

Tallinna Tehnikaülikool

Infotehnoloogia teaduskond

Informaatikainstituut

Infosüsteemide õppetool

Text autocompletion and prediction REST service based on a graph

database.

Bakalaurusetöö

Üliõpilane: Ilja Gužovski

Üliõpilaskood: 112645

Juhendaja: Raul Liivrand

Tallinn

2014

Autorideklaratsioon

Kinnitan, et olen koostanud antud lõputöö iseseisvalt ning seda ei ole kellegi teise poolt varem

kaitsmisele esitatud. Kõik töö koostamisel kasutatud teiste autorite tööd, olulised seisukohad,

kirjandusallikatest ja mujalt pärinevad andmed on töös viidatud.

(kuupäev) (allkiri)

Annotatsioon

Antud töö seletab, kuidas luuakse teksti sisestamist soovitussüsteemi REST teenuste ja

graafandmebaasi toel. Käesoleva bakalaureusetöö eesmärgiks on koondada teadusuuringuid teksti

ennustamises, graafiteoorias, lingvistikas, andmebaasides, päringu optimeerimises ja

dokumenteerida arendamise protsessi ja arhitektuurpilti. Esiteks kirjeldatakse, kuidas töötab

algoritm. Teiseks kirjeldatakse tarkvara arhitektuuri. Lõpuks antakse järeldus: kas antud

arhitektuur ja algoritm on efektiivsed.

Peamine probleem, millega ma olen kokku puutunud, oli teadmatus, kuidas disainida

infosüsteeme, mis kasutavad graafandmebaase, kuidas graafandmebaas skaleerub, kuidas

optimeerida päringuid ja kas üldse graafandmebaasid sobivad antud probleemi lahendamiseks.

Töötav prototüüp, mis kasutab optimeeritud päringuid ja on piisavalt kiire selleks, et töötada live-

is, on loodud käesoleva bakalaureusetöö tulemusena. Lisaks eelnevale, kui ma lõpetan tarkavara

arendamise ja optimisatsiooni, tekib mul võimalus teha järeldus: millised olid antud graafi mudeli

plussid ja miinused, ja kas on üldse mõistlik kasutada graafandmebaasi antud probleemi

lahendamiseks.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 47 leheküljel, 4 peatükki, 13 joonist, 24

tabelit.

Abstract

The current thesis describes the development of the fast working text prediction and suggestion

REST service based on the graph database. The aim of this thesis is to assemble research in the

text prediction, graphs, linguistics, databases, and query optimizations and to document the

implementation process of the new design. Firstly, the design principles of algorithm are

described. Secondly, the software architecture is described. Lastly, I give a conclusion: could the

designed solution and algorithm be efficient while working under the real stress.

The main problem with which I dealt was the lack of knowledge how to design such a system

with the use of the graph database, how does the graph database scales and suits for this goal and

how to optimize the database queries.

An implementation of the software, which uses optimized queries and has sufficient speed to

work in live, is created as a result of this thesis. In addition, when the software implementation

and optimization would be ended I could give a conclusion, what were the cons and pros of

designed graph model and is it reasonable to use it.

The thesis is in English and contains 47 pages of text, 4 chapters, 13 figures, 24 tables., etc.

Abbreviations and glossary of terms

UI User interface

JSON JavaScript Object Notation

MVC Model–view–controller

REST Representational state transfer

API Application programming interface

SOAP Simple Object Access protocol

SOLID Single responsibility, Open-closed, Liskov substitution,

Interface segregation, Dependency inversion

TDD Test-driven development

BDD Behavior-driven development

DAO data access object

RAM Random-access memory

JDBC Java database connectivity

ORM Object-relational mapping

Table of figures

Figure 1: Ordinary sentence ... 11

Figure 2: Sentence words relationships .. 11

Figure 3: Graph look on sentence words relationships .. 11

Figure 4: Powers of edges .. 12

Figure 5: Deployment Diagram .. 17

Figure 6: Use case diagram .. 19

Figure 7: Package diagram ... 22

Figure 8: Model layer package ... 23

Figure 9: Repository layer package .. 26

Figure 10: DAO layer package ... 29

Figure 11: Service layer package .. 33

Figure 12: Controller layer package ... 36

Figure 13: Alternative model in relational database ... 46

Table of tables

Table 1: WordEntity attributes .. 23

Table 2: NullWordEntity attributes ... 24

Table 3: WordRelationship attributes ... 24

Table 4: WordEntityRepository methods .. 26

Table 5: WordRelationshipRepository method ... 28

Table 6: WordEntityDAO attributes ... 29

Table 7: WordEntityDAO methods... 29

Table 8: WordRelationshipDAO attributes ... 31

Table 9: WordRelationshipDAO methods .. 31

Table 10: TextToSentences methods... 33

Table 11: SentencesToWords methods ... 34

Table 12: WordTupleFinderService attributes .. 34

Table 13: WordTupleFinderService methods ... 34

Table 14: TextSaverService attributes .. 35

Table 15: TextSaverService methods .. 35

Table 16: NextWordCompletionController attributes .. 36

Table 17: NextWordCompletionController methods .. 36

Table 18: WordCompletionController attributes .. 37

Table 19: WordCompletionController methods .. 37

Table 20: TextSaveController attributes ... 38

Table 21: TextSaveController methods .. 38

Table 22: Word attributes .. 46

Table 23: WordConnection attributes ... 46

Table 24: Relationship attributes .. 47

Table of Contents
1. Introduction .. 9

1.1 Background and problem... 9

1.2 Aims and goals of thesis .. 10

1.3 Methodology ... 10

1.4 Thesis overview ... 10

2. Algorithm .. 11

2.1 Design principles ... 11

2.2 Optimization .. 13

2.2 Implementation considerations .. 14

3. Implementation .. 15

3.1 Platform & language selection .. 15

3.2 Web application architecture ... 15

3.3 Technology selection ... 16

3.4 Deployment Diagram .. 17

3.5 Use cases ... 19

3.6 Architecture model .. 21

3.6.1 Model layer ... 23

3.6.2 Repository layer.. 26

3.6.3 DAO layer .. 29

3.6.4 Service layer ... 33

3.6.5 Controller layer ... 36

4. Conclusion ... 39

Kokkuvõte ... 41

Summary ... 42

References ... 43

Source code ... 45

Appendix 1 .. 46

9

1. Introduction

It is relatively easy today to see many kinds of auto completion services. For instance, Google

Search autocomplete API [1], or next work prediction and suggestion in iOS and Android

devices. At the same time, technologies of this kind, which are used in Google, Apple and

Microsoft are mostly proprietary. Except Apache Lucene [2] search engine based solutions,

there are not so many well-known open-source text auto-completion, prediction and

suggestion services. Furthermore, I also have discovered that there is still no well-known

search prediction and suggestion engines, which use graphs as a representation model for the

sentences and text. That is why I decided to write a service of this kind and its engine, which

will be based on graph database [3].

1.1 Background and problem

As mentioned above, there are not so many text suggestion engines. The main problem I solve

is the exploration how this type of software should be designed and optimized in order to

work in live and behave under the load.

The reason why designed software could be useful are the following: you could use it for

learning a new language, it could assist you when you write or type some text, and it could

also help handicap people to write more quickly. If I could make my work more commercial,

it could be used as a JavaScript widget in form fields, where you have to write a lot, because

usually there are many mistakes and typos done by the non-native speakers.

The reason why this work is useful are the following:

 Explore the usefulness of graphs in text search and prediction.

 Find the ways how to design this kind of service.

 Give an evaluation of the graph database Neo4j [4] and understand does this database

suit for those kind of tasks.

10

1.2 Aims and goals of thesis

The main goal of the diploma is the working REST service [5] which could predict next word

depending on the previous given input of words. In the terms of speed it should be fast

enough to handle user typing and frequent queries. The service will be written in Java [6]. An

additional goals of my work are research in graph databases and linguistics. From the point of

view of a software engineer my application could be interesting in terms of architecture. After

reading my thesis, the reader must understand the difficulties which I met while designing the

solution based on graphs, it cons and pros.

1.3 Methodology

To reach the original goal I implemented 3 layered architecture [29], fully covered with unit

and integration tests. The designed system is designed in object oriented way (this mean that I

will use as much SOLID [7] rules, as I could while designing), with the use of modern

software development practices like TDD (Test Driven Development) [8]. At the end of the

work I expect to see well build and loosely coupled modules of my application, which would

be easy to optimize, redesign and connect.

1.4 Thesis overview

The second part of my thesis explains basic idea of algorithm, its optimization and

implementation considerations.

The third part of my thesis explains which technologies I have chosen for designing. It also

describes why I believe some technologies suit better my service than others. It also contains

use cases, deployment instructions and documentation for each package and class.

In fourth part, I would give an evaluation, measure the performance of my application and

give a conclusion to designed architecture of my application.

11

2. Algorithm

In this section I will try to explain the initial idea of algorithm, which I want to design. I also

included performance requirements and implementation considerations.

2.1 Design principles

At first, we have to clarify how we could transform the words and sentences into graphs.

Consider the following sentence: To be, or not to be, that is the question.

Figure 1: Ordinary sentence

We could represent each word as a point, so each next point will be in a relationship with

previous point.

Figure 2: Sentence words relationships

We could realize that this is an ordinary graph, where the word is vertex [9] and so called

relationship is edge [10]:

Figure 3: Graph look on sentence words relationships

12

However, each relationship should have power (or popularity), so, for instance, relationship of

words “to be,” should have power (popularity) of two. And if, in addition to sentence “To be,

or not to be, that is the question”, we had a sentence: “To say something one time”, then if

you suggest a next word for a word “to”, then the first result will be a word “be,” and the

second “say”.

Figure 4: Powers of edges

13

2.2 Optimization

However, by iteratively designing my algorithm I had found that the algorithm does not

understand context well. Due to this reason, I implemented the following idea: Each 4 points

of the graph are considered as one point. So, if you give an input of three words, you will get

fourth word, which will be more suitable for the place, because it knows, which 3 words

preceded before. For instance, the sentence “To be, or not to be, that is the question.” consists

of following “subgraphs”:

1. To be, or not

2. be, or not to

3. or not to be

4. not to be, that

5. to be, that is

6. be, that is the

7. that is the question.

8. is the question. <nullword>

9. the question. <nullword> <nullword>

Where the <nullword> means that there is no word followed.

In addition, to improve the prediction result, right after sorting the results by the power of

relationship, I sort those results by the popularity of each word (I also hold popularity of each

word in database). Algorithm for this task is easy: on each save of the relationship, we also

increment popularities of words presented in given relationship.

14

2.2 Implementation considerations

At first, the text suggestion is not efficient if it works slowly. So the first requirement of

algorithm is to work instantly. The instantly means that suggestion must work on every key

press. The word record in typing is 256 wpm (words per minute) [11]. Each word is by

definition 5 characters [12]. After performing simple calculations I got (256*5) / 60 = 21.3.

This means that 22 character per second is absolute maximum. Then we could count how

much time each request and response should take: 1000/22 = 45,454545455 ~ 45

milliseconds/request. However, the average user will hardly notice 100 millisecond delay

[13]. So the desired response time lies between 40ms and 100ms.

Secondly, from the point of memory the service should not be memory hog. In fact, English

vocabulary contains at most 250000 words [14]. However, we should consider that capitalized

word, or word with coma is also considered a word in our application, as a result, we could

multiply our value with a factor of four. Therefore our database will contain around 1 million

words. Which is not a big value for modern database. Because of this reason, I suppose, that

service will take no more than 256 megabytes of RAM.

Because there are some performance limitations, I looked towards to compiled languages, like

Java, because compared to Ruby, for instance, it runs more than 100 times faster [15]. But we

have to keep in mind that usually database is the bottleneck of the system performance.

The graph database was chosen because it suits my model – it also consists of graphs. The

reason why I did not chose relational database, was the fact, that they are not efficient on big

amount of join operations. My algorithm implies a lot of join operations if we use relational

model.

As I mentioned before, the number of records in the database would be around 1-2 million. I

am not sure, but I expect that the size of the database will be less than 10 gigabytes.

15

3. Implementation

3.1 Platform & language selection

There are plenty of technologies available today for designing the web system. The most

mature and general are: Java, Python [16], Ruby [17], PHP [18]. For designing the REST

service, from my point of view, there are only 3 languages suitable for this goal: Java, Python

or Ruby.

However, despite the fact that you could work with neo4j via Python, Ruby and PHP,

originally it was intended to work more with Java (Because Neo4j is also written in Java

[19]).

As a result, I have chosen libraries like Spring MVC [20] and Spring Data Neo4j [22],

because I suppose they will prevent me from writing “boilerplate” code.

3.2 Web application architecture

From the graph databases I have chosen Neo4j, because of its maturity and big community.

Currently, Neo4j is the most used graph database.

As a primary Java Framework I have chosen Spring MVC 3, also because of its maturity. At

the same time there were many available artefacts for Spring MVC. I have added one of them:

Spring Data Neo4j – which is actually Neo4j database ORM. The Spring MVC, in my case, is

configured as a REST service, which produces JSON responses with Jackson. Everything

mentioned over are back-end technologies. From the front-end technologies I use AngularJS

[23], but for demonstrating the features I had written small jQuery [24] widget, which detects

user typing in textarea and brings handy popup with predicted next word. My REST service

also could use SOAP for presentation protocol, but I consider this as a bad idea, because

JSON is already standard de-facto for the newer web applications [25].

The server side architecture follows ordinary 3 layer architecture: we have model layer,

Spring repository layer (which is actually DAO layer), DAO layer (which actually delegates

to Spring repository layer), service layer and controller layer.

16

From the front end side, we use JQuery html textarea widget.

3.3 Technology selection

For my system there were a variety of technologies, but I had chosen the following:

 Neo4j - open-source graph database, implemented in Java.

 Spring MVC - open source application framework and inversion of control container

for the Java platform.

 Spring Data Neo4J – which offers advanced features to map annotated entity classes to

the Neo4j Graph Database.

 Jackson - suite of data-processing tools for Java

 AngularJS - open-source web application framework

 jQuery - cross-platform JavaScript library designed to simplify the client-side

scripting of HTML.

For the testing purposes I used:

 JUnit [26] is a unit testing framework for the Java programming language.

17

3.4 Deployment Diagram

Figure 5: Deployment Diagram

There are 2 main possibilities to organize Neo4j graph database: you can use the standalone

explicit one or use embedded database, which comes bundled with Spring Data Neo4j.

As I mentioned before, I use Spring Data Neo4j ORM for Neo4j, so you only have to

hardcode the JDBC [27] source path. If properly configured, your DAO (Data Access Object)

layer should be connected to database. Of course, you should manually create all models and

map them. In its turn, those models interact with business logic layer and produce JSON.

Those JSON responses should be intercepted by client (client is jQuery widget).

To build my application from scratch you should have Java 7 and Maven 3.2.x installed.

To define a jdbc url please explore ApplicationConfig.java class. Then navigate to target

folder and run from command line “mvn clean install –DskipTests”. After that copy

WordService.war from target folder and deploy an app with appropriate Java EE 7 container

[28] like Jetty 9.1 or Tomcat 8. If you compile from sources and agree to use jetty embedded

18

container, then you can use command “ mvn clean install –DskipTests jetty:run” to quickly

run application.

Then open a browser and navigate to http://localhost:8080.

http://localhost:8080/

19

3.5 Use cases

Figure 6: Use case diagram

Use case: User types a word and gets next word prediction

Participants: User, Admin

Description: When user types a whole word and presses whitespace, then a selectbox with

predicted words should appear. Words in this selectbox should be ordered ascending to their

suitability and popularity. User can navigate with arrow keys and select a word with Enter

key, after that the whole selected word should be typed into textarea.

Example: User types a phrase “A long time”, presses whitespace, then selectbox with words

“ago” and “until” should appear. By default, first word is always selected, so the user presses

Enter key and sees the phrase “A long time ago”.

Use case: User types a sequence of word and gets current word prediction

Participants: User, Admin

Description: When user types a part of a word, then a selectbox with predicted words should

automatically appear. This should happen after each keypress. This means that words in this

selectbox should be ordered ascending to their suitability and popularity. User can navigate

with arrow keys and select a word with Enter key, after that the selected word should be typed

in textarea.

20

Example: User types a phrase “accom”, presses whitespace, then selectbox with words “ac-

commodate” and “accommodation” should appear. By default, first word is always selected,

so the user presses Enter key and sees the word “accommodate”.

Use case: Administrator saves a text to database

Participants: Admin

Description: Administrator writes, or pastes the text to textbox and presses save button.

Then saving process should start in the background. Then the words should be persisted to the

database.

21

3.6 Architecture model

Application Architecture is designed as a relaxed three-layer architecture [29]. The layers are

the following:

1. Presentation layer.

2. Service layer.

3. DAO layer.

Each layer will provide maximum testability and maximize the loose coupling by using the

dependency injection frameworks.

However in real life application has 5 layers:

1. Model layer – contains domain objects, which are mapped with Spring data Neo4j

ORM.

2. Repository layer – which is user for writing queries, it contains only interfaces, which

are derived from Spring data neo4j GraphRepository interface. They allow to generate

queries and to write them on you own, by using Cypher Query language.

3. DAO layer – originally, we needed only repository for our three layer architecture, but

because of speed requirements and “buginess” of repository layer, I have implemented

additional layer, which caches some results and prepares data for repository.

4. Service layer – contains business logic, parses the text and finds the text. In general, it

is used for data processing.

5. Controller layer – because of the fact, that I am designing REST service, controller

produces JSON only.

22

Application architecture is shown in the following figure:

Figure 7: Package diagram

23

3.6.1 Model layer

Figure 8: Model layer package

Package contains classes of domain objects which display the response to the user and

forward user’s requirements to business layer. Those classes are mapped with Spring Data to

Neo4j database.

WordEntity

Table 1: WordEntity attributes

Attribute name Description Example

id Id represents the numeric

identifier value in the

database, it is primary key.

345

word The word itself, may contain

comma, point, exclamation

mark and question mark at

the end of the word. Could

contain uppercase or

lowercase letters.

Really?

24

popularity The power or popularity of

word field. This means how

much this word was found

during the text parse or how

much the word represented

in all persisted texts.

12

NullWordEntity

This class is a WordEntity nullvalue. It is a representation of Null Object pattern.

Table 2: NullWordEntity attributes

Attribute name Description Value

id Same as WordEntity 0

word Same as WordEntity null

popularity Same as WordEntity 0

WordRelationship

Table 3: WordRelationship attributes

Attribute name Description Example

id Id represents the numeric

identifier value in the

database, it is primary key.

555

first Represents the starting

WordEntity object

second Represents the WordEntity

object which is followed

right after the first

WordEntity object.

third Represents the WordEntity

object id which is followed

after the second WordEntity

object.

123

25

fourth Represents the WordEntity

object id which is followed

right after the third

WordEntity object.

765

popularity Popularity of this

relationship. (How much this

combination of words

represented in all parsed

texts)

2

26

3.6.2 Repository layer

Figure 9: Repository layer package

This layer represents a Spring Data ORM repositories. The idea of Spring Data is to name a

functions of interface in an appropriate pattern, so the implementations will be generated

automatically.

WordEntityRepository

Table 4: WordEntityRepository methods

Method name Notes Parameters

findByWord()

WordRelationship

Public

Method returns a list of

WordEntities. The list is

returned because Spring

data neo4j does not respect

case of the word. So if you

query word “came”, you get

also WordEntities with

word “Came” and

“CAMEL”, for instance.

word

27

findByWordContaining

OrderByPopularityDesc

Iterable<WordEntity>

Public

Method returns Iterable of

WordEntities, which

contain a sequence from the

word parameter. For

instance, if you query a

word “large”, it will also

produce WordEntity with

word “enlarge”. All

returned WordEntitites will

be ordered by popularity

attribute.

word

findByWordStartingWith

OrderByPopularityDesc

Iterable<WordEntity>

Public

Method returns Iterable of

WordEntities, which start

from a sequence taken from

word parameter. For

instance, if you query a

word “large”, will also

produce WordEntity with

word “largest”. All returned

WordEntitites will be

ordered by popularity

attribute in descending

order.

word

findByWordOptimized

WordEntity

Public

Same as findByWord

method, but written in

native cypher query.

word1

getTop10WordsAfter

Set<WordEntity>

Public

Finds a words, which are

followed right after the

word. Returned set is

ordered by popularity.

Set consists from 10

elements.

word

getTop10WordsAfter Finds words, which are word1,word2

28

Set<WordEntity>

Public

followed right after the

word1 and word2. Returned

set is ordered by popularity.

Set consists from 10

elements.

findByWordRegexOrderByPopularity

List<WordEntity>

Public

Method returns a list of

WordEntities, where the

attribute matches regular

expression.

word1

findByWordWithoutFastIndex

WordEntity

Public

Same as findByWord()

method, by works slowly

and respects the case of the

words.

word1

WordRelationshipRepostitory

Table 5: WordRelationshipRepository method

Method name Notes Parameters

getTuple

Set<WordRelationship>

Public

Method returns a set of

WordRelationships where the word

attribute matches first, second and

third argument.

first

second

third

getTuple

WordRelationship

Public

Method returns aWordRelationship

where the word attribute matches

first, second, third and fourth

argument.

first

second

third

fourth

29

3.6.3 DAO layer

The idea of DAO layer is to provide persisting functions to service layer. It is needed because

of caching, and the fact that repository layer functions contain bugs or unexpected behaviour.

For example if you query a word which contains semicolons, then functions, which use

indexes will throw an exception.

Figure 10: DAO layer package

WordEntityDAO

Table 6: WordEntityDAO attributes

Attribute name Description Example

logger Injected instance of Logger

wordEntityRepository Injected instance of

WordEntityRepository

Table 7: WordEntityDAO methods

Method name Notes Parameters

30

findByWordViaIndexAndRegex

WordEntity

Public

Method returns WordEntity

where the word attribute

matches word parameter.

word

findByWordViaIndex

WordEntity

Public

Method returns WordEntity

where the word attribute

matches word parameter. Uses

indexes, fast, but not stable.

word

findByWordStartingWithViaIndex

List<WordEntity>

Public

Method returns list of

WordEntities, which start from

a sequence taken from a

sequence parameter. For

instance, if you query a word

“large”, will also produce

WordEntity with word

“largest”. It uses indexes, and

because of this, the search

works almost instantly.

sequence

findByWordContainingViaIndex

List<WordEntity>

Public

Method returns list of

WordEntities, which contain a

sequence from sequence

parameter. For instance, if you

query a word “large”, will also

produce WordEntity with word

“enlarge”. It uses indexes, and

because of this reason, the

search works almost instantly.

sequence

getOrCreateWordEntity

WordEntity

Public

Gets (finds) or creates

WordEntity, which has the

given word parameter.

word

findById

WordEntity

Public

Method returns WordEntity,

which has the given id

parameter.

id

31

WordRelationshipDAO

Table 8: WordRelationshipDAO attributes

Attribute name Description Example

logger Injected instance of Logger

template Injected instance of

Neo4jTemplate

wordEntityRepository Injected instance of

WordEntityRepository

Table 9: WordRelationshipDAO methods

Method name Notes Parameters

save

WordRelationship

Public

Method persists the given

WordRelationship

wordRelationship

getRelationshipsBetweenAsIterable

Iterable<WordRelationship>

Public

Method returns Iterable of

WordRelationships, where

the first WordEntity

contains prelast as a word

attribute, and the second

contains word last as a

word attribute.

prelast

last

getRelationshipsBetweenAsList

List<WordRelationship>

Public

Same as

getRelationshipsBetween

AsIterable, but returns list

with initialized values.

prelast

last

getRelationshipsBetweenAsListWord

Entity

List<WordRelationship>

Public

Method returns list of

WordRelationships, where

the first WordEntity

contains preprelast as a

word attribute, and the

second contains word

prelast as a word attribute.

preprelast

prelast

last

32

The last WordEntity

contains last parameter as

a word attribute.

getRelationshipBetween

WordRelationship

Public

Method returns

WordRelationship, where

the first WordEntity

contains first as a word

attribute, the second

contains word second as a

word attribute, the third

contains word third as a

word attribute, and the last

WordEntity contains

fourth as a word attribute

first

second

third

fourth

createOrIncrementPopularityOfWord

Relationship

WordRelationship

Public

Creates a relationship

between the words, or

increments the popularity

of relationship and

persists it to database.

first

second

third

fourth

saveWordRelationshipTuples

List<WordRelationship>

Public

Accepts a list of

wordentities (which are

just generated from

sentences) and persists or

increments popularity of

each created

WordRelationship to

database. Relationship

will be saved according to

order of WordEntities in

list. Normally this order is

similar to sentence.

wordEntities

33

3.6.4 Service layer

This layer is responsible for all business logic like saving, parsing the text, splitting the whole

text to sentences to words, generating WordEntities from those words etc.

Figure 11: Service layer package

TextToSentences

Table 10: TextToSentences methods

Method name Notes Parameters

transform

List<String>

Public

Method splits text into list of

sentences.

text

34

SentencesToWords

Table 11: SentencesToWords methods

Method name Notes Parameters

transform

List<String>

Public

Method splits sentence into list of

sentences.

sentence

WordTupleFinderService

Table 12: WordTupleFinderService attributes

Attribute name Description Example

wordRelationshipDAO Injected instance of

WordRelationshipDAO

wordEntityDAO Injected instance of

WordEntityDAO

Table 13: WordTupleFinderService methods

Method name Notes Parameters

getNextWordsViaTupleList

List<WordEntity>

Public

Method finds a list of

WordEntities, where the first and

second parameter represent a first

and second WordEntity word

attribute. If some word is missing,

then the method returns empty list.

first

second

getNextWordsViaTupleList

List<WordEntity>

Public

Method finds a list of

WordEntities, where the first,

second and third parameter

represents first, second and third

WordEntity word attribute. If some

word is missing, then the method

returns empty list.

first

second

third

35

TextSaverService

Table 14: TextSaverService attributes

Attribute name Description Example

wordRelationshipDAO Injected instance of

WordRelationshipDAO

wordEntityDAO Injected instance of

WordEntityDAO

Table 15: TextSaverService methods

Method name Notes Parameters

save

void

Public

Method transforms text to

WordEntities and

WordRelationships and saves them

to database.

text

save

void

Public

Method saves WordEntities and

their WordRelationships to

database.

words

36

3.6.5 Controller layer

This layer is responsible for forwarding user requests to service layer and producing

responses. All controllers produce JSON only.

Figure 12: Controller layer package

NextWordCompletionController

Table 16: NextWordCompletionController attributes

Attribute name Description Example

wordEntityRepository Injected instance of

WordEntityRepository

wordTupleRepository Injected instance of

WordTupleRepository

Table 17: NextWordCompletionController methods

Method name Notes Parameters

get10TopWordsAfter

List<WordEntity>

Public

Method get 10 top word results

after the following word

word

getByFirstTwo

List<WordEntity>

Method get 10 top word results

after the following f and s

f

s

37

Public parameter.

getByFirstTwo

List<WordEntity>

Public

Method get 10 top word results

after the following f, s and t

parameter.

f

s

t

WordCompletionController

Table 18: WordCompletionController attributes

Attribute name Description Example

wordEntityDAO Injected instance of

wordEntityDAO

Table 19: WordCompletionController methods

Method name Notes Parameters

getWordStartingWith

List<WordEntity>

Public

Method gets 10 top WordEntity

suggestions, where the word

attribute starts with wordstart

parameter.

Example: you type “en”. Then you

should get results starting with

“en” like “enlarge”, “enforce”,

“environment”.

wordStart

getWordContaining

List<WordEntity>

Public

Method gets 10 top WordEntity

suggestions, where the word

attribute contains a sequence

parameter.

Example: you type “mis”. Then

you should get results “missile”,

“transmission”.

sequence

38

TextSaveController

Table 20: TextSaveController attributes

Attribute name Description Example

textSaverService Injected instance of

TextSaverService

Table 21: TextSaveController methods

Method name Notes Parameters

save

void

Public

Method intercepts text parameter

and saves it to database.

text

save

void

Public

Method takes the hardcoded txt

file and saves it to database.

39

4. Conclusion

The main goal of the diploma was the implementing and designing the REST service which

could predict next word depending on the previous given input.

After implementing the software, I could say that the primary goal was achieved. Software

works as I expected. After measuring the response time the results varied from 20ms to

500ms. On average, the response time was more like 40ms. This result was achieved for 1.3

megabyte book with 230000+ words inside. To be honest, I was a little bit disappointed with

the results, because sometimes next word suggestion takes 300ms, which is more or less okay,

but definitely not instant.

As a result, I may say that it is possible to create this kind of service, but graph database is not

the best choice for this goal, because at the end of the design it looks more like implementing

key value store over the graph database. In addition, the performance results are not superb.

To improve the performance of my service, I could cache the repository layer or change the

database to relational or key-value store. This may be the goal for the future.

After implementing the software the following goals achieved:

 The working REST suggestion service.

 The software almost fully covered with tests. (80% of code is covered with tests)

 The knowledge how to design those kinds of services.

 Fully documented process of implementing the design.

 The answer to the question: “Does the graph database suit for this goal?” – The answer

is: “It depends.”. However, I would suggest you to think twice before taking the graph

database for the same goal. In next paragraph, I will describe why.

 The question about the usefulness of graphs in linguistics is left open. It is too wide

for me to give evaluation.

40

Despite the fact, that the service works under the stress, performs queries etc., I realized that I

ended with model, where I put too much meta-info to relationships between words. Because

of the optimization, the relationship contains also info about the third and fourth word, not

only connecting first and second. This is the main flaw of the design. Maybe, the better idea

would be switching back to relational database. One of the proposed relational database

design models could be found in Appendix 1.

41

Kokkuvõte

Käesoleva lõputöö põhieesmärk oli näidata kuidas arendatakse teksti sisestamise

soovitussüsteemi REST teenuste ja graafandmebaasi toel, mis võimaldab ennustada järgmist

sõna, sõltuvalt eelnevalt sisestatud sõnadest.

Käesoleva töö peamine tulemus on dokumentatsioon kuidas disainiti ja arendati rakenduse, ja

rakendus ise.

Antud töö kirjeldab ja seletab kuidas teksti sisestamise soovitussüsteem võib olla tehtud, kui

te kasutate graafandmebaasi. Lisaks eelnevalt mainitule, töö seletab ja analüüsib antud

implementatsiooni ja annab talle hinnangu.

42

Summary

The main goal of the diploma was to show how to implement and design REST service which

could predict next word depending on the previously given words.

Main result of this work is fully documented process of designing and implementation the

application, and application itself.

This work describes and explains how the word suggestion service could be built, if you use

graph database. In addition to above mentioned, the work describes and analyses cons and

pros of our implementation and gives evaluation to it.

43

References

[1] https://developers.google.com/web-search/docs/

[2] http://lucene.apache.org/core/

http://www.lucenetutorial.com/lucene-in-5-minutes.html

[3] http://www.iqubemarketing.com/glossary-big-data-terminolgy/

[4] http://neo4j.com/product/

[5] Fielding, Roy T. (2000). "Chapter 5: Representational State Transfer (REST)".

Architectural Styles and the Design of Network-based Software Architectures (Ph.D.).

University of California, Irvine.

[6] http://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html

[7] “Principles Of OOD”, Robert C. Martin (“Uncle BOB”), butunclebob.com. (Note the

reference to “the first five principles”, though the acronym is not used in this article.)

http://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

[8] Beck, K. Test-Driven Development by Example, Addison Wesley - Vaseem, 2003

Koskela, L. "Test Driven: TDD and Acceptance TDD for Java Developers", Manning

Publications, 2007

 [9] Introductory graph theory. New York: Dover. ISBN 0-486-24775-9.

[10] Introductory graph theory. New York: Dover. ISBN 0-486-24775-9.

[11] https://www.youtube.com/watch?v=IozhMc6lPTU&feature=youtube_gdata

[12] Ahmed Sabbir Arif, Wolfgang Stuerzlinger Analysis of Text Entry Performance Metrics

Dept. of Computer Science & Engineering York University

[13] http://www.nngroup.com/articles/response-times-3-important-limits/

https://developers.google.com/web-search/docs/
http://lucene.apache.org/core/
http://www.lucenetutorial.com/lucene-in-5-minutes.html
http://www.iqubemarketing.com/glossary-big-data-terminolgy/
http://neo4j.com/product/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
https://www.youtube.com/watch?v=IozhMc6lPTU&feature=youtube_gdata
http://www.asarif.com/pub/papers/arif_ticsth09.pdf
http://www.asarif.com/pub/papers/arif_ticsth09.pdf
http://www.nngroup.com/articles/response-times-3-important-limits/

44

[14]http://www.oxforddictionaries.com/words/how-many-words-are-there-in-the-english-

language

[15] http://benchmarksgame.alioth.debian.org/u64q/compare.php?lang=yarv&lang2=java

[16] https://docs.python.org/2/tutorial/

[17] https://www.ruby-lang.org/en/about/

[18] http://php.net/manual/en/intro-whatis.php

[19] http://neo4j.com/developer/language-guides/

[20]http://docs.spring.io/spring/docs/4.2.0.BUILD-SNAPSHOT/spring-framework-

reference/htmlsingle/#spring-introduction

[21] http://projects.spring.io/spring-boot/

[22] http://projects.spring.io/spring-data-neo4j/

[23] https://docs.angularjs.org/guide/introduction

[24] http://learn.jquery.com/javascript-101/getting-started/

[25] http://www.slideshare.net/jmusser/open-apis-state-of-the-market-2011

[26] Kent Beck, Erich Gamma. JUnit Cookbook.

[27] http://www.oracle.com/technetwork/java/javase/jdbc/index.html#corespec40

[28] http://en.wikipedia.org/wiki/Web_container

[29] http://msdn.microsoft.com/en-us/library/ff648105.aspx

http://www.oxforddictionaries.com/words/how-many-words-are-there-in-the-english-language
http://www.oxforddictionaries.com/words/how-many-words-are-there-in-the-english-language
http://benchmarksgame.alioth.debian.org/u64q/compare.php?lang=yarv&lang2=java
https://docs.python.org/2/tutorial/
https://www.ruby-lang.org/en/about/
http://php.net/manual/en/intro-whatis.php
http://neo4j.com/developer/language-guides/
http://docs.spring.io/spring/docs/4.2.0.BUILD-SNAPSHOT/spring-framework-reference/htmlsingle/%23spring-introduction
http://docs.spring.io/spring/docs/4.2.0.BUILD-SNAPSHOT/spring-framework-reference/htmlsingle/%23spring-introduction
http://projects.spring.io/spring-boot/
http://projects.spring.io/spring-data-neo4j/
https://docs.angularjs.org/guide/introduction
http://learn.jquery.com/javascript-101/getting-started/
http://www.slideshare.net/jmusser/open-apis-state-of-the-market-2011
http://junit.sourceforge.net/doc/cookbook/cookbook.htm
http://www.oracle.com/technetwork/java/javase/jdbc/index.html%23corespec40
http://en.wikipedia.org/wiki/Web_container
http://msdn.microsoft.com/en-us/library/ff648105.aspx

45

Source code

Source code is available at: https://github.com/ilja903/wordservice

https://github.com/ilja903/wordservice

46

Appendix 1

Alternative relational database model:

Figure 13: Alternative model in relational database

Word

Table 22: Word attributes

Attribute name Description Example

id Primary key 1

word Word of a word table “Someword”

WordConnection

Table 23: WordConnection attributes

Attribute name Description Example

id Primary key 1

47

first_word_fk Foreign key to the first ford

in Word table

1

second_word_fk Foreign key to the second

ford in Word table

2

third_word_fk Foreign key to the third ford

in Word table

3

fourth_word_fk Foreign key to the fourth

ford in Word table

4

Relationship

Table 24: Relationship attributes

Attribute name Description Example

wordConnection_id Foreign key to the

wordConnection table

1

word_id Foreign key to the word,

which comes right after the

wordConnection

“Someword”

popularity Number of how much this

relationship was found

during the text save.

123

