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Abstract

In this thesis, we study a single-field inflationary model described by a logarithmic scalar potential
of the form V(¢) = A*[1 + 6In(¢/M)]. The aim of the study is to analyse the inflationary
dynamics of the model and to determine its predictions for the main cosmological observables.

The analysis is performed within the slow-roll approximation and focuses on the scalar spec-
tral index ng, the tensor-to-scalar ratio », and the normalisation scale A. The parameter space
is explored separately for positive and negative values of the parameter 9, as the inflationary
behaviour differs qualitatively in these two cases.

For positive values of §, the inflaton rolls down the potential and inflation ends in a standard way.
The resulting observables exhibit smooth and regular dependence on the model parameters. For
negative values of 9, the inflationary dynamics are more subtle. The requirement that the potential
remains positive restricts the allowed field range, and the inflaton can enter and exit inflation in
a non-trivial manner. Only parameter values that produce a sufficient number of e-folds lead to
viable inflation.

The results demonstrate that the logarithmic inflationary potential considered in this work can
give rise to consistent inflationary scenarios, while highlighting the importance of the sign of the
parameter J in determining the physical viability of the model.



Annotatsioon

Kéesolevas t66s uuritakse Uhe skalaarvaljaga inflatsioonimudelit, mida kirjeldab logaritmiline po-
tentsiaal kujul V (¢) = A*[1 4 6 In(¢/M)]. T66 eesmérgiks on analiiiisida selle mudeli inflatsioo-
nidinaamikat ning méarata selle ennustused peamiste kosmoloogiliste vaadeldavate suuruste
jaoks.

AnalliUs viiakse labi aeglase rullumise (slow-roll) l1dhenduses ning keskendutakse skaalarspektri
indeksile ng, tensor-skalaar suhtele » ja normaliseerimisskaalale A. Parameeterruumi uuritakse
eraldi parameetri ¢ positiivsete ja negatiivsete vaartuste korral, kuna inflatsioonik&itumine on
nendel juhtudel kvalitatiivselt erinev.

Parameetri § positiivsete vaartuste korral veereb inflaton médda potentsiaali alla ning inflatsioon
I6peb tavapérasel viisil. Saadud vaadeldavad suurused soéltuvad mudeli parameetritest sujuvalt
ja regulaarselt. Parameetri § negatiivsete vaartuste korral on inflatsioonidiinaamika keerukam.
Noue, et potentsiaal jadks positiivseks, piirab inflatoni vélja lubatud vahemikku ning inflaton voib
inflatsiooni kaigus sellesse siseneda ja sealt valjuda mitte-triviaalsel viisil. Olulised parameetrite
vaartused on ainult need, mille korral tekib piisav arv e-volte (e-folds).

Tulemused néitavad, et kdesolevas t66s vaadeldud logaritmiline inflatsioonipotentsiaal vdib viia
kooskodlaliste inflatsioonistsenaariumideni, tuues esile parameetri § margi otsustava rolli mudeli
fuusilise elujoulisuse maaramisel.
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1 Introduction

The Hot Big Bang framework explains many observed features of the Universe, including its
expansion and the cosmic microwave background (CMB). It also raises questions related to the
initial conditions of the early Universe, most notably the horizon problem and the flatness problem.
The horizon problem refers to the observed near-uniform temperature of the CMB across the sky,
even though, within the standard Big Bang picture, widely separated regions would not have been
in causal contact before the CMB was formed. The flatness problem refers to the observation
that the Universe is very close to spatially flat today, a feature that is difficult to explain within the
standard Big Bang picture without fine-tuned initial conditions.

Inflation is a short phase of rapid and accelerated expansion introduced to address these issues.
During inflation, a small region that was initially in causal contact is stretched to scales much
larger than the observable Universe, which helps explain the observed large-scale uniformity of
the CMB. At the same time, the accelerated expansion reduces the effect of any initial spatial
curvature, leaving the Universe very close to spatially flat. Inflation also gives rise to observable
imprints in the CMB, which are commonly summarized by the scalar spectral index ngs and the
tensor-to-scalar ratio r.

By an inflationary model we mean a concrete choice of potential V' (¢) for a single canonical
scalar (the inflaton). There are various possible choices for V' available in the literature (e.g.
[1] and refs. therein). In this thesis, we study a single-field inflationary model defined by the
logarithmically corrected potential

V(¢):A4[1+5ln<ﬁ)] : (1)

also known as running cosmological constant. This potential can be generated by quantum
corrections in a theory with several massive particles (e.g. [2] and refs. therein) and has been
already applied to inflation in some specific model [3, |4} 5], where § was not a free parameter
but defined by the model itself. Instead the analysis of this thesis assumes a completely free 4,
exploring both positive and negative values, and considers representative choices of the mass
scale M. A positive ¢ naively means that the bosonic sector of the theory is more massive than
the fermionic one, while a negative ¢ represents the opposite configuration [2]. For each case,
the inflationary dynamics and the resulting observable quantities are computed at horizon exit
for a fixed number of e-folds, and the model’s predictions in the (ns, ) plane are compared with
current observational constraints.



2 Theory

In this section, we review the theoretical background required to study single-field inflation models
and to compute the observable quantities used later in this thesis. We assume a homogeneous
and isotropic Universe described by a flat Friedmann—Lemaitre—Robertson—Walker (FLRW) met-
ric.

2.1 Inflation with a scalar field

Inflation is commonly modelled by a single scalar field ¢, called the inflaton, minimally coupled
to gravity. The theoretical framework is defined by the Einstein—Hilbert action for gravity together
with a canonical scalar-field action,

M2
5— / /g [_QPR + égwam i~ V()| ()

where g,,,, is the spacetime metric, g its determinant, R is the Ricci scalar, and Mp the reduced
Planck mass.

To study the cosmological evolution implied by this framework, we assume that the Universe is
homogeneous and isotropic on large scales, as supported by observations. With this assump-
tion, the spacetime geometry is uniquely described by the flat Friedmann—Lemaitre—Robertson—
Walker (FLRW) metric,

ds® = dt* — a®(t) (dr? + r2dQ?), 3)

where a(t) is the scale factor, which describes how physical distances between comoving points
evolve with time.

Varying the action in Eq. (2) with respect to the metric g,,,, yields Einstein’s equations

1

GMV:@

m (4)
where the energy—momentum tensor of the scalar field is

Ty = 046000 — gy | 59"0a6 036 — V(9| ®

For a homogeneous field ¢ = ¢(t) in the FLRW background, 7)., takes the perfect-fluid form,
which allows to identify the energy density and pressure as

1. 1.
po =50 +V(0),  po=50"—V(9). (6)



Evaluating Einstein’s equations (4) for the metric (3) gives the Friedmann equations that governs
the cosmic expansion. The expansion rate of the Universe is described by the Hubble parameter

=2, (7)
a
and the first Friedmann equation reads
1
H2=_"_,.. 8
3z’ ®
The acceleration equation is
e s (o + 3p0) ©
o 3Mg e P

Inflation is defined as a period of accelerated expansion,

i > 0. (10)

Using Eq. (9), this condition is equivalent to
Py + 3pp < 0. (11)
Substituting the expressions in Eq. (6), one finds

po + 3pg = 20° — 2V (9), (12)

so inflation occurs when the potential energy of the inflaton dominates over its kinetic energy,

P* <V (¢), (13)

corresponding to an equation of state close to py ~ —pg.

Inflation also provides a dynamical explanation for the horizon and flatness problems of standard
cosmology. It is useful to define the comoving Hubble radius as

()™ (14)

During accelerated expansion, the scale factor a(t) grows rapidly while H varies slowly, causing
(aH)~! to decrease. As a result, physical length scales can exit the horizon during inflation,
implying that the presently observable Universe originates from a region that was initially in causal
contact.



The flatness problem can be understood by including spatial curvature in the Friedmann equation

[ k

- — 15
sz’ a2 (15)

which implies
k

a2H?’

where Q = p/(3M3H?). Since inflation causes the quantity a>H? to grow rapidly, any initial

Q-1= (16)

deviation from spatial flatness is dynamically driven toward zero, explaining why the Universe
appears nearly flat today.

Finally, varying the action (2) with respect to the scalar field yields the equation of motion for the
inflaton,
¢+ 3H+V'(¢) =0. (17)

2.2 Slow-roll approximation

Inflation occurs when the potential energy of the inflaton dominates over its kinetic energy. This
regime is described by the slow-roll approximation, which assumes that the inflaton field evolves
slowly along its potential. In this case, the dynamics can be characterised [1] by the first and
second potential slow-roll parameters defined as

V/I(¢)
V(g)

g (VY

ev(®) = =5~ (W) v (@) = Mg

(18)
The parameter ¢, measures the steepness of the potential and controls the rate at which inflation
ends. Inflation takes place as long as ey < 1 and |ny| < 1. The end of inflation is defined by
the condition

6V(¢end) =1 (19)

2.3 Number of e-folds

The amount of inflation is quantified by the number of e-folds N, which measures the growth of
the scale factor during inflation. It is defined as

t tcnd
N= ln(a( e“d)> - H(t) dt, (20)
a(ts) ty
where t, denotes the time when observable modes exit the horizon and t.,4 corresponds to the

end of inflation[]

'In order to solve the horizon and flatness problems of standard cosmology, inflation must last for a sufficiently long
period, typically it's around 50-60 e-folds.




Changing the integration variable from time to the inflaton field ¢, the expression becomes

Pend H
5 ¢ (21)

¢*

Within the slow-roll approximation, the inflaton equation of motion and the Friedmann equation

simplify to
: V'(¢) 2, V(o)
~ — H ~ . 22
T 3012 (22)
Using these relations, the number of e-folds can be written as
1 on
N V(e) do. (23)

B ﬁg Pend V/ (¢)

This expression allows the value of the inflaton field at horizon crossing ¢, to be determined once
the end of inflation ¢.,q is fixed by the condition given in Eq. (19).

2.4 Inflationary observables

The main observable quantities used to test inflationary models are the scalar spectral index ng
and the tensor-to-scalar ratio . In the slow-roll approximation, these are given by

ng ~ 1 — 6ey + 2ny, r =~ 166y, (24)
where the star indicates that the quantities are evaluated at ¢ = ¢..

Another important observable is the amplitude of the scalar power spectrum,

1V

~—_* 25
247r2M§ €y (25)

S

The observed value of A; can be used to fix the overall normalisation of the inflationary potential.
From the constraints of the Planck collaboration [6], the scalar amplitude is measured to be
Ag ~ 2.1 x 1072, which provides a direct observational input for determining the energy scale of
inflation in a given model.

2.5 General study of the logarithmic potential

The inflationary model studied in this thesis is defined by the logarithmically corrected potential

V(p) = A* [1 +5m(§2>} . (26)



Although the subsequent analysis is performed numerically, several important properties of this
potential can be established analytically. These properties play a crucial role in determining the
physically admissible inflationary solutions and in guiding the numerical strategy adopted later.

First, the potential must remain positive along the inflationary trajectory. Writing the potential in
the form

V() = A*D(¢), D(¢) =1+ (51n<§2> , (27)

the condition V' (¢) > 0 is equivalent to D(¢) > 0. It is convenient to introduce
Gy =Me1/?, (28)

which defines the field value at which the potential vanishes. Requiring D(¢) > 0 constrains
the allowed field range in a sign-dependent manner: for § > 0, ¢y —¢ represents a lower bound
on the inflaton field and physically admissible trajectories satisfy ¢ > ¢y —q, whereas for § < 0,
¢v—o acts as an upper bound and inflation is restricted to field values ¢ < ¢y —g.

Second, the logarithmic correction modifies the monotonicity of the potential depending on the
sign of 4. Since

V'(¢) (29)

57
the potential increases with the inflaton field for 6 > 0 and decreases with the field for § < 0.
Consequently, the direction of the inflaton roll differs qualitatively between the two branches: for
positive ¢ the field rolls toward smaller values of ¢, while for negative § it rolls toward larger values.

This distinction becomes essential when identifying the physically relevant end of inflation.

Finally, for negative values of ¢, the slow-roll parameter ey (¢) can reach unity at two distinct
values of the inflaton field. In this case, inflation is possible only within the finite field interval
bounded by these two points, which correspond to the onset and termination of the slow-roll
phase. As a consequence, the total number of e-folds achievable in this branch is finite, implying
an intrinsic upper bound on the duration of inflation for 6 < 0, independent of the numerical
procedure used to solve the equations of motion.

This behaviour is illustrated in Fig. [1 where ey (¢) is shown for the representative value § =
—0.1. The horizontal line ey = 1 intersects the curve at two points, explicitly demonstrating the
existence of a finite inflationary window in field space. Although the figure shows a specific choice
of parameters, the general behaviour remains the same for different choices of the parameters if
0 < 0.

Parameter configurations that fail to produce a sufficient number of e-folds are therefore excluded
from physical consideration.
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Figure 1: ey (¢) as a function of ¢/Mp for 6 = —0.1 and M = Mp = 1. The horizontal line shows
ey = 1, the two marked intersections correspond to the entry into and exit from the inflationary
phase.



3 Strategy

In this section, we describe the strategy used to analyse a specific single-field inflation model
characterised by a logarithmically corrected scalar potential. The potential studied in this work is
given by

V(p) = A* [1 + 51n<§2)} , (30)

where A sets the overall energy scale of inflation, § is a dimensionless parameter controlling the
strength of the logarithmic correction, and M is a mass scale.

The inflationary dynamics are studied separately for positive and negative values of 9, as these
two regimes exhibit qualitatively different behaviour.

3.1 Parameter ranges

The analysis is performed within the slow-roll approximation. For simplicity, the number of e-folds
at horizon exit is fixed to IV, = 55 in order to reduce the number of free parameters and to focus
on the dependence of the predictions on the model parameter 6. When presenting results in the
(ns,r) plane, the range N, = 50—60 is shown to reflect the uncertainty in the total number of
e-folds.

Since ¢ is a quantum correction, it needs to be smaller than 1. The range || < 0.4 was chosen
since it covers all the negative ¢ values as can be seen in table[f]

Chosen M values are [1,0.1,0.01] % Mp

3.2 Positive )

For positive values of 9, the potential in Eq. is @ monotonically increasing function of the infla-
ton field. As a consequence, the inflaton rolls toward smaller field values during inflation. In this
case, the slow-roll parameter €y reaches unity only once, providing a unique and unambiguous
definition of the end of inflation.

With the end of inflation fixed by the condition ¢,y = 1, the value of the field at horizon exit
is determined from the e-fold equation given in Eq. (23). The slow-roll observables are then
evaluated at horizon exit. This branch of the model does not present significant conceptual
difficulties, and the analysis proceeds in a straightforward manner.



3.3 Negative ¢

For negative values of 4, the inflationary dynamics are more subtle than in the positive-§ case.
In this regime, the slow-roll parameter €y (¢) may reach unity at two distinct values of the in-
flaton field. These two solutions correspond to the entrance into and the exit from the slow-roll
phase, and only one of them represents the physically relevant end of inflation. This behaviour is
illustrated in Fig. [T}

To identify the correct endpoint, the direction of the inflaton roll must be taken into account. In the
slow-roll approximation, the field evolution is governed by

_V'(¢)
3H

¢ =~ (31)

which implies that the inflaton always rolls in the direction of decreasing potential. For the loga-
rithmic potential considered here, V'(¢) o d/¢. Consequently, for & < 0 the inflaton rolls toward
larger field values, while for § > 0 it rolls toward smaller field values. The physically relevant end
of inflation for § < 0 is therefore given by the larger-field solution of the condition ey, = 1.

This behaviour is illustrated schematically in Fig. [2] which shows the potential shape and roll
direction for both signs of §.

V()N

1.2
1.1
1.0

0.9 N

0.8 >
S S S I S S S S| /M
5 PMe

Figure 2: lllustration of the inflationary potential and inflaton roll direction for positive and negative
values of §.

In addition to the ambiguity associated with the roll direction, negative values of § impose fur-
ther consistency conditions that must be enforced in the numerical analysis. In particular, the
inflationary potential must remain positive along the entire trajectory, which restricts the range of
admissible field values. Furthermore, not all parameter choices lead to a sufficiently long infla-
tionary phase: for some configurations, the maximum number of e-folds attainable between the
two solutions of e;; = 1 is smaller than the target value N, = 55. Such parameter values are

10



therefore excluded from the analysis.

Special care is also required when computing the number of e-folds for § < 0. Although the
slow-roll expression for N remains formally unchanged, the integration limits must be chosen
consistently with the physical direction of the inflaton roll. Since the field rolls toward larger
values of ¢ in this branch, the horizon-exit field value ¢, lies below the end-of-inflation value
dend- The e-fold integral is therefore evaluated along the physical trajectory between these two
points, ensuring that the resulting number of e-folds is positive and corresponds to the actual
inflationary evolution.

Only those negative-0 configurations that satisfy the roll-direction criterion, maintain a positive
potential throughout the trajectory, and allow for a sufficient number of e-folds are retained for the
subsequent computation of inflationary observables.

11



4 Results

4.1 Global behaviour in the (ng, ) plane

The overall predictions of the model in the (ng, ) plane are shown in Fig. [3| The figure displays
the trajectories obtained for different values of the mass scale M and both signs of 9, together
with the observational constraints from the BICEP/Keck and ACT collaborations. Shaded regions
indicate the 10 and 2o confidence levels.

0.20
| = BICEP/Keck 20
| m BICEP/Keck 10
ACT 20

0.15- mACT 10

' mM/Mp =100, 6<0
' BM/Mp=0.10, 6<0
— 0.10-mMMp =001, 6<0

" mM/Mp =1.00, 6>0
[ mM/Mp=0.10, 6>0
' mM/Mp =0.01, 650

0.05
| —— N« =50 (solid)
[ aeeen N+ = 60 (dashed)
O'00994 0.95 O.é6 0.97 0.98 0.99 1.00

Figure 3: Model predictions in the (ng, r) plane for positive and negative values of 4 and different
mass scales M. Solid and dashed lines denote N, = 50 and N, = 60, respectively. Shaded
regions show current observational constraints.

The positive-d branch appears in the lower part of the (ns, ) plane, at small values of the tensor-
to-scalar ratio r, with scalar spectral indices clustered around ng ~ 0.98. The trajectories are
smooth and continuous as § is varied, and their location depends moderately on the choice
of the mass scale M. For suitable values of M, the positive-§ branch overlaps with the ACT
confidence regions shown in the figure.

In contrast, the negative-0 branch occupies a distinct region at larger values of the tensor-to-
scalar ratio . As § approaches zero from below, the trajectories shift toward smaller values of r;
however, they remain separated from the confidence regions of BICEP/Keck and ACT collabora-
tions for all mass scales considered. This separation is present for both choices of the number of
e-folds shown.

12



4.2 Positive values of )

For positive values of §, the inflationary evolution proceeds along a smooth inflaton trajectory.
The inflaton rolls toward smaller field values, and the slow-roll parameter ey (¢) reaches unity
only once, providing an unambiguous definition of the end of inflation. As a result, the inflationary
observables vary smoothly with the model parameters.

In the remainder of this analysis, the number of e-folds is fixed to N = 55, a representative value
within the range N ~ 50—60 relevant for CMB observations. The dependence of the tensor-to-
scalar ratio » on ¢ is shown in Fig.[4] As ¢ increases, the logarithmic correction steepens the
potential, leading to an increase in the slow-roll parameter ey and hence to a monotonic increase
in . Throughout the explored parameter range, the predicted values of r remain relatively small.

m M/Mp=1.00, 6>0
m M/Mp =0.10, 6>0
m M/Mp =0.01, 6>0

0.015

0.010

0.005

0.000

0.0‘ o ‘0.1 0.2 0.3 0.4

o

Figure 4: Tensor-to-scalar ratio r as a function of ¢ for § > 0.

The corresponding behaviour of the scalar spectral index is shown in Fig. [bl As § increases, ng
decreases mildly, reflecting a gradual departure from an exactly flat plateau. This variation is
smooth and remains within a narrow range for all values of the mass scale M considered.
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m M/Mp =0.01, 6 >0

0.9815F
0.9810F
0.98051
v i
< 0.9800"
0.9795F
0.9790F

0.9785[

0.0

Figure 5: Scalar spectral index ng as a function of § for 6 > 0.

The inflationary energy scale A, fixed by matching the amplitude of the scalar power spectrum, is
shown in Fig.[6] Larger values of 4 require a higher inflationary scale, consistent with the increase
in the slow-roll parameter ey and therefore in 7.

0.0040- ]
0.0035F .
0.0030F .
< 0.0025[- ]
< i
0.0020- ]
0015} ]
0.00181 = M/Mp = 1.00, 6> 0
[ m M/Mp =0.10, 6 > 0]
0.0010p MM = 0.01, 550
o0 o1 02 03 o4

Figure 6: Inflationary energy scale A as a function of § for § > 0.

OveraIEL the positive-d branch corresponds to a plateau-like inflationary potential and leads to
smooth, well-controlled predictions with low tensor-to-scalar ratios and moderate dependence on
the model parameters.

2From the plotsandwe can see that there is an asymptotic limit for 6 — 0, which is not » = 0 and ns = 1, i.e.
the results for V = A*. The same applies also for the negative case.
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4.3 Negative values of 0

For negative values of §, the inflationary dynamics differ qualitatively from the positive-é case.
The inflaton rolls toward larger field values, and the slow-roll parameter ey (¢) may reach unity at
two distinct points. The physically relevant end of inflation is identified with the second crossing,
corresponding to the larger value of the inflaton field.

In addition, negative values of § impose physical constraints that restrict the viable parameter
space. The potential must remain positive along the inflationary trajectory, and not all parameter
choices allow a sufficient number of e-folds. Parameter configurations that fail to satisfy these
conditions are excluded from the analysis. Kept delta ranges are shown in table[l]

Table 1: Kept 4 ranges for the logarithmic potential model, separated by NV, and M.

N, M 0 < 0 kept range 6 > 0 kept range
50 1.0 [—0.350304, —0.041791] [0.0001, 0.4]
50 0.1 [-0.19388, —0.0381222] [0.0001, 0.4]
50 0.01 [—0.133845, —0.0351204] [0.0001, 0.4]
60 1.0 [—0.345968, —0.041791] [0.0001, 0.4]
60 0.1 [-0.192546, —0.0381222]  [0.0001, 0.4]
60 0.01 [—0.133178, —0.0351204] [0.0001, 0.4]

The dependence of the tensor-to-scalar ratio on ¢ in this branch is shown in Fig.[7] Compared to
the positive-d case, the predicted values of r are significantly larger. As § approaches zero from
below, the tensor-to-scalar ratio decreases; however, it remains bounded away from the values
obtained in the positive-é branch due to the restricted inflationary dynamics.

0.20F, ~ 7 ]

I m M/Mp =1.00, §<0 |

0.18; mM/Mp =010, 6<0 |

F mM/Mp=0.01, 6<0-

0.16- 1

_ 014 1

012" 1

0.10- 1

0.08- 1
~0.35  -030  -025  -020  -045  -010  -0.05

6

Figure 7: Tensor-to-scalar ratio r as a function of § for § < 0.

Figure [8 shows the dependence of the scalar spectral index ns on ¢ for the negative- branch.
For each fixed value of the mass scale M, ng varies within a relatively narrow interval when §

15



is small in absolute value and changes most noticeably near the boundary of the considered

range.

0.9865 m M/Mp = 1.00, 6<O£

[ = M/Mp=0.10, 6<0]

0.984f m M/Mp =0.01, 6§<0]

0.982;

& 0.980; ,

0.978; ,

0.976; ,

0.974; ,

035  -030  -025  -020  -015 010  -0.05

o

Figure 8: Scalar spectral index ng as a function of § for § < 0.

The corresponding inflationary energy scale is shown in Fig.[9] As § approaches the boundary
of the allowed region, the required value of A increases rapidly, reflecting the larger slow-roll
parameter needed to reproduce the observed scalar amplitudeEl

= M/Mp =1.00, 6<0
= M/Mp = 0.10, 6 <0
0.8/ g M/Mp =0.01, §<0 8

0.6 4

AMp

0.4r

0.2+ a

0.0’\ L - L - L T L
-0.35 -0.30 -0.25 -0.20
6

L L L L L L L L
-0.15 -0.10 -0.05

Figure 9: Inflationary energy scale A as a function of § for § < 0.

®Due to the more complicated dynamics, in this case A vs § does not have a behaviour similar to 7 vs. 8, in contrast
to the positive § case.
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5 Conclusions

In this thesis, we analysed a single-field inflationary model defined by the logarithmic potential

V(p)=A* [1 +5ln<;@>} ,

with the aim of studying its inflationary predictions for both positive and negative values of the
parameter §. The analysis was carried out within the slow-roll approximation and focused on the
main inflationary observables: the scalar spectral index ng, the tensor-to-scalar ratio r, and the
normalisation scale A.

For positive values of 4, the inflationary dynamics are simple and monotonic. The inflaton rolls
toward smaller field values, and the slow-roll parameter ey, reaches unity only once, providing
an unambiguous end of inflation. In this regime, the inflationary observables depend smoothly
on the model parameters. The tensor-to-scalar ratio increases monotonically with §, while the
scalar spectral index decreases slightly. The required inflationary energy scale A also increases
with ¢ in order to reproduce the observed amplitude of the scalar power spectrum. In the (ng, )
plane, the positive-0 branch occupies the region of small tensor amplitudes and overlaps with the
observational constraints from the ACT collaboration for suitable choices of the mass scale M.

For negative values of §, the inflationary dynamics are more constrained. The inflaton rolls toward
larger field values, and the slow-roll parameter ¢y, can reach unity at two distinct points. The
physically relevant end of inflation corresponds to the second crossing, at larger ¢. In addition,
the requirement that the potential remain positive restricts the allowed field range, and not all
parameter values lead to a sufficient number of e-folds. These conditions significantly reduce the
viable parameter space. In this branch, the tensor-to-scalar ratio takes substantially larger values
than in the positive-d case, while the scalar spectral index varies only weakly across the allowed
range. The resulting predictions remain well separated from current observational constraints in
the (ns,7) plane.

Overall, the logarithmically corrected inflationary potential studied in this work gives rise to two
distinct branches of inflationary behaviour, determined by the sign of the parameter §. The com-
parison between the two cases highlights the importance of roll direction, field-space boundaries,
and consistency conditions in identifying physically meaningful inflationary solutions. These fea-
tures lead to clearly separated regions in the (ng, ) plane, with markedly different levels of com-
patibility with current observational bounds. In particular, the positive-d branch is compatible
with the CMB constraints from the ACT collaboration, whereas the negative-§ branch is largely
disfavoured by the CMB constraints from the BICEP/Keck and ACT collaborations.
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