
TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology
Department of Computer Science

TUT Centre for Digital Forensics and Cyber Security

ITC70LT
Taavi Sonets 132702IVCM

IMPROVING USER SIMULATION TEAM
WORKFLOW IN THE CONTEXT OF

CYBER DEFENSE EXERCISE

Master’s thesis

Supervisors
Elar Lang, MSc
Rain Ottis, PhD

Tallinn 2016

Declaration

I declare that this thesis is the result of my own research except as cited in the references.
The thesis has not been accepted for any degree and is not concurrently submitted in
candidature of any other degree.

May 25, 2016

Taavi Sonets

........................
(Signature)

2

Abstract

Cyber Defense Exercise is a good way to train for the cyber incident handling in a real
life situation. Improving the efficiency of different teams in Cyber Defense Exercise is
very important in order to keep the exercise scalable. The main purpose of this thesis is
to improve the workflow of the User Simulation Team in the context of Cyber Defense
Exercise by reducing manual labor. This is achieved by designing and implementing a
proof-of-concept framework for enhancing the key aspects of the User Simulation Team’s
workflow with technical solutions in the exercise Locked Shields 2016.

The design behind this framework is devised by conducting semi-structured interviews
with the key members of the different organizing teams for the exercise and extracting
their suggestions of which parts of the User Simulation Team workflow should be
improved.

Based on this design the first implementation was deployed for the Test Run event of the
annual Locked Shields exercise. The finalized iteration of the solution was deployed for
the Execution event of the same exercise.

The evaluation of the framework was conducted based on data gathered from the
framework during the evaluation events and feedback gathered from semi-structured
interviews with the User Simulation Team and Red Team Client Side attacks sub-team
leaders. Additional features were suggested based on the evaluation for future
development.

The evaluation shows, that it is effective to use technical solutions to improve the
workflow of User Simulation Team in the context of Cyber Defense Exercise.

The thesis is written in English and contains 70 pages of text, 7 chapters, 19 figures.

3

Annotatsioon

KASUTAJA SIMULEERIMISE MEESKONNA TÖÖVOO PARANDAMINE
KÜBERKAITSE ÕPPUSE KONTEKSTIS

Küberõppus on hea moodus harjutamaks küberintsidendile reageerimist. Erinevate
küberõppuse meeskondade töövoo parandamine on väga oluline tagamaks õppuse
skaleeruvust. Antud lõputöö põhieesmärgiks on parandada kasutaja simuleerimise
meeskonna töövoogu vähendades käsitsi tehtava töö mahtu. See saavutatakse töötades
välja ja rakendades konseptsiooni tõestav raamistik, mis parendab küberkaitseõppuse
Locked Shields 2016 kasutaja simuleerimise meeskonna töövoo põhi aspektide täitmist
läbi tehniliste lahenduste.

Raamistiku arhitektuur ehitatakse üles lähtudes soovitustest, mis on saadud läbi
poolstruktureeritud intervjuude harjutust organiseerivate võtmeisikutega erinevatest
meeskondadest. Intervjuude põhirõhk oli teemal, milline osa ja kuidas kasutaja
simuleerimise meeskonna töövoost peab saama täiustatud.

Lähtudes välja töötatud arhitektuurist, loodi esimene raamistiku implementatsioon õppuse
Locked Shields Test Run (prooviõppus) ürituse ajaks. Lõplik versioon raamistikust
implementeeriti sama õppuse Execution (päris õppus) ürituse ajaks.

Raamistiku hindamiseks kasutatakse õppuse käigus kogutud andmeid. Lisahinnangu
andmiseks kasutatakse punase meekskonna kliendipoolsete rünnete meeskonna ülema
ja kasutaja simuleerimise meeskonna ülema poolstruktureeritud intervjuudest kogutud
tagasisidet. Lisaks toodi välja erinevaid võimalusi praeguse lahenduse täiendamiseks.

Raamistiku hindamine näitab, et küberõppuse kasutaja simuleerimise meeskonna töövoo
efektiivsus tõuseb läbi tehniliste lahenduste rakendamise vähendamaks käsitsi tehtava töö
mahtu.

Lõputöö on Inglise keeles ja sisaldab teksti 70 leheküljel, 7 peatükki, 19 joonist.

4

List of Acronyms

LS Locked Shields

CS Client Side

NIC Network Interface Card

SINET Simulated Internet

VNC Virtual Network Computing

NATO North Atlantic Treaty Organization

CCD COE Cooperative Cyber Defence Centre of Excellence

RDP Remote Desktop Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

npm Node Package Manager

OS Operating System

UST User Simulation Team

CDX Cyber Defense Exercise

VIX Virtual Infrastructure eXtension

API Application Programming Interface

NET Network

SITREP Situation Report

VPN Virtual Private Network

IT Information Technology

SSH Secure Shell

HTTP Hypertext Transfer Protocol

TCP Transmission Control Protocol

5

Contents

1 Introduction 12

1.1 Locked Shields as an Example of Cyber Defense Exercise 13

1.1.1 Teams in Locked Shields . 13

1.1.2 Tools used in Locked Shields . 16

1.2 Main Problems . 17

1.2.1 Providing User-Interaction Inside Blue Team Workstations for
Red Team Client Side Attacks 17

1.2.2 Conducting Service Checks . 18

1.2.3 Demanding the Usability of Services 19

1.3 Problem Statement . 19

1.4 Main Objectives . 20

1.5 Outline of The Thesis . 20

1.6 Acknowledgments . 21

2 Current Situation and Related Research 22

2.1 Related Work . 22

2.1.1 Centrally Managed Network Traffic Generation for Cyber Exercises 22

2.2 Current situation . 23

2.2.1 Infrastructure . 23

2.2.2 User Simulation Team Interaction with the Workstations 25

6

2.2.3 User Simulation Team Communication with the Red Team 28

2.2.4 User Simulation Team Interaction with the Data 29

3 Analysis 32

3.1 Requirements . 32

3.1.1 Requirements for Infrastructure 32

3.1.2 Requirements for the User Simulation Team 33

3.1.3 Requirements for User Simulation Team Workflow Improvement
Framework . 34

3.2 Development decisions . 35

3.2.1 Methodology . 37

3.3 Design . 37

3.3.1 Central server . 37

3.3.2 User Simulation Team Client Application 41

3.3.3 Red Team Client Application . 42

4 Implementation of the Framework 44

4.1 Central Server . 44

4.2 Red Team Client Application . 47

4.3 User Simulation Team Client Application 48

5 Evaluation of the solution 54

5.1 The Test Run . 54

5.1.1 Preparation Phase of the Exercise 54

5.1.2 Execution Phase of the Exercise 54

5.1.3 User Simulation Team Feedback 55

5.1.4 Red Team Feedback . 56

5.2 The Live Event . 56

7

5.2.1 Preparation Phase of the Exercise 56

5.2.2 Execution Phase of the Exercise 58

5.2.3 Aftermath and Feedback of the Exercise 59

5.3 Lessons learned . 63

5.4 Conclusion of evaluation . 64

6 Future Research 65

7 Conclusions 66

References 68

A Appendixes 71

A.1 Semi-Structured Interview With Aare Reintam 71

A.2 Semi-Structured Interview With Mehis Hakkaja 74

A.3 Semi-Structured Interview with Ragnar Rattas 77

A.4 Updater script for User Simulation Team Client Application 79

A.5 Semi-Structured Interview with Heliand Dema 80

A.6 Semi-Structured Interview with Elvis Paat 82

A.7 Architecture of the Framework . 84

8

List of Figures

2.1 Interacting with Workstations in Previous Locked Shields Exercises . . . 26

2.2 Example of VMware vSphere Virtual Machine Locations 27

2.3 Example of Chat Between Red Team and User Simulation Team Member 28

2.4 Handling the Red Team Request . 29

3.1 Data Flow Through Central Server . 40

4.1 Red Team Client Application Malicious File Tab 47

4.2 Red Team Client Application PowerShell Web-Delivery Tab 47

4.3 Red Team Client Application Chat Tab 48

4.4 User Simulation Team Client Application Dashboard 49

4.5 User Simulation Team Client Application Chat Tab 50

4.6 User Simulation Team Client Application Tasks Tab 51

4.7 User Simulation Team Client Application Accounts Tab 52

4.8 RDP Connection Solution Inside User Simulation Team Client Application 53

5.1 Communication Between Red Team and User Simulation Team during
Locked Shields 2016 . 59

5.2 Red Team Browser Preference for Requests of Interactions 60

9

5.3 Automatic Feedback Reports Sent to Red Team 60

5.4 Service Checks Performed Through Framework 61

5.5 All User Interactions Performed over Two Days 62

5.6 All Messages Exchanged Between Red Team and User Simulation Team . 62

10

Code examples

4.1 Invoke-VMScript Cmdlet Executing Code Inside the Workstation as an
User Using VIX API . 44

4.2 Using Schtasks to Bypass Windows Limitations 45

4.3 Triggering RDP Using MSTSC Command Line Interface 53

5.1 Updater.bat Script for Updating the User Simulation Team Client
Application . 58

11

1. Introduction

The technology is transforming our world into something that we do not recognize yet
and it is doing so quickly. Cyber and Internet have become part of people’s everyday
lives. The number of Internet users has gone from 502 million in 2001 to 3.34 billion by
April, 2016 [1]. With such growth, the topic of security in cyberspace becomes important.
Yet, it is not only the average citizen, who has become more integrated into technology. It
has been found happening also on the country level. As the time goes by, more and more
of countries’ critical infrastructures become digitalized. The understanding of what cyber
defense actually is, has never been so important as it is today.

The process of development and furthermore implementing cyber security in the national
domain is slow [2]. The speed of cyber defense oriented improvements may vary in
different countries. International cyber security is inherently even slower, since it usually
involves figuring out cyber defense on national level first and then cooperating it between
the nations. Not many ways exist of how a country could improve its own cyber defense
and furthermore develop international cooperation that would be required in real life
international cyber incident. One of those few ways is Cyber Defense Exercise (CDX).

Cyber exercises are an important tool to assess the preparedness of a

community against cyber crises, technology failures and critical information

infrastructure incidents. [3, p. 1]

Cyber exercises can generally be divided into several categories: capture the flag,
discussion based game, drill, red team versus blue team, seminar, simulation, table-top
and workshop [4, p. 18-19]. Out of those types of exercises, this thesis mainly focuses on
simulation type of exercise where the participants have to react to situations presented in
the exercise in real time as they arrive [3, p. 9].

12

1.1 Locked Shields as an Example of Cyber Defense Exercise

North Atlantic Treaty Organization (NATO) Cooperative Cyber Defence Centre of
Excellence (CCD COE) held Locked Shields (LS) CDX is one of the biggest and most
advanced of its kind [5]. The first exercise of the series was held in the year 2010 and
back then it was called Baltic Cyber Shield [6]. There was no exercise in 2011 and
since the year 2012 the exercise is known as Locked Shields. The exercise has grown
in size. It started out with 6 Blue Teams and 20 Red Team members attacking them in
the year 2010. In the year 2016 this number was 60 Red Team members against 20 Blue
Teams (see appendix A.2). The majority of this section of the thesis is based on the NATO
CCD COE published Locked Shields After Action report 2013 [7] and the author’s own
personal experience with participating in the exercise in the years 2015 and 2016.

1.1.1 Teams in Locked Shields

The LS has four organizing teams responsible for its execution: red, white, green and
yellow. Furthermore each year there is a growing number of target training audience, the
Blue Teams.

1.1.1.1 Blue Team

Blue Teams are made up from the participating countries’ specialists. They take part of
the event from remote facilities (typically in their own country) and they connect to the
exercise over a Virtual Private Network (VPN) connection. Their tasks are:

• Secure the provided virtual Information Technology (IT) infrastructure and defend
it against the Red Team attacks;

• Maintain services described in the exercise documentation assuring the availability,
confidentiality and integrity of the systems;

• Report detected incidents to the White Team through continuous lightweight
reporting and management level Situation Reports (SITREPs);

• Complete business tasks injected by the White Team;

• Respond to information requests from the media sub-team.

13

The IT infrastructure that the Blue Team has to defend, is developed by the Green Team.
It contains pre-planted security vulnerabilities. Blue Teams are allowed to use their own
tools to secure the infrastructure [7, Blue Teams, p. 66].

1.1.1.2 Yellow Team

The Yellow Team is there for situational overview and awareness. Furthermore they are
intermediate for the data flow between different teams. For example, they collect the
lightweight reports provided by the Blue Teams to the White Team, statuses of attack
campaigns from the Red Team and the results of manual and automatic scoring. Using this
data they prepare different views and visualizations of the exercise current situation [7,
Yellow Team, p. 9].

1.1.1.3 Green Team

The Green Team is responsible for the technical infrastructure of which the game is played
on. They need to make sure, that from the technical perspective, game goes without any
failures. They are also responsible for designing and setting up the core infrastructure such
as physical devices, virtualization platform, storage, networking, remote access, traffic
recording, VPN routers for the Blue Teams user accounts, etc. Further more they design
and build the Gamenet 1 and Blue Team systems, program the automatic scoring bot
and agents. They also develop solutions for traffic generation and set up monitoring the
general exercise infrastructure [7, Green Team, p. 9].

1.1.1.4 Red Team

The Red Team is there to simulate the attacker. They are responsible for penetrating and
degrading the Blue Team’s systems in order to simulate a live opponent. They execute
the predefined objectives in a specific time frame. Objective, in the context of LS Red
Team is a attacking task for scenario play. Objectives are executed in accordance with the
scenario dictated by the White Team. Red Team does not just attack everything they can,
rather the attack plan is highly controlled in order to preserve fair game towards all Blue
Teams.

1Gamenet is the whole simulated network in the context of CDX. It includes Simulated Internet (SINET)
and all the other virtual networks in the game.

14

To achieve this controlled execution, the Red Team is made up of three sub-teams (see
appendix A.2):

• WEB attacks team;

• Network (NET) attacks team;

• Client Side (CS) attacks team.

The WEB attacks team is responsible attacks against web applications that the Blue Teams
have to defend. They include attacks such as defacements and bypassing authentication
in the web application to access restricted data or functionality (see appendix A.2).

The NET attacks team is responsible for attacks that happen in the network layer (see
appendix A.2). They can include attacks such as sniffing the network traffic to steal some
secret data traveling through the network, denial-of-service attacks to render some part
of the targeted Blue Team systems unavailable or man-in-the-middle attack, where an
attacker is located between the targeted Blue Team client and a service. In case of a
successful man-in-the-middle attack the parties targeted, might not realize with whom
they are exchanging data with [8].

The final sub-team in the Red Team is CS attacks team. They are responsible for attacking
the Blue Teams’ workstations. They do this initially with the white box method, where
all the vulnerabilities of the workstations are known to the CS attacks team. Those
vulnerabilities are meant to be discovered by the Blue Teams and for the full course of
the exercise, they are not a viable method (see appendix A.2). To simulate the real world
scenario, the CS team uses user-interaction to gain initial foothold to the system. Similar
to the real world scenario, they will prepare a piece of malware and smuggle it inside the
Blue Teams defenses with the method that involves user-interaction such as enticing them
to click a link, open a document or get them to open a malicious website [9].

1.1.1.5 White Team

The White Team responsibility is to manage the game play itself. To work out the
exercises scenario and enforce that the game is played according to said scenario. They
are the ones who define the training objectives, high-level objectives for the Red Team,
write the rules, prepare media, scenario, legal injects and the communication plan. During
the execution of the exercise, they are the exercise manager cell. They make scoring

15

decisions and they control the execution of the Red Team’s campaign. They also include
liaison officers, who are the intermediates between the organizers and the target training
audience the Blue Teams [7, White Team, p. 8].

The structure of White Team, provided by Aare Reintam in appendix A.1, is built up as
follows:

• Exercise control;

• Communications team;

• Injects and scoring;

• User Simulation Team (UST).

Exercise control is responsible for running the exercise and making decisions such as
when to start certain phases. Phases are sections of the exercises time line that the game
play is organized into. The communications team is there to prepare the communication
plan and coordinate the work, they also communicate the feedback to and from the Blue
Teams. The injects and scoring is the team that plan and manage scenario injects for the
game. The two additional sub-teams in the injects team are the media and legal sub-teams.
They are there to provide related injects to their field and also to evaluate the responses to
said injects.

The main purpose for UST is to play the role of the users in the simulated organization.
Depending on the format of CDX, this can involve a various of tasks. For example, in case
of a exercise with very narrow scope, this could mean, that the whole team periodically
executes a single type of task, such as entering the workstations in the morning, sending
some emails during the day or perhaps leaving a workstation unattended for the duration
of the lunch. On the other hand, in case of a full-scale live fire simulation where there is
an active Red Team, they must work very closely with the Red Team to assist them on
their campaign of penetrating the target training audience’s systems. They are the ones
who execute user-interaction tasks for the CS attacks inside the Blue Teams workstations.

1.1.2 Tools used in Locked Shields

When the exercise grows into some certain parameters, the need for efficiency in
communication between teams also grows. In many cases the speed of growth is not
the same in every aspect of the game [7]. To manage the communication between the

16

teams, different tools are used. There is a Collaboration Environment, that serves as
a main channel for information exchange. It is a MoinMoin Wiki 2 type of platform,
where different teams exchange long haul information, such as development instructions,
ruleset for the Blue Teams, time schedule of the exercise, passwords for various services
in the SINET and much more. For more rapid communication there also exists a Jabber
XMPP chat 3. This is for fast and critical information exchange mainly throughout the
execution phase of the exercise. For example it is used between the Red Team and the
UST to exchange malicious Uniform Resource Locators (URLs) that the UST members
have to visit to serve the Red Team the user-interaction part of a CS attack.

1.2 Main Problems

Each iteration identifies new shortcomings and features for the organizers of the exercise
that could be improved or implemented. In case of UST, there still are problems that
require solving. UST members have various tasks to complete and not much time to
accomplish them. The main tasks outlined by the exercise director, Aare Reintam, for the
UST in the order of importance are [10]:

• Provide user-interaction inside Blue Team workstations for Red Team CS attacks
sub-team;

• Conduct service checks, to verify that the Blue Teams are providing services and
that the services are still usable and available for the UST;

• Demand defending teams to hold up the services and provide relevant scoring
regarding that.

The tasks involve manual labor, communication between teams and are mostly prone to
time consuming errors - time being one of the most expensive and scarce asset in the
context of live fire exercise [6].

1.2.1 Providing User-Interaction Inside Blue Team Workstations for Red
Team Client Side Attacks

The most important task of a UST member, is to execute the malicious code (also known
as payload) that they receive from the Red Team inside the Blue Team systems. This

2Read more about the MoinMoin Wiki engine from the project homepage: https://moinmo.in/
3Read more about Jabber chat from http://www.jabber.org/

17

https://moinmo.in/
http://www.jabber.org/

is important for the Red Team CS sub-team in order to simulate similar to the real
world threat actor (see Appendix A.2). Since the communication of this process happens
through Jabber chat client without any verification or validation for error in human input,
then mistakes are prone to happen. In addition to code execution, the UST is required
to also give feedback for the task given them by the Red Team. Initial feedback of
acknowledging that the task has been received can take up to 15 minutes [11].

The main problem for UST, in previous iterations of the exercise, was that the
copy-pasting between UST member workstation and virtual Blue Team workstation did
not work reliably [10]. This resulted in errors and consumed additional time to fulfill
the Red Team request by manually retyping the complicated URLs and commands.
Furthermore, there were cases where Blue Team had set a complicated passwords to
access the targeted workstation.

Other aspect that has to be considered is, that every year there are new UST and Red Team
members who have no experience in working with each other. This is true even more for
the UST, where in the case of LS 2016, there were 26 members in UST. All of them were
newcomers to the team, meaning that they had no previous experience of participating in
the UST. This has in previous exercises in LS series generated communication errors that
led to inefficiency in UST and Red Team cooperation [12] [6].

1.2.2 Conducting Service Checks

UST member has to check the availability of different services from workstations. More
specifically they have to check if the service is usable and the functionality has not been
tampered with. In case of 2016 LS there were in total twelve services that had to be
checked. In the year 2015 exercise, this number was eleven [10]. It is not enough to
check availability and functionality of those services from only one workstation. In case
of LS 2016, UST had 34 Windows, 10 Linux and 2 MacOS workstations for each Blue
Team from where services had to be checked [13]. In an ideal case, UST member would
check all the services from all of the workstations. In reality, as this is a secondary task for
the UST, it was expected they could verify the services from each of the network segment
in the simulated network. Furthermore, as the exercise grows, so does the complexity of
it and with that the workload for every team participating in the successful execution of
the event, including UST.

Most of the services that have to be checked for availability and functionality require a
log in procedure with given credentials that Blue Team is allowed to change. This means

18

that every time the UST member wishes to authenticate their self to the service, they have
to first log into the Collaboration Environment where the user credentials are stored in
case of LS CDX and retrieve the correct credentials. This is prone to produce errors and
also will make the whole process time consuming. Since the Blue Teams are allowed
to change the credentials for those services as well, the verification of correct passwords
becomes one of the subtasks for the UST [12].

1.2.3 Demanding the Usability of Services

Third task in the workflow of a UST member, is to demand the Blue Team to keep the
services up and running. If it is discovered, that a Blue Team is not keeping the services
usable (see section 1.2.2), then the responsible Blue Team will need to be notified. If
Blue Team has not managed to make the service available after some time, then they will
be scored accordingly. Scoring is another important part of the UST work. They have
to be fair and all the Blue Teams must be scored equally in the sense that the scoring
frequency has to remain the same. From the LS 2015 scoring, 11 teams got less than 60%
of the points for usability of the services, with none of the teams receiving over 75% of
possible 100% which would have meant that services were available and usable for the
UST during the full length of the exercise [14]. It can be deduced, that the availability and
functionality of a service is not a priority for the Blue Teams, and needs to be checked.
The more efficiently this can be achieved the better.

Since the task of demanding Blue Teams to keep the services up and running builds upon
the task of conducting service checks and since according to Aare Reintam, this is the
lowest priority task, then it was decided that solving the problems related to this task are
out of the scope of this thesis and are left for future development.

1.3 Problem Statement

The problem this thesis will tackle is that the workflow of the User Simulation Team
involves manual and time consuming labor. Furthermore it is prone to produce errors and
miscommunication and there is not enough time to fully accomplish all the tasks trusted
to UST.

19

1.4 Main Objectives

In the section 1.2, it was described that the general issue with the UST is inefficiency
and problems developed from the manual labor that the team has to perform. To reduce
the time consumption for various tasks of UST and free up resources for something
more useful, such as communicating with the Blue Team, demanding them to keep up
their services (see section 1.2.3) or assigning score then the problem prone tasks of UST
workflow should be solved on technical level.

This thesis is focusing on reducing the overhead in the UST workflow through
improving the efficiency of UST tasks with technical solutions. The problems emerged
from the White Team feedback stated that one of the main issues came from inefficiency
in the communication between the Red Team and the UST (see 1.2.1).

Another problem that presented itself was the difficult interaction with the workstations.
In order to address those problems the flowing objectives are set:

• Propose a solution that reduces the manual work of UST;

• Propose a solution that reduces the manual work in Red Team and UST
cooperation;

• Evaluate solution in the Locked Shields 2016 Cyber Defense Exercise.

1.5 Outline of The Thesis

This thesis is organized into chapters. Chapter 1 gives the general overview of CDXs
and explains the essence of a CDX in the example of Locked Shields CDX. In Chapter 2
it is being discussed how currently the UST operates and what are the main difficulties
relating to that. Furthermore what research has been done and how it relates to this thesis.
Also the current state of the underlying infrastructure, that supports the development of
the framework is presented. In Chapter 3 the author analyzes what are the issues of UST,
how they can be solved through technical solutions. The design for the framework is
proposed based on the suggestions gathered from the key members of the sample exercise,
LS. Chapter 4 focuses on the implementation description of the design composed in the
previous chapter. Chapter 5 focuses on evaluation of the solution by reflecting on how
the framework performed during the Test Run and the Execution events of LS 2016. Did
it improve the situation that was there before and if so, then how. The author furthermore

20

explores what lessons were learned. In Chapter 6, the author brings out aspects that
should be implemented or improved in the future regarding the developed framework.

The conclusion is disclosed in Chapter 7.

1.6 Acknowledgments

The author would like to give thanks to Elar Lang and Rain Ottis for tireless supervision
of this thesis. Author expresses special gratitude towards Aare Reintam, Ragnar Rattas,
Jarkko Huttunen, Elvis Paat, Heliand Dema and Mehis Hakkaja for their contribution
and input during the research and development phase of this thesis. Furthermore author
wishes to thank the entire Clarified Security team for their support.

21

2. Current Situation and Related Research

The exercise where the proof-of-concept solution was deployed is NATO CCD COE
organized LS 2016 event. LS is a complex exercise. As discussed in the main problems
before, previous years experience has shown that the efficiency of the UST could be
improved. To achieve the task of improving the user simulation team workflow, LS
offers a good testing ground. With its numerous staff and organizing members, LS has
experience and insight to CDXs in a huge scale, being one of the biggest technical live-fire
CDX in the world [5].

2.1 Related Work

As it was discussed in the first chapter, the highest priority task for UST is Providing

user-interaction inside Blue Team Workstations for Red Team Client Side Attacks (see
section 1.2.1). In order to find a technical solution to this task, to make the UST work more
efficient, it can be deduced that a way of remotely executing code inside the workstations
is needed.

2.1.1 Centrally Managed Network Traffic Generation for Cyber Exercises

In 2014 Erki Naumanis described in his thesis Centrally Managed Network Traffic
Generation for Cyber Exercises, how he built a traffic generation framework for LS 2014.
He found that the best way of interacting with the Blue Team systems is to deploy a
centrally managed botnet in the Gamenet [15].

In his thesis, Naumanis decided to build a centrally managed botnet of traffic agents. A
part of his process was to install botnet clients into every workstation in every network
segment for every team. This task alone is time consuming and needs automation.
Furthermore he decided to use Python programming language as an universal language

22

that would work on every operating system used in the LS exercise from where the traffic
generation was required.

The validation method for Naumanis was to evaluate the preliminary solution in the LS
2014 Test Run and the final evaluation was done after the LS 2014 execution event. This
two step validation proved to be successful and in this thesis the same methodology for
validation will be used.

2.2 Current situation

This section of the thesis will give a overview of the current situation in underlying
infrastructure and processes related to the UST workflow.

2.2.1 Infrastructure

LS exercise and all the other exercises held currently on top of Estonian Defense Forces’
Cyber Range1, are simulated on top of VMware virtualization platform vSphere2 [6].

VMware itself provides a way of interacting with the guest operating systems by executing
commands inside the guest machines through its Virtual Infrastructure eXtension (VIX)
Application Programming Interface (API) [16]. This means that in case of managing the
workstations in the virtual environment, the need to build a botnet inside the Gamenet is
redundant as vSphere VIX API can run commands in three major virtualized platforms:
MacOS, Linux and Windows [17]. The main difference between managing computers
through VMware VIX API and an simple botnet - there is no need for reliable simulated
network connectivity, since commands will be executed through VMware itself. This
would allow technical solution of user simulation for those network segments, that are
completely isolated from the rest of the network.

The VMware VIX API is not the only way of executing code in the target workstation. So
far the Green Team has used a combination of different methods to execute the code inside
the targeted workstation. For windows they have previously used PowerShell Remoting 3,

1Read more about Estonian Defence Forces’ Cyber Range https://www.mkm.ee/sites/
default/files/cyber_security_strategy_2014-2017_public_version.pdf

2Read more about vSphere https://www.vmware.com/products/vsphere
3Read more about PowerShell Remoting https://technet.microsoft.com/en-us/

library/dd819505.aspx

23

https://www.mkm.ee/sites/default/files/cyber_security_strategy_2014-2017_public_version.pdf
https://www.mkm.ee/sites/default/files/cyber_security_strategy_2014-2017_public_version.pdf
https://www.vmware.com/products/vsphere
https://technet.microsoft.com/en-us/library/dd819505.aspx
https://technet.microsoft.com/en-us/library/dd819505.aspx

PsExec 4 and to achieve some goals Windows Group Policies5 [13]. Then again, all
of them require network access from source computer to targeted computer that is not
always a requirement for the UST workstations in the context of a CDX. The solution to
overcome this issue has been of having a separate Network Interface Card (NIC) solely
for management networking, that stood outside the SINET.

In addition to executing the code inside the targeted workstations of the simulated
infrastructure, the UST member also has to retain some form of control over the task
that is being executed. The visual feedback for code execution is still required. This is
needed in the context of LS 16, to retrain the possibility of full control to the UST, in case
the technical solution fails [10]. Although the command execution could be done solely in
the background. To have visual feedback of the target simulated workstation, the current
situation in case of LS CDX has two existing possibilities [13]:

• The Remote Desktop Protocol (RDP) protocol for Windows and Virtual Network
Computing (VNC) protocol for MacOS and Linux operating systems;

• The other possibility that exists and has been used since the LS exercise started
running on top of VMware is the vSphere’s client application feature console 6 for
interacting with the Virtual Machines.

Out of those two, first one requires still management network to be there, as the
RDP works only over networking. The VMware console does not require additional
management networking, to the targeted machines, but it does complicate some of the
aspects of the automation. The RDP seems to be better documented and understood. The
RDP has existed longer and is a native part of Windows operating system.

The VMware Console, as the name suggests, is developed by VMware. This entitles
VMware console to work with the other components from the same company. For
example the Console does not require the targeted workstations to have additional
management NIC to interact with them. All communication between the client application
and targeted workstation is trafficked in the same network that the VMwares vSphere
application lives. This offers a layer of abstraction in the network and therefore, when

4Read more about PsExec https://technet.microsoft.com/en-us/sysinternals/
psexec.aspx

5Read more about Windows Group Policies https://technet.microsoft.com/en-us/
windowsserver/bb310732.aspx

6Read more about VMware vSphere console feature from https://pubs.vmware.com/
vsphere-51/topic/com.vmware.vsphere.vm_admin.doc/GUID-C127F9F9-3E09-
4A3E-B368-4C46B2A02F8D.html

24

https://technet.microsoft.com/en-us/sysinternals/psexec.aspx
https://technet.microsoft.com/en-us/sysinternals/psexec.aspx
https://technet.microsoft.com/en-us/windowsserver/bb310732.aspx
https://technet.microsoft.com/en-us/windowsserver/bb310732.aspx
https://pubs.vmware.com/vsphere-51/topic/com.vmware.vsphere.vm_admin.doc/GUID-C127F9F9-3E09-4A3E-B368-4C46B2A02F8D.html
https://pubs.vmware.com/vsphere-51/topic/com.vmware.vsphere.vm_admin.doc/GUID-C127F9F9-3E09-4A3E-B368-4C46B2A02F8D.html
https://pubs.vmware.com/vsphere-51/topic/com.vmware.vsphere.vm_admin.doc/GUID-C127F9F9-3E09-4A3E-B368-4C46B2A02F8D.html

it comes down to visual interaction with the workstation, removes the requirement of
management network for workstation interaction to the UST.

In previous years, this abstraction has been the main reason why the VMware console
has been the main choice of tool when it comes to interaction with workstations. Yet,
there have been problems. The security and guest isolation is very important in case of
all virtualization [18]. Therefore by default VMware vSphere disables shared clipboard

between the guest and host operation system in order to isolate the layers of virtualization.
It is in the development instructions of Green Team to enable it where needed. Yet, the
process from development to execution of the exercise is taking place over an extended
period of time, therefore it has happened in several occasions, that the shared clipboard

feature gets disabled in some part of the process [13].

2.2.2 User Simulation Team Interaction with the Workstations

The previous year’s White Team feedback stated that the interaction with targeted
workstation was too difficult and time consuming in general (see figure 2.1) [10]. The
UST had to use a RDP connection to enter remote VMware managing server. From there
they had to start VMware vSphere client, and manually navigate to the correct workstation
from the total 46 virtualized workstations of targeted Blue Team systems (see example in
the figure 2.2). After doing that they had to open the interaction appliance, and perform
the activity that was required of them. Difficulties affected the completion UST tasks
mentioned in sections 1.2.1 and 1.2.2 as for both of them interaction with the workstations
is required.

25

Figure 2.1: Interacting with Workstations in Previous Locked Shields Exercises

The virtualization platform that the LS is running on is VMware vSphere [13].
Considering that, one of the key requirements when building a target host, is to install a
VMware Tools 7 software to enhance the performance and monitoring possibilities in the
Virtual Machine [13]. As discussed in the beginning of last section (see 2.2.1), VMware
virtualization gives the possibility to run guest Operating System (OS) commands in
Windows, Linux and MacOS machines [17]. This process happens through VMware
Tools service in the guest workstations and all of the workstations must run the VMware
tools service [13].

7Read more about VMware tools from https://kb.vmware.com/kb/340

26

https://kb.vmware.com/kb/340

The benefit of the VMware virtualization is that it provides a possibility for developers
to deploy and manage a hundreds or even thousands of Virtual Machines [13]. Yet,
virtualized environment is not often built considering the needs of UST (see figure 2.2).
For example in the context of LS 2016, the virtualized environment was built up of
more than 1000 systems(see appendix A.3). There were Windows, Linux and MacOS
workstations in addition to different servers and firewalls. To manage it properly various
types of automation is built to handle the deployment and configuration process. This
automation builds up the dependency tree structure in the environment considering its own
needs, so that it might be difficult for a UST member, who has never seen the structure,
to come and quickly find the machine that they need to interact with.

Figure 2.2: Example of VMware vSphere Virtual Machine Locations

In addition to the difficulty of finding the correct machine from the VMware
structure tree, the inconsistencies in naming conventions also can contribute
into the inefficiency of UST workflow. For example, when the Red Team

27

member asks the UST member to open a malicious web URL in the machine
xxx-machinename-networksegment-blueteamidentifier while refereeing the format of
the machine name defined in their own materials and the corresponding machine in the
virtualization environment happens to be named anything else, such as in the format of
machinename-networksegment-xxx-virtualizationidentifier-blueteamidentifier, then
it might provoke certain level of confusion for the UST member and confirmation from
the Red Team might be requested that leads to even more inefficiency.

2.2.3 User Simulation Team Communication with the Red Team

Current state of the communication is that when a Red Team CS attacks sub-team member
has a task for the UST member, they use a common Jabber chat room to extend their
requests in the format described in figure 2.3.

Figure 2.3: Example of Chat Between Red Team and User Simulation Team Member

Some of the UST members have not, in the previous exercises, been able to understand
the Red Team requests correctly or the requests were not clear enough. This
miscommunication between the teams consumed time [11]. In the LS14 and LS15 Red
Team feedback it was described, that the main problem with UST in given years was
miscommunication [6] [11]. UST was in cases unresponsive, uncertain of what to do or
confused of what exactly is required of them. It took a considerable amount of time to get
any kind of feedback from the UST. This resulted in many cases a Red Team CS attacks
sub-team member physically tracking down the responsible UST member and identifying
the state of a request [11]. It is very important for Red Team that the UST member is
responsive throughout the entire communication process. The communication problems
mainly affected the completion of task described in section 1.2.1, as this task requires
communication between the teams.

28

Figure 2.4: Handling the Red Team Request

In the figure 2.4 is described, that for UST to perform an interaction task requested by the
Red Team, the UST member has to establish a connection to the workstations, through
several layers of virtualization (see figure 2.1) . When the Red Team task arrives, the
UST member first has to acknowledge that they have received the task, then they have
to retrieve correct credentials, to authenticate themselves into the workstation, after that
perform the task and send the results, if there are any, back to the Red Team member.

2.2.4 User Simulation Team Interaction with the Data

The UST has to handle several types of data throughout their workflow. Those types
include but are not restricted to:

• Credentials for Blue Team systems;

• Tasks (also known as request for interaction in the context of this thesis) and their
statuses from the Red Team;

• Statuses of the functionality and the availability for the virtual services of the Blue
Team.

29

To handle all this data, currently the UST in the context of LS CDX uses set of tools
mentioned in the paragraph 1.1.2. Those tools are Collaboration Environment and Jabber
XMPP chat.

2.2.4.1 Credentials

Credentials for Blue Teams systems are stored in the Collaboration Environment in human
readable plain-text format. They are not optimized for machine use or automation. The
rules of engagement, in the context of LS CDX, allow the modification of credentials
during the execution if there is a suspicion that the credentials might have been
compromised by the Red Team during the game play [6]. Also mentioned in the 1.1.2,
that the Collaboration Environment is built on top of MoinMoin Wiki engine, this means
that the trace of all the changes made to the credentials are also stored in the MoinMoin
Wiki history feature.

Keeping track of the change in the credentials is valuable feature in case of an
unintentional human mistake when changing the credentials stored in the Collaboration
Environment. When the UST fails to authenticate with the Blue Team systems, then they
can try the previous credentials that might work. This process is time consuming but it
provides a layer of redundancy.

2.2.4.2 Tasks and Their Statuses from the Red Team

During the course of the exercise, UST will be asked to perform user-interaction tasks
in the Blue Team systems by the Red Team CS attacks sub-team. Those tasks and their
statuses are relayed through Jabber XMPP chat client. The info that travels between the
two teams, is by default not prepared in advance and is typed up dynamically by the
respective team members (see figure 2.3). This method is prone to cause errors.

The data exchange is initiated by the Red Team (see figure 2.4). They will define what
task, where and how will be executed. When the UST member receives the task, they
must acknowledge that they have received the task. Hence exchanging the first piece of
task status data. After the UST member has executed or failed to execute the task, they
must provide additional task status data accordingly. This additional data is important
factor for the Red Team workflow, since this entitles that the task at hand is not lost or
disregarded.

30

2.2.4.3 Statuses of Functionality and Availability of the Virtual Services

One of the tasks of the UST was to conduct service checks to verify that the Blue Teams
are providing services and that the services are still usable and available for the UST
(see 1.2). The UST member does this by authenticating themselves into the Blue Team
workstation and then performs the service checks. Most of the services are virtual web
applications. If the service is usable and available for the UST, then in case of LS CDX
the responsible Blue Team receives positive score. If the service is not usable or available
for the UST then the Blue Team receives no score, but a notification and a limited amount
of time to resolve the issue with named service.

The UST keeps track of the periodical service checks in an excel table [12]. Periodically
the data is gathered by the sub-team leaders of the UST and after that the relevant scoring
is assigned to the Blue Teams.

31

3. Analysis

In this chapter the author will identify the requirements for enhancing the UST workflow.
After iterating over the requirements, the author will set goals to be achieved within
the scope of this thesis. After identifying the goals, the design of a proof-of-concept
framework will be proposed. The main research methodology used in this chapter is
conducting semi-structured interviews with the leaders of related LS CDX organizing
teams and from them extracting the best methodology to achieve the objectives stated in
section 1.4.

3.1 Requirements

There are suggestions provided in the UST, Green Team and Red Team leaders interviews
based on the previous year feedbacks of the exercise. The feedback from previous years
is important to identify requirements for proposing the solution.

3.1.1 Requirements for Infrastructure

The underlying infrastructure of the exercise consists of many parts (see 2.2.1). The
key element is to reuse existing infrastructure in order to avoid adding another layer of
complexity to the existing and the future CDXs as noted in the semi-structured interview
with Ragnar Rattas, the leader of Green Team (see appendix A.3). In the chapter 2.2.1 it
was discussed, that current exercises are built up on top of VMware vSphere virtualization
platform, that provides VIX API and a management network that can be used in order to
develop the solution for problems stated in paragraph 1.2.

32

3.1.2 Requirements for the User Simulation Team

UST has in previous iterations had one day training right before the execution of the
exercise to get acquainted with the infrastructure of the exercise [12]. They have
been provided with the workstations. Using those workstations they have used RDP
connection to enter the common management server, that in turn interacts with the
virtualization environment. After successfully entering the targeted workstation, they
need to furthermore interact with the services that are hosted inside the SINET. The path
that the UST member has to pass in order to interact with a virtual service was previously
described in the figure 2.1.

From the process it is deduced that currently there are three layers of virtualization
between the UST member and the targeted workstation that they need to interact with.
Getting accustomed to this kind of workflow does require some previous training of
which volume, the author proposes, could be reduced with the removal of virtualization
layers. This will directly address the situation (discussed in section 2.2.2) where the
virtual workstations were too difficult to interact with.

After the UST team has managed to go through three layers of virtualization, they
need to authenticate themselves into the workstation using credentials specified for that
workstation. The credentials might be either domain credentials 1 or local user credentials.
In case of domain credentials same credentials work for multiple workstations in the
domain - this depends on the rules that the responsible Blue Team for said domain
controller has enforced. In case of local credentials, they only by default work for the
workstation that they were set. Since there are 46 workstations per Blue Team (see
section 1.2.2) and each of them has a number of accounts that can be used to authenticate
into the workstation, there are numerous credentials moving around during the execution.
All the Blue Teams are allowed and encouraged to change the default credentials during
the execution of the exercise when they suspect that the credentials are compromised by
the Red Team [6]. This means that the communication of credentials between the UST
and Blue Teams must be as efficient as possible (see 2.2.4.1 for current implementation).

The most important task of the UST is to play the role of user-interaction for the Red
Team inside the Blue Teams’ systems (see section 1.2.1). This means that they have to
communicate very closely with the Red Team CS attacks sub-team. As soon as they
receive an input from the Red Team they must respond to it.

1Read more about domain credentials from https://msdn.microsoft.com/en-us/
library/windows/desktop/aa380517%28v=vs.85%29.aspx#domain_credentials

33

https://msdn.microsoft.com/en-us/library/windows/desktop/aa380517%28v=vs.85%29.aspx#domain_credentials
https://msdn.microsoft.com/en-us/library/windows/desktop/aa380517%28v=vs.85%29.aspx#domain_credentials

As can be observed from the figure 2.3 presented in section 2.2.3, the format of the
communication is not immune to misinterpretation during the execution of the exercise.
The request from the Red Team CS attacks sub-team member can be and has been in
previous exercises misunderstood (see appendix A.2). Further more, the task can be
complicated, time consuming and in the end the UST member might forget to give the
Red Team member the much needed status report about the task at hand.

In order to address this problem, the framework should implement a chat functionality
inside itself that exchanges data (requests for interaction, their statuses and additional
messages) between Red Team and UST.

3.1.3 Requirements for User Simulation Team Workflow Improvement
Framework

From previous CDXs, it has been said that there is a need to improve the efficiency and
workflow of the UST, since there are several of problems with the team’s workflow [10].
One of them being, that every year the UST is almost completely replaced by new
members, and the resources put into training the previous year UST are lost.

From the event organizers semi-structured interviews (see appendixes A.1, A.2, A.3), the
author has gathered suggestions and features that could increase the efficiency of the team
through addressing the problems stated in the section 1.2:

1. The basic suggestion of being able to interact with the target workstations (helps to
improve situation 2.2.2, that stated the interaction with targeted workstations was
too difficult in previous years);

2. Improve Communication between Red Team and UST (helps to improve
situation 2.2.3, that stated there were problems in communication between the
teams):

(a) Reduce UST member generated errors;

(b) Reduce Red Team member generated errors;

(c) Red Team member gets automatic feedback of the status of the task that is
being handled.

3. Automation should be easy to use for the UST member (addresses the
situation 2.2.2 furthermore, that stated the interaction with workstations was too
difficult):

34

(a) Reduce the complexity of UST workflow;

(b) Clear overview of manageable systems;

(c) UST member gets visual feedback of what is happening in the system;

(d) Automatic retrieval of credentials from the Collaboration Environment for the
UST member.

There also were some technical suggestions made, that are important for the process of
developing the framework:

1. Automation framework should be impervious to Blue Team defense mechanisms.
The defense of Blue Team should not intervene with the functioning of the
framework.

2. Framework should be modular enough, so adding and removing features would not
break the functionality of other parts.

3. There have to be redundancy fall-backs to other methods. If something fails, the
framework should be able to fall back to a little bit more manual layer of automation
(Partially addresses the problem with copy-pasting described in section 1.2.1);

4. Log every action that is being executed, so better real-time and after action feedback
can be provided for Blue Teams.

5. The UST member must have full control over the automation. This is the final
technical requirement, stated by Aare Reintam, the exercise director.

3.2 Development decisions

In order for framework to stay modular enough for future developments, from
suggestion 2, the programming language with multi OS support should be used. At the
time of writing this thesis, JavaScript has become one of the most popular programming
languages [19]. In addition of being popular, JavaScript is also modular, in the sense
that its OS counterpart NodeJS has a Node Package Manager (npm). This allows the
developer reuse already written code and modify it to suit his needs. NodeJS also runs on
every major platform and the packages coming with npm outnumber any other language
package count by at least twofold [20].

35

A choice was made to use NodeJS 2 on the server side, MongoDB 3 in the database and
native JavaScript with various libraries such as jQuery4, Bootstrap 5 and socket.io 6 in the
front-end.

Socket.io is a technology that utilities Web Sockets 7 for real time communication
between the browser of the UST member and the central server. Web Sockets is a
technology that is built on top of the classical Hypertext Transfer Protocol (HTTP)
protocol. Biggest improvement with Web Sockets over HTTP is, that after the initial
connection is established by the UST member’s browser, the central server can also
initiate data exchange events between itself and the browser opposed to the classical
request-response type of communication where server was never able to initiate data
exchange.

With this set of tools chosen for development, the whole stack can be developed in one
programming language, JavaScript. This is the language that the author has had the most
experience with. It is likely that this kind of choice will save time in the development
process.

Taking in consideration that author also has some experience with PowerShell scripting
language and the VMware has provided capabilities accessing its VIX API with
PowerShell PowerCLI 8 add-on (see section 2.2.1), then PowerShell is chosen as the
main scripting language to interact with Windows environment located inside VMware
virtualization through before mentioned VIX API. This also inherently leads into the
requirement of having Windows Server as a central management platform.

From the technical requirements briefly listed in section 3.1.3, the main requirement
was that the framework should be impervious to Blue Team defense mechanisms. This
means that when the Blue Teams deploy their defense mechanisms they can not interfere
unintentionally with the framework. This works in favor for choosing VIX API as it works
through VMware Tools service that is forbidden to damper with for the Blue Teams.

The modularity suggestion 2, emits the technical requirement, that the addition or removal

2Read more about NodeJS from https://nodejs.org/en/
3Read more about MongoDB from https://www.mongodb.org/
4Read more about jQuery https://jquery.com/
5Read more about Bootstrap https://getbootstrap.com/
6Read more about socket.io from http://socket.io/
7Read more about WebSockets from https://developer.mozilla.org/en-US/docs/

Web/API/WebSockets_API
8Read more about PowerCLI add-on from https://pubs.vmware.com/vsphere-60/

topic/com.vmware.ICbase/PDF/vsp_powercli_63_usg.pdf

36

https://nodejs.org/en/
https://www.mongodb.org/
https://jquery.com/
https://getbootstrap.com/
http://socket.io/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://pubs.vmware.com/vsphere-60/topic/com.vmware.ICbase/PDF/vsp_powercli_63_usg.pdf
https://pubs.vmware.com/vsphere-60/topic/com.vmware.ICbase/PDF/vsp_powercli_63_usg.pdf

of features should not break the existing features.

The technical requirement of logging all pieces of data that go through the framework is
there to provide better feedback after the exercise to the Blue Teams.

The final technical requirement was that the UST member must have full control over the
automation. This is especially important to note, as in if something fails, the team member
must be able to step in so that the success of the exercise for the UST is not dependent
only on the framework.

3.2.1 Methodology

The chosen methodology for development was chosen to be iterative development model9.
Since it was known before hand, that there will be two evaluation events, where an
iteration of the framework needed to be deployed, then this methodology seemed to be
the best choice.

3.3 Design

The framework will have 3 main parts:

• Central server, that controls the data flow between the different parts of the
framework, and it will act as the controller for the framework;

• Red Team client application to interact with the framework;

• UST client application to interact with the framework.

The design of the framework is shown in the appendix A.7.

3.3.1 Central server

The main foundation for the framework should be the central server. The server should
be able to interact with the Blue Team systems and same as the whole framework, it
should be modular enough to support future development (see suggestion 2). As the

9Read more about iterative development model http://www.tutorialspoint.com/sdlc/
sdlc_iterative_model.htm

37

http://www.tutorialspoint.com/sdlc/sdlc_iterative_model.htm
http://www.tutorialspoint.com/sdlc/sdlc_iterative_model.htm

proof-of-concept solution will be developed for the LS CDX then the developed solution
should be based on said exercise but should not be limited to it.

To interact with the Blue Team systems, the method of managing them remotely
has to be chosen. Possible solutions that provide this kind of interactions in Windows
workstations are VMware VIX API, PowerShell Remoting, and PsExec (see 2.2.1). When
it comes down to user-interaction in the context of LS CDX, then the majority of systems
and focus has historically been on the Windows workstations. The proof-of-concept
framework will not disregard any other operating system, furthermore the framework will
be developed in the aim of adding support additional operating systems in the future. The
best way to do this is to cross-reference the gathered suggestions from the semi-structured
interviews (see 3.1.3) with the capabilities of before mentioned ways of interacting with
the targeted windows workstations.

Improving the speed of UST workflow does not depend on the methodology of chosen
interaction method. All said types of automation are able to improve the speed of the
UST workflow, since they would be replacing manual labor. Again since all of them are
just methods of executing commands inside targeted workstations, then there will be need
for an UST front-end client interface to communicate with this part of the framework, and
the need for ease of use is transfered to the UST client application. What is relevant is
the resilience to possible Blue Team defense methods and support for known future
developments.

The previous years have yielded, that PowerShell and PsExec, when not configured
properly by the Blue Teams, are very powerful tools in the arsenal of Red Team CS
attacks sub-team. They have used it for both: gaining initial access and spreading
laterally through the Blue Teams networks (see appendix A.2). This has made Blue Teams
cautious about these tools and it is not uncommon anymore, to see that the PowerShell
and PsExec are disabled during the execution of LS exercise (see appendix A.2). This
is not considered to be invalid or against the rules, on the contrary - it is encouraged
behavior. On the other hand, VMware VIX API uses VMware Tools, installed in the
workstations, in order to interact with the Virtual Machines. Neither Blue Teams or the
Red Team are not allowed to limit or use the VMware Tools service in any way during the
game. Meaning, that the VMware VIX API interaction with the targeted workstations is
indeed impervious to Blue Teams defense mechanisms. Furthermore, the PowerShell and
PsExec have network requirements attached to them. They can not work remotely without
networking. As previously discussed, this means that additional management NIC has to
be attached to targeted workstation, in order to ensure the communications between the

38

central server and itself. VMware VIX API has no such requirement. All communication
is done through VMware own ecosystem and there is a layer of abstraction provided, so
that even the systems without any NICs attached, can be interacted with.

The other key aspect of the comparison was the support for known future
developments. As the focus of Red Team CS attacks sub-team in the context of LS 2016
was on the Windows workstations, it was decided, that the proof-of-concept framework
will initially support the windows workstations. In the future, support for Linux and
MacOS must be added.

Since the PowerShell and PsExec are Windows environment tools, then to add the support
for interaction with the other operating systems would mean to implement another layer
of control in the framework. This layer would decide, to whom the intended interaction
is addressed to, and behave accordingly. Additional tools, such as Secure Shell (SSH) 10

should be implemented to support the interaction with the Linux and MacOS systems.
VMware VIX API has this layer of control already built in. Since the VMware VIX API
is part of the VMware ecosystem, the VMware is aware of which type operating system
it is communicating with.

In case of the interaction with the Blue Team systems, the VIX API should be used.

The workflow of central server must be kept as modular as possible (see suggestion 2),
since it is the main part of the entire framework. The modularity in this case means that
the central server will need to handle different types of data independently. In order to
do this, first it needs to be identified what kind of data is being transfered throughout the
framework:

• Suggestion 1 demands, that the central server is capable exchanging interaction
between the UST client and the targeted workstation;

• From suggestion 2, it can be deduced, that there is a need for communication
exchange between the UST member and Red Team member;

• From suggestion 3d, the central server is not only an exchange between the Red
Team member and UST member, but also between the Collaboration Environment
and the UST member;

• Suggestion 4 implies that the server must log all the data exchange passed through
it, so a database solution is also required.

10Read more about SSH http://searchsecurity.techtarget.com/definition/
Secure-Shell

39

http://searchsecurity.techtarget.com/definition/Secure-Shell
http://searchsecurity.techtarget.com/definition/Secure-Shell

Out of given list, a depiction was formed, of how the data should flow through the central
server.

Figure 3.1: Data Flow Through Central Server

In figure 3.1, it is described, that three different types of data flow through the central
server. These types are:

• Request for interaction;

• Feedback of interaction (including acknowledgment of request received);

• Credentials.

40

Request for interaction is a request for code being executed inside the Blue Team system.
This can be triggered only from UST client (in order to satisfy suggestion 5). Then
again, the Red Team needs to be able to prepare that kind of request for the UST team.
This is why 1: Request of Interaction on the figure 3.1 starts from the Red Team client
application.

Feedback for interaction is the feedback transmitted back to the interaction initiator.
This means that as if the Red Team member sends a request for interaction to UST
member, they will receive automatic feedback, as soon as their request has been
acknowledged. If the UST member requests interaction inside the Blue Team systems
without the request from Red Team member (for example, in case of service checks),
then no feedback is sent to the Red Team member.

Credentials are requested for all the Blue Teams by the central server periodically. They
are stored inside the central server, and served out to the UST client when they require it.

3.3.2 User Simulation Team Client Application

All the request made through that client interface, that require to go through central server,
are automatically forwarded for the correct target Blue Team workstation and logged in
the central server.

The RDP connections for visual overview are established directly to the target workstation
over management NIC of the target machine. The credentials, that are synchronized
periodically with the central server, will be chosen by the UST member before the
execution of the request for interaction, to ensure the request for interaction gets executed
as is expected. The credentials are automatically polled from the central management
server, that itself polls the credentials from collaboration environment (as is shown in the
figure 3.1) , where the responsible Blue Team can change the credentials as it chooses.
The author proposes that this kind of workflow should satisfy the suggestion 3.

In addition to credential synchronization and initiating the RDP connections to target
workstations, the UST client provides a direct instant messaging system to the Red Team.
Not only does it provide a instant messaging functionality to any Red Team member, but
all instant messaging is filtered by target Blue Team number. This means, that if the UST
member who is simulating for the Blue Team 78 for example, says something into the
chat, only they and the members assigned for the same Blue Team on the Red Team side
will be able to see the message. This eliminates information noise and leaves only relevant

41

information for current framework user.

Furthermore, based on the chat functionality, there was also implemented a module for the
framework, that allows UST members to receive and execute tasks sent to them by Red
Team member. When a Red Team member prepares a task, they will choose the attack
options. The attack code is then sent through the central management server to the UST
member who will then decide if and when they will execute the attack code. The UST
member can change whatever they find necessary in the request for interaction, they have
full control (see suggestion 5). If they find, that everything is fine, they will first initialize
a RDP connection to the target workstation, to receive visual overview of the system. If
the RDP connection has been made, they will send a request for interaction forward to
central server and meanwhile the UST member client will send automatic feedback to the
Red Team member, that the request is being handled.

3.3.3 Red Team Client Application

Since the Red Team client needs to be accessible to all the Red Team CS attacks sub-team
members and opposing to UST client, where interaction with the local machine was
necessary, the Red Team client application will be an web service hosted in the Central
Server.

Red Team client application is a web interface. It exist so that the framework has input
from the Red Team member. Red Team member will be the one who gives input to the
framework. The Red Team member decides what has to be executed, where and how
(see figure 4.1). UST, the main focus group of this thesis, is the team that processes and
controls the request. To do this efficiently, they will need to have parameters, such as
what, how and where that were mentioned before. In case of CDX “what” deducts to
basic types of attacks that the Red Team members use. For proof-of-concept framework,
two attack options were developed:

• PowerShell cmdlet 11;

• Malicious webpage/hosted file.

The Red Team member can choose a attack type out of those two, next they will need to
choose a target and some other options such as targets of where to execute the request for

11Read more about PowerShell cmdlet from https://msdn.microsoft.com/en-
us/library/ms714395%28v=vs.85%29.aspx

42

https://msdn.microsoft.com/en-us/library/ms714395%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/ms714395%28v=vs.85%29.aspx

interaction or which browser to use. Keeping in mind the suggestion 2, the possibility for
additional attack types was left open.

When the request for interaction has prepared, the data will be sent through the central
server to the UST client. As soon as the UST member starts interacting with the request,
the Red Team receives automatic feedback through the framework, that their request is
being handled.

In addition to preparing a interaction requests and automatic feedback for them, there was
additional “chat” functionality added, to give additional feedback when needed and to
provide additional fall-backs, in case the automatic interaction with the Blue Team fails,
and a task has to be executed manually.

43

4. Implementation of the Framework

In this chapter the author presents the implementation of the framework and its nodes:
central server, red team client application and user simulation team client application.

4.1 Central Server

As discussed in section 3.3.1, the method for interaction with the workstations was chosen
to be VMware VIX API. From the section 3.2, it was decided that the main scripting
language to interact with the VIX API PowerShell through PowerCLI add-on.

The code example 4.1 demonstrates how the PoweCLI Invoke-VMScript [17] cmdlet is
prepared before the execution:

1 Invoke-VMScript
-vm '${req.params.target}'
-GuestUser '${req.params.username}'
-GuestPassword '${req.params.password}'
-ScriptText '${schtasks_template}'
-ScriptType '${req.params.scripttype}';

Code example 4.1: Invoke-VMScript Cmdlet Executing Code Inside the Workstation as

an User Using VIX API

The framework uses five parameters out of possible fourteen parameters defined in the
documentation. These parameters are:

• vm, defines the Virtual Machine, where the interaction request will be executed;

• GuestUser, defines the username, as whom the command will be executed inside
before mentioned Virtual Machine;

• GuestPassword, defines the password for the username;

44

• ScriptText, defines the code that will be executed inside the targeted Virtual
Machine;

• ScriptType, defines the type of the script that will be executed inside the targeted
Virtual Machine. Possible supported types are BAT, BASH, and PowerShell. This
supports the suggestion 2, as in for future developments there is a support for Linux
and MacOS OSs.

There were two main difficulties when implementing the VIX API based solution. Firstly,
the commands are executed inside the targeted workstations under the VMware Tools
service. This meant that any code executed inside that service runs in the background and
is not interacting with the User Interface of the Windows directly. To bypass this problem,
one option would be to run the command with local administrator credentials. This level
of integrity is high enough to bypass this restriction. Using administrator credentials
has to be avoided, since in the context of CDX exercise, the simulated users have rarely
administrative rights.

Solution was to introduce a wrapper for the commands in the form of schtasks 1.

1 var schtasks_template = `

2 schtasks /create /sc once /tn ${randomHash} /tr "${req.params.cmd}"
/st 13:00 /F

3 & schtasks /run /tn ${randomHash}

4 & ping 127.0.0.1 -n 6 > nul

5 & schtasks /create /sc once /tn ${randomHash} /tr " - FailSafe - "
/st 13:00 /F

6 & schtasks /delete /tn ${randomHash} /F

7 `;

Code example 4.2: Using Schtasks to Bypass Windows Limitations

Schtasks is a windows built in command line feature of managing a Scheduled Tasks 2.
The command example 4.2, demonstrates how the framework uses scheduled tasks in its
advantage:

1. A JavaScript variable called schtasks_template is created that will be injected into
the ScriptText variable described in code example 4.1;

1Read more about Schtasks feature in Windows from https://msdn.microsoft.com/en-us/
library/windows/desktop/bb736357%28v=vs.85%29.aspx

2Read in more detail about Scheduling a Task from http://windows.microsoft.com/en-
au/windows/schedule-task

45

https://msdn.microsoft.com/en-us/library/windows/desktop/bb736357%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb736357%28v=vs.85%29.aspx
http://windows.microsoft.com/en-au/windows/schedule-task
http://windows.microsoft.com/en-au/windows/schedule-task

2. Line 2 in the code example 4.2 is the actual Scheduled Task wrapper task
that is generated around the code that came from the UST client application -
$req.params.cmd;

3. Line 3 in the code example 4.2 executes the task;

4. Line 4 in the code example 4.2 is artificial delay that lasts around 5 seconds;

5. Line 5 in the code example 4.2 is overwriting the Scheduled Task that was created
before;

6. Line 6 in the code example 4.2 is deleting the Scheduled Task that was created
before.

It was required to introduce the artificial delay, since the target group of windows
workstations contained different versions of windows from Windows XP to Windows
10, with the exception of Windows Vista. Although of Scheduled Tasks and its command
line interface schtasks, are native part of Windows, there were some differences in the way
they handle scheduled tasks. For example, some of scheduled tasks executed very quickly
(less than one second), however in some cases, the execution took over three seconds and
it was possible that the scheduled task was attempted to be removed before it was actually
executed (in case of Windows XP).

The overwriting of previously defined Scheduled Task was needed, because in case of
Windows 7 and only in windows 7, the schtasks had an interesting way of action: a
regular user is allowed to create, run and modify tasks but not delete them if the name of
the task was shorter than nine characters. The correct fix for this problem was deployed
- all the names of the tasks are random strings with the length longer than ten characters.
Yet, this overwriting of the Scheduled Task was left inside, to counter this kind of
problems that might happen in the future additions of the development.

46

4.2 Red Team Client Application

Figure 4.1: Red Team Client Application Malicious File Tab

The interface for Red Team Client Application for sending over malicious file to the UST
member is shown in the figure 4.1. There are two tabs for preparing the user-interaction
for Red Team attacks, as described in 3.3.3 and additional tab called “chat” for feedback
and additional communication with the UST member to satisfy the suggestion 2.

Figure 4.2: Red Team Client Application PowerShell Web-Delivery Tab

In the figure 4.2 it is shown the second tab of the Red Team Client Application. There
are only two inputs in that tab, one for the PowerShell malicious code, that the Red Team
member wishes to execute and another one is a input for the targets that the Red Team
can attack. The targets are synchronized from the Central Server with each page refresh.

The third and final tab, Chat, in Red Team Client Application showed in figure 4.3, serves
two purposes. The main purpose being to improve the communication between the teams.

47

From there, a Red Team member can communicate with the responsible UST member
directly. Furthermore, all the tasks, that are sent through the previous two tabs, are
converted into human readable format and are given background color representing their
statuses. “Red” representing failure, “Yellow” is in progress and “Green” is completed
successfully. This way of presenting the data should, in authors opinion, give a good
situational overview of the current situation to the Red Team member.

Figure 4.3: Red Team Client Application Chat Tab

4.3 User Simulation Team Client Application

The UST client is an application that serves an web-interface for localhost to seamlessly
communicate with the central server. The application requires to run locally on UST
member workstation in order to communicate directly with the local RDP client installed
there. To make interaction between different Blue Teams clear, the application serves
different interface depending on the exact Uniform Resource Identifier (URI).

48

Figure 4.4: User Simulation Team Client Application Dashboard

The figure 4.4 depicts the dashboard of the User Simulation Team Client Application. On
the left hand side, there are all the windows workstations that the particular UST member
has to interact with, satisfying the suggestion 3b. On the right hand side there were four
different tabs developed:

• Chat;

• Task List;

• Accounts;

• Help.

Chat feature is to improve the communication between the UST member and the Red
Team member, as suggested in suggestion 2.

49

Figure 4.5: User Simulation Team Client Application Chat Tab

The Task List is there to handle and control the requests for interactions from the Red
Team member. Every request for interaction from the Red Team comes through the central
server and is displayed for the UST member here. They are color coded into four different
variations for ease of use: Yellow, Green, Red and White. As the task arrives, it has
“white” color attached to it, marking it as a new. As soon as the UST member starts to
interact with it, it turns into “yellow”. After the task has been executed, the UST member
has to evaluate if the task was a success or failure by using the buttons on the right hand
side of the said task. Success will be marked with the “green” and failure with the “red”
color. Each change in the state of the task will be instantly sent back to the Red Team
member to satisfy suggestion 2c.

50

Figure 4.6: User Simulation Team Client Application Tasks Tab

Both, the chat and the task exchange functionality was built on top of the socket.io engine
as was described in development decisions (see section 3.2).

The Accounts tab is there to present a clear overview for the synchronized passwords. It
is a list of all the passwords retrieved through the central server from the Collaboration
Environment. Since the User Simulation Team client Application uses the passwords
semi-automatically already, then the reason for this tab is just to furthermore satisfy the
suggestion 3. If something fails, such as using the credentials automatically to perform
tasks, the UST member has a possibility to conveniently copy-paste the credentials for
manually performing the task retaining some improvement in efficiency of the UST
member workflow.

51

Figure 4.7: User Simulation Team Client Application Accounts Tab

The Help tab is there to provide additional helpful features that are not directly part of the
framework, such as hyper-links to credentials page in the Collaboration Environment of
the selected Blue Team if the work has to fall back to manual.

To satisfy suggestions 2a, 3c and 3, there was another feature added to the dashboard.
It was decided to use RDP as a service for visual feedback to the UST member. To
trigger a RDP connection from inside the UST member workstation to targeted Blue Team
workstation, two requirements had to be met. Firstly, the client application had to be run
locally inside the UST workstation, so that it is possible to interact with the system. This
is a requirement that does not exist for a Red Team client application.

The final implementation of the User Simulation Team client application triggering RDP
connection is depicted in the figure 4.8. In more detail, the MSTSC 3 command line
interface was used to trigger RDP connection to the targeted workstation over MGMT
network IPv4 address. To achieve this, credentials required for the RDP connection
were stored inside the Windows Credential Manager 4. The credential storage process
was synchronous, as in, when the RDP connection was initiated from the Web Interface,
the local server first stored the credentials in the local machines Windows Credential
Manager. Next, the RDP command was triggered in the format shown in Code
example 4.3, where $ip is the MGMT network IPv4 Address for targeted workstation.

3Read more about MSTSC from http://ss64.com/nt/mstsc.html
4Read more about RDP and CredMan from https://blogs.msdn.microsoft.com/winsdk/

2015/01/02/rdp-and-credman/

52

http://ss64.com/nt/mstsc.html
https://blogs.msdn.microsoft.com/winsdk/2015/01/02/rdp-and-credman/
https://blogs.msdn.microsoft.com/winsdk/2015/01/02/rdp-and-credman/

Figure 4.8: RDP Connection Solution Inside User Simulation Team Client Application

When the MSTSC process responsible for the RDP connection was closed, then the stored
credentials were deleted from the Windows Credential Manager.

1 mstsc /v:$ip

Code example 4.3: Triggering RDP Using MSTSC Command Line Interface

53

5. Evaluation of the solution

5.1 The Test Run

The LS 2016 Test Run was held on 10th March, 2016. LS Test Run 2016 was a limited
game-play between fully manned Red Team and five Blue Teams. At the Test Run there
were 5 members of UST present of total 23. The first iteration of the framework was
deployed for the LS 2016 Test Run event.

5.1.1 Preparation Phase of the Exercise

The preparation phase is considered in this context to be the since the beginning of the
development of this framework until execution of the Test Run. All the critical features
were developed and implemented before the Test Run event, and were ready to be fully
tested. There were left room for improvements, as the color code enabled feedback system
between the UST members and the Red Team members was deployed later.

5.1.2 Execution Phase of the Exercise

The first day began with the training of the framework for UST members. The training
session took 15 minutes before the event. Training for the Red Team members took
approximately five minutes during the event. Both teams were warned and instructed that
if the framework should fail, the fall-back is to do everything manually, as were done
in the previous years (see paragraph 2.2). For Red Team this meant that instead of the
framework they would use Jabber XMMP chat client to communicate with the UST. For
UST failure of the framework would have meant to manually open RDP connection to one
central windows server, to connect to VMware vSphere, to find the correct target machine
(see figure 2.2) and open the said machine console, so they could execute the task given
to them by Red Team member. Failure of the framework did not happen.

54

Surprisingly the underlying infrastructure - VMware vSphere - failed. At the moment of
writing this thesis, the reasons for this are still unknown [13]. What has been made certain
of, is that the failure was not triggered from the developed framework. After the failure,
it was impossible for the UST member to connect to the vSphere, therefore the UST lost
capability of using the method doing it the old way to interact with the systems.

The failure event showed that the modular fall-back design described in the paragraph 3
was a good choice. The VMware was unaccessible, so the framework could not provide
code execution through VMware VIX API. This event did not in any way interfere
with the framework’s capabilities to establish a RDP connection to target workstation nor
synchronizing the passwords with Collaboration Environment, so the only inconvenience
that the UST experienced was the absence of automation in fulfilling of the request

for interaction that they had to perform manually. Since the framework provided
them with all the necessary information needed to perform the task semi-manually, the
inconvenience was rated minimal in the UST leader, Elvis Paat’, feedback to the author.

Both teams, the Red Team and UST, identified some features that could be included and
improved in the framework.

5.1.3 User Simulation Team Feedback

The UST members gave their feedback from the exercise that was as follows [12]:

1. Improve a service functionality checking with implementation of automatic
authentication to services;

2. Implement a availability check for workstations;

3. Improve a system for automatic feedback to Red Team;

4. Improve the icons of the workstations. It was difficult to identify between Windows
10 and Windows 8.1.

New icons for user interface, automatic feedback improvements for Red Team members
about the actions of a UST members and availability checking for RDP port in the target
machine was implemented in the time of the live exercise. The service functionality
checking improvement with automatic authentication to different services was not, since
this would have meant major additional development to support it on the workstations or

55

infrastructure side. This was left to future development, furthermore the modularity of
this framework (see suggestion 2) supports the extension in that direction.

The UST members also reported various minor bugs that were fixed on the go.
Unfortunately, the author had failed to account for an updating system for the User
Simulation Team client application and each iteration had to be deployed manually. It
was decided to include automatic updating by the time of live event.

5.1.4 Red Team Feedback

The Red Team members were very generous of giving positive feedback. The main
tone of the feedback was, that the interaction with the framework was easy and clear
to understand. They did identify some minor bugs that were present during the Test
Run, such as “Request for interaction” failed to be generated, because it started with
unaccounted whitespace.

Such minor bugs inside the framework were fixed on the go, and improvements were
deployed instantly during the Test Run.

5.2 The Live Event

The live event was held in the week from 18th of April 2016 to 21st of April in 2016.
The week started off with preparations. The execution started in the morning of 20th.
In the morning of 18th, the author decided to implement additional functionality for
UST, regarding automatically opening a set of web pages to improve the task of manual
functionality and availability testing for the web services.

5.2.1 Preparation Phase of the Exercise

The preparation phase in the context of this thesis’ scope started imitatively after the Test
Run event. All the feature requests from the UST members were addressed.

From the UST feedback (see 5.1.3), it was clear, that some of the features of the
framework needed to be improved. As discussed before, it was decided to leave service
functionality checking improvement with implementation of automatic authentication to
services to the future, as this would require an extensive wrapper development around the
request of interaction. It is possible, and author proposes that one of the ways to achieve

56

it would be using the Selenium 1, as it provides for browser automation. It was decided
to postpone this additional feature as a future development, since the Green Team did
the first functionality tests with Selenium for the year 2016 exercise [13] and it might be
possible to integrate their framework with the framework proposed in this thesis.

Secondly, there was a request for initial indicator to check if the targeted workstation is
serving out a RDP service over the MGMT network. This feature was implemented by
the time of live event as an extra module to the framework using the flowing method:

1. Web interface sends a request to the local web server to check RDP connectivity to
targeted workstation;

2. Web server tries to open a Transmission Control Protocol (TCP) connection on port
3389 (Default port for RDP) [21] ;

3. The response from the network test, is sent back to the Web interface and the central
server for logging to furthermore satisfy suggestion 4;

4. The response is displayed in the right-upper corner of the related machine icon, as
green or red for available unavailable respectively;

5. Process is repeated for every 40 seconds for all the workstations of the Blue Team
the UST member is viewing.

Thirdly, improvement of the feedback system was made to include the color-coded status
reporting between the UST member and the Red Team member discussed previously in
section 4.2.

Fourthly, quality of life improvement was made in the format of making it furthermore
clear to differentiate between the Windows 10 and 8.1 icons (See suggestion 3).

The final major improvement was to implement an automatic update system supported
by the central server, where the UST member would only need to run one BAT file as
administrator to update the User Simulation Team client application. The updating service
was set up as follows:

• UST member runs updater.bat file as an administrator;

• Inside the updater file, there is a short PowerShell script(see code example 5.1), that
downloads and executes a PowerShell code from central management server;

1Read more about Selenium from http://www.seleniumhq.org/

57

http://www.seleniumhq.org/

• The PowerShell code, downloaded from central server (see an example in
appendix A.4), that is executed in the UST member workstation, first stops all
processes of node and mstsc to avoid conflict during the installation. Next it
downloads a new version of client application, extracts it, removes the zip container
and launches the application again.

1 powershell.exe -nop -c "IEX ((new-object net.webclient)
.downloadstring('http://redrobin.ex/updater'))"

Code example 5.1: Updater.bat Script for Updating the User Simulation Team Client

Application

This update process proved to be very useful. The updating process was used to deploy
some last minute fixes and modifications to the User Simulation Team client application.

5.2.2 Execution Phase of the Exercise

In the morning of 19th of April, when the training for UST members was scheduled,
the framework performed poor. Debugging showed that the added functionality of the
framework, which tested the availability of RDP connection in the target machines, was
causing a heavy load on the central management server logging. The main factor that
revealed the issue was that it was not allowed to practice on any other team than the
designated testing team. Since the entire UST was practicing the framework on the same
team, a use case was identified, that was not considered in the design process. All of the
UST Client Applications were modifying the same data model in the central management
server and doing it quickly. This caused a considerable amount of networking delay inside
the framework. Each request, that should have been completed instantly, took in reality
up to 2 minutes to process by the central server. This rendered the whole framework
unusable. Thanks to the modular nature of the framework, removing this non-critical,
quality of life feature and redeploying the UST Client Application through the added
updater feature, took all-together less than half an hour. Most of the time was spent on
identifying the problem. After the removal of the non-critical feature, the framework
started performing as expected.

The following days framework did not fail at any point and it was able to continuously
run throughout the execution of the exercise. No additional bugs were reported. Some
features were requested for improvement. Some of them were left for future development,
some of them were implemented immediately. For example, the Red Team member client

58

application, as mentioned in the 3.3.3 paragraph, uses web interface for sending requests
for different UST members identified by the corresponding Blue Team number that they
are responsible for. One Red Team member was attacking more than one Blue Team,
usually four, this meant that the framework’s web interface was open in multiple browser
tabs. The title of the web page and therefore the tab title did not reflect the corresponding
Blue Team number, so finding the correct tab took some time. This was a easy thing to
upgrade and it was implemented immediately after the discovery.

Other, more difficult requests, such as Linux and OSX support was left for future
development and research.

5.2.3 Aftermath and Feedback of the Exercise

All together there were 1813 messages exchanged between the UST and Red Team
members. Out of those 499 were requests for user interaction. 157 were requests for
interaction using PowerShell Web-Delivery, and 342 were requests to open a malicious
web-page in the browser (see figure 5.1).

Figure 5.1: Communication Between Red Team and User Simulation Team during Locked
Shields 2016

From all of the web page requests, 73 requests were made to open file in chrome web

59

browser, IE was requested 83 times, Firefox 64 times and in 122 cases “default browser”
was left as an preference from the Red Team member side (see figure 5.2).

Figure 5.2: Red Team Browser Preference for Requests of Interactions

Automatic feedback was exchanged 3166 times. Out of those 296 were marked as a
“failure”, 2458 as “in progress” and 412 as “done”.

Figure 5.3: Automatic Feedback Reports Sent to Red Team

The automatic feedback was sent each time, a UST member was interacting with the task.

60

All together the UST tried to execute 973 commands inside Blue Teams systems. The
service functionality testing was performed 423 times.

Figure 5.4: Service Checks Performed Through Framework

In the figure 5.4, it is shown how the UST member service checks divided over the Blue
Teams in LS 2016. This data was recorded in order to satisfy suggestion 4. From this
dataset it is clear, that the framework was popular as on average there was a service check
execution in approximately every 2 minutes in the course of two days.

From figure 5.5 it is demonstrated how the density of interactions was divided over the
course of two days. As foreseen by the Mehis Hakkaja (see appendix A.2), the heavier
work-load for the UST was in the first half of the first day of the exercise. By the end of
the first day, the workload did somewhat stabilize. In the beginning of the second day,
when probably the Blue Teams had managed to rise the defenses, the user-interaction was
needed again to re-compromise the systems. Both of figures showed, that the problem of
difficulties with interaction of the workstations (see section 2.2.2) was resolved.

The total amount of messages exchanged between the teams is showed in the figure 5.6.

61

Figure 5.5: All User Interactions Performed over Two Days

Figure 5.6: All Messages Exchanged Between Red Team and User Simulation Team

62

Correlating the activity from figure 5.6 and 5.5 shows that the peaks of both activities
happened roughly close to each other. It can be deduced, that in addition to solving the
interaction problem, the framework was also successful in solving the communication
problem (see section 2.2.3) between the teams.

To evaluate the result of solving copy-pasting problem (see 1.2.1), a personal feedback
was asked from UST leader, Elvis Paat. He stated that none of the team members reported
any problems with the copy-pasting [12].

5.3 Lessons learned

Initial base-mark of the statistics was generated from the logs of the framework. The
statistics proved to be a good evaluation for the framework. The framework did improve
the UST member workflow, as it was used by almost all of the team members. Only in
one case out of twenty (see figure 5.4), the framework was chosen to be not used.

The deployment process was the biggest improvement from the development point of
view, as this simplified the redeployment process significantly.

From the Red Team CS and UST leader feedbacks, added in appendixes A.5 A.6, it was
clear that the members of UST and Red Team CS sub-team were very satisfied with the
framework. Both said that the communication was improved. The initial acknowledgment
of received request took on average fifteen minutes from the second that the Red Team
member sent it in previous exercises (see appendix A.5). Now it was almost instant and
there was reduced amount of communication errors. Furthermore, the option in Red Team
Client application, that provided the possibilities for choosing targets from, had reduced
Red Team generated errors. For the UST the feature that synchronized passwords with
the Collaboration Environment reduced the UST generated errors.

Both team leaders had some additional suggestions in mind for the future development.
For the Red Team, support for Linux and MacOS operating systems would be beneficial,
as it would increase the efficiency of Red Team CS attacks as it did for Windows this year.

For the UST a UST Management module was proposed. Since the framework is producing
a valuable dataset about the state of the UST members, then analyzing this data and
presenting it out to the team leaders in real time would furthermore increase the efficiency
of the UST. Another state for the request of interaction was proposed - delayed. This state
would mean that the UST member has received the task, but is unable to perform it at this

63

point of time. This would notify the Red Team member imitatively of the status and again
furthermore improve the communication between those two teams.

5.4 Conclusion of evaluation

The framework managed to work successfully through both iterations of the deployment.
The framework was used by the UST and the Red Team members as can be seen from
the statistics provided in the section 5.2.3. Chosen evaluation method was successful for
evaluating the performance of the framework to a degree, as conclusions can be drawn.

Framework improved the workflow of the UST and the Red Team members as it was used
to exchange 1813 messages, 3166 feedback updates and 973 times to execute code inside
Blue Teams systems. This statistics also demonstrates that in most cases the framework,
managed to be impervious against Blue Teams defense methods (see suggestion 1).

The framework was modular enough in nature (see suggestion 2), so when the quality
of life feature, RDP availability checking in targeted workstations, failed, the removal
of the feature that caused the problem was quick and the framework continued to work
afterwards (see section 5.2.2).

Due to suggestion 4, there now is measurable data about the interaction between Red
Team, UST and Blue Team workstations, that can be used in the future research.

Feedback from the UST and Red Team CS leaders indicated several aspects of
improvements, such as the reduction of human-generated-errors on both sides. Reducing
the time between the clicks and therefore increasing the efficiency of UST and improving
the communication between UST and Red Team.

64

6. Future Research

The evaluation of the framework showed, that the needed improvement in efficiency of
the UST was achieved. Furthermore, since the framework is also gathering data of the
actions from the UST, then it provides a possibilities for future improvements.

The data the framework gathers is valuable for future developments. One proposed
development (see appendix A.6) is implementing an UST management module, where the
team leaders get a current overview of the work the UST is doing. This can furthermore
improve the efficiency of the team. The data for named module is present and the
modularity of the framework fully supports implementing this kind of module for the
future CDX.

In addition to that, some improvements can be made in the existing framework, as
implementing the RDP availability checks inside the framework for the Blue Team
workstation’s management NIC and introducing the additional, delayed, state for the
feedbacks that the framework exchanges between the UST and the Red Team to improve
the communication between those teams even more.

The final suggestion that was also discussed in chapter 3.3, is the support for MacOS and
Linux workstations. Due to development decisions made, to use VMware VIX API for
interaction between the UST member and the Blue Team systems, this goal for future
development is very realistic.

The possibility of adding those improvements will be analyzed in more depth and viable
upgrades will be deployed for the next iteration of Locked Shields exercise in the year
2017.

65

7. Conclusions

The thesis focuses on user simulation improvements through technical solutions in the
context of Cyber Defense Exercise. In more depth, it explores various methods of how
the efficiency of User Simulation Team can be improved through automation.

The selected methodology combines analysis of the workflow trusted to the User
Simulation Team with practical design and implementation of proof-of-concept
framework for the Locked Shields 2016 Cyber Defense Exercise. The validation method
is the analysis of after exercise observations from the before mentioned Cyber Defense
Exercise.

The problems that this thesis tackles is the inefficiency in User Simulation Team workflow
caused by the overhead of manual work that they have to do. To overcome this problem,
the author first identified the problematic aspects of the User Simulation Team workflow.
They turned out to be mis-communication between the User Simulation Team and the
Red Team members and difficulties when interacting with the infrastructure for the User
Simulation Team members.

The bottlenecks for User Simulation Team were identified and solutions to those problems
were proposed. The main solution was to develop a technical solution in the form of a
framework.

To make the best possible design decisions, a research was done in the form of conducting
series of semi-structured interviews with the key Locked Shields exercise organizers and
team leaders. Out of their suggestions for the framework a design was proposed.

The design was chosen to be modular in nature, so that features of the framework can
easily be added and removed.

The framework was implemented in three major parts, interfaces for the Red and the User
Simulation Team and central server to manage the data-flow between them.

66

The framework’s main features were to enable enhanced communication between the
User Simulation Team and the Red Team compared to already existing one. Second
feature was to enable the User Simulation Team to send interaction commands directly
to the Blue Teams workstations through the central server, for service checking. Third
feature, that built upon the previous two, was to enable fluent flow for request for

interaction from Red Team, through User Simulation Team, who acted as a controller
for the request and through the central server to the targeted Blue Team’s workstation.
Automatic feedback for given process was sent back to User Simulation Team and
then-after Red Team’s client interface.

As was concluded from the feedbacks with the Red Team Client Side attacks sub-team
leader Heliand Dema (see appendix A.5) and the User Simulation Team leader Elvis
Paat (see appendix A.6), in the format of semi-structured interviews, the communication
between the two teams was better than ever. The User Simulation Team was efficient in
their work and managed to achieve all their goals.

The framework furthermore implemented logging that provided measurable data to set
the baseline for next exercises about the workflow of User Simulation Team and opened
up possibilities for future developments and improvements. In the end, framework was
designed, implemented and evaluated.

This thesis showed that the it is possible to use technical solutions to improve the internal
workflow of a User Simulation Team in the context of a Cyber Defense Exercise.

67

References

[1] Statistics and facts on internet usage worldwide, 2016. URL http://www.

internetlivestats.com/internet-users/. Accessed 2016-04-03.

[2] APAC Cybersecurity Maturity Dashboard 2015, 2015. URL http://

cybersecurity.bsa.org/2015/apac/. Accessed 2016-04-03.

[3] Panagiotis Trimintzios. National and International Cyber Security Exercises:
Survey, Analysis & Recommendations , Oct 2012. URL https://www.

enisa.europa.eu/publications/exercise-survey2012. Accessed
2016-04-27.

[4] Adrien Ogee, Razvan Gavrila, Panagiotis Trimintzios, Vangelis Stavropoulos,
Alexandros Zacharis. Latest Report on National and International
Cyber Security Exercises, Dec 2015. URL https://www.enisa.

europa.eu/publications/latest-report-on-national-and-

international-cyber-security-exercises. Accessed 2016-04-27.

[5] Locked Shields 2016, 2016. URL https://ccdcoe.org/locked-

shields-2016.html. Accessed 2016-04-15.

[6] Mehis Hakkaja, CEO of Clarified Security and Red Team Leader in Locked Shields
2016, personal communication, April 2016.

[7] NATO CCD COE. Cyber Defence Exercise Locked Shields 2013, After
Action Report, 2013. URL https://ccdcoe.org/publications/

LockedShields13_AAR.pdf. Accessed 2016-04-02.

[8] Microsoft. Common Types of Network Attacks . URL https:

//technet.microsoft.com/en-us/library/cc959354.aspx.
Accessed 2016-04-27.

68

http://www.internetlivestats.com/internet-users/
http://www.internetlivestats.com/internet-users/
http://cybersecurity.bsa.org/2015/apac/
http://cybersecurity.bsa.org/2015/apac/
https://www.enisa.europa.eu/publications/exercise-survey2012
https://www.enisa.europa.eu/publications/exercise-survey2012
https://www.enisa.europa.eu/publications/latest-report-on-national-and-international-cyber-security-exercises
https://www.enisa.europa.eu/publications/latest-report-on-national-and-international-cyber-security-exercises
https://www.enisa.europa.eu/publications/latest-report-on-national-and-international-cyber-security-exercises
https://ccdcoe.org/locked-shields-2016.html
https://ccdcoe.org/locked-shields-2016.html
https://ccdcoe.org/publications/LockedShields13_AAR.pdf
https://ccdcoe.org/publications/LockedShields13_AAR.pdf
https://technet.microsoft.com/en-us/library/cc959354.aspx
https://technet.microsoft.com/en-us/library/cc959354.aspx

[9] Offensive Security. Client Side Attacks . URL https://www.offensive-

security.com/metasploit-unleashed/client-side-attacks/.
Accessed 2016-04-27.

[10] Aare Reintam, Exercise Director in Locked Shields 2016, personal communication,
2016.

[11] Heliand Dema, Red Team Client Side Attacks Sub-Team Leader in Locked Shields
2016, personal communication, April 2016.

[12] Elvis Paat, User Simulation Team leader for Locked Shields 2016, personal
communication, 2016.

[13] Ragnar Rattas, Green Team Leader for Locked Shields 2016, personal
communication, 2016.

[14] Jarkko Huttunen, Yellow Team leader in Locked Shields 2016, personal
communication, 2016.

[15] Naumanis Erki. Centrally Managed Network Traffic Generation for Cyber Exercises
. Master’s thesis, Tallinn University of Technology, 2014.

[16] VIX API Reference, 2016. URL https://www.vmware.com/support/

developer/vix-api/. Accessed 2016-05-22.

[17] vSphere PowerCli Reference. Invoke-VMScript, 2013. URL https:

//www.vmware.com/support/developer/PowerCLI/PowerCLI55/

html/Invoke-VMScript.html. Accessed 2016-04-02.

[18] Daniele Catteddu and Giles Hogben. Cloud Computing: Benefits, risks
and recommendations for information security, Nov 2009. URL https:

//www.enisa.europa.eu/publications/cloud-computing-

risk-assessment/at_download/fullReport. Accessed 2016-04-27.

[19] Andrie de Vries. The most popular programming languages on StackOverflow,
2015. URL http://www.r-bloggers.com/the-most-popular-

programming-languages-on-stackoverflow/. Accessed 2016-04-03.

[20] Erik DeBill. Module Counts, 2016. URL http://www.modulecounts.com/.
Accessed 2016-04-03.

[21] IANA. Service Name and Transport Protocol Port Number Registry, Ports 3389 TCP
and 3389 UDP. URL https://www.iana.org/assignments/service-

69

https://www.offensive-security.com/metasploit-unleashed/client-side-attacks/
https://www.offensive-security.com/metasploit-unleashed/client-side-attacks/
https://www.vmware.com/support/developer/vix-api/
https://www.vmware.com/support/developer/vix-api/
https://www.vmware.com/support/developer/PowerCLI/PowerCLI55/html/Invoke-VMScript.html
https://www.vmware.com/support/developer/PowerCLI/PowerCLI55/html/Invoke-VMScript.html
https://www.vmware.com/support/developer/PowerCLI/PowerCLI55/html/Invoke-VMScript.html
https://www.enisa.europa.eu/publications/cloud-computing-risk-assessment/at_download/fullReport
https://www.enisa.europa.eu/publications/cloud-computing-risk-assessment/at_download/fullReport
https://www.enisa.europa.eu/publications/cloud-computing-risk-assessment/at_download/fullReport
http://www.r-bloggers.com/the-most-popular-programming-languages-on-stackoverflow/
http://www.r-bloggers.com/the-most-popular-programming-languages-on-stackoverflow/
http://www.modulecounts.com/
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml?&page=64
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml?&page=64
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml?&page=64

names-port-numbers/service-names-port-numbers.xhtml?

&page=64. Accessed 2016-04-30.

70

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml?&page=64
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml?&page=64
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml?&page=64
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml?&page=64

A. Appendixes

A.1 Semi-Structured Interview With Aare Reintam

Interview with Aare Reintam, the exercise director for LS 2016 CDX, was conducted in
31st of March during the Final Planning Conference event of LS 2016. Interview was
held face to face, in the format of semi-structured interview, where the main topics were
known beforehand to the author and deviation from those topics was allowed. Interview
lasted approximately 30 minutes.

1. What are the main tasks of the UST that they have to tackle?

During the exercise, the UST has to tackle three main tasks. First and the most important
task for them is to help the Red Team CS attacks sub-team to execute their malicious
software inside the workstations that are defended by the Blue Teams. Secondly, they
need to conduct service checks, to verify that the Blue Teams have not disabled some
services or their functionality. Third, if shortcoming in the provided services has been
identified, the UST has to demand from the Blue Teams that they restore and keep those
services functional and available.

2. How many virtualized services do the UST has to check?

This number varies from year to year, as in two exercises are not the same. For example in
the year 2015 the number of services inside a Blue Team network, that the user simulation
team had to check, was eleven. In the year 2016 this number was twelve. Also, they have
to check all these 12 services from at least 15 different VM-s.

3. What are the restrictions from the exercise point of view to the UST framework?

Since the exercise is complicated and it grows every year, then scalable automation is
necessary and vital! However, the User Simulation team must be in control of the
automation. If something fails, they must be able to take over and start the activities

71

manually.

3.1 So eliminating UST completely is out of the question?

Yes, at the moment. We still need the “human touch” in the exercises and behind the
workstation that the Blue Team are defending.

4. What would you say, is the biggest shortcoming of UST now ?

The main disadvantage is that the User Simulation Team members are changing each year.
We give the cyber security master students an opportunity to take part of that exercise and
every year we give the possibility to new students. Our aim is to give them the experience
to see a large scale international cyber defense exercise from inside.

5. What is the structure of the White Team?

White Team structure is as follows:

• Exercise control:

– Leader, who is responsible for running the exercise and deciding when to start
certain phases;

– Deputy Leader;

– Schedule Master whose responsibility is to keep the schedule;

• Communications team:

– Leader, whose responsibility is to prepare the communications plan and
coordinate the work;

– Blue-White Liaison Officers, whose responsibilities are asking and providing
feedback from and to the Blue Teams;

• User Simulation team:

– Leader, who makes the plans and coordinates the work;

– Team members, who simulate normal and dangerous user activities. The
Objective is to simulate client-side attacks in cooperation with Red Team. This
includes but is not limited to clicking on malicious links, opening malicious
documents and mail attachments. They also are responsible for validating the
functionality of Blue Team’ provided services;

72

• Injects and scoring:

– Inject Master and supporters, who plan the scenario injects and coordinate the
overall plan for all injects. They also evaluate the scenario injects and assign
scores;

– Media Simulation Team, whose responsibility is to assign score for media
responses;

– Legal Team, who are preparing and leading the legal play;

– Scoring Master, who is overall responsible for scoring;

– SITREP Evaluator, who evaluates the periodic management reports
(SITREPs) the Blue Teams are tasked to provide.

73

A.2 Semi-Structured Interview With Mehis Hakkaja

Interview with Mehis Hakkaja, the CEO of Clarified Security and the leader of Red Team
in LS CDX, was conducted in 2nd of February. Interview was held face to face, in the
format of semi-structured interview, where the main topics were known beforehand to the
author and deviation from those topics was allowed. Interview lasted approximately one
hour.

1. What needs to be considered when building up a CDX

For the CDX to have a real world impact outside of the simulation, then the exercise must
be modeled after the real world. Since defenders are playing catch-up with attackers,
emerging trends must be also introduced.

2. What would you say has been the biggest shortcoming from the UST by your
opinion?

In my opinion, as the overall leader for the Red Team, the issues with UST have been
speed, scale-ability and clarity of communication. Since the communication between the
Red Team and the UST so far have been mostly done by hand via Jabber chat medium,
it is error prone and misunderstandings get worse as the exercise grows bigger. If the
communication could be improved from both sides, Red Team and UST, then the overall
workflow of both teams would improve a lot.

2.1 What are the issues with communication at the moment exactly?

The issue is cumulative from many small things when interaction and dependability of so
many people is involved. One issue has been to ensure that tens of Red Team members
stick to the UST emulation requests format and provide all the necessary details, such
as what browser should be used in executing the request. Also reliable and reasonably
fast feed-back system from UST players is needed. The tasks that the Red Team sends
to the UST can take a lot of time and may require further interaction between UST and
Blue Team or via White Team Liaisons to Blue Teams. Since most UST members are
filling the role temporarily and for the first time, lots of confusion about workflows is
inevitable without some (automated) enforcement or assistance. For example, some UST
members provide quick feedback of success and any issues while others are very engaged
in fulfilling the request, but forget to update Red Team of reasons holding them back.
This inherently produces inconsistencies in the Red Team workflow and can slow things
down. Also, since UST players have additional routine checklist of activities to perform

74

in certain time intervals, the less confusing and time consuming the Red Team request
and interaction with Blue Team is, the better.

3. How has the exercise grown over the years?

CCDCoE large scale cyber exercises series stared for me already in 2010 with the exercise
Baltic Cyber Shield where I composed a Red Team of about 20 members that had to
entertain 6 Blue Teams in order to provide the game-play. LS naming convention goes
back to 2012 when I had to compose a team of nearly 40 Red Team members to provide
game-play for already 9 Blue Teams. In 2013 LS the Red Team was a little over 40 to
evenly stress 10 Blue Teams. In 2014 it took almost 50 Red Team members to provide
game-play for 12 Blue Teams. 2015 LS, with over 50 Red Team members having to
scale for 15 Blue Teams (initially planned 16), was starting to really stretch workflow
scale-ability. Prediction of around 20 Blue Teams for LS16 made it even more obvious
that various workflow enabling tooling had to be improved or invented. When we look
back to the UST role being played by 3-5 persons in the first years vs. already around
18 in LS14 and over 20 in LS15, the scale-ability and automation/tooling requirement
becomes very obvious.

4. How is the Red Team built up?

In LS15 the Red Team of over 50 members was made up from three main sub-teams:
network attacks team (or NET for short), client side attacks team (CS) and web application
attacks team (WEB). All of those teams have their own separate objectives assigned to
them. Network attack team is responsible for attacks on the network level, client side
attacks team is responsible for compromising internal networks and lateral movement
within internal networks of Blue Teams. The WEB attacks sub-team is responsible for
attacks against web applications and other DMZ hosts. They provide more overt attacks
during the initial phases by attacks like web site defacement or content destruction in
order to draw attention away from more covert CS initial compromise attempts. However
data theft is one of the less visible examples of WEB attacks.

4.1 What methods do the Red Team CS attacks sub-team use to penetrate the Blue
Teams systems?

Client-side attacks sub-team emulates APT (Advance Persistent Threat) type threat actors
and thus need an initial foothold in the internal networks which in turn typically in real
world is achieved with attack vectors like “spear fishing” or “drive-by attacks” - thus,
requiring user interaction. While there are some other initial compromise alternatives,

75

such as pre-planted known malware, such access is meant to be discovered and real initial
foothold early in the game relies on UST players on all Blue Teams. Also, in later phases,
if Red Team CS team gets fully kicked out of certain network segments, attempting to
re-gain foothold yet again may require multiple retries with UST players. This becomes
even harder and involved process once defensive measures and decent monitoring is
finally put in place by the Blue Teams.

4.2 What is done after the initial compromise and which methods are used to achieve
them?

After the initial compromise the Red Team CS attacks sub-team usually escalates
privileges, attempts to achieve persistence withing gained privileges and usually will
leverage the initial foothold for lateral movement. This may be required to achieve
predefined objectives or to compromise other network segments when other easier options
are exhausted. For escalation and lateral movement in Windows environment PowerShell
and PsExec have proved to be quite useful tools in the previous years.

4.2.1 Has the success of PowerShell and PsExec reflected on the defense methods that
the Blue Teams set up in any way?

Yes. Each year we encounter more teams that quickly disable or properly limit the use of
those methods in the virtual environment, making it harder to perform initial compromise,
escalation attacks and lateral movement through the Blue Team networks. This may yet
again require going back to basics and to use more of the UST players for re-gaining
lost access or gaining access in areas where escalation and lateral movement would have
done the trick more easily, without user interaction ever being needed after the initial
compromise.

76

A.3 Semi-Structured Interview with Ragnar Rattas

Interview with Ragnar Rattas, the leader of Green Team, was conducted in 28th of
March. Interview was held over the Skype communication channel, in the format of
semi-structured interview, where the main topics were known beforehand to the author
and deviation from those topics was allowed. Interview lasted approximately one hour
and fifteen minutes.

1. What is your opinion in for the UST automation framework? Is it needed?

LS is growing each year - both in the number of participating teams and also in the
number of systems that UST must use. Manual work conducted by real persons does not
scale. Automation is a must if similar quality of UST is expected with growing exercise
complexity. The scalability of manual work is hard already by physically accommodating
more and more people in the exercise. Currently there is one UST member per one Blue
Team. This means that there are up to 75 systems that the UST member might have to
interact with.

2. From the Green Team side, what are the most important things to consider?

1) Scalability - solution must support additional teams or workstations;

2) Usability from UST perspective - solution must be usable with limited or no prior
training by people without extensive IT background

2.1 What about integration with existing tools?

System must integrate with currently available tools and solutions. Due to already existing
technical complexities in Locked Shields exercise additional software or configuration
changes must be kept minimal (integration with Collaboration Environment based
password management system, use VMware Tools instead of custom agent running on
host, use standard administrative solutions like RDP for connections instead of custom
protocols etc)

2.1.1 Should we use or avoid using Management network for the communication
inside the framework?

Management network is preferred for tool operation due to fact that many Blue Teams
break their Gamenet connectivity This applies only to accessing the workstations - Red
Team payloads must be delivered using as much as possible Gamenet itself Rationale:

77

MGMT network is out of the scope of Blue Team defensive operation.

3. Do you have any suggestions of how the framework should work on the technical
level?

Yes, additional Red Team payload delivery vectors should be considered - via e-mail, usb
sticks, etc

4. From the GT perspective, are tools like PowerShell Remoting and PsExec used to
manage and support the Windows systems?

Yes, they are, extensively In theory they should not but in practice there is always need
to apply some last minute fixes or changes and windows remote MGMT tools are only
options for doing fixes to 1000 of VMs. Also these tools are considered as regular
administrative tools also in real world then they are enabled by default on every target

4.1 As I understand, this is done before the execution? Are they still used to support
the Blue Teams during the execution? Furthermore, are the Blue Teams allowed to
remove or disable those tools?

GT uses them before execution, during execution we only interact with systems if we
discover errors or mistakes made by GT. We do want to give as much freedom to Blue
Teams as possible so the rules do not regulate if these tools can or cannot be disabled. It
is up to each blue team. In practice they are commonly used by the blue teams, so they
only apply proper security configurations and leave them enabled because they use them
for their defensive actions.

78

A.4 Updater script for User Simulation Team Client Application

1 get-process node | Stop-Process

2 get-process mstsc | Stop-Process

3
4 # Download the file to a specific location

5 $clnt = new-object System.Net.WebClient

6 $url = "http://redrobin.ex/client.zip"

7 $file = "C:\Users\ls16\Desktop\client.zip"

8 $clnt.DownloadFile($url,$file)

9
10 # Unzip the file to specified location

11 $shell_app=new-object -com shell.application

12 $zip_file = $shell_app.namespace($file)

13 $destination = $shell_app.namespace("C:\Users\ls16\Desktop\")

14 $destination.Copyhere($zip_file.items(), 0x14)

15
16 Remove-Item $file;

17 cd C:\Users\ls16\Desktop\client\

18 Start-Process C:\Users\ls16\Desktop\client\run.bat

19
20 Start-Process chrome.exe http://localhost:3000

Code example A.1: Updater script served from the Central server for User Simulation

Team client application

79

A.5 Semi-Structured Interview with Heliand Dema

Interview with Heliand Dema, the leader of Red Team CS attacks sub-team, was
conducted in 28th of April. Interview was held face to face, in the format of
semi-structured interview, where the main topic, Red Team feedback about the developed
framework, was known beforehand to the author and deviation from that topic was
allowed. Interview lasted approximately 40 minutes.

1. How long have you participated in the Locked Shields event?

I have been part of LS as a Red Team member since the first exercise in 2012. The first
year I was a member of the CS team. During LS16 we had over 35 members in the
CS team. This team is split in five sub-teams, each with a technical leader, reporter and
five attacking members. At the moment I am the overall CS team leader as well as the
technical leader for sub-team number one.

2. How was communication with the User Simulation Team carried on during
previous Locked Shields

Our main communication channel with the UST was Jabber (XMPP), an IRC-like channel
where we were submitting our requests and waiting for confirmation. Initially we were
sending the requests in the main channel, however this created a huge confusion since
sometimes requests went unnoticed due to the big amount of traffic-flow or UST member
missing some of them. Also it was really difficult to keep an eye for confirmation on the
chat while attacking at the same time. Later we moved to private messaging which was
more one-on-one communication however since Jabber does not offer an easy logging
system, it was difficult to read previous sent messages. Also another issue in the past
has been continuous disconnection from Jabber (mainly due to network issues). Most of
the times we had to physically go to the UST and ask for confirmation, which eventually
means we were losing more time moving around and also generating more noise. On
average it took about fifteen minutes to get any kind of response back from the UST
member in previous years.

3. Was this framework useful for the Red Team Client Side attacks sub-team?

This framework prove to be very useful for the Client Side team this year. Not only
we have the possibility to receive a confirmation from the UST, but by choosing the
attacking machine from the given list we were also excluding the human error, making
sure that the UST was receiving the correct target machine. The chat tab gave us the

80

possibility to communicate with the UST member without the need of moving from our
seat. Best of all, the event feature, for the first time we can see in real life when the UST
member starts processing our request and what was the status of it. A real life saver for
anyone in the CS team. This was the first LS, where communication between Red Team
and UST was mostly carried out on-line without any physical interaction, and all thanks
to the framework, saving us, the Reds, not only valuable time, but also receiving very
informative and useful feedback.

4. Did the UST members seem more responsive this year?

Thanks to the framework and also the training delivered to UST from the developer, the
UST members were very fast at processing our requests and also very responsive in their
feedbacks. The human error was limited to almost none thanks to the nature of the tool
where everything is point-and-click. Very rarely we had to write additional requests/info
in the chat.

5. Any requests for the future development?

This was the first time during the past five LS that we tried to enhance UST’s work. The
framework designed proved to be a real life-saver not only for UST but also for the Red
Team. Improvements are always welcome and beneficial for both red and UST. Currently
the tool is limited to only windows OS, supporting more OSs might be something to
consider in the future.

81

A.6 Semi-Structured Interview with Elvis Paat

Interview with Elvis Paat, the leader of UST , was conducted in 29th of April. Interview
was held over the phone, in the format of semi-structured interview, where the main topic,
UST feedback about the developed framework, was known beforehand to the author and
deviation from that topic was allowed. Interview lasted approximately 24 minutes.

1. How long have you participated in the Locked Shields event?

This is my first year participating in the LS event and my role is User Simulation Team
leader. I have participated in the back end of the exercise before.

2. Was this framework useful for the User Simulation Team?

This framework was very useful in improving the workflow and reducing the overhead
for the UST. There were no significant problems detected with the framework. The
framework was especially useful for password synchronization, opening and managing
connections to the Blue Team systems, performing service checks and communicating
with the Red Team.

3. How was the communication with the Red Team?

Very good. There were no problems. The tasks came, they were completed and feedback
was given. This year there were only one or two UST members, who struggled with the
tasks, but overall performance was very good. There was also one case where a Red
Team member was a little too active, constantly overwhelming single UST member with
requests.

4. There was one case, where a User Simulation Team member did not use
framework for code execution at all, any ideas why?

They probably opted out to using the framework just for management purposes to log into
the Blue Team system automatically and then doing everything else manually.

5. What would you say was the greatest benefit from using this framework?

The sheer number of interactions that the UST members were able to make. Our main
goal when managing the UST team, is to reduce the time between service checks, and
this was certainly achieved. Also it was very good to see how quickly the features can be
removed, if they start causing problems.

82

6. Any suggestions for future developments?

It would be nice, if there was a “UST Management tool” for the framework to see how
active the UST members are. Who is doing their job more successfully and who is
struggling. It would be nice, to get the Blue Team RDP availability checking feature
back, to improve the usability of the framework. Furthermore, it would be beneficial if
the framework chooses a random credentials every time the UST member tries to log in.

7. Any other remarks?

The tool was great. It did not crash. Debugging and fixing issues was fast. For future
development, a Selenium scripting could also be considered, to implement automation
even more deeply. Also, perhaps there could be a new state introduced for statuses of the
feedback for the Red Team. Mainly the one that I think was missing is “delayed”. This
would be triggered when a UST member receives task, starts processing it, but faces some
difficulties with the Blue Team - such as workstations being unavailable, that have to be
resolved before a task can be completed.

83

A.7 Architecture of the Framework

Figure A.1: Framework Architecture

84

	Introduction
	Locked Shields as an Example of Cyber Defense Exercise
	Teams in Locked Shields
	Tools used in Locked Shields

	Main Problems
	Providing User-Interaction Inside Blue Team Workstations for Red Team Client Side Attacks
	Conducting Service Checks
	Demanding the Usability of Services

	Problem Statement
	Main Objectives
	Outline of The Thesis
	Acknowledgments

	Current Situation and Related Research
	Related Work
	Centrally Managed Network Traffic Generation for Cyber Exercises

	Current situation
	Infrastructure
	User Simulation Team Interaction with the Workstations
	User Simulation Team Communication with the Red Team
	User Simulation Team Interaction with the Data

	Analysis
	Requirements
	Requirements for Infrastructure
	Requirements for the User Simulation Team
	Requirements for User Simulation Team Workflow Improvement Framework

	Development decisions
	Methodology

	Design
	Central server
	User Simulation Team Client Application
	Red Team Client Application

	Implementation of the Framework
	Central Server
	Red Team Client Application
	User Simulation Team Client Application

	Evaluation of the solution
	The Test Run
	Preparation Phase of the Exercise
	Execution Phase of the Exercise
	User Simulation Team Feedback
	Red Team Feedback

	The Live Event
	Preparation Phase of the Exercise
	Execution Phase of the Exercise
	Aftermath and Feedback of the Exercise

	Lessons learned
	Conclusion of evaluation

	Future Research
	Conclusions
	References
	Appendixes
	Semi-Structured Interview With Aare Reintam
	Semi-Structured Interview With Mehis Hakkaja
	Semi-Structured Interview with Ragnar Rattas
	Updater script for User Simulation Team Client Application
	Semi-Structured Interview with Heliand Dema
	Semi-Structured Interview with Elvis Paat
	Architecture of the Framework

