
TALLINN UNIVERSITY OF TECHNOLOGY
SCHOOL OF SCIENCE
DEPARTMENT OF CYBERNETICS

PLANETARY STATISTICAL TOPOGRAPHY AND THE POSSIBLE

EXISTENCE OF ANCIENT MARTIAN OCEANS
MASTER THESIS

Student
Jürgen Rajasalu

212003YAFM
Supervisor
Jaan Kalda

Tenured Full Professor
Study program
Applied Physics

Tallinn 2023

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Jürgen Rajasalu
(signature)

Date:

The thesis adheres to all specified requirements

Supervisor: Jaan Kalda
(signature)

Date:

i

Abstract

This thesis analyses topographic data from Mars, Mercury, Earth, the Moon and a gen-
erated fractional Brownian surface (fBm) with the aim of inferring ancient water levels
on Mars. Specifically, a number of scale-free characteristics of isolines, such as fractal
dimensions and other scaling exponents, are computed for subsets corresponding to a
fixed elevation and presented as functions of elevation. Chapter 2 provides a theoretical
background to fractals and statistical topography, while Chapter 3 outlines the methods
used to collect the data for analysis. The results are presented and examined in Chapter
4, followed by conclusions and suggestions for future improvements.

The results show that while Earth exhibits a sudden jump in fractal dimensions at the sea
level, and decreased values of the fractal dimensions at elevations close to the sea level,
no such jumps or decreased values of the fractal dimensions are observed for the other
celestial bodies studied — Moon, Mercury and Mars. While for the Moon and Mercury the
fractal dimensions remain almost constant over the whole range of altitudes, for Mars, the
fractal dimensions tend to be smaller at high altitudes (above 3000 m) than elsewhere; this
can be attributed to the planet’s hemispheric dichotomy, often hypothesised to have been
caused by a giant impact — all the high altitude areas are in the southern hemisphere.

Due to the limited availability of computing resources, the present study is based on
downsampled elevation data. Further research is planned to provide more accurate results
and a better understanding of ancient water levels on Mars and the geological processes
that have shaped these planetary bodies. This will include the development of improved
algorithms that are both more efficient and less sensitive to the finite-size effects that affect
the values of the scaling exponents at the smallest available scales.

ii

Table of Contents

1 Introduction 1

2 Theoretical background 2
2.1 Fractals . 2
2.2 Statistical topography . 4
2.3 Brownian and fractional Brownian surfaces 6
2.4 Correlated percolation . 8
2.5 Geological landscapes . 9
2.6 Ancient Mars . 10

3 Methods 12
3.1 Data sets analysed . 12

3.1.1 Mars . 12
3.1.2 Mercury . 12
3.1.3 Earth . 13
3.1.4 The Moon . 13
3.1.5 fBm surface . 13

3.2 Methods used . 14
3.2.1 Marching squares . 14
3.2.2 Surveyor’s formula . 16

4 Results 17
4.1 Data collection . 17
4.2 Data analysis . 18
4.3 Possible improvements . 32

5 Summary 33

6 Acknowledgments 34

Bibliography 35

Appendices 38

Appendix 1 - Python code for gathering data 38

Appendix 2 - Python code for analysing data 48

iii

1. Introduction

Understanding the distribution and availability of water beyond Earth has been a focus
of astrobiological research for decades, given its fundamental role as a life-sustaining
molecule. Apart from acting as a protective barrier against ultraviolet radiation, water, from
a biological standpoint, has indispensable thermodynamic and chemical properties that
facilitate the existence and proliferation of diverse organisms. Thus, any quest for signs
of life beyond our planet logically commences by investigating the presence of this vital
molecule.

Discoveries of extraterrestrial water in various forms, including water ice on Mars and
potential subsurface oceans on Jupiter’s moon Europa [1] and Saturn’s moons Enceladus
[2] and Ganymede [3], have kindled hope for extraterrestrial life. While celestial bodies
such as Mercury and the Moon are incapable of sustaining liquid water due to their lack of
a substantial atmosphere, Mars presents a different case. Presently, Mars possesses an
atmosphere substantially thinner than Earth’s, causing the average atmospheric pressure
to fall just below the vapor pressure of water at its triple point. However, this may not
necessarily have always been the case. Hypotheses suggest that with a potentially denser
atmosphere and warmer climate in its geological past, Mars could have supported vast
bodies of liquid water, even oceans [4] [5].

A fascinating topographical feature of Mars is the stark dichotomy between its northern and
southern hemispheres, with a difference in elevation of up to 3 kilometres. This Martian
dichotomy has given rise to numerous hypotheses for its origin, one of which proposes the
existence of an ancient ocean [6]. A previous study [7] attempted to ascertain the levels
of ancient Martian water using statistical topography methods, but the conclusions were
both ambiguous and statistically insufficient, leaving room for further exploration and more
rigorous analysis.

This thesis aims to build on the foundation of previous research while addressing its
shortcomings. Using advanced statistical topography techniques and a comparative
approach across different celestial bodies, the aim is to gain a more comprehensive
understanding of the geological history of Mars. In particular, the objective is to determine,
with greater certainty, whether an ancient ocean indeed existed on Mars. This research
will not only contribute to our understanding of Mars’ past climate conditions but will also
have profound implications for the possibility of past life and future human habitation on
the Red Planet.

1

2. Theoretical background

2.1 Fractals

To understand fractals, one should first know what they look like. A well known fractal
called the Mandelbrot set can be seen on Figure 1, the landscape of an imaginary country
on Figure 2 and the Von Koch curve on Figure 3. In a sense, a fractal is a set that can be
characterized by fractional dimensionality. [8]

Figure 1. Mandelbrot set Figure 2. Fractal country [8]

Figure 3. Von Koch curve

Fractals exhibit detail at all scales and many have some degree of self-similarity i.e they
are made up of parts that resemble the whole. This similarity doesn’t have to be strictly
geometrical, it can also be approximate or statistical. As classical geometry and calculus
aren’t suited to deal with fractals, new methods are required. The primary instrument

2

of fractal geometry is the fractal dimension. It is well known that a (smooth) curve is an
example of a 1-dimensional object, while a surface is a 2-dimensional case. Fractals
however have dimensions that are represented as fractions. For the Von Koch curve on
Figure 1, it is log 4/ log 3 ≈ 1.262. This means that it is larger than 1-dimensional i.e having
infinite length, but smaller than 2-dimensional i.e having zero area. [9]

One interpretation of these ’dimensions’ is the following. A square can be thought about as
being made up of four copies of itself that are scaled by a factor of 1

2 (i.e a square with half
the side length) and having the dimension log 4/ log 1

2 = 2. In the same vain, the Von Koch
curve is made up of four copies of itself that are scaled by a factor of 1

3 with a dimension
of log 4/ log 1

3 = log 4/ log 3 ≈ 1.26. To generalize, a set that is made up of m copies of
itself that are scaled by a factor r can be thought to have a dimension of logm/ log r. This
number is referred to as the similarity dimension of the set. [9]

Another definition for fractal dimension by Hausdorff Besicovitch goes like this: Let a fractal
set F be covered by the "boxes" U1, U2, ... (meaning F ⊂ U1 ∪U2 ∪ ...) that have diameters
(maximum linear size measured in d space) λ1, λ2, ..., respectively. U(F, λ) represents the
set of all possible coverings of F with λi ≤ λ. The exterior s-dimensional measure" Ms(F)

can then be defined as
Ms(F) = lim

λ→+0
inf

U(F,λ)

∑
i

λsi . (2.1)

Lastly, if Ms(F) = 0 for s > DH , and Ms(F) = ∞ for s < DH , then DH is the "dimensional
number," or the Hausdorff dimension of F:

DH = inf{s :Ms(F) = 0} = sup{s :Ms(F) = ∞}. (2.2)

[10]

One more way of defining the fractal dimension is the so called box counting dimension. If
one were to cut a line into segments of length δ, then the number of these segments N is
inversely proportional to δ for a line and δ2 for a square.

N(δ) ∼ 1

δD
, (2.3)

where D represents the box counting dimension. [11]

Physial systems have a characteristic smallest length scale i.e the radius of an atom or
molecule, denoted as R0. To find a dimension here, one can imagine a linear chain of
monomers. The number of these monomers in a chain of length L = 2R is thus

N = (R/R0)
1. (2.4)

The asymptotic form of the relation between the number of particles and cluster size that

3

is measured by the smallest sphere of radius R that contains the cluster is given by

N = ρ(R/R0)
D, N → ∞. (2.5)

Here, ρ represents the number density. The exponent D is called the cluster dimension or
the mass dimension and can be calculated by the following way

Dc =
lnN

lnR/R0
. (2.6)

[11]

It is important to realise that in theory, in the case of self-affine objects, all the different
definitions for a fractal dimension give the same results. While in practise, the results may
differ due to finite size effects or random deviations.

2.2 Statistical topography

Statistical topography is the study of the geometrical properties of iso-sets. These iso-sets
are of a random potential ψ(r) and can be either contour lines or surfaces. Coastlines are
one such case. They exhibit patterns of irregularities and chaos between the border of
sea and land nevertheless still having some fundamental uniformity. One example being
the length of a coastline L, which depends on the resolution of the map λ as

L ∝ λ1−D1 (2.7)

where D1 is the "fractal dimension". These coastlines can be thought of as curves that
connect points with the same elevation value, and are mathematically defined as iso-sets
z = ψ(x, y), where z is a fixed altit of the Earth’s relief. [12]

By cutting through surfaces at a constant height, one can generate contour lines and
islands with fractal geometry. The coastlines represented by the contour lines display
fractal scaling and the length of the connected contour loops follows a power law distri-
bution. Power law correlations are also found in the location of points on contours at the
same height. The connected loops above the cutting height correspond to islands, the
distribution of which also follows a power law. Furthermore, the same power law is present
at all cutting heights, regardless of the fraction of area within islands. [13]

One important discipline related to the statistical topography is the percolation theory.
This is essential, because the problem of statistical topography of random surfaces can
be mapped to a percolation problem [14]. The percolation theory studies the formation
and properties of clusters, particularly infinite clusters, as a function of the lattice site (or
bond) survival probability η, cf. [10]. The percolation threshold ηc is the minimum site
survival probability at which an infinite cluster appears, and near this threshold, the system

4

exhibits critical behavior and long-range correlations. The theory provides a means to
understand how the statistical properties of random surfaces, such as their roughness,
are related to the presence or absence of infinite clusters and their properties. What is
particularly important in the context of the statistical topography is that there is a series
of analytical exact results obtained for the percolation theory, cf. [10], that can be carried
over to the statistical topography using the aforementioned mapping. It should be noted
that percolation theory has been widely applied to study the behavior of porous materials,
electrical and thermal conductivity in materials, and the spread of infectious diseases in
populations, among others.

The basic idea of the mapping between the statistical topography and percolation problem
can be outlined as follows [14]. To begin with, we build a lattice based on a landscape,
provided as a function of two variables — the elevation as a function of longitude and
latitude. Each local minimum of this function defines a lattice site, and the bonds are built
as the steepest descent paths from each of the saddle points. One can imagine a scenario
where all such bonds of this lattice survive for which the water level is higher than the
elevation of the corresponding saddle point, and removed otherwise. Now, the fraction p of
surviving bonds depends on the water level. Therefore, the statistical topography problem
about the statistical properties of isolines becomes a percolation problem: up to what
value of p=pc will water be able to pass from one side of the system to the other, and what
are the statistical properties of the percolation clusters? For surfaces with short-range
correlations in elevation, there are only hills of a certain typical height and diameter. In
that case, the probabilities for percolation at value p will converge to a sharp singularity
at pc as the system size increases. The transition that happens at pc is a second order
phase transition and is characterised by a set of critical exponents. Self-affine surfaces,
however, are different, as their altitudes are very correlated over long distances. In this
case, as the size of the system is increased, the distribution of percolation thresholds does
not converge to a singularity at the percolation threshold. Meanwhile, the distribution of
island sizes follows a power law that has a cutoff, which increases with system size. [15]

The height distribution function can be used to describe self-affine surfaces. In the case of
such surfaces, height is invariant under rescaling h(r) ∼= b−Hh(br) where H represents
the roughness (or Hurst) exponent (0 ≤ H < 1 for rough surfaces). This means that for
a self-affine surface, the surface height variance

√
⟨[h(x)− ⟨h⟩]2⟩ scales as LH , where L

stands for the size of the system with the average taken over x. To also take into account
translational and rotational invariance of the surface, the structure function of the surface
takes the form

C2(r) = ⟨[h(x)− h(x+ r)]2⟩ ∼ |r|2H . (2.8)

With this equation, one has a simple way of calculating the roughness exponent. To
ascertain if a given surface is self-affine or multi-affine, one needs to measure instead the
pth order structure function given by Cp(r) = ⟨[h(x)− h(x+ r)]p⟩. The exponent hierarchy
αp varies linearly with p for a self-affine surface and nonlinearly with p for a multiaffine

5

surface. [16]

Since self-affine surfaces rescale differently depending on the direction, they are only
fractals in a general sense. However, the level set of such a surface i.e the set of points
where the surface intersects with the horizontal plane is a fractal object. By intersecting
the plane at different heights, one gets statistically equivalent level sets, as the height
fluctuations of a rough surface are unbounded. The contour loops that make up these
level sets are expected to also be fractal, with a smaller fractal dimension than that of the
whole level set (the union of all the contour loops of the same height). The size of these
contour loops is only limited by the system size. It has been shown that the scaling of
contour loops uniquely specifies the scaling of the associated self-affine rough surface.
This is expressed in formulae giving the geometrical exponents in terms of the roughness
exponent α . As a consequence, information about the out-of-plane fluctuations of the
surface can be obtained by doing measurements solely on the level set. [17]

2.3 Brownian and fractional Brownian surfaces

This section provides an overview of the concept and properties of fractional Brownian
surfaces, based on the review paper [10].

One simple natural example of a random process in nature is the Brownian motion of a
particle due to the thermal agitation of molecules in an ambient medium. It is possible to
approximate the velocity of Brownian motion, dx(t)/dt = vD(t), on a macroscopic time
scale t as "white noise" i.e a Gaussian random function with zero mean and no covariance

⟨vDi(t)vDj(t
′)⟩ = 2D0δijδ(t− t′), (2.9)

where D0 represents the molecular diffusion coefficient. Thus, the coordinate of the
Brownian particle, given by x(t) =

∫ t
0 vD(t

′)dt′, is also Gaussian, with an average ⟨x(t)⟩ =
0 and a covariance of ⟨xi(t)xj(t′)⟩ = 2D0δijmin(t, t′). It can be seen that x(t) does not
represent a stationary random process due to the fact that its correlator is not a function of
(t− t′). However, the delta variance is a function of (t− t′), which means that it can serve
as a useful characteristic for this process.

Brownian motion is a suitable starting point for generating random fields. This is because
by definition, the Brownian line-to-line function B(x) is a random function with Gaussian
increments that have zero mean and a variance described by

⟨[B(x1)−B(x2)]
2⟩ = b2|x1 − x2|. (2.10)

This represents a self-affine fractal with a fractal dimension of D = 3
2 .

It is also possible to define a Brownian surface as the graph of a Brownian plane-to-line

6

function B(x, y) i.e a Brownian line-to-line function of each of its arguments. The fractal
dimension of such a surface can be shown to be D = 5

2 . A different cross section can also
be made fro ma horizontal plane B(x, y) = h = const, with the fractal dimension, D = 3

2 ,
of the isoset B(x, y) = h.

Because the value 3
2 for D considerably overestimates the measured fractal dimensions

of natural coastlines, a generalization was introduced - a fractional Brownian function
denoted by BH(x), where x is a d-dimensional argument. It is by definition a Gaussian
random process with delta variance

⟨[BH(x1)−BH(x2)]
2⟩ = b2|x1 − x2|2H , (2.11)

where the Hurst exponent H characterizes the spectrum of BH . The particular case
where H = 1

2 represents the ordinary Brownian function B(x) i.e B(x) = B1/2(x). The
fractional Brownian graphs for varying values of H are qualitatively similar, differing only
by their degree of irregularity, which increases for decreasing H. The fractal dimension
D of a graph can thus be defined by the measure of this irregularity. In the scaling range
λ < b1/(1−H), the fractal dimension is D = 2−H. In an infinite scaling range, the same
dimension would refer to the horizontal cross section (isoset) of the fractional Brownian
surface z = BH(x, y), with a fractal dimension that is unity greater i.e D = 3 − H(λ <

b1/(1−H). A random potential with the delta variance and with H = 0, the resulting graph
achieves the maximum allowed fractal dimension D = d = 2, that is the dense filling of the
(x, y) plane by the short-scale oscillations of the potential.

One object, that is related to the function BH , is the trajectory of fractional Brownian motion
(or the fractional Brownian trail), which is given by x = BH(t), in which every component
of BH(t) is an independent fractional Brownian function of one-dimensional time. The
fractional Brownian trail is a self-similar fractal as opposed to the fractional Brownian graph,
which is self-affine. The time that is neccessary to pass the distance λ in a given box with
the same size, is given by tλ ∝ λ1/H . The covering number of such a trajectory traversed
over the time period T would then be Nλ ≃ T/tλ ∝ λ−1/H , for H > 1/d. With this, the
fractal dimension of the fractal Brownian trail, that is embedded in a d-dimensional space,
is given by

D = min(1/H, d), (2.12)

which for H = 1
2 would give the standard Brownian motion with D = 2. This explains the

finite probability of the return of a random walker to it’s starting point in two dimensions
and also the zero probability in three dimensions.

There are different ways for how the fractional Brownian function BH(x) can be obtained.
One option is to generate it by its Fourier spectrum. Another possibility is to obtain it directly
from B(x) with fractional differentiation. or fractional integration: BH(x) = ÎH−1/2B(x).

7

The Riemann-Liouville fractional integral of the a-th order is given by

Îαf(x) =
1

Γ(α)

∫ ∞

0
x′α−1f(x− x′)dx′, 0 < α < 1. (2.13)

By substituting f with df/dx in the integrand, one obtains the fractional derivative of order
1− α.

The model of a fractional Brownian surface has been used to model Earth’s relief. With
the fractal dimension D, one can predict the distribution of islands (i.e their number with
the size of order a) with

Na ∝ a−D. (2.14)

This distribution is in line with the empirical number-area rule or the Korčak law: the
number of islands with area above A scales as A−k for k = D/2 = 1−H/2. For Earth, the
average value for k is about 0.65 and corresponds to the Hurst exponent of 0.7. However,
local measurements can show significant deviations from this power-law surface spectrum.

The fractional Brownian approach facilitates the linking of the relief spectrum with the
fractal dimension of the whole isoset BH(x, y) = h and also with the distribution of islands.

2.4 Correlated percolation

In this section, an overview is provided about the numerical and analytical results regarding
the correlated percolation problem, based on Ref. [18].

The percolation lattice does not have to necessarily be completely random, but can include
some correlations. It can be described with an infinite set of random variables θi, that are
unity at occupied sites and zero at empty sites. The correlations can then be characterized
through the correlation function

cθ(xi − xj) = ⟨θiθj⟩ − p2, (2.15)

where p = ⟨θi⟩ represents the site occupation probability. Correlations can also be brought
into the percolation model by allocating a random number pi ∈ [0, 1] (where ⟨pi⟩ = p) to
each lattice site. The site values can then be calculated as

θi = Θ(pi − ri), (2.16)

where Θ(x) denotes the Heaviside step function and {ri} are independent random vari-
ables, whcih are uniformly distributed in [0, 1]. The correlation function in this case is given
by

cp(xi − xj) = ⟨pipj⟩ − p2. (2.17)

By putting together the equations (2.16) and (2.15), one gets cθ(a) = cp(a) ≡ c(a). The

8

interesting parts of this are the algebraically decaying correlations

c(a) ∝ |a|2H , H ≤ 0. (2.18)

The scaling exponents are thought to be determined by the two-point correlation function,
which means that a range of universality classes are determined by the Hurst exponent H.
It is possible to show that for the case H < −3/4, the model belongs to the universality
calss of uncorrelated percolation, while in the range −3/4 ≤ H ≤ 0, the scaling exponents
are effected by the correlations. The conjecture is that short-range (local) variations in
the percolation lattice do not influence the scaling exponents, implying that they solely
depend on the long-range correlations represented through H, and not on the intricate
structure of the percolation lattice. In the case H > 0, the short range fluctuations have
less of an impact on the value of the random potential than the long range correlations and
can thus be diminished by just scaling the model. As the scaling exponents are of interest
in many different areas, one should calculate their values depending on the surface’s
roughness parameter H. Monte-Carlo simulations show that for uncorrelated percolation,
different properties converge on the value D1 = 7/4. While clear outcomes could not be
obtained at H = −0.75 and H = 0, extrapolations seem to show that it terminates 7/4

and 1 respectively. Another important consequence is the rejection of a well established
conjecture that implies D1(H) = 3

2 − H
2 .

2.5 Geological landscapes

This section, which discusses the main differences between real geological landscapes
and random Gaussian surfaces, is based on Ref, [19].

The creation of Earth’s surface is a multifaceted process, influenced by various factors
such as seismic and tectonic activities, erosion, sedimentation, and more. These factors
can have different origins, like erosion resulting from meandering rivers, oceanic and
atmospheric impacts, ice movement, avalanches, among others. In addition, the physical
attributes of the ground cover a vast range. Developing a comprehensive, simplified
mathematical model that accounts for this variety is virtually impossible. However, the
scale-invariant characteristics of geological landscapes have been discovered to be
remarkably universal, with self-affine properties and a Hurst exponent generally ranging
from 0.7 to 0.9.

Recent experiments have shown that this self-affine behavior is not flawless, with the
differential Hurst exponent decreasing as a function of scale, with a value of approximately
0.8, which is characteristic of smaller scales. Consequently, it is logical to anticipate a
straightforward, universal, and resilient mechanism responsible for creating such surfaces.
It can be demonstrated that this mechanism can be attributed to the interplay between
erosion and tectonic activity.

9

Many geological landscape models primarily focus on the development of river networks,
while a more inclusive approach considers erosion on a slope through a stochastic
equation, resulting in direction-dependent exponents of approximately 0.63 and 0.83. The
formation of rivers and erosion undoubtedly play a crucial role in shaping landscapes,
but they cannot raise mountain heights. The only effort to incorporate tectonic processes
into a robust self-affine model of Earth’s surface was proposed by Mandelbrot. His model
addressed roughening caused by tectonic activity, involving the random selection of a
point within a polygon and drawing a randomly oriented "fault line" that splits the polygon
into two sections, one of which is elevated by a unit height. This process is then repeated
numerous times.

The Brownian growth of height differences is removed by normalizing the surface height.
This produces a self-affine surface with a Hurst exponent of approximately 0.5. To address
the discrepancy between the model and empirical values of 0.7 to 0.9, the model was
generalized by replacing the Heaviside profile of the "fault" with a profile containing a
singularity. Tectonic activity and fault formation, as portrayed in the Mandelbrot model,
undoubtedly play a significant role in the evolution of Earth’s surface. However, singular
fault profiles lack physical justification, and there are no physical processes normalizing
surface height to the number of faults. Erosion, instead, serves as the fundamental factor
reducing height differences. Highly detailed erosion models are not suitable for revealing
the most generic aspects of landscape roughening.

2.6 Ancient Mars

The complexity of the global topography on Mars reveals a rich history of different forces
that have shaped the planet at different spatial scales, and encapsulates important in-
formation about its evolution. A map of Mars is shown in Figure 4. A key feature of the
Martian crust is the pronounced difference between the northern and southern hemi-
spheres, known as the Martian dichotomy. This dichotomy is expressed topographically by
the presence of heavily cratered, elevated highlands in the southern hemisphere, which
contrast with the lowland plains of the northern hemisphere. The cause of this hemispheric
dichotomy remains largely unclear, but several theories have been proposed, including
a single mega-impact or multiple impacts in the northern hemisphere, thinning of the
northern hemisphere crust due to intense regional mantle convection, a differential rotation
mechanism triggered by single-plume mantle convection, and an early stage of tectonic
plate recycling. In addition, it has been suggested that a vast ocean once covered the
northern hemisphere. [19]

The main evidence for this theory is the observation of several possible ancient shorelines,
mainly found at the edges of the northern plains. Two of these river-like patterns can be
traced uninterrupted for thousands of kilometres. However, this idea has faced strong
opposition based on observations of significant long wavelength changes in elevation

10

Figure 4. Mars MGS MOLA Global Color Shaded Relief [20]

along the supposed shorelines, which deviate by several kilometres and do not adhere
to surfaces of equal gravitational potential, as would be expected for Earth’s sea level.
Despite these challenges, further research has continued the debate as to how these
ancient shorelines could have been distorted to exhibit such remarkable variations in
elevation today. [19]

11

3. Methods

3.1 Data sets analysed

In this thesis, the topographic data of four different celestial bodies and a fBm surface
were analysed. The celestial bodies include Mars, Mercury, Earth and the Moon. Venus
was also considered, but due to the only readily available data set having some artifatcs, it
was omitted. The data sets that were not already with the resolution of 4 pixels per degree
were converted to be so. This resolution was chosen as the amount of data was enough to
get some meaningful results, but not too much so that running the code would have taken
too long. The data set for the Earth comes from the National Oceanic and Atmospheric
Administration (NOAA). All the other data sets are from the Planetary Data System (PDS).

3.1.1 Mars

The topographic data for Mars is from altimetry data observations acquired by the Mars
Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) instrument. The data prod-
ucts produced by MOLA include Aggregated Experiment Data Records, or AEDRs (raw
data), Precision Experiment Data Records, or PEDRs (data from AEDRs with precision
orbit corrections applied), and Experiment Gridded Data Records, or EGDRs (gridded
products derived from PEDRs). Two different EGDRs are made, Initial Experiment Gridded
Data Record (IEGDR) and Mission Experiment Gridded Data Record (MEGDR).

The data used for this thesis is a MEGDR product, a result of accumulated altimetry
observations over the course of the whole MGS mission. This data is in the form of an
image gridded at a resolution of 4 pixels per degree. The topographic map is computed as
the planetary radius minus the areoid radius. The map is in simple cylindrical projection
using the IAU2000 planetocentric coordinate system with east positive longitude and is in
the form of a binary table with one row for each 0.25-degree latitude. The minimum and
maximum topography observations for this data set are -8068 meters and 21134 meters.
[21]

3.1.2 Mercury

The data for Mercury comes from Messenger Mercury Dual Imaging System Narrow
Angle Camera and Mercury Dual Imaging System Wide Angle Camera. The dataset is
composed of digital elevation models (DEM) of Mercury, created by multiple institutions
involved in the MESSENGER mission. It includes numerous global DEM products and

12

certain region-specific DEM products. Each product features gridded map projections with
varying resolutions. Global map products utilize simple cylindrical projections, with raster
images ranging from 0 to 360 degrees positive east longitudes in the sample direction, and
-90 to 90 degrees latitude extents from bottom to top in the line direction. The resolution of
this data is 64 pixels per degree. The minimum and maximum topography observations
for this data set are -10745 meters and 8827 meters respectively. [22]

3.1.3 Earth

In August 2008, the ETOPO1 Global Relief Model was developed by the National Geophys-
ical Data Center (NGDC) of the National Oceanic and Atmospheric Administration (NOAA)
as an improvement to the ETOPO2v2 Global Relief Model. ETOPO1 is available in "Ice
Surface" and "Bedrock" versions and was generated from diverse global and regional
digital datasets. These datasets were shifted to common horizontal and vertical datums,
evaluated, and edited as needed. Data sources for ETOPO1 include NGDC, Antarctic
Digital Database (ADD), European Ice Sheet Modeling Initiative (EISMINT), Scientific
Committee on Antarctic Research (SCAR), Japan Oceanographic Data Center (JODC),
Caspian Environment Programme (CEP), Mediterranean Science Commission (CIESM),
National Aeronautics and Space Administration (NASA), National Snow and Ice Data
Center (NSIDC), Scripps Institute of Oceanography (SIO), and Leibniz Institute for Baltic
Sea Research (LIBSR). ETOPO1 is vertically referenced to sea level and horizontally
referenced to the World Geodetic System of 1984 (WGS 84), with a resolution of 60 pixels
per degree. The data set used in this thesis is the "Bedrock" version of cell registered
binary data and is in simple cylindrical projection. The minimum and maximum topography
observations for this data set are -10710 meters and 6572 meters. [23] [24]

3.1.4 The Moon

The data for the Moon came from the SELENE(KAGUYA) mission using the Laser Altimeter
Instrument (LALT). The global topographic map of the Moon is obtained by interpolating
elevation data in Lunar Global Topographic Data as a Time Series. The data set used
has the resolution of 16 pixels per degree and using the simple cylindrical projection. The
minimum and maximum topography observations for this data set are -8533 meters and
10715 meters. [25]

3.1.5 fBm surface

Fractional Brownian motions (fBm’s) are a family of Gaussian random functions, that are
defined by the following: Bt - ordinary Brownian motion, H - Hurst parameter (0 < H < 1).
Then fBm of the exponent H is a moving average of dB(t), where past increments of B(t)

are weighted by the kernel (t− s)H− 1
2 . The fundamental characteristic of fBm’s is that the

range of correlation between their increments can be considered unbounded. [26]

13

Normalized fractional Brownian motion has the property of having a Gaussian distribution
for t > 0 and is the only Gaussian process with stationary increments that is self-similar
[27]. In this thesis, fBm is used to check whether the algorithms that are used have been
implemented correctly and whether or not they produce the results that are expected.

The specific method used is the Davies-Harte algorithm: Given that the autocovariance
sequence (ACVS) of a stationary Gaussian process is known, then the steps to simulate
a realisation of fBm of length N are the wollowing. First, for k = 0, ..., 2N − 1, one must
compute

Ak,N (s) ≡
N∑
j=0

sje
−iπkj/N +

2N−1∑
j=N+1

s2N−je
−iπkj/N . (3.1)

Then, one is to check that Ak,N(s) ≥ 0 for all k. Next, let the independent mean zero
Gaussian random variables with unit variance be defined as Z0...Z2N−1. One must then
compute the complex valued sequence given by

Yk ≡

√
2NA0,N (s)Z0, k = 0;√
NAk,N (s)(Z2k−1 + iZ2k), 1 ≤ k ≤ N − 1;√
2NAN,N (s)Z2N−1, k = N ;√
NAk,N (s)(Z4N−1−2k + iZ4N−2k), N + 1 ≤ k ≤ 2N − 1;

(3.2)

Finally, to simulate a realisation of the Gaussian process

Xt ≡
1

2N

2N−1∑
k=0

Yke
iπkt/N , t = 0, ..., N − 1 (3.3)

[28]

With this, one gets the 1D fBm functions.

The so called 4-vertex model can be used to create a 2D surface, as regarding the fractal
dimension D1(H), the simulations show that for 0 ≤ H ≤ 1, the 4-vertex model belongs to
the same universality class as the isotropic Gaussian self-affine surfaces. For this model,
height is given by the sum of two independent 1D fBm functions ψ(x, y) = f(x) + g(y).
This would work, however, the correlations would be strong and the surface would look
unnatural. To fix this, more than two (8 in this case) fBm functions are added together
instead. [29][18]

3.2 Methods used

3.2.1 Marching squares

Remote sensing image data extraction is a non-destructive approach that is frequently
employed for observing and analyzing geographical features worldwide. This technique

14

allows for the results to be obtained without adversely affecting the study area, especially
when carrying out geomorphological and environmental research in nearly unreachable lo-
cations. A wide variety of images are attainable, providing substantial spatial and temporal
coverage at an affordable price. However, the raster methods used for linear feature seg-
mentation in most commercial and open-source geographic information systems (GIS) will
generate inherent vectorization along with related systematic errors. Consequently, their
application in geomorphological studies, including estimating the lengths of geographical
features such as perimeters, coastlines, and borders, is somewhat restricted.

Chain code methods were developed in order to code information about borders, which
in turn allowed the analysis of geomteric figures in digital form. Chain code algorithms
are used to create polygonal boundaries for objects with particular length and direction. A
number code is given to each segment direction (Fig. 5). For a certain shape, different
chain codes an be produced. There are two main cases that are based on 4- or 8-
neighbour connectivity. To distinguish between them, one is named outside pixel border
(OPB) (Fig. 5a) and the other chain code (CC) (Fig. 5b). OPB draws the frontier moving
across consecutive boundary pixels, while CC draws the border by moving from the pixel
center to another connected neighbour pixel center. The chain code perimeter formula is
given by

P = ne +
√
2no, (3.4)

where ne and no are the number of even and odd chain elements respectively. These
methods however, are low-accuracy in some cases.

Another method, the crack code (also called mid crack) brings considerable improvement
into the chain code methods by delineating the border segments that move along the
pixel edge midpoints with 8-direction connectivities (Fig. 5c). Later on, another procedure,
named the marching squares (MS) algorithm was developed (Fig. 6a), that was results
wise the same as mid crack, but differed in execution methodology. The new procedure
was to analyze the local properties of a 2 by 2 window in the center of four pixels called
a bit quad (Fig. 6b). Every configuration of these bit quads is determined by the Euler
number, with 16 combinations in total. [30]

Figure 5. Chain code examples. Code numbers generated moving clockwise starting
from corner A. (a) OPB, the sequence is 0030032322122101. (b) CC, the sequence is
07054341. (c) Mid-crack, the sequence is 0770755543343111. [30]

15

Figure 6. (a) Marching squares. (b) Bit quads configurations. [30]

3.2.2 Surveyor’s formula

By surveying a plot of land, one gets data for the successive displacements that are
required to cover the boundary of a simple plane polygon. To find the area of such a
polygon, one could break it into triangles and use trigonometric methods. This is however
very laborious. It is more efficient to introduce rectangular coordinates and change the
displacement vectors from polar to rectangular so they could be added in order to get the
coordinates for the vertices of the polygon. After that, a general formula can be used to
express the area of the polygon as a function of its vertices. This formula is known as the
surveyor’s formula (also known as the shoelace formula and Gauss’s area formula).

Let the vertices of a simple polygon, that are listed around the perimeter in a counter-
clockwise order be (x0, y0), (x1, y1), ..., (xn−1, yn−1). The area of such a polygon can be
calculated as:

A =
1

2

{[
x0 x1

y0 y1

]
+

[
x1 x2

y1 y2

]
+ ...+

[
xn−2 xn−1

yn−2 yn−1

]
+

[
xn−1 x0

yn−1 y0

]}
, (3.5)

where each edge of the polygon is represented by a 2 x 2 determinant in the formula. [31]

16

4. Results

4.1 Data collection

The contour lines for each of the 4 celestial bodies and a fractional Brownian surface
(generated with the Davies Harte fractional Brownian surface (fBm) method [32]) were
made by implementing the marching squares algorithm. Python was used for this due to
it’s ease of accessibility in the form of the Jupyter Notebook and the author’s familiarity
with it.

Contour lines were made starting from the lowest point of the data set up to the highest
with a step size of 10 meters (every 100 meters for the Brownian surface). To the best of
the author’s and supervisor’s knowledge, the study of the fractal dimension as a function
of height is a new method that has not yet been used and is suitable for the purpose
required. After the contour lines were gathered, a variety of different parameters were
calculated for each contour including diameter, area and length. For area calculation, the
surveyor’s formula was used. Length calculation was further divided into multiple parts
according to the scale of measurement, which extended from 1 up to 64 with increments
of powers of two. Then, the total length of all the contours for each height was calculated.
Also collected was the number of contours for each height. The code for this can be seen
in Appendix 1.

Ideally, equation (2.7) should hold for all values of a for a self-affine curve. However, as
this ideal case doesn’t always hold, especially for the isolines of a real landscape, here we
look at a diferential exponent, which is derived from the values of two neighbouring points
(a and 2a)

L(a, z) =

(
2a

a

)1−D(z,a)

L(a, z), (4.1)

where a denotes the measuring stick or resolution used and z is height. From this, the
equation for D(z, a) is

D(z, a) =
ln[L(a, z)/L(2a, z)]

ln 2
+ 1 (4.2)

With D(z, a), two different fractal sets can be considered - D1(z, a) and Dk(z, a), where D1

represents D(z, a) without taking new contours that appear when changing from a to 2a

into account (denoted as Dh in subsection 2.4) and Dk represents the D(z, a), where new
contours are also taken into account. According to [13] and with the correction for D1 from
[18] taken into account, these fractal dimensions are connected to the Hurst parameter H

17

by the following equations
Dk = 2−H (4.3)

D1 ≈
3−H

2
+ 0.064H(1−H) (4.4)

Equation (4.4) is an approximation coming from [18]. Similarly, the parameter k from
Korčak’s law can be calculated from

N(A > S, z) = N(S0, z)

(
S0
S

)k(S,z)

, (4.5)

where N denotes the amount of contours, A their area, and S the comparison area. From
this equation, k can be expressed as

k(S, z) =
ln[N(A > S)/N(A > 2S)]

ln 2
(4.6)

k can also be expressed as a function of Dk

k =
Dk

2
(4.7)

For self-affine Gaussian surfaces equations (4.3, 4.4, 4.7) hold; however geological
landscapes can depart significantly from Gaussianity [19]. Therefore, one of the working
hypothesis was that departure from Gaussianty may help understanding the effect of
oceans on the landscapes. Because of that, we constructed combinations of scaling
exponents describing how far the landscape departs from Gaussianity and which should
take a zero value for Gaussian self-affine surfaces, In particular the scaling exponents’
anomalies ∆D and ∆k were calculated, defined as as

∆D = (Dk − 1)− 2(D1 − 1) (4.8)

∆k = k − Dk

2
(4.9)

Here, Eq. (4.8) is based on the approximate relationship D1 ≈ 3
2 −

H
2 ; this can be improved

by using the more accurate approximation (4.4) [18] by introducing the “corrected” anomaly
of the factal dimension ∆Dc:

∆Dc = D1 − 1− Dk − 1

2
− 0.064(Dk − 1)(2−Dk) (4.10)

4.2 Data analysis

Now, the differences between the various planetary landscapes will be examined using
the previously introduced characteristics. Firstly, the number of contours vs height, which
can be seen in figure 7 and the lengths of those contours vs height in figure 8.

18

6000 4000 2000 0 2000 4000 6000
Height [m]

0

2000

4000

6000

8000

N

Mars
Moon
Earth
Mercury
FBM

Figure 7. The total number of contours for a given height for Mars (blue), The Moon
(orange), Earth (green), Mercury (red) and the FBM model (purple)

6000 4000 2000 0 2000 4000 6000
Height [m]

0

20000

40000

60000

80000

To
ta

l l
en

gt
h

of
 c

on
to

ur
 li

ne
s

Mars
Moon
Earth
Mercury
FBM

Figure 8. The total length of contours for a given height for Mars (blue), The Moon (orange),
Earth (green), Mercury (red) and the FBM model (purple)

These two graphs behave similarly for the reason that more contours generally mean
longer total length of contour lines. It is interesting to note that the graph for Earth has
two peaks whereas all the others have one. For Earth, one peak is around and slightly
above the sea level while the other peak is at the depths corresponding to the ocean floor,
-4000m. Such a behaviour can be understood as follows. Ocean floor and altitudes near
the sea level are mostly flat plains which can be characterised by small values of the local
Hurst exponent and hence, with large values of the fractal dimension. This, in its own
turn, results in longer isolines. Meanwhile, at the transition area, the continental slope,
is characterised by steep gradients and hence, smaller fractal dimensions and smaller
isoline lengths.

Another similar graph can be obtained by counting the amount of data points that are
between two height values i.e how much an isoline shifts while changing height (or the
difference in area of all of the contours when changing height). The graph for this can be
seen in figure 9.

The biggest difference with the graph in figure 9 and the graphs in figures 7 and 8 is the
emergence of a second peak for Mars at around -4000 meters. This can be ascribed to

19

6000 4000 2000 0 2000 4000 6000
Height [m]

0

1000

2000

3000

4000

Di
ffe

re
nc

e

Mars
Moon
Earth
Mercury
FBM

Figure 9. The difference of contour areas for different heights for Mars (blue), The Moon
(orange), Earth (green), Mercury (red) and the FBM model (purple)

the Martian dichotomy: similarly to the oceanic floor on Earth, the northern hemisphere of
Mars is more flat, hence small changes in the isoline altitude result in relatively big shifts
in the isoline positions.

Before trying to study the results for the celestial bodies, one has to see if the methods
used are working as intended by using them on a known subject - the fBm model. The 3D
surface generated by fBm can be seen in figure 10. This surface was generated with a
Hurst parameter value of 0.5. The height range is from -10188 to 16713.

0.4
0.2

0.0
0.2

0.4
0.4

0.2

0.0

0.2

0.4

10000

5000

0

5000

10000

15000

Figure 10. A Brownian surface generated by the Davies Harte FBM method [32]

The graphs for all the different parameters Dk, D1, k, ∆D, ∆Dc and ∆k can be seen in
figures 11, 12, 13, 14, 15 and 16 respectively. According to equations (4.3), (4.4) and (4.6),

20

with the Hurst parameter H = 0.5, we expect to see values for Dk, D1 and k to be 1.5, 1.28
and 0.75 respectively. From this it can be seen that firstly, the methods used underestimate
the dimensions for the smallest scales (blur and yellow curves in Figs. 11–13). For larger
scales, these values approach the expected results. This is the consequence of the so
called finite size effect, where the exponent deviates from the correct results at the edges
of the inertial range (i.e the range where the power law is expected to hold). The second
observation is that the lines on the graphs are fluctuating due to statistical uncertainties
and are almost horizontal (i.e. independent of the altitude), as expected. This gives us
an opportunity to evaluate the amplitude of the random fluctuations for every exponent
depending on the measurement scale by calculating their standard deviation. These
values for each parameter can be seen in table 1. It can be concluded that in terms of
statistical fluctuations, the best parameter with the smallest statistical fluctuations is D1.

7500 5000 2500 0 2500 5000 7500 10000
Height [m]

1.0

1.2

1.4

1.6

1.8

2.0

D k

fBm Surface with H=0.5l_1
l_2
l_4
l_8
l_16
l_32

Figure 11. Parameter Dk − 1 for the fBm surface with H = 0.5

7500 5000 2500 0 2500 5000 7500 10000
Height [m]

1.0

1.1

1.2

1.3

1.4

1.5

D 1

fBm Surface with H=0.5l_1
l_2
l_4
l_8
l_16
l_32

Figure 12. Parameter D1 − 1 for the fBm surface with H = 0.5

The graphs for the fractal dimension Dk for the celestial bodies can be seen in figures
17, 18, 19 and 20. While the graphs for the Moon and Mercury seem to be more or less
constant throughout the range of altitudes, with only some slight statistical fluctuations, the
graphs for both Mars and Earth look different. For Mars the deviations from a horizontal
line are significantly smaller than for the Earth, where there is clearly a big dip at around
the height value of 0 meters. The behaviour for Earth can be explained by the presence
of water and an atmosphere. Furthermore, all the different lines are quite close to each

21

7500 5000 2500 0 2500 5000 7500 10000
Height [m]

0.2

0.4

0.6

0.8

1.0

k

fBm Surface with H=0.5l_1
l_2
l_4
l_8
l_16
l_32

Figure 13. Parameter k for the fBm surface with H = 0.5

7500 5000 2500 0 2500 5000 7500 10000
Height [m]

0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20

D

fBm Surface with H=0.5l_1
l_2
l_4
l_8
l_16
l_32

Figure 14. Parameter ∆D for the fBm surface with H = 0.5

1 2 4 8 16 32

Dk 0,08 0,23 0,26 0,34 0,39 0,47
D1 0,04 0,09 0,10 0,13 0,15 0,14
k 0,14 0,21 0,27 0,28 0,38 0,35

∆D 0,08 0,21 0,22 0,32 0,30 0,30
∆Dc 0,05 0,12 0,13 0,18 0,17 0,19
∆k 0,14 0,21 0,29 0,30 0,39 0,34

Parameter

Measuring
stick

Table 1. Population standard deviation calculated for each parameter at each measuring
stick length for the fBm surface with H=0.5

other for Earth, but for other celestial bodies, they are at bigger intervals which means that
there is a significant departure from self-affinity of these landscapes: for smaller scales,
the surfaces are smoother; the origin of such behaviour is unknown and deserves further
studies. Moreover, the fluctuations for all the graphs are bigger at the sides, due to the too
short total length of the isolines meaning that statistical bases is insufficient. Because of
that, the graphs have been cut off at very large and very small altitudes (<-6000 m and
>6000 m).

22

7500 5000 2500 0 2500 5000 7500 10000
Height [m]

0.10

0.05

0.00

0.05

0.10

0.15

0.20

D c

fBm Surface with H=0.5l_1
l_2
l_4
l_8
l_16
l_32

Figure 15. Parameter ∆Dc for the fBm surface with H = 0.5

7500 5000 2500 0 2500 5000 7500 10000
Height [m]

0.6
0.5
0.4
0.3
0.2
0.1
0.0
0.1
0.2
0.3

k

fBm Surface with H=0.5l_1
l_2
l_4
l_8
l_16
l_32

Figure 16. Parameter ∆k for the fBm surface with H = 0.5

6000 4000 2000 0 2000 4000 6000
Height [m]

1.0

1.2

1.4

1.6

1.8

2.0

D k

Marsl_1
l_2
l_4
l_8
l_16
l_32

Figure 17. Parameter Dk for Mars for different measuring lengths

23

6000 4000 2000 0 2000 4000 6000 8000
Height [m]

1.0

1.2

1.4

1.6

1.8

2.0

D k

Moonl_1
l_2
l_4
l_8
l_16
l_32

Figure 18. Parameter Dk for the Moon for different measuring lengths

6000 4000 2000 0 2000 4000
Height [m]

1.0

1.2

1.4

1.6

1.8

2.0

D k

Earthl_1
l_2
l_4
l_8
l_16
l_32

Figure 19. Parameter Dk for Earth for different measuring lengths

6000 4000 2000 0 2000 4000 6000
Height [m]

1.0

1.2

1.4

1.6

1.8

2.0

D k

Mercuryl_1
l_2
l_4
l_8
l_16
l_32

Figure 20. Parameter Dk for Mercury for different measuring lengths

The fractal dimension D1, which represents individual connected loops can be seen in
figures 21, 22, 23 and 24. The graphs look similar to the previous ones, except that now
Mars is even smoother than before. The jumps in the graphs at the sea level for Earth
are even more distinct here and are a clear indicator for the effect of the water level. If
there were ever water on Mars, we would expect to see something similar — jumps of the
curves or at least reduced values of D1 at small elevation levels — on these graphs, but
this not the case.

24

6000 4000 2000 0 2000 4000 6000
Height [m]

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40

D 1

Marsl_1
l_2
l_4
l_8
l_16
l_32

Figure 21. Parameter D1 for Mars for different measuring lengths

6000 4000 2000 0 2000 4000 6000 8000
Height [m]

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40

D 1

Moonl_1
l_2
l_4
l_8
l_16
l_32

Figure 22. Parameter D1 for the Moon for different measuring lengths

6000 4000 2000 0 2000 4000
Height [m]

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40

D 1

Earthl_1
l_2
l_4
l_8
l_16
l_32

Figure 23. Parameter D1 for Earth for different measuring lengths

25

6000 4000 2000 0 2000 4000 6000
Height [m]

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40

D 1

Mercuryl_1
l_2
l_4
l_8
l_16
l_32

Figure 24. Parameter D1 for Mercury for different measuring lengths

The graphs for the parameter k can be seen in figures 25, 26, 27 and 28. The same dip at
height 0 meters for the Earth can not be observed here. However, interestingly the lines for
the different length scales are all quite together for the Earth and not for the other celestial
bodies. This might be due to geophysical processes on Earth and is another intriguing
fact deserving further studies.

6000 4000 2000 0 2000 4000 6000
Height [m]

0.2

0.4

0.6

0.8

1.0

1.2

k

Marsl_1
l_2
l_4
l_8
l_16
l_32

Figure 25. Parameter k for Mars for different measuring lengths

6000 4000 2000 0 2000 4000 6000 8000
Height [m]

0.2

0.4

0.6

0.8

1.0

k

Moonl_1
l_2
l_4
l_8
l_16
l_32

Figure 26. Parameter k for the Moon for different measuring lengths

26

6000 4000 2000 0 2000 4000
Height [m]

0.4

0.6

0.8

1.0

1.2

1.4

k

Earthl_1
l_2
l_4
l_8
l_16
l_32

Figure 27. Parameter k for Earth for different measuring lengths

6000 4000 2000 0 2000 4000 6000
Height [m]

0.2

0.4

0.6

0.8

1.0

1.2

k

Mercuryl_1
l_2
l_4
l_8
l_16
l_32

Figure 28. Parameter k for Mercury for different measuring lengths

For ∆D, i.e the measure for anomalies, the graphs can be seen in figures 29, 30, 31
and 32. We can see again the fingerprint of the water level in the graphs for Earth: all
the curves have a minimum near the sea level, with values around zero (i.e. indicating
absence of scaling anomaly). While both the graphs for Dk and D1 showed a sharp jump
for Earth at 0 meters, the same can’t be said here. Such a behaviour can be explained by
noticing that the expression for ∆D combines the values of Dk and D1; the jumps of Dk

and D1 appear to compensate each other in this expression, and as a result, for ∆D the
jump has been flattened.

27

6000 4000 2000 0 2000 4000 6000
Height [m]

0.2

0.1

0.0

0.1

0.2

0.3

0.4

D

Marsl_1
l_2
l_4
l_8
l_16
l_32

Figure 29. Parameter ∆D for Mars for different measuring lengths

6000 4000 2000 0 2000 4000 6000 8000
Height [m]

0.2

0.1

0.0

0.1

0.2

0.3

0.4

D

Moonl_1
l_2
l_4
l_8
l_16
l_32

Figure 30. Parameter ∆D for the Moon for different measuring lengths

6000 4000 2000 0 2000 4000
Height [m]

0.2

0.1

0.0

0.1

0.2

0.3

0.4

D

Earthl_1
l_2
l_4
l_8
l_16
l_32

Figure 31. Parameter ∆D for Earth for different measuring lengths

28

6000 4000 2000 0 2000 4000 6000
Height [m]

0.2

0.1

0.0

0.1

0.2

0.3

0.4

D

Mercuryl_1
l_2
l_4
l_8
l_16
l_32

Figure 32. Parameter ∆D for Mercury for different measuring lengths

With the correction from [18] applied to ∆D (denoted as ∆Dc), the graphs change as can
be seen in figures 33, 34, 35 and 36. The lines for the biggest scales (blue) are very close
to 0 for both the Moon and Mercury, meaning they act as functions of Gaussian statistics,
which means that the non-Gaussianity isn’t relevant here.

6000 4000 2000 0 2000 4000 6000
Height [m]

0.10

0.05

0.00

0.05

0.10

0.15

0.20

D c

Marsl_1
l_2
l_4
l_8
l_16
l_32

Figure 33. Parameter ∆Dc for Mars for different measuring lengths

6000 4000 2000 0 2000 4000 6000 8000
Height [m]

0.10

0.05

0.00

0.05

0.10

0.15

0.20

D c

Moonl_1
l_2
l_4
l_8
l_16
l_32

Figure 34. Parameter ∆Dc for the Moon for different measuring lengths

29

6000 4000 2000 0 2000 4000
Height [m]

0.10

0.05

0.00

0.05

0.10

0.15

0.20

D c

Earthl_1
l_2
l_4
l_8
l_16
l_32

Figure 35. Parameter ∆Dc for Earth for different measuring lengths

6000 4000 2000 0 2000 4000 6000
Height [m]

0.10

0.05

0.00

0.05

0.10

0.15

0.20

D c

Mercuryl_1
l_2
l_4
l_8
l_16
l_32

Figure 36. Parameter ∆Dc for Mercury for different measuring lengths

The parameter ∆k for representing the anomalies for k can be seen in figures 37, 38, 39
and 40. Here, all the graphs except for Earth have most if not all the lines below 0, at
around -0.2. For Earth, they are close to 0, which means that there are less small contours
for Earth compared to the other celestial bodies; one can argue that this is due to the
atmospheric and oceanic erosion.

6000 4000 2000 0 2000 4000 6000
Height [m]

0.4

0.2

0.0

0.2

0.4

k

Marsl_1
l_2
l_4
l_8
l_16
l_32

Figure 37. Parameter ∆k for Mars for different measuring lengths

30

6000 4000 2000 0 2000 4000 6000 8000
Height [m]

0.4

0.2

0.0

0.2

0.4

k

Moonl_1
l_2
l_4
l_8
l_16
l_32

Figure 38. Parameter ∆k for the Moon for different measuring lengths

6000 4000 2000 0 2000 4000
Height [m]

0.4

0.2

0.0

0.2

0.4

k

Earthl_1
l_2
l_4
l_8
l_16
l_32

Figure 39. Parameter ∆k for Earth for different measuring lengths

6000 4000 2000 0 2000 4000 6000
Height [m]

0.4

0.2

0.0

0.2

0.4

k

Mercuryl_1
l_2
l_4
l_8
l_16
l_32

Figure 40. Parameter ∆k for Mercury for different measuring lengths

In conclusion, the analysis of the scale-free measures of the statistical topography confirms
the accuracy of the code by demonstrating consistency with analytical results for a test case
of a fractional Brownian surface. Additionally, the presence of water on Earth is clearly
visible in the Dk and D1 graphs, confirming the hypothesis that statistical topography
measures can be used to deduce the presence of water on a planet. This is further
supported by the fact that the results for the Moon and Mercury show no statistically
significant trends in the corresponding graphs, consistent with celestial bodies that never
had free-flowing water on their surfaces. While the behavior of the graphs for Mars

31

differs slightly from that of Mercury and Moon, these differences can be attributed to
the hemispheric dichotomy of Mars, rather than the effect of water erosion. While the
absence of ancient water on Mars is not yet a definite conclusion, the results provide
strong evidence that the hemispheric dichotomy of Mars is not caused by ancient oceans.

4.3 Possible improvements

There are a number of things that could be done to improve the results of this thesis.
One of the biggest problems was the size of the datasets, which for this thesis were all
converted to 720x1440 arrays (4 pixels per degree), which is a much lower resolution
than what is actually available. This was done so that the code would run in a reasonable
time. If the data sets had been larger, the results would have been more meaningful and
concrete, with fewer anomalies. This could be achieved in a number of ways. Firstly,
better code could be written for the marching squares algorithm, which took the longest
to run. Another option is to use a different programming language altogether, one that
is precompiled (like C++) rather than interpreted (like Python). Also, marching squares
may not be the most efficient algorithm to use, and there may be other ways to collect the
contour data.

Another possible modification is to modify the algorithm for determining the fractal dimen-
sions. In this work, the length of the measuring stick was changed and the dimension was
inferred based on how the measured length changed as a result. An alternative approach
is to use maps of different resolutions — a series of downsampled maps. This would mean
that one would only have to calculate the length of each contour and not have to deal with
any measuring sticks. This method is expected to suffer less from the finite size effect.

32

5. Summary

The comprehensive analysis carried out in this thesis closely examined the topographic
data of four different celestial bodies, namely Mars, the Moon, Earth and Mercury, as well
as a simulated fractional Brownian surface (fBm). This data was carefully analysed and
a series of graphs were produced showing various parameters derived from statistical
topography, allowing a detailed comparative assessment between the subjects.

In the case of the fractional Brownian surface, the results demonstrated notable agreement
with the analytical predictions, confirming the effectiveness of the methods used and the
accuracy of the data. Earth’s topography exhibited sudden and remarkable fluctuations
in the fractal dimensions, Dk and D1, at sea level. These observations supported the
initial hypothesis that the discipline of statistical topography could serve as a viable tool
for deducing the existence of water on a planet. This theory was further strengthened by
the findings for the Moon and Mercury. Both bodies exhibited strikingly similar behaviour,
with negligible deviations. The fractal dimensions remained virtually constant over the
entire range of altitudes, underlining the consistency and predictability of their topographic
nature. Mars, on the other hand, showed some changes at higher altitudes, particularly
above 3000 metres. This observation is most likely due to its pronounced hemispheric
dichotomy. However, there was no clear evidence of a water level, which leaves room
for further investigation. While the absence of ancient water on Mars remains an open
question, the results of this study provide strong evidence that the hemispheric dichotomy
of Mars is not a consequence of ancient oceans.

This thesis lays the groundwork for future work in this area. The methods and results
presented here could be further refined and extended by incorporating more advanced
algorithms. Such improvements would not only increase efficiency, but also minimise
potential finite-size effects, leading to even more robust and reliable results.

33

6. Acknowledgments

The author is grateful to his supervisor Jaan Kalda for guiding and helping him during the
process. The author also aknowledges the help of ChatGPT for writing code used in the
thesis. ChatGPT and DeepL Write were also used for spelling and language corrections.

34

Bibliography

[1] Kevin P Hand et al. “Astrobiology and the potential for life on Europa”. In: Europa
(2009), pp. 589–629.

[2] John R Spencer and Francis Nimmo. “Enceladus: An active ice world in the Saturn
system”. In: Annual Review of Earth and Planetary Sciences 41 (2013), pp. 693–
717.

[3] M Lee Allison and Stephen M Clifford. “Ice-covered water volcanism on Ganymede”.
In: Journal of Geophysical Research: Solid Earth 92.B8 (1987), pp. 7865–7876.

[4] James B Pollack et al. “The case for a wet, warm climate on early Mars”. In: Icarus
71.2 (1987), pp. 203–224.

[5] Alberto G Fairén. “A cold and wet Mars”. In: Icarus 208.1 (2010), pp. 165–175.

[6] John E Brandenburg. “The paleo-ocean of mars”. In: Mars: Evolution of its Climate
and Atmosphere. Vol. 599. 1986, p. 6.

[7] Abbas Ali Saberi. “Evidence for an ancient sea level on Mars”. In: The Astrophysical
Journal Letters 896.2 (2020), p. L25.

[8] Benoit B Mandelbrot and Benoit B Mandelbrot. The fractal geometry of nature. Vol. 1.
WH freeman New York, 1982.

[9] Kenneth Falconer. Fractal geometry: mathematical foundations and applications.
John Wiley & Sons, 2004.

[10] Michael B Isichenko. “Percolation, statistical topography, and transport in random
media”. In: Reviews of modern physics 64.4 (1992), pp. 961–1043.

[11] Jens Feder. Fractals. Springer Science & Business Media, 2013.

[12] Michael B Isichenko and Jaan Kalda. “Statistical topography. I. Fractal dimension
of coastlines and number-area rule for islands”. In: Journal of Nonlinear Science 1
(1991), pp. 255–277.

[13] Srinivasa B Ramisetti et al. “The autocorrelation function for island areas on self-
affine surfaces”. In: Journal of Physics: Condensed Matter 23.21 (2011), p. 215004.

[14] Jaan Kalda. “Statistical topography of rough surfaces:“Oceanic coastlines” as gener-
alizations of percolation clusters”. In: Europhysics Letters 84.4 (2008), p. 46003.

[15] Zeev Olami and Reuven Zeitak. “Scaling of island distributions, percolation, and
criticality in contour cuts through wrinkled surfaces”. In: Physical review letters 76.2
(1996), pp. 247–250.

35

[16] MA Rajabpour and SM Vaez Allaei. “Scaling relations for contour lines of rough
surfaces”. In: Physical Review E 80.1 (2009), p. 011115.

[17] Jané Kondev, Christopher L Henley, and David G Salinas. “Nonlinear measures
for characterizing rough surface morphologies”. In: Physical Review E 61.1 (2000),
pp. 104–125.

[18] Indrek Mandre and Jaan Kalda. “Monte-Carlo study of scaling exponents of rough
surfaces and correlated percolation”. In: The European Physical Journal B 83 (2011),
pp. 107–113.

[19] Jaan Kalda. “Gradient-limited surfaces: Formation of geological landscapes”. In:
Physical review letters 90.11 (2003), p. 118501.

[20] Astrogeology Science Center. Mars MGS MOLA Global Color Shaded Relief 463m
v1. USGS Astrogeology Science Center, Goddard Space Flight Center, NASA.
Modified on 3 February 2020. Added to Astropedia on 10 February 2014. 2020.

[21] D. E. Smith et al. Mars Global Surveyor Laser Altimeter Mission Experiment Gridded
Data Record. MGS-M-MOLA-5-MEGDR-L3-V1.0, NASA Planetary Data System.
2003. DOI: 10.17189/1519460.

[22] K. Becker, M. Robinson, and F. Pruesker. MESSENGER MDIS DEM V1.0. NASA
Planetary Data System. 2015. DOI: 10.17189/1520282.

[23] NOAA National Geophysical Data Center. ETOPO1 1 Arc-Minute Global Relief
Model. Accessed: 2023-04-14. 2009.

[24] C. Amante and B. W. Eakins. ETOPO1 1 Arc-Minute Global Relief Model: Proce-
dures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-
24. Accessed: 2023-04-14. National Geophysical Data Center, NOAA, 2009. DOI:
10.7289/V5C8276M.

[25] Japan Aerospace Exploration Agency (JAXA), National Institute of Advanced Indus-
trial Science, and Technology (AIST). KAGUYA (SELENE) Lunar Radar Altimeter
(LALT) Derived Data. 2009.

[26] Benoit B Mandelbrot and John W Van Ness. “Fractional Brownian motions, fractional
noises and applications”. In: SIAM review 10.4 (1968), pp. 422–437.

[27] Ton Dieker. “Simulation of fractional Brownian motion”. PhD thesis. Masters Thesis,
Department of Mathematical Sciences, University of Twente . . ., 2004.

[28] Peter F Craigmile. “Simulating a class of stationary Gaussian processes using the
Davies–Harte algorithm, with application to long memory processes”. In: Journal of
Time Series Analysis 24.5 (2003), pp. 505–511.

[29] Jaan Kalda. “Description of random Gaussian surfaces by a four-vertex model”. In:
Physical Review E 64.2 (2001), p. 020101.

[30] Marina P Cipolletti et al. “Superresolution border segmentation and measurement in
remote sensing images”. In: Computers & Geosciences 40 (2012), pp. 87–96.

36

https://doi.org/10.17189/1519460
https://doi.org/10.17189/1520282
https://doi.org/10.7289/V5C8276M

[31] Bart Braden. “The surveyor’s area formula”. In: The College Mathematics Journal
17.4 (1986), pp. 326–337.

[32] Robert B Davies and DS Harte. “Tests for Hurst effect”. In: Biometrika 74.1 (1987),
pp. 95–101.

37

Appendix 1 - Python code for gathering data

impor t os
impor t re
impor t json
impor t math
impor t numpy as np
from fbm impor t FBM
from sc ipy . ndimage impor t zoom
impor t m a t p l o t l i b . pyp lo t as p l t
from sc ipy . s p a t i a l . d is tance impor t c d i s t
from mul t i p rocess ing . pool impor t ThreadPool

Funct ions to read i n the f i l e s

def read_ img_ f i l e (metadata_ f i le , img_ f i l e , v =0) :
w i th open (metadata_ f i le , ’ r ’) as f :

metadata = f . read ()
l i n e s = i n t (re . search (r ’ LINES \ s+=\ s + (\ d +) ’ ,
metadata , re . MULTILINE) . group (1))
l ine_samples = i n t (re . search (r ’ LINE_SAMPLES\ s+=\ s + (\ d +) ’ ,
metadata , re . MULTILINE) . group (1))
shape = (min (l i nes , l ine_samples) , max(l i nes , l ine_samples))
i f v == 1:

shape = (1025 , 1024)
data_type = re . search (r ’SAMPLE_TYPE\ s+=\ s + (\w+) ’ ,
metadata) . group (1)
i f data_type == ’MSB_INTEGER ’ :

dtype = ’ > i2 ’
e l i f data_type == ’MSB_UNSIGNED_INTEGER ’ :

dtype = ’ >u2 ’
e l i f data_type == ’LSB_INTEGER ’ :

dtype = ’ < i2 ’
e l i f data_type == ’LSB_UNSIGNED_INTEGER ’ :

dtype = ’ <u2 ’
e l i f data_type == ’FLOAT ’ :

dtype = ’ < f4 ’
e l i f data_type == ’PC_REAL ’ :

dtype = ’ < f4 ’
e lse :

r a i se ValueError (f ’ Unsupported data type : { data_type } ’)
w i th open (img_ f i l e , ’ rb ’) as f :

data = np . f r o m f i l e (f , dtype=dtype)
data = data . reshape (shape)

38

r e t u r n data

def res i ze_e leva t i on_da ta (data , target_shape =(720 , 1440)) :
r e s i z e _ f a c t o r = (target_shape [0] / data . shape [0] ,
target_shape [1] / data . shape [1])
res ized_data = zoom(data , r es i ze_ fac to r , order =0)

r e t u r n res ized_data

def read_hdr (h d r _ f i l e) :
w i th open (h d r _ f i l e , ’ r ’) as f :

metadata = f . read ()
nrows = i n t (re . search (r ’NROWS\ s + (\ d +) ’ , metadata) . group (1))
ncols = i n t (re . search (r ’NCOLS\ s + (\ d +) ’ , metadata) . group (1))

r e t u r n nrows , ncols

def read_etopo1_bin (h d r _ f i l e , b i n _ f i l e) :
nrows , ncols = read_hdr (h d r _ f i l e)
shape = (nrows , ncols)
w i th open (b i n _ f i l e , ’ rb ’) as f :

data = np . f r o m f i l e (f , dtype=np . i n t 16)
data = data . reshape (shape)

r e t u r n data

Funct ions f o r ga ther ing data

c lass Square () :
A = [0 , 0]
B = [0 , 0]
C = [0 , 0]
D = [0 , 0]
A_data = 0.0
B_data = 0.0
C_data = 0.0
D_data = 0.0

def GetCaseId (s e l f , t h resho ld) :
caseId = 0
i f (s e l f . A_data >= th resho ld) :

caseId |= 1
i f (s e l f . B_data >= th resho ld) :

caseId |= 2

39

i f (s e l f . C_data >= th resho ld) :
caseId |= 4

i f (s e l f . D_data >= th resho ld) :
caseId |= 8

i f caseId i n (5 , 10) :
i f caseId == 10:

i f (i n t (s e l f . A_data)+ i n t (s e l f . B_data)+ i n t (s e l f . C_data)
+ i n t (s e l f . D_data)) / 4 . 0 >= th resho ld :

pass
e lse :

caseId = 5
e l i f caseId == 5:

i f (i n t (s e l f . A_data)+ i n t (s e l f . B_data)+ i n t (s e l f . C_data)
+ i n t (s e l f . D_data)) / 4 . 0 >= th resho ld :

pass
e lse :

caseId = 10
r e t u r n caseId

def GetLines (s e l f , Threshold) :
l i n e s = []
caseId = s e l f . GetCaseId (Threshold)

i f caseId i n (0 , 15) :
r e t u r n []

i f caseId i n (1 , 14 , 10) :
pX = (s e l f .A [0] + s e l f .B [0]) / 2
pY = s e l f .B [1]
qX = s e l f .D[0]
qY = (s e l f .A [1] + s e l f .D [1]) / 2
l i n e = (pX , pY , qX , qY)
l i n e s . append (l i n e)

i f caseId i n (2 , 13 , 5) :
pX = (s e l f .A [0] + s e l f .B [0]) / 2
pY = s e l f .A [1]
qX = s e l f .C[0]
qY = (s e l f .A [1] + s e l f .D [1]) / 2
l i n e = (pX , pY , qX , qY)
l i n e s . append (l i n e)

i f caseId i n (3 , 12) :
pX = s e l f .A [0]
pY = (s e l f .A [1] + s e l f .D [1]) / 2
qX = s e l f .C[0]

40

qY = (s e l f .B [1] + s e l f .C [1]) / 2
l i n e = (pX , pY , qX , qY)
l i n e s . append (l i n e)

i f caseId i n (4 , 11 , 10) :
pX = (s e l f .C[0] + s e l f .D [0]) / 2
pY = s e l f .D[1]
qX = s e l f .B [0]
qY = (s e l f .B [1] + s e l f .C [1]) / 2
l i n e = (pX , pY , qX , qY)
l i n e s . append (l i n e)

e l i f caseId i n (6 , 9) :
pX = (s e l f .A [0] + s e l f .B [0]) / 2
pY = s e l f .A [1]
qX = (s e l f .C[0] + s e l f .D [0]) / 2
qY = s e l f .C[1]
l i n e = (pX , pY , qX , qY)
l i n e s . append (l i n e)

e l i f caseId i n (7 , 8 , 5) :
pX = (s e l f .C[0] + s e l f .D [0]) / 2
pY = s e l f .C[1]
qX = s e l f .A [0]
qY = (s e l f .A [1] + s e l f .D [1]) / 2
l i n e = (pX , pY , qX , qY)
l i n e s . append (l i n e)

r e t u r n l i n e s

def process_square (args) :
j , i , Data , x , y , th resho ld = args

a = Data [j + 1 , i]
b = Data [j + 1 , i + 1]
c = Data [j , i + 1]
d = Data [j , i]
A = [x [i] , y [j + 1]]
B = [x [i + 1] , y [j + 1]]
C = [x [i + 1] , y [j]]
D = [x [i] , y [j]]

square = Square ()
square . A_data = a
square . B_data = b
square . C_data = c
square . D_data = d

41

square .A = A
square .B = B
square .C = C
square .D = D

r e t u r n square . GetLines (th resho ld)

def marching_square (Data , th resho ld) :
x = [i f o r i i n range (len (Data [0]))]
y = [i f o r i i n range (len (Data))]

Height = len (Data)
Width = len (Data [1])

squares = np . f u l l ((Height − 1 , Width − 1) , Square ())
sqHeight = squares . shape [0]
sqWidth = squares . shape [1]

args = [(j , i , Data , x , y , th resho ld)
f o r j i n range (sqHeight) f o r i i n range (sqWidth)]
w i th ThreadPool () as pool :

r e s u l t s = pool .map(process_square , args)

l i n e s L i s t = [l i n e f o r l i n e s i n r e s u l t s f o r l i n e i n l i n e s]

r e t u r n [l i n e s L i s t]

def group_contour_ l ines (l i n e s) :
connect ions = { }
f o r l i n e i n l i n e s :

p1 , p2 = l i n e [0 : 2] , l i n e [2 : 4]
i f p1 i n connect ions :

connect ions [p1] . append (p2)
e lse :

connect ions [p1] = [p2]

i f p2 i n connect ions :
connect ions [p2] . append (p1)

e lse :
connect ions [p2] = [p1]

contours = []
wh i le connect ions :

s t a r t _ p o i n t = l i s t (connect ions . keys ()) [0]
contour = [s t a r t _ p o i n t]

42

c u r r e n t _ p o i n t = s t a r t _ p o i n t

wh i le True :
i f c u r r e n t _ p o i n t not i n connect ions :

break

nex t_po in ts = connect ions [c u r r e n t _ p o i n t]

i f len (nex t_po in ts) != 2 :
break

i f len (contour) > 1 :
nex t_po in t = nex t_po in ts [0]
i f nex t_po in ts [0] != contour [−2] e lse nex t_po in ts [1]

e lse :
nex t_po in t = nex t_po in ts [0]

i f nex t_po in t == s t a r t _ p o i n t :
contours . append (contour)
break

contour . append (nex t_po in t)
c u r r e n t _ p o i n t = nex t_po in t

f o r po in t i n contour :
connect ions . pop (po in t , None)

r e t u r n contours

def polygon_area (v e r t i c e s) :
ver t i ces_copy = v e r t i c e s . copy ()
n = len (ver t i ces_copy)
area = 0.0
f o r i i n range (n) :

j = (i + 1) % n
area += ver t i ces_copy [i] [0] * ver t i ces_copy [j] [1]
− ver t i ces_copy [j] [0] * ver t i ces_copy [i] [1]

r e t u r n abs (area) / 2.0

def polygon_diameter (po in t s) :
po in t s = np . ar ray (po in t s)
d is tances = c d i s t (po in ts , po in t s)
i , j = np . unrave l_ index (d is tances . argmax () , d is tances . shape)
r e t u r n round (d is tances [i , j] , 2)

43

def Kn (punk t id) :

s t a r t _ p o i n t = (punk t id [0] [0] , punk t id [0] [1]) # (x , y)
K_points = [2 * * i f o r i i n range (7)]
new_star t = [s t a r t _ p o i n t f o r k i n range (len (K_points))]
remainder = [0 f o r i i n range (len (K_points))]
kogu_pikkused = [0 f o r i i n range (len (K_points))]

f o r j , i i n enumerate (punk t id) :
f o r l , k i n enumerate (K_points) :

dx = i [0] − new_star t [l] [0]
dy = i [1] − new_star t [l] [1]
K = math . s q r t (dx **2 + dy * * 2)
i f K>=k :

new_star t [l] = (i [0] , i [1])
kogu_pikkused [l] += K

f o r n , m i n enumerate (new_star t) :
dx = m[0] − s t a r t _ p o i n t [0]
dy = m[1] − s t a r t _ p o i n t [1]
K = math . s q r t (dx **2 + dy * * 2)
remainder [n] = K
kogu_pikkused [n] += remainder [n]

kogu_pikkused_dict = { ’ l_ ’+ s t r (l) : n f o r l , n i n
z ip (K_points , kogu_pikkused) }

r e t u r n kogu_pikkused_dict

def process_data (grouped) :
kontuur = []
kon tuu r id = []
kogu_andmed = { }
K_points = [2 * * i f o r i i n range (7)]

f o r j , i i n enumerate (grouped) :
l _k = Kn(i)
s = polygon_area (i)
d = polygon_diameter (i)
d i c t _ i = { " l " : l_k , " s " : s , " d " : d }
kontuur . append (d i c t _ i)

l_sums = { }
f o r d i n kontuur :

f o r k , v i n d [’ l ’] . i tems () :
i f k not i n l_sums :

44

l_sums [k] = v
e lse :

l_sums [k] += v

new_sums = { k . rep lace (’ l ’ , ’ L ’) : v f o r k , v i n l_sums . i tems () }
kogu_andmed = { "N" : len (grouped) , " L_k " : new_sums}
kon tuu r id . append (kogu_andmed)
kon tuu r id . append (kontuur)

r e t u r n kon tuu r id

Main f u n c t i o n

def process_heights (maatr iks , height_range ,
p r o g r e s s _ f i l e = ’ progress . json ’ , o u t p u t _ f i l e = ’ ou tput . json ’) :

i f os . path . e x i s t s (p r o g r e s s _ f i l e) :
w i th open (p rog ress_ f i l e , ’ r ’) as f :

progress_data = json . load (f)
cu r ren t_he igh t = progress_data . get (’ cu r ren t_he igh t ’ ,
height_range [0])
a l l _ d a t a = progress_data . get (’ a l l _da ta ’ , { })

e lse :
cu r ren t_he igh t = height_range [0]
a l l _ d a t a = { }

he igh ts = [i f o r i i n range (cur ren t_he igh t , * height_range [1 :])]

f o r i i n he igh ts :
l i n e s = marching_square (maatr iks , i) [0]
grouped = group_contour_ l ines (l i n e s)
kontuur= process_data (grouped)

a l l _ d a t a [f " he ight_ { i } "] = kontuur

progress_data = {
’ cu r ren t_he igh t ’ : i + 1 ,
’ a l l _da ta ’ : a l l _ d a t a

}
w i th open (p rog ress_ f i l e , ’w ’) as f :

json . dump(progress_data , f)

w i th open (o u t p u t _ f i l e , ’w ’) as f :
json . dump(a l l _da ta , f)

i f os . path . e x i s t s (p r o g r e s s _ f i l e) :
os . remove (p r o g r e s s _ f i l e)

45

r e t u r n a l l _ d a t a

def t u r n _ i n t o _ f i l e (data , f i le_name) :
j s o n _ s t r = json . dumps(data)
w i th open (f ’ { f i le_name }_DATA. json ’ , ’w ’) as f :

f . w r i t e (j s o n _ s t r)

Reading i n the data

Mars
data_Mars = read_ img_ f i l e (’ Mars_metadata . t x t ’ , ’ megt90n000cb . img ’)

Moon
Moon_image_data = read_ img_ f i l e (" LALT_GGT_MAP_metadata . t x t " ,
"LALT_GGT_MAP. IMG ")
data_Moon_br = Moon_image_data * 1000
data_Moon = res i ze_e leva t i on_da ta (data_Moon_br)
data_Moon = data_Moon . astype (’ in t16 ’)

Mercury
data_Mercury_br = read_ img_ f i l e (’ Mercury_metadata . t x t ’ ,
’MSGR_DEM_USG_SC_I_V02. IMG ’)
data_Mercury = res i ze_e leva t i on_da ta (data_Mercury_br)

Earth
data_Earth_br = read_etopo1_bin (’ Earth_metadata . hdr ’ , ’ Earth_data . bin ’)
data_Earth = res i ze_e leva t i on_da ta (data_Earth_br)

Generat ing the f r a c t i o n a l Brownian (fBm) sur face

n = 2048
x = np . l i nspace (−0.5 , 0 .5 , n)
y = np . l i nspace (−0.5 , 0 .5 , n)
X, Y = np . meshgrid (x , y)
Z = np . ze ros_ l i ke (X)

hurst_parameter = 0.5
leng th = 1
method = ’ dav ieshar te ’

number_of_wave_vectors = 8
angle_increment = np . p i / number_of_wave_vectors

f o r i i n range (number_of_wave_vectors) :
angle = i * angle_increment
wave_vector = np . ar ray ([np . cos (angle) , np . s in (angle)])

46

fbm = FBM(n=n−1 , hu rs t=hurst_parameter , leng th= length ,
method=method) . fbm ()

f o r j i n range (n) :
f o r k i n range (n) :

r = np . ar ray ([X [j , k] , Y [j , k]])
p r o j e c t i o n = np . dot (wave_vector , r)
p ro jec t ion_norma l i zed = (p r o j e c t i o n + 0 .5) / np . s q r t (2)
index = i n t (p ro jec t ion_norma l i zed * (n − 1))
index = np . c l i p (index , 0 , n − 2)
weight = pro jec t ion_norma l i zed * (n − 1) − index
Z [j , k] += (1 − weight) * fbm [index]
+ weight * fbm [index + 1]

data_FBM = (Z*1000) . astype (i n t)

Generat ing r e s u l t s
Data = [data_FBM , data_Mars , data_Moon , data_Mercury , data_Earth]
names = [’FBM’ , ’ Mars ’ , ’Moon ’ , ’ Mercury ’ , ’ Earth ’]

f o r i , j i n z ip (Data , names) :
height_range = [i n t (MAATRIKS. min ()) , i n t (MAATRIKS.max ()) , 10]
i f j == ’FBM’ :

height_range = [i n t (MAATRIKS. min ()) , i n t (MAATRIKS.max ()) , 100]
r e s u l t s = process_heights (i , height_range)
t u r n _ i n t o _ f i l e (r es u l t s , j)

47

Appendix 2 - Python code for analysing data

impor t json
impor t math
impor t numpy as np
impor t m a t p l o t l i b . pyp lo t as p l t

Funct ion f o r reading i n data

def read_data (f i le_name) :
w i th open (f ’ { f i le_name }_DATA. json ’ , ’ r ’) as f :

j s o n _ s t r = f . read ()
data = json . loads (j s o n _ s t r)

r e t u r n data

Reading i n the data

FBM_data = read_data (’FBM’)
Mars_data = read_data (’MARS’)
Moon_data = read_data (’MOON’)
Earth_data = read_data (’EARTH’)
Mercury_data = read_data (’MERCURY’)

Data = [FBM_data , Mars_data , Moon_data , Earth_data , Mercury_data]
dataset_names = [’ fBm ’ , ’ Mars ’ , ’Moon ’ , ’ Earth ’ , ’ Mercury ’]

Funct ions f o r g e t t i n g a l l the d i f f e r e n t v a r i a b l es from the data

def Get_data (data) :
he igh ts = [i n t (i [7 :]) f o r i i n data]
N = [data [i] [0] [’ N ’] f o r i i n data]
L_k = [data [i] [0] [’ L_k ’] f o r i i n data]

S = [sum(j [’ s ’] f o r j i n data [i] [1]) f o r i i n data]
D = [sum(j [’ d ’] f o r j i n data [i] [1]) f o r i i n data]

keys = l i s t (L_k [0] . keys ())
L = { key : [j [key] f o r j i n L_k] f o r key i n keys }

r e t u r n N, heights , S, D, L

def ca lcu la te_dk (L) :

48

new_keys = [key . rep lace (’ L ’ , ’ l ’) f o r key i n L . keys ()]
L_keys = l i s t (L . keys ())

dd = [
[(math . log (va l1 / va l2) / math . log (2)) i f
va l2 != 0 else 0 f o r val1 , va l2 i n
z ip (L [L_keys [i]] , L [L_keys [i + 1]])]
f o r i i n range (len (L) − 1)

]

dd_d ic t = d i c t (z ip (new_keys , dd))
r e t u r n dd_d ic t

def ca lcu la te_d1 (data) :
D_andmed2 = [

{ f ’ l _ {2 * * (k − 1) } ’ : math . log (sum ([i tem
[’ l ’] [f ’ l _ {2 * * (k − 1) } ’] f o r i tem i n d i c t s 1 i f
i tem [’ l ’] [f ’ l _ {2 * * k } ’] != 0]) / sum ([i tem [’ l ’] [f ’ l _ {2 * * k } ’]
f o r i tem i n d i c t s 1 i f i tem [’ l ’] [f ’ l _ {2 * * k } ’] != 0])) /
math . log (2)
i f sum ([i tem [’ l ’] [f ’ l _ {2 * * (k − 1) } ’] f o r i tem i n d i c t s 1 i f
i tem [’ l ’] [f ’ l _ {2 * * k } ’] != 0]) > 0 else 0 f o r k i n
range (6 , 0 , −1)} f o r d i c t s 1 i n [data [i] [1] f o r i i n data]

]

D_andmed = [{ key : o r i g i n a l _ d i c t [key] f o r key i n
reversed (o r i g i n a l _ d i c t) } f o r o r i g i n a l _ d i c t i n D_andmed2]

keys = l i s t (D_andmed [0] . keys ())
l_new = { key : [d [key] f o r d i n D_andmed] f o r key i n keys }

r e t u r n l_new

def ca l cu la te_k (data , S0=32 , s0=0 , s1 =7) :
he igh ts = l i s t (data . keys ())
ac tua l_p inda lad = [[j [’ s ’] f o r j i n
data [he igh t] [1]] f o r he igh t i n he igh ts]

Sammud = [2 * * o f o r o i n range (s0 , s1)]

N_A = [[len ([x f o r x i n p indalad i f x > samm]) f o r samm i n Sammud]
f o r p inda lad i n ac tua l_p inda lad]

resu l ts_K = [
[0 i f i [j +1] == 0 else math . log (i [j] / i [j +1]) / math . log (2)
f o r j i n range (len (i) − 1)]

49

f o r i i n N_A
]

transposed_K = [[row [i] f o r row i n resu l t s_K] f o r i i n
range (len (resu l t s_K [0]))]
k_keys = [f ’ l _ {2 * * k } ’ f o r k i n range (0 , 6 , 1)]

K_d ic t = d i c t (z ip (k_keys , transposed_K))
r e t u r n K_dic t

def ca l cu la te_∆d_∆k (d1 , dk , k) :
∆d = { key : [(n−1) − 2 * (m−1) f o r m, n , _ i n
z ip (d1 [key] , dk [key] , k [key])] f o r key i n d1 . keys () }
∆dp = { key : [−1 * ((m−1) − (n −1) /2 − 0.064 * (n−1) * (2 − n))
f o r m, n , _ i n z ip (d1 [key] , dk [key] , k [key])]

f o r key i n d1 . keys () }
∆k = { l − n /2 f o r _ , n , l i n z ip (d1 [key] , dk [key] , k [key])]
f o r key i n d1 . keys () }

r e t u r n ∆d , ∆dp , ∆k

Get t ing the v a r i a b l e s

def c a l c u l a t e _ v a r i a b l e s (data) :
N, h , S, D, L = Get_data (data)
dk , d1 , k = ca lcu la te_dk (L) , ca lcu la te_d1 (data) , ca l cu la te_k (data)
∆d , ∆dp , ∆k = ca l cu la te_∆d_∆k (d1 , dk , k)

r e t u r n N, h , S, D, L , d1 , dk , k , ∆d , ∆dp , ∆k

r e s u l t s = { }
f o r name, data i n z ip (dataset_names , Data) :

v a r i a b l e s = c a l c u l a t e _ v a r i a b l e s (data)
variable_names = [’N’ , ’ h ’ , ’S ’ , ’D’ , ’ L ’ , ’ d1 ’ , ’ dk ’ ,
’ k ’ , ’∆d ’ , ’∆dp ’ , ’∆k ’]
r e s u l t s [name] = { v a r i a b l e : value f o r va r iab le , value i n
z ip (variable_names , va r i a b l e s) }

P l o t t i n g

def add_ labe l_ to_p lo t (labe l , ax=None , x =0.92 , y =0 .95) :
Adds l a b e l to p l o t a t the top r i g h t

i f ax i s None :
ax = p l t . gca ()

ax . annotate (
labe l ,
xy =(x , y) ,
xycoords = ’ axes f r a c t i o n ’ ,

50

f o n t s i z e =40 ,
ha= ’ r i g h t ’ ,
va = ’ top ’ ,
bbox= d i c t (boxs ty le = ’ round , pad =0.3 ’ ,
edgecolor = ’none ’ , f aceco lo r = ’ a l i ceb lue ’)

)

def p l o t (name, y , ss , window_size = 2 , p=0 , t t =1) :
var_y = r e s u l t s [name] [y]
h = r e s u l t s [name] [’ h ’]
s t a r t _ i n d e x = h . index (ss [0])
end_index = h . index (ss [1])
h_subset = h [s t a r t _ i n d e x : end_index + 1]
p l t . f i g u r e (f i g s i z e =(30 , 14))
t =0
i f i s i n s t a n c e (var_y , d i c t) :

i f p == 1:
key = next (i t e r (var_y))
var_y_subset = var_y [key] [s t a r t _ i n d e x : end_index + 1]
p l t . p l o t (h_subset , var_y_subset , l a b e l =key)

e lse :
t +=1
f o r key , values i n var_y . i tems () :

var_y_subset = values [s t a r t _ i n d e x : end_index + 1]
i f t > 1 :

averaged_y_data = ro l l i ng_ave rage (var_y_subset ,
window_size * 2 * * (t))
m idd le_o f f se t = window_size * 2 * * (t) / / 2
averaged_x_data = h_subset [m idd le_o f f se t :
−m idd le_o f f se t]
p l t . p l o t (averaged_x_data , averaged_y_data ,
l a b e l =key)

e lse :
p l t . p l o t (h_subset , var_y_subset , l a b e l =key)

p l t . legend (f o n t s i z e =30 , loc = ’ upper l e f t ’)
e lse :

var_y_subset = var_y [s t a r t _ i n d e x : end_index + 1]
p l t . p l o t (h_subset , var_y_subset)

p l t . x l a b e l (’ Height [m] ’ , f o n t s i z e =60)
i f y == ’ dk ’ :

p l t . y l a b e l (’ D$_{ k } $−1 ’ , f o n t s i z e =60)
e l i f y == ’ d1 ’ :

p l t . y l a b e l (’ D$_ { 1 } $−1 ’ , f o n t s i z e =60)
e l i f y == ’∆d ’ :

p l t . y l a b e l (’∆D’ , f o n t s i z e =60)
e l i f y == ’∆dp ’ :

51

p l t . y l a b e l (’∆D$_{ c } $ ’ , f o n t s i z e =60)
e lse :

p l t . y l a b e l (y , f o n t s i z e =60)
p l t . x t i c k s (f o n t s i z e =50)
p l t . y t i c k s (f o n t s i z e =50)
i f y == ’ dk ’ :

p l t . y l im (1 , 2)
i f y == ’ d1 ’ :

p l t . y l im (1 , 1 .4)
i f y == ’∆d ’ :

p l t . y l im (−0.2 , 0 .4)
i f y == ’∆dp ’ :

p l t . y l im (−0.1 , 0 .2)
i f y == ’∆k ’ :

p l t . y l im (−0.5 , 0 .5)

add_ labe l_ to_p lo t (name)
output_ f i lename = f " { name} _ { y } . pdf "
p l t . save f ig (output_f i lename , dp i =300 , bbox_inches = ’ t i g h t ’)
p l t . c lose ()

def cut (data , l =1000):
F i r s t _ i n d e x = None
Last_ index = None
f o r i i n data :

i f data [i] [0] [’ L_k ’] [’ L_1 ’] > l :
i f F i r s t _ i n d e x == None :

F i r s t _ i n d e x = i n t (i [7 :])
Last_ index = i n t (i [7 :])

r e t u r n (F i r s t_ index , Last_ index)

def ro l l i ng_ave rage (data , window_size) :
averaged_data = []
f o r i i n range (window_size / / 2 , len (data) −(window_size / / 2)) :

average = np . mean(data [i −(window_size / / 2) :
i +(window_size / / 2) + 1])
averaged_data . append (average)

r e t u r n averaged_data

def average (data , window_size) :
r e t u r n [sum(data [i : i +window_size]) / window_size
f o r i i n range (0 , len (data) − window_size + 1 , window_size)]

f o r i i n variable_names :
i f i i n (’ h ’ , ’D’ , ’S ’ , ’ L ’ , ’N ’) :

52

cont inue
f o r j , k i n z ip (dataset_names , Data) :

dd = cut (k , l =1200)
p l o t (j , i , dd)

53

	Introduction
	Theoretical background
	Fractals
	Statistical topography
	Brownian and fractional Brownian surfaces
	Correlated percolation
	Geological landscapes
	Ancient Mars

	Methods
	Data sets analysed
	Mars
	Mercury
	Earth
	The Moon
	fBm surface

	Methods used
	Marching squares
	Surveyor's formula

	Results
	Data collection
	Data analysis
	Possible improvements

	Summary
	Acknowledgments
	Bibliography
	Appendices
	Appendix 1 - Python code for gathering data
	Appendix 2 - Python code for analysing data

