total bag duration = maxsplits*duration

 bagDuration: 15 # seconds

pipelines:

 - tag: "Pipeline #1" # identifier for reporting

 rosVersion: "lunar"

 ssh: "-" # "-" means no ssh command wrapping, execute docker commands
on localhost, bringup/teardown are not wrapped, run/stop + test commands
are wrapped

 masterHost: "sut1"

 testitHost: "testit1"

 masterIP: "-" # where SUT roscore is running (used if masterHost is
not defined) ("-" means none)

 testitIP: "-" # where TestIt docker container is running (used if
testitHost is not defined) ("-" means none)

 testItVolume: "$(rospack find dtron)/turtlebot/testit_tests/" # where
TestIt volume is located in the pipeline (test scenarios + bags are
stored there)

 bringupSUT: "" # empty string = use default

 bringupSUTTimeout: "" # empty string = use default

 bringupSUTFinishTrigger: "" # empty string = use default

 runSUT: "" # empty string = use default

 teardownSUT: "" # custom teardown for this pipeline

 teardownSUTTimeout: "" # empty string = use default

 teardownSUTFinishTrigger: "" # empty string = use default

 bringupTestIt: "" # empty string = use default

 bringupTestItTimeout: "" # empty string = use default

 bringupTestItFinishTrigger: "" # empty string = use default

 runTestIt: "" # empty string = use default

 teardownTestIt: "" # custom teardown for this pipeline

 teardownTestItDelay: "" # duration to wait after command

 teardownTestItTimeout: "" # empty string = use default

 teardownTestItFinishTrigger: "" # empty string = use default

67

Appendix 9 – Example of passed Test1

$ roslaunch dtron turtlebot.launch
config:=/catkin_ws/src/testit/dtron/turtlebot/cfg/config_top_nav.yaml

process[testit_daemon-2]: started with pid [3580]

[INFO] [1525544472.691523]: Loading configuration from
/catkin_ws/src/testit/dtron/turtlebot/cfg/config_top_nav.yaml...

[INFO] [1525544472.845837]: TestIt daemon started...

[INFO] [1525544478.730549]: Start all pipelines...

[INFO] [1525544478.737346]: [Pipeline #1] Setting state to BRINGUP

[INFO] [1525544478.739631]: Pipeline #1 starting...

[INFO] [1525544478.743507]: [Pipeline #1] Executing bringup SUT...

[INFO] [1525544478.755034]: [Pipeline #1] Done!

[INFO] [1525544478.758033]: [Pipeline #1] Waiting for delay duration
(0)...

[INFO] [1525544478.759049]: [Pipeline #1] Waiting for the bringup to
finish...

[INFO] [1525544479.744866]: ...

[INFO] [1525544479.761099]: [Pipeline #1] Done!

[INFO] [1525544479.763621]: [Pipeline #1] Executing bringup TestIt...

[INFO] [1525544479.770802]: [Pipeline #1] Done!

[INFO] [1525544479.771541]: [Pipeline #1] Waiting for delay duration
(0)...

[INFO] [1525544479.773444]: [Pipeline #1] Waiting for the bringup to
finish...

[INFO] [1525544480.775225]: [Pipeline #1] Done!

[INFO] [1525544481.750981]: Pipeline #1 finished with True

[INFO] [1525544486.275770]: Acquiring pipeline for test 'Scenario #1'

[INFO] [1525544486.279273]: Acquired pipeline Pipeline #1

[INFO] [1525544486.281376]: [Pipeline #1] Running SUT...

[INFO] [1525544486.283662]: [Pipeline #1] Executing SUT to run...

[INFO] [1525544486.285002]: [Pipeline #1] Executing "docker run --rm --
net=rosnetwork --env ROS_HOSTNAME=sut1 --env
ROS_MASTER_URI=http://sut1:11311 --name sut1 -dt testit_tb_sut:latest
/bin/bash -c "source /catkin_ws/devel/setup.bash && rosrun
mission_control start_move_base_in_docker.sh && tail -f /dev/null""

588077b6545aa550d2c91e944c6eb286c624534a4fb531ad891437503c0d47bc

[INFO] [1525544489.225981]: [Pipeline #1] Waiting for delay duration
(90)...

[INFO] [1525544579.314949]: [Pipeline #1] (run) ..

[INFO] [1525544594.335467]: [Pipeline #1] (run) ..

[INFO] [1525544609.354133]: [Pipeline #1] (run) ..

[INFO] [1525544624.371705]: [Pipeline #1] (run) ..

[INFO] [1525544639.387914]: [Pipeline #1] (run) ..

[INFO] [1525544654.408228]: [Pipeline #1] (run) ..

[INFO] [1525544669.423119]: [Pipeline #1] Execution done!

[INFO] [1525544669.424464]: [Pipeline #1] Running TestIt...

68

[INFO] [1525544669.426452]: [Pipeline #1] Executing TestIt to run...

[INFO] [1525544669.429798]: [Pipeline #1] Executing "docker run --rm --
volume=testit_tests:/testit_tests --net=rosnetwork --env
ROS_VERSION=lunar --env ROS_HOSTNAME=testit1 --env
ROS_MASTER_URI=http://sut1:11311 --name testit1 -dt testit_tb_testit
/bin/bash -c
"/catkin_ws/src/testit/dtron/turtlebot/scripts/run_top_nav.sh && tail -f
/dev/null""

f9c9cd3719a934800415c61b46bc954d2cd18e33ea2f15d90abfccc165ca0104

[INFO] [1525544673.507411]: [Pipeline #1] Waiting for delay duration
(25)...

[INFO] [1525544698.538570]: [Pipeline #1] (run) ..

[INFO] [1525544713.578253]: [Pipeline #1] (run) ..

[INFO] [1525544723.609492]: [Pipeline #1] Execution done!

[INFO] [1525544723.637867]: [Pipeline #1] Executing tests in TestIt
container...

[INFO] [1525544723.668648]: [Pipeline #1] Launching test 'Scenario #1'

[INFO] [1525544725.342714]: [Pipeline #1] Executing oracle...

[INFO] [1525544767.081646, 11.602000]: Current goal X: 14.650612 Y:
16.331187

[INFO] [1525544767.097278, 11.602000]: Wait for a next goal

[INFO] [1525544811.783285, 22.207000]: Current goal X: 18.351491 Y:
15.117878

[INFO] [1525544811.784432, 22.207000]: Wait for a next goal

 [INFO] [1525544881.373912, 43.458000]: Current goal X: 15.568533 Y:
18.316429

[INFO] [1525544881.374627, 43.458000]: Wait for a next goal

[INFO] [1525544918.031074, 56.733000]: Current goal X: 17.957311 Y:
22.658847

[INFO] [1525544918.031991, 56.733000]: Wait for a next goal

[INFO] [1525544959.964177, 71.405000]: Current goal X: 16.646096 Y:
21.344108

[INFO] [1525544991.509076, 81.247000]: Goal reached.

[INFO] [1525544991.514035, 81.247000]: WayPoint x: 16.646096 y: 21.344108
reached successfully

[INFO] [1525544991.515369, 81.247000]: GOT RETURN STATEMENT 0

[INFO] [1525544992.379063]: [Pipeline #1] TEST PASS!

[INFO] [1525544992.380725]: [Pipeline #1] Stopping TestIt container...

[INFO] [1525544992.388351]: [Pipeline #1] Executing TestIt to stop...

[INFO] [1525544992.391408]: [Pipeline #1] Executing "docker kill testit1"

testit1

[INFO] [1525544995.207010]: [Pipeline #1] Waiting for delay duration
(0)...

[INFO] [1525544995.211155]: [Pipeline #1] (stop) ..

[INFO] [1525545000.240120]: [Pipeline #1] Execution done!

[INFO] [1525545000.244690]: [Pipeline #1] Stopping SUT...

[INFO] [1525545000.246446]: [Pipeline #1] Executing SUT to stop...

[INFO] [1525545000.251781]: [Pipeline #1] Executing "docker kill sut1"

sut1

[INFO] [1525545002.968978]: [Pipeline #1] Waiting for delay duration
(0)...

[INFO] [1525545007.976677]: [Pipeline #1] Execution done!

	Author’s declaration of originality
	Abstract
	Annotatsioon Mudeli-põhine testimine keskkonnaga TestIt: robotite operatsioonisüsteemi juhtumiuuring
	List of abbreviations and terms
	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Related work
	1.3 Thesis problem statement and main assumptions
	1.4 Thesis structure

	2 Preliminaries
	2.1 Model-based testing
	2.2 Uppaal Timed Automata
	2.2.1 The Uppaal modelling language
	2.2.2 Uppaal simulator
	2.2.3 The Uppaal verifier

	2.3 Uppaal TRON
	2.4 DTRON
	2.5 Behaviour trees
	2.6 MBT for ROS-based robotics

	3 Adaptation of the MBT workbench TestIt
	3.1 TestIt architecture and design principles
	3.2 Integrating DTRON with TestIt
	3.2.1 Protocol buffers installation
	3.2.2 Spread toolkit installation
	3.2.3 Adapter
	3.2.4 Dockerfile

	3.3 Test generation for DTRON
	3.3.1 Mapping topological maps to Uppaal TA

	4 Case study: Autonomous platform navigating in the confined area
	4.1 General description and test goals
	4.2 Generating Uppaal TA models
	4.3 Generating tests
	4.4 Executing tests
	4.5 Testing results

	5 Summary
	References
	Appendix 1 – Example of Uppaal model
	Appendix 2 – Dockerfile of the base image
	Appendix 3 – Dockerfile of SUT
	Appendix 4 – Dockerfile of testing base image
	Appendix 5 – Oracle Test1
	Appendix 6 – Oracle Test2
	Appendix 7 – Oracle Test3
	Appendix 8 – Configuration file
	Appendix 9 – Example of passed Test1

