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Introduction

1. Motivation

This thesis concerns the field of sparse signal processing and algorithms which

efficiently exploit sparsity to find a solution to the optimization problems which

are not attainable otherwise. In this work, this concept is applied to the

well-known problem of parameter estimation - recovering parameters of interest

from limited measurements of an actual signal. Probably the most widely known

method in this area is the computation of the signal periodogram through Fast

Fourier Transform (FFT) in order to estimate the spectral density of the signal

or the frequency content of the signal. In this case, the parameter of interest

is the frequency. Although the problem and many solutions are well-known for

decades, this area of research is still fairly active and many contributions to the

field are being made each year. So far, the research community have not find a

single estimator which can cover all the scenarios efficiently and the choice of

the estimator is usually a trade-off between different properties of the estimator

and constraints required by the application. For a wide range of applications the

FFT is a suitable method; however, it is not considered to be a high-resolution

method due to its resolution limit [1] and it also requires re-formulation of its fast

computational algorithm if the application considers a non-uniformly sampled

data, which is often the case in many different fields and applications; consider

for example radar imaging [2], [3], astronomy [4], seismology [5] or genetics [6].

Although the re-formulation of the fast computation algorithm is certainly possible

and is usually done through the interpolation of the oversampled FFT and referred

to as non-uniform FFT (NUFFT) [7], [8], it does add a computational cost and

still does not improve resolution limits. In addition to the applications mentioned

before, one application that requires high-resolution, fast computational time and

also capability of working with non-uniformly sampled data is multi-dimensional

nuclear magnetic resonance (NMR) spectroscopy [9], [10] - a technique for

determination of chemical structure and molecular interactions [11]. Considering

the requirements that are posed by applications mentioned above, this thesis

introduces a new method for high-resolution parameter estimation, which often

shows considerable speed-up compared to the state of the art methods, can work

with the non-uniform data directly and also mitigates problem of grid-mismatch

inherent to many similar methods. Although this new estimator still can not solve

17



Figure 1Original image (a), wavelet transform coefficients (b) and resulted reconstruction

image (c) after removing 99% of the wavelet transform coefficients [12] ©2008 IEEE.

all the problems that arise in a reality, the author of this thesis hopes that this

proposed tool might be useful for those working in the area of signal estimation,

not only due to its decent and computationally fast performance, but also through

its intuitive implementation and adaptability for the different estimation methods.

In the modern days it is evident that the amount of captured and stored data

grows every day and there is an obvious need for the ability to transfer this

data more quickly, store it in a more compact way or to process it faster. The

concept of sparsity forms a base from which many algorithms and methods for

tackling those problems can be proposed. Sparsity is a property of a signal

where the investigated model has only a small number of nonzero components

or where a signal of interest consists of samples which are mostly zeros or

near-zeros. Although most of the signals are not directly sparse, there exist many

useful transforms which can represent signal in a sparse way. Consider a simple

example: a sinusoidal signal is not sparse in the time-domain as it requires many

samples to be represented explicitly, but Fourier Transform helps to represent it

in a sparse way in the frequency-domain, where such signal has only one relevant

peak. Consider another example of an image which is transformed using Haar

wavelet [13]. In the wavelet domain we see that only a very limited number of

coefficients carry most of the energy and therefore the information in the image.

Therefore, it can be said that the image is sparse in the wavelet domain. One

can remove most of the smaller coefficients, apply Inverse Wavelet Transform

and get a reconstructed version of the original image. As can be seen from a

Figure 1, the difference between the original and the reconstructed images are

hardly noticeable. As shown, sparsity is usually present in the signal; however,

it may require additional transformation into the domain which represents the

signal in a sparse way, be it a Fourier Transform, Wavelet Transform or any other

kind of suitable mathematical representation.
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2. State of the art

In the recent years, the research community in the field of signal processing have

been heavily involved with sparsity by applying methods to different problems,

such as but not limited to sparse array processing [14]–[18], signal denoising

[19]–[21], image processing [22]–[24], channel estimation [25], [26] and deriving

mathematical proofs and theoretical limits for corresponding algorithms [12],

[27]–[31]. However, even before the signal processing community fully embraced

the concept of sparsity, statisticians were already aware of its benefits when

Hastie et al [32] came upwith the informal ”bet on sparsity” principle, which states:

”Use a procedure that does well in sparse problems, since no

procedure does well in dense problems.”

Such procedures in the signal processing world often take form of finding

sparse representation of the signal at hand [21], [28], [31], [33]–[35]. Exploiting

sparse represenation of the signal is often useful as many of the applications

mentioned above result in discrete and peaky spectra. This is the perfect

setup for the methods considering sparsity [36], [37] as resulted spectra is well

described by just a few elements in appropriately chosen dictionary. However, if

spectral resolution required by the application is high then the dictionary becomes

restrictively large and employing such methods requires dealing with increased

computational complexity. Therefore, the need for efficient computational

methods for such problems arises and one can consider exploiting numerical

structures of resulting dictionary matrices and transforms [38], [39]. Another

possible direction looks at employing various screening methods for deciding

which dictionary elements were present in the signal [40], [41] and therefore

reducing considerably the size of the problem to solve. However, by employing

dictionary-based methods one has to take into account the problem of off-grid

estimation [42], [43] - estimated signal falling between two dictionary elements

(off-grid). Few methods of dealing with such issue have been proposed, such

as adaptive grid or atomic-norm minimization [44]–[46]. However, they still

come with the additional trade-off of not having convex problem formulation for

former and the requirement of solving computationally demanding optimization

problem for latter method respectively.

This work considers discrete-time signals and assumes that they were

appropriately sampled beforehand. A signal is presented as a complex-valued

signal, which usually results in easier mathematical formulation and is generally

preferred in the signal-processing literature. The purpose of the next sections

in the Introduction is to present an overview of preliminaries and theoretical

background necessary for understanding of the topic, also to introduce existing

methods and their drawbacks. The following work is organized as follows.

Section 3 gives an overview of two groups of parameter estimation algorithmswith
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description of some widely used algorithms. Section 4 introduces terminology

and the main process of sparse reconstruction framework, which is the basis of

the methods described in the publications. Section 5 introduces one particular

algorithm of solving convex optimization problems, which is used widely in this

work. Introduction is followed by main body of this work which consists of four

publications. The main findings are then summarized in the Conclusion.

3. Parameter estimation

In signal processing as well as in other scientific fields we are often interested in

estimating the value of an unknown parameter from a limited set of observations.

As any estimate will depend on the observations we make, then the estimate

itself is considered to be a random variable. Therefore, in order to evaluate the

efficiency of the estimator, it is necessary to establish its statistical properties.

Mainly we are interested in bias and variance of the estimator. Consider

estimating the value of an unknown parameter θ from a sequence xn, for

n = 1, 2, ..., N . We are interested in acquiring the estimate, θ̂, which should be
equal to the actual value of the parameter, at least in the average sense. The

difference between the expected value of our estimate and the actual value θ is
called the bias

Bias = θ − E[θ̂] (1)

If the bias is zero, then the expected value and true value are equal

E[θ̂] = θ (2)

and estimator is considered to be unbiased. If the bias is not zero, then the

estimator is said to be biased. The estimator is considered to be asymptotically

unbiased if the bias approaches zero, when N , number of observations, tends

towards infinity

lim
N→∞

E[θ̂] = θ. (3)

Bias is an objective parameter of the estimator. In general, an unbiased or

asymptotically unbiased estimator is preferred, however if other properties of

the estimator are more important, such as low variance for example, one might

prefer an estimator with small bias to the unbiased estimator. One has also

consider the variance of the estimator, as it is a measure of dispersion of a random

variable around its mean. Low variance means that observations are more closely

concentrated around the mean of the parameter and therefore the estimate is more

precise (in the case of unbiased estimator). A popular graphical representation

of low/high bias and variance is showed in Figure 2. In order for the estimate

to converge to the mean of the parameter, the variance of the unbiased estimator

has to go to zero as the number of observations tends towards infinity

lim
N→∞

V ar[θ̂] = lim
N→∞

E

{
|θ − E[θ̂]|2

}
= 0 (4)
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Figure 2 Graphical illustration of low-high bias and variance [49].

Another important property of an estimator is its robustness, which shows how

well an estimator can maintain its estimation quality in a varying environment,

i.e. when assumptions on the distribution changes. There are other properties

(such as consistency, effeciency etc.) of the estimator that can be considered in

the estimation theory; however, we refer interested readers to the classical books

by Stoica [1], Kay [47] and Hayes [48] for more details.

3.1. Non-parametric estimators

Non-parametric estimators do not pose any prior assumption on the signal

and therefore are quite robust tools which work reasonably well in many

circumstances. The periodogram is arguably one of the most widely known

and used non-parameteric methods for spectral estimation; it is based on power

spectral density (PSD) of the signal. The term was proposed by Schuster [50]

and can be written as

φ(ω) = lim
N→∞

E

{ 1
N

∣∣∣ N∑
t=1

y(t)e−iωt
∣∣∣2}

(5)

where y(t) is a discrete-time data sequence, N denotes the number of samples

and ω = 2πf , where f is the frequency. A periodogram is essentially an estimate

of a PSD from a signal with a limited number of samples and therefore we omit

limit and expectation operators from the PSD definition

φ̂p(ω) = 1
N

∣∣∣ N∑
t=1

y(t)e−iωt
∣∣∣2 (6)

21



From the practical considerations it is impossible to evaluate φ̂p(ω) over

continuous frequencies and therefore the frequency space is sampled in order to

estimate the approximation of the actual PSD of the signal. The estimate is then

calculated by the means of the Discrete Fourier Transform (DFT)

Y (k) =
N∑

t=1
y(t)e−i 2π

N
tk, k = 0, ..., N − 1 (7)

where the contributions of each frequency are then forming the spectrum of the

signal. Computation of the DFT is rarely done directly by (7) as more efficient

algorithms exist. Regular DFT results in complexity of O(N2) and algorithms
which can perform the computation with a lower number of operations are

called Fast Fourier Transforms (FFT). By employing FFT, one can compute the

periodogram with computational complexity as low asO(N logN). Arguably the
most widely used modern implementation of the FFT algorithm was proposed by

Cooley and Tukey [51] in 1965; however, already in 1805 Carl Friedrich Gauss

described an algorithm similar to the FFT for the computations of coefficients of

a finite Fourier series [52]. The Cooley and Tukey version of FFT known as

radix-2 FFT algorithm is not the most efficient by modern standards; however,

its simplicity and ease of implementation keep it popular. An example of a

periodogram estimate is shown in Figure 3 for a signal consisting of three

sinusoids with frequencies f1 = 0.2, f2 = 0.3 and f3 = 0.8, and with additive

White Gaussian noise with signal-to-noise ratio (SNR) of 0 dB. Figure 3 and

following figures in this chapter were generated in MATLAB environment.

Although the periodogram is a simple and computationally efficient method

for estimating signal spectra, there exist several severe drawbacks (otherwise

spectral analysis would not be such an active research field). Due to smearing

effect, the resolution limit for classical periodogram is 1/N , meaning that the

method is not able to reliably resolve details in the signal spectrum which are

separated by less than 1/N cycles per sampling interval. Another effect is known

as spectral leakage - power from frequency bands with high power ”leaks” to

adjacent bands which contain less power. Smearing and spectral leakage are

more critical for spectra with large deviations in amplitude, so-called peaky

spectra. For smooth spectra, these effects are less serious. And although bias of

the periodogram might be considerable in the case of peaky spectra, it is not the

main limitation of the periodogram. This comes from the fact that in the case of

large N , the periodogram is an unbiased estimator

lim
N→∞

E
{
φ̂(ω)

}
= φ(ω) (8)

meaning that if the only problem of this estimator would lie in its bias, it could

be simply solved by increasing the number of collected samples N (considering

it is possible). However, the main problem of the periodogram lies in its large

variance. The periodogram is an inconsistent spectral estimator [1] and its
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Figure 3 Periodogram estimate of a signal with three sinusoids (f1 = 0.2, f2 = 0.3 and

f3 = 0.8).

variance does not go to zero even if the number of samples goes to infinity. This

limitation is known and several improved methods were proposed to decrease the

variance; however, this comes at the cost of increasing the bias of the estimate.

For example, one such method is Blackman-Tukey spectral estimator, which

considers adding windowing (or weighting) to the initially estimated spectra.

The method considers correlogram, which is an equivalent estimator to the

periodogram and can be represented as follows

φ̂c(ω) =
N−1∑

k=−(N−1)
r̂(k)e−iωk (9)

where r̂ denotes an estimate of the covariance lag r(k) from the data sequence

{y(n), ..., y(N)}. The Blackman-Tukey modification of the initial correlogram
is given by

φ̂BT (ω) =
M−1∑

k=−(M−1)
w(k)r̂(k)e−iωk (10)

where w(k) is a weighting coefficient and M ≤ N . This approach can be

seen as equivalent to the ”locally” weighted average of the periodogram [1] and

results in smoothed version of the spectra estimated by the periodogram and

hence reducing fluctuations and decreasing variance. However, this approach

also introduces the undesirable effect of reducing the resolution and therefore

choosing the appropriate window to use is a trade-off between statistical variance
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and spectral resolution. This is controlled by the window length. Another

trade-off that needs to be considered is the one between smearing and leakage

effects, which are controlled by the shape of the window (weighting coefficients)

[1]. This trade-off usually considers the application at hand, which dictates the

most appropriate window shape to use. Different types of windows have been

proposed, each one optimizing a specific property of the estimate. For example:

Rectangular, Bartlett, Hanning, Hamming, Blackman etc.

Bartlett method [53], [54] splits available observations N into L = N/M
data sequences ofM samples each. The periodogram is then calculated for each

L data sequence and the results are averaged. It is easy to conclude that by using

the Barlett method we reduce the spectral resolution by a factor of L compared

to the periodogram directly calculated from N observations. The resulting gain

in variance reduction can also be shown to have the same factor L [1].

Another popular method for estimating the PSD is theWelch estimator [55]. It

can be seen as extension to the Bartlett method. The data sequences are allowed

to overlap in the Welch method, which is not the case with the Bartlett method.

This results in more periodograms for averaging and decreases the variance of

estimate of PSD. In addition, each sequence is windowed before computing the

periodogram, which gives control over the resolution trade-off.

To sum up, the non-parametric estimators are reliable tools for the task of

estimating the signal’s PSD. They are fast, robust, have been well studied and

provide reasonable estimation performance. Their biggest limitation is their

inferior resolution and variance.

3.2. Parametric estimators

Parametric estimators seek to establish the data model which describes the signal

under the consideration and use this model to estimate the spectrum. Therefore

the task itself is to estimate the parameters of the model. When the signal indeed

confirms to the model, the parametric estimators often result in more accurate

estimates as compared to non-parametric methods. On the other hand, when

assumptions made by the data model do not hold for the signal under evaluation,

then parametric methods perform worse than non-parametric ones, as latter are

more robust to this sort of problems since they do not make any assumption

about the data. Discussion on parametric methods can be divided into methods

for the rational spectra (which forms a dense set on continuous spectra) and the

methods for discrete spectra (sinusoids in the presence of noise).

A rational PSD can be described as a rational function of e−iω

φ(ω) =
∑m

k=−m γke
−iωk∑n

k=−n ρke−iωk
(11)
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Figure 4 Least squares estimate for a signal with three sinusoids (f1 = 0.2, f2 = 0.3
and f3 = 0.8).

and then represented [47] in the following form

φ(ω) =
∣∣∣∣B(ω)
A(ω)

∣∣∣∣2σ2 (12)

where σ2 is a positive scalar and A(ω) and B(ω) are polynomials

A(ω) = 1 + α1e
−iω + ...+ αne

−inω

B(ω) = 1 + β1e
−iω + ...+ βme

−imω
(13)

Arbitrary rational PSD in (12) corresponds to white noise with the power σ2

filtered with transfer function [1], [47]

H(ω) = B(ω)/A(ω) (14)

which can be represented in the time domain through Z-transform

y(t) = B(z)
A(z)e(t) (15)

where e(t) is white noise of variance equal to σ2. This approach allows us

to represent the spectral estimation as a signal modeling problem. For a more

thorough discussion we refer interested readers to [1], [47], [48]. Next, we

consider several methods for acquiring signal model parameters.
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A signal y(t), that satisfies (15) is called an autoregressive moving average

(ARMA, ARMA(n,m)) signal [1] and forms a class of ARMA signals.

A(z)y(t) = B(z)e(t) (16)

In the case of m = 0, ARMA signal turns into an autoregressive (AR) signal,

which can be considered a sub-class of ARMA signals.

A(z)y(t) = e(t) (17)

AR type of signals are frequently used in applications as the AR model can

represent spectra with narrow peaks, which are quite prevalent in practice. In

addition, theARmodel is a topic well researched, different methods for estimating

the model parameters exist and the stability of the estimate can be guaranteed. For

example, Yule-Walker method constructs system of linear equations (also known

as Yule-Walker equations) and uses the relationship between the covariances

and the AR parameters to obtain the solution. Another method for obtaining

the AR model parameters is a recursive method known as Levinson-Durbin

algorithm (LDA), which utilizes the structure of Yule-Walker system of equations

to find the solution. The structure is Hermitian and Toeplitz and it allows LDA

to be computationally more efficient than the standard Yule-Walker method.

The description of aforementioned methods is not presented as it described

extensively in the literature, for example [48]. We will, however, consider

the least squares (LS) method for AR estimate as it coincides well with the

mathematical presentation of the following topics. The LS method results in

the similar formulation as the one used for finding the best linear predictor and

therefore AR modeling is often referred to as linear predictive modeling [1].

Considering the output signal y(t) and the input signal x(t) one seek to find set
of parameters β for linear approximation

β̂ = argmin
β

N−1∑
t=0

∣∣y(t) − βx(t)
∣∣ (18)

Solution for the least squares estimator can be find analytically as

β̂ = (XT X)−1XT y (19)

where X = [x(0) . . .x(N)] and y = [y(0) . . . y(N)]T . Example of LS estimate

for the same signal consisting of three sinusoids and SNR of 0 dB is shown in

Figure 4.

In the case of n = 0 ARMA signal turns into a moving average (MA) signal;

however, the MA signal cannot model the narrowband spectra1.

y(t) = B(z)e(t) (20)

1In theory it is possible, however only if order of the model is very large, which is

highly impractical.
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Instead, the MA model can provide good approximation for the spectra with

wider peaks. As such spectra are less common in practice, the MAmodel does not

find such widespread use (and corresponding interest from scientific community)

as the AR model. In addition, the MA model is more difficult to solve than the

AR model and it is usually reasonable to solve the ARMA instead, as it provides

similar computational difficulties, but results in more general solution.

Considering methods for discrete spectra, which is common in many different

applications, such as communications, radar, sonar, geophysical seismology etc.,

a signal can be well described by the sinusoidal model as follows

y(t) = x(t) + e(t) (21)

x(t) =
N∑

k=1
αke

i(ωkt+ρk) (22)

where x(t) denotes the signal consisting of the sum of complex-valued sinusoids

with αk, ωk and ρk corresponding to k-th amplitude, frequency and phase,

respectively. The noise e(t) is usually assumed to be complex-valued Gaussian
white noise. As parameters relate to the signal in nonlinear way, one can use the

nonlinear least square (NLS) method

f(ω, α, ρ) =
N∑

t=1

∣∣∣∣y(t) −
n∑

k=1
αke

i(ωkt+ρk)
∣∣∣∣2 (23)

Subspace-based methods such as MUltiple SIgnal Classification (MUSIC) [56]

and Pisarenko’s method [57] (which is a special case ofMUSIC, whenM = p+1)
employ eigen-decomposition to separate signal subspace and noise subspace of

the considered spectra (hence the name). Although mathematical description

of subspace methods is not in the scope of this thesis, it is important to note

that the aforementioned methods can be also considered high-resolution methods

and exhibit satisfactory statistical properties. ESPRIT [58] (Estimation of Signal

Parameters by Rotational Invariance Techniques) is an additional method, which

displays similar and often even better statistical accuracy than MUSIC.

3.3. Semi-parametric estimators

Non-parametric methods provide reasonable estimates to the PSD of the signal

without making any assumption on the signal content and also usually have lower

computational complexity. Parametric methods use underlying information about

the signal, which often can result in better statistical performance and higher

resolution than non-parametric methods. However, they are not that robust as

they depend on the signal model, which should correspond well to the measured

signal and fail if it is not the case. They also require a fair amount of additional
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fine-tuning by the algorithm designer in order to choose the best parameters for the

model. The research community has been interested in methods which produce

high-resolution estimates, but with robustness of non-parametric methods and

without inherent design complexity of parametric methods. For certain situations

such methods exist and we will refer to them as semi-parametric methods. In this

work the assumed constraint that allows for such methods to perform as well as

they do, is the assumption of sparsity of the signal.

4. Sparsity and sparse reconstruction

The idea behind sparse reconstruction or sparse estimation methods (also sparse

approximation, sparse representation) is to establish underdetermined system of

equations and in order for it to be solvable enforce the solution to be sparse, as

in only few of the candidates to combine a solution are selected. By candidates

we consider here columns in a matrix D, which is referred to as the dictionary.

In general we use the term dictionary to describe a matrix (or a tensor) which

consists of basic elements, which are also referred to as candidates or as atoms

(meaning smallest building blocks of the solution). The goal is to find a sparse

representation of the signal of interest as a linear combination of as few atoms as

possible. Often the problem is expanded to search also for the basic elements or

candidates themselves. Here, however, we consider the pre-defined dictionary.

Let us consider some dictionary D consisting of signal candidates and solution

vector x which forms a combination of columns from D to reconstruct the signal

y.
y = Dx (24)

In real-life applications we have to consider added noise, therefore the

reconstruction takes form

y = Dx + e (25)

with e corresponding to white Gaussian noise vector, which is the usual

assumption due to its favorable mathematical representation and often good

approximation of the actual systems. A common solution to this sort of a problem

would be minimizing squared `2-norm of residuals, or finding shortest Euclidean

distance between signal vector y and its approximation, which is reconstructed

from combination of columns from dictionary D described by solution vector x̂

x̂ = argmin
x

1
2 ||y − Dx||22 (26)

Solution to this optimization problem can be obtained from

x̂ = (DT D)−1DT y (27)

which is the already known LS estimator. However, although this estimator

minimizes residual sum of squares, the optimal solution will be some combination
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of most of the (or all) columns in the dictionary D and therefore not sparse. So,

even if we end up with an optimal estimator in some statistical sense, it is not

providing us any meaningful information about the signal vector y. This form
of solution can be considered as regression problem; however, for regression

the usual assumption is that M < N and in our case it does not hold. The

description of the dictionary D will be given later, but it is usually constructed to

be overcomplete, as in havingM >> N , considerably larger number of columns

than number of rows in the dictionary. Therefore we end up with an undetermined

system of equations without a unique solution. In order to proceed further, we

have to put additional constraints on the problem. This constraint would be

the notion of sparsity - we assume that y is itself sparse or sparse in some

domain (recur beginning of our discussion on wavelet and Fourier Transform).

Therefore the solution to the optimization problem x̂ should be sparse as well.

We should be able to represent y with only some limited number of columns

from the dictionary D. We will come back to this later, drawing parallels with

the framework of compressed sensing. As we are assuming that the solution

should be sparse, we need to impose an additional penalty on our estimator to

guarantee that the solution will indeed be sparse.

4.1. Penalties, regularization

The intuitive way for describing signal sparsity is the `0-”pseudonorm”
2 -

number of non-zeros elements in the vector, which results in the following

optimization problem

x̂ = argmin
x

1
2 ||y − Dx||22 + λ||x||0 (28)

where λ is a tuning parameter controlling sparsity of the solution. This problem,
however, is known to be NP-hard and is unfeasible for large x as it results in the

extensive combinatorial search for the solution. The problem is therefore often

relaxed and `0-penalty is replaced with `1-norm [59] which is defined as

‖x‖1 =
n∑

i=1
|xi| (29)

and results in the following optimization problem

x̂ = argmin
x

1
2 ||y − Dx||22 + λ||x||1 (30)

with the very favourable property of being a convex problem and therefore local

minimum is also a global minimum of the solution. This is the form of the widely

2Not to be confused with the actual pseudonorm definition. Note the absence of

quotation marks. `0-”pseudonorm” is not a norm, because it does not fulfill one of the
definitions of the norm - it is not homogeneous.
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popular LASSO estimator [60] (least absolute shrinkage and selection operator).

An estimate corresponding to previously considered signal with sinusoids is

shown in Figure 5 and Figure 6 compares resolution limits of periodogram and

LASSO estimators. From Figure 5 the sparsity of the solution can be clearly

seen. Only the sinusoids are recovered as including other parts of the spectra

does not result in the sparse solution which describes the measured signal in an

optimal way. Another possible convex relaxation is `2-norm penalty

x̂ = argmin
x

1
2 ||y − Dx||22 + λ||x||2 (31)

In statistics and machine learning literature this is also known as ridge regression

or Tikhonov regularization. One can also consider convex combination of `1 and
`2 penalties which results in so-called elastic-net regularization [61].

x̂ = argmin
x

1
2 ||y − Dx||22 + λ2||x||22 + λ1||x||1 (32)

Sparse reconstruction can be seen as somewhat hybrid of parametric and

non-parametric estimators [62]. It does use some information about the signal

- assumption is made that the signal should be sparse and can be represented

with a small number of significant coefficients. However, no explicit assumption

on the number of required coefficients is made. It is left to the estimator to

find the best model order. The result of this is the group of methods which can

be considered high-resolution estimators, as they often outperform periodogram,

but at the same time are considerably more robust to the model assumption in

comparison to parametric methods.

4.2. Dictionary construction

Next, let us consider dictionary construction for the problem of estimating the

frequencies fk, for k = 1, . . . ,K, of a measured signal yn, with

yn =
K∑

k=1
βke

2iπfktn + εn (33)

for n = 1, . . . , N , and withK denoting the (unknown) number of sinusoids in the

considered signal. Let βk and fk denote the complex amplitude and frequency of

the kth frequency, respectively, tn the nth sample time, and εn the additive noise

at time tn. The original sparse formulation of this estimation problem presented

in [37] considers the LASSO minimization discussed above

argmin
x

1
2 ||y − Dx||22 + λ||x||1 (34)
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Figure 5 LASSO estimate for a signal with three sinusoids (f1 = 0.2, f2 = 0.3 and

f3 = 0.8).

with

y =
[
y1 . . . yN

]T
(35)

D =
[
d1 . . . dL

]
(36)

d` =
[
e2iπf̂`t1 . . . e2iπf̂`tN

]T
(37)

where f̂` for ` = 1, . . . , L denotes the L � K candidate frequencies in the

dictionary, D, which are typically selected to be closely spaced to allow for

minimal grid mismatch, and (·)T the transpose. The desired frequencies and the

model order are then found as the non-zero elements in x̂.
The above example uses a simple case of a sinusoid dictionary element.

Regardless of that, this approach is very effective when dealing with narrowband

signals that are often modeled as a sum of sinusoids. However, the choice of the

proper dictionary element should depend on the task to be solved and indeed

one can use a whole multitude of different functions, for example wavelet-,

curvelet- or bandelet-based dictionary elements for image processing [63]. The

field of online dictionary learning goes even further than that, without implicitly

constructing the dictionary beforehand, but rather coming up with the methods

which the learn properties of the analyzed signal and construct the dictionary

according to that [64], [65]. An obvious resemblance can be found in the

methods of supervised learning from the field of machine learning. Without any

explicit mathematical description of the data structure, the model is built based
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Figure 6 Resolution limits for periodogram and LASSO. Resolution limit is defined

through the peak resolving ability, which is described in numerical section of Publication

D.

on learning example of the considered data, which results in finer adaptation to

the task at hand [63].

4.3. Parameter selection

Recalling the previous discussion on parametric estimators, we made a remark

that the considered sparse reconstruction methods do not require any choice of

the model parameters. Still, the considered approach requires the choice of the

regularization parameter λ. It is usually chosen through some heuristic based

on the data or through the procedure of cross-validation [66], [67] where data

is divided into two parts (usually denoted training and test part), then fitted on

the training part and validated on the test part, which helps to pick the best

model parameters while avoiding ”overfitting” [67]. In this thesis we approach

the choice of the parameter by selecting λ = α‖DHy‖∞, where α ∈ [0, 1] is
user-selectable parameter which sets the ratio for largest inner-product of the

dictionary D and the data [62]. For α = 1 it means λ would be the smallest

tuning parameter value for which all the coefficients in the solution are zero

[68]. The choice of α then is done by employing grid-search, where we evaluate

different values of α and pick the one based on the results. The impact of λ
on the estimate is shown in Figure 7. With decreasing λ we relax the sparsity

constraint and allow more peaks to be considered as a part of the solution.
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Figure 7 LASSO solution for different λ values.
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Figure 8 LASSO solution for different number of elements in dictionary D.

4.4. Grid selection

Previously we have described the construction of the signal candidate dictionary

D, however we did not comment on number of elements in the dictionary. Ideal

dictionary would have elements at the same frequencies as the actual frequencies

in the estimated spectra. This, however, is an unrealistic assumption, as it would
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require infinitely small gaps between the dictionary elements. Instead of relying

on dictionary elements which perfectly coincide with the estimated sinusoids in

the spectra, the construction of the dictionary is usually done with the assumption

that the actual frequencies lie quite close to the ones the dictionary consists of.

Therefore, we end up with the small ”rounding” error.

It is evident that by increasing number of elements in the dictionary we

are getting more precise estimate and vice versa. A finer dictionary, however,

requires more computations in order to find the solution and therefore selecting

the grid for the dictionary can be seen as a trade-off between required resolution

and computational complexity. It is also important to note that by making

dictionary too coarse, the risk is that the estimator might miss the frequency

located in between two dictionary elements [36], [37], as depicted by Figure 8,

where a signal consisting of five sinusoids is considered and dictionaries with

smaller number of elements are recovering only three sinusoids. This effect is

known as the grid-mismatch problem or off-grid estimation [42], [43]. In the

past years there have been several ideas on how to solve this. One approach

that has been studied is an adaptive grid selection, where the dictionary grid is

also a part of optimization problem, meaning that we also search for the optimal

frequency grid and not only for the best set of elements in the dictionary to

solve the problem. This might seem like a hard problem to solve as one has to

find the best set of elements and then to tune the grid in the dictionary, which

itself will affect how the best set of elements should be chosen. However, it

is often possible to separate this sort of problem into separate problems, first

solving for x and then updating the grid and then repeat the process iteratively

until convergence. Although, this sort of approach is easy to use, one still has

to be careful in choosing the initial grid, to avoid poor estimates and what is

more important, the problem formulation is no longer convex in this case and

therefore one cannot guarantee convergence to global optima. Another interesting

approach proposed lately is atomic-norm minimization [44], [45]. Here, instead

of constructing discrete grid on which signal is evaluated, the authors employ

atomic norm penalty, as introduced in [46] and formulate problem using infinite

grid (continuous dictionary). This can be seen as generalization of the LASSO

problem and allows for a way to determine the most suitable convex penalty for

signal recovery. This approach often results in an accurate signal reconstruction,

however at the cost of requiring solving computationally demanding optimization

problems, which might limit the size of the considered problem.

4.5. Relation to a compressed sensing

In the last decade, compressed sensing (CS) has attracted considerable interest

in the research community in areas of mathematics, electrical engineering and

signal processing. So far the classical approach was lead by the Nyquist-Shannon

sampling theory which requires a certain minimum of samples to be collected
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in order to perfectly reconstruct a bandlimited signal. However, we often apply

compression methods afterwards to reduce the amount of captured information

(MP3 or JPEG compression for correspodingly audio and image data for

example). The fundamental change that compressed sensing brings is that rather

than sampling at a higher frequency and then compressing the sampled signal, CS

allows to collect signal in an already compressed form at a lower sampling rate

if the signal can be represented with a small number of significant coefficients,

k � N , i.e. the signal is sparse in some domain. The field of CS has gained

considerable interest with the research community after the theoretical works of

Donaho [27] and Candes [12], [29] showed that a sparse signal can be recovered

exactly from a small set of measurements. Different applications already leverage

the idea, for example applications in medical imaging applications [69], [70]

where speedups of several times were noted. To briefly present the main idea

behind compressed sensing we start with the description of its process as

y = Ax (38)

where x is a signal and y its sampled form we wish to capture, A isM ×N and

is referred to as the sensing matrix and it has to satisfy the restricted isometry

property (RIP) [71]. One class of matrices which are useful and satisfy RIP

with high-probability are random matrices, where the matrix elements are chosen

according to any sub-gaussian distribution. The original signal might not be

sparse and as compressed sensing requires sparsity for its formulation, it is often

required to add a transform to the suitable basis Φ where x is actually sparse.

y = ΦAx (39)

Here lies the additional benefit of constructing the sensing matrix A to be

random, as when Φ is an orthonormal basis, AΦ will satisfy RIP. Recovery can

be done by the already familiar `1-minimzation

x̂ = argmin
z

1
2 ||Az − y||22 + λ||z||1 (40)

or by greedy algorithms including different flavours of basis pursuit [72], [73]

or iterative thresholding methods [74]. Therefore, clear similarity can be noted

between CS framework and LASSO as both consider sparse signals and can be

solved by using similar `1-minimization problem. However, one can also argue
that CS is a more general approach for sampling, whereas LASSO is just one

particular method for reconstruction. In addition, with LASSO one is usually not

concerned with converting signal into sparse form as it is implied that signal is

sparse, on the other hand for the CS the choice of proper transform matrix Φ is

usually part of the problem.
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5. Convex optimization and ADMM

As was discussed before, convex problems have the advantageous property of

solution local minima being also a global minima. Mathematics of convex

optimization has been known for a while; however, modern day interest re-ignited

when interior-point methods developed in the 1980s were found suitable for

solving convex problems. Then, since the 1990s many applications of convex

optimization have been discovered in areas such as automatic control systems,

estimation and signal processing, communications and networks, electronic

circuit design, data analysis and modeling, statistics, finance and many more

[75]. In addition, general-purpose software for nonlinear convex optimization

solvers such as MOSEK, Sedumi, SDPT3 [76]–[78] are readily available for

the public. This stimulated additional interest in the research community.

Modelling packages such as CVX, Yalmip (Matlab), CVXMOD (Python) [75],

[79] facilitate further development and prototyping of new optimization problems

and regularizers. Although such frameworks are great for experimentation, they

are generally too complex and computationally expensive. Therefore, it is often

required to implement faster solver directly for the considered problem. Next,

we will present one such method, which is also used to solve various problems

presented further in this thesis.

5.1. The alternative direction method of multipliers

The Alternative Direction Method of Multipliers (ADMM) is a Lagrangian-based

method developed in the 1970s, which gained new attention in the 21st century

due to the rise of Machine Learning and Big-Data and its requirements of scalable

distributed solution methods [80]. ADMM works by decomposing a large

problem into smaller ones, then iteratively solving these small subproblems while

coordinating to find a solution to the original large problem. This approach helps

to distribute solving subproblems to different computing nodes or/and leverage

modern hardware for parallel computing (graphics processing units (GPU)) [81].

Next, we will proceed with a brief description of the basic ADMM formulation;

however, the interested reader is referred to a more in-depth overview of the

method combined by Boyd et al. [80]. ADMM solves following convex

optimization problem

minimize f1(z) + f2(Gz), (41)

where z is the optimization variable, f1(·) and f2(·) are convex functions, and
G is a known matrix. If we introduce an auxiliary variable u = Gz, then we

can rewrite accordingly

minimize f1(z) + f2(u) + ρ

2‖Gz − u‖2
2 (42)

subject to Gz − u = 0, (43)
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The augmented Lagrangian for the scaled form of ADMM is formed then as

Lρ(z,u,d) = f1(z) + f2(u) + ρ

2‖Gz − u + d‖2
2, (44)

where d denotes the scaled dual variable. The problem is solved by iterating

between solving for z, while keeping u fixed at the value of the previous

iteration and vice versa. Solution holds for all ρ, since at any feasible point

‖Gz − u‖2
2 = 0. At iteration (j+1) solutions are obtained by solving

z(j+1) = argmin
x

Lρ(z,u(j),d(j)) (45)

u(j+1) = argmin
x

Lρ(z(j+1),u,d(j)) (46)

and updating the scaled dual variable as

d(j+1) = d(j) − ρ(Gz(j+1) − u(j+1)) (47)

ADMM optimization is a great mathematical tool when solutions for (45) and

(46) can be found easier than the original problem at hand.

5.2. ADMM for LASSO

Let us consider the formulation of ADMM for LASSO (3) by splitting the initial

variable x into two variables, x and z, with LASSO taking the following form

minimize
x,z

1
2 ||y − Dx||22 + λ||z||1 (48)

The Augmented Lagrangian is

Lρ(x, z,u) = 1
2 ||y − Dx||22 + λ||z||1 + ρ

2‖x − z + u‖2
2 (49)

To minimize (49) with respect to variables x and u, we need to differentiate the
Lagrangian, set the resulting derivative to zero and solve for the corresponding

variable at step k + 1. For x this approach yields an expression similar to ridge

regression

xk+1 =
(
DT D + ρI

)−1(
DT y + ρ(z(k) − u(k))

)
(50)

and ADMM can be interpreted as a method for solving the lasso problem

by iteratively carrying out ridge regression [80]. Due to `1-penalty, z is

non-differentiable directly, but a closed-form solution can be found by using

subdifferential calculus and represented in the form of soft-thresholding operator

zk+1 = S(x(k+1) + u(k), λ/ρ) (51)
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Finally, the last step of ADMM is to update dual variable u according to (47).

The principal computational cost is the inversion in (50), which requires O(M3)
[82]. However, it can be pre-computed offline and thus LASSO through ADDM

requires at most O(M2) operations, which can possibly be further reduced by

utilizing efficiently the structure of the dictionary matrix through factorization

similar to approaches presented in [83], [84].

6. Problem statement and research questions

To conclude on the previous discussion, it is clear that semi-parametric estimators

can provide a viable alternative to parametric and non-parametric estimators and

result in high-resolution estimates. In some conditions they can outperform

non-parametric estimators in terms of frequency resolution without introducing

model sensitivity as parametric estimators do. However, we need to consider

that semi-parametric estimators might still require considerable amount of

computational resources to reach the optimal solution. Therefore, it is of

interest to formulate efficient algorithms for solving the optimization problem.

State-of-the-art estimators mostly utilize methods of sparse reconstruction and

dictionary-based approach. However, for dictionary-based estimators the problem

of grid-selection arises and although different attempts at mitigating it exists in

the literature, they all have their drawbacks and therefore new methods are still

needed. This is true for parameter estimation in general as well. Although this

area of research has been very active and have seen many brilliant contributions

through the last 70 years, it is still not solved and many new methods are

being proposed each year. To summarize, the general requirements for the ideal

estimator are:

• Reliable, unbiased estimate with low variance

• Robust

• Able to provide high-resolution estimates

• Computationally efficient

• Simple problem formulation and not limited by the problem size

• Does not suffer from off-grid problem

• Is able to work with non-uniform data without requiring reformulation of

estimator

• Provides reliable estimate with small number of samples
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Research questions:

1. Can wideband dictionary formulation help to mitigate off-grid estimation

issue for sparse signal reconstruction?

2. If wideband based dictionary is suitable, then what sort of computational

complexity reduction can one expect from iterative formulation of the

estimation problem?

3. How suitable are different types of wideband elements?

4. What are the possible drawbacks of wideband dictionaries compared to

classical narrowband dictionaries?

5. How well does synthetic tests correspond to actual real-life data?

6. What other estimators can benefit, and in what way, from dictionaries

constructed in a wideband manner?

7. Contributions of the thesis

The main focus of this thesis is on methods of sparse signal estimation. The main

contributions of this thesis for that field can be summarized as follows:

1. A novel method of constructing the dictionary for sparse signal estimation.

The proposed method of wideband dictionaries decreases probability

of missing off-grid components and can make reliable estimations in

situations where the number of samples is considerably less than the

number of dictionary elements. The percentage of correct model order

estimation in this scenario is 40 − 50% higher than conventional method

(90-100% vs 50-60%). For the same resolution, computational complexity

of the proposed method can be 20 − 30 times lower, which results in

a considerable reduction in the time required to make an estimation

[Publications A and B].

2. Application of the method described in Publications A and B to actual real-

life signals in the domain of electrical bio-impedance. Describing method

of sparse reconstruction for the separation of cardiac and respiratory signal

components from electrical bio-impedance measurements [Publication C].

3. A novel procedure for iterative zooming for the IAA algorithm. The

proposed approach allows for higher precision estimates on relevant areas

of the spectrumwithout the need for using a large dictionary of finely spaced

elements. Therefore, the proposed approach reduces the computational

complexity required for the estimation. The proposed method coupled

with the wideband dictionary results in increased estimation performance

in terms of frequency estimation as well as peak resolving ability. Average

runtime of the proposed method is up to 4.5x faster [Publication D].
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This thesis is based on four Publications (A to D). The outline of the Publications

is presented below.

Publication A: Estimating Sparse Signals Using Integrated Wide-band

Dictionaries

In this paper, we present a technique for reducing the size of the dictionary in sparse

signal reconstruction by formulating an initial dictionary containing elements

that span bands of the considered parameter space. We allow for the use of this

banded dictionary in a first-stage estimation procedure, in which large parts of

the parameter space is discarded for further analysis, thereby reducing the overall

computationally complexity required to allow for a reliable signal reconstruction.

We illustrate the presented principle on the problem of estimating sinusoidal com-

ponents corrupted bywhite noise. Thework in PublicationA has been published as

Maksim Butsenko, Johan Swärd, and Andreas Jakobsson. ”Estimating

Sparse Signals Using Integrated Wide-band Dictionaries” in Proc. of 42nd IEEE

Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), New Orleans,

USA, pp. 4426-4430, 5-9 Mar. 2017.

Publication B: Estimating Sparse Signals Using Integrated Wide-band

Dictionaries

In this paper, we introduce a wideband dictionary framework for estimating

sparse signals. By formulating integrated dictionary elements spanning bands

of the considered parameter space, one may efficiently find and discard large

parts of the parameter space not active in the signal. After each iteration, the

zero-valued parts of the dictionary may be discarded to allow a refined dictionary

to be formed around the active elements, resulting in a zoomed dictionary to

be used in the following iterations. Implementing this scheme allows for more

accurate estimates, at a much lower computational cost, as compared to directly

forming a larger dictionary spanning the whole parameter space or performing a

zooming procedure using standard dictionary elements. Different from traditional

dictionaries, the wideband dictionary allows for the use of dictionaries with fewer

elements than the number of available samples without loss of resolution. The

technique may be used on both one- and multi-dimensional signals, and may be

exploited to refine several traditional sparse estimators, here illustrated with the

LASSO and the SPICE estimators. Numerical examples illustrate the improved

performance. The work in Publication B has been be published as

Maksim Butsenko, Johan Swärd, and Andreas Jakobsson. ”Estimating

Sparse Signals Using Integrated Wide-band Dictionaries” in IEEE Transactions

on Signal Processing, vol. 66, no. 16, pp. 4170-4181, 2018.

40



Publication C: Sparse Reconstruction Method for Separating Cardiac

and Respiratory Components from Electrical Bioimpedance Measurements

In this work, we investigate the possibility of employing a sparse reconstruction

framework for the separation of cardiac and respiratory signal components from

the bioimpedance measurements. The signal decomposition is complicated

by the nonstationarity of the signal and overlapping of their spectra. The

signal has a harmonic structure which is sparse in the spectral domain. We

approach the problem by considering a dictionary with integrated wideband

elements describing spectral components of the considered signal. The parameter

estimation task is solved through the means of sparse reconstruction where

solving the optimization problem returns a sparse vector of relevant dictionary

atoms. The work in Publication C has been published as

Maksim Butsenko, Olev Märtens, Andrei Krivos̆ei and Yannick Le Moul-

lec. ”Sparse Reconstruction Method for Separating Cardiac and Respiratory

Components from Electrical Bioimpedance Measurements” in Elektronika ir

Elektrotechnika, vol. 24, no. 5, pp. 57-61, 2018.

Publication D: The Zoomed Iterative Adaptive Approach

In this work, we investigate the possibility of incorporating a zooming procedure

for the iterative adaptive approach (IAA), and thereby allow for higher precision

on relevant areas of the spectrum. These kinds of zooming schemes have been

used successfully together with several other methods, and have in many cases

shown dramatical decrease in the computational cost. It has earlier been noted

that the IAA method does not easily allow for these kind of zooming approaches,

as the covariance formulation dictates that the resolution must be the same over all

regions of the spectrum. In this paper, we present an iterative zooming procedure

which allows for an efficient local estimation of IAA spectrum. Numerical

examples illustrate the improved performance as compared to the classical IAA

estimate. The work in Publication D has been accepted and will be published as

Maksim Butsenko, Johan Swärd, and Andreas Jakobsson. ”The Zoomed

Iterative Adaptive Approach” at 2018 International Symposium on Intelligent

Signal Processing and Communication Systems.
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Abstract

In this paper, we present a technique for reducing the size of the dictionary

in sparse signal reconstruction by formulating an initial dictionary containing

elements that spans bands of the considered parameter space. We allow for the

use of this banded dictionary in a first-stage estimation procedure, in which large

parts of the parameter space is discarded for further analysis, thereby reducing

the overall computationally complexity required to allow for a reliable signal

reconstruction. We illustrate the presented principle on the problem of estimating

sinusoidal components corrupted by white noise.

Keywords: sparse signal reconstruction, dictionary learning, convex optimization

53



1. Introduction

A wide range of applications yields signals that may be well approximated using

a sparse reconstruction framework, and the area has attracted dramatic interest in

the recent literature (see, e.g., [1]–[3] and the references therein). Much of this

work has focused on formulating convex algorithms that exploit different sparsity

inducing penalties, thereby encouraging solutions that are well represented using

just a few elements from some known dictionary matrix, D. If the dictionary is

appropriately chosen, even very limited measurements can be shown to allow

for an accurate signal reconstruction [4], [5]. Recently, increasing attention has

been given to signals that are best represented using a continuous parameter

space. In such cases, the discretization of the parameter space that is typically

used to approximate the true parameters will not represent the noise-free signal

exactly, resulting in solutions that are less sparse than desired. This problem

has been examined in, e.g., [6]–[8], wherein discretization recommendations

and new bounds of the reconstruction guarantees were presented, taking the

grid mismatch into consideration. Typically, this results in the use of large

and over-complete dictionaries, which, although quite efficient, often violate the

assumptions required to allow for a perfect recovery guaranty.

As an alternative, one may formulate the reconstruction problem using a

continuous dictionary, such as in, e.g., [9]–[11]. Such formulations typically

use an atomic norm penalty, as introduced in [12], which allows for a way to

determine the most suitable convex penalty to recover the signal, even over a

continuous parameter space. Such a solution often offers an accurate signal

reconstruction, but typically requires one to solve large and rather complicated

optimization problems, thereby limiting the size of the considered problem.

In this work, we examine an alternative way of approaching the problem,

proposing the use of wide-band dictionary elements, such that the dictionary is

formed over B subsets of the continuous parameter space. In the estimation

procedure, the activated subsets are retained and refined, whereas non-activated

sets are discarded from the further optimization. Without loss of generality, the

proposed principle is here illustrated on the problem of estimating the frequencies

ofK complex-valued sinusoid corrupted by white circularly symmetric Gaussian

noise. This is a classical estimation problem, originally expressed using a sparse

reconstruction framework in [13], and having since attracting notable attention

(see, e.g., [14]–[17]). Here, using the classical formulation, the resulting

sinusoidal dictionary will allow for a K-sparse representation of frequencies on

the grid, whereas the grid mismatch of any off-grid components will typically

yield solutions with more than K components. Extending the dictionary to use a

finely spaced dictionary, as suggested in, e.g., [8], will yield the desired solution,

although at the cost of an increased complexity. In this work, we instead proceed

to divide the spectrum into B (continuous) frequency bands, each band possibly

containing multiple spectral lines. This allows for an initial coarse estimation of
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the signal frequencies, without (significantly) increasing the risk of missing any

off-grid components.

The proposed principle may also be used when solving the reconstruction

problem using gridless methods, such as the methods in [9]–[11]. It has

been shown that if the reconstruction problem allows for any prior knowledge

about the location of the frequencies, e.g., the frequencies are located within

a certain region of the spectrum, one may use this information to improve the

estimates[18]. The proposed method may then be used for attaining such prior

information, and thus improving the overall estimates as a result.

2. Problem statement

Consider the problem of estimating the frequencies fk, for k = 1, . . . ,K, of a

measured signal yn, with

yn =
K∑

k=1
βke

2iπfktn + εn (1)

for n = 1, . . . , N , and where K denotes the (unknown) number of sinusoids

in the signal. Furthermore, let βk and fk denote the complex amplitude and

frequency of the kth frequency, respectively, tn the nth sample time, and εn the

additive noise at time tn. The classical sparse formulation of this estimation

problem, as presented in [13], considers the LASSO minimization (see also [19])

min
x

1
2 ||y − Dx||22 + λ||x||1 (2)

with

y =
[
y1 . . . yN

]T
(3)

D =
[
d1 . . . dL

]
(4)

d` =
[
e2iπf̂`t1 . . . e2iπf̂`tN

]T
(5)

where f̂` for ` = 1, . . . , L denotes the L � K candidate frequencies in the

dictionary, D, typically selected to be closely spaced to allow for minimal grid

mismatch, and (·)T the transpose. The penalty on the 1-norm of x will ensure

that the found solution, x̂, will be sparse, with λ denoting a user parameter

governing the desired sparsity level of the solution. The desired frequencies, as

well as their order, are then found as the non-zero elements in x̂. As shown in
[8], the number of dictionary elements, L, typically has to be large to allow for

reliable high-resolution frequency estimates.

As an alternative, one may use a zooming procedure, where one first employ

an initial coarse frequency dictionary, D1, and then employ a fine dictionary,
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Figure 1 The inner-product of a dictionary containing L = 50 (narrowband) candidate

frequency elements and the noise-free signal, with N = 100.

D2, centered around the initially found frequency estimates (see, e.g., [20],

[21] for similar approaches). This allows for computationally efficient solution

of the optimization problem in (3), but suffers from the problem of possibly

missing off-grid components far from the initial coarse frequency grid. This is

illustrated in Figure 2, where the inner-product between the dictionary and the

signal is depicted together with the location of the true peaks. In this noise-free

example, we used N = 100 samples and L = 50 dictionary elements, with one

of the frequencies being situated in between two adjacent grid points in the

dictionary. As seen in the figure, the coarse initial estimate fails to detect the

presence of the second sinusoid, which is thereby discarded as a possibility in

the following refined estimate. Increasing the number of candidate frequencies

will result in that the side-lobes of the more finely spaced frequencies will lessen

the gap between the frequency grid points, making the inner-product between

the dictionary and the signal larger for sinusoidal components that lies between

two candidate frequencies. However, doing so will increase computational

complexity correspondingly, begging the question if one may retain a low number

of candidate frequencies, while reducing the likelihood of missing any off-grid

components. This is the problem we examine in the following.

3. Integrated Wide-band dictionaries

To allow for off-grid components, we here instead propose forming a wide-band

dictionary over B frequency bands, with each integrated wide-band dictionary
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Figure 2 The inner-product of a dictionary containing B = 50 (wide-band) candidate

frequency elements and the noise-free signal, with N = 100.

element being formed as

ab =
∫ fb+1

fb

e2iπftdf (6)

where fb and fb+1 are the two frequencies bounding the frequency band, for

b = 1, . . . , B. The resulting elements are then gathered into the dictionary, A,

formed as

A =
[

a1 . . . aB

]
(7)

with the bth dictionary element at time tn being formed as

ab,n = e2iπfb+1tn − e2iπfbtn

2iπtn
(8)

where ab,n denotes the nth element in column b of A. The inner-product between

the proposed dictionary, A, and the earlier signal is shown in Figure 4, using the

same number of dictionary elements as in that case, i.e., with B = 50, clearly
indicating that the proposed dictionary is able to locate the off-grid frequency.

This is due to the wide-band nature of the proposed dictionary, which thus has less

power concentrated at the grid points, but covers a wider range of frequencies,

not reducing to zero, or close to zero, anywhere within the band (as is the case for

the narrowband dictionary elements). As a result, using the wide-band dictionary
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elements, it is possible to use a smaller initial dictionary, thereby reducing the

computational complexity, without increasing the risk of missing components in

the signal.

4. Efficient implementation

To form a computationally efficient solution of the problem and to showcase the

complexity reduction provided by the method proposed in this paper, we proceed

to solve (3) using the popular ADMM algorithm [22]. In order to do so, the

variable x is split into two variables, here denoted x and z, after which the

(scaled) augmented Lagrangian may be formulated as

Lx,z,u = ||y − Ax||22 + λ||z||1 + ρ||x − z + u||22 (9)

where u is the scaled dual variable and ρ is the step length (see [22] for a detailed
discussion). The minimization is thus formed by iteratively solving (29) for x
and z, as well as updating the scaled dual variable u. This is done by finding the
(sub-)gradient for x and z of the augmented Lagrangian, and setting it to zero,

fixing the other variables to their latest values. The steps for the jth iteration are
thus

x(j+1) =
(
AHA + ρI

)−1 (
AHy + z(j) − u(j)

)
(10)

z(j+1) = S(x(j+1) + u(j), λ/ρ) (11)

u(j+1) = u(j) + x(j+1) − z(j+1) (12)

where (·)H denotes the Hermitian transpose, (·)(j) the jth iteration, and S(x, κ)
the soft threshold operator, defined as

S(v, κ) = max (|v| − κ, 0)
max (|v| − κ, 0) + κ

� v (13)

where κ � v denotes the element-wise multiplication for any vector v and

scalar κ. The computationally most demanding part of the resulting ADMM

implementation is to form the inverse in (30) and to calculate AHy. These

steps are often done by QR factorizing the inverse prior to the iteration, so

that this part is only calculated once, and then using the factors when forming

the inner product. The total computational cost for the step in (30) depends

on the size of the matrix A (or, correspondingly, D, if using the narrowband

dictionary). If A is an N × L matrix, and if L < N , computing the inverse will

cost approximately L3 operations, plus an additional L2N operations to form

the Gram-matrix AHA. Furthermore, to compute AHy requires LN operations,

and the final step to compute x costs L2 operations. If instead L > N , one

may make use of the Woodbury matrix identity [23], allowing the inverse to be

formed using N3 + 3LN2 operations, whereafter one has to compute AHy and
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Settings Complexity ratio Grid distance (10−3)

D1000 1 0.50

B20 Q25 31 1.0

B20 Q40 7 0.63

B40 Q25 26 0.50

B40 Q40 7 0.31

B75 Q25 16 0.27

B75 Q40 6 0.17

B75 Q323 1 0.02

Table 1 Complexity reduction compared to using the full dictionary and the distance

between the final grid for different settings. Here, D1000 indicates the one-stage

narrowband dictionary using a dictionary with L = 1000 elements, whereas B20 Q25
indicates the two-stage dictionary using B = 20 wide-band elements, followed by

Q = 25 narrowband elements in the second-stage dictionary.

the final matrix-vector multiplication, together costing LN + L2 operations. In
total, the x-step will have the cost of roughly L3 + (N + 1)L2 +NL, if L < N ,

or N3 + 3LN2 + LN + L2, if N < L.
Since using the banded dictionary allows for a smaller dictionary, one

may calculate the computational benefit of using the integrated dictionary

as compared to just using an ordinary dictionary with large L. Consider

using only a single-stage narrowband dictionary, D1, with L > N dictionary

elements. This requires C1 = N3 + 3LN2 + L2 + LN operations if using the

above ADMM solution, with the dictionary D1 in place of A in (30)-(32).

If, on the other hand, one uses a two-stage wide-band dictionary with N
dictionary elements in the initial coarse dictionary, A1 (which is more than

required, but simplifies the calculations), the cost of forming the first stage

(coarse) minimization is C2 = 2(N3 + N2). By taking the difference, i.e.,

forming R = C1 − C2 = N3 + 3LN2 + L2 + LN − 2(N3 +N2), one obtains
the available computational resources, R, that are left for a second stage

dictionary, A2, without increasing the overall computational cost above that

of the narrowband dictionary solution. Assuming that the A2 dictionary

has Z > N grid points available, one may deduce the grid size by solving

R = N3 + 3N2Z + Z2 + ZN , yielding that one is able to use a fine grid

of Z = (−3N2 +
√

9N4 + 2N3 +N2 + 4R −N)/2 candidates in a secondary

refinement step, without increasing the total computational complexity, as

compared to using the single stage narrowband dictionary. To illustrate the

resulting difference, consider the following settings: L = 1000 and N = 100,
yielding Z ≈ 936 grid points to be distributed over the activated bands. If the

number of activated bands are three in the settings above, that would yield a grid

separation of 1.6 · 10−5, which should be compared to the ordinary dictionary

having a grid separation of 5 · 10−4; a difference of roughly a factor 31.
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Figure 3 The probability of (top) correctly estimating and (bottom) underestimating

the number of spectral lines, for the (single-stage) narrowband dictionary, using

L = 1000 elements (cyan, dashed) and L = 75 elements (green, dot-dashed), and for

the wide-band dictionary, using B = 75 elements (blue, dotted), and the (two-stage)

wide-band dictionary, using B = 75 elements, together with Q = 25 elements per

activated bands in the refining dictionary (red, solid).

5. Numerical examples

In this section, we proceed to examine the performance of proposed method,

initially illustrating that the proposed (two-stage) wide-band estimator has

the same estimation quality as when using the ordinary (one-stage) Lasso

estimator. We considered a signal consisting of N = 75 samples containing

K = 3 (complex-valued) sinusoids corrupted by a zero-mean white Gaussian

noise with signal-to-noise ratio (SNR) of SNR= 10dB. In each simulation,

the sinusoidal frequencies are drawn from a uniform distribution, over [0, 1),
and all the amplitudes have magnitude 1 and phase drawn from a uniform

distribution, over [0, 2π). The performance is then computed using three different
dictionaries, namely the (ordinary) narrowband dictionary, D, with L = 1000
and L = 75 elements, respectively, and the proposed wide-band dictionary,

A, using B = 75 elements, followed by a second-stage narrowband dictionary

using Q = 25 elements per active band. For each dictionary, we evaluate the

performance for varying values of the user parameter α using λ = αλmax,

where λmax = maxi |xH
i yi| is the smallest tuning parameter value for which

all coefficients in the solution are zero [24]. Each estimated result is then

compared to the ground truth, counting the number of correct and underestimated

60



SNR in dB

5 10 15 20

M
S

E

10
-7

10
-6

10
-5

10
-4

10
-3

D1000

B20 Q25

B20 Q40

B40 Q25

B40 Q40

B75 Q25

B75 Q40

Figure 4 Mean-square error curves for different SNR levels for the single-stage

narrowband dictionary, using L = 1000, as compared to the two-stage dictionary, using

B integrated wide-band elements in the first stage, followed by Q narrowband elements

in the second stage.

model order estimates. The result is shown in Figure 10. As can be seen

from the figure, the best results are achieved when α ≤ 0.65, in which case

the proposed wide-band dictionary, using B = 75 bands, followed by a second

stage narrowband dictionary, with Q = 25 per activated band, have similar

performance to the narrowband dictionary using L = 1000 dictionary elements.

Proceeding, we asses the mean-square error (MSE) for different settings of the

two-stage dictionary, showing the MSE as a function of SNR for various sizes of

the first-stage wide-band dictionary (B) and second-stage narrowband refining

dictionary (Q). Figure 2 shows the resulting MSE, for the estimates with correctly

estimated model order; Table 1 shows the corresponding complexity cost and

the final grid distance of the second-stage dictionary. As can be seen from

the figure, the two-stage dictionary using a wide-band dictionary, with B = 40
bands, followed by a refining dictionary using Q = 25 narrowband elements,

achieves the same performance as the single-stage narrowband dictionary using

L = 1000 elements, although the latter requires about 26 times fewer operations.
Furthermore, it may be noted that using the same overall complexity, as resulting

from using B = 75 and Q = 323, we achieve 25 times higher resolution as

compared to the single-stage dictionary. All results are computed using 1000

Monte-Carlo simulations.
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Abstract

In this paper, we introduce a wideband dictionary framework for estimating

sparse signals. By formulating integrated dictionary elements spanning bands

of the considered parameter space, one may efficiently find and discard large

parts of the parameter space not active in the signal. After each iteration, the

zero-valued parts of the dictionary may be discarded to allow a refined dictionary

to be formed around the active elements, resulting in a zoomed dictionary to

be used in the following iterations. Implementing this scheme allows for more

accurate estimates, at a much lower computational cost, as compared to directly

forming a larger dictionary spanning the whole parameter space or performing a

zooming procedure using standard dictionary elements. Different from traditional

dictionaries, the wideband dictionary allows for the use of dictionaries with fewer

elements than the number of available samples without loss of resolution. The

technique may be used on both one- and multi-dimensional signals, and may be

exploited to refine several traditional sparse estimators, here illustrated with the

LASSO and the SPICE estimators. Numerical examples illustrate the improved

performance.

Keywords: sparse signal reconstruction, dictionary learning, convex optimization
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1. Introduction

Awide range of common applications yield signals that may be well approximated

using a sparse reconstruction framework, and the area has as a result attracted

notable interest in the recent literature (see, e.g., [1]–[3] and the references

therein). Much of this work has focused on formulating convex algorithms that

exploit different sparsity inducing penalties, thereby encouraging solutions that

are well represented using only a few elements from some (typically known)

dictionary matrix, D. If the dictionary is appropriately chosen, even very limited

measurements can be shown to allow for an accurate signal reconstruction [4],

[5]. Recently, increasing attention has been given to signals that are best

represented using a continuous parameter space. In such cases, the discretization

of the parameter space that is typically used to approximate the true parameters

will not represent the noise-free signal exactly, resulting in solutions that are less

sparse than desired. This problem has been examined in, e.g., [6]–[8], wherein

discretization recommendations and new bounds of the reconstruction guarantees

were presented, taking possible grid mismatches into consideration. Typically,

this results in the use of large and over-complete dictionaries, which, although

quite efficient, often violate the assumptions required to allow for a perfect

recovery guarantee.

As an alternative, one may formulate the reconstruction problem using a

continuous dictionary, such as in, e.g., [9]–[11]. This kind of formulations

typically use an atomic norm penalty, as introduced in [12], which allows for a

way to determine the most suitable convex penalty to recover the signal, even

over a continuous parameter space. These solutions often offer an accurate signal

reconstruction, but also require the solving of large and computationally rather

cumbersome optimization problems, thereby limiting the size of the considered

problems.

In this work, we examine an alternative way of approaching the problem,

proposing the use of wideband dictionary elements, such that the dictionary is

formed over B subsets of the continuous parameter space. In the estimation

procedure, the activated subsets are retained and refined, whereas non-activated

sets are discarded from the further optimization. This screening procedure may be

broken down into two steps. The first step is to remove the parts of the parameter

space not active in the signal, whereafter, in the second step, a smaller dictionary is

formed covering only the parts of the parameter space that were active in the first

step. This smaller dictionary may then again be expanded with candidates close

to the activated elements, thereby yielding a zoomed dictionary in these regions.

The process may then be repeated to further refine the estimates as desired.

Without loss of generality, the proposed principle is here illustrated on the problem

of estimating the frequencies of K complex-valued M -dimensional sinusoid

corrupted by white circularly symmetric Gaussian noise. The one-dimensional

case of this is a classical estimation problem, originally expressed using a sparse
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reconstruction framework in [13], and having since attracting notable attention

(see, e.g., [14]–[17]). Here, using the classical formulation, the resulting

sinusoidal dictionary will allow for a K-sparse representation of frequencies on

the grid, whereas the grid mismatch of any off-grid components will typically

yield solutions with more than K components. Extending the dictionary to use a

finely spaced dictionary, as suggested in, e.g., [8], will yield the desired solution,

although at the cost of an increased complexity. In this work, we instead proceed

to divide the spectrum into B (continuous) frequency bands, each band possibly

containing multiple spectral lines. This allows for an initial coarse estimation

of the signal frequencies, without the risk of missing any off-grid components.

Due to the iterative refining of the dictionary, closely spaced components are

successfully separated as the dictionary is refined; as the wideband elements span

the full band, no power is off-grid, avoiding the problem of a non-sparse solution

due to dictionary mismatch.

Other screening methods that decrease the dictionary size have been proposed.

For instance, in [18]–[23], methods for finding the elements in the dictionary

that corresponds to zero-valued elements in the sparse vector were proposed.

Based on the inner product between the large dictionary and the signal, a rule

was formed for deeming whether or not a dictionary element was present in

the signal or not. Although these methods show a substantial decrease in

computational complexity, one still has to form the inner product between the

likely large dictionary and the signal. To alleviate this, one may instead use

the here proposed wideband dictionary elements, thereby discarding large parts

of the parameter space. Since the wideband dictionary is magnitudes smaller

than the full dictionary required to achieve the reconstruction, the computational

complexity is significantly reduced.

The proposed principle is not limited to methods that use discretization of the

parameter space; it may also be used when solving the reconstruction problem

using gridless methods, such as the methods in [9]–[11]. It has been shown that

if the reconstruction problem allows for any prior knowledge about the location

of the frequencies, e.g., the frequencies are located within a certain region of

the spectrum, one may use this information to improve the estimates[24]. The

proposed method may also be used to attain such prior information, and thus

improving the overall estimates as a result.

To illustrate the performance of the proposed dictionary, we make use of two

different sinusoidal estimators, namely the LASSO [25] and the SPICE estimators

[26], [27]; the first finding the estimate by solving a penalized regression

problem, whereas the latter instead solves a covariance fitting problem.

The remainder of this paper is organized as follows: in the next section,

the problem of estimating an M -dimensional sinusoidal signal is introduced,

followed, in Section III, by the introduction of the proposed wideband dictionary.

In Section IV, a discussion about the computational complexity reduction allowed

by the proposed wideband dictionary is given, and, in Section V, the performance
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of the proposed wideband dictionary is illustrated by numerical examples. Finally,

in Section VI, we conclude on our work.

2. Problem statement

To illustrate the wideband dictionary framework consider the problem of

estimating the K frequencies f
(m)
k , for k = 1, . . . ,K and m = 1, . . .M , of an

M -dimensional signal yn1,...,nM , with

yn1,...,nM =
K∑

k=1
βke

2iπf
(1)
k

t
(1)
n1 +···+2iπf

(M)
k

t
(M)
nM + εn1,...,nM (1)

for nm = 1, . . . , Nm, and where K denotes the (unknown) number of sinusoids

in the signal. Furthermore, let βk and f
(m)
k denote the complex amplitude and

frequency of the kth frequency and mth dimension, respectively, t
(m)
nm the nmth

sample time in the mth dimension, and εn1,...,nM an additive noise observed at

time tn1 , . . . , tnM . The signal model in (1) may be equivalently described by an

M -dimensional (M -D) tensor

Y =
K∑

k=1
βkd̃

(1)
(k) ◦ d̃

(2)
(k) · · · ◦ d̃

(M)
(k) + E (2)

where ◦ denotes the outer product, and

d̃
(m)
(k) =

[
e2iπf

(m)
k

t
(m)
1 . . . e2iπf

(m)
k

t
(m)
Nm

]T
(3)

To determine the parameters of the model in (1) or (2), as well as the model

order, we proceed by creating a dictionary containing a set of signal candidates,

each representing a sinusoid with a unique frequency. By measuring the distance

between the signal candidates and the measured signal, and by promoting a

sparse solution, one may find a small set of candidates that best approximates the

signal. To this end, we form a dictionary on the form

D(m) =
[
d

(m)
1 . . . d

(m)
Pm

]
(4)

d
(m)
(p) =

[
e2iπf

(m)
p t

(m)
1 . . . e2iπf

(m)
p t

(m)
Nm

]T
(5)

for m = 1, . . . ,M and p = 1, . . . , Pm, where Pm � K denotes the number of

candidates in dimension m. Here, the dictionary is assumed to be fine enough

so that the unknown sinusoidal component will (reasonably well) coincide with

K dictionary elements1. Often, it is more convenient to work with a vectorized

1 As noted in [7], [8], the dictionary generally needs to be selected sufficiently fine to

allow for a reconstruction of the signal, whereas increasing the size of the dictionary will

also increase the computational complexity of the estimate. As shown in the following,

the discussed method relaxes this requirement by instead defining a dictionary covering

bands of potential candidates, rather than a set of individual dictionary candidates.
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Figure 1 Fine-grid dictionary for two-dimensional signal estimation with N1 = 30,
N2 = 30, and P = 60 elements per dimension.

version of the tensor. Let y = vec(Y), where vec(·) stacks the tensor into a

vector. One may then re-write (2) as

y =
(
D(M) ⊗ D(M−1) ⊗ · · · ⊗ D(1)

)
β (6)

where ⊗ denotes the Kronecker product, suggesting that one may find both the

unknown parameters and the model order by forming the LASSO problem (see,

e.g., [13], [25])

min
β

||y − Dβ||22 + λ||β||1 (7)

where D =
(
D(M) ⊗ D(M−1) ⊗ · · · ⊗ D(1)

)
and ‖·‖q denotes the q-norm. A

visual representation of such dictionary is shown in Figure 1 for the 2-D case.

The penalty on the 1-norm of β will ensure that the found solution will be sparse,

with λ denoting a user parameter governing the desired sparsity level of the

solution. The frequencies, as well as their order, are then found as the non-zero

elements in β.
As shown in [8], the number of dictionary elements, P , typically has to be

large to allow for an accurate determination of the correct parameters. This means

that for multi-dimensional signals, the dictionary quickly becomes inhibitory

large. Thus, it is often not feasible in practice to directly compute the solution

of (7) using a dictionary constructed from such finely space candidates. As an

alternative, one may use a zooming procedure, where one first employs an initial

coarse dictionary, D1, to determine the parameter regions of interest, and then

employ a fine dictionary, D2, centered around the initially found candidates

(see, e.g., [28], [29] for similar approaches). This allows for a computationally
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Figure 2 The inner-product of a dictionary containing P = 50 (narrowband) candidate

frequency elements and the noise-free signal, with N = 100.

efficient solution of the optimization problem in (7), but suffers from the problem

of possibly missing off-grid components far from the initial coarse frequency

grid. This is illustrated in Figure 2 for a 1-D signal, where the inner-product

between the dictionary and the signal is depicted together with the location of the

true peaks. In this noise-free example, we used N = 100 samples and P = 50
dictionary elements, with one of the frequencies being situated in between two

adjacent grid points in the dictionary. As seen in the figure, the coarse initial

estimate fails to detect the presence of the second signal component, which is

thereby discarded as a possibility in the following refined estimate. Increasing

the number of candidate frequencies will result in the side-lobes of the dictionary

elements decreasing the gap between the frequency grid points, making the

inner-product between the dictionary and the signal larger for components that

lie in between two candidate frequencies. However, doing so will increase

the computational complexity correspondingly, begging the question if one may

retain a low number of candidate frequencies, while still reducing the likelihood

of missing any off-grid components. This is the problem we shall examine in the

following.

3. Integrated Wideband dictionaries

We note that the above problem results from the dictionary being formed over

a set of single-component candidates, thereby increasing the risk of neglecting

the off-grid components. In order to avoid this, we here propose a wideband

dictionary framework, such that each of the dictionary elements is instead formed

over a range of such single-component candidates. This is done by letting
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Figure 3 Wideband dictionary with integrated sinusoids elements formed with N1 = 30,
N2 = 30, and B = 6 bands per dimension.

the dictionary elements be formed over an integrated range of the parameter(s)

of interest, in this case being the frequencies of the candidate sinusoids. For

a multi-dimensional sinusoidal dictionary, the resulting B integrated wideband

elements should thus be formed as

ab(1),...,b(M)(t(1), . . . , t(M)) =∫ f
b(1)+1

f
b(1)

· · ·
∫ f

b(M)+1

f
b(M)

e2iπ
(

f (1)t(1)+···+f (M)t(M)
)
df (1) . . . df (M) (8)

for t(m) = 1, . . . , Nm for all m = 1, . . . ,M , where fb(m) and fb(m)+1 are the

two frequencies bounding the frequency band, for b = 1, . . . , B, for the mth

dimension. The resulting elements are then gathered into the dictionary, B,

where each column contains a specific wideband of the M -D parameter space

for all time samples, where each element is formed as the solution from (8), such

that, in this case,

ab(1),...,b(M)(t(1), . . . , t(M)) =
M∏

m=1

e
2iπf

b(m)+1t(m)
− e2iπf

b(m) t(m)

2iπt(m) (9)

Note that (9) corresponds to theM -D inverse Fourier transform of 1, i.e., it is
the M -D inverse Fourier transform of an M -D section in the frequency domain
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Figure 4 The inner-product of a dictionary containing B = 50 (wideband) candidate

frequency elements and the noise-free signal, with N = 100.

with unit amplitude. For the 1-D case, this simplifies to{
1, for fa ≤ f ≤ fb

0
F−1
−−→ e2iπfbt − e2iπfat

2iπt (10)

Algorithm 1 summarizes the usage of the wideband dictionary in a sparse

reconstruction framework. In Figure 3, we show a visual representation of

the resulting wideband dictionary for M = 2 dimensions. The inner-product

between the proposed dictionary, B, and the earlier 1-D signal is shown in

Figure 4, using the same number of dictionary elements as in Figure 1, clearly

indicating that the proposed dictionary is able to locate the off-grid frequency.

This is due the wideband nature of the proposed dictionary, which thus has less

power concentrated at the grid points, but covers a wider range of frequencies,

not reducing to zero, or close to zero, anywhere within the band (as is the

case for the narrowband dictionary elements). As a result, using the wideband

dictionary elements, it is possible to use a smaller dictionary, thereby reducing the

computational complexity, without increasing the risk of missing components in

the signal. To further show this, 1000 Monte-Carlo simulations were conducted

for each considered signal to noise ratio (SNR), here defined as

SNR = 10log10

(Py

σ2

)
(11)

where Py is the power of signal, and σ2 the variance of the noise. In

each simulation, we considered a signal containing two sinusoids, where the

frequencies were randomly selected on (0, 1] with a spacing of at least 2/N , with

N = 100 denoting the signal length. The sinusoids had the magnitudes 4 and 5,
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Algorithm 1 Sparse reconstruction with LASSO using the wideband dictionary

for the 1-D case

1: choose the number of zooming steps, Izoom

2: choose the number of bands, B1
3: set the frequency bin ∆1 = 1

B1
4: F1 = {fk : fk = k∆1, for k = 1, . . . , B1}
5: form the dictionary B1 according to (9)
6: solve min

β1

||y − B1β1||22 + λ||β1||1
7: I1 = {i : β1(i) > 0, for i = 1, . . . , B1}
8: Factive = {fk ∈ F1 : k ∈ I1}
9: for z = 2 to Izoom do {zooming procedure}

10: choose the number of bands, Bz

11: select the frequency bin ∆z = ∆z−1
Bz

12: Fz = {fk : fk = [fk + ∆z, fk + 2∆z, . . . , fk +Bz∆z]T , fk ∈ Factive}
13: form the dictionary Bz according to (9)

14: solve min
βz

||y − Bzβz||22 + λ||βz||1
15: Iz = {i : βz(i) > 0, for i = 1, . . . ,

∏z
1 Bz}

16: Factive = {fk ∈ Fz : k ∈ Iz}
17: end for

with a randomly selected phase between (0, 2π]. Two dictionaries were given,

one containing ordinary sinusoids and one containing the proposed wideband

components, both containing P = B = 50 elements. For each dictionary, the

inner-products with the signal where computed, where the amplitudes were

normalized so that the largest estimated peak had unit magnitude. Figure 5 shows

the variance of the smallest peak for different SNR-levels. As is clear from the

figure, the variance of the peaks are much lower for the banded case. The reason

why the sinusoidal dictionary results in a larger variance is due to the fact that

the main lobe is much thinner in this case than in the banded counterpart. This

means that when the sinusoids happen to have frequencies that do not overlap

with the main lobe of the dictionary, the power in the inner-product will be small.

This will not only make such components harder to detect, but will also make it

more difficult to determine a suitable hyperparameter, λ.

When P decreases belowN , the gaps between the frequency candidates in the

single-component dictionary become so large that if one of the sinusoids in the

signal has its frequency values between two adjacent grid points, the likelihood

that this sinusoid lie in the null-space of the dictionary increases. This problem is

avoided with the wideband dictionary as it is more likely to eliminate any gaps.

This property is depicted in Figure 6, where the success rate of finding the

true support is displayed as a function of the number of samples, N , and the

number of bands in the dictionary, B, for different number of sinusoids in the
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Figure 5 The standard deviation of the peaks as a function of SNR.

signal, K. The estimation was done for a noise-free signal by solving (7), using

wideband dictionaries and letting

λ = 0.3 max
i=1,...,B

|dT
i y| (12)

where di denotes the ith column of D and the coefficient 0.3 is selected given

the observations in Figure 10. For a more complete discussion on how one

should select λ, we refer the reader to the original presentation of the LASSO

[25]. In the top left figure, the signal contains three sinusoids, and it is clearly the

case that the banded dictionary is able to retrieve the true support for all setting

of N and B/N , except for the case when N = 30 and B/N < 7. In the top

right and bottom figures, where K = 7 and K = 11, respectively, it is shown
that when the number of sinusoids in the signal increases, a larger number of

samples is needed to allow for a successful reconstruction, which is reasonable,

as one needs more information to be able to correctly estimate more parameters.

However, the banded dictionary is able to retrieve the true support as long as

the number of samples is big enough and the ratio B/N is not too small. It is

further clear from the figures, that the banded dictionary actually retrieves the

true support even though B < N .

The proposed approach is not the only way to form a wideband dictionary.

For example, one could populate the dictionary using discrete prolate spheroid

sequences (DPSS) [30]. For an integer Q and with real-valued 0 < W < 1
2 , the

DPSS are a set of Q discrete-time sequences for which the amplitude spectrum is

band-limited. The most interesting property of the DPSS for our discussion is the

fact that the energy spectrum of the dictionary elements are highly concentrated

in the range [−W,W ], suggesting that the DPSS could be a suitable basis for the
candidates in a wideband dictionary, where the candidates are formed such that
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Figure 6 The success rate of finding the true support as a function of the number of

samples (y-axis) and the ratio between the number of bands in the dictionary and the

number of samples (x-axis), for different values of K. Top left corner, K = 3, top right

corner, K = 7, and bottom, K = 11.

each covers a 1/B-th part of the spectrum. In the numerical section below, we
examine how the use of DPSS candidates compare to the integrated wideband

candidates in (9). It is worth stressing that the wideband dictionary framework

introduced here is not limited to the LASSO-style minimizations such as the

one examined in (7). There are many other popular methods that could be

implemented using this approach. As an example of how the wideband dictionary

can be applied for other typical sparse estimation algorithms, consider the SPICE

algorithm [14], [27], formed as the solution to

minimize
p̃≥0

y∗R−1y + ||Wpp||1 + ||Wσσ||1, (13)

where

R(p̃) = APA∗ (14)

A =
[

B I
]

(15)

p =
[
p1 . . . pM

]T
(16)

σ =
[
σ1 . . . σN

]T
(17)

p̃ =
[

pT σT
]T

(18)

P = diag (p̃) (19)

77



and

Wp = diag
([

w1 . . . wP

])
(20)

Wσ = diag
([

wP +1 . . . wP +N

])
(21)

wk = ||ak||22/||y||22, for k = 1, . . . , P +N (22)

Alternatively, one may consider the more general {r, q}-SPICE formulation2 [31]

minimize
p̃≥0

y∗R−1y + ||Wpp||r + ||Wσσ||q (23)

Using the wideband dictionary over B in (13) or (23) will allow for much

smaller dictionaries as opposed to using ordinary sinusoidal dictionaries. Many

other sparse reconstruction techniques may be extended similarly. Generally, the

wideband dictionary may be used either as an energy detector which finds the

parts of the spectrum that have most energy, or in a zooming procedure similar

to the one described above.

4. Parameter Selection

From our discussion on the integrated wideband dictionary and its use for sparse

signal estimation, one may note that there are two parameters which should be

chosen by the user, namely the number of used bands and the number of zooming

steps. The choice of the number of the bands, B, will depend on the required

resolution, whereas the number of zooming steps will decrease the computation

complexity (for a fixed resolution) as with each zooming step inactive parts of

the spectra are discarded from future computations. Therefore, the choice of the

total number of bands one should use is dependent on the required resolution.

Furthermore, for each zooming step, the distribution of these bands should be

made such that the subsequent selection will guarantee a high likelihood of

including the true support. This idea is illustrated in Figure 6, where the success

rate of finding the true support is shown to depend on the number of bands,

the number of samples, and the number of components in the data. As may be

expected, the use of the wideband dictionary does not remove such user choices;

in fact, the here proposed framework does not remove any of the usual user

choices or limitations of a sparse reconstruction technique, be it the LASSO,

SPICE, or any other dictionary based technique, and the same restrictions will

apply that do so for the particular method if used with a narrowband dictionary.

Rather, the wideband dictionary allows for an efficient refinement procedure

speeding up the calculations required in forming the estimate.

2In this formulation, we assume that the columns of the dictionaries are normalized

to have norm equal to 1/||y||22.
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Figure 7 The figure shows wideband elements with varying bandwidths (BW ), with the

resulting values of RB , plotted next to each other using the same scale to illustrate the

difference in gain as the bandwidth of the band varies.

On the other hand, the use of a wideband dictionary does introduce the need

to select the number of used bands, which directly relates to the width of the

used bands as these bands are assumed to span the full parameter range. Due

to the integration, the wideband elements will suffer from a reduced gain in

the middle of the covered band; this will be negligible for bands of limited

width, but will be pronounced, and will affect the estimation results, for wider

bands. This is illustrated in Figure 7, showing a single wideband element for

varying bandwidths. As shown in the figure, the ratio between the minimum and

maximum gains of the wideband element, here denoted RB , will depend on the

bandwidth of the band, and is thus related to both the number of bands, B, and
the number of samples in the signal, N .

To examine this aspect further, we proceed by formulating the ratio RB for

the case of one-dimensional dictionaries. Introducing ∆ = fb − fa, (10) may be

expressed as

a(k) = e2iπfakeiπ∆kψk/πk, for k ∈ Z+ (24)

where ψk = sin(π∆k), implying that the discrete Fourier transform of a(k) may
be expressed as

G(f) = ∆ +
N−1∑
k=1

eiπ∆kψk

πk
e2iπ(fa−f)k (25)
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Figure 8 The ratio between the maximum and minimum gain of a band as a function of

B/N . As shown in the figure, the ratio RB will have a local peak around B = N/3,
with RB ≈ 0.8. It is worth noting that, for B > N , the ratio will smoothly decrease to

one, without any maxima after B = N .

for f ∈ [0, 1). Thus,

|G(f)|2 =∆2 + 2
N−2∑
`=1

N−1∑
k=`+1

ψkψk−`χ`

π2k(k − `)+

2∆
N−1∑
k=1

ψkχk

πk
+

N−1∑
k=1

ψ2
k

π2k2 (26)

where χ` = cos
(
2π`(fa − f + ∆

2 )
)
. The ratio between the minimum and

maximal gain of a band may then be expressed as

RB =
|G(fa + ∆

2 )|2

|G(fa)|2 (27)

Figure 8 illustrates resulting ratios for varying number of samples, indicating that

it is advantageous to select B to be roughly N/3, as this yields a good trade-off
between the computational gain and the likelihood of accurately capturing the

correct model order in few refinement steps, as shown in Figure 9, which

illustrates the impact of RB on the resulting estimates. Here, we have considered

a signal consisting of N = 50 samples containing K = 2 (complex-valued)

sinusoids corrupted by a zero-mean white Gaussian noise with SNR= 20dB. The
figure shows the percentage of correctly estimated model orders for different

ratios of B/N and the corresponding RB ratio (here, to simplify the presentation,

the shown second stage zooming used a constant B2 = 5 elements), computed

using 1000 Monte-Carlo simulations. In the figure, the resulting values of RB
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Figure 9 Percentage of finding correct model order as a function of ratio of bands to

number of samples (top) and RB (bottom).

and corresponding estimates have been sorted in ascending order (based on RB

value) as ratio RB varies heavily in the range B/N < 0.3. Figure 9 confirms

our suggestion of choosing the number of bands based on B ≈ N/3 criteria as

further increase of this ratio results only in marginal improvements in estimation

performance.

5. Complexity analysis

To illustrate the computational benefits of using the wideband dictionary as

compared to forming the full dictionary, we proceed with our example of

determiningK M -D sinusoids by solving (7) using the popularADMM algorithm

[32]. In order to do so, we first transform the problem into a vector form

reminiscent to (6), and split the variable β into two variables, here denoted x and

z, after which the optimization problem may be reformulated as

min
x,z

1
2 ||y − Ax||22 + λ||z||1 subj. to x = z (28)

having the (scaled) augmented Lagrangian

1
2 ||y − Ax||22 + λ||z||1 + ρ

2 ||x − z + u||22 (29)

where u is the scaled dual variable and ρ is the step length (see [32] for a detailed
discussion on theADMM). The minimization is thus formed by iteratively solving

(29) for x and z, as well as updating the scaled dual variable u. This is done by
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finding the (sub-)gradient for x and z of the augmented Lagrangian, and setting

it to zero, fixing the other variables to their latest values. The steps for the jth
iteration are thus

x(j+1) =
(
AHA + ρI

)−1 (
AHy + z(j) − u(j)

)
(30)

z(j+1) = S(x(j+1) + u(j), λ/ρ) (31)

u(j+1) = u(j) + x(j+1) − z(j+1) (32)

where (·)H denotes the Hermitian transpose, (·)(j) the jth iteration, and S(v, κ)
is the soft threshold operator, defined as

S(v, κ) = max (|v| − κ, 0)
max (|v| − κ, 0) + κ

� v (33)

where � denotes the element-wise multiplication for any vector v and scalar κ.

The computationally most demanding part of the resulting ADMM imple-

mentation is to form the inverse in (30) and to calculate AHy. These steps are
often done by QR factorizing the inverse in (30) prior to the iteration, so that this

part is only calculated once. After this, the QR factors are used when forming

the inner product. To give a simple example on the difference between the two

types of dictionaries, we exclude any further computational speed-ups and show

the difference on brute force computations of the above ADMM. This is done to

give an idea on the effect P < N has on the computational complexity. The

total computational cost for the step in (30) depends on the size of the matrix A.

Let N =
∏M

m=1Nm and P =
∏M

m=1 Pm, then A is a N × P matrix. If P < N ,

computing the inverse will cost approximately P 3 operations, plus an additional
P 2N operations to form the Gram matrix AHA. Furthermore, to compute AHy
requires PN operations, and the final step to compute x costs P 2 operations.

If instead P > N , one may make use of the Woodbury matrix identity [33],

allowing the inverse to be formed using N3 + 3PN2 operations, whereafter

one has to compute AHy and the final matrix-vector multiplication, together

costing PN + P 2 operations. In total, the x-step will have the cost of roughly

P 3 + (N + 1)P 2 +NP , if P < N , or N3 + 3PN2 + PN + P 2, if N < P .

Since using the banded dictionary allows for a smaller dictionary, one may

calculate the computational benefit of using the integrated dictionary as compared

to just using an ordinary dictionary with large P . Consider using only a

single-stage narrowband dictionary, D1, with P > N dictionary elements. This

requires C1 = N3 + 3PN2 + P 2 + PN operations if using the above ADMM

solution, with the dictionary D1 in the place of A in (30)-(32). If, on the other

hand, one uses a multiple-stage wideband dictionary with N dictionary elements

in the initial coarse dictionary, B1 (which is more than required, but simplifies

the calculations), the cost of forming the first stage (coarse) minimization is

82



C2 = 2(N3 +N2). By taking the difference, i.e., forming

R = C1 − C2 = N3 + 3PN2 + P 2+
+PN − 2(N3 +N2)

one obtains the available computational resources, R, that are left for the

dictionaries of the zoomed-in stages, without increasing the overall computational

cost above that of the narrowband dictionary solution. Let Bz denote the

zoomed-in dictionary with ηN number of bands, where 0 < η < 1 denotes the

ratio between the number of available bands in the dictionary and the number

of samples. Then, one may deduce the grid size for each Bz that is allowed

without increasing the overall computational complexity as compared to using

the narrowband dictionary by solving

R = KIz

(
(ηN)3 + (N + 1)(ηN)2 + ηN2

)
where Iz denotes the number of zooming steps andK the number of sinusoids in

the signal. To illustrate the resulting difference, consider the following settings:

P = 1000, N = 100, K = 5, and η = 2/3. To only use half the resources that
are needed to solve the full narrowband problem, one may, using the wideband

dictionary, use 4 stages of zooming, resulting in a grid spacing of roughly 10−9,
as compared to 10−3 for the narrowband dictionary. One may of course also use a
zooming procedure when using the narrowband dictionaries, although this would

increase the risk of missing any off-grid component. This means that the smallest

number of dictionary elements, for the narrowband dictionary to avoid missing

any off-grid components, is P = N , and thus the wideband dictionary would

need only at most η2 of the computational resources needed for the ordinary

dictionary, at each zooming stage.

6. Numerical examples

In this section, we proceed to examine the performance of the proposed method,

initially illustrating that the use of a two-stage wideband estimator will have

the same estimation quality as when using the ordinary (one-stage) narrowband

LASSO estimator.

6.1. One-dimensional data

We initially considered a signal consisting of N = 75 samples containing K = 3
(complex-valued) sinusoids corrupted by a zero-mean white Gaussian noise with

SNR= 10dB. In each simulation, the sinusoidal frequencies are drawn from a

uniform distribution, over [0, 1), with all amplitudes having unit magnitude and
phases drawn from a uniform distribution over [0, 2π). The performance is then
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Figure 10 The probability of (top) correctly estimating and (bottom) underestimating the

number of spectral lines, for the (single-stage) narrowband dictionary, using P = 1000
elements (cyan, dashed) and P = 75 elements (green, dot-dashed), and for the initial

wideband dictionary, using B1 = 75 elements (blue, dotted), and the (two-stage)

wideband dictionary, using B1 = 75 elements, together with B2 = 25 elements per

activated bands in the refining dictionary (red, solid).

computed using three different dictionaries, namely the (ordinary) narrowband

dictionary, D, with P = 1000 and P = 75 elements, respectively, and the

proposed wideband dictionary, B, using B1 = 75 elements, followed by a

second-stage narrowband dictionary using B2 = 25 elements per active band.

For each dictionary, we evaluate the performance for varying values of the user

parameter α using λ = αλmax, where λmax = maxi |xH
i y| is the smallest tuning

parameter value for which all coefficients in the solution are zero [19]. Here, xi

denotes either the ith column of the D dictionary or the ith column of the B
dictionary. Each estimated result is then compared to the ground truth, counting

the number of correctly estimated and underestimated model orders. The results

are shown in Figure 10. As can be seen from the figure, the best results are

achieved when α ≤ 0.65, in which case the proposed wideband dictionary, using
B1 = 75 bands, followed by a second stage narrowband dictionary, withB2 = 25
for each activated band, have similar performance to the narrowband dictionary

using P = 1000 dictionary elements.

Proceeding, we assess the mean-square error (MSE), defined as

MSE = 1
K

K∑
k=1

(fk − f̂k)2 (34)

where fk and f̂k denote the true and the estimated frequency, respectively, for the

two-stage dictionary, showing the MSE as a function of SNR for the first-stage
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Figure 11 Mean-square error curves for different SNR levels for the single-stage

narrowband dictionary, using P = 100, as compared to the two-stage dictionary, using

B1 = 20 integrated wideband elements in the first stage, followed by B2 = 5 wideband

elements in the second stage. The percentage of correct model order estimation

(excluding outliers) is shown as a percentage on top of the corresponding MSE value.

wideband dictionary, B1, and second-stage wideband refining dictionary, B2.
Here, and in the following, we consider situations where the number of elements

in the dictionary is less than number of samples. As was described before, this

is a situation where the performance of narrowband dictionaries can deteriorate

seriously. For this experiment, we considered a signal with N = 300 samples

containingK = 2 (complex-valued) sinusoids, being corrupted by different levels
of zero-mean white Gaussian noise with SNR in the range [5, 20] dB. Figure 2
shows the resulting MSE for the LASSO estimator for the estimates with correctly

estimated model order; for runs with the correct model order estimation we also

removed outliers from the final MSE calculation. We consider an estimate as

an outlier if |f − f̂ | > ∆f , where ∆f was defined as two times the possible

resolution, where possible resolution is defined as 1/P for the narrowband

dictionary and 1/(B1 · B2) for the wideband dictionary. Figure 12 shows the

MSE for the same experiment done using the SPICE estimator. The number of

outliers removed for the LASSO estimator was: 4, 0, 0, 0 for the wideband

dictionary and 7, 16, 10 and 11 for the narrowband dictionary (corresponding

to SNRs of 5, 10, 15, and 20 dB). The number of outliers removed for the

SPICE estimator was; 17, 1, 1, 0 for the wideband dictionary and 52, 80, 117,
and 103 for the narrowband dictionary. As can be seen from the figures, the

two-stage dictionary using a wideband dictionary using B1 = 20 bands, followed
by a refining dictionary using B2 = 5 wideband elements, achieves the same

performance as the single-stage narrowband dictionary using P = 100 elements

in terms of resolution. However, the narrow-band dictionary will for this case
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Figure 12 Mean-square error curves for different SNR levels for the single-stage

narrowband dictionary, using P = 100, as compared to the two-stage dictionary, using

B1 = 20 integrated wideband elements in the first stage, followed by B2 = 5 wideband

elements in the second stage. The percentage of correct model order estimation

(excluding outliers) is shown as a percentage on top of the corresponding MSE value.

fail to reliably restore the signal with reconstruction success rates of merely

30 − 50%.

Table 1 shows the relative complexity between using a full narrowband

dictionary (using P = 1000, N = 200, and K = 2) and some different settings
for the wideband dictionaries used in the numerical section. To simplify the

comparison, the given complexity is the one of solving the ADMM without

utilising any structures of the dictionary matrices. From the table, it is clear that it

is more efficient to use the zooming procedure utilising the wideband dictionary

as compared to solving the same problem using a full narrowband dictionary.

Next, we consider non-uniformly sampled data with N = 400 samples, for

K = 2 sinusoids. For this experiment, we also added a third estimation step

Settings Relative complexity

P = 1000, N = 200,K = 2 1

B1 = 20, B2 = 5 0.001

B1 = 20, B2 = 40 0.015

B1 = 10, B2 = 10, B3 = 5 0.001

Table 1 Relative complexity between using the narrow- and wideband dictionaries.

Here, P indicates the number of columns in the narrowband dictionary, whereas B1
and B2 indicate the number of wideband elements in the first and second stage of the

zooming procedure, respectively. In the last row, a third stage has been added using B3
wideband elements.
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Figure 13 Signal estimation for non-uniform sampling: mean-square error curves

for different SNR levels for the single-stage narrowband dictionary, using P = 200
elements, as compared to the three-stage dictionary, using B1 = 10 integrated wideband

elements in the first stage, followed by B2 = 10 and B3 = 5 wideband dictionaries in

the second stage and third stage per active band detected in the previous stage. The

correct model order estimations are shown in percentage above each point.

for the iterative wideband dictionary. After initial estimation with B1 = 10
wideband dictionary elements, we zoom into the active bands with B2 = 10
dictionary elements per active band, and then once again with B3 = 5 dictionary
elements. In spite of the three stage zooming, the method requires considerably

less computational operations as compared to using a corresponding narrowband

dictionary, but results in better performance both in terms of resolution and

model-order accuracy. The resulting MSEs are shown in Figure 13. All results

are computed using 1000 Monte-Carlo simulations.

6.2. Two-dimensional data

In this subsection, we present results on a 2-D data set. In this example,

each dimension is sampled uniformly with N = 100 samples. We compare a

narrowband dictionary with P = 49 elements per dimension with the wideband

dictionary using B1 = 7 bands per dimension in the first step and a wideband

dictionary with B2 = 7 elements per active band in a second (zooming) step.

Here, we use two separate wideband dictionaries, the first, B, using integrated

dictionary elements as defined in (8), and the second, BDP SS , which contains

elements based on DPSS. For the DPSS-based dictionary, we used a sequence

length of Q = 100 and W = 1/2.1. Using W < 1/2.1 results in dictionary

elements which concentrate energy in a more narrow band and are therefore not

suitable for the dictionary with B1 = B2 = 7 elements. We considered a signal
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Figure 14 Signal estimation in two dimensions: mean-square error curves for different

SNR levels for the single-stage narrowband dictionary D, using P = 49 per dimension,

as compared to the two-stage dictionaries (DPSS based and integrated sinusoids based),

using B1 = 7 wideband elements in the first stage, followed by B2 = 7 wideband

elements in the second stage (per active band).

containing K = 2 (complex-valued) sinusoids per dimension, with the signal

being corrupted by a zero-mean white Gaussian noise. In each simulation, the

sinusoidal frequencies are drawn from a uniform distribution, over [0, 1), with
all the amplitudes having unit magnitude. The two dictionaries are compared

against each other based on the MSE performance in the same manner as in the

previous subsection, with the MSE being calculated as the average value for both

dimensions if the model order estimate for the iteration was correct. Outliers

are removed before the MSE calculation. The number of outliers removed

was: 6, 15, 25, 30 for the BDP SS dictionary and 20, 22, 17 and 24 for the

narrowband dictionary (corresponding to SNRs of 5, 10, 15, and 20 dB). The

wideband dictionary B did not result in any outliers. The percentages of correct

model order estimates are shown for each SNR value. Figure 14 shows the

resulting MSE curves. It can be seen that the wideband dictionary with integrated

sinusoids outperforms the DPSS-based wideband dictionary both in terms of

MSE and model-order accuracy. Comparing to using the narrowband dictionary,

it can be seen that both wideband dictionaries outperform it considerably in

terms of model-order estimation, although the narrowband dictionary shows

slightly better performance in terms of MSE. Also in this example, the wideband

dictionaries provide a considerable reduction in computational complexity as

well as a robustness in terms of estimating off-grid components. All results are

computed using 100 Monte-Carlo simulations.

Using the same setup as described above we also evaluated the performance of

the proposed approach when the number of sinusoids to detect is higher. Again, we
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Figure 15 Percentage of correct model order esimations for different number of sinusoids

and for different SNR levels for wideband dictionary (W-B) and narrowband dictionary

(N-B).

considered the ordinary narrowband dictionary, D, and the wideband dictionary,

B, from the previous experiment. We calculated the percentage of correct model

order estimation for signals withK = 4, 6, 8, and 10 (complex-valued) sinusoids.
The results were computed using 100 Monte-Carlo simulations; the correct model

order estimation percentages for different SNR levels are shown in Figure 15.

The best regularization parameters λ for solving the LASSO for each case were

found beforehand with the grid-search method. For this, we selected the range

of parameter α ∈ [0.7, 0.05] with the step-size 0.05 and ran 100 Monte-Carlo

simulations for each model order and then picked the best parameter for the

selected model order based on model order accuracy. For the two-step wideband

dictionary, a grid-search was done for the set of α parameter for the both stages.

It can be clearly seen that for situations where the number of elements in the

dictionary is lower than the number of samples, the narrow-band dictionary fails

to produce any meaningful results.

6.3. Measured data example

Finally, we examine the performance of the proposed wideband framework

on measured nuclear magnetic resonance (NMR) data, again comparing with

using the full narrowband dictionary. The measured data NMR measurement

consist of N = 256 samples, and contains five damped sinusoidal signals. To

make the comparison fair, we neglect the damping in the modelling (as the

wideband dictionary will implicitly allow for the resulting wide peaks, whereas

the narrowband dictionary will require an additional parameter to do so). This

results in estimates containing clusters of peaks instead of individual component.
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Figure 16 The resulting estimates using a dictionary with 2000 narrowband elements

(top), and a two-stage zooming approach using wideband elements, using B1 = 40 in

the first stage and B2 = 50 for each activated bands in a second stage. The signal is a

measured NMR signal of length N = 256.

Figure 16 illustrates the resulting estimates, showing the result of using a

narrowband dictionary with 2000 elements (top), as well as a two-stage wideband

dictionary (using B1 = 40 elements in the first stage and B2 = 50 elements in

the second). The resulting estimates will thus have the same final grid resolution.

As can be expected, both estimators show similar results, having the same

support and roughly the same relative amplitudes. Using the introduced ADMM

implementation described in Section 5, the wideband estimate was formed in

0.315 seconds, which was 20 times faster than the narrowband estimate. Here,

one may note that if an iterative narrowband zooming would be used, it would

require at least 256 elements in the first stage to avoid losing any peaks; doing

so would require more complexity than the two-stage wideband estimator.

7. Conclusion

In this paper, we have introduced a wideband dictionary framework, allowing for

a computationally efficient reconstruction of sparse signals. Wideband dictionary

elements are formed as spanning bands of the considered parameter space. In the

first stage, one may typically use a coarse grid using the integrated wideband

dictionary locating the bands of interest, whereafter non-active parts of the

parameter space are discarded. In the next stage, a refining dictionary can be used

to more precisely determine the parameters of interest on the active bands from

the previous step, allowing for an iterative zooming procedure. The technique

is illustrated for the problem of estimating multidimensional sinusoids corrupted
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by Gaussian noise, showing that the same accuracy can be achieved, although at

a computationally substantially lower cost and with much less risk of missing

any off-grid components. The proposed framework is here illustrated for the

LASSO and SPICE estimators, but other sparse reconstruction techniques may

be extended similarly.
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Abstract

In this work, we investigate the possibility of employing sparse reconstruction

framework for the separation of cardiac and respiratory signal components from

the bioimpedance measurements. The signal decomposition is complicated

by the nonstationarity of the signal and overlapping of their spectra. The

signal has a harmonic structure which is sparse in the spectral domain. We

approach the problem by considering the dictionary with integrated wideband

elements describing spectral components of the considered signal. The parameter

estimation task is solved through the means of sparse reconstruction where

solving the optimization problem returns a sparse vector of relevant dictionary

atoms.

Keywords: Electrical bioimpedance, parameter estimation, sparse recon-

struction, cardiac and respiratory signals, wideband dictionary
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1. Introduction

Electrical bioimpedance (EBI) measurements based applications for medical

signal monitoring can provide interesting alternative to the conventional

approaches due to non-invasiveness and cost-effectiveness. EBI measurements

can characterize different properties of the human tissues and structures as well

as various physiological dynamic processes in the human body, e.g. respiration

and cardiac activities [1]. Medical applications can utilize EBI signal to analyze

cardiac activities from simple heart-rate monitors [2] up to more sophisticated

estimation of the cardiac output [3], [4] or central aortic blood pressure waveform

[5]. EBI-based, noninvasive, continuous cardiac output monitoring can have

several clinical applications in cardiology, emergency care, anesthesiology [3].

Extraction and separation of the cardiac and/or respiratory signal(s) is

challenging; as these two signal components can vary significantly in time and

frequency domains, they can have overlapping spectra and can be accompanied

by severe noise, disturbances and artefacts. Respiratory and motion-based signal

components can be considered as noise signals if one is only interested in

the cardiac component. However, it is more interesting to try to extract both

the cardiac and respiratory signals. Different approaches to this problem have

been proposed in the recent literature including adaptive filtering [6], adaptive

phase-locked loop [7], method based on the signal shape-locked-loop decomposer

solution [8], principal and independent component analysis [9] and artificial neural

networks [10]. These proposed methods are quite sophisticated; however, they

either require considerable amount of fine-tuning and computational resources

(neural networks) or require some time for converging to an optimal solution

and exhibit low robustness to changes in the parameters of the signal (adaptive

filters). Considering the variety of the proposed solutions, it is interesting to

note that there is still no clearly established method available for extraction

and separation of cardiac and respiration signal components, partly due to the

problems mentioned above, but also partly due to the variations in the anatomy

and physiology of human beings and their behaviour at various times and in

physical and mental situations.

In this work we are looking at employing a sparse signal processing technique

for reconstructing respiratory and cardiac signals from EBI measurements (Fig. 1

shows an example of the EBI signal). The notion of sparsity usually implies

that a signal is sparse in some domain (has only a few number of significant

components). It has been noted that a large number of common applications

results in signals that may be well approximated using a sparse reconstruction

framework, and this area has seen increase in interest from the scientific

community (see, e.g., [11], [12] and the references therein). A large part

of these works has focused on convex algorithms that make use of different

sparsity inducing penalties, which result in solutions that are well represented

using only few elements from some (usually known) dictionary matrix, D. If
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the dictionary is appropriately chosen, it can be shown that even very limited

measurements allow for an accurate signal reconstruction [13], [14]. We propose

to reconstruct the relevant components of the EBI signal by considering wideband

dictionary elements introduced in [15], [16]. These elements are formed as

bands of frequencies covering the entire spectrum of interest. By refining the

estimate through iteratively zooming into active parts of the spectra, the proposed

algorithm is able to estimate signal parameters and reconstruct the signal without

any prior knowledge.

2. Sparse reconstruction

The signal model for the considered EBI measurements can be written as

y(t) = sC(t) + sR(t) + e(t) (1)

where sC(t) is the cardiac component, sR(t) respiratory component and e(t)
additive noise. We start with the assumption that both the cardiac and the

respiratory components in the EBI signal are well approximated by a sum of

sinusoids. Considering discrete-time signal consisting ofN samples, we can then

reformulate (1) as

yn =
K∑

k=1

Lk∑
l=1

βk,le
2iπfkltn + εn (2)

for n = 1, . . . , N , where K denotes the number of sources and Lk the number

of sinusoids for the kth source. Furthermore, fk denotes the kth fundamental

frequency and βk,l the complex amplitude corresponding to the `th harmonic of
the kth fundamental frequency, respectively, tn the nth sample time, and εn the

additive noise at time tn. In the problem at hand K is known as we deal only

with two sources. Hence, for reconstructing each source signal we can tackle the

problem of estimating the frequencies fk, for k = 1, . . . , Lk, of a measured signal

yn. The classical sparse formulation of this estimation problem, as presented in

[17], considers the LASSO minimization [18]

min
x

1
2 ||y − Dx||22 + λ||x||1 (3)

with

y =
[
y1 . . . yN

]T
(4)

D =
[
d1 . . . dP

]
(5)

dp =
[
e2iπf̂pt1 . . . e2iπf̂ptN

]T
(6)
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where f̂p for p = 1, . . . , P denotes the P � Lk candidate frequencies in the

dictionary, D, typically selected to be closely spaced to allow for minimal grid

mismatch, and (·)T the transpose. The penalty on the 1-norm of x will ensure

that the found solution, x̂, will be sparse, with λ denoting a user parameter

governing the desired sparsity level of the solution. The desired frequencies, as

well as their order, are then found as the non-zero elements in x̂. In this work
we are limiting our approach to the use of LASSO minimization; however, in

the literature there exist several well-known methods of solving undetermined

system of linear equations (e.g. basis pursuit [19], orthogonal matching pursuit

[20], etc.).

Deviating from the classical estimation method where the dictionary consists

of closely spaced sinusoids, in this work we propose exploiting integrated

wideband dictionary elements 1 in D [15], [16], such that each element is formed

over the band

db(tn) =
∫ fb+1

fb

e2iπftndf = e2iπfb+1tn − e2iπfbtn

2iπtn
(7)

As the resulting dictionary elements cover the band of frequencies from fb to

fb+1, for b = 1, . . . , B1, the entire spectrum may be formed with B1 � P , where
B1 denotes the (initial) number of wideband dictionary elements. This approach
coupled with iterative zooming into the active part of the spectra results in

decreased computational complexity and improved estimation performance. For

the in-depth discussion on the use and benefits of wideband dictionary elements

based dictionaries we refer the reader to the comprehensive analysis in [16].

The resulting solution to the minimization in (3), x̂, can be further used to

reconstruct an approximation of the initial EBI waveform as

ŷ = DC x̂C + DRx̂R (8)

where DC and DR denote dictionaries, while x̂C and x̂R denote solutions for

the LASSO minimization for cardiac and respiratory components respectively.

3. The proposed algorithm

We approach our analysis of the bioimpedance data by selecting two time

windows tc and tr, corresponding to the cardiac and the respiratory component
respectively. Ideally we would like the time window to be close to the period

of the analyzed signal. A reasonable assumption for the rest rate of an adult

is around 50-90 heartbeats per minute (bpm) for the cardiac component, which

corresponds approximately to the heart rate with the frequency of 0.83...1.5
1It should be noted that the proposed framework does not require the use of a

wideband dictionary; it is here used for illustration as it has been found to often yield

preferable performance [15], [16].
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Figure 1 Example of a waveform of an electrical bioimpedance measurements.

Hz; and around 10-18 breaths per minute for the respiratory component, which

corresponds approximately to the respiratory rate with the frequency of 0.16...0.30
Hz. Correspondingly, we assign the time windows to be tc = 1.5 seconds and

tr = 6.25 seconds. The respiratory component is reconstructed from the EBI data

that is filtered through a 512-tap low-pass filter with cut-off frequency fLP = 0.4
Hz and the cardiac component is reconstructed from the EBI data that is filtered

through a 512-tap band-pass filter with fBP1 = 0.7 Hz and fBP2 = 3 Hz. For

each component we continue in a similar manner by analyzing data for each time

window. We solve the LASSO minimization in (3) using the initial dictionary

D1 with B1 number of elements constructed according to (7). Next, we discard
the inactive bands of the spectra and solve the minimization task again now

using the dictionary D2 with B2 on parts of the spectra which were active in

the first estimation step. By discarding inactive bands, we reduce the amount of

computations required. In our experience, a two-step iterative zooming procedure

(coupled with the proper choice of number of elements in the both dictionaries)

is enough to achieve reasonable estimation precision; however, this choice is

rather arbitrary. After the final estimation step, the algorithm returns a sparse

vector which corresponds to the dictionary elements which fit the data in the best

way. By extracting the fundamental frequency (first significant peak) from the

vector, we get the corresponding rate of cardiac or respiratory part of the signal

respectively. Then we move the window further on with an overlap of 50%
with the previous data block. LASSO is solved through the alternating direction

method of multipliers (ADMM) [21], derivation of the solution is presented in

[15], [16], [22] and we refer the interested reader to description therein.

It has to be noted that using general LASSO formulation has a common

weakness known as f0 vs. f0/2 ambiguity [22] (here f0 denotes the fundamental
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Figure 2 Half fundamental frequency problem (magnitudes of ECG harmonics were

chosen arbitrarily to show the location of the harmonics and do not reflect the actual

values of the signal).

frequency). In some cases, the optimal solution to the minimization problem

is going to be described similarly well (or even in a better way) by dictionary

elements with fundamental frequency at half the actual frequency. As every

other harmonic component in this solution will coincide with the actual signal

component, then the algorithm returns f0/2 as fundamental frequency of the

analyzed signal. The problem is illustrated in the Fig. 2. The actual fundamental

frequency of the cardiac signal as represented by ECG spectra is located at 0.83
Hz. From the estimated signal spectra the first significant peak can be found

at 0.44 Hz and second at 0.93 Hz. It is clear that in this particular case the

algorithm returned the fit with harmonic structure with fundamental frequency at

f0/2 the actual one.

The currently proposed solution works reliably for the measurements where

the cardiac component of the EBI signal lies in the frequency range of 0.8 to 1.4
Hz, corresponding to 48 to 84 heartbeats per minute. In this case f0/2 frequency
lies well below the normal heart-rate of the human beings and can therefore

be detected as wrong estimate and corrected accordingly. However, with the

heart-rate values above this range, f0/2 frequency will yield an estimate which

falls in the range which can be considered to lie in the normal heartbeat range

and therefore requires additional processing in terms of signal-tracking, which

will exclude abrupt changes in the continuous estimation process. Proper remedy

to this sort of situation can be found in the form of solutions which promote

block-sparsity [22], [23], where the dictionary has an internal block structure and

the final solution has to be block-sparse (i.e. use only few blocks to describe the

solution).
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Figure 3 Separated respiratory (top) and cardiac (bottom) signal components

4. Reconstructing the signal

In our experiments for testing the proposed method, we used the collection of EBI

signals recorded in clinical conditions. The EBI measurements were taken by

using a CircMon device (JR Medical Ltd, Estonia) operating at a frequency of 30
kHz and having a tetrapolar configuration of electrodes (together eight standard

ECG electrodes on hands and feet). Initially the EBI signal is sampled at a rate

of 1 kHz and is further decimated to 200 Hz using a 5-point averaging filter.

All the simulations and analysis in this work were conducted in the MATLAB

environment.

For the reconstruction, we have chosen to use a two-step estimation with

B1 = 100 dictionary elements in the first estimation run and B2 = 50 dictionary
elements in the second refining run. This choice results in the final resolution of

0.01 Hz. The component reconstruction is carried out by multiplying the solution
x̂ found by LASSO with the dictionary D for each time window tc or tr. We

can interpret the reconstructed block as a weighted sum of relevant dictionary

elements. Fig. 3 shows the separated respiratory and cardiac parts of the signal.

As the reconstruction is done piecewise block by block, the breaks can be noted

on reconstructed signal (especially on the respiratory component in Fig. 3). This

can be mitigated by employing “smoothing” moving average filter for example.

Fig. 4 shows the original EBI data and reconstructed EBI data which consists

of reconstructed respiratory and cardiac components. In Fig. 5 we show the

resulting fundamental frequency estimate of the cardiac signal component. We

compare the result of the proposed method with the ground-truth, which is the

frequency that is extracted from the ECG measurement done at the same time as

EBI measurements. As we can see from the figure, the resulting estimate follows
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Figure 4 Impedance signal as reconstructed from the sum of the separated cardiac and

respiratory parts, compared to the original impedance signal

the actual frequency of the cardiac component closely and mean-square error

(MSE) as compared to ECG measurements is 0.0007.
Direct comparison with other algorithms is complicated by two factors. First,

different authors use different metrics to evaluate efficacy of their approach. For

example, classification metrics in [9], stroke volume estimation accuracy in [6]

and in [10], visual comparison of original and reconstructed waveforms in [6]

and [8]. Second and more important is the fact that different authors use different

datasets (usually collected by their research group) and their measurements are

not available for the wider research community, possibly due to privacy and

ethical constraints related to the patient data. Authors tend to concentrate more

on considering how their approach is able to capture the phenomena they are

investigating. In our work the proposed algorithm is evaluated on 8 different EBI

datasets measuring different levels of activity for different subjects. For each set

we have evaluated the proposed algorithm based on two MSE-s. Reconstruction

MSE denoted as MSER (9) is calculated by comparing original EBI waveform

with the waveform that is reconstructed from two separated signal components

according to (8).

MSER = 1
N

N∑
n=1

(yn − ŷn)2 (9)

where yn and ŷn denote the nth sample of the EBI signal and reconstructed signal,
respectively. Frequency estimation MSE denoted as MSEF (10) is calculated by

comparing frequency estimate of cardiac component with the ECG measurements
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Figure 5 Cardiac component frequency estimate compared to the frequency estimate as

measured from ECG signal

which were collected simultaneously with the corresponding EBI dataset.

MSEF = 1
M

P∑
m=1

(fm − f̂m)2 (10)

where fm denotes ground truth frequency and f̂m frequency estimated by the

proposed method. M is the number of blocks for which the frequency estimate

is calculated and depends on the length of the recorded signal, time window tc
and window overlapping factor. Here we considered ECG measurements as the

ground truth for the comparison. Results are presented in Table 1.

5. Conclusion

In this work we have presented a novel method for separating cardiac and

respiratory components from the electrical bioimpedance measurements. Signal

components are recovered by the means of sparse reconstruction using the

dictionary consisting of wideband elements. The proposed approach is able to

reliably reconstruct both signal components and track fundamental frequency of

cardiac component with high precision. Although the algorithm is not robust to

the f0 vs. f0/2 ambiguity problem, relevant post-processing techniques provide

a temporary remedy, while the planned extension to the proposed algorithm

with the use of block-sparse dictionary structure should provide the necessary

robustness in the future.
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EBI dataset Duration MSER MSEF

02ecg 107 s 2.16e-06 0.00129

06ecg 37 s 5.09e-06 0.00120

07ecg 67 s 3.75e-06 0.00658

08ecg 23 s 2.97e-05 0.00335

12ecg 117 s 1.13e-06 0.00251

17ecg 24 s 3.88e-06 0.00752

101ecg 103 s 1.04e-05 0.00540

102ecg 82 s 3.90e-06 0.00060

Table 1 Mean square errors for reconstruction of EBI signals and frequency estimate of

corresponding cardiac component
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Abstract

In this work, we investigate the possibility of incorporating a zooming procedure

for the well known iterative adaptive approach (IAA), and thereby allow for

higher precision on relevant areas of the spectrum. These kinds of zooming

schemes have been used successfully together with several other methods, and

have in many cases shown dramatical decrease in the computational cost. It has

earlier been noted that the IAA method does not easily allow for these kind of

zooming approaches, as the covariance formulation dictates that the resolution

must be the same over all regions of the spectrum. In this paper, we present an

iterative zooming procedure which allows for an efficient local estimation of IAA

spectrum. The proposed algorithm is shown to allow for significant speed-ups

without sacrificing estimation performance.

Keywords: iterative adaptive approach, IAA, wideband dictionary, itera-

tive zooming
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1. Introduction

High-resolution spectral estimation is a topic of notable relevance in a wide

range of applications, and the area has as a result attracted significant interest

during the recent decades. Early estimators were often formed as being either

parametric or non-parametric, with the former approaches generally posing strong

assumptions on knowledge of the signal of interest and the distribution of any

corrupting noise processes, whereas the latter generally avoid exploiting any

information of the signal of interest [1], [2]. Recent efforts have focused more

on so-called semi-parametric estimators, allowing for partial knowledge of the

signal of interest, but often avoid making assumptions on the model order or on

the noise distribution. The iterative adaptive approach (IAA) [3], [4] is one such

semi-parametric estimator that has been found to offer preferable performance in

several applications (see, e.g.,[5]–[14]). The IAA estimate is formed over a grid

of potential dictionary candidates, often being selected as sinusoidal components

over the entire range of frequencies, without imposing assumptions of the signal

being sparse, or using knowledge of the assumed model order. The estimate

iteratively computes the contribution for each such component using a weighted

least squares (WLS) formulation, wherein the WLS estimates are weighted using

the covariance matrix formed from the contributions found in the earlier iteration.

Due to its iterative formulation, with each WLS estimate depending on

the inverse covariance matrix formed from all components, the IAA estimate

is computationally cumbersome, especially when being formed over a fine

dictionary and/or multiple dimensions. To alleviate this drawback, significant

efforts have been made to formulate computationally efficient implementations

[15]–[18]. As the IAA estimate is formed using the inverse covariance matrix,

the formulation requires the estimate to be computed using the same spectral

resolution over all frequencies, without allowing for a refined estimation over

regions of interest.

The here proposed zooming procedure for IAA (zIAA) is formed initially

using a coarse dictionary. The contribution of each element is then refined, such

that parts of the spectrum that are deemed to contain only (possibly colored)

noise are formed using only one initial run of the refining algorithm, whereas

regions of interests are refined further using a finer dictionary covering only

the frequency ranges of interest. As the contribution from all frequencies are

still formed, the covariance matrix will not become poorly conditioned, as

would be the case if only parts of the spectrum were refined. This zooming

procedure may then be repeated until the signal of interest has been estimated

using the desired resolution. As the WLS estimates only need to be formed

over the frequencies of interest, the resulting estimate require a notably lower

computational complexity as compared to forming the classical IAA spectrum.

Typically, further computational reductions may also be achieved using the

inherent structure of the estimates, reminiscent to the approaches in [15]–[18].
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In this work, exploiting the ideas introduced in [19], [20] for the LASSO,

we also investigate a zoomed IAA estimator formed over wideband integrated

dictionary elements. These elements are formed using bands of frequencies,

together covering the entire frequency range, thereby capturing all the energy

in the band and resulting in more precise estimates. By iteratively forming a

refined dictionary over the bands of interest, the proposed algorithm allows for a

zooming over frequency regions of interest, without requiring knowledge of the

number of signal components within such regions. A related zooming procedure

was proposed in [21] for spatial sources. Such a procedure is not applicable

for IAA, as it results in different spectral resolutions for different part of the

spectra, which will cause numerical instability in the IAA estimate. Furthermore,

just as other similarly introduced zooming procedures, such an approach using

a narrowband dictionary will increase the risk of missing off-grid elements in

the initial coarse estimation steps and therefore exclude this part of the spectra

from further zooming. On the other hand, the here proposed method makes use

of uniform element spacing covering the full band, ensuring that no components

are missed in the initial search step [20].

2. The zIAA algorithm

Without loss of generality, we proceed to outline the proposed algorithm using

a dictionary consisting of sinusoidal components, although it should be noted

that other alternative dictionary elements could also be used (see, e.g., [11],

[15]). Consider N (possibly non-uniform) samples of a signal y, consisting of
K complex sinusoids measured in the presence of an additive noise, such that

y = Ãα + w, (1)

where

Ã =
[

a1 . . . aK

]
, (2)

ak =
[
e2iπfkt1 . . . e2iπfktN

]T
, (3)

α =
[
α1 . . . αK

]T
, (4)

with (·)T denoting the transpose, {tn}N
n=1 the sampling times, αk and fk the

complex amplitude and the frequency of the kth component, respectively, and

w is an additive noise vector. The IAA estimate is formed by expanding the

dictionary over the full range of frequencies, such that the used dictionary, A,

contains P � N dictionary elements. These elements are selected fine enough

so that each of the frequencies of interest can be deemed to be (almost) coinciding

with one of the candidates. The IAA estimate is then computed by iteratively
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solving

sk = aH
k R−1y

aH
k R−1ak

, for k = 1, . . . , P, (5)

P = diag(s1, . . . , sP ), (6)

R = APAH , (7)

until convergence (typically about 10-15 iterations are sufficient for convergence

[3], [4]). Here, (·)H denotes the conjugate transpose, and diag(·) a diagonal

matrix formed with the specified vector along its diagonal. Upon convergence,

the estimated complex amplitudes, sk, coinciding with the components of interest

will thus form estimates of the corresponding components in α.
As the IAA estimate forms a WLS estimate in (5), for each of the P

frequencies in the dictionary, the inverse covariance matrix, R−1, needs to be

recomputed in each iteration of the algorithm. Although this may be done

computationally efficiently by exploiting the inherent structure of the dictionary

and the Toeplitz structure of the covariance matrix [15], [16], the computational

cost remains significant for large dictionaries and/or if the estimate is formed

over several dimensions. Furthermore, to avoid poor conditioning, the inverse

covariance matrix needs to be formed on a uniformly spaced frequency grid,

necessitating that P is selected large enough to yield the desired resolution over

the frequencies of interest.

In this work, we propose exploiting integrated wideband dictionary elements1

in A [19], [20], such that each element is formed over the band

ab(tn) =
∫ fb+1

fb

e2iπftndf = e2iπfb+1tn − e2iπfbtn

2iπtn
. (8)

As the resulting dictionary elements cover the band of frequencies from fb to

fb+1, for b = 1, . . . , B1, the entire spectrum may be formed with B1 � P , where
B1 denotes the (initial) number of wideband dictionary elements.

The wideband zoomed IAA estimate is then formed similar to the IAA

estimate, by iteratively forming (5)-(7), although with only B1 amplitudes

estimates in place of P . After convergence, the spectral regions of interest

are selected, typically by either exploiting a priori information or by retaining

only the spectral regions with significant power, say above some threshold, τ .
The dictionary is then refined such that each selected wideband component is

replaced with Z components (thus forming new expanded dictionary matrix A2
with size N × B1Z), such that they together constitute the frequencies covered
by the earlier wideband dictionary element. Now the new grid, with size B1Z, is

1It should be noted the proposed zooming framework does not require the use of a

wideband dictionary; it is here used for illustration as it has been found to often yield

preferable performance [19], [20].
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Figure 1 Frequency estimation mean-square error curves for the zIAA with wideband

dictionary and narrowband dictionary.

divided into two disjoint sets, one containing the gridpoints corresponding to the

noise part of the spectrum, and one containing the gridpoints corresponding to

the signal of interest.

Using the estimated covariance matrix, R, attained from the old grid of size

B1, the amplitudes for the new grid are updated using a single iteration of (5).

From now on, the amplitudes corresponding to the noisy parts are fixed and only

the amplitudes corresponding to the signal of interest are updated. These are

updated by iterating (5)-(7) until convergence. This scheme is much faster than

the original IAA version due to the iterative zooming procedure. The complexity

will also be reduced since we only need to estimate the noise part of the spectrum

in one pass, thus we only need to iterate (5)-(7) for the amplitudes corresponding

to the signal of interest. In this way, the spectral estimate is refined also for

these frequencies, although at a low computational cost, allowing the covariance

matrix to be formed from the contributions from both forms of refined estimates.

It is worth noting that this implies that the resulting covariance matrix

estimate, formed both using the refined wideband dictionary, reminiscent to (7),

and from the corresponding noise floor estimate, will have an inherent structure

that may be exploited when forming a computationally efficient implementation.

However, even without exploiting such structure, the proposed algorithm yields

a notable computational reduction as compared to the classical IAA formulation.

The procedure may then be refined further after each iteration, until the estimate

has been formed at the desired resolution.

To increase the speed-up further, one may refrain from updating the covariance

matrix when performing the zooming procedure. This results in that the estimated
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10 dB 15 dB 20 dB 25 dB

IAA 54ms 52ms 56ms 52ms
wb zIAA 32ms 32ms 34ms 32ms

Times faster 1.7x 1.6x 1.7x 1.6x
wb zIAAR 12ms 11ms 12ms 12ms
Times faster 4.5x 4.6x 4.5x 4.5x

Table 1 Average runtime in milliseconds for the IAA and zIAA estimates and speed-up

comparing to ordinary IAA, using only a single refinement step.

covariance obtained from the first IAA solution is used throughout the algorithm.

This will decrease the computational complexity but will also degrade the

estimation precision. The pros and cons with this relaxation are investigated in

the next section.

The work presented here is based on a simple thresholding idea where bands

are deemed active if the energy in a band is higher than some predefined

threshold τ . However, different model-order selection tools can be incorporated
to the proposed framework. For instance, one may use the Bayesian information

criterion (BIC) [22], as was done in the original IAA paper [4] (see also, e.g.,

[23], for alternative methods). Another idea is to choose the threshold τ as a fixed
ratio to the largest peak found in the resulting spectrum, making the threshold

data-dependent, such that τ = αmax {sk}, where α ∈ (0, 1].

3. Numerical examples

We start by comparing the difference in performance from using a wideband

dictionary to a narrowband dictionary. Both dictionaries use B1 = 200 elements

in the first stage and Z = 5 zooming elements for each active band in the

following zooming step. We simulated a signal of length N = 50 containing

K = 3 complex-valued sinusoids, corrupted by a zero-mean white (circularly

symmetric) Gaussian noise. Frequencies were uniformly drawn from [0, 1) and
with random phase, all having unit magnitude. We are considering (the sum

of) the mean-square error (MSE) for different signal-to-noise ratios (SNR), here

defined as

SNR = 10log10

(Py

σ2

)
, (9)

where Py is the power of the signal and σ
2 is the variance of the Gaussian noise.

The resulting MSE curves of the estimated frequencies are presented in Figure 1.

As can be seen from the figure, the wideband dictionary clearly outperforms the

narrowband dictionary due to its ability to capture all the energy in the band, also

for off-grid components, and to produce more precise estimation of a spectra.
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10 dB 15 dB 20 dB 25 dB

IAA 5% 32% 64% 89%
wb zIAA 13% 66% 86% 92%
wb zIAAR 12% 63% 82% 83%

Table 2 Percentage of correct model order estimations for different SNR levels.

We proceed with examining whether it is necessary to update the covariance

matrix at all after the convergence of IAA with the initial coarse grid. To answer

this question, we estimate the frequencies using three different versions of IAA

using the same setup as described above, but increasing number of sinusoids to

K = 7. The first one being the original version of IAA using P = 1000 sinusoids
in its dictionary. The rest of the two versions are using a wideband dictionary

with updated R as described originally, i.e., zIAA, and using wideband dictionary

without updating R, denoted zIAAR. Both of these two versions had an initial

grid size of B1 = 200, and used Z = 5 for the zoom in. All the three estimators

thus have a resulting dictionary containing 1000 elements, yielding the same

resolution. Figure 2 shows the MSE of the estimated frequencies and Table 1

gives the corresponding runtimes for the estimates, indicating that even without

using the inherent structure of the proposed estimator, the wideband zIAA is

about 1.6 times faster than the classical IAA estimator, even when using only a

single refinement step. For the wideband zIAAR case where covariance matrix

R does not get updated after the initial IAA cycle, we can see that the proposed

estimator is about 4.5 times faster than the classical IAA, and still is able to

outperform it in the MSE sense and only showing marginally worse estimation

performance in comparison with the wideband zIAA. Table 2 summarizes the

percentage of correct model order estimations for each considered algorithm.

Here, a method was considered returning the correct model order if its K = 7
highest peaks were within two grid-points of the actual frequency value. For

lower SNR, the methods all show similar and poor performance, with close to

0% correct model order estimates and very noisy spectral estimates. As is clear

from the table, the proposed refinement step actually improves the likelihood of

a correct model order estimate, although it may be noted that the zIAAR version

seems to be performing marginally worse than zIAA.

Next, we compare ordinary IAA with both narrow- and wideband dictionary

based zoomed IAA estimators in terms of a peak resolution ability. Here, we

use a signal of length N = 50 consisting of two sinusoids with varying distance

and SNR = 20 dB. Ordinary IAA uses P = 1000 elements and both zoomed

IAA dictionaries use B1 = 200 elements in the first stage and Z = 5 zooming

elements for each active band in the following zooming step, thus resulting in

estimates with the same resolution. In order to determine the percentage of

resolved peaks, we let P (ω) denote an amplitude estimate at a frequency ω,
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Figure 2 Frequency estimation mean-square error curves for the ordinary IAA and zIAA

estimates. As can be seen from the figure, the introduced speed-up does not yield any

loss of performance as compared to the ordinary IAA estimate, and is even, when using

the wideband dictionary, yielding somewhat preferable performance.

forming the measure (see, e.g., [24], [25])

γ = 2P (ω3) − P (ω1) − P (ω2) < 0, (10)

where ω3 is the midway frequency between ω1 and ω2

ω3 = (ω1 + ω2)/2. (11)

The sinusoids are then deemed resolvable if γ < 0 and irresolvable otherwise.

Figure 3 shows the resolution ability of the estimators, again indicating that

the proposed wideband zIAA algorithm yields preferable performance. All the

results in this section were obtained from 100 Monte-Carlo runs.

4. Conclusion

In this work, we have investigated how to allow for a larger grid for the IAA

estimator by incorporating a zooming procedure. The IAA estimator is prone to

experience numerical issues when the underlying grid structure is imbalanced.

To avoid having to increase number of grid points such that the whole grid

structure has the desired resolution, we instead propose an iterative formulation,

where we use a wideband dictionary instead of the more traditional narrowband

dictionary. The proposed estimator is shown to offer a significant speed-up as

compared to the regular IAA formulation, without suffering from any decrease

in performance.
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Figure 3 The peak resolving ability of the discussed estimators; one may again note

that the proposed speed-up does not reduce the resolution of the resulting estimates.

As expected, the use of a wideband dictionary is even yielding a somewhat improved

performance.
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Conclusions

This thesis presented a wideband dictionary framework for estimating sparse

signals. This formulation allows for considerable reduction in computational

complexity and decreases the probability of missing off-grid components. For

situations where the number of samples is considerably smaller than the number

of dictionary elements, the percentage of correct model order estimation for

the proposed wideband dictionary is 40 − 50% higher than for the conventional

method (90 − 100% vs 50 − 60%). As most of the errors in this situation

come from missing off-grid components, it can be stated that wideband elements

provide reliable remedy for such cases, without increasing complexity of problem

formulation and therefore limiting the size of the considered problems as

atomic-norm minimization; or loosing the benefits of convexity of a solution

as in the case of adaptive grid approach. By employing an iterative zooming

procedure and decreasing risk of missing off-grid components we showed that it

is possible to formulate the problem with a smaller initial dictionary and therefore

reduce the amount of computation that are needed for the required resolution.

For the same resolution, the computational complexity of the proposed method

can be 20 − 30 times lower, which results in a considerable reduction in time

required to make an estimation.

This work examines more closely sparse reconstruction method based on

solving LASSO minimization; however, the approach is not limited to only this

method and the proposed procedure for constructing the dictionary is suitable for

any reconstruction method where one generally considers dictionaries consisting

of candidate elements. We also have showed that such a formulation results in

similar improvements for SPICE and IAA estimators for example. For the latter,

we proposed the novel approach which allows for higher precision estimates

on relevant areas of the spectrum, which was complicated beforehand as IAA

uses WLS formulation, which depends on inverse covariance matrix based on

estimates from the earlier iteration. Such a formulation is cumbersome as one has

to compute the estimate using the same spectral resolution over all frequencies,

which requires large dictionary. The proposed algorithm results in increased

estimation performance in terms of frequency estimation as well as peak resolving

ability. The average runtime for the proposed method is up to 4.5 times faster.

For most part of the discussion we have considered so-called integrated

wideband dictionaries; however, this choice was rather arbitrary for the initial
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evaluation of the idea and we assume that different methods for forming wideband

dictionary elements can be proposed. We have also evaluated the DPSS-based

dictionary elements and confirmed that similar estimation performance can be

expected. Also, most of the experiments were conducted on synthetic data

were the signal was generated from the signal model. However, to evaluate

our assumptions and performance of the proposed methods on the real-life

signals we considered two examples of measured data. We have examined

performance of the wideband framework on NMR data, where the wideband

estimate is formed 20 times faster than the conventional narrowband estimate.

We also have considered electrical bio-impedance signals. We have described

the method of sparse reconstruction for the separation of cardiac and respiratory

signal components from electrical bio-impedance measurements, which is able

to reliably reconstruct both components from the signal. However, further work

is needed to improve the robustness of the proposed method to the half the

fundamental frequency problem.

When comparing the proposed wideband framework to the conventional

narrowband one, it is important to note that additional design complexity arises by

the addition of the user-defined parameters, which should be defined for choosing

number of iteration steps and number of dictionary elements at each iteration.

We have provided guidelines and theoretical formulation for the best approach

for the parameter selection. However, it has to be noted that the huge benefit

of wideband dictionary lies in its adaptability and intuitive implementation.

One does not need to change the optimization algorithm, it is only required to

change the dictionary formulation and add iterative procedure, which are both

straightforward tasks. We hope that this encourages those working in the area of

signal estimation to consider applying the proposed method for their problems.

To summarize the conclusion let us look at the answers that this thesis gives

to the research questions that were posed in the beginning of this work.

Research questions:

1. Can wideband dictionary formulation help to mitigate off-grid estimation

issue for sparse signal reconstruction?

Answer: Yes. This work showed that wideband dictionaries can

provide remedy for this problem. Wideband dictionary element span the

whole sub-band and therefore reduce probability of missing certain parts

of the signal.

2. If wideband based dictionary is suitable, then what sort of computational

complexity reduction can one expect from iterative formulation of the

estimation problem?
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Answer: For the same resolution, the computational complexity

can be up to 20-30 times lower.

3. How suitable are different types of wideband elements?

Answer: This work investigated integrated sinusoid based dictionar-

ies as well as DPSS-based dictionaries. Both dictionaries showed that they

provide similar estimation performance in terms of MSE and model order

estimation. There were not any substantial differences noted between two

types of the wideband dictionaries.

4. What are the possible drawbacks of wideband dictionaries compared to

classical narrowband dictionaries?

Answer: Major drawback is the necessity of choosing additional

user-defined parameters for the algorithm.

5. How well does synthetic tests correspond to actual real-life data?

Answer: We have seen that by running estimators on real-life data, such

as NMR spectroscopy and EBI signals, we can expect similar estimation

performance as well as similar reduction in computational complexity as

on the synthetic data that was generated in MATLAB during experiments.

6. What other estimators can benefit, and in what way, from dictionaries

constructed in a wideband manner?

Answer: Main investigation was conducted and main results formu-

lated by using LASSO estimator. However we also showed that for

example IAA and SPICE estimators showed similar improvement by

employing wideband dictionaries. In general dictionary-based estimators

can be expected to benefit from the usage of wideband dictionaries.
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Abstract

Parameter Estimation by Sparse Reconstruction withWide-

band Dictionaries

Parameter estimation in general and spectral analysis in particular have been

fruitful research areas for a long time and still rightfully remain so. Many

algorithms and methods for parameter estimation were proposed during decades

of research, but as technology evolves, so evolve our requirements to estimators.

Non-parametric estimators were for a long time the most popular method of

spectral analysis; however, their major drawback is their resolution limitation

and high variance. Parametric estimators can provide high-resolution estimates,

however this requires considered signal to correspond well to underlying signal

model and they perform much worse than non-parametric estimators if this is not

the case. Semi-parametric estimators can often provide high-resolution estimates

without big dependency on the signal model as their only assumption is that the

signal should be sparse. In fact, a wide range of common applications considers

signals that are well approximated by sparse reconstruction framework, and this

area has attracted noteworthy interest in the recent literature. Considerable

number of these work focuses on formulating convex optimization algorithms that

make use of different sparsity inducing penalties, thereby encouraging solutions

that are well represented using only a few elements from some dictionary matrix.

It can be shown that when the dictionary is chosen properly, even limited number

of measurements allows for an accurate signal reconstruction.

In this work a novel procedure for constructing dictionaries for parameter

estimation by sparse reconstruction methods is considered. Instead of forming

the dictionary as a finite set of discrete narrowband components for evaluation of

continuous parameter space, this work considers wideband dictionary elements,

such that continuous parameter space is divided into B subsets. During the

estimation procedure, the activated subsets are selected for further refinement and

non-activated subsets are discarded from further optimization. Afterwards, a new

dictionary is formed for each of the activated subsets, resulting in the zoomed

dictionary for that particular region of considered parameter space. An iterative

procedure may then be repeated further until required resolution is reached.

The initial problem statement and the plausibility of the approach are

validated by showing that the method is suitable for one-dimensional data. The
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formulation of the wideband framework for multi-dimensional data and validation

on different estimators (LASSO, SPICE, IAA), sampling scenarios and data from

different sources are considered. An efficient implementation of the algorithm

by alternative direction method of multipliers is formulated and corresponding

complexity reduction calculations considered. A comprehensive overview of the

best approaches to selection of the parameters for the framework is provided.

The proposed approach is tested mainly by using corresponding signal model and

conducting series of numerical experiments by running multiple Monte-Carlo

simulations. However, the proposed method is also tested on real-life signals by

considering NMR data and by investigating the possibility of employing similar

sparse reconstruction framework for the separation of cardiac and respiratory

signal components from the electrical bioimpedance measurements.

The wideband framework allows for considerable reduction in computational

complexity and decreases probability of missing off-grid components. For

situations where the number of samples is considerably smaller than the number

of dictionary elements, the percentage of correct model order estimation for

the proposed wideband dictionary is 40 − 50% higher than for the conventional

method (90 − 100% vs 50 − 60%). Most of the errors in this situation come from

missing off-grid components. Similar methods for grid-selection issues exist;

however, they often impose increasing complexity of the problem formulation

and therefore limiting size of considered problems as for example in the case of

atomic-norm minimization; or loosing the benefits of convexity of a solution as

in the case of adaptive grid approach. By employing iterative zooming procedure

and decreasing risk of missing off-grid components we show that it is possible to

formulate problem with smaller initial dictionary and therefore reduce amount of

computations that are needed for the required resolution. For the same resolution,

the computational complexity of the proposed method can be 20 − 30 times

lower, which results in considerable reduction in the time required to make an

estimation.

The proposed wideband dictionary method has the additional benefit of its

adaptability and intuitive implementation. This can help to encourage those

working in the area of signal estimation to consider applying the proposed method

for their problems as wideband dictionary successfully replaces the classical

narrowband dictionary for considered problems by providing at least similar

performance and often outperforming the classical framework.
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Kokkuvõte

Signaali parameetrite hindamine kasutades hajusat taas-

tamist laiaribaliste sõnastikega

Signaali parameetrite hindamine üldiselt ja spektraalanalüüs eriti on pikalt

olnud väga tulemuslikud uurimissuunad ning on seda endiselt. Aastate jooksul

on välja pakutud mitmeid algoritme ja meetodeid, kuid tehnoloogia arenedes

on arenenud ka meie nõudmised signaali omadusi hindavatele algoritmidele.

Mitte-parameetrilised meetodid on olnud pikka aega enamkasutatavate seas,

kuid nende miinuseks võib lugeda signaali piiratud lahutusvõime ja suurt

dispersiooni. Parameetrilised meetodid pakuvad kõrget lahutusvõimet, kuid

selleks peab vaadeldav signaal hästi kokku langema olemasoleva signaali

mudeliga. Vastasel juhul on parameetriliste meetodite tulemus halvem kui

mitte-parameetrilistel. Semi-parameetrilised meetodid on võimelised pakkuma

kõrget signaali lahutusvõimet ilma, et nad sõltuks oluliselt signaali mudelist,

kuna nende ainuke eeldus on, et signaal peaks olema hõre (ingl.k. sparse) –

seletatav vaid vähese arvu signaalikomponentide abil. Tõesti, suur osa rakendusi

tegelebki signaalidega, mis võivad olla aproksimeeritud hõreda taastamise abil

ning antud valdkond on pälvinud suurt tähelepanu viimaste aastate kirjanduses.

Suur osa nendest töödest on pühendatud kumerate algoritmide (ingl.k. convex

optimization) formuleerimisele, mis kasutavad erinevaid hõredust taotlevaid

piiranguid ning sellega saavutavad lahendusi, mis on esitatavad vaid mõne

elemendiga sõnastiku maatriksist. Kui sõnastik on sobivalt valitud, siis on

võimalik näidata, et juba väga piiratud arv mõõtmisi võib viia signaali piisavalt

täpse taastamiseni.

Selles töös tutvustatakse uut meetodit sõnastike moodustamiseks signaali

parameetrite hindamiseks kasutades hõredat taastamist. Selle asemel, et

moodustada sõnastik kui lõplik hulk diskreetseid kitsaribalisi komponente pideva

parameetri ruumi hindamiseks, vaatleb antud töö laiaribalisi sõnastiku elemente,

kus pidev ruum on jaotatud B alamhulgaks. Hindamisprotseduuri jooksul

need alamhulgad, kus määratakse signaal olevat, on valitud täpsustamiseks ja

alamhulgad, kus signaali olemasolu ei ole määratud, on välja arvatud edaspidisest

optimeerimisest. Seejärel moodustatakse uus sõnastik iga aktiivse alamhulga

jaoks, mille tulemusel saame täpsema sõnastiku selle konkreetse regiooni
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kirjeldamiseks. Antud iteratiivset protseduuri võib seejärel korrata kuni soovitud

lahutusvõime on saavutatud.

Algne probleemi püstitus ja kirjeldatud lähenemise valideerimine oli näidatud

ühemõõtmeliste signaalide jaoks ning seejärel oli laiaribaliste sõnastike meetod

formuleeritud mitmemõõtmeliste signaalide jaoks ja valideeritud erinevate

algoritmide jaoks (LASSO, SPICE, IAA), ühtlase ja mitte-ühtlase sammuga

diskreetimise meetodite ja erinevatest signaaliallikatest pärit signaalide jaoks.

Töös on vaadeldud efektiivset algoritmi formuleerimist vahelduvate suundadega

kordajate meetodiga (ingl.k alternating direction method of multipliers) ja

väja toodud vastav algoritmilise keerukuse arvutus. Lisaks on toodud

ulatuslik ülevaade parameetrite valimise parimatest viisidest. Meetod on

valideeritud põhiliselt kasutades signaali mudelit ning eksperimenteerides

Monte Carlo simulatsioonidega. Lisaks on meetod valideeritud reaalsete

signaalidega, näiteks tuumamagnetresonantsspektroskoopia signaalide hindamisel

ning elektrilise bioimpedantsi signaalide puhul. Laiaribaliste sõnastike kasutamine

annab märkimisväärse vähenemise algoritmilises keerukuses ning vähendab ka

tõenäosust nn. võrest väljaspool asuvaid komponente mitte märgata. Nendel

juhtudel, kui diskreetide arv on väiksem kui sõnastikus olevate elementide arv,

oli õige mudeli järgu tabamise protsent välja pakutud meetodi jaoks 40 − 50%
kõrgem kui harilike meetodite jaoks (90 − 100% vs 50 − 60%). Enamik vigu

antud olukorras tuleb võrest väljaspool asuvate komponentide mitte tabamisest.

Sarnaseid võre valimise meetodeid eksisteerib teisigi, kuigi tihti kaasneb

nendega probleemi formuleerimise matemaatilise keerukuse kasv, mis seega

piirab vaadeldava probleemi suurust nagu näiteks atomic-normi minimeerimise

puhul; või kaotab nende lahendus kumeruse eeliseid nagu adaptiivse võre puhul.

Välja pakutud iteraatiivse täpsustamise meetodi kasutamisel langeb oht võrest

väljaspool asuvaid komponenti mitte tabada ning antud töös näidatakse, et on

võimalik formuleerida probleemi ka väiksema algsõnastiku abil ning selle kaudu

vähendada arvutusi, mis on vajalikud soovitud lahutusvõime saavutamiseks.

Sama signaali lahutusvõime jaoks on välja pakutudmeetodi algoritmiline keerukus

kuni 20 − 30 korda väiksem, mis märkimisväärselt vähendab aega, mis on vajalik
signaali hindamiseks. Antud töös välja pakutud laiaribalise sõnastiku meetodi

lisaeelised on ka tema adaptiivsus ning lihtne juurutamine. Antud asjaolud

peaksid julgustama kolleege, kes töötavad signaali hindamise valdkonnas, et nad

kaaluks antud meetodi rakendamist nende töös esinevatele probleemidele, kuna

laiaribalise sõnastiku meetod asendab edukalt harilikku kitsaribalist sõnastiku

pakkudes sarnast ning tihti ka tunduvalt paremat tulemust väiksema algoritmilise

keerukusega.

134



Curriculum Vitae

Education
2013– ... Doctor of Philosophy, Information and Communication Technology,

Tallinn University of Technology.
2011–2013 Master of Science, Telecommunications Engineering,

Tallinn University of Technology, cum laude.
2008–2011 Bachelor of Science, Telecommunications Engineering,

Tallinn University of Technology, cum laude.
2007–2008 Military Service, Kuperjanov Infantry Battalion.
2004–2007 Secondary Education, Nõo Science Gymnasium.

Working Experience
02.2018– ... Data Scientist, Taxify.
01.2017– ... Early Stage Researcher, Tallinn University of Technology,

Thomas Johann Seebeck Department of Electronics.
10.2016–02.2017 Data Science Internship, Mooncascade.
02.2016–05.2016 Visiting Researcher, Lund University,

Department of Mathematical Statistics.
08.2013–12.2016 Early Stage Researcher, Tallinn University of Technology,

Department of Radio and Communications Engineering.
04.2013–08.2013 Technical Consultant, Levira, Play-Out Center.
01.2011–03.2013 Technical Manager, Levira, Play-Out Center.
09.2010–12.2010 Play-Out Engineer, Levira, Play-Out Center.

Teaching Experience
University courses:
{ Master’s level:

- Standardization in Telecommunication
- Data Compression
- Adaptive Signal Processing

{ Bachelor’s level:
- Telecommunication
- Signal Processing I
- Computer Networks

Mektory School of Technology: Multimedia and Telecommunication
TTÜ continuing education courses: Multimedia and Telecommunication
TTÜ educational lectures in secondary schools around Estonia: Multimedia

135



Publications
2018 M. Butsenko, J. Swärd and A. Jakobsson, "Zoomed Iterative Adaptive Ap-

proach", has been accepted to 2018 International Symposium on Intelligent
Signal Processing and Communication Systems.

2018 A. Krivos̆ei, M. Min, P. Annus and M. Butsenko, "Decomposition of the EBI
Signal into Components using two Channel Cross-Compensating Singular
Spectrum Analysis" in 13th Annual IEEE International Symposium on Medical
Measurements & Applications, Rome, Italy, 2018.

2018 M. Butsenko, O. Märtens, A. Krivos̆ei and Y. Le Moullec, "Sparse Recon-
struction Method for Separating Cardiac and Respiratory Components from
Electrical Bioimpedance Measurements" in Elektronika ir Elektrotechnika,
vol. 24, no. 5, pp. 57-61, 2018.

2018 Maksim Butsenko, Johan Swärd, and Andreas Jakobsson. Estimating Sparse
Signals Using Integrated Wide-band Dictionaries in IEEE Transactions on
Signal Processing, vol. 66, no. 16, pp. 4170-4181, 2018.

2017 M. Butsenko, J. Swärd and A. Jakobsson, "Estimating Sparse Signals Us-
ing Integrated Wide-Band Dictionaries", IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), New Orleans, USA,
March 5-9, 2017.

2016 M. Butsenko and T. Trump, "An Affine Combination of Adaptive Filters for
Channels with Different Sparsity Levels", Telfor Journal, Vol. 8, No. 1, pp.
32-37, July 2016.

2015 M. Butsenko and T. Trump, "An Affine Combination of Adaptive Filters for
Sparse Impulse Response Identification", Telecommunications Forum Telfor
(TELFOR), 2015 23rd, Belgrade, 2015, pp. 396-399.

Computer Skills
Basic PHP, C, Hadoop

Intermediate R, SQL
Advanced MATLAB, Python

Languages
Russian Native
Estonian Fluent
English Fluent
French Basic

Swedish Basic

Interests
{ Music { Education
{ Backpacking { Homebrewing
{ Football { Badminton

136



Elulookirjeldus

Hariduskäik
2013– ... Doktoriõpe, Info- ja kommunikatsioonitehnoloogia,

Tallinna Tehnikaülikool.
2011–2013 Magistriõpe, Telekommunikatsioon,

Tallinna Tehnikaülikool, cum laude.
2008–2011 Bakalaureuseõpe, Telekommunikatsioon,

Tallinna Tehnikaülikool, cum laude.
2007–2008 Ajateenistus, Kuperjanov Üksikjalaväepataljon.
2004–2007 Keskkool, Nõo Reaalgümnaasium.

Töökäik
02.2018– ... Andmeteadlane, Taxify.
01.2017– ... Nooremteadur, Tallinna Tehnikaülikool,

Thomas Johann Seebecki elektroonikainstituut.
10.2016–02.2017 Andmeteaduse intern, Mooncascade.
02.2016–05.2016 Külalisteadur, Lundi Ülikool,

Matemaatilise statistika instituut.
08.2013–12.2016 Nooremteadur, Tallinna Tehnikaülikool,

Raadio- ja sidetehnika instituut.
04.2013–08.2013 Tehniline konsultant, Levira.
01.2011–03.2013 Tehnikajuht, Levira.
09.2010–12.2010 Väljastuskeskuse insener, Levira.

Õpetamiskogemus
Ülikoolikursused:
{ Magistriõpe kursused:

- Sidetehnilised standardid
- Allikakodeerimine
- Adaptiivne signaalitöötlus

{ Bakalaureuseõpe kursused:
- Side
- Signaalitöötlus I
- Arvutivõrgud

Mektory Tehnoloogiakool: Multimeedia ja telekommunikatsioon
TTÜ täienduskoolitused: Multimeedia and telekommunikatsioon
TTÜ populaarteaduslikud loengud keskkoolides: Multimeedia

137



Teadusartiklid
2018 M. Butsenko, J. Swärd and A. Jakobsson, "Zoomed Iterative Adaptive Ap-

proach", has been accepted to 2018 International Symposium on Intelligent
Signal Processing and Communication Systems.

2018 A. Krivos̆ei, M. Min, P. Annus and M. Butsenko, "Decomposition of the EBI
Signal into Components using two Channel Cross-Compensating Singular
Spectrum Analysis" in 13th Annual IEEE International Symposium on Medical
Measurements & Applications, Rome, Italy, 2018.

2018 M. Butsenko, O. Märtens, A. Krivos̆ei and Y. Le Moullec, "Sparse Recon-
struction Method for Separating Cardiac and Respiratory Components from
Electrical Bioimpedance Measurements" in Elektronika ir Elektrotechnika,
vol. 24, no. 5, pp. 57-61, 2018.

2018 Maksim Butsenko, Johan Swärd, and Andreas Jakobsson. Estimating Sparse
Signals Using Integrated Wide-band Dictionaries in IEEE Transactions on
Signal Processing, vol. 66, no. 16, pp. 4170-4181, 2018.

2017 M. Butsenko, J. Swärd and A. Jakobsson, "Estimating Sparse Signals Us-
ing Integrated Wide-Band Dictionaries", IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), New Orleans, USA,
March 5-9, 2017.

2016 M. Butsenko and T. Trump, "An Affine Combination of Adaptive Filters for
Channels with Different Sparsity Levels", Telfor Journal, Vol. 8, No. 1, pp.
32-37, July 2016.

2015 M. Butsenko and T. Trump, "An Affine Combination of Adaptive Filters for
Sparse Impulse Response Identification", Telecommunications Forum Telfor
(TELFOR), 2015 23rd, Belgrade, 2015, pp. 396-399.

Arvutioskused
Basic PHP, C, Hadoop

Intermediate R, SQL
Advanced MATLAB, Python

Keeled
Vene emakeel
Eesti kõrgtase

Inglise kõrgtase
Prantsuse algtase

Rootsi algtase

Hobid
{ Muusika { Haridus
{ Matkamine { Pruulimine
{ Jalgpall { Sulgpall

138




	Contents
	List of publications
	Author's contributions to the publications
	List of abbreviations
	List of notations
	Introduction
	Motivation
	State of the art
	Parameter estimation
	Non-parametric estimators
	Parametric estimators
	Semi-parametric estimators

	Sparsity and sparse reconstruction
	Penalties, regularization
	Dictionary construction
	Parameter selection
	Grid selection
	Relation to a compressed sensing

	Convex optimization and ADMM
	The alternative direction method of multipliers
	ADMM for LASSO

	Problem statement and research questions
	Contributions of the thesis
	References

	Estimating Sparse Signals Using Integrated Wide-band Dictionaries
	Introduction
	Problem statement
	Integrated Wide-band dictionaries
	Efficient implementation
	Numerical examples

	Estimating Sparse Signals Using Integrated Wide-band Dictionaries
	Introduction
	Problem statement
	Integrated Wideband dictionaries
	Parameter Selection
	Complexity analysis
	Numerical examples
	One-dimensional data
	Two-dimensional data
	Measured data example

	Conclusion

	Sparse Reconstruction Method for Separating Cardiac and Respiratory Components from Electrical Bioimpedance Measurements
	Introduction
	Sparse reconstruction
	The proposed algorithm
	Reconstructing the signal
	Conclusion

	The Zoomed Iterative Adaptive Approach
	Introduction
	The zIAA algorithm
	Numerical examples
	Conclusion

	Conclusions
	Acknowledgements
	Abstract
	Kokkuvõte
	Curriculum Vitae
	Elulookirjeldus
	Blank Page



