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Abstract 

In the evolving field of residential energy management, optimizing energy use while 

minimizing costs has become increasingly critical. This thesis focuses on optimizing 

home energy systems using Model Predictive Control (MPC) to enhance economic 

efficiency and battery longevity. The integration of market prices, historical energy 

demand, and solar production data into the MPC algorithm allows for predictive, dynamic 

management of energy storage.  

The research investigates how various operational parameters influence the economic 

efficiency of home energy systems, explores robust responses to disturbances, and 

assesses the performance of simplified versus complex system configurations. By 

developing an algorithm that intelligently manages battery charge and discharge cycles, 

the thesis aims to minimize electricity costs while considering the operational life of the 

battery.  

This system provides homeowners with predictive data on savings and energy 

management, promoting informed decisions on future investments in PV and battery 

systems while having minimal interface with user, requiring only potential PV panel and 

battery configuration with historical electricity demand data. 

This thesis is written in English and is 55 pages long, including 5 chapters, 13 figures and 

4 tables. 
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Annotatsioon 

MUDELIPÕHINE JUHTIMINE AKU 

HALDUSSÜSTEEMILE KODUKASUTUSES  

Elamuenergeetika haldamise valdkond areneb pidevalt ning energiakasutuse 

optimeerimine ja kulude vähendamine on muutunud üha olulisemaks. Käesolev lõputöö 

keskendub koduste energiasüsteemide tõhustamisele, kasutades selleks mudelipõhist 

ennustavat juhtimist (inglise keelse model predictiv control - MPC), et parandada 

süsteemi majanduslikku tõhusust ja pikendada akude eluiga. börsihinna, ajaloolise 

energianõudluse ja päikeseenergia tootmisandmete kaasamine MPC algoritmi võimaldab 

energiasalvestuse proaktiivset ja dünaamilist juhtimist. 

Võrreldakse, kuidas erinevad operatiivsed parameetrid mõjutavad koduste 

energiasüsteemide majanduslikku efektiivsust, analüüsib süsteemi vastupidavust 

häiretele ja võrdleb lihtsate ning keerukate süsteemilahenduste toimivust. Lõputöö töötab 

välja algoritmi, mis reguleerib akude laadimis- ja tühjendamistsükleid, eesmärgiga 

vähendada elektri arvet. 

Väljatöötatud süsteem pakub koduomanikele infot, milline võiks olla sobilik 

päikesepaneelide ja akude kombinatsioon, ning anda hinnangu kui palju võiks 

potentsiaalne süsteem elektriarvet vähendada. Süsteemi kasutamine on tehtud 

kasutajasõbralikus, kastutades ainult koduomaniku viimase aasta elektri tarbimise 

andmeid.  

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 55 leheküljel, 5 peatükki, 13 

joonist, 4 tabelit. 
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List of abbreviations and terms 

ESS 

EV 

IoT 

PV 

MPC 

SOC 

kWh 

Ah 

nZEB 

Energy storage system 

Electric vehicle 

Internet of Things 

Photovoltaic 

Model predictive control 

State of charge 

Kilowatt-hour 

Ampere-hour 

Nearly zero-emission building 

  

 

 

  

  

 



7 

Table of contents 

 
1 Introduction ................................................................................................................. 11 

1.1 Research questions ............................................................................................... 11 

1.2 Goal ...................................................................................................................... 12 

1.3 Literature overview ............................................................................................... 13 

2 Methodology ................................................................................................................ 15 

2.1 Data Collection and Preparation ........................................................................... 15 

2.2 Control algorithm setup ........................................................................................ 17 

2.2.1 Model predictive control ............................................................................... 17 

2.2.2 Cost function tuning ...................................................................................... 18 

2.2.3 Stochastic MPC ............................................................................................. 18 

2.3 Cost function setup ............................................................................................... 20 

2.3.1 System dynamics ........................................................................................... 20 

2.3.2 Objectives ...................................................................................................... 21 

2.4 Problem formulation ............................................................................................. 26 

2.5 Simulation setup ................................................................................................... 26 

2.5.1 Receding Horizon Control ............................................................................. 28 

2.6 Simulation with uncertainty.................................................................................. 28 

2.7 Technical assumptions .......................................................................................... 30 

3 Data analysis ................................................................................................................ 32 

3.1 Results of different scenarios ............................................................................... 32 

3.1.1 High market price scenario ............................................................................ 32 

3.1.2 High electricity demand and small PV production ........................................ 35 

3.1.3 Half-month-long simulation .......................................................................... 37 

3.1.4 Simulation with uncertainty .......................................................................... 39 

3.1.5 Comparing different simulations ................................................................... 41 

3.2 Validation ............................................................................................................. 42 

3.2.1 Comparing results with other work ............................................................... 42 

3.3 Economic feasibility ............................................................................................. 44 



8 

3.3.1 Required components .................................................................................... 45 

3.3.2 Cost benefit analysis ...................................................................................... 47 

4 Discussion .................................................................................................................... 48 

4.1 Are the control commands realistic and usable? .................................................. 48 

4.1.1 Are the control commands optimal? .............................................................. 48 

4.1.2 Hierarchical Control Architecture ................................................................. 48 

4.1.3 Synchronization and Adaptability Challenges .............................................. 49 

4.1.4 Real-Time Optimization Solution ................................................................. 49 

4.2 Future work........................................................................................................... 49 

4.3 How could developed system improve the grid? .................................................. 50 

5 Summary ...................................................................................................................... 51 

References ...................................................................................................................... 52 

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation 

thesis ............................................................................................................................... 55 

 

 

 



9 

List of figures 

Figure 1 Overview of TalTech's nZEB system. [17] ...................................................... 13 

Figure 2 Electricity market price over one year. [9]....................................................... 16 

Figure 3 Residential building electricity demand. [9] .................................................... 17 

Figure 4 Effect of 𝐶𝑏𝑎𝑡 in the control signal for the battery discharge. ........................ 24 

Figure 5 Left showing the discreet version and right showing non-discreet 

approximation. [24] ........................................................................................................ 25 

Figure 8 Flowchart of the system. Optimization step involves minimizing the cost 

function. .......................................................................................................................... 31 

Figure 9 Simulation results of September day where the market price is exceptionally 

high. The corelation between power demand from grid and market price can be seen on 

top left graph. Battery charigning start at the peak of the PV panel production and the 

suddent power demand spike on 13th hour is coverd by grid to not disrupt the battery 

chraging process unnessecarily. ..................................................................................... 35 

Figure 10 January day where PV production is non-existent, as can be seen on bottom 

left graph, and at the same time the home electricity demand is very high. The only way 

to charge the battery is through the grid. ........................................................................ 37 

Figure 11 Half month long simulation, showing how the algorithm can be used for 

longer periods. ................................................................................................................ 39 

Figure 12 Simulation with uncertainty. Home electiricty demand has become more 

spiky. The battery is cycled multiple times as can be seen on bottom right graph, but at 

the same time the power charged to battery is very small which makes it acceptable. .. 40 

Figure 13 Results of [17]. Ess stands for energy storage system (battery) .................... 43 

Figure 14 Simulation using algorithm developed in this thesis and using the same raw 

data as in Figure 13 ......................................................................................................... 44 

Figure 15 Expected hardware configuration in this thesis. ............................................ 45 

 



10 

List of tables 

Table 1 Maximum power calculation used in this thesis................................................ 20 

Table 2 Constraints used by the simulations. ................................................................. 32 

Table 3 Comparison table showing the wide variety of simulation and the effect of the 

control algorithm that can be measured using electricity cost. As can be seen, the effect 

of the battery and PV production reduces during winter months. .................................. 41 

Table 4 Summary of costs .............................................................................................. 47 

 

 



11 

1 Introduction 

The deployment of photovoltaic (PV) systems in residential settings has become 

increasingly popular as a means of reducing household energy expenses and contributing 

to environmental sustainability. This trend is supported by significant advancements in 

solar panel efficiency and a reduction in installation costs over recent years [1]. In 

response to the limitations in daily sunlight hours and the variability of solar production, 

many homeowners are integrating battery storage systems with their PV installations. 

This approach allows for the storage of excess electricity generated during peak 

production times, which can then be used during periods of low production or high 

demand, like nighttime. 

The strategic addition of battery storage not only maximizes the utility of generated solar 

power but also provides a buffer against grid dependency and electricity price 

fluctuations. Another aspect of technological integration in this field is the use of 

historical energy consumption data, which allows for predictive analysis and more 

accurate sizing of both PV installations and storage capacities. By managing the charge 

and discharge cycles through a Model Predictive Control (MPC) algorithm that accounts 

for historical consumption patterns, it is possible to reduce cost of the electricity and 

increase overall system efficiency.  

1.1 Research questions 

The utilization of MPC algorithm in residential energy management systems offers a 

sophisticated approach to optimizing home energy use. By integrating real-time market 

prices, the MPC can make timely decisions to minimize costs. Moreover, the inclusion of 

detailed historical and solar production data enhances the algorithm’s ability to forecast 

energy needs accurately, which is crucial for efficient energy storage and consumption. 

Simultaneously, strategic management of battery charging and discharging not only 

supports system efficiency but also extends the operational lifespan of the battery 

systems, presenting a dual benefit. These research questions aim to explore the efficacy 
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of these integrations and their impact on the sustainability and cost-effectiveness of home 

energy systems. 

While the problem of minimizing electricity bill is complex in its nature, this thesis is 

simplifying the problem by using hourly home electricity demand data that is measured 

grid operator and is easily accessible with generating PV production profiles that could 

be used to configure different residential building setups and approximate the electricity 

cost reduction. In this thesis, our goal is to investigate: 

• How does the integration of various operational parameters (like SoC, PV 

production, market price etc) into the MPC algorithm enhance the economic 

efficiency of home energy systems? 

• How to respond to disturbances that are not modelled into the prediction to 

achieve robust MPC? 

• Can simplified solution be used to give numerical approximation on how 

different system configurations (PV panels count and battery size) perform and 

how does it compare to more complex solutions? 

1.2 Goal 

The primary aim of this thesis is to develop an algorithm capable of minimizing electricity 

costs through intelligent battery charge and discharge cycles, while also considering the 

extension of the battery's operational life. Homeowners can input specific parameters, 

such as historical electricity usage (that can be easily download form Elering’s webpage) 

and the physical capacities of their PV and battery systems. The MPC algorithm 

developed here integrates these inputs with additional data on solar production trends and 

real-time electricity market prices specific to Estonia. 

This approach allows the system to predict optimal periods for energy storage and 

consumption, thereby maximizing cost savings and enhancing energy efficiency. 

Furthermore, by providing users with predicted savings and detailed energy management 

recommendations, the system also helps in making informed decisions about future 

investments in PV and battery systems. Overall, the goal is to offer a tool that not only 

optimizes financial returns but also contributes to the sustainability of home energy 

systems by reducing waste and improving the balance between energy production and 

consumption. 
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Bigger goal of this thesis is to incorporate developed system into nearly zero-emission 

building (nZEB) that is use for research purposes in TalTech to make residential building 

more efficient and financially feasible in future. The project involves custom electronics 

components to improve the efficiency of the whole building, This thesis focus primarily 

on the high level control optimization problem, solving problem in energy management 

unit shown in Figure 1. 

 

1.3 Literature overview 

Finding optimal control commands for any given system is well researched topic and has 

many subfields spanning between linear and non-linear systems with different approaches 

involving searching through the entire state space or using some methods that iteratively 

move closer to the optimal solution. MPC has stood out in recent years because its ability 

to consider constraints while still handling nonlinear dynamics of the system.  

In the energy domain there are a lot of research already done and there are also good 

review articles [2] described pros and cons of different approaches and what are their 

limitations. According to the [2], there are classical optimisation techniques, which 

involve linear and dynamic programming where simpler problems can be solved because 

most of the real world problems are non-linear and in case of dynamic programming 

searching through all of the feasible solution is very expensive and slow. In addition, there 

Figure 1 Overview of TalTech's nZEB system. [17] 
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are nonlinear and stochastic control strategies where model predictive control is used very 

extensively because the cost function can be tuned so that it will consider uncertainty of 

the system and still won’t exceed any constraints as is done in vehicle control [3] [4] [5]. 

Another review paper [6] is focusing on buildings, minimizing the cost, greenhouse gas 

emissions while still not violating user comfort and considering uncertainties in the 

system.  

With a rise of different machine learning methods and success in other fields like image 

recognition and large language models, the energy domain is using machine learning 

enchant the electricity production and demand profiles while giving uncertainty metrics 

that could be used during control cycle [7]. There are also experiments with other energy 

storage devices like super- and ultracapacitors. [8] 

As can be seen there is a lot of work already done in the field, but they require a lot of 

knowledge about the building, predictive models, and a lot of them are not tested in the 

real world, sticking to only simulation as carrying out real world tests are hard and 

expensive. To give residential building owner better understanding on how their home 

might benefit from PV panel arrays and batteries that are controlled optimally to minimize 

the electricity bill, much simpler systems can be used. 

 Advantages Disadvantages 

MPC 

• Predictive and adaptive, 

handling constraints effectively. 

• Optimizes future performance, 

predicting and reacting to 

variables. 

• Computationally 

intensive, requiring 

powerful processors. 

• Complex to implement, 

needing accurate models. 

Dynamic 

programming 

• Handles multi-stage decision 

processes well. 

• Effective for problems with 

stochastic elements. 

• "Curse of 

dimensionality"; scales 

poorly with increased 

states. 

• Requires complete model 

of the environment. 
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Reinforcement 

Learning 

• Learns from environment 

through trial and error. 

• Adapts to changes in the 

operational environment. 

• Requires significant 

amount of data and 

training. 

• May converge slowly or 

to suboptimal solutions. 

2 Methodology 

This chapter outlines the data collection and preparation processes for a thesis on energy 

management systems, emphasizing the use of PV production data, household electricity 

demand, and market prices in Estonia. The data, recorded hourly, allows to analysis of 

energy consumption and production patterns. Techniques for data normalization and 

integration are discussed to ensure accuracy and consistency across different datasets. 

Additionally, the chapter introduces the application of MPC techniques, focusing on 

optimizing the economic efficiency and longevity of home energy management systems. 

2.1 Data Collection and Preparation 

The foundation of any robust energy management system lies in the quality and 

granularity of the data used. For this thesis, PV production, household electricity demand, 

and electricity market prices in Estonia are used. The primary data sources included a 

summary of yearly PV production in Estonia, recorded hourly in kilowatt-hours (kWh), 

and similarly structured data for home electricity demand. This allowed for a detailed 

comparison and analysis on an hourly basis, providing a fine-grained view of energy 

dynamics. 

Market price data for electricity, essential for calculating potential cost savings, was 

obtained from Elering’s official website, which provides comprehensive energy market 

statistics for Estonia. This dataset was crucial for aligning energy usage and production 

with market dynamics, enabling more precise financial analyses. 

To address the variability in PV production across different regions and conditions, the 

data was transformed by converting the absolute production figures into percentages. This 
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method facilitated the estimation of energy production for any given PV installation size, 

based on typical production patterns observed throughout the year in Estonia. While this 

approach averages out anomalies due to weather variations, such as cloudy days, it 

provides a reliable baseline from which users can manually adjust predictions to reflect 

more extreme weather scenarios. 

The data integration process involved aligning all datasets by datetime, ensuring that each 

hour’s data from different sources corresponded accurately. Data cleaning was another 

critical step, involving the removal of duplicates (such as those caused by daylight saving 

time adjustments) and the filling of missing values with data from the previous week. 

This method proved adequate for the scope of this study, where not all data was used 

continuously but selected periodically for specific simulations. 

The sample electricity demand for home was also obtained from Elektrilevi’s homepage 

[9] and authors home data was used. This data might slightly deviate from the typical 

demand profile as there are 2 people working from home and there is no smart HVAC 

system that would consider the temperature of the rooms or the market price. In addition, 

the primary heating is provided by wood oven heating.  

 
Figure 2 Electricity market price over one year. [9] 
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2.2 Control algorithm setup 

2.2.1 Model predictive control 

Model Predictive Control (MPC) is an advanced method of process control that has been 

widely used in various industries, ranging from chemical processing to aerospace and 

automotive applications. MPC utilizes a model of the process to predict the future state 

of the system over a finite time horizon. At each control interval, MPC solves an 

optimization problem, where the objective is typically to minimize a cost function subject 

to system dynamics and constraints. This optimization yields an optimal control 

sequence.  

MPC is particularly valuable for its ability to handle multivariable non-linear control 

systems where the inputs and outputs may be constrained by physical or operational 

Figure 3 Residential building electricity demand. [9] 
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limits. By incorporating constraints directly into the control problem, MPC can ensure 

that the system operates within safe and efficient parameters. 

In the context of energy management systems, the ability to integrate constraints makes 

MPC an attractive option. It allows for sophisticated control strategies that can 

dynamically adjust to varying conditions while respecting equipment limitations and 

operational safety. 

This master thesis explores a home energy management system that leverages a Model 

Predictive Control (MPC) algorithm. The system integrates forecasts to optimally manage 

the charging and discharging of a battery connected to a photovoltaic (PV) system and 

the electricity grid. The objective is to minimize electricity costs and maximize the 

efficiency and lifespan of the battery system by making smart decisions on energy use 

based on various inputs and constraints. 

2.2.2 Cost function tuning 

In MPC, the tuning of the cost function plays a crucial role in prioritizing different aspects 

of the control objectives. By assigning weights to different terms in the cost function, one 

can emphasize certain performance criteria over others. Since MPC often employs 

quadratic optimization, the terms of the cost function are typically squared. This squaring 

is beneficial as it amplifies the importance of minimizing errors, thereby assisting the 

solver in focusing on reducing overshoots and deviations from set points. For example, 

higher weights might be assigned to terms associated with energy consumption to 

prioritize cost savings, while lower weights could be applied to operational speed 

adjustments, depending on the specific goals of the system being managed. The strategic 

selection and adjustment of these weights allow the system operator or the algorithm 

designer to finely tune the system's response to various operational demands and 

constraints. 

2.2.3 Stochastic MPC 

Stochastic MPC extends the capabilities of traditional MPC by incorporating model 

uncertainty and prediction variability into the control process. Unlike deterministic MPC, 

which assumes that all model predictions and external inputs are exact, stochastic MPC 

deals with the uncertainty inherent in real-world systems. It does this by developing 

control actions that are optimized not only for a single predicted future but for a range of 
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possible outcomes. This approach allows for more conservative control commands that 

aim to ensure reliability and safety under uncertain conditions [10]. For example, 

stochastic MPC can adjust the charging of a battery system conservatively to avoid 

potential overcharging due to unexpected surges in solar power production.  

However, in this thesis, the application of stochastic MPC was not adopted but was 

considered during the research phase. The decision against its implementation was based 

on the relatively stable nature of the inputs being used, historical data on home electricity 

demand and PV production. Since these data sources provided a reliable basis for 

predictions without significant deviations, the added complexity of stochastic modelling 

was deemed unnecessary. Moreover, in the context of this specific household energy 

management system, preparing for the worst-case scenario through conservative 

estimates of PV production and demand could be adequately addressed within a 

deterministic framework. This simplification avoided the computational overhead and 

complexity associated with stochastic methods while still achieving robust and reliable 

system performance under the assumed conditions. 

2.2.3.1 System Configuration and Control Strategy 

This thesis introduces an approach focused on the rate of change in battery discharge, 

which essentially measures how quickly the battery's energy is being used. This control 

variable is incorporated into the cost function to generate a smooth control signal. It 

creates a user experience where it feels like the algorithm has made a deliberate decision 

to either charge or discharge the battery gradually, rather than abruptly switching between 

these states at every prediction timestep. 

To handle real-world challenges, such as the inability to sell excess electricity back to the 

grid without having a separate contract with the grid manager, additional control variable 

known as a PV production scaler was added. This scaler adjusts the PV output downwards 

when necessary to prevent the scenario where excess energy has nowhere to go (E.g. 

battery is full and PV production is higher than the home demand), which could otherwise 

make the optimization problem unsolvable during times of high solar production and thus 

the optimization problem infeasible. 

Another crucial control variable is the power drawn from the grid. Considering that in 

Europe the grid voltage is typically 230 volts for one phase, we can determine how much 
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power the system should draw from the grid based on the capacity of the circuit breaker 

using 

𝑃 = √3 ∗ 𝑃𝐹 ∗ 𝐼 ∗ 𝑉 

 

where 𝑃𝐹 is power factor or the efficiency, 𝐼 is the constant current and 𝑉 is neutral to 

line voltage. Using common circuit breaker value of 25 amps for residential house and 

using PF of 1 for simplicity, the maximum power that can be taken from the grid is 

17.25Kw which is also upper bound. In this setup, since selling power back to the grid 

isn't allowed, we've set the lower limit for this variable to zero, ensuring the system only 

consumes grid power and doesn't return any. 

By strategically managing these variables, the developed MPC helps make the most of 

both stored and renewable energy, reduces dependence on the grid, and ensures the 

system operates within its physical limits. This leads to more efficient and reliable energy 

management in residential settings. 

 

Table 1 Maximum power calculation used in this thesis. 

 

2.3 Cost function setup 

2.3.1 System dynamics 

Using explicit discrete time-invariant system representation the dynamics can be 

described as 

𝑥(𝑡 + 1) = 𝑨𝑥(𝑡) + 𝑩(𝒕)𝑢(𝑡) + 𝐸(𝑡), 

𝑥 = [

𝑃𝑚𝑖𝑠𝑠𝑖𝑛𝑔

𝐸𝑏𝑎𝑡

𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

 ], 𝑢 = [

𝑃𝑔𝑟𝑖𝑑

𝑆𝑃𝑉

∆𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

], 𝐸(𝑡) = [
𝑃𝑑𝑒𝑚𝑎𝑛𝑑(𝑡)

0
0

], 

Circuit breaker size [A] Voltage [V] Power [Kw] 

25 230 17.25 



21 

𝑥(𝑡 + 1) = [
0 0 −1
0 0 −1
0 0 0

] [

𝑃𝑚𝑖𝑠𝑠𝑖𝑛𝑔

𝐸𝑏𝑎𝑡

𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

 ] +  [
−1 −𝑃𝑝𝑣 (𝑡) 0

0 0 0
0 0 1

] [

𝑃𝑔𝑟𝑖𝑑

𝑆𝑃𝑉

∆𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

] + [
𝑃𝑑𝑒𝑚𝑎𝑛𝑑(𝑡)

0
0

]

=  [

𝑃𝑑𝑒𝑚𝑎𝑛𝑑(𝑡) − 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 − 𝑃𝑔𝑟𝑖𝑑 − 𝑃𝑝𝑣(𝑡) ∗  𝑆𝑃𝑉

−𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

∆𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

] 

where: 

 𝑃𝑚𝑖𝑠𝑠𝑖𝑛𝑔 – Excess/missing power. Should be always 0, 

𝐸𝑏𝑎𝑡 – energy stored in battery – kWh, 

𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 - energy discharged from the battery – kWh, 

∆𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 – Rate at which 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 changes, 

𝑃𝑔𝑟𝑖𝑑 – Power demand from grid – kWh, 

𝑆𝑃𝑉– PV scaler, used to downscale PV production, 

𝑃𝑑𝑒𝑚𝑎𝑛𝑑 – Electricity demand from the residential building. 

2.3.2 Objectives 

The overarching goal of the cost function in this Model Predictive Control (MPC) 

framework is to optimize two main objectives: Economic Efficiency and Battery 

Longevity. The system's inputs consist of the discharge rate change, the power required 

from the grid, and the PV production scaler, each adjustable at each timestep throughout 

the prediction horizon. Given that the input data are in one-hour increments, the control 

variables are updated hourly. For instance, with a 24-hour prediction horizon, the MPC 

algorithm will generate 24 distinct control vectors, each corresponding to an hour within 

that horizon. 

2.3.2.1 Economic Efficiency 

The power drawn from the grid is calculated in conjunction with the market price, 

ensuring that energy consumption during periods of lower prices is numerically 

equivalent to lesser consumption during higher price periods. This segment of the cost 

function, referred to as the “demanded electricity cost” is further amplified by a weight 
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factor, thereby prioritizing it as the most critical optimization parameter within the cost 

function. To reduce the overall cost of 𝐶𝑒𝑙𝑒𝑐(𝑇), only 𝑃𝑔𝑟𝑖𝑑(𝑡) can be changed as this is 

one of the control vector parameters and rest of the parameters are constants provided 

when the optimization begins. Because the cost function must be quadratic, the product 

of electricity demand and market price is squared. This means that the cost function value 

will increase when the market price is negative which in our case is not logically correct 

as negative price is even better than energy produced by PV that has not cost (if initial 

investment is not considered), as consuming the energy during the negative prices will 

lower the overall electricity bill. This is formulated as 

𝐶𝑒𝑙𝑒𝑐(𝑇) =  ∑(𝑃𝑔𝑟𝑖𝑑(𝑡) ∗ 𝑀𝑝𝑟𝑖𝑐𝑒(𝑡))2 ∗ 𝑊𝑝𝑟𝑖𝑐𝑒

𝑇

𝑡=1

 

where: 

𝑇 - prediction horizon length, 

𝑃𝑔𝑟𝑖𝑑 - Power demand from the grid for given hour – kWh, 

𝑀𝑝𝑟𝑖𝑐𝑒 – Positive market prices, negative values are replaced with 0 - €/h, 

𝑊𝑝𝑟𝑖𝑐𝑒 – weight. 

2.3.2.1.1 Negative prices 

In this thesis the negative price range is not considered as the timespan and respective 

negative price is very small as can be seen on Figure 2. Instead, when market price is 

negative, zero price is used. As the PV panel production is expected [11] to rise, the 

negative prices during the summer months are also expected to rise that could make 

economical gain much bigger. This could be done by adding additional cost function 

member that will penalize low consumption from the grid during the negative prices. The 

author purposes 

𝐶𝑛𝑒𝑔_𝑒𝑙𝑒𝑐(𝑇) =  ∑(
𝑊𝑛𝑒𝑔_𝑝𝑟𝑖𝑐𝑒

𝑃𝑔𝑟𝑖𝑑(𝑡)
∗ 𝑀𝑛𝑒𝑔_𝑝𝑟𝑖𝑐𝑒(𝑡))2

𝑇

𝑡=1

 

where: 
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𝑇 - prediction horizon length, 

𝑃𝑔𝑟𝑖𝑑 - Power demand from the grid for given hour – kWh, 

𝑀𝑛𝑒𝑔_𝑝𝑟𝑖𝑐𝑒 – negative market prices. Positive values are replaced with 0 - €/h, 

𝑊𝑛𝑒𝑔_𝑝𝑟𝑖𝑐𝑒 – weight. 

If the weight is 1 then market price will be multiplied by the invers value of power demand 

form the grid, meaning that the higher demand will decrease the overall cost value. As 

the 𝑀𝑛𝑒𝑔_𝑝𝑟𝑖𝑐𝑒 ≤ 0, the cost of 𝐶𝑛𝑒𝑔_𝑒𝑙𝑒𝑐(𝑇) is applied only during the negative price 

range. 𝑊𝑛𝑒𝑔_𝑝𝑟𝑖𝑐𝑒  must be adjusted relative to the 𝑊𝑝𝑟𝑖𝑐𝑒 to achieve wanted behaviour 

where the power from the grid is used. 

2.3.2.2 Battery Longevity 

Additionally, the cost function incorporates a penalty for the rate of change in battery 

discharge. This penalty not only smoothens the control signal directed to the actual 

battery, promoting a steadier discharge rate, but also contributes to reduced battery 

cycling within a single day, which is conducive to prolonged battery health. This is 

achieved by using 

𝐶𝑏𝑎𝑡(𝑇) = ∑(∆𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑡))
2

∗ 𝑊𝑏𝑎𝑡

𝑇

𝑡=1

 

where: 

𝑇 - prediction horizon length, 

∆𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 - rate of change in battery discharge, 

𝑊𝑏𝑎𝑡 – weight. 

The effect of 𝐶𝑏𝑎𝑡 can be seen on Figure 4, where the battery is cycled only once and the 

algorithm has decided to charge the battery during the first half of the day and discharge 

during the second half. This happens because with the ∆𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 in the cost the 

changing of the discharge is penalized while not changing the discharge rate and leaving 

it charging is less costly. While this alone does not guarantee that the battery is cycled 
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only once in a day, it happens to behave like this in most of the simulated scenarios. This 

can be seen on the Figure 4 where the simulation was done over half a month and the 

battery was cycled 15 times while using only 𝐶𝑏𝑎𝑡. 

 

2.3.2.2.1 Usage of discrete elements in cost function 

Before using 𝐶𝑏𝑎𝑡 discreet charging cycle counting was used to penalize multiple 

charging cycles in one day. Charging cycle was defined as battery moving from 

charging to discharging state 

 

𝐶𝑏𝑎𝑡_𝑑𝑖𝑠𝑐𝑟𝑒𝑒𝑡(𝑇) = 𝐶𝑐𝑦𝑐𝑙𝑒𝑠(𝑡) ∗ 𝑊𝑏𝑎𝑡_𝑑𝑖𝑠𝑐𝑟𝑒𝑒𝑡 

where: 

𝑇 - prediction horizon length, 

𝐶𝑐𝑦𝑐𝑙𝑒𝑠 – Number of charging cycles over prediction horizon 𝑇, 

𝑊𝑏𝑎𝑡_𝑑𝑖𝑠𝑐𝑟𝑒𝑒𝑡 – weight. 

This is bad because the cost function becomes discreet which cannot be solved very well 

using quadratic optimization methods. Most of the simulations ended with IPOPT solver 

Figure 4 Effect of 𝐶𝑏𝑎𝑡 in the control signal for the battery discharge. 
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exiting with error code indicating that the optimization problem is infeasible. To mitigate 

this one solution would be to use approximation of discreet functions as can be seen on 

Figure 5. While this solution was extensively explored, the author did not implement this 

method as ∆𝐷𝑟𝑎𝑡𝑒 is much more robust and works in simulations that are longer than one 

day.  

 

2.3.2.3 System constraints 

Beyond the control parameters, the cost function is constrained by non-negotiable 

conditions: the energy content in the battery cannot exceed the capacity of the chosen 

battery size, enabling simulation compatibility with various battery configurations. 

Furthermore, the household's electricity demand must always be satisfied. This means 

that 𝑃𝑑𝑒𝑚𝑎𝑛𝑑 ∆(𝑡) must be always 0. If the battery is charged then the value of 

𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑡) is negative, meaning that its acting as a consumer and to equal out the 

equation more electricity is demanded by the grid or PV panels.  

𝑃𝑚𝑖𝑠𝑠𝑖𝑛𝑔(𝑡) =  𝑃𝑑𝑒𝑚𝑎𝑛𝑑(𝑡) − 𝑃𝑔𝑟𝑖𝑑(𝑡) − [𝑆𝑃𝑉(𝑡) ∗ 𝑃𝑝𝑣(𝑡)] − 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑡) = 0 

0 ≤  𝐸𝑏𝑎𝑡 ≤  𝐸batery capacity 

−𝑃𝑐ℎ𝑎𝑟𝑔𝑒 𝑚𝑎𝑥 ≤ 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ≤ 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑚𝑎𝑥 

In addition to state space constraints, the control variables are also constrained as 

described in Section 2.2.1. ∆𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 can be left unconstrained because it is directly 

changing the value of 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 which is already constrained. Regardless, the bounds for 

∆𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 could help to speed up the solver because the initial state space is reduced. 

Figure 5 Left showing the discreet version and right showing non-discreet approximation. [24] 
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0 ≤ 𝑆𝑃𝑉 ≤ 1 

0 ≤ 𝑃𝑔𝑟𝑖𝑑 ≤ 𝑃𝑔𝑟𝑖𝑑 max 𝑝𝑜𝑤𝑒𝑟 

Formulas above can be rewritten using matrix notation as: 

[
0
0

−𝑖𝑛𝑓
] ≤ [

𝑃𝑔𝑟𝑖𝑑

𝑆𝑃𝑉

∆𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

] ≤ [
𝑔𝑟𝑖𝑑 max 𝑝𝑜𝑤𝑒𝑟

1
𝑖𝑛𝑓

] =  𝑢min ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥 

2.4 Problem formulation 

The final MPC problem with prediction horizon of T can be formulated as: 

min
𝑢

 ∑(𝐶𝑒𝑙𝑒𝑐(𝑡) + 𝐶𝑏𝑎𝑡(𝑡))

𝑇

𝑡=1

 

s.t. 𝑥(𝑡 + 1) = 𝑨𝑥(𝑡) + 𝑩(𝒕)𝑢(𝑡) + 𝑬(𝑡) 

𝑥0 = 𝑥𝑖𝑛𝑖𝑡𝑎𝑙 

𝑥min ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥 

𝑃𝑚𝑖𝑠𝑠𝑖𝑛𝑔(𝑡) =  0 

𝑢min ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥 

 

This problem is nonlinear and solved using CasADi [12] interface and IPOPT [13] 

solver. The sampling time is 1 hour throughout all the simulations and the prediction 

horizon is varying based on the simulation length.   

2.5 Simulation setup 

To use the described MPC, data is needed over the prediction horizon. More precisely 

home electricity demand and market price are required. To simplify the MPC 

development no prediction data is used. Instead, historical data from the previous year as 

a deterministic forecast for the prediction horizon is used. This simplification avoids the 
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incorporation of uncertainty into the simulation, which, while less reflective of potential 

variability, confers the significant advantage of expeditious feedback from the cost 

function evaluation. 

 

The entire prediction horizon is calculated in a single computational instance, and 

consequently, the nonlinear optimization is executed once, thereby dramatically reducing 

computational time. This streamlined approach enabled the simulation to compute 

extended prediction horizons, such as one month, in an impressively brief span of 

approximately three seconds. The reduction in computational complexity, achieved by 

 1 start_date = "2023-06-01" 

 2 end_date = "2023-06-02" 

 3 current_state = [0,0,0] # [P_missing, E_bat, P_discharge] inital state 

 4  

 5 testing_data = dataset[start_date:end_date] 

 6  

 7 prediction_horizon = lenght(testing_data) # 24 in this example 

 8  

 9 params = { 

10  "PV_production": testing_data["PV_production"], 

11 "electricity_demand": testing_data["electricity_demand"], 

12 "market_price": testing_data["market_price"], 

13 } 

14 

15  

16 set_state_limits() 

17 set_control_limits() 

18 set_inital_state(current_state) 

19 set_cost_function_params(params) 

20 

21 # Tabel with 3 columns (3 control paramters) and 

22 # 24 rows (for each prediction horizon step) 

23 control_vectors = solve()  

24  

25 for control in control_vectors 

26  state_change = system_dynamics_(current_state, control, params) 

27 current_state += state_change 

28 # save current_state for each predicton horizon timestep for plotting 
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forgoing the addition of uncertainty and leveraging historical data, allows for rapid 

iteration and evaluation of the control strategy, making it particularly suitable for 

scenarios where speed is prioritized over the precision of stochastic forecasts. 

2.5.1 Receding Horizon Control 

Receding Horizon Control (RHC), often used synonymously with MPC, is a strategy 

where the control action is obtained by solving an optimization problem that looks ahead 

over a finite future horizon, but only the first control action is implemented. After the 

initial step is taken, the horizon shifts forward, and the process repeats at each timestep. 

This approach ensures that the MPC continuously adapts to changes in the system's state 

and the external environment, recalculating optimal controls based on the most recent 

information. RHC with MPC is particularly beneficial in dynamic systems where future 

states are uncertain and external disturbances may affect system performance. By 

continually updating its predictions and optimizations, RHC with MPC provides a robust 

control strategy that can anticipate and compensate for changes, leading to more stable 

and efficient system operation. 

2.6 Simulation with uncertainty 

In the thesis, a practical approach was adopted to simulate the uncertainty inherent in the 

system's inputs and operational conditions, using a methodology based on Receding 

Horizon Control (RHC). This approach effectively captures the dynamic and 

unpredictable nature of real-world systems, particularly in the context of solar energy 

production and household electricity consumption. 

The simulation process began with the initial application of RHC, where a predictive 

model generated a series of control actions based on the available data. Crucially, only 

the first control action from this series was implemented—a strategy that is characteristic 

of RHC. This reflects the real-world scenario where decisions are made with the best 

available information at the time, but with an understanding that new data may soon alter 

the situation. 

To introduce uncertainty into the simulation, after executing the first control action, 

random noise was added to the prediction data (input for optimization) that was used 

during the initial prediction. This noise represented potential errors in prediction or 
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unexpected changes in environmental conditions, such as variations in solar irradiance or 

sudden changes in electricity demand. Random noise is added to the raw data again on 

each iteration, so that the previous iteration was done on different noise in prediction data.  

Adding noise to the home electricity demand after optimization would defeat the purpose 

of the system as it can’t react to changes that haven’t been measured yet because the time 

between each prediction step is 1 hour (as set by the raw data coming from Elerings [9] 

database). Real-time changes should be handled by lower-level controller that are 

described more in Section 1.1. 

Following the addition of noise, the system's state was updated with this new, altered 

data, and the prediction process was repeated. The data window was shifted forward, and 

a new optimization was carried out using the latest available data, including the recently 

introduced noise elements. This iterative process was repeated throughout the simulation 

period, continuously adapting to new information and recalibrated predictions. This 

method not only tested the robustness of the control strategy against unforeseen changes 

but also mirrored the process of continuous learning and adaptation that is critical in 

managing real-world energy systems. 

Through this simulation methodology, the thesis effectively demonstrated the system’s 

capability to handle uncertainty and adapt to new conditions dynamically, thereby 

validating the effectiveness of the control strategy under realistic operating scenarios. 

This approach also highlighted the strengths of RHC in managing systems with 

significant variability and unpredictability, providing valuable insights into its application 

for home energy management systems. 
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2.7 Technical assumptions  

Described systems has multiple simplifications that are not considered in this thesis. One 

of the most important simplifications that can have significant impact on the results of the 

simulation is power loss. In real world charging the battery and discharging it later can 

have huge power losses which is not considered and thus the electricity demand can be 

higher than simulated in this thesis. [14] 

Another simplification is use of power instead of current in all calculations. This might 

not be achievable with hardware as battery (dis)charging currents depend on the voltage 

 1 start_date = "2023-06-01" 
 2 end_date = "2023-06-02" 
 3 current_state = [0, 0, 0]  # [P_missing, E_bat, P_discharge] initial state 
 4  
 5 simulation_data = dataset[start_date:end_date] 
 6  
 7 sim_length = len(simulation_data) / 2  # 12 in this example 
 8 prediction_horizon = len(simulation_data) / 2  # 12 in this example 
 9  
10 set_state_limits() 
11 set_control_limits() 
12 
13 output = [] 
14  
15 for i in range(sim_length):  
16    # Take data applicable for this simulation iteration 
17    testing_data = simulation_data[i:i + prediction_horizon] 
18 
20    params = { 
21        "PV_production": testing_data["PV_production"] + pv_noise(i), 
22        "electricity_demand": testing_data["electricity_demand"] + demand_noise(i), 
23        "market_price": testing_data["market_price"], 
24    } 
25 
26    set_initial_state(current_state) 
27    set_cost_function_params(params) 
28 
29    control_vectors = solve() 
30    control = control_vectors[0, :]  # use only the first row of controls (RHC) 
31 
32    # save current_state and control command for visualization 
33    output.append({ 
34        "state": current_state, 
35        "control": control 
36    }) 
37 
38    # carry out the controls in simulation 
39    state_change = system_dynamics_(current_state, control, params) 
40    current_state += state_change 
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(or the SoC) of the battery, meaning that 3Kw charging power might be not possible with 

nearly empty or nearly full battery, which should be avoided by default. The significance 

of this simplification is relatively small because the input data frequency is one hour 

which means that using current as control parameter would require additional logic that 

is not relevant for the purposes of this thesis. 

Financial gain calculations are comparing home without battery and PV panels and home 

with developed algorithm that is using PV panels and battery. As the system without 

battery is not controllable, the comparison must include both components. Simulation 

where power generated by PV panels is described in Section 3.1.2. 

 

 

Figure 6 Flowchart of the system. Optimization step involves minimizing the cost function.  
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3 Data analysis 

This section presents the results from various energy management scenarios, analysing 

the interactions between solar PV production, battery usage, and market price 

fluctuations. It highlights how the system optimizes energy consumption and costs by 

intelligently charging and discharging the battery in response to solar output and 

electricity prices. Extended simulation results demonstrate the potential for significant 

cost savings, particularly when favourable conditions align. The robustness of the system 

is also tested under uncertainty, showing its capability to adapt to real-time data 

variability and maintain efficiency. 

All the following simulations were done using the same weights in the cost function 

which show the robustness of developed control because it can handle all the scenarios 

without special parameters.  

The initial state for every simulation was 

𝑥0 = [

𝑃𝑚𝑖𝑠𝑠𝑖𝑛𝑔

𝐸𝑏𝑎𝑡

𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

 ] =  [
0
2
0

 ], 

with constraints: 

 
𝐸𝑏𝑎𝑡 [kwh] 𝑃𝑔𝑟𝑖𝑑 [kwh] 𝑆𝑃𝑉 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒[kwh] 

Lower bound 0 0 0 -3 

Upper bound 15  10 1 3 

Table 2 Constraints used by the simulations. 

3.1 Results of different scenarios 

3.1.1 High market price scenario 

Solar PV Energy Production 
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Figure 7 illustrates the diurnal pattern of photovoltaic (PV) energy production within a 

residential setting. It is evident that the PV energy generation predominantly occurs 

during daylight hours, with a notable peak reaching approximately 2 kWh around noon. 

This peak corresponds to the highest solar irradiance during the day, which is expected 

given the nature of solar energy systems. 

Battery Charging and Discharging Dynamics 

A corresponding graph delineates the charging and discharging cycles of the home's 

battery storage system. The charge-discharge profile is in direct correlation with the PV 

production, indicating an intelligently designed control strategy. The battery charges 

during periods of surplus PV generation—when the energy produced exceeds home 

demand—and discharges when the PV output is insufficient. This ensures a continuous 

and efficient utilization of solar energy, reducing the need to draw from the grid. 

Market Price Influence on Consumption 

Furthermore, the graph reveals strategic consumption behaviour in relation to the varying 

market prices for electricity. The controller adeptly avoids drawing power during times 

of high market prices, instead relying on stored energy from the battery. This is 

particularly noticeable during the late afternoon and early evening when electricity 

demand typically surges as residents return home, coinciding with an increase in market 

prices. 

Battery State and Optimization 

At the zenith of energy storage, the battery holds approximately 9 kWh of energy. This 

capacity utilization indicates that the battery is not fully charged, which aligns with best 

practices for battery longevity. Maintaining a daily usage range between 20% and 80% 

of the total battery capacity is advisable [15], as it keeps the battery voltage around its 

nominal level, thereby optimizing battery health and lifespan. 

Financial gain 

In this scenario, if the home user would consume all the electricity form the grid, it would 

cost 4.3€ without the PV production. Using the developed controller, PV panels and 

battery, the cost of used electric from the grid would be 0.5€ which is nearly 9 times cost 
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reduction. Author notes that this is handpicked scenario where the financial gains appear 

to look very big. In other scenarios the difference is not so dramatic. 

Electricity cost for residential building with developed algorithm, battery, and PV panels 

is formulated as  

𝑃𝑔𝑟𝑖𝑑 ∗ 𝑀𝑝𝑟𝑖𝑐𝑒 +  𝑃𝑔𝑟𝑖𝑑 ∗ 𝑀𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑓𝑒𝑒, 

while setup without battery and PV panels is formulated as 

𝑃𝑑𝑒𝑚𝑎𝑛𝑑 ∗ 𝑀𝑝𝑟𝑖𝑐𝑒 +  𝑃𝑑𝑒𝑚𝑎𝑛𝑑 ∗ 𝑀𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑓𝑒𝑒 

where 𝑀𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑓𝑒𝑒 = 0.05 € , which is little bit cheaper than current today’s rate [16], 

but close enough as cost calculations provide very rough approximation. 
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3.1.2 High electricity demand and small PV production 

Figure 8 portrays an energy management scenario in which photovoltaic (PV) panels are 

producing negligible power, effectively removing them as a significant source of 

electricity for the period in question. Consequently, the household's energy supply relies 

solely on the grid and the battery storage system. 

Figure 7 Simulation results of September day where the market price is exceptionally high. The corelation 

between power demand from grid and market price can be seen on top left graph. Battery charigning start at the 

peak of the PV panel production and the suddent power demand spike on 13th hour is coverd by grid to not 

disrupt the battery chraging process unnessecarily. 
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During this scenario, set in the early days of January—typically characterized by limited 

sunlight—the home's electricity demand remains consistently high throughout the day. In 

response, the implemented controller strategically begins to charge the battery at the start 

of the simulation, capitalizing on the lower electricity prices available at that time. The 

battery is charged to its full capacity, accumulating 15 kWh of energy. 

As the market price reaches its peak, the controller judiciously reduces electricity intake 

from the grid and commences discharging the stored energy from the battery. This 

strategy demonstrates the controller's ability to effectively manage energy costs by 

leveraging the battery's storage capacity to navigate the fluctuations in market pricing, 

ensuring a more cost-effective and efficient energy consumption pattern for the 

household. 

Financial gain of this simulation is minimal where’s the setup without the battery would 

cost 5€ and with developed controller and 15kwh battery the electricity bill would be 4.4€  



37 

 

3.1.3 Half-month-long simulation 

The same algorithm can be used for longer periods of time by simply changing the 

prediction horizon. In the Figure 9, the prediction was done for 15 days which is 

15*24=360 timesteps. In the upper left graphs, grid power demand and marker price 

correlation can be seen. When the price drops significantly then the power demand from 

the grid increases also significantly, reducing the overall electricity cost. Crucially, during 

the 15-day simulation the battery was also charged only 15 times, indicating that using 

Figure 8 January day where PV production is non-existent, as can be seen on bottom left graph, and at the 

same time the home electricity demand is very high. The only way to charge the battery is through the 

grid.  
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∆𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 is working without explicitly modelling the charging cost per day, making 

the cost function simpler and faster to solve.  

Theoretical financial gain shows 80% reduction in electricity cost for this simulation. 

Figure 9 might look impressive with big cost saving, but in absolute numbers the cost of 

electricity was reduced from ~50€ to ~10€ which is relatively small and is in best case is 

enough to offset the cost of buying required devices (PV panels, battery, inverter). Similar 

simulation during the January, showed that the cost reduction drops from 80% to 20% 

because there is much less sunlight, and the total PV panel production is smaller. Similar 

to Section 3.1.2 the primary cost reduction comes from storing the excess PV power that 

has cost of 0. The longer simulations during summer months show that the big cost 

savings do not come only from storing the surplus energy, rather the cost savings come 

from the network fee that is reduced because total consumption from the grid is reduced. 

In winter months, to make use of the battery the network fee is still unavoidable.  
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3.1.4 Simulation with uncertainty 

While using same scenario as in Section 3.1.1 with uncertainty added to the PV panel 

production and home demand, the simulation looks very similar.  

It is very important to reemphasize that the noise is added to the prediction data (that is 

input for MPC) again for every iteration so that every iteration has different noise applied 

while still being used for optimization as described in Section 2.6. 

As can be seen on Figure 10, the battery is cycled 3 times, showing that ∆𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 does 

not achieve wanted behaviour of one charging per day that is wanted behaviour. At the 

Figure 9 Half month long simulation, showing how the algorithm can be used for longer periods. 
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same time, the charging power is very small and could be disregarded by the lower-level 

controller. As the power is so small and the home demand behaviour is very radical, where 

the home electricity demand is very spiky, jumping from hour to hour, the small charging 

power during 4th and 8th hour is acceptable. Considering that algorithm was able to 

optimize the peak prices close to zero demand from the grid, the electricity cost was 

reduced 3 times from 9€to 3€.  

 

 

Figure 10 Simulation with uncertainty. Home electiricty demand has become more spiky. The battery is 

cycled multiple times as can be seen on bottom right graph, but at the same time the power charged to 

battery is very small which makes it acceptable. 
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3.1.5 Comparing different simulations 

  

Total PV 

production 

[kWh] 

Total 

demand 

[kWh] 

Total 

demand 

from grid 

[kWh] 

Battery 

[kWh] 

Electricity 

cost 

[€] 

Market price 

[€] 

    C
h
ar

g
ed

 

D
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ch
ar

g
ed

 

O
ld

 

N
ew

 

M
in

 

M
ax

 

A
v
er

ag
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High PV 

production 

2023.06.25 

00:00 - 23:00 

13.67 26.36 9.71 6.29 8.29 2.95 0.85 0 0.16 0.06 

Low PV 

production 

2023.06.22 

00:00 - 23:00 

6.17 19.25 10.15 1.78 3.78 3.13 1.49 0.04 0.16 0.11 

High PV 

production, 

low demand 

2023.06.25 

00:00 - 23:00 

13.67 26.36 9.71 6.29 8.29 2.95 0.85 0 0.16 0.06 

High PV 

production, 

high demand 

2023.04.10 

 00:00 - 23:00 

15.43 40.57 21.91 4.8 6.8 3.29 1.88 0 0.05 0.03 

High prices 

2023.09.07 

00:00 - 23:00 

16.08 21.39 3.8 9.57 10.4 5.4 0.64 0.05 0.4 0.17 

Summer 

2023.06.01 - 

2023.06.30 

513.00 691.61 183.8 256 250 95 21 0 0.3 0.09 

Autumn 

2023.10.01 - 
2023.10.30 

152.01 1121 965.51 263 265 158 113 0 0.33 0.09 

Winter 

2023.01.01 - 

2023.01.30 

12 1934 1917 389 391 295 259 0 0.26 0.1 

Spring 

2023.01.01 - 
2023.01.30 

356 1210 850 172 174 142 94 0 0.2 0.07 

Table 3 Comparison table showing the wide variety of simulation and the effect of the control algorithm 

that can be measured using electricity cost. As can be seen, the effect of the battery and PV production 

reduces during winter months. 
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Table 3 shows different simulation scenarios and indicates potential financial gains. The 

discrepancy between charging and discharging values comes from the initial state. 

Initially the battery has 2 kWh worth of every stored which means that discharge value 

can be bigger than charging. Number of charging cycles is not added because it is 

correlating exactly with the simulation length. Only exception is winter simulation 

where instead of 15 cycles the battery is doing 21 cycles. Why and the effect of those 

extra cycles are like in uncertainty simulation and described in Section 3.1.4. 

 

Table 3 indicates that electricity bill is reduces significantly only when there is PV 

power available that can be stored with battery which allows to use stored surplus 

energy during peak hours. Using the battery alone has smaller impact on the final 

electricity bill because even if the market price is small, network fee still applies in 

addition to the market price, which is constant.  

3.2 Validation 

The system was not validated with real world simulations and would require additional 

work to allow for real world testing. Considering the simplification of the setup, 

validation was done by comparing metrics like electricity bill and comparing energy 

coming in and out with and without developed algorithm to check if the system is 

numerically correct.  

3.2.1 Comparing results with other work  

Similar work had been done towards optimizing control commands for battery using MPC 

where the goal objective is slightly different. The following [17] work is done also in 

TalTech and shared the original raw data with author of this thesis so that the comparison 

between two implementations could be done. The work done [17] is slightly different and 

more sophisticated by implementing battery degradation to make the economic viability 

calculations more realistic.  

The raw data used for comparison was taken from [17] that is slightly different from the 

previous simulations done is this paper. PV panel production and home demand data is 

denser, having sampling frequency of 5 minutes, where previous simulations in this thesis 

had sampling frequency of 1 hour. The input data was resampled with 1 hour frequency 
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and calculating kWh values for each hour by simply summing the hour values and 

dividing by 12. 

Another significant difference is that in [17] real data recorded in TalTech [18] testing 

home was used instead of generated and approximate PV production data. This provides 

more realistic scenario and also indicates that developed algorithm in this thesis can work 

with actually recoded data as well as simulated data. 

Figure 11 and Figure 12 were generated to compare the results of the algorithms. As can 

be seen on Figure 11, the battery is charging graph has very high peaks in it which means 

that the battery is charged for short period very rapidly, while on the Figure 12, the battery 

is charged more smoothly. Both Figures are starting the battery discharge during the 

evening around 19:00, but on Figure 11 the discharging happens much faster and reaches 

nearly empty battery at the end of the day. 

In this one comparison scenario, both solutions generated very similarly solution, 

showing that the simplified method can be used to approximate the charging cycles and 

electricity bill reduction, allowing to generate specific scenarios where homeowner could 

simulate different PV panel and battery size setups to find the optimal setup for their use 

case. 

 
Figure 11 Results of [17]. Ess stands for energy storage system (battery) 
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3.3 Economic feasibility 

Calculating the economic feasibility consists of a lot of variables that change for every 

use case (E.g. electricity demand profile, price of the components etc) and thus the 

calculations done here are approximations and just to show the potential effects of 

installing such system in real world. 

Figure 12 Simulation using algorithm developed in this thesis and using the same raw data as in Figure 11 
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3.3.1 Required components 

Figure 13 describes what is the expected configuration of real hardware setup. Battery 

can be charged, directly from charge controller or it can be charged through grid using 

separate charger for it. The high-level control algorithm in this example is algorithm 

developed in this thesis with limitations described in Section 1.1. While finding 

commercial product that would accept high level control commands in current form is not 

possible, but in principle this can be done and is matter of integration and productization. 

As IoT devices are getting more accessible and popular while demand for smart and fully 

integrated systems increases, it’s only matter of time when there is going to be need for 

such high-level algorithms.  

 

For simplicity author is combining charge, inverter, and charge controller into one all-in-

one solar power solution that are currently available also on the market. This means that 

regular users only need to worry about PV panels, battery, and all-in-one solar power 

solution, connection equipment and installation cost. 

3.3.1.1 Battery 

Most used battery in home is LiFePO4 batteries [15] as they tolerate a lot of charging 

cycles, are more stables and thus safer while being very heavy which is not a problem in 

home setting as they are stationary as opposed to cars where energy density is important. 

LiFePO4 cells has nominal voltage of 3.2V and maximum voltage of 3.6V which means 

Figure 13 Expected hardware configuration in this thesis. 
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that to get battery pack with maximum voltage of 57V (which is common maximum 

voltage of inverters) we must connect 16 cells in series. LiFePO4 cells comes in various 

capacities and to get ~15kWh battery pack as used in this simulation a 280 Ah capacity 

is chosen as it is widely available. Energy stored in one cell can be calculated with 

𝐸 = 𝑉 ∗ 𝑄 

where: 

𝐸 - Energy stored in a battery [Wh], 

𝑉 - Voltage of the battery, 

𝑄 - Battery capacity [Ah]. 

The energy stored in one cell is 896 Wh. Using same equation, we can approximate the 

total energy stored in the battery pack which is 14,3 kWh. This only approximates energy 

stored because the voltage of the battery changes during the use. 

Price for such cells can vary enormously because of the quality and manufactures 

reputation. For simplicity 100€ per cell is used in the calculations, which gives us 1600€ 

for the battery pack. As there are additional cost that are related to building battery pack 

(e.g. BMS and connection equipment) the total cost of battery pack is rounded up to 

2000€. Buying a battery pack that is prebuilt with additional communication and safety 

layers can double the cost, so the end cost varies. 

3.3.1.2 PV panels 

PV panels come in many different sizes, and power settings depending on the 

manufacturer and specific panel model. Considering a home with 9 ∗ 9 = 81𝑚2  roof 

area and an average panel size of 2x1,5 = 3𝑚2 we could fit theoretically  

⌈
9

2
⌉ ∗ ⌈

9

1,5
⌉ = 24 panels, but considering there are additional limitations (E.g. fastening, 

chimney etc), 20 panels are used in the following calculation. On average such panels can 

produce ~400w per panel and the whole array could produce 400 ∗ 20 = 8000𝑤 worth 

of power at peak hours. As the panels are not perfect, the cumulative power loss in DC 

system is around 10%-20% [20] plus additional factors as wrong angle of panels [21], 

which means that at peak production the array produces ~7200𝑤. In addition, there is 

going to be invert power loss discussed later. Considering that such PV panel costs ~150€, 
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the total cost of PV panel array is 150 ∗ 20 = 3000€. On top of that there is mounting 

cost that will depend if PV panels are mounted on top of the roof or are part of the actual 

roof. For simplicity this cost is omitted. 

3.3.1.3 Additional costs and summary 

As mentioned in Section 3.3.1, all-in-one solar power solution device is used which 

incorporates all necessary components to use PV panels, charge and discharge the 

battery and generate AC for home use. On of such system is Victron energy EasySolar-

II GX [22], which is selling at ~3600€. 

In addition to the components, the installation must be done by professional which 

varies depending on the complexity of the installation between 300-500€ per kilowatt 

[23]. Theoretical cost of human labour is 4000€. A buffer of 1000€ is added on top of 

that to cover the cost of wires, mountings, and additional equipment. 

 

Battery pack (~15 kWh) 2000€ 

PV panel array (~8 kW) 3000€ 

Devices 3600€ 

Installation 5000€ 

Total 13600€ 

Table 4 Summary of costs 

3.3.2 Cost benefit analysis 

Table 4 Shows that the total upfront cost of such system is 13600€ which is roughly 

agreeing with other papers [17]. Considering that the expected life expectancy is 

minimum of 10 year the system should save 
13600

10
= 1360 euros every year to break 

even. Estimated monetary savings can be calculated using 

∑ 3[ 𝑀𝑏𝑒𝑓𝑜𝑟𝑒(𝑖) − 𝑀𝑛𝑒𝑤(𝑖)]

𝑖

𝑖=1

 

where 

𝑖 – index of season of the year (summer, spring, winter, and autumn), 

𝑀𝑏𝑒𝑓𝑜𝑟𝑒(𝑖) – cost of electricity without developed algorithm, 

𝑀𝑛𝑒𝑤(𝑖) – estimated cost of electricity with developed algorithm. 
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Substituting values from Table 3 we can estimate that in one year the system will save  

(95 − 21) ∗ 3 +  (158 − 113) ∗ 3 + (295 − 259) ∗ 3 +  (142 − 92) ∗ 3 = 615 

euros every year, which is more than 2 times less than needed to break even in 10 years 

without considering power losses during the optimization. Considering that there are no 

moving parts that require maintenance and LiFePO4 batteries can be cycled extensively, 

20+ years lifetime should be possible and additional unknowns in 20 years in electricity 

prices in Europe with rising inflation the system might pay off in some cases. In 

addition, the user has some other benefits like protection from short-term power 

outages. 

4 Discussion 

4.1 Are the control commands realistic and usable? 

4.1.1 Are the control commands optimal? 

As the IPOPT solver is using iterative methods to find the optimal solution, the final 

solution can depend on how the system is initialization and solver options. For this thesis, 

default settings of IPOPT were use, which are tuned to optimize tolerance close to 0. The 

default value for tol [19] is 10−08 which describes the convergence of the algorithm. All 

the simulations ended with IPOPT reporting optimal solution and which gives strong 

proof that the calculated commands are optimal considering the cost function and 

simplifications in the system.  

4.1.2 Hierarchical Control Architecture 

In the architecture of the energy management system developed for this thesis, the high-

level controller operates on a one-hour timestep, aligning with the economic and 

operational optimization objectives within the Model Predictive Control (MPC) 

framework. However, the actual consumption of energy in a residential setting fluctuates 

at a much higher frequency. To bridge this gap, the output from the high-level MPC 

controller is employed as a setpoint reference for a secondary, low-level controller. This 
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low-level controller is designed to run at a higher frequency, thereby providing the 

necessary granularity to react swiftly to abrupt variations in electricity demand or supply. 

4.1.3 Synchronization and Adaptability Challenges 

One of the inherent limitations of the system arises from the discrepancy between the 

MPC's hourly control intervals and the real-time dynamics of energy consumption. 

Should there be significant and unforeseen shifts in demand or generation, the pre-

calculated control signals may no longer represent optimal actions, potentially leading to 

inefficiencies or a temporary misalignment with the system's objectives. The challenge is 

to ensure that the high-level MPC's decisions remain relevant and adaptable to such 

instantaneous changes. 

4.1.4 Real-Time Optimization Solution 

To mitigate this limitation, the thesis proposes leveraging the relatively swift 

computational speed of the MPC optimization cycle, which operates on the order of ~1 

second. This feature uniquely positions the MPC to be hosted on a cloud-based platform, 

facilitating real-time data acquisition and processing. By harnessing cloud computing 

capabilities, the system can continuously receive updated information on home energy 

demand and PV production. More importantly, it is equipped to re-optimize the control 

actions instantly in response to sudden changes in these input parameters. 

The cloud hosted MPC can thus act as a dynamic adjustment mechanism, recalibrating 

the control strategy as new data becomes available, thereby maintaining the relevancy of 

its output. This approach effectively transforms the MPC into an adaptive and resilient 

control system, capable of addressing the temporal mismatch between its optimization 

frequency and the more volatile patterns of energy usage. 

4.2 Future work 

While this thesis showed that it’s possible to use widely available data to estimate what’s 

the impact of adding battery storage system and PV panels to regular residential building 

there are more home appliances that could be added to optimization and to further 

improve the cost reduction.  
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One such appliance is HVAC (heating, ventilation, and air conditioning) that is one of the 

biggest consumers in residential building. This adds additional complexity of potentially 

modelling home layout with mathematical formulas and considering user preferences. 

There are already similar systems developed [6] but incorporating this into one big 

optimization system could potentially bring bigger gains. This would remove simplistic 

interface that the work currently has where use only needs to provide home electricity 

demand profile. 

Appliances that only add electricity demand like EV cars could be added while keeping 

the simple interface and providing user information when to charge the vehicle and how 

much could EV car reduce monthly cost comparing to regular gasoline fuel car. 

4.3 How could developed system improve the grid? 

If most of the residential buildings would use similar system as developed in this thesis 

or as developed in [17] then predicting the electricity demand would become straighter 

forward because each consumer could send out indications on how much and when they 

need power and what for. Thus, we could optimize the grid in country so that fossil fuels 

are not used to charge batteries of residential building and better fit the market price and 

electricity demand against the predicted production of renewable energy sources.  There 

will still be some uncertainty cause by human behaviour that cannot be predicted with 

current technology, but the grid and market price could potentially become much more 

stable which is good for everyone in the region. 

Implementing something like this on country scale is currently very hard as it would 

require coordination of every grid participant and as there is not enough motivation to do 

so on the political level as system like this would be very experimental. Instead, 

something similar could be implemented on street scale where ~20 buildings are bundled 

together with such smart home algorithms that could have e.g. battery storage and some 

local renewable energy generation nearby to allow for optimization on bigger scale than 

one building and would be suitable testing ground for smart city technology. 
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5 Summary 

The adoption of residential PV systems paired with battery storage is growing due to 

technological advancements and declining installation costs. These setups often utilize 

MPC to efficiently manage energy use, maximizing solar power during peak hours and 

reducing grid dependency. However, the economic analysis reveals that despite the 

potential for significant energy cost savings, the high upfront costs of PV panels, batteries, 

and necessary equipment can make these systems economically challenging. 

The initial investment for a typical home setup can range significantly, with a 

comprehensive system potentially costing upwards of €13,600. While operational savings 

are realized through reduced energy bills and optimized charging cycles, breaking even 

on such an investment could take up to 20 years under ideal conditions. This timeframe 

is based on the current energy prices and does not account for potential decreases in 

component costs or increases in energy prices over time. 

Overall, while residential PV and battery systems offer environmental benefits and 

contribute to energy independence, the long payback period and substantial initial outlay 

mean they may not be financially advantageous for all homeowners at this point. As 

technology progresses and costs potentially decrease, these systems could become more 

viable economically, but currently, they represent a long-term investment that may not 

break even within the typical lifespan of the components. 
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