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Abstract

In this thesis, we study a single-field inflationary model described by a logarithmic scalar potential

of the form V (ϕ) = Λ4[1 + δ ln(ϕ/M)]. The aim of the study is to analyse the inflationary

dynamics of the model and to determine its predictions for the main cosmological observables.

The analysis is performed within the slow-roll approximation and focuses on the scalar spec-

tral index ns, the tensor-to-scalar ratio r, and the normalisation scale Λ. The parameter space

is explored separately for positive and negative values of the parameter δ, as the inflationary

behaviour differs qualitatively in these two cases.

For positive values of δ, the inflaton rolls down the potential and inflation ends in a standard way.

The resulting observables exhibit smooth and regular dependence on the model parameters. For

negative values of δ, the inflationary dynamics are more subtle. The requirement that the potential

remains positive restricts the allowed field range, and the inflaton can enter and exit inflation in

a non-trivial manner. Only parameter values that produce a sufficient number of e-folds lead to

viable inflation.

The results demonstrate that the logarithmic inflationary potential considered in this work can

give rise to consistent inflationary scenarios, while highlighting the importance of the sign of the

parameter δ in determining the physical viability of the model.
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Annotatsioon

Käesolevas töös uuritakse ühe skalaarväljaga inflatsioonimudelit, mida kirjeldab logaritmiline po-

tentsiaal kujul V (ϕ) = Λ4[1 + δ ln(ϕ/M)]. Töö eesmärgiks on analüüsida selle mudeli inflatsioo-

nidünaamikat ning määrata selle ennustused peamiste kosmoloogiliste vaadeldavate suuruste

jaoks.

Analüüs viiakse läbi aeglase rullumise (slow-roll) lähenduses ning keskendutakse skaalarspektri

indeksile ns, tensor-skalaar suhtele r ja normaliseerimisskaalale Λ. Parameeterruumi uuritakse

eraldi parameetri δ positiivsete ja negatiivsete väärtuste korral, kuna inflatsioonikäitumine on

nendel juhtudel kvalitatiivselt erinev.

Parameetri δ positiivsete väärtuste korral veereb inflaton mööda potentsiaali alla ning inflatsioon

lõpeb tavapärasel viisil. Saadud vaadeldavad suurused sõltuvad mudeli parameetritest sujuvalt

ja regulaarselt. Parameetri δ negatiivsete väärtuste korral on inflatsioonidünaamika keerukam.

Nõue, et potentsiaal jääks positiivseks, piirab inflatoni välja lubatud vahemikku ning inflaton võib

inflatsiooni käigus sellesse siseneda ja sealt väljuda mitte-triviaalsel viisil. Olulised parameetrite

väärtused on ainult need, mille korral tekib piisav arv e-volte (e-folds).

Tulemused näitavad, et käesolevas töös vaadeldud logaritmiline inflatsioonipotentsiaal võib viia

kooskõlaliste inflatsioonistsenaariumideni, tuues esile parameetri δ märgi otsustava rolli mudeli

füüsilise elujõulisuse määramisel.
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1 Introduction

The Hot Big Bang framework explains many observed features of the Universe, including its

expansion and the cosmic microwave background (CMB). It also raises questions related to the

initial conditions of the early Universe, most notably the horizon problem and the flatness problem.

The horizon problem refers to the observed near-uniform temperature of the CMB across the sky,

even though, within the standard Big Bang picture, widely separated regions would not have been

in causal contact before the CMB was formed. The flatness problem refers to the observation

that the Universe is very close to spatially flat today, a feature that is difficult to explain within the

standard Big Bang picture without fine-tuned initial conditions.

Inflation is a short phase of rapid and accelerated expansion introduced to address these issues.

During inflation, a small region that was initially in causal contact is stretched to scales much

larger than the observable Universe, which helps explain the observed large-scale uniformity of

the CMB. At the same time, the accelerated expansion reduces the effect of any initial spatial

curvature, leaving the Universe very close to spatially flat. Inflation also gives rise to observable

imprints in the CMB, which are commonly summarized by the scalar spectral index ns and the

tensor-to-scalar ratio r.

By an inflationary model we mean a concrete choice of potential V (ϕ) for a single canonical

scalar (the inflaton). There are various possible choices for V available in the literature (e.g.

[1] and refs. therein). In this thesis, we study a single-field inflationary model defined by the

logarithmically corrected potential

V (ϕ) = Λ4

[
1 + δ ln

(
ϕ

M

)]
, (1)

also known as running cosmological constant. This potential can be generated by quantum

corrections in a theory with several massive particles (e.g. [2] and refs. therein) and has been

already applied to inflation in some specific model [3, 4, 5], where δ was not a free parameter

but defined by the model itself. Instead the analysis of this thesis assumes a completely free δ,

exploring both positive and negative values, and considers representative choices of the mass

scale M . A positive δ naively means that the bosonic sector of the theory is more massive than

the fermionic one, while a negative δ represents the opposite configuration [2]. For each case,

the inflationary dynamics and the resulting observable quantities are computed at horizon exit

for a fixed number of e-folds, and the model’s predictions in the (ns, r) plane are compared with

current observational constraints.
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2 Theory

In this section, we review the theoretical background required to study single-field inflation models

and to compute the observable quantities used later in this thesis. We assume a homogeneous

and isotropic Universe described by a flat Friedmann–Lemaître–Robertson–Walker (FLRW) met-

ric.

2.1 Inflation with a scalar field

Inflation is commonly modelled by a single scalar field ϕ, called the inflaton, minimally coupled

to gravity. The theoretical framework is defined by the Einstein–Hilbert action for gravity together

with a canonical scalar-field action,

S =

∫
d4x

√
−g

[
−
M2

P

2
R+

1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
, (2)

where gµν is the spacetime metric, g its determinant, R is the Ricci scalar, and MP the reduced

Planck mass.

To study the cosmological evolution implied by this framework, we assume that the Universe is

homogeneous and isotropic on large scales, as supported by observations. With this assump-

tion, the spacetime geometry is uniquely described by the flat Friedmann–Lemaître–Robertson–

Walker (FLRW) metric,

ds2 = dt2 − a2(t)
(
dr2 + r2dΩ2

)
, (3)

where a(t) is the scale factor, which describes how physical distances between comoving points

evolve with time.

Varying the action in Eq. (2) with respect to the metric gµν yields Einstein’s equations

Gµν =
1

M2
P

Tµν , (4)

where the energy–momentum tensor of the scalar field is

Tµν = ∂µϕ∂νϕ− gµν

[
1

2
gαβ∂αϕ∂βϕ− V (ϕ)

]
. (5)

For a homogeneous field ϕ = ϕ(t) in the FLRW background, Tµν takes the perfect-fluid form,

which allows to identify the energy density and pressure as

ρϕ =
1

2
ϕ̇2 + V (ϕ), pϕ =

1

2
ϕ̇2 − V (ϕ). (6)
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Evaluating Einstein’s equations (4) for the metric (3) gives the Friedmann equations that governs

the cosmic expansion. The expansion rate of the Universe is described by the Hubble parameter

H ≡ ȧ

a
, (7)

and the first Friedmann equation reads

H2 =
1

3M2
P

ρϕ. (8)

The acceleration equation is
ä

a
= − 1

3M2
P

(ρϕ + 3pϕ) . (9)

Inflation is defined as a period of accelerated expansion,

ä > 0. (10)

Using Eq. (9), this condition is equivalent to

ρϕ + 3pϕ < 0. (11)

Substituting the expressions in Eq. (6), one finds

ρϕ + 3pϕ = 2ϕ̇2 − 2V (ϕ), (12)

so inflation occurs when the potential energy of the inflaton dominates over its kinetic energy,

ϕ̇2 < V (ϕ), (13)

corresponding to an equation of state close to pϕ ≃ −ρϕ.

Inflation also provides a dynamical explanation for the horizon and flatness problems of standard

cosmology. It is useful to define the comoving Hubble radius as

(aH)−1. (14)

During accelerated expansion, the scale factor a(t) grows rapidly while H varies slowly, causing

(aH)−1 to decrease. As a result, physical length scales can exit the horizon during inflation,

implying that the presently observable Universe originates from a region that was initially in causal

contact.
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The flatness problem can be understood by including spatial curvature in the Friedmann equation

H2 =
1

3M2
P

ρ− k

a2
, (15)

which implies

Ω− 1 =
k

a2H2
, (16)

where Ω ≡ ρ/(3M2
PH

2). Since inflation causes the quantity a2H2 to grow rapidly, any initial

deviation from spatial flatness is dynamically driven toward zero, explaining why the Universe

appears nearly flat today.

Finally, varying the action (2) with respect to the scalar field yields the equation of motion for the

inflaton,

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0. (17)

2.2 Slow-roll approximation

Inflation occurs when the potential energy of the inflaton dominates over its kinetic energy. This

regime is described by the slow-roll approximation, which assumes that the inflaton field evolves

slowly along its potential. In this case, the dynamics can be characterised [1] by the first and

second potential slow-roll parameters defined as

ϵV (ϕ) =
M2

P

2

(
V ′(ϕ)

V (ϕ)

)2

, ηV (ϕ) = M2
P

V ′′(ϕ)

V (ϕ)
. (18)

The parameter ϵV measures the steepness of the potential and controls the rate at which inflation

ends. Inflation takes place as long as ϵV ≪ 1 and |ηV | ≪ 1. The end of inflation is defined by

the condition

ϵV (ϕend) = 1. (19)

2.3 Number of e-folds

The amount of inflation is quantified by the number of e-folds N , which measures the growth of

the scale factor during inflation. It is defined as

N ≡ ln

(
a(tend)

a(t∗)

)
=

∫ tend

t∗

H(t) dt, (20)

where t∗ denotes the time when observable modes exit the horizon and tend corresponds to the

end of inflation.1

1In order to solve the horizon and flatness problems of standard cosmology, inflation must last for a sufficiently long
period, typically it’s around 50-60 e-folds.
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Changing the integration variable from time to the inflaton field ϕ, the expression becomes

N =

∫ ϕend

ϕ∗

H

ϕ̇
dϕ. (21)

Within the slow-roll approximation, the inflaton equation of motion and the Friedmann equation

simplify to

ϕ̇ ≃ −V ′(ϕ)

3H
, H2 ≃ V (ϕ)

3M2
P

. (22)

Using these relations, the number of e-folds can be written as

N ≃ 1

M2
P

∫ ϕ∗

ϕend

V (ϕ)

V ′(ϕ)
dϕ. (23)

This expression allows the value of the inflaton field at horizon crossing ϕ∗ to be determined once

the end of inflation ϕend is fixed by the condition given in Eq. (19).

2.4 Inflationary observables

The main observable quantities used to test inflationary models are the scalar spectral index ns

and the tensor-to-scalar ratio r. In the slow-roll approximation, these are given by

ns ≃ 1− 6ϵ∗V + 2η∗V , r ≃ 16ϵ∗V , (24)

where the star indicates that the quantities are evaluated at ϕ = ϕ∗.

Another important observable is the amplitude of the scalar power spectrum,

As ≃
1

24π2M4
P

V∗
ϵ∗V

. (25)

The observed value of As can be used to fix the overall normalisation of the inflationary potential.

From the constraints of the Planck collaboration [6], the scalar amplitude is measured to be

As ≃ 2.1× 10−9, which provides a direct observational input for determining the energy scale of

inflation in a given model.

2.5 General study of the logarithmic potential

The inflationary model studied in this thesis is defined by the logarithmically corrected potential

V (ϕ) = Λ4

[
1 + δ ln

(
ϕ

M

)]
. (26)
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Although the subsequent analysis is performed numerically, several important properties of this

potential can be established analytically. These properties play a crucial role in determining the

physically admissible inflationary solutions and in guiding the numerical strategy adopted later.

First, the potential must remain positive along the inflationary trajectory. Writing the potential in

the form

V (ϕ) = Λ4D(ϕ), D(ϕ) ≡ 1 + δ ln

(
ϕ

M

)
, (27)

the condition V (ϕ) > 0 is equivalent to D(ϕ) > 0. It is convenient to introduce

ϕV=0 = M e−1/δ, (28)

which defines the field value at which the potential vanishes. Requiring D(ϕ) > 0 constrains

the allowed field range in a sign-dependent manner: for δ > 0, ϕV=0 represents a lower bound

on the inflaton field and physically admissible trajectories satisfy ϕ > ϕV=0, whereas for δ < 0,

ϕV=0 acts as an upper bound and inflation is restricted to field values ϕ < ϕV=0.

Second, the logarithmic correction modifies the monotonicity of the potential depending on the

sign of δ. Since

V ′(ϕ) ∝ δ

ϕ
, (29)

the potential increases with the inflaton field for δ > 0 and decreases with the field for δ < 0.

Consequently, the direction of the inflaton roll differs qualitatively between the two branches: for

positive δ the field rolls toward smaller values of ϕ, while for negative δ it rolls toward larger values.

This distinction becomes essential when identifying the physically relevant end of inflation.

Finally, for negative values of δ, the slow-roll parameter ϵV (ϕ) can reach unity at two distinct

values of the inflaton field. In this case, inflation is possible only within the finite field interval

bounded by these two points, which correspond to the onset and termination of the slow-roll

phase. As a consequence, the total number of e-folds achievable in this branch is finite, implying

an intrinsic upper bound on the duration of inflation for δ < 0, independent of the numerical

procedure used to solve the equations of motion.

This behaviour is illustrated in Fig. 1, where ϵV (ϕ) is shown for the representative value δ =

−0.1. The horizontal line ϵV = 1 intersects the curve at two points, explicitly demonstrating the

existence of a finite inflationary window in field space. Although the figure shows a specific choice

of parameters, the general behaviour remains the same for different choices of the parameters if

δ < 0.

Parameter configurations that fail to produce a sufficient number of e-folds are therefore excluded

from physical consideration.
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Figure 1: ϵV (ϕ) as a function of ϕ/MP for δ = −0.1 and M = MP = 1. The horizontal line shows
ϵV = 1, the two marked intersections correspond to the entry into and exit from the inflationary
phase.
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3 Strategy

In this section, we describe the strategy used to analyse a specific single-field inflation model

characterised by a logarithmically corrected scalar potential. The potential studied in this work is

given by

V (ϕ) = Λ4

[
1 + δ ln

(
ϕ

M

)]
, (30)

where Λ sets the overall energy scale of inflation, δ is a dimensionless parameter controlling the

strength of the logarithmic correction, and M is a mass scale.

The inflationary dynamics are studied separately for positive and negative values of δ, as these

two regimes exhibit qualitatively different behaviour.

3.1 Parameter ranges

The analysis is performed within the slow-roll approximation. For simplicity, the number of e-folds

at horizon exit is fixed to N∗ = 55 in order to reduce the number of free parameters and to focus

on the dependence of the predictions on the model parameter δ. When presenting results in the

(ns, r) plane, the range N∗ = 50−60 is shown to reflect the uncertainty in the total number of

e-folds.

Since δ is a quantum correction, it needs to be smaller than 1. The range |δ| < 0.4 was chosen

since it covers all the negative δ values as can be seen in table 1.

Chosen M values are [1, 0.1, 0.01] ∗MP

3.2 Positive δ

For positive values of δ, the potential in Eq. (30) is a monotonically increasing function of the infla-

ton field. As a consequence, the inflaton rolls toward smaller field values during inflation. In this

case, the slow-roll parameter ϵV reaches unity only once, providing a unique and unambiguous

definition of the end of inflation.

With the end of inflation fixed by the condition ϵV = 1, the value of the field at horizon exit

is determined from the e-fold equation given in Eq. (23). The slow-roll observables are then

evaluated at horizon exit. This branch of the model does not present significant conceptual

difficulties, and the analysis proceeds in a straightforward manner.
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3.3 Negative δ

For negative values of δ, the inflationary dynamics are more subtle than in the positive-δ case.

In this regime, the slow-roll parameter ϵV (ϕ) may reach unity at two distinct values of the in-

flaton field. These two solutions correspond to the entrance into and the exit from the slow-roll

phase, and only one of them represents the physically relevant end of inflation. This behaviour is

illustrated in Fig. 1.

To identify the correct endpoint, the direction of the inflaton roll must be taken into account. In the

slow-roll approximation, the field evolution is governed by

ϕ̇ ≃ −V ′(ϕ)

3H
, (31)

which implies that the inflaton always rolls in the direction of decreasing potential. For the loga-

rithmic potential considered here, V ′(ϕ) ∝ δ/ϕ. Consequently, for δ < 0 the inflaton rolls toward

larger field values, while for δ > 0 it rolls toward smaller field values. The physically relevant end

of inflation for δ < 0 is therefore given by the larger-field solution of the condition ϵV = 1.

This behaviour is illustrated schematically in Fig. 2, which shows the potential shape and roll

direction for both signs of δ.

δ > 0

δ < 0

1 2 3 4 5
ϕ/MP

0.8

0.9

1.0

1.1

1.2

V(ϕ)/Λ4

Figure 2: Illustration of the inflationary potential and inflaton roll direction for positive and negative
values of δ.

In addition to the ambiguity associated with the roll direction, negative values of δ impose fur-

ther consistency conditions that must be enforced in the numerical analysis. In particular, the

inflationary potential must remain positive along the entire trajectory, which restricts the range of

admissible field values. Furthermore, not all parameter choices lead to a sufficiently long infla-

tionary phase: for some configurations, the maximum number of e-folds attainable between the

two solutions of ϵV = 1 is smaller than the target value N∗ = 55. Such parameter values are
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therefore excluded from the analysis.

Special care is also required when computing the number of e-folds for δ < 0. Although the

slow-roll expression for N remains formally unchanged, the integration limits must be chosen

consistently with the physical direction of the inflaton roll. Since the field rolls toward larger

values of ϕ in this branch, the horizon-exit field value ϕ∗ lies below the end-of-inflation value

ϕend. The e-fold integral is therefore evaluated along the physical trajectory between these two

points, ensuring that the resulting number of e-folds is positive and corresponds to the actual

inflationary evolution.

Only those negative-δ configurations that satisfy the roll-direction criterion, maintain a positive

potential throughout the trajectory, and allow for a sufficient number of e-folds are retained for the

subsequent computation of inflationary observables.
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4 Results

4.1 Global behaviour in the (ns, r) plane

The overall predictions of the model in the (ns, r) plane are shown in Fig. 3. The figure displays

the trajectories obtained for different values of the mass scale M and both signs of δ, together

with the observational constraints from the BICEP/Keck and ACT collaborations. Shaded regions

indicate the 1σ and 2σ confidence levels.

BICEP/Keck 2σ

BICEP/Keck 1σ

ACT 2σ

ACT 1σ

M/MP = 1.00, δ < 0

M/MP = 0.10, δ < 0

M/MP = 0.01, δ < 0

M/MP = 1.00, δ > 0

M/MP = 0.10, δ > 0

M/MP = 0.01, δ > 0

N* = 50 (solid)

N* = 60 (dashed)

0.94 0.95 0.96 0.97 0.98 0.99 1.00
0.00

0.05

0.10

0.15

0.20

ns

r

Figure 3: Model predictions in the (ns, r) plane for positive and negative values of δ and different
mass scales M . Solid and dashed lines denote N∗ = 50 and N∗ = 60, respectively. Shaded
regions show current observational constraints.

The positive-δ branch appears in the lower part of the (ns, r) plane, at small values of the tensor-

to-scalar ratio r, with scalar spectral indices clustered around ns ≃ 0.98. The trajectories are

smooth and continuous as δ is varied, and their location depends moderately on the choice

of the mass scale M . For suitable values of M , the positive-δ branch overlaps with the ACT

confidence regions shown in the figure.

In contrast, the negative-δ branch occupies a distinct region at larger values of the tensor-to-

scalar ratio r. As δ approaches zero from below, the trajectories shift toward smaller values of r;

however, they remain separated from the confidence regions of BICEP/Keck and ACT collabora-

tions for all mass scales considered. This separation is present for both choices of the number of

e-folds shown.
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4.2 Positive values of δ

For positive values of δ, the inflationary evolution proceeds along a smooth inflaton trajectory.

The inflaton rolls toward smaller field values, and the slow-roll parameter ϵV (ϕ) reaches unity

only once, providing an unambiguous definition of the end of inflation. As a result, the inflationary

observables vary smoothly with the model parameters.

In the remainder of this analysis, the number of e-folds is fixed to N = 55, a representative value

within the range N ≃ 50−60 relevant for CMB observations. The dependence of the tensor-to-

scalar ratio r on δ is shown in Fig. 4. As δ increases, the logarithmic correction steepens the

potential, leading to an increase in the slow-roll parameter ϵV and hence to a monotonic increase

in r. Throughout the explored parameter range, the predicted values of r remain relatively small.

M/MP = 1.00, δ > 0

M/MP = 0.10, δ > 0

M/MP = 0.01, δ > 0

0.0 0.1 0.2 0.3 0.4
0.000

0.005

0.010

0.015

δ

r

Figure 4: Tensor-to-scalar ratio r as a function of δ for δ > 0.

The corresponding behaviour of the scalar spectral index is shown in Fig. 5. As δ increases, ns

decreases mildly, reflecting a gradual departure from an exactly flat plateau. This variation is

smooth and remains within a narrow range for all values of the mass scale M considered.
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M/MP = 1.00, δ > 0

M/MP = 0.10, δ > 0

M/MP = 0.01, δ > 0

0.0 0.1 0.2 0.3 0.4

0.9785

0.9790

0.9795

0.9800

0.9805

0.9810

0.9815

δ

n s

Figure 5: Scalar spectral index ns as a function of δ for δ > 0.

The inflationary energy scale Λ, fixed by matching the amplitude of the scalar power spectrum, is

shown in Fig. 6. Larger values of δ require a higher inflationary scale, consistent with the increase

in the slow-roll parameter ϵV and therefore in r.

M/MP = 1.00, δ > 0

M/MP = 0.10, δ > 0

M/MP = 0.01, δ > 0

0.0 0.1 0.2 0.3 0.4

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

δ

Λ
/M

P

Figure 6: Inflationary energy scale Λ as a function of δ for δ > 0.

Overall2, the positive-δ branch corresponds to a plateau-like inflationary potential and leads to

smooth, well-controlled predictions with low tensor-to-scalar ratios and moderate dependence on

the model parameters.

2From the plots 4 and 5 we can see that there is an asymptotic limit for δ → 0, which is not r = 0 and ns = 1, i.e.
the results for V = Λ4. The same applies also for the negative case.
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4.3 Negative values of δ

For negative values of δ, the inflationary dynamics differ qualitatively from the positive-δ case.

The inflaton rolls toward larger field values, and the slow-roll parameter ϵV (ϕ) may reach unity at

two distinct points. The physically relevant end of inflation is identified with the second crossing,

corresponding to the larger value of the inflaton field.

In addition, negative values of δ impose physical constraints that restrict the viable parameter

space. The potential must remain positive along the inflationary trajectory, and not all parameter

choices allow a sufficient number of e-folds. Parameter configurations that fail to satisfy these

conditions are excluded from the analysis. Kept delta ranges are shown in table 1.

Table 1: Kept δ ranges for the logarithmic potential model, separated by N∗ and M .

N∗ M δ < 0 kept range δ > 0 kept range
50 1.0 [−0.350304, −0.041791] [0.0001, 0.4]
50 0.1 [−0.19388, −0.0381222] [0.0001, 0.4]
50 0.01 [−0.133845, −0.0351204] [0.0001, 0.4]

60 1.0 [−0.345968, −0.041791] [0.0001, 0.4]
60 0.1 [−0.192546, −0.0381222] [0.0001, 0.4]
60 0.01 [−0.133178, −0.0351204] [0.0001, 0.4]

The dependence of the tensor-to-scalar ratio on δ in this branch is shown in Fig. 7. Compared to

the positive-δ case, the predicted values of r are significantly larger. As δ approaches zero from

below, the tensor-to-scalar ratio decreases; however, it remains bounded away from the values

obtained in the positive-δ branch due to the restricted inflationary dynamics.

M/MP = 1.00, δ < 0

M/MP = 0.10, δ < 0

M/MP = 0.01, δ < 0
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Figure 7: Tensor-to-scalar ratio r as a function of δ for δ < 0.

Figure 8 shows the dependence of the scalar spectral index ns on δ for the negative-δ branch.

For each fixed value of the mass scale M , ns varies within a relatively narrow interval when δ
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is small in absolute value and changes most noticeably near the boundary of the considered δ

range.

M/MP = 1.00, δ < 0

M/MP = 0.10, δ < 0

M/MP = 0.01, δ < 0
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Figure 8: Scalar spectral index ns as a function of δ for δ < 0.

The corresponding inflationary energy scale is shown in Fig. 9. As δ approaches the boundary

of the allowed region, the required value of Λ increases rapidly, reflecting the larger slow-roll

parameter needed to reproduce the observed scalar amplitude.3
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Figure 9: Inflationary energy scale Λ as a function of δ for δ < 0.

3Due to the more complicated dynamics, in this case Λ vs δ does not have a behaviour similar to r vs. δ, in contrast
to the positive δ case.
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5 Conclusions

In this thesis, we analysed a single-field inflationary model defined by the logarithmic potential

V (ϕ) = Λ4

[
1 + δ ln

(
ϕ

M

)]
,

with the aim of studying its inflationary predictions for both positive and negative values of the

parameter δ. The analysis was carried out within the slow-roll approximation and focused on the

main inflationary observables: the scalar spectral index ns, the tensor-to-scalar ratio r, and the

normalisation scale Λ.

For positive values of δ, the inflationary dynamics are simple and monotonic. The inflaton rolls

toward smaller field values, and the slow-roll parameter ϵV reaches unity only once, providing

an unambiguous end of inflation. In this regime, the inflationary observables depend smoothly

on the model parameters. The tensor-to-scalar ratio increases monotonically with δ, while the

scalar spectral index decreases slightly. The required inflationary energy scale Λ also increases

with δ in order to reproduce the observed amplitude of the scalar power spectrum. In the (ns, r)

plane, the positive-δ branch occupies the region of small tensor amplitudes and overlaps with the

observational constraints from the ACT collaboration for suitable choices of the mass scale M .

For negative values of δ, the inflationary dynamics are more constrained. The inflaton rolls toward

larger field values, and the slow-roll parameter ϵV can reach unity at two distinct points. The

physically relevant end of inflation corresponds to the second crossing, at larger ϕ. In addition,

the requirement that the potential remain positive restricts the allowed field range, and not all

parameter values lead to a sufficient number of e-folds. These conditions significantly reduce the

viable parameter space. In this branch, the tensor-to-scalar ratio takes substantially larger values

than in the positive-δ case, while the scalar spectral index varies only weakly across the allowed

range. The resulting predictions remain well separated from current observational constraints in

the (ns, r) plane.

Overall, the logarithmically corrected inflationary potential studied in this work gives rise to two

distinct branches of inflationary behaviour, determined by the sign of the parameter δ. The com-

parison between the two cases highlights the importance of roll direction, field-space boundaries,

and consistency conditions in identifying physically meaningful inflationary solutions. These fea-

tures lead to clearly separated regions in the (ns, r) plane, with markedly different levels of com-

patibility with current observational bounds. In particular, the positive-δ branch is compatible

with the CMB constraints from the ACT collaboration, whereas the negative-δ branch is largely

disfavoured by the CMB constraints from the BICEP/Keck and ACT collaborations.
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