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Abstract 

Vehicles are nowadays equipped with a lot of sensors that output data which could be 

used for driver behavior analysis. Classifying drivers based on their driving style has 

multiple applications and such a system can be very useful for rental companies, car 

insurance providers, or fleet management.  

In this thesis vehicle sensor data was used to build a driver behavior classification system. 

The prototype device consists of hardware that is able to request data from car onboard 

sensors and from additional sensors which is sent to the cloud server through LTE Cat-

M1 communication technology. 

The data was then used to build machine learning models for driver behavior 

classification. Two different approaches were used: a time-based dataset where a driver 

was labeled as a bad driver for a set period of time and an event-based dataset where the 

driver was labeled as a bad driver for only the moments where thresholds were exceeded. 

The classification overall accuracies from the experiments, were respectively 89% and 

99%. 

This thesis is written in English and is 58 pages long, including 5 chapters, 35 figures and 

12 tables. 
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Annotatsioon 
Massiivsel masinkommunikatsioonitehnoloogial põhinev juhi käitumist 

klassifitseeriv rakendus 

Tänapäeva sõidukid on varustatud paljude anduritega, mille andmeid saab kasutada juhi 

käitumise analüüsimiseks. Sõidustiilil põhineval juhi klassifikatsioonil on mitmeid 

rakendusi - selline süsteem võib olla väga kasulik rendiettevõtetele, autokindlustuse 

pakkujatele või autopargi haldamisel. 

Käesolevas magistritöös kasutati sõiduki andurite andmeid juhi käitumist klassifitseeriva 

süsteemi loomiseks. Prototüüpseade koosneb riistvarast, mis on võimeline koguma 

andmeid nii auto sisemistelt anduritelt kui ka lisa anduritelt, et saata need seejärel läbi 

LTE Cat-M1 sidetehnoloogia virtuaalserverisse (cloud server). 

Kogutud andmeid kasutati juhi käitumist klassifitseeriva masinõppe (machine learning) 

mudelite koostamiseks. Hindamiseks kasutati kahte erinevat lähenemisviisi – ajapõhist 

andmestikku, kus juht märgiti etteantud ajavahemikus halvaks juhiks ning sündmuste 

põhist andmestikku, kus juht märgiti halvaks juhiks ainult nendel hetkedel, mil ta ületas 

lävendid. Katsete põhjal oli klassifitseerimise üldine täpsus vastavalt 89% ja 99%. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 58 leheküljel, 5 peatükki, 35 

joonist, 12 tabelit. 
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1 Introduction 

As decades have gone by and the technologies have evolved, the number of sensors and 

electronics in vehicles has risen. Nowadays when buying a car, it is normal for the car to 

have adaptive cruise control (ACC), lane assist, speed sign detection, driver fatigue 

detection, etc. The amount of data available in a vehicle is huge. This data could be used 

for many things for example driver behavior analysis [1]. In Figure 1 the general scheme 

of driver behavior research is given. The components of the scheme are as follows:  

§ Vehicle – Source of data from the sensors 

§ Reader – Device that will gather the data and send it to a database 

§ Data – Data in the database 

§ Pre-processing – Modifying and preparing the data for analyzing and 

classification 

§ Behavior Classification – Classifying the behavior 

 

Figure 1. General scheme of driver behavior research 

 
Driver behavior analysis and classification is a topic that is gaining attention in many 

applications. Companies that have a large fleet of cars could monitor and understand how 

their vehicles are being used. For example, they can see if the drivers are economic or 

using more fuel than needed. Insurance companies can provide new insurance models 

where drivers only pay for the insurance according to when they use the car. Drivers could 

also be monitored to give personalized insurance rates. Another user of driver 

classification could be car rental companies. Customers can usually rent cars with fixed 

fee rates and the style of usage itself is not directly monitored. If the car is returned visibly 

in the same condition as it was before the rental period, then no additional fees will be 

added for the customer. However, this can lead to situations where the car is taken to a 
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parking lot for drifting or off-road driving which can cause excessive wear on the car that 

is not possible to detect just by looking at it from the outside. As a result, the driver who 

misused the car will still pay the same amount as a customer that used the car only to 

drive to work and back without causing excessive wear on the car. 

If the car was used by a driver with bad driving behavior, the vehicle might have 

nonvisible damage and could need costly repairs and might need to be away at the 

workshop for an extended period. These unavailable cars are then not able to be rented 

out and will not make money for the rental companies or might even lose them money. 

Rental companies need the cars to always be available and in good mechanical condition. 

It is also necessary for public safety to keep the aggressive drivers away from the road as 

they tend to break safety rules and will also be dangerous to other drivers and pedestrians. 

1.1 Problem Statement 

The purpose of this thesis is to develop a driver behavior classification system that is 

working using cellular IoT technology and is classifying the driver behavior. 

1.2 Background 

1.2.1 LTE Cat-M1 and LTE NB-IoT 

LTE Cat-M1 and LTE NB-IoT are both cellular communication protocols that can be 

used for Internet of Things (IoT) devices to send or receive data between the device and 

the Internet. They are part of fourth-generation (4G) cellular network technology. 

Although they were introduced as a part of 4G-LTE specifications, they are also fully 

recognized as fifth-generation (5G) technologies which means that they can be used even 

after 4G will be upgraded to 5G. The previous statement means that all the developed IoT 

systems can be used for a long time without the fear of becoming disconnected from the 

Internet [2]. 

The good thing about cellular IoT technologies is that they have very good coverage. 

Everywhere where cell towers are located there will be a reception for the IoT devices. 

Other technologies on the other hand need special infrastructure to be built [3]. 
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More information about the LTE Cat-M1 and LTE NB-IoT technologies can be seen in 

the following Table 1 [3]. 

Table 1. Information about NB-IoT and Cat-M1 [3] 

 

 

LTE NB-IoT had upgrades in 3rd Generation Partnership Project (3GPP) release 14 in 

which the mobility of NB-IoT was improved. It brought Radio Resource Control (RRC) 

connection re-establishment which allows the devices to make cell handovers without re-

negotiating a new connection [4]. 

The most important requirements for the technologies for this thesis are the ability to have 

a country-wide area of coverage and reliability. They both have the coverage of LTE cell 

towers, and they can handle moving users. The LTE Cells are widely deployed and allow 

building IoT networks fast without needing to change infrastructure. 

1.2.2 OBD-II 

On-Board Diagnostics II (OBD-II) is the second generation of On-Board Diagnostics 

systems. It is a standardized system for vehicles that allows connections with the vehicles 

Electronic Control Unit (ECU). From the OBD port in the vehicle, different parameters 

can be accessed like speed, engine data, and emissions data [5]. Electric vehicles are not 

required to be comply the OBD-II standard [6]. 

Technology LTE NB-IoT LTE Cat-M1 

Bandwidth 180 kHz 1.4 MHz 

Spectrum Licensed Licensed 

Frequency Bands 700-2100 MHz 700-2100 MHz 

Standardization 3GPP Release 13 3GPP Release 13 

Uplink 250 kbit/s, 20 kbit/s 1 Mbit/s 

Downlink 250 kbit/s 1 Mbit/s 

Latency 1.6s-10s 10ms-15ms 

Duplex mode Half Duplex Full or Half Duplex 

Battery life 10+ years 10 years 
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1.3 Overview of the Thesis 

This thesis is structured as follows: 

In chapter 2, the state of the art is given about driving behavior classification with 

machine learning. Related work about driving behavior analysis, classification, and 

measuring is also described with a comparison table. 

In chapter 3, the proposed device is described. Hardware data with the initialization 

information is given. In the second part, the software is also explained together with the 

cloud server. In the third part, the prototype device is shown with all its modules and 

wiring diagram. 

In chapter 4, the experiments with results are explained, analyzed, and graphically 

compared. 

In chapter 5, the conclusion with the future work of the thesis is discussed. 
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2 State of the Art 

In this chapter, in the first subchapter, the driver behavior classification with machine 

learning is explored. In the second subchapter, related works and previous works are 

reviewed. 

2.1 Driver behavior classification with machine learning 

Data could be analyzed through different machine learning algorithms for behavior 

classification, but according to the chapter 2.2.1 in this thesis in the conclusion of related 

work, it is found that some of the most commonly used algorithms are Support Vector 

Machines (SVM), K-means, and Random Forest (RF). 

SVM is a supervised machine learning algorithm that can be used both for classification 

and regression tasks. In SVM a hyperplane is found in the data that best separates data 

classes. It is also necessary to have maximized margin between the hyperplane and 

nearest data points. The more dimensional data is used, the more dimensional the 

hyperplane will be [7]. In the case of 2 input features in the data, the support vector 

classifier will be a line. In Figure 2 the hyperplane can be seen with such data. 

 

Figure 2. SVM hyperplane with two input features 
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SVM model can be tuned with multiple parameters for example C and Gamma. These 

both are hypermeters that are set before training the model. C is a hypermeter to control 

the error of the model, but the low error does not mean better boundaries for decisions. 

Gamma is a hypermeter that gives curvature for the decision boundary. Tuning these both 

and testing can improve the model output. For each dataset different hypermeter values 

could be best which means that there are no universal values for these [8]. 

K-means is a popular unsupervised machine learning algorithm. It groups similar data 

points to find similarities and patterns. The user will have to choose the K number which 

defines the number of pre-defined clusters. If the number will be 2, then 2 clusters will 

be made. A ready K-means machine learning model will show in which cluster test data 

points will belong to [9]. In Figure 3 a K-means plot can be seen where K=3 and 3 clusters 

are made. 

 

Figure 3. K-means data plot with 3 clusters 

Random Forest is a supervised machine learning algorithm that can be used both for 

classification and regression problems. It combines multiple decision trees for a result. 

Before training, three parameters must be set. These are node size, number of trees, and 

the number of features. In the case of regression, the decision trees will be averaged for 

the result, but for classification, the most selected class selected by the trees will be the 

result [10]. In Figure 4 the diagram of the Random Forest Classifier is shown. 
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Figure 4. Diagram of Random Forest Classifier [10] 

 

2.1.1 Classification metrics 

The confusion matrix gives us a matrix output that describes the complete performance 

of the machine learning classification model (Figure 5). To understand the matrix better, 

the machine learning classification classes need to be thought of as a binary result 1 or 0. 

The confusion matrix consists of 4 important terms [11]: 

§ TP – True Positives where the prediction was 1 and the actual output was also 1. 

§ TN – True Negatives where the prediction was 0 and the actual output was also 0. 

§ FP – False Positives in which the prediction was 1 and the actual output was 0. 

§ FN – False Negatives in which the prediction was 0 and the actual output was 1. 
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Figure 5. Confusion Matrix [12] 

From the Confusion Matrix, multiple other metrics can be calculated [12]: 

§ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 !"#!$
!"#!$#%"#%$

 

§ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 !"
!"#%"

 

§ 𝑅𝑒𝑐𝑎𝑙𝑙 = 	 !"
!"#%$

 

§ 𝐹1	𝑠𝑐𝑜𝑟𝑒 = &∗"()*+,+-.∗/)*011
("()*+,+-.#/)*011)

 

2.2 Related Work 

Digital Matter is an Australian company that is one of the most widely used Low Power 

Wide Area Network (LPWAN) asset tracking hardware producers. The devices are 

designed for companies that have to manage a fleet of vehicles. All the vehicles can be 

tracked, and the drivers can be analyzed to see if vehicles receive harsh treatment while 

driving and cornering and if fuel is used too much by driving style or idling. They have a 

wide portfolio of different products with different connectivity technologies. Multiple 

devices are using NB-IoT and Cat-M1. The products also have accident and rollover 

detection so in case of an accident the help can reach drivers faster [13]. 

MyOrien has a product where the user connects the On-Board Diagnostics II (OBD-II) 

reader to a car and then afterward the data from the car is logged and sent to the server. 

Then the data is analyzed, and the user is given a score depending on how the car was 

driven. Vehicle speed, harsh braking, acceleration, and idling are the data that are being 

analyzed [14]. 
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In [15] a product called AutoCoach is presented. It is an Artificial Intelligence (AI) agent 

that classifies vehicle drivers depending on how their driving personalities are. They have 

made a cloud-based Android application that collects, analyzes, and learns from driver’s 

driving data to provide feedback. The Graphical User Interface (GUI) interface provides 

real-time feedback on the results either giving warnings or rewards. In their study, an on-

the-road pilot user study was conducted. The study results show that a personality-based 

driving agent is more accurate than a non-personality-based. They use embedded motion 

sensors from phones to detect motion and events while driving. For Machine Learning 

(ML) algorithms, SVM and K-Nearest Neighbor (KNN) were chosen [15]. 

This research proposes a new driving behavior research method based on SVM and 

oversampling. In their work, the data was collected with an OBD-II reader. Then the noise 

of the data was effectively removed with the Kalman filter. As the positive and negative 

samples were unbalanced, some of the samples were oversampled by the Random-

SMOTE algorithm [16]. 

In [17] a novel approach was given to profile drivers using Machine Learning. In the 

method, the OBD-II interface was used to collect data from vehicles. Vehicle speed, 

engine speed, throttle position, and calculated engine load were used. Then the driver is 

profiled visually using the K-means clustering algorithm as well as the Elbow method. 

For the determination thresholds, they have been taken from [18]. The Driver Score is 

described as the percentile of bad driving behaviors over the observed period.  

In [19], vehicle speed was taken from OBD-II but a microcontroller with multiple 

additional sensors was added like a shock sensor, digital multiplexer, camera module, 

GPS location detector, and GSM module. The prototype monitored vehicle speed and 

when the speed gets too high the device sent an SMS with the speed and location. In case 

of collision, the device will take a picture of the interior of the car and send it as well. 

Last year in Taiwan, there was a development of a driving behavior analysis system that 

used a Dual USB webcam, NVIDIA Jetson Nano, Raspberry PI 3B, and PiCAN2 CAN-

Bus board. This system could collect road condition data, drivers' faces, and car data from 

ECU. The developed system could identify four types of driving patterns: turning without 

using turn signals, turning without looking into the rearview mirror, distracted driving, 

and fatigued driving. The accuracy was good, being between 79%-89% [20]. 
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In this research [21] a prototype device was built using Arduino Uno and MPU6050 

accelerometer. They gathered driving data by driving around and measuring 

accelerations. An algorithm was proposed for detecting aggressive driving behavior. In 

their research, the accuracy of detection is 97% which can be used for future driver 

aggression detection.  

In this [22] analysis, the authors have developed a mobile application that uses 

smartphone cameras and built-in sensors. The developed application monitors driver 

behavior to determine unsafe driving, distraction, and drowsiness. The application is 

available in Google Play Store for everyone interested. The application was tested by 

several volunteers from different countries who confirmed that the application determines 

dangerous activities correctly in most cases. 

In this [23] paper, a device is designed that monitors vehicles. It consists of an OBD scan 

tool, Raspberry Pi, and a cloud monitoring application. OBD-II port is used to gather data 

and then Raspberry Pi uploads it to the cloud through a cellular connection. The data is 

accessed from the cloud with a monitoring application. With this application, it is possible 

to read and discover issues with cars and get data from car onboard sensors. 

In [24] this work a system is proposed where different parameters are taken from car 

OBD-II port like speed, acceleration, deceleration, jerk and compared with standard limits 

and deviations. Driver behavior is divided into 3 levels to show how good he/she is 

driving.  

In this [25] research a novel driver performance model is proposed. For driver 

performance modeling two nonlinear regression machine learning algorithms are used: 

Artificial Neural Network and Adaptive neuro-fuzzy inference system. Data is collected 

from 18 different drivers on a vehicle simulator. The algorithms were designed to predict 

a driver’s ability to keep in the middle of the driving lane and respect the current speed 

limit. In the end, the Artificial Neural Network was slightly more accurate.   

In this paper [26], research was conducted on real drivers on a driving simulator. They 

developed a system to detect drunk driving. To detect drunk driving behavior a method 

with a Random Forest algorithm is proposed. In testing, they used 25 drivers and got 265 

valid samples.   
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This paper [27] proposes a method to analyze and classify driver behavior on data from 

the CAN bus. Data were collected from 64 people who drove over 2000 trips with 10 

cars. In the paper, they propose unsupervised learning techniques that will divide drivers 

into different groups. They also calculate the minimum required amount of data to 

preserve the dividing ability.   

In this [28] study, a driver profiling system was developed. They used data obtained from 

accelerometer and gyroscope and then used different machine learning algorithms. The 

algorithms included Decision Tree, Random Forest, Artificial Neural Network, Support-

Vector Machine, K-Nearest Neighbor, Naive Bayes, and K-Star. In their experiments, the 

K-Star algorithm was the most accurate with 100% accuracy.  

In [29], a method is proposed to detect drunk driving. They use vehicle onboard sensors, 

accelerometer, and GPS coordinates that are provided by the diagnostics dongle. With the 

gathered data, a window-based approach was used for data smoothing and feature 

extraction. For machine learning, they use the Logistic Regression algorithm which 

achieves an accuracy of 82%. 

Table 2. Comparison of related work 

Work Topic Algorithm Data Data origin 

[13] Digital Matter devices No information Real data OBD-II 

[6] MyOrien device No information Real data OBD-II 

[15] Driver behavior feedback SVM 
KNN 

Real data Smartphone 

[16] Dangerous driving 
behavior 

SVM Real data OBD-II 

[17] Driver profiling K-means Real data Previous study 

[19] Car driver monitoring Comparing with 
set thresholds 

Real data OBD-II and 
GNSS module 

[20] Driving behavior analysis Comparing with 
set thresholds 

Real data OBD-II and 
cameras 

[21] Detecting aggressive 
driving behavior 

Dynamic time 
warping 

Real data Accelerometer 
and gyroscope 

[22] Driver behavior analysis Comparing with 
set thresholds  

Real data Smartphone 
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[23] Vehicle state monitoring Comparing with 
set thresholds 

Real data OBD-II 

[24] Driving behavior analysis Comparing with 
set thresholds 

Real data OBD-II and 
additional 
sensors 

[25] Driver performance 
model 

ANN 
ANFIS 

Simulated Simulator 

[26] Drunk driving recognition Random Forest Simulated Simulator 

[27] Driving behavior analysis K-means Real data Previous study 
without 
information 

[28] Driver risk assessment Decision Tree 
Random Forest 
SVM 
K-Star 

Real data Accelerometer 
and gyroscope 

[29] Drunk driving detection Logistic 
Regression 

Simulated OBD II and 
additional 
sensors 

 

2.2.1 Conclusion 

It can be concluded from the literature review, that it is possible to use different 

algorithms for this type of analysis. The most common algorithms used in the studied 

literature were SVM, K-means, and Random Forest. From the data origin side, the data 

is mostly taken from the OBD-II reader. Additional sensors can be added to get more 

features. Thresholds and behavior classes are different between works and have no 

common rules. 
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3 Proposed device 

In this chapter, an overview of the needed hardware and software is given. The simple 

diagram of the device and its connections is given in Figure 6. The proposed device will 

need to fulfill the following two requirements: 

§ acquire all needed data of the vehicle 

§ send all the data to a server for analyzing 

 

Figure 6. Simple diagram of the device and its connections 

3.1 Hardware 

The chosen hardware consists of 6 modules:  

§ The Raspberry Pi computer which contains the software and controls all the 

connected devices 

§ The Waveshare SIM7070G modem that connects to the Internet and uploads data 

§ G-Mouse Universal Serial Bus (USB) Global Navigation Satellite System (GNSS) 

module that gets the device location and speed 

§ ELM327 USB OBD-II reader that gets data from car onboard sensors 

§ ITG/MPU GY-521 accelerometer and gyroscope sensor module that gets the car 

linear acceleration and angular velocity 
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§ Hama “slim” 1:4 USB hub that gives the possibility to connect multiple USB 

devices to Raspberry Pi computer 

 

3.1.1 Computer 

Raspberry Pi Zero W is a very small-sized computer that is built for IoT applications. It 

is one of the smallest products in the Raspberry Pi single-board computer (SBC) line-up. 

With their small size and high capabilities, they are perfect for different IoT projects [30]. 

For connectivity, the Raspberry Pi Zero W has multiple possibilities. For wireless, we can 

have Wi-Fi and Bluetooth connections. For mechanical connections, one USB port, 

HDMI, and 40 pins called General Purpose Input/Output (GPIO). In Figure 7 is the board 

with its GPIO pinout. In Table 3 the main characteristics of the board are given [30]. 

 
Figure 7. Raspberry Pi Zero W with its GPIO pins [31] 

Table 3. Raspberry Pi Zero W main characteristics [30] 

CPU 1 GHz, Broadcom BCM2835 

RAM 512 MB 

Wireless 802.11n / Bluetooth 4.1 / LE 

Ports Micro USB, mini HDMI 

I/O 40 GPIO Pins, CSI camera connector 

Size 66.0mm x 30.5mm x 5.0mm 

Weight 9 grams 
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The Raspberry Pi Zero W was used without display and keyboard through a Secure Shell 

Protocol (SSH) connection from a laptop. SSH enables to connect to the Raspberry Pi and 

use the terminal for settings and software running. The software that will control the 

whole device will be on the Raspberry Pi computer itself and will be started and 

monitored through the SSH connection. 

3.1.2 Modem 

Waveshare SIM7070G HAT modem was chosen for transmitting data from Raspberry Pi 

as it was available at the university (Figure 8). This is a low-power narrowband cellular 

IoT communication module for Raspberry Pi. The modem supports LTE NB-IoT, LTE 

Cat-M, and General Packet Radio Service (GPRS) connectivity. For additional functions, 

it has GNSS positioning capabilities. It has a standard 40-pin Raspberry Pi GPIO header 

so that it can be connected on top of the Raspberry Pi board. It also comes with a USB 

interface [32]. 

 
 

Figure 8. Waveshare SIM7070G modem [32] 

The setting up and controlling of the modem is done via AT commands that can be sent 

either through a USB connection or Universal Asynchronous Receiver-Transmitter 

(UART) connection. The modem supports a variety of communication protocols as 

follows: TCP, UDP, HTTP, HTTPS, TLS, DTLS, PING, LWM2M, COAP, and MQTT 

[32]. 
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It was discovered during the first tests that the device is not working very well in NB-IoT 

mode during a car movement because of no support of HandOvers (HO). When the device 

is moving and changing cells, the modem will lose connection, although the device is 

based on 3GPP release 14 which should support it. At around the same time, the service 

provider activated Cat-M1 networks fully in Estonia, which meant that the technology 

settings could be easily changed to start using the modem. Cat-M1 is designed more for 

devices that need mobility and during the testing, in this stage, no issues were found. 

Setting up the modem was done through a serial connection to the Raspberry Pi. In the 

written software, the necessary AT commands were added so that the modem could be 

configured correctly. The modem was configured to work in only LTE Cat-M1 mode. 

MQTT settings were changed according to the server IP and device ID to enable the 

modem to send data to the cloud server. Configuration commands that were used can be 

seen in the following Table 4. 

Table 4. SIM7070G AT commands [33] 

Command Description 

AT Test command 

ATE0 Turn off echo for sent messages 

AT+CFUN Set phone functionality 

AT+SMCONF Set MQTT parameters 

AT+CGDCONT  Define PDP Context 

AT+CNACT APP network active 

AT+CGNSPWR GNSS power 

AT+SMCONN MQTT connection 

AT+SMPUB Send MQTT packet 

AT+SMDISC Disconnect MQTT 

AT+COPS Operator selection 

AT+CMNB Preferred selection between Cat-M and NB-
IoT 

AT+CNMP Preferred mode selection 
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3.1.3 GNSS module 

Although the SIM7070G Modem has built-in capabilities for GNSS, it turned out that on 

this specific modem the GNSS cannot be used at the same time as the other modem 

communication functionalities are used and therefore additional GNSS module had to be 

added. The added GNSS device is G-Mouse USB, which contains a U-Blox Neo-7 

module inside.  

The connection can only be done with a USB. The module sends automatically National 

Marine Electronics Association (NMEA) messages from which different kinds of data 

can be read. In this thesis, the Recommended Minimum Data (RMC) message is used 

[34]. 

In the RMC message, the GNSS module sends data about time, status, latitude, longitude, 

speed, course, date, and magnetic variation. In this thesis, the latitude, longitude, and 

speed are used for analyzing the driver. In the software, the data is modified to change 

the data default units. For example the RMC message will look as follows: 

$GPRMC,173755,A,3216.22,N,02321.42,W,100.5,060.5,270795,008.3,E*62 and from 

this message we can find the following information [35]: 

§ 173755 – the time 17:37:55 UTC 

§ A – receiver warning, either A which is OK, or V which is a warning 

§ 3216.22,N – latitude 32 degrees 16.22 minutes North 

§ 02321.42,W – longitude 23 degrees 21.42 minutes West 

§ 100.5 – speed in knots 

§ 060.5 – true course 

§ 270795 – date 27 July 1995 

§ 008.3,E – magnetic variation 8.3 degrees East 

§ *62 - checksum 

3.1.4 OBD-II reader 

ELM327 USB OBD-II reader was chosen for reading car sensor values. This is one of the 

most widely used inexpensive readers, that can be used on different computers with 

different software. It is also possible to write your own code to use the reader in a more 

personally specified way. If using Python3, there is also a python-OBD library that can 

be imported to make the implementation of your own software quicker. 
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Python-OBD is a library that can in real-time handle the data from the vehicles OBD-II 

port. It is possible to get sensor data and perform diagnostics. OBD connections work in 

request-reply mode, if the user wants to get information from the sensor, it is needed to 

send a query. In Python-OBD this is done with query() function [36]. 

3.1.5 Accelerometer and gyroscope 

ITG/MPU GY-521 module is used for accelerometer and gyroscope data (Figure 9). It 

contains an MPU6050 sensor. MPU6050 sensor is a Micro-Electro-Mechanical System 

(MEMS) that has a 3-axis accelerometer and 3-axis gyroscope inside it [37]. 

With the module, it is possible to measure acceleration, velocity, orientation and other 

motion detected values. Mostly these kinds of sensors are used in drones, self-balancing 

needs, and robots [37]. 

To use the module on Raspberry Pi, the Inter-Integrated Circuit (I2C) protocol has to be 

configured. For physical connection, only 4 pins are needed: Vcc, GND, SDA, and SCL. 

The communication will be done through I2C. For Python3 the Smbus library is also 

needed to import. The values of the gyroscope will be in g units and the accelerometer 

will be in degrees per second [38]. 

As the sensor measures movement, it is important to have it in a fixed position in the car 

facing the correct direction. As it measures every slight movement, the road surface and 

engine vibration could also affect the measurement results. During testing, it was found 

that the sensor does not need extra calibration before each test.   

 
Figure 9. GY-521 MPU6050 module [39] 
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3.1.6 USB Hub 

As the Raspberry Pi Zero W has only one USB port for communications, but we need 

USB connections for both the GNSS module and OBD reader, then a USB Hub is also 

needed. For this, a simple Hama “slim” 1:4 USB 2.0 Hub was added (Figure 10). With 

this USB hub, all of the needed devices were connected with Raspberry Pi without any 

issues. 

 
Figure 10. Hama USB Hub [40] 

3.2 Software 

3.2.1 Code 

Software for the device to acquire and send data was written in Python3. The 

communication module of the code is from previous Master thesis work by Priit 

Kullerkupp. [41] The code was used to develop a prototype for predictive vehicle 

maintenance working in NB-IoT. The communication part of the code has been modified 

to fit the needs of this thesis. The modem communication type was changed to Cat-M1. 

Software needs manual startup from the user and for that, a laptop was needed in the 

vehicle to see the Raspberry Pi interface through SSH and give commands. Figure 11 

shows the basic flow of the software. 



 

32 

 

Figure 11. Flowchart of the software 

The software starts by initializing the modem – once it is booted up and settings set the 

software moves to checking the Packet Data Protocol (PDP) connection. If a PDP 

connection is available, this means that the device has a connection to the internet. Then 

the software requests data from the car and sensors. The timestamp will be added to the 

data and then the data will be formatted as a JSON string and sent to the server using the 

MQTT protocol. After sending the data, there is a 0.5-second delay to keep the dataset 

interval as 1 second and after that, the loop will start again by requesting new data from 

sensors and vehicle. 

3.2.2 Server 

For the server, a ThingsBoard Cloud-based server was used. This meant that no personal 

server was needed to be set up. ThingsBoard offers cloud-based IoT platform for fast and 

easy set-up of service. In ThingsBoard Cloud the device was registered as raspberry2, 

then the server IP and device access token were copied for the needed MQTT connection. 

In Figure 12 the environment can be seen opened on a PC. In the environment dashboard, 

all kind of visual information can be shown with the received data. In this example, the 

device location and received data are shown. 
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MQTT is a very lightweight data transmission protocol that is very popular in IoT 

applications. MQTT uses a publish/subscribe architecture which reduces bandwidth by 

95% compared with traditional protocols [42]. This protocol is also supported by 

ThingsBoard Cloud and is easy to set up. To send messages to the server, the device posts 

messages to specific telemetry topic v1/devices/me/telemetry.    

 

Figure 12. ThingsBoard Cloud dashboard where receiver device data and location can be seen 

3.2.3 Data analyzing 

Data for data analysis is manually exported from the ThingsBoard Cloud environment as 

a .csv file. This data then can be modified and analyzed with various programs and 

languages. In this work, the data analysis is done in Microsoft Visual Studio Code in a 

Jupyter Notebook environment. Data preparation, analyzing, and machine learning were 

done in Python3 language using the following modules: 

§ pandas 

§ overpy 

§ scikit-learn 

3.3 Developed device 

The built prototype consists of multiple components. The Raspberry Pi, modem, and the 

sensor board with accelerometer and gyroscope are connected using jumper cables. The 

modem could be connected straight on top of Raspberry without cables, but due to the 
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need to connect the sensor module, the GPIO pins need to be accessible. In Figure 14 all 

the needed connections are shown in the wiring diagram. In Figure 13 the prototype 

device with all the modules is shown. 

The Raspberry Pi and SIM7070G modem are connected using 5 jumper cables. 5V and 

GND for power supply, RX and TX for communications through UART. The GPIO 4 pin 

is needed to wake up and shut down the modem through the python script.  

Raspberry Pi and Accelerometer & gyroscope sensor module are connected with 4 jumper 

cables. 3V and GND for power supply, SCL, and SDA for I2C communications to get 

data from the sensors. In the vehicle, the sensor was attached firmly to the car dashboard 

facing the correct direction. 

Additionally, there is a connected USB cable to the Raspberry Pi from the car to power 

all the devices and a USB Hub to have connections to additional devices for additional 

data. There are GNSS module and OBD-II reader connected to the USB Hub. 

 

Figure 13. Prototype device with all its modules 
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Figure 14. Wiring diagram of full device 
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4 Experiments 

In this chapter, the final two experiments using the developed prototype are described. In 

the first experiment, driving behavior is classified with a time-based bad driving dataset 

and in the second experiment, the driving behavior is classified with an event-based bad 

driving dataset. In the third chapter, the communication between server and device is also 

investigated with packet loss rates obtained from different tests. 

4.1 Experiment 1 – Driving behavior classification with time-based bad 

driving 

In this experiment, machine learning was used to classify bad driving in a dataset. The 

goal was to evaluate how machine learning will perform. For this experiment, various 

sensors and data were used which can be seen in Table 5. 

Table 5. Experiment 1 sensors and data 

Sensors Data 

Accelerometer Acceleration on X, Y and Z-axis 

Gyroscope Angular velocity on X, Y and Z-axis 

GPS module Vehicle latitude and longitude 
Vehicle speed 

Engine speed sensor Engine speed 

Vehicle speed sensor Vehicle speed 

Accelerator pedal position sensor Position of acceleration pedal 

  

4.1.1 Data collection 

Data for this experiment was collected during driving which lasted around 30 minutes. In 

this driving, both urban and rural roads were used. During the driving, various speeds 

were achieved. In Figure 15 the track of the experiment is shown. The experiment started 

on rural roads and ended in an urban environment. In the end part, a lap was chosen which 

was driven both normally and then aggressively. The car speed data was afterward altered 

to add more speed to the aggressive driving part. The lap section of the track is zoomed 

in in Figure 16. From this figure, it is also possible to see that during one lap a section of 
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data is missing from the top left part of the lap. This indicates that a packet was lost at 

that moment. 

 

Figure 15. Experiment 1 track, 30 minutes total with lap section which was driven twice 

 
Figure 16. Zoomed lap section of the track 

 
To analyze driver better, additional data such as the speed limit of any location was 

needed. Adding this should help improve the classification model and make car speed 

data more important. For this, a script snapshot is shown in Figure 17 was used to get the 

speed limit of a location based on the latitude and longitude from OpenStreetMap 

Overpass Application Programming Interface (API). The script base is from user 

jacohend from his Github and is modified for experiment needs [43]. 

Start 

Finish 

Lap 

Packet loss 
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Figure 17. Overpass API query script for adding speed limit data from device location 

 
In Figure 18 all the acquired data from the device is shown including the additional 

“maxspeed” column which shows the speed limit of the location.  

 

 

Figure 18. Snapshot of Experiment 1 dataset 

 

4.1.2 Data processing 

For machine learning a column called “behavior” was added having binary values as 1 

and 0. 1 for good driving and 0 for bad driving. In Experiment 1 the behavior was added 

manually. The whole lap which occurred during the bad driving phase was classified as 

bad driving. 

First, the feature importance was analyzed to see which features are the most relevant to 

the output variable. In Figure 19 we can see that the biggest score is on the vehicle speed 
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and maximum speed limit of location. Gyroscope values and accelerometer Z-axis have 

the least importance. 

 

Figure 19. Most important features in data 

Various data are plotted against each other to show the differences in the two driven laps 

and the correlation to driving behavior. First, the gyroscope values for all three axes are 

plotted. From Figure 20 we can see that there are not many differences in the values of 

the gyroscope axis between the two laps. There can be seen a slight difference in the 

gyroscope y-axis (Gy) values. 

 

Figure 20. Gyroscope correlation to driving behavior 

In Figure 21 the car speed is shown together with the location speed limit. It is seen that 

during a bad driving lap the driver crossed the speed limit threshold more times than 

during a good driving lap. 
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Figure 21. Car speed and speed limit correlation to driving behavior 

In Figure 22 it is also clearly seen that the throttle pedal position is different from the 

normally driven lap. Engine speed is also having its peaks significantly higher. These 

both are clear indicators of bad driving. Both of their values are in correlation to each 

other too as the higher the throttle position value is, the higher engine speed will be. 

 

Figure 22. Rpm and throttle pedal position correlation to driving behavior 

From Figure 23 it is seen that the accelerometer has slightly higher peaks during the bad 

lap but not significantly. From Ax data, the sudden accelerations and decelerations can 

be seen and in Ay the hard cornering. 
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Figure 23. Accelerometer X-Axis and Y-Axis correlation to driving behavior 

 

4.1.3 Modeling results 

Data was split as 75% for training and 25% for testing. In total, 1966 data points were 

available. An SVM classification model was created with the training data and then the 

confusion matrix was plotted with test data. In Figure 24 the confusion matrix can be 

seen. Out of the 441 data points where good driving behavior was, all 441 (100%) were 

correctly classified. But in bad behavior data points out of 51 only 10 were correctly 

classified as bad behavior which makes accuracy 19,6%. The overall accuracy of the 

model is 92%. 

 

Figure 24. Confusion matrix for Experiment 1 model 

After the first matrix, the model parameters were optimized by choosing C=10 and 

gamma=0.1. In Figure 25 the optimized confusion matrix shows that 13 additional data 

points were correctly classified as bad behavior (45%) and 7 more incorrectly classified 

as good behavior (98,4%). The overall accuracy of the model gained from 92% to 93%. 
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Figure 25. Optimized confusion matrix of Experiment 1 

4.1.4 Conclusion of Experiment 1 

In conclusion, the good driving behavior classification was excellent at 98% but the bad 

driving classification was poor at 45%. The overall accuracy of the model was 93%. To 

improve the accuracy of future experiments, a new method of classification should be 

proposed. In this experiment, the driver was manually classified as a bad driver during 

the full bad driving lap, but in a real scenario, the driver cannot cross all the bad driving 

thresholds 100% of the time. 

4.2 Experiment 2 – Driving behavior classification with event-based 

bad driving 

This experiment aimed to build an event-based driver behavior classification model that 

could classify driver behavior in both urban and rural environments. Same sensors and 

data types were used as in Experiment 1. 

4.2.1 Data collection 

Data for this experiment were collected on three different trips. The first was collected in 

urban, the second was collected in rural, and the third was collected in an environment 

consisting of both. The first two trips were going to be used to teach the model and the 

third for testing it. 

In Figure 26 the urban track can be seen. The route started and finished from Taltech 

campus parking lot. The track consisted of two laps, each 6.5km long that took to various 

places near the campus The first lap was good driving and the second bad driving.  
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Figure 26. Experiment 2 urban track 

In Figure 27 the rural track can be seen in which a highway was driven. The location of 

the road was from Nõmme to Saku. One direction was driven with good driving and the 

other direction was with bad driving. As there does not happen much on highway roads 

other than speeding, accelerating, and braking then highway driving was not done twice. 

The length of one direction is approximately 8km. 

 

Figure 27. Experiment 2 rural track 

The final test track that took place from Luige to Peetri can be seen in Figure 28. This 

track started with good rural driving, then changed to bad rural driving after which the 

Start/Finish 

Start/Finish 

Turning around 
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urban part started. The urban part started and ended with good driving with bad urban 

driving in between. The length of the test track was 12km. 

 

Figure 28. Experiment 2 testing track consisting of both urban and rural track 

 

4.2.2 Data processing 

In this experiment instead of classifying whole sections as bad driving the classifications 

were done instead when any thresholds were crossed. In Figure 29 can be seen that even 

though most of the bad behavior happens in the clearly marked second part of driving it 

is not filled completely with bad behavior events. This happens mostly because of 

stopping behind junctions and traffic lights. Also, a few events could happen with a good 

driver also as seen by the spikes in the left part of Figure 29. 

 
Figure 29. Differences when classifying behavior as time-based or event-based 

In the beginning, thresholds found in different papers [18] [24] were investigated and 

calculated. There was no scientifically proven threshold that all papers would use. Each 
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paper used its own rules and vision. The thresholds from related work did not fit our data. 

This can be due to differences in sensors but is also depending on the car type and car 

power.  Because of that, the thresholds were chosen by analyzing the experiment data. 

Thresholds were chosen based on Experiment 1 plots where a good driving lap was 

compared with a bad driving lap. Chosen thresholds are shown in Table 6. 

Table 6. Thresholds for driver classification 

 Bad Good 

Accelerometer X-axis > 0.25 
< -0.25 

< 0.25 
> -0.25 

Accelerometer Y-axis > 0.4 
< -0.4 

< 0.4 
> 0.4 

Throttle > 50 < 50 

Over speeding > speed limit + 5 < speed limit +5 

RPM > 3000 < 3000 

 

4.2.3 Modeling results 

First, urban track SVM classification models were trained and tested (70% training, 30% 

testing). Both event-based model and time-based model were created to compare the 

differences. In Figure 30 can be seen both confusion matrixes and in Table 7 both model 

metrics. From this can be seen that the event-based model accuracy is 10% higher than 

time-based, being at 99%. From the confusion matrixes it is possible to see that the time-

based model makes mistakes on both good driving and bad driving classification whereas 

event-based makes only few wrong classifications. 

 

  

Figure 30. Event-based confusion matrix and Time-based confusion matrix in urban track model 

Time-based Event-based 
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Table 7. Experiment 2 urban track model metrics 

 Event-based 
precision 

Event-
based 
recall 

Event-
based f1-
score 

Time-
based 
precision 

Time-
based 
recall 

Time-
based 
f1-
score 

Bad 
behavior 

0.97 0.97 0.97 0.85 0.85 0.85 

Good 
behavior 

0.99 0.99 0.99 0.92 0.92 0.92 

Accuracy 0.99 0.89 

 
 

Second, the rural track SVM classification model was created and this time only with 

event-based classification. From the Figure 31 confusion matrix, we can see that the 

model made only 1 wrong classification total. From Table 8 the overall accuracy can be 

seen as very high at 99%. 

 

 
Figure 31. Event-based confusion matrix in rural model 

Table 8. Experiment 2 rural track model metrics 

 Event-based 
precision 

Event-based recall Event-based f1-
score 

Bad behavior 1.00 0.98 0.99 

Good behavior 0.99 1.00 0.99 

Accuracy 0.99 

 
 
Third, a combined SVM classification model was made with event-based classification. 

This dataset was made by combining the previous urban track and rural track datasets. 

This meant that in this model both are being used to train and test which makes it harder 

Event-based 
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for the model. From the confusion matrix in Figure 32, it is seen that there were only 8 

misclassifications. The total accuracy of the model shown in Table 9 was 99%. 

 

 
Figure 32. Event-based confusion matrix in combined model 

 
Table 9. Experiment 2 combined model metrics 

 Precision Recall F1-score 

Bad behavior 0.96 0.99 0.98 

Good behavior 1.00 0.98 0.99 

Accuracy 0.99 

 
Finally, a test run track data was used on all previous 3 models. This meant that this track 

data was not used to train the model and the models see data from this track for the first 

time. This lets us see how these different models can handle classifying data taken from 

a different locations on different roads but with similar behavior. 

First, the combined model was used. This model has seen both urban driving and rural 

driving in both bad and good behaviors. From Figure 33 we can see that the model made 

a total of 24 classifications wrong out of the total 218 test data points. Overall accuracy 

is 89% as seen in Table 10. 

 

 
 

Event-based 



 

48 

 
Figure 33. Test drive data confusion matrix in combined model 

Table 10. Experiment 2 test drive combined model metrics 

 Event-based 
precision 

Event-based recall Event-based f1-
score 

Bad behavior 0.59 0.97 0.73 

Good behavior 0.99 0.88 0.93 

Accuracy 0.89 

 
For additional comparison, the same test drive data was used in the urban model and rural 

model (Figure 34). As expected the models independently without knowing both road 

types can not classify bad driving behavior well. The urban model had an accuracy of 

80% and the rural model had an accuracy of 82% as seen in Table 11. 

 
 

 
Figure 34. Test drive data confusion matrix in urban model and rural model 

 
 
 
 
 

Urban Rural 
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Table 11. Experiment 2 test drive urban and rural metrics 

 Urban 
model 
precision 

Urban 
model 
recall 

Urban 
model 
score 

Rural 
model 
precision 

Rural 
model 
recall 

Rural 
model 
f1-
score 

Bad 
behavior 

0.42 0.71 0.53 0.46 0.76 0.57 

Good 
behavior 

0.94 0.82 0.88 0.95 0.83 0.89 

Accuracy 0.80 0.82 

 

4.2.4 Conclusion of Experiment 2 

In the Experiment 2 the driver behavior was classified differently than in experiment 1. 

We moved from time-based classification to event-based classification as the driver was 

not breaking thresholds 100% of the time of the bad driving lap. In an urban environment, 

two models were created just to compare this situation. From that comparison, it was 

shown that event-based classification is 10 percentage points more accurate than time-

based.  

Then in the second part of Experiment 2, different models were tried on test data. From 

this, we can see that the model accuracy drops significantly if the model is used on totally 

new data from a different location. When the model is trained on data taken from the same 

location, then the accuracy tends to be near 99% but in the case of a new location, it was 

around 89%. 

4.3 Packet loss 

Additionally, to test the quality of Cat-M1 communication and the prototype device the 

Packet Loss Rate can be calculated. The calculation is done with the following equation 

[44]: 

𝑃𝑎𝑐𝑘𝑒𝑡	𝐿𝑜𝑠𝑠	𝑅𝑎𝑡𝑒 =
𝑠𝑒𝑛𝑡	𝑝𝑎𝑐𝑘𝑒𝑡𝑠 − 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑	𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑠𝑒𝑛𝑡	𝑝𝑎𝑐𝑘𝑒𝑡𝑠 ∗ 100% 

In Table 12 the packet loss of all tracks from experiment 2 can be seen. The packet loss 

is highest in the urban environment, which can be explained due to the high buildings and 
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multiple handovers of cells. The rural drive had significantly better results and the test 

drive which was conducted last had only 1 lost packet. On that route, there were not any 

high buildings or obstructions. The sections where packets were lost can also be seen 

from the track plots shown in Figure 35. From this figure, we can see how there are 

sections where the navigation line is jumping from one place to another. 

Table 12. Packet loss metrics 

 Urban Rural Test drive 

Sent packets 1572 590 871 

Received 
packets 

1503 584 870 

Lost packets 69 6 1 

Packet loss 4.38% 1.02% 0.1% 

 

 

Figure 35. Plot sections where packets were lost 
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5 Summary 

The main purpose of this thesis was to develop a driver analysis system that would 

classify driver behavior and work with cellular IoT communication technology. First in 

chapter 1 the problem and background were described. In chapter 2 the state of the art of 

driver behavior classification with machine learning along with machine learning metrics 

and related works on this topic were given.  

From the state of the art, it was found that driver behavior analysis and classification can 

be done in multiple ways. Furthermore, the ways for testing and developing in the related 

works were different. The many machine learning algorithms and thresholds were not 

common between the related works. There were various devices used and sometimes a 

lot of information about used machine learning models or devices were hidden. The 

number of classes and rules of them was also different among the works. 

Based on state of the art it was decided to build a simple device that could read data from 

a vehicle OBD-II reader and add additional sensor data to it. For machine learning, the 

most commonly seen algorithm SVM was used. ML model Output was divided to two 

classes, either bad driving or good driving. Thresholds were decided by investigating 

differences in values of good and bad driving. Finally, the models were trained and tested 

to see how well machine learning can classify driving behavior.   

A prototype device was proposed with 6 modules that fulfill the two requirements of 

gathering all needed data and sending it to the cloud server for further analysis. Modules 

consisted of Raspberry Pi Zero W computer, SIM7070G modem, G-mouse GNSS 

module, ELM327 OBD-II reader, GY-521 accelerometer/gyroscope, and Hama USB 

hub. These devices were connected with USB cables and jumper cables. The device was 

installed inside the vehicle so that the sensor module was firmly attached facing the 

correct axis. 

In the experiments, machine learning and behavior classification were tested. At this 

point, the classifications were investigated from two perspectives. First was time-based 

behavior classification where the driver was labeled as a bad driver for the whole duration 

of the bad driving section. Since a driver cannot be driving badly 100% of the time, 

another way had to be tested. Therefore, in the second experiment, the driver was labeled 
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as a bad driver only when certain thresholds were exceeded, which made it an event-based 

classification. From the results of these experiments, the event-based model was 10 

percentage points more accurate at 99% compared with the time-based which was at 

around 89%. 

The only issues on the hardware side were connected with the SIM7070G modem. During 

the tests, the LTE NB-IoT was used, but because the modem did not support mobility by 

cell HandOver, it was changed to Cat-M1. LTE Cat-M1 is a cellular IoT communication 

technology that suits this type of device very well. 

Beside this issue, the modem also does not support GNSS usage at the same time as the 

modem is using communication. GNSS issue was resolved by adding an additional GNSS 

USB module. Other modules and sensors did not have any issues. 

The packet loss rate of all the experiments was also investigated. LTE Cat-M1 suffered 

the most packet loss in an urban environment with results of around 4.4%. When driving 

on the rural roads, the loss rate was only about 1% whereas, during a final test drive which 

consisted of both rural driving and urban driving, the packet loss rate was only 0.1%.  

Although the machine learning models were tested on only one car type and one driver, 

based on these results the developed device and model could be used by car insurance 

companies or rental companies to classify the proportion of bad driving behaviors during 

a user’s whole driving session. 

The software developed in this thesis for the device is located on the following Google 

Drive URL 

https://drive.google.com/drive/folders/1FMfWqhpAoYKP11DHd8W1R54XGZr2HALp

?usp=sharing together with all the datasets to allow future work. 

During the experiments and writing of the thesis, additional ideas and questions were 

raised, which will remain for future work. These can be divided into short-term and long-

term categories. 

Short-term: 

§ A self-working data collection device – At this moment the Software on the device 

needs manual starting with the help of a laptop, but this could be automated. 
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§ Scoring of the driver based on behavior – Driver behavior could be graded to give 

feedback to the model users or the driver themself on how good or bad they are 

driving. 

§ Data analysis automation – At the moment the data was analyzed manually by 

downloading .csv files from the server and then preparing the data and training 

the model, but this could be also be a fully automatic process and therefore less 

time-consuming.  

§ Other machine learning algorithms – During this thesis, only one machine 

learning algorithm was used, there could be alternate algorithms that could prove 

to be better for this dataset. 

§ Testing with more drivers and different vehicles – In this thesis only one driver 

with one car was used, but with more drivers and vehicles, the results could be 

more reliably generalized for larger populations. 

Long-term: 

§ Facilities for real testing – At the moment the bad driving was not done completely 

as it can be in real scenarios. For example, the speed limit exceeding had to be 

done by altering the dataset. 

§ Testing other methods of classifying – Classification could be done with more 

classes and with other ways to divide them. 
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