
Tallinn 2016

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Informatics

IDU40LT

Jana Salnikova 095163IABB

IMPLEMENTATION OF AUTOMATED

INTEGRATION TESTING USING RESTFUL

API ON THE EXAMPLE OF SAFFRON

DIGITAL LTD

Bachelor’s thesis

Supervisor: Ants Torim

 PhD

 Lecturer

Tallinn 2016

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Informaatikainstituut

IDU40LT

Jana Salnikova 095163IABB

AUTOMATISEERITUD INTEGRATSIOONI

TESTIMISE JUURUTAMINE KASUTADES

RESTFUL API-T SAFFRON DIGITAL LTD

NÄITEL

Bakalaureusetöö

Juhendaja: Ants Torim

 PhD

 Lektor

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Jana Salnikova

22.05.2016

4

Abstract

The main objective of this work was to implement structured framework for API level

testing to solve Saffron Digital’s challenges introduced by the currently followed test

automation process.

To conclude if the implementation was successful, ROI computations were made to find

out test automation value for newly implemented approach and currently used one, and

compare the results.

This work showed that implementation of API level testing was successful as over the

ROI period of 12 months, for every Pound Sterling invested in API test automation will

return 45% and for every Pound Sterling invested in existing test automation process

will cause a loss of almost 50%.

This thesis is written in English and is 42 pages long, including 6 chapters, 18 figures

and 3 tables.

5

Annotatsioon

Automatiseeritud integratsiooni testimise juurutamine

kasutades RESTful API-t Saffron Digital LTD näitel

Käesoleva töö peamiseks eesmärgiks oli juurutada struktueeritud raamistik API tasemel

integratsiooni testide arendamiseks, mis aitaks lahendada ettevõttes praegusel hetkel

kasutusel oleva automatiseeritud testimise protsessi puudusi.

Järeldamaks, kas raamistiku juurutamine osutus edukaks, arvutati automatiseeritud

testimise tasuvus nii uuele kui ka olemasoleva protsessile, kasutades

investeeringutasuvuse meetodit.

Töö tulemusena selgus, et kaheteistkümne kuu pikkuse investeeringutasuvuse perioodi

jooksul saab ettevõte API integratsiooni testimiselt 45% kasu iga investeeritud

naelsterlingu pealt ning peaaegu 50% kahju investeerides olemasolevasse protsessi.

Antud tulemuste põhjal võib väita, et Saffron Digital-i näitel osutus API tasemel

testimise juurutamine edukaks.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 42 leheküljel, 6 peatükki, 18

joonist, 3 tabelit.

6

List of Abbreviations and Terms

API Application Program Interface

AST Automated Software Testing

CI Continuous Integration

GUI Graphical User Interface

IDE Integrated Development Environment

IT Information Technology

OTT Over-The-Top

QA Quality Assurance

REST Representational State Transfer

ROI Return on Investment

SVOD Subscription Video on Demand

UI User Interface

URL Uniform Resource Locator

7

Table of Contents

1 Introduction ... 11

1.1 Background ... 11

1.2 Objectives ... 12

1.3 Methodology ... 12

1.4 Overview .. 12

2 Automated Software Testing ... 13

2.1 Test Automation Pyramid ... 13

2.1.1 Unit Tests ... 14

2.1.2 Integration Tests .. 14

2.1.3 UI Tests ... 15

3 Test Automation of Subscription Service on the Example of Saffron Digital LTD ... 16

3.1 Company’s Background ... 16

3.2 Subscription Service ... 17

3.3 Current Test Strategy .. 17

4 Implementation of Automated API Integration Test Framework 20

4.1 Python and PyCharm .. 21

4.2 Python pytest Tool .. 22

4.2.1 Test Development .. 22

4.2.2 Test Development Using Fixtures ... 23

4.2.3 Test Discovery ... 24

4.2.4 Fixture Decorators for Parameterization and skipif 24

4.2.5 Exception Testing .. 26

4.3 Slumber and Curling Libraries ... 26

4.4 Library Architecture Testing Framework ... 27

4.4.1 Saffron Digital’s API Test Automation Framework 28

5 ROI for Automated Testing on the Example of Saffron Digital 31

5.1 Return on Investment (ROI) ... 32

5.2 Computations of ROI for UI and API Level Automated Testing......................... 32

5.3 ROI Value Analysis .. 38

8

6 Summary .. 40

References .. 41

9

List of Figures

Figure 1. Test automation pyramid... 13

Figure 2. Middle layer split between system and code component integration tests 15

Figure 3. Saffron Digital's MainStage platform ... 16

Figure 4. Hourglass test automation approach ... 18

Figure 5. Test examples using pytest framework ... 22

Figure 6. Test example using unittest framework .. 23

Figure 7. Test discovery used in pytest framework .. 24

Figure 8. pytest parameterise decorator applied to a test ... 25

Figure 9. Test results of parameterised test execution using both positive and negative

scenarios ... 25

Figure 10. Test using pytest.skipif decorator without condition 25

Figure 11. Test using pytest skipif decorator with specified condition 26

Figure 12. Assertion of raised exception using pytest.raises as a context manager 26

Figure 13. RESTful API using curling library ... 27

Figure 14. Simple illustration of library architecture test framework 27

Figure 15. UML package diagram for API test framework ... 28

Figure 16. UML sequence diagram for API test framework .. 29

Figure 17. Example of two tests inside the test module ... 30

Figure 18. Venn diagram of test coverage for manual, automated UI and API tests 39

10

List of Tables

Table 1. Saffron Digital's test automation plan for subscription services using Selenium

WebDriver .. 18

Table 2. List of fixed and variable cost factors .. 34

Table 3. Saffron Digital's cost factors for ROI calculations ... 36

11

1 Introduction

In today’s fast moving world, it is challenging for any company to continuously

maintain and improve the quality of software development as in many cases it is very

time consuming and expensive.

Over the years automated software testing (AST) has become one of the main topics

related to QA in IT industry amongst software development and testing communities.

Test automation can improve the development process in many cases if applied,

modified and used according to the company’s needs.

But since there are so many testing methodologies and levels that can be used as part of

AST, how to decide which methods should be used and how to balance them?

This document focuses on analysing current testing strategy of Saffron Digital LTD

from a functional testing aspect.

1.1 Background

Saffron Digital LTD provides premium video platform that enables its clients to launch

premium multi-platform over-the-top (OTT) entertainment service.

Since the company was founded in 2006 it has mainly focused on testing its software by

executing manual end-to-end as well as automated unit tests. Throughout the past few

years Saffron Digital has tried out many tools and programming languages that would

allow its QA team to implement end-to-end UI automation tests without having much

programming experience, but unfortunately it has not seen any success.

At the beginning of 2016 yet another decision was made to start automating regression

test suite as end-to-end UI tests but this time using Selenium WebDriver. Amongst

company’s stuff it is strongly believed that simulating real user scenarios can help easily

determine how a failing test would impact the user.

12

1.2 Objectives

The objective of this work is to introduce Mike Cohn’s testing pyramid theory and

based on that analyse testing strategy followed in Saffron Digital. To address raised

issues with the current approach, implement and set up a structured test framework for

automated API integration testing. Compute and understand the value of test automation

for current UI and new API level approaches both compared to manual testing. Analyse

the results and conclude if API test framework implementation was successful, is it

worth future investments and Mike Cohn’s theory can be applied to Saffron Digital’s

testing approach.

1.3 Methodology

To achieve the objectives a combination of return on investment (ROI) and action

research methodology principles will be used.

Implemented test automation framework will be acting as a pilot project that will help to

collect data, which will then be analysed and used in computations to determine the

value of test automation for both UI and API level approaches.

1.4 Overview

The first part of the document includes an overview of test automation as well as

introduction of test automation pyramid theory and its layers.

The second part introduces company’s background, an SVOD service it provides as

well as its testing strategy.

The third part describes the process of implementing automated test framework for API

integration testing. It also includes a list of used tools with explanations and code

examples why particular tools were chosen.

The final chapter of this work will focus on describing and using ROI methodology in

computations of test automation values for both UI and API approaches. Acquired

results will be analysed and a conclusion will be made if implementation of test

automation framework on the example of Saffron Digital has been successful and

should be considered for further use as part of the company’s test strategy.

13

2 Automated Software Testing

In an automated software testing process, software tools execute pre-developed tests on

a software application before it is released into production.

“The overall objective of AST is to design, develop, and deliver an automated test and

retest capability that increases testing efficiencies; …” [1]

In order to gain benefits from test automation, the tests to be automated need to be

carefully selected and implemented, as automated quality is independent of test quality

[2].

It is also very important to understand on which level test automation should be

performed. That is most commonly based on the environment, technology or simply the

way the company works.

2.1 Test Automation Pyramid

An effective test automation strategy calls for automating tests at three different levels,

as shown in Figure 1, which depicts the test automation pyramid [3].

Figure 1. Test automation pyramid

14

According to the Figure 1 unit tests should cover the broadest area of the pyramid and

then be followed by integration and UI tests. Since not all tests can be automated, a

certain amount of manual testing will always be present as a cloud above the pyramid.

As with building any kind of real life object you need to have a strong foundation that

will help in supporting the next levels built on top of it. The same applies to test

automation pyramid – it is essential to have good testing coverage at the lower levels of

your software as if this part is poorly tested, automation on higher levels will become

very expensive and time consuming.

2.1.1 Unit Tests

Unit testing is a software development process in which the smallest possible piece of a

program is tested individually and independently, verifying that it works as expected,

without considering what the rest of the program would do. This protects each unit from

inheriting bugs from mistakes made elsewhere, and makes it easy to narrow down on

the actual problem [4].

Unit tests are usually written by developers, before the code, to define the functionality,

however they evolve and are extended as coding progresses.

2.1.2 Integration Tests

Once program units are solid, it is necessary to test that the things that are built out of

them also work correctly together, rather than in isolation [4]. This process is called

integration testing.

Integration testing is represented as the middle layer of test automation pyramid (Figure

1) and is focused on testing the services of an application separately from its user

interface (UI) and is also known as service-level testing [3].

Ability to access applications without UI allows testing the core, code-level

functionality of the application by providing an early evaluation of its overall build

strength before running any UI tests. This helps expose the small errors that can fester

and become larger during the following testing stages.

As integration testing itself can be done on many different levels, the middle layer is

often split in multiple layers (Figure 2).

15

Integration tests at the code component level are designed to ensure that the code units

or code components that need to work with each other do so in expected ways [5].

Integration tests at the system component level are designed to ensure that the system

components that need to interact with each other can do so as intended. These tests are

designed and executed against application programming interfaces (APIs), any

interfaces exposed between system components or 3rd party services/components

involved, which allows to test different variations and permutations of API calls [5].

API testing involves testing APIs directly and as part of the end-to-end transactions.

2.1.3 UI Tests

Coded UI tests are automated tests that drive applications through its user interface.

These tests include functional testing of the UI controls and verify that the whole

application, including its user interface, is functioning correctly. Automation on this

level should be done for the functionality that requires minimal change.

Automated UI testing is placed at the top of the test automation pyramid and should be

done as little as possible, as they are known to be more brittle, expensive and time

consuming to write and execute [3]. Ideally only the tests that are critical for the

business or can’t be covered by the lower levels should be automated using this

approach.

The focus should be to minimise these automated tests by relying on and building on the

successes of the testing in the layers below.

Figure 2. Middle layer split between system and code component integration tests

16

3 Test Automation of Subscription Service on the Example of

Saffron Digital LTD

3.1 Company’s Background

Saffron Digital is a cloud-based digital content management and delivery platform for

providing premium multi-platform OTT services.

The company’s state-of-the-art open virtual platform (OVP), MainStage (Figure 3), is

an industry-leading end-to-end platform for the distribution of digital video, featuring

content preparation including video transcoding, a backend content management

system, storefront services coupled with a digital locker for consumer purchases, a

secure DRM player for high-quality playback and a multi-platform application

framework [6].

Figure 3. Saffron Digital's MainStage platform

17

3.2 Subscription Service

A subscription is a contract in which a customer pays a subscription price in regular

intervals (monthly, yearly or seasonal) to have access to a product or a service [7]. This

means that a one-time sale of a product can become a recurring sale and can build brand

loyalty.

One of Saffron Digitals main business models is to provide an end-to-end platform, of

their own implementation, for their clients to be able to run such a service.

Currently the company is providing an end-to-end subscription service with integrated

applications across 3 platforms (web, iOS, Android) for two of their clients. The third

client is using storefront subscription service APIs across 2 platforms to integrate with

their own applications.

3.3 Current Test Strategy

MainStage has been built in a way where every subscription service has its own

individual client-based configurations, but they are all using the same storefront API

gateway by calling the same services. This allows the company to sell already existing

features to multiple clients as well as set various configurations according to each

client’s business needs.

This type of approach is very beneficial from the development and client on-boarding

point of view, but what about testing?

With manual testing approach that the company has been following, it has become very

expensive and time consuming to test developed software, especially as the client base

is growing and storefront is constantly changing by supporting more and more new

features.

When making changes to any of the backend microservices that are used by the

subscription service, the QA team needs to retest the service for all existing customers.

As a result manual regression testing is taking on an average of seven man-days which

doesn’t leave much time for possible bug fixes and re-test cycles in a continues

integration development approach where releases are made every week.

18

As company’s QA team is small and freezing code releases is not possible, a decision

was made to start automation of UI regression tests, starting with web platforms, as and

when there was down time from manual testing. Selenium WebDriver and Python

programming language were chosen as tools to be used.

By following this AST method Saffron Digital started moving towards hourglass test

automation approach (Figure 4) having no coverage of server level testing, yet

MainStage is a server based platform and the main scope of the business.

Currently followed test automation plan is outlined in Table 1. The overall strategy is to

automate all main scenarios for three existing subscription clients.

Table 1. Saffron Digital's test automation plan for subscription services using Selenium WebDriver

Client Average

number of

test cases per

platform

Number of

platforms

(web, iOS,

Android)

Number of

tests that can

and should

be automated

using

Selenium

Total number

of test cases

to be

automated

Client 1 42 3 28 87

Client 2 42 2 0 0

Client 3 39 3 28 84

Based on the data presented in Table 1 there are about 171 tests to be developed in order

to have good test coverage across two clients. There can be no Selenium tests done for

Figure 4. Hourglass test automation approach

19

Client 2, as Saffron Digital provides only server side APIs and does not develop their

applications, meaning the client could change the UI at any time thus breaking front end

tests that rely on it.

Looking at the data above there are three main concerns that arise:

1. Too many tests to develop and later on maintain across different platforms

2. Reusing existing tests is not possible due to different implementation of the UI

3. Regression testing cannot be done for clients who are not using company’s

applications

20

4 Implementation of Automated API Integration Test

Framework

A framework is considered to be a combination of set protocols, rules, standards and

guidelines that can be incorporated or followed as a whole [8].

A test automation framework is an environment in which tests are automated and

executed. It is a set of guidelines, coding standards, concepts, processes, practices,

project hierarchies, modularity etc. that help to support automated testing [8].

Main test automation framework goals and objectives:

 Create a mechanism to drive the application under test

 Ability to develop test cases in human readable format by hiding the code logic

behind the callable script/function/module

 Ability to create test cases that are independent of automated test

scripts/functions/modules – no cross-impact if either one is changed

 Easy to use when developing new test cases

 Easy to execute tests

 Application independent

 Have capability to expand with the requirements of each application

 Easy to maintain

 Easy to report test results

[9]

An organized test framework helps in avoiding duplication of test cases automated

across the application as well as to improve efficiency of testing.

Automation frameworks can be classified according to five broad types:

 Test script modularity framework

 Test library architecture framework

 Data driven framework

21

 Keyword driven framework

 Hybrid framework

[10]

Each type comes with its own advantages and disadvantages hence when choosing one

clear objectives must be set. “Making the right choices in the preliminary design stage is

the most critical step of the process, since this can be the differentiator between a

successful framework and failed investment.” [10].

There were two primary objectives when choosing and implementing server-level test

automation framework for Saffron Digital:

4. Find a solution to existing test automation concerns listed at the end of the chapter

3.3 on the page 19

5. Make the framework easy to use and understand for a user who has superb

understanding of QA and a broad domain knowledge, but little programming

experience

The following chapters will introduce all main elements that form the framework.

4.1 Python and PyCharm

“Python is an interpreted, object-oriented, high-level programming language with

dynamic semantics.” [11]. It uses dynamic typing and by its design implements

deliberately simple and readable syntax, which makes it easier to learn, understand and

remember [12].

As Saffron Digital’s MainStage platform was built using Python and since it has been

getting more popular as the first language to teach novices [13] it seemed only right to

implement server-level test framework using the same programming language the

platform itself was built in. This also allows daily support from company’s development

team in case of any questions or faced difficulties, which helps to speed up QA team’s

self-learning and test development process as well as save money on trainings.

22

PyCharm IDE version 4 is used as a programming environment for Python. It provides

code analysis and graphical debugger that are necessary for a novice to get used to

coding faster and avoid making mistakes.

4.2 Python pytest Tool

Although there are many known Python testing frameworks, each with their own pros

and cons, it didn’t take long to choose one, that right away seemed the most suitable for

Saffron Digital’s needs.

This chapter introduces pytest – an open-source Python testing tool. I will outline its

main features that became the determining factors for picking this particular tool.

When choosing the automation testing tool there were a number of requirements to

satisfy:

 Simplicity in developing tests

 Simple test discovery

 Ability to reuse already existing tests to run them for multiple clients, territories

and platforms as and when needed

 Ability to run tests only if a specific condition has been met

 Ability to test for exceptions

4.2.1 Test Development

The pytest framework accepts plain Python functions as tests (Figure 5) instead of

insisting that tests must be packaged inside of larger test classes (Figure 6).

def test_false():

 assert False == 0

def test_true():

 assert True == 1

Figure 5. Test examples using pytest framework

23

As in pytest there is no actual need for test classes, tests can be simply grouped in

modules that can then be used as test suites.

4.2.2 Test Development Using Fixtures

The purpose of test fixtures is to provide a fixed baseline upon which tests can reliably

and repeatedly execute [14].

Main fixture features:

 They have explicit names and are activated by declaring their use from test

functions, modules, classes or whole projects

 They are implemented in a modular manner, as each fixture name triggers a

fixture function which can itself use other fixtures

 Their management scales from simple unit to complex functional testing,

allowing to parameterize fixtures and tests according to configuration and

component options, or to re-use fixtures across class, module or whole test

session scopes

[14]

Test functions can receive fixture objects by naming them as an input argument. For

each argument name, a fixture function with that name provides the fixture object.

Fixture functions are registered by marking functions with @pytest.fixture and can be

further extended to include scope @pytest.fixture(scope=”module”). By providing the

scope it is possible to control the level on which the fixture will be used. If the scope is

set to module it will be shared across the whole test module, if set to function it will be

executed per test function etc.

import unittest

class TruthTest(unittest.TestCase):

 def test_false(self):

 self.assertEqual(0, False)

 def test_true(self):

 self.assertEqual(1, True)

if __name__ == ‘__main__’:

 unittest.main()

Figure 6. Test example using unittest framework

24

Using fixture functions is a prime example of dependency injection where fixture

functions take the role of the injector and test functions are the consumers of fixture

objects [14].

4.2.3 Test Discovery

As per test discovery pytest provides a very simple built in solution. Starting from the

directory where it is run, it will find any Python module prefixed with test_ and will

attempt to run any defined function prefixed with test_ found inside of it.

pytest explores properly defined Python packages, searching recursively through

directories that include __init__.py modules. Figure 7 shows pytest test discovery.

4.2.4 Fixture Decorators for Parameterization and skipif

Since Saffron Digital’s MainStage platform is used by different clients and can be

configured according to each client’s specific needs, it is important to be able to execute

same tests for different clients and configuration sets, avoiding test repetitiveness.

The built in pytest.mark.parametrize decorator enables to achieve that by simply

adding it before a test function (Figure 8).

vouchers/

 __init__.py

 single_use_voucher.py

 multi_use_voucher.py

 test_single_use_voucher.py checked for tests

 test_multi_use_voucher.py checked for tests

test_data/

 pytest won't look in this package because it lacks __init__.py

 vouchers.csv

 vouchers.py

 test_vouchers.py skipped because test_data/ lacks __init__.py

__init__.py

main.py

test_main.py checked for tests

Figure 7. Test discovery used in pytest framework

25

Figure 9 shows test results of test_values() function executed in PyCharm IDE.

In some cases it may be needed to skip the whole test all together (Figure 10) or when a

specific condition has been met (Figure 11). In this case pytest offers pytest.mark.skip

decorator.

import pytest

@pytest.mark.parametrize("value_1, value_2", [(8, 9),

 (5, 5), (6, 5)])

def test_values(value_1, value_2):

 assert value_1 < value_2

Figure 8. pytest parameterise decorator applied to a test

.F

value_1 = 5, value_2 = 5

 @pytest.mark.parametrize("value_1, value_2", [(8, 9),

(5, 5), (6, 5)])

 def test_values(value_1, value_2):

> assert value_1 < value_2

E assert 5 < 5

/projects/bachelor/src/tests/test.py:28: AssertionError

value_1 = 6, value_2 = 5

 @pytest.mark.parametrize("value_1, value_2", [(8, 9),

(5, 5), (6, 5)])

 def test_values(value_1, value_2):

> assert value_1 < value_2

E assert 6 < 5

/projects/bachelor/src/tests/test.py:28: AssertionError

F

Figure 9. Test results of parameterised test execution using both positive and negative scenarios

import pytest

@pytest.mark.skip(reason="no way of currently
testing this")

def test_the_unknown():

 ...

Figure 10. Test using pytest.skipif decorator without condition

26

4.2.5 Exception Testing

In some cases, when testing an API, it is needed to test that the code throws the right

exceptions when given invalid input, or if executed in an invalid state. pytest.raises

can be used as a context manager (Figure 12).

e_info is an ExceptionInfo instance, which is a wrapper around the actual exception

raised.

4.3 Slumber and Curling Libraries

Slumber is a Python library that provides a convenient yet powerful object orientated

interface to RESTful APIs. It acts as a wrapper around the requests library and abstracts

away the handling of URLs, serialization and processing requests [15].

Curling is a REST client that wraps slumber to provide a nice interface to consume

tastypie APIs in Django.

By using these two libraries together, a RESTful API can be used by the example

presented in Figure 13.

import pytest

import sys

@pytest.mark.skipif(sys.platform == 'environment',

reason="Test doesn't run on this env.")

def test_function():

 ...

Figure 11. Test using pytest skipif decorator with specified condition

import pytest

def test_of_exception_error():

 with pytest.raises(Exception) as e_info:

 x = 1 / 0

 assert e_info.typename == 'ZeroDivisionError'

Figure 12. Assertion of raised exception using pytest.raises as a context manager

27

from curling.lib import API

api = API('http://slumber.in/api/v1/')

response =
api.note.get(headers={‘authorization_headers’})

Figure 13. RESTful API using curling library

4.4 Library Architecture Testing Framework

Library architecture is based on common functions that are placed in a common library.

These functions can then be called in the test scripts as and when required across the

whole application under test. The basic concept behind the framework is to determine

the common steps, group them into functions and keep them in a library [8].

Let’s look at the login functionality as an example. There is a set of login feature related

tests, but apart from that, login is a necessary precondition to other tests like viewing

personal details, making a payment etc. By applying library architecture concept, login

steps are grouped in a function and then called in any test it is applicable for (Figure

14).

Main pros of the framework:

 Introduces high level of modularization which leads to easier and cost efficient

maintenance and scalability

 By creating common functions that can be efficiently used by the various test

scripts across the whole framework a great degree of reusability is introduced

Figure 14. Simple illustration of library architecture test framework

28

Main cons of the framework:

 The test data is submitted into the test scripts, thus any change in the test data

would require changes in the test script as well

4.4.1 Saffron Digital’s API Test Automation Framework

This chapter describes implemented API integration test framework structure with a

UML component (Figure 15) and sequence (Figure 16) diagrams.

Figure 15 illustrates Saffron Digital’s implementation of library architecture test

framework by showing how packages, modules and files are placed. Modules called

conftest.py are special named files that pytest looks for. They were intended for local

plugins, but in this example they are also used for fixture functions hence acting like

libraries. Where the conftest.py lives dictates the scope of where it applies. If present in

the source package, fixture functions and setup hooks will apply to all tests in the source

package as well as across all of its sub-packages. If present in a specific package, they

will only apply to tests in that package and its sub-packages, but not to the tests placed

in the packages on a higher level.

As it is shown in Figure 15, “master” conftest.py and test data files are placed in the

source package as they are used across the whole project. The API_gateway package

holds a selection of all different API gateways, each having its own sub-packages for

relevant microservices in which corresponding test modules are being placed.

Figure 15. UML package diagram for API test framework

29

Figure 16 illustrates framework’s sequence diagram by showing what is happening on

the background when the test module has been triggered.

As a first thing pytest invokes all conftest.py files and creates a single instance on which

all the tests that are placed inside that module are being run. This approach makes test

execution faster as well as allows triggering multiple test instances of specified

configuration at the same time.

Figure 17 represents an example set of tests inside a test module. Each test has its own

set of fixture functions provided as arguments. When using fixtures from conftest.py

file, there is no need to import different modules to the one that is using them. By

triggering the test module, pytest invokes all conftest.py files that are applicable for the

module after that initiates an instance on which all tests of that test module run.

Figure 16. UML sequence diagram for API test framework

30

app_name = 'name'

os = 'os'

def test_purchase_fixed_price_plan(create_user_account,

 get_subscription_plan,

 make_payment,

 get_transactions):

 """

 Test purchasing fixed price plan.

 Asserting subscription plan has been activated and user was charged the

 correct amount.

 """

 headers = create_user_account(app_name=app_name, os=os)['headers']

 plan = get_subscription_plan(plan_id= 'xxx',

 headers=headers)['plan']

 plan_price = plan['xxx']['xxx']

 make_payment(plan_id='xxx', payment_type='xxx', headers=headers)

 plan_after_purchase = get_subscription_plan(plan_id='xxx,

 headers=headers)['plan']

 assert plan_after_purchase['status'] == 'active'

 transactions = get_transactions().get(headers=headers)

 assert len(transactions['body']['xxx']['xxx']) == 1

 assert transactions['body']['xxx']['xxx'][0]['xxx'] == plan_price

def test_history_not_subscribed(create_user_account,

 subscription_history):

 """

 Tests history is returned as an empty list.

 """

 headers = create_user_account(app_name=app_name, os=os)['headers']

 history = subscription_history.get(headers=headers)

 assert history['body']['xxxx'] == []

Figure 17. Example of two tests inside the test module

31

5 ROI for Automated Testing on the Example of Saffron

Digital

For many people as well as companies, software testing is associated with repetitive

manual process of navigating through the application by filling in and submitting

different forms as well as clicking on the buttons. Uncontrollably it makes people think

of testing as something simple that anyone can do without much knowledge and

experience by simply having enough domain expertise.

Unfortunately this preconception affects the way people think of software test

automation as well – it’s testing – anyone can do it. Simply get a tool, ask testers to

write automated tests that will perform required navigations without human intervention

and watch how it solves the problem of test scheduling, lower the cost of testing and

speed up testing processes.

In reality test automation is much more complicated than it may seem and not every

approach will end up bringing value – on the contrary, it may bring more costs than

benefits. It is important to realize that every test automation tool or framework is really

just a specialized programming language, and developing an automated test library is a

development project requiring commensurate skills and time [16].

As with any new implementation it is essential to conduct research and analysis in order

to choose the best approach that will meet expectations as well as satisfy specific needs

and requirements. It is important not to forget that the approach used in other’s success

stories may not be the best solution to go with.

In this paragraph computations of ROI values will be done for both UI test automation,

currently used in Saffron Digital, as well as for API test automation that was

implemented as part of this work. Results will be analysed based on which a conclusion

will be made, if out of these two test automation approaches, the most suitable one was

chosen as an option to begin with.

32

5.1 Return on Investment (ROI)

“ROI is the ultimate measure of accountability that answers the question: Is there a

financial return for investing in a program, process, initiative, or performance

improvement solution?” [17].

ROI is usually computed as the derived benefits divided by the costs of a given thing

and is expressed by the equation ROI (%) = (Net Program Benefits / Program Costs) *

100 [17].

To get to ROI it is important to follow a four-phase process to ensure consistent and

reliable results.

In the first phase, a planning of ROI evaluation should be conducted. It is important to

have clear objectives that will help to develop a plan for data collection. This includes

selecting the data collection instrument, identifying the source of the data as well as the

period during which the data will be collected [17].

The second phase is the data collection itself, which is usually done during the program

as well as after it ends, and the applied knowledge and skills becomes a routine [17].

Data analysis is done as part of the third phase. This is when the fully loaded costs are

being developed, intangible benefits identified as well as ROI calculations performed

[17].

The final phase is to report on the process and communicate the progress and an

outcome.

The ultimate use of data generated through the ROI methodology is to show the value of

programs, justify spending, gain support etc. [17].

5.2 Computations of ROI for UI and API Level Automated Testing

As part of this paper the data generated through the ROI calculations will be used to

show the value of the new and existing processes as well as to justify spending that will

help to decide on the process towards which future investments should be made.

33

In the case of Saffron Digital, the new process represents the implementation of server-

level tests and existing process, proceeding with development of UI automated tests.

The main objective for using ROI methodology in case of Saffron Digital is to see how

much will the company get back for every Pound Sterling invested in test automation,

for each test approach.

Server-level test automation framework developed as part of this paper will be acting as

a data source for automated API tests. UI test automation framework developed by

Saffron Digital’s QA team will be acting as a data source for automated UI tests and

existing manual test cases, as a data source for manual testing. Data collection will be

done while the processes are being implemented and used for the period of two months.

As two different test automation approaches will be compared to the same manual

testing one, it was important to make sure that the data was collected in the similar

conditions. This is the reason why data collection was done for the first two months of

each process, not from the state the processes were in when starting work on this paper.

The collected data will be a calculated average, based on the results of 6 QA testers with

similar testing and programming experiences. Three of them will be working on UI and

the other three on an API test automation. Data will be collected for regression test suite

of one SVOD client, using web as a platform.

There is a total of 42 test cases of which 28 will be used in a data collection process.

The reasoning for this is the difference in automation approaches that allow

implementation of different test cases as well as the fact that not all test cases can even

be automated. To simplify the computations and minimise the risk of mistakes, this data

will not be tracked.

In the case of Saffron Digital, test automation is being introduced after manual testing

process has been in place for a while hence the cost benefits from automation will be

viewed as trade-offs in comparison to manual testing.

Equation (1) will be used when computing ROI for both UI and API level automated

testing. It shows a relative ROI for comparing the added benefits from automation with

the added costs from automation as well as the value of automation in relation to

34

manual testing. It allows selecting relevant parameters according to Saffron Digital’s

needs and includes allocation of fixed and variable costs and benefits.

𝑅𝑂𝐼𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛(𝑖𝑛 𝑡𝑖𝑚𝑒 𝑡) =
∆(𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠 𝑓𝑟𝑜𝑚 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝑚𝑎𝑛𝑢𝑎𝑙)

∆(𝐶𝑜𝑠𝑡𝑠 𝑜𝑓 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝑚𝑎𝑛𝑢𝑎𝑙)
=

∆𝐵

∆𝐶
 (1)

 ∆𝐵: The incremental benefits from automated over manual testing

 ∆𝐶: The incremental costs of automated over manual testing

In order to use equation (1) all relevant financial costs and benefits need to be identified

first. Values need to be determined for manual, automated UI and automated API

testing.

Financial costs associated with automated testing can be generally split into fixed or

variable costs. Fixed costs of automation are expenditures for equipment, tools, training,

etc. that are not affected by the number of times tests are run or the number of tests

being run. Variable costs increase or decrease based upon the number of tests that are

developed or the number of times the tests are run [18].

Table 2 includes a list of some fixed and variable automation cost factors. If the cost

factor is not included in Saffron Digital’s test automation ROI computations then

reasoning is provided.

Table 2. List of fixed and variable cost factors

Cost factors Fixed/variable

cost values

Used in ROI

computations

Reasoning if not

used

Hardware (additional or

upgrades to existing)

Fixed No Approximately the

same cost for

automated and manual

tests

Tool and programming

language

training/introduction

Fixed No Training costs are

included in the test

development and

maintenance cost as

team members learned

as they progressed

Software licenses Fixed No Approximately the

same cost for

automated and manual

tests

35

Cost factors Fixed/variable

cost values

Used in ROI

computations

Reasoning if not

used

Automation environment

design/implementation

Fixed Yes N/A

Scripting tools and

licenses

Fixed No Using only freeware

tools

Test case implementation Variable Yes N/A

Test maintenance Variable Yes N/A

Test case execution in CI

environment

Variable Yes N/A

Test results analysis Variable No Not tracked separately

and is included in test

case creation and

maintenance costs

Defect reporting Variable No Approximately the

same cost for

automated and manual

tests

Test results reporting Variable No Test result reporting is

done via company’s

internal system hence

the same cost for

automated and manual

tests

Data generation Variable No Test data is generated

as part of the tests

hence is included in

test case creation and

maintenance costs

After-hours testing by

systems

Variable No No after-hour testing

is planned to be done

for the first year

During the data collection the following assumptions have been made:

 Server deployments are done twice a week and as with every deployment at least

one bug is found

 Application deployments are done once a month with the assumption that no

bugs are found

36

 For server deployments manual regression tests are run 1,5 times a week as full

set of tests is run only once. After bug fixes only main scenarios are tested

 For application deployments manual regression test suite is run once a month

with the assumptions that no bugs were found

 API tests are run after every server deployment

 UI tests are run after every server and application deployment

 All manual and automated tests are run only on pre-production environment

 Total time spent for building test framework for API testing has been divided by

3 as the same framework can be reused for the other 2 clients

 Cost of automated test execution is 0 as all tests are triggered automatically by

the CI tool

Data collected within a 2-month period, which is used in UI and API test automation

ROI calculations is presented in Table 3.

Table 3. Saffron Digital's cost factors for ROI calculations

Factors Manual testing UI automated

testing

API automated

testing

Average salary per

person per year (£)

(London)

27000 40000 40000

Hourly salary per

person
14.78 21.9 21.9

Number of working

days in a year (United

Kingdom)

261 261 261

Number of full weeks

in one year
52 52 52

Hours in a one man-

day
7 7 7

Number of test cases 28 28 28

Regression test suite

runtime in hours
4.5 0.35 0.084

Number of regression

test suite executions

per year

90 116 104

CI tool infrastructure

cost per hour (£)
N/A 0.12 0.12

37

Factors Manual testing UI automated

testing

API automated

testing

Test case creation

time in hours per year
147 392 294

Test suite

maintenance in hours

per month

268 336 84

Building test

framework in hours

per year

N/A 14 23.3

Collected test data will be placed in an equation (1) in the way that is represented

below:

∆𝐵(𝑖𝑛 𝑡𝑖𝑚𝑒 𝑡) =
∑(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑠𝑡𝑠 𝑜𝑓 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑚𝑎𝑛𝑢𝑎𝑙 𝑡𝑒𝑠𝑡𝑠 𝑛𝑚 𝑡𝑖𝑚𝑒𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑡) −
∑(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑠𝑡𝑠 𝑜𝑓 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑 𝑡𝑒𝑠𝑡𝑠 𝑛𝑎 𝑡𝑖𝑚𝑒𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑡)

∆𝐶(𝑖𝑛 𝑡𝑖𝑚𝑒 𝑡) = ∑(𝑓𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡𝑠 𝑜𝑓 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑔 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑 𝑡𝑒𝑠𝑡 𝑓𝑟𝑎𝑚𝑒𝑤𝑜𝑟𝑘) +
∑(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑠𝑡𝑠 𝑜𝑓 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑔 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑 𝑡𝑒𝑠𝑡𝑠) +
∑(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑠𝑡𝑠 𝑜𝑓 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑 𝑡𝑒𝑠𝑡𝑠) +
∑(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑠𝑡𝑠 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑 𝑡𝑒𝑠𝑡𝑠 𝑖𝑛 𝐶𝐼 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡) −
∑(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑠𝑡𝑠 𝑜𝑓 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑔 𝑚𝑎𝑛𝑢𝑎𝑙 𝑡𝑒𝑠𝑡𝑠) +
∑(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑠𝑡𝑠 𝑜𝑓 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑚𝑎𝑛𝑢𝑎𝑙 𝑡𝑒𝑠𝑡𝑠)

 𝑛𝑚: Number of automated test executions

 𝑛𝑎: Number of manual test executions

 𝑡: Period of ROI

Computation of ROI for automation of UI tests:

∆𝐵(𝑖𝑛 12 𝑚𝑜𝑛𝑡ℎ𝑠) = (14,78 ∗ 4,5 ∗ 90) − 0 ≈ 5985,9

∆𝐶(𝑖𝑛 12 𝑚𝑜𝑛𝑡ℎ𝑠) = ((14 ∗ 21,9) + (392 ∗ 21,9) + (336 ∗ 21,9) + (116 ∗ 0,35 ∗

0,12)) − ((147 ∗ 14,78) + (168 ∗ 14,78)) = (306,6 + 8584,8 + 7358,4 + 4,87) −
(2172,66 + 2483,04) = 16 254, 67 − 4655,7 ≈ 11 598,97

𝑅𝑂𝐼𝑈𝐼 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛(𝑖𝑛 12 𝑚𝑜𝑛𝑡ℎ𝑠) =
∆𝐵

∆𝐶
=

5985,9

11 598,97
≈ 0,52

Computation of ROI for automation of API tests:

∆𝐵(𝑖𝑛 12 𝑚𝑜𝑛𝑡ℎ𝑠) = (14,78 ∗ 4,5 ∗ 90) − 0 ≈ 5985,9

38

∆𝐶(𝑖𝑛 12 𝑚𝑜𝑛𝑡ℎ𝑠) = ((23,3 ∗ 21,9) + (294 ∗ 21,9) + (84 ∗ 21,9) + (104 ∗ 0,084 ∗

0,12)) − ((147 ∗ 14,78) + (168 ∗ 14,78)) = (510,27 + 6438,6 + 1839,6 + 1,05) −
(2172,66 + 2483,04) = 8789,52 − 4655,7 ≈ 4133,82

𝑅𝑂𝐼𝐴𝑃𝐼 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛(𝑖𝑛 12 𝑚𝑜𝑛𝑡ℎ𝑠) =
∆𝐵

∆𝐶
=

5985,9

4133,82
≈ 1,45

5.3 ROI Value Analysis

The results of ROI computations for automated UI and API level testing differ quite a

bit. It is clearly shown that in the case of Saffron Digital, investing in UI automated

testing within a year will bring almost 50% loss to the company which indicates that

continuing manual testing turns out to be more beneficial.

In the case of automated API tests, implementing these tests looks to be more promising

with a 45% return within a year.

So why are these results so different if in both cases tests are being automated hence

theoretically costs should be decreasing and benefits increasing?

When analysing the collected data we can conclude, that time spent on a UI test

maintenance within a year is four times greater than the time spent on an API test

maintenance. This difference is mainly caused by changes made in the code.

Application releases are being made less frequently compared to server level

deployments, but since UI tests are based on an application UI, which is changing with

almost every release, tests need to be refactored every time.

Weekly server deployments are mainly done for new features or bug fixes and changing

existing APIs happens less frequently. This is the reason why tests are relatively stable

and regression tests suite maintenance time is minimal.

Another factor why UI test maintenance takes up more time is the lack of proper testing

framework, which results in code duplication across the whole project making it harder

to refactor each test.

39

By the collected data and the ROI values we can clearly see the cost impact of missing

server-level testing. Covering regression testing with only UI tests in a constantly

changing environment is expensive and in this case even cheaper to be left undone.

Venn diagram in Figure 18 represents Saffron Digital’s test coverage of manual versus

automated UI versus automated API tests. This illustration shows the possibilities of

server-level testing and actually suggests a better approach to test automation, which

also ties in with Mike Cohn’s testing pyramid theory.

Tests automated on the lower level of the pyramid can cover more and as proven by

ROI calculation values, they are cheaper and faster to automate and maintain.

As it appears on the example of Saffron Digital, test automation is not always necessary,

appropriate or cost efficient. It is essential to conduct research and relevant analysis in

order to choose the best approach that will meet expectations as well as bring value.

This paper has shown that implementation of test automation framework for API

integration testing has been successful. It has brought out a critical investment mistake

towards automation of UI tests as well as given directions where test automation can

benefit the company.

Figure 18. Venn diagram of test coverage for manual, automated UI and API tests

40

6 Summary

The aim of this work was to introduce testing pyramid theory and based on that detect

possible problems with Saffron Digital’s current testing strategy. By following the

principles of the theory, try to address existing challenges and concerns by

implementing structured server-level test automation framework for API integration

testing.

The main objective was to understand if server-level test automation turns out to be

more expensive to implement and maintain comparing to already existing UI test

automation.

In achieving that, implemented test automation framework was used as a pilot project

for the period of two months for test development. A relevant data was collected for

calculation of costs and benefits associated with it. To be able to compare the

investment required for automating API tests to the investment needed for already

existing test automation process, the same type of data was collected for UI tests.

The results of utilisation of the ROI methodology in computing the costs and benefits of

automated UI and API tests in comparison to manual testing showed that over the ROI

period of 12 months, for every Pound Sterling invested in API test automation will

return 45% and for every Pound Sterling invested in UI testing will cause a loss of

almost 50%. These results allow concluding that implementation on test automation

framework for API integration testing has been successful.

There are certain opportunities for continuing to develop this work by further analysing

the given test data and performing further research. This could help to come up with a

test strategy where tests are divided between different test automation approaches as

best feasible for the business.

41

References

[1] E. Dustin, T. Garrett and B. Gauf, Implementing Automated Software Testing.

How to Save Time and Lower Costs While Raising Quality, Upper Saddle River,

NJ: Addison-Wesley, 2009.

[2] M. Fewster and D. Graham, Software Test Automation, London: Addison-Wesley,

1999.

[3] M. Cohn, “The Forgotten Layer of the Test Automation Pyramid,” 17 December

2009. [Online]. Available: https://www.mountaingoatsoftware.com/blog/the-

forgotten-layer-of-the-test-automation-pyramid. [Accessed 22 April 2016].

[4] D. Arbuckle, Python Testing, Birmingham: Packt Publishing, 2010.

[5] S. Ashman, “Layers of Test Automation,” 28 December 2014. [Online]. Available:

http://qa-matters.com/2014/12/28/layers-of-test-automation/. [Accessed 22 April

2016].

[6] Saffron Digital LTD, “About us,” 2013. [Online]. Available:

http://www.saffrondigital.com/company/. [Accessed 23 April 2016].

[7] Debitoor, “Subscription - What is a subscription?,” 2012-2016. [Online].

Available: https://debitoor.com/dictionary/subscription. [Accessed 23 April 2016].

[8] SoftwaretestingHelp.com, “Most Popular Test Automation Frameworks with Pros

and Cons of Each – Selenium Tutorial #20,” 17 March 2016. [Online]. Available:

http://www.softwaretestinghelp.com/test-automation-frameworks-selenium-

tutorial-20/. [Accessed 30 April 2016].

[9] A. Shrivastava, “Automation Framework Architecture for Enterprise Products:

Design and Development Strategy,” July 2012. [Online]. Available:

42

http://www.oracle.com/technetwork/articles/entarch/shrivastava-automated-

frameworks-1692936.html. [Accessed 01 May 2016].

[10] M. Kelly, “Choosing a test automation framework,” 20 November 2003. [Online].

Available: http://www.ibm.com/developerworks/rational/library/591.html.

[Accessed 01 May 2016].

[11] The Python Software Fundation, “What is Python? Executive Summary,” 2001-

2016. [Online]. Available: https://www.python.org/doc/essays/blurb/. [Accessed 17

April 2016].

[12] M. Lutz, Learning Python, 5th Edition ed., Beijing: O’Reilly Media, 2013.

[13] P. Guo, “Communications of The ACM,” 07 July 2014. [Online]. Available:

http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-

introductory-teaching-language-at-top-us-universities/fulltext. [Accessed 17 April

2016].

[14] H. Krekel, “pytest fixtures: explicit, modular, scalable,” 2015. [Online]. Available:

https://pytest.org/latest/contents.html. [Accessed 16 May 2016].

[15] D. Stufft, “Slumber documentation,” 2011. [Online]. Available:

http://slumber.readthedocs.org/en/v0.6.0/#. [Accessed 21 April 2016].

[16] L. G. Hayes, The Automated Testing Handbook, 2nd Edition ed., Software Testing

Institute, 2004.

[17] P. Pulliam Phillips and J. J. Phillips, Return on Investment (ROI) Basics, ASTD

Press, 2005.

[18] D. Hoffman, “Cost Benefits Analysis of Test Automation,” 1999. [Online].

Available:

https://www.agileconnection.com/sites/default/files/article/file/2014/Cost-

Benefit%20Analysis%20of%20Test%20Automation.pdf. [Accessed 15 May 2016].

