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SUMMARY

This dissertation applies dynamic tracer-based MFA to study the recycling Wuxes of
energy metabolites in the mammalian heart and the TCA cycle Wux of Saccharomyces

uvarum. Compartmentation of metabolites in these systems complicates their analysis, so
methods are discussed to reveal compartmentation using dynamic isotopologue simulation
coupled with isotopic transient data measured in biological systems operating at pseudo
metabolic steady state. A routine was developed to compose dynamic isotopologue models
from systems of chemical transformations and, in the case of Saccharomyces uvarum, opti-
mization techniques were applied to Vnd Wux distributions that best Vt with measurements
of the isotopic labeling state. To make the optimization process more eXcient for applica-
tion in large metabolic networks, a sparse symbolic Gauss-Jordan elimination routine was
developed to express all steady state metabolic solutions in terms of a Wux coordinate sys-
tem suggested by the analyst. Properties of Wux coordinate systems were found to be useful
in studying systems of chemical transformations in general and genome-scale metabolic
networks in particular. Dynamic isotopologue modeling was applied to study the recycling
Wuxes of energy metabolites in the mammalian heart. A sensitivity analysis of the dynamic
isotopologue model revealed that the Wuxes found using 18O–assisted 31P–NMR, 31P–NMR

saturation transfer, and 31P–NMR inversion and saturation transfer all predict a very sim-
ilar 18O labeling state of key metabolites, in contrast to statements in the literature. This
modeling work shows that the 18O–assisted 31P–NMR method provides a measure of the
combined net and exchange Wuxes in the creatine kinase and adenylate kinase shuttles, and
not net Wux as previously stated, thus resolving a long-standing debate in the heart en-
ergetics community. Overall, this doctoral work highlights the importance of considering
compartmentation while analyzing the metabolic Wuxes within eukaryotic systems, and
provides techniques to reveal previously unknown manifestations of compartmental biol-
ogy using dynamic isotopologue modeling.
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KOK KUVÕT E

Käesolevas väitekirjas analüüsitakse rakusiseste energiakandjate ringlust imetaja süda-
mes ja pärmseene Krebsi tsüklit. Mõlemal juhul rakendatakse dünaamilist isotoopmär-

gisel põhinevat ainevahetusvoo analüüsi meetodit. Nimetatud süsteemide uurimise muu-
dab keerukaks keskkonna heterogeensusest tulenev ebaühtlane jaotumine rakusiseses ru-
umis (eng metabolite compartmentation), mille täpne struktuur ei ole teada. Väitekirjas
koostatakse meetod nimetatud kompartmentatsioon uurimiseks. Saccharomyces uvarum’i kor-
ral rakendatakse optimeerimismeetodit, et leida parim reaktsioonikiiruste jaotus, metaboli-
itides mis vastab mõõdetavale isotoopide jaotusele. Optimeerimisprotsessi tõhususe tõst-
miseks suurte ainevahetusvõrgustike korral arendatakse välja analüütiline Gauss-Jordani
ellimineerimismeetod, mis võimaldab kõiki metaboolseid statsionaarseid olekuid esitada
kompaktsel kujul uurija poolt määratud üldises nn reaktsioonikiiruste koordinaatsüsteemis.
Selline koordinaatsüsteem on kasulik keemiliste reaktsioonide uurimisel ja eelkõige suurte
ainevahetusvõrgustike kirjeldamisel ja analüüsimisel. Dünaamilist isotopoloogide model-
leerimist (DIM) rakendatakse energiakandjate ringluse modelleerimiseks imetaja südames.
DIM analüüs näitab, et reaktsioonikiirused, mis saadakse kahel erineval viisil - 18O isotoobi
ja tuumamagnetresonantsi meetoditega - ennustavad uuritavates metaboliitides väga sar-
nast isotoobi 18O märgistuse jaotust. See näitab, et nimetatud kahe meetodi tulemused
on kooskõlas, vastupidiselt teadusajakirjades varem esinenud arvamustele. Kokkuvõtlikult
öeldes juhib käesolev väitekiri tähelepanu metaboliitide kompartmentatsioonile olulisusele
reaktsioonikiiruste analüüsimisel eukarüootsetes süsteemides ja annab DIM-l põhineva mee-
todi metaboliitide heterogeensuse struktuursete ja funktsionaalsete aspektide uurimiseks.

viii



L I S T OF P U BL ICAT IONS

I Schryer DW, Peterson P, Paalme T, Vendelin M. Bidirectionality and compartmen-
tation of metabolic Wuxes are revealed in the dynamics of isotopomer networks.
International Journal of Molecular Sciences, 10(4):1697-718, (2009)

II Illaste A, Kalda M, Schryer DW, Sepp M. Life of mice - development of cardiac
energetics. Journal of Physiology, 588(Pt 23):4617-9, (2010)

III Schryer DW, Vendelin M, Peterson P. Symbolic Wux analysis for genome-scale
metabolic networks. BMC Systems Biology, 5(1):81, (2011)

IV Schryer DW, Peterson P, Illaste A, Vendelin M. Sensitivity analysis of Wux de-
termination in heart by 18O labeled water (H182 O)–provided labeling using a
dynamic isotopologue model of energy transfer pathways Submitted, (2012)

summary of author’s contribution

I In Publication I, DWS composed the metabolic model, simulated the isotopologue dy-
namics, performed the optimization, wrote the text, prepared the Vgures and manu-
script.

II In Publication II, all authors contributed to the text and literature review with the
Vrst author credited with having contributed more of his time during manuscript
preparation.

III DWS and PP developed the GJE technique with DWS providing chemical insight and
PP providing mathematical insight. DWS composed the example yeast network and
analyzed constraints. All authors contributed to the text and approved the content
of the Vnal manuscript.

IV In Publication IV, DWS composed the metabolic model, simulated the isotopologue
dynamics, performed the sensitivity analysis, prepared the Vgures, wrote the bulk of
the text, and prepared the manuscript.

ix



L I S T OF P RE S EN TAT IONS

I Schryer DW, Peterson P, Paalme T, Vendelin M. Isotopomeric 13C labeling of
amino acids reveal compartmentation in Saccharomyces uvarum. Biophysical Jour-
nal, 96(3):308a, (2009)

II Illaste A, Schryer DW, Birkedal R, Peterson P, Vendelin M. Determination of re-
gional diUusion coeXcients of Wuorescent ATP in rat cardiomyocytes. Biophys-
ical Journal, 98(3):749a, (2010)

III Schryer DW, Peterson P, Illaste A, Vendelin M. Mathematical model of oxygen
labeling to study heart energy transfer. Biophysical Journal, 102(3):141a, (2012)

x



P RE FACE

The work presented in this dissertationwas carried out in the Laboratory of Systems
Biology in the Institute of Cybernetics at Tallinn University of Technology. The Labo-

ratory of Systems Biology works within the Centre for Nonlinear Studies (CENS). Financial
support from the Wellcome Trust and the Archimedes Foundation is appreciated.

The original goal of this work was to extract information about the central metabolic
Wuxes of a laboratory yeast strain from dynamic isotope labeling data using dynamic tracer-
based metabolic flux analysis (MFA). This work was to be performed in collaboration with
another research institution. A metabolite quenching apparatus was constructed and iso-
tope labeling experiments were to be performed, however, this collaboration was halted due
to funding limitations. Without the option to perform the planned isotope labeling experi-
ments this work was split into a number of related studies and took on a more theoretical
bent with the goal of applying dynamic tracer-based MFA techniques in metabolic systems
that contain both well characterized and unknown manifestations of metabolic compart-
mentation. Four publications resulted from this doctoral work, all with the common theme
of Wux analysis in compartmentalized systems. Two of these papers use dynamic isotopo-
logue modeling.

The work started under the original experimental plan was wrapped up in Publication
I. However, this work exposed a signiVcant drawback of numerically stable methods of
Vnding and expressing all steady state Wux solutions of a large system of chemical transfor-
mations. Publication III provides a very general method to express all steady state solutions
using a Wux coordinate system whose desired components are speciVed by the user. The
potential use of Wux coordinate systems to reveal canonical patterns in genome scale meta-
bolic systems has yet to be explored.

Because the Laboratory of Systems Biology is focused on heart metabolism, the remain-
der of my studies concerned the recycling Wuxes of energy metabolites in heart. This work
is summarized in Publication II and Publication IV, with the latter demonstrating the rele-
vance of dynamic isotopologue modeling in the interpretation of isotopic labeling data.

acknowledgments

I approached Marko Vendelin to co-supervise my doctoral work with the idea of applying
dynamic isotopologue modeling to a laboratory strain of yeast. Marko has an uncanny
ability to immediately understand how to solve most numerical problems, and the problem
of simulating isotopologue dynamics was particularly easy because he had applied the
technique as an undergraduate student and did not consider it diXcult then. He accepted
the role of being my main supervisor and never wavered in his support of my work at any
of the numerous bumpy points along this research path. No student interested in learning
the art of numerical simulation or cardiac mechanoenergetics could ask for a more talented
and supportive supervisor.

xi



preface

I met Pearu Peterson after he joined the Laboratory of Systems Biology two years into
my doctoral studies. Pearu is a truly gifted analytical scientist who is simultaneously mod-
est, patient, and generous with his time; an exception among the exceptional. His patient
guidance has forever changed the way I think. No student interested in learning the art of
applied mathematics or writing eXcient numerical routines could ask for a more talented
and supportive supervisor.

Unfortunately, I did not get a chance to work as closely with my other co-supervisor
Toomas Paalme. It would have been a pleasure to carry out isotope labeling experiments
with Toomas, and I hope future funding opportunities will rectify this loss; There is no other
experimental scientist in Estonia better poised and passionate about performing dynamic
isotope labeling experiments. Toomas has an extensive knowledge of yeast physiology and
metabolism, and has developed specialized fermentation and analytical methods that are
ideal for dynamic isotope labeling experiments.

It was a pleasure being part of the Vrst wave of doctoral students in the Laboratory of
Systems Biology. We learned much together in the Vrst year and without the support of
Mervi, Mari, and Ardo the diXcult moments might have been less successful. The next
few waves of doctoral students have, without exception, been equally helpful and friendly.
Many thanks to Martin, Niina, Natalja, Jelena, Merle, and Päivo.

The most important acknowledgment is saved for my wonderful wife Maris. I would
never have started, Vnished, or enjoyed this work without her support. Even though they
cannot read these words yet, our wonderful children, with their endless joy and enthusiasm,
have made the dark days in Estonia bright.

I was fortunate to have worked in a laboratory that strives for academic excellence, and
unfortunate to have worked in an academic system that has the double edged sword of
being grossly underfunded, and grossly ineXcient due to structural fragmentation. The
resources required to carry out dynamic isotope labeling experiments are not currently
available to Estonian researchers despite its unique ability to determine intracellular Wuxes.
From a strategic point of view this is injudicious because knowledge of these Wuxes may be
prerequisite to realizing the promises of genetic improvement; A Veld the Estonian govern-
ment has made considerable investment in.

On rare occasions I sacriVced time I normally spend with my wife and children to pursue
this research. Perhaps a more ambitious schedule would have resulted in more publications,
however, it is my belief that the pursuit of truth is best not rushed. The words of Charles
Mims come to mind: \The world has waited 4.54 billion years for this particular piece of
knowledge. It can wait another week." This wu wei (无为) approach diametrically opposes
the pressure to publish-or-perish, and often results in more purposeful scientiVc communi-
cation. Having adopted this philosophy, partially completed research was saved for future
publication and the content of this dissertation is succinct.

David W. Schryer

xii



ACRONYMS

ADP adenosine-5’-diphosphate, KEGG: C00008
AdK adenylate kinase, EC: 2.7.4.3
ATP adenosine-5’-triphosphate, KEGG: C00002
β-ATP β phosphoryl group in ATP

γ-ATP γ phosphoryl group in ATP

ATPase adenosine triphosphatase, EC: 3.6.1.3
CENS Centre for Nonlinear Studies
Ca 2+ calcium, KEGG: C00076
13C Stable isotope of carbon with seven neutrons.
CO2 carbon dioxide, KEGG: C00011
CK creatine kinase, EC: 2.7.3.2
DNFB 2,4–dinitrofluorobenzene, PubChem: 149192
EET Eastern European Time (Greenwich Mean Time + 2 hours)
EMU elementary metabolite unit
FBA flux balance analysis
GC gas chromatography
GJE Gauss–Jordan elimination
IMS mitochondrial intermembrane space
LC liquid chromatography
MFA metabolic flux analysis
MS mass spectrometer
NMR nuclear magnetic resonance
ODE ordinary diUerential equation
18O Stable isotope of oxygen with ten neutrons.
31P Stable isotope of phosphorus with 16 neutrons.
PCA principal component analysis
PCr phosphocreatine, KEGG: C02305
Pi inorganic phosphate, KEGG: C00009
SVD singular value decomposition
TCA tricarboxylic acid cycle
TUT Tallinn University of Technology
H182 O

18O labeled water

xiii

http://www.genome.jp/dbget-bin/www_bget?C00008
http://www.genome.jp/dbget-bin/www_bget?ec:2.7.4.3
http://www.genome.jp/dbget-bin/www_bget?C00002
http://www.genome.jp/dbget-bin/www_bget?ec:3.6.1.3
http://www.genome.jp/dbget-bin/www_bget?C00076
http://www.genome.jp/dbget-bin/www_bget?C00011
http://www.genome.jp/dbget-bin/www_bget?ec:2.7.3.2
http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=149192
http://www.genome.jp/dbget-bin/www_bget?C02305
http://www.genome.jp/dbget-bin/www_bget?C00009




TH E S I S





1
I N T RODUCT ION

The systems addressed by the science of biology are among the most complex known
to humankind. The majority of biological studies make use of deductive reasoning, and

typically only a very small subset of the complex biological system is scrutinized. In con-
trast, systems biology, is holistic and makes use of inductive reasoning, typically by con-
straining mathematical models with all available data. Because it is well established that
system behaviour is often more than the sum of its parts [1], systems biology models as-
pire to include all relevant complexities to reproduce emergent properties and explore their
causes and mechanisms.

A holistic approach to studying biological systems comes with a number of drawbacks,
not least of which is avoiding overparameterization. One can only gain insight frommodels
that can be suXciently constrained with measured data. Another drawback is the inherent
diXculty in dealing with complexity; Building models of large systems and gathering the
data required to constrain them is a tedious process. Original biological data is disparate
and contains a relatively large amount of uncertainty, and often stochastic models and sta-
tistical tests are required to evaluate the overall uncertainty of model predictions. Further-
more, we are often ignorant of some fundamental connections between model components
which requires an iterative model building/testing/measurement cycle to resolve. This de-
velopment cycle exacerbates all of the previous drawbacks and makes it easier to apply
systems biology techniques on well characterized systems.

Fortunately, a large number of biological studies are devoted to elucidating the function
of a small set of organisms. These model organisms are ideal for the development of systems
biology tools and techniques, and this doctoral work is no exception. This doctoral work has
focused on: (I) the central metabolism of a laboratory strain of yeast, and (II) the energetic
metabolism of the mammalian rat heart.

SpeciVcally, this dissertation is concerned with quantifying the metabolic Wuxes in these
systems. Metabolic Wuxes are rarely directly quantiVable, yet are of fundamental impor-
tance in deVning phenotypes on the cellular level [2], and are ubiquitous in multicellular
organisms (e. g., regulation by cytokines and hormones, and the control of growth factor
receptor glycosylation by glycolytic Wuxes [3]).

A number of techniques have been developed to aid metabolic flux analysis (MFA) with
the most prominent being flux balance analysis (FBA) [4], and isotopic tracer-based MFA.
Tracer-based MFA works by Vnding steady state Wux distributions that best describe mea-
sured labeling states of metabolic isotopologues. Typically, this technique is applied after
an isotopic steady labeling state is reached. For recent reviews on isotopically stationary
tracer-based MFA please refer to [5–8].
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introduction

Dynamic tracer-based MFA is the younger brother of the previous approach and bases its
Wux predictions on information contained in measurements at multiple time points while
the isotopic labeling state is changing with time. These measurements are sometimes sup-
plemented with additional measurements at isotopic steady state. A recent review summa-
rizes all studies that have used the dynamic approach in a single table [9].

At least one study has explored the use of tracer-based stimulus-response experiments
to identify in vivo enzyme kinetics by perturbing the metabolism and tracking the transient
response of the labeling state of intermediate metabolites [10]. The move towards the com-
bined use of kinetic modeling and tracer-based MFA is occurring, however, it is currently
diXcult to apply in practice for a number of reasons:

a. Kinetic models of instationary metabolism require careful consideration to avoid
overparameterization.

b. Many kinetic mechanisms have not been completely characterized, and composing
a system with a large number of estimated components may result in highly unreal-
istic model behaviour.

c. After the tedious procedure of creating a large kinetic scheme, simulation of such
a system requires specialized techniques to be computationally eXcient and avoid
numerical instabilities.

d. It is currently diXcult to measure pool sizes, let alone changes in pool sizes with cur-
rent sampling and measurement techniques [11]. Unknown pool parameters compli-
cate the analysis of stimulus-response experiments.

The use of kinetic mechanisms within MFA is discussed in Publication I and Publication III,
however, all techniques applied in this dissertation assume strict steady metabolism with
stationary metabolic pools.

The implications of assuming stationary metabolism should always be kept in mind
while interpreting original data. A widening body of evidence suggests that phenotypic
heterogeneity [12–18] and temporal compartmentation [18–25] are fundamental properties
of eukaryotic cell metabolism. These phenomena could be the root cause of observed oscil-
lations in eukaryotic gene expression [26–28]. It is not yet clear that the Wux distributions
found using dynamic tracer-based MFA are sensitive to these phenomena. A judicious analy-
sis from the perspective of dynamic isotopologue simulation is saved for future publication.

The goal of dynamic tracer-based MFA is to Vnd steady state Wux distributions that best
describe how isotopologue distributions dynamically change after switching the labeling
state of a substrate being metabolized by the system under study.

1.1 analytical determination of isotopologue distributions

A number of analytical approaches are used to quantify isotopologue distributions: (I)
liquid chromatography (LC) coupled to a mass spectrometer (MS), or tandom MS, (II) gas
chromatography (GC) coupled to a MS, or tandom MS, and (III) nuclear magnetic resonance
(NMR). Due to its non-destructive nature NMR is useful for in vivo dynamic measurements,
however, it has low sensitivity, cannot resolve the labeling state of intermediate metabolites

18



1.2 flux determination using dynamic tracer-based mfa

with small metabolic pools, and has the potential to introduce error in the measurement
of the unlabeled isotopologue as they are found by subtraction from the others [29]. Until
recently, NMR was the only method able to measure positional isotopic labeling, however, a
new approach developed by Rühl et al. uses LC coupled to a tandem MS with an electron col-
lider that allows for the quantiVcation of metabolic fragments [30]. Rühl’s method enables
the sensitive determination of positional isotope enrichment of intermediate metabolites.
The greater sensitivity of MS based techniques allows for the direct quantiVcation of the
labeling distribution of intermediate metabolites, such as free amino acids [31].

1.2 flux determination using dynamic tracer-based mfa

To Vnd steady state Wux distributions using measurements of the isotopic labeling state
during the isotopic transient phase, a kinetic model of the labeling dynamics is required.
Publication IV provides a general method for deriving ordinary diUerential equation (ODE)
mass balances around the isotopologues of all chemicals in a set of chemical transforma-
tions. The result is a set of weakly non-linear ODEs that can be solved using various solvers.
This system of equations can be cast into a cascading series of linear diUerential equa-
tions that are solved sequentially with less computational resources in a shorter period
of time [32]. To reduce the computational eUort even further, the elementary metabolite
unit (EMU) method was developed [33] which reduces the number of balances required by
balancing the isotopologues of metabolite fragments that remain intact across sets of reac-
tions. The metabolic systems considered in this dissertation are small and do not warrant
use of either technique to simulate the isotopologue dynamics more eXciently.

The kinetic model that provides simulated solutions of isotopologue dynamics is solved
within an optimization routine to Vnd a set of thermodynamically feasible [34] kinetic
parameters that provide the closest prediction to the measured isotopologue data.

1.3 main theme : flux determination in compartmentalized systems

One of the most challenging aspects of Vnding feasible steady state metabolic Wux dis-
tributions using dynamic tracer-based MFA is the complication introduced by metabolic
compartmentation. The added compartmental complexity of eukaryotic cells may be one
reason why Escherichia coli, Corynebacterium glutamicum, and Synechocystis sp. have been used
as test organisms to develop dynamic tracer-based MFA techniques [9, 11, 35].

This doctoral work focuses on the use of dynamic tracer-based MFA tech-
niques in metabolic systems that contain both well characterized and un-
known manifestations of metabolic compartmentation.

The remainder of this dissertation discusses the original research presented in the four
publications that resulted from this doctoral work. Chapter 2 discusses Publication I. This
contribution provides methods of revealing compartmentation using information contained
in isotopologue dynamics. Chapter 3 discusses Publication III. The symbolic Gauss–Jordan
elimination (GJE) algorithm developed in this publication is more general than the main
theme of this doctoral work, however, the Wux coordinate representation of metabolic
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introduction

systems has direct implications for the study of complex systems and the optimization
of isotopologue dynamics. Chapter 4 discusses Publication II and Publication IV. Pub-
lication II is a critique of a study on the postnatal development of compartmentalized
energy metabolism in the mouse heart. Although this publication does not use dynamic
tracer-based MFA we recommended that the original data be interpreted using modeling
techniques. Publication IV uses dynamic tracer-based MFA techniques to study the phos-
photransfer Wuxes through the creatine kinase (CK) and adenylate kinase (AdK) shuttles in
healthy normoxic heart.

The underlying theme linking the contributions within these four papers is perhaps not
obvious upon Vrst reading. The most obvious explanation is that each contributes to and
overlaps with diUerent branches of biology that use diUerent diction, grapple with diUerent
problems, and typically have few common followers. This dissertation presents the com-
monalities, such as the diXculties in dealing with compartmentalized biology, and strives
to present this set as a uniVed contribution.

20



2
COMPARTMEN TAT ION I S REV EALED I N
I SOTOPOLOGU E DYNAM IC S

It is well known that compartmentation complicates the application of tracer-based
MFA [7]. Publication I demonstrates that compartmental eUects are revealed in isotopo-

logue dynamics, and goes on to discuss other motivations for adopting dynamic tracer-
based MFA in place of the stationary tracer-based approach.

In brief Publication I: (I) discusses the additional information contained in the isotopic
transient, (II) provides dynamic isotopologue simulations to illustrate how to extract this
additional information from transient isotopic data, and (III) attempts to point the way
towards the future of dynamic metabolic modeling by integrating dynamic tracer-based
MFA with predictive kinetic models.

Wahrheit et al. recently stated that Publication I may be the only publication to date that
discusses the potential of using isotopologue transients to describe compartmentation [36].
Other publications in this dissertation contain short discussions of the manifestations of
compartmentation. Publication III provides a discussion on the manifestations of compart-
mentation and strategies to reveal compartmentation, albeit short; this discussion is contin-
ued within Publication IV.

2.1 additional information contained in the isotopic transient

The transient labeling state is a function of: (I) the net and exchange Wuxes, and (II) the
pool size of all metabolites. A corollary to this is that all additional information contained
in the isotopic transient is convoluted with the dynamic inWuence of metabolic pool sizes;
inaccurate pool measurements complicate the interpretation of isotopic transients.
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compartmentation is revealed in isotopologue dynamics

The following summarizes the additional information that can be obtained using dy-
namic tracer-based MFA:

a. Determining of the size of unknown metabolic pools.

b. The bidirectionality of reactions in a linear pathway can be determined from mea-
surements of the labeling state of the intermediates.

c. Metabolic compartmentation is revealed if the labeling state of a metabolite becomes
enriched more rapidly than a metabolite upstream to the net Wux.

d. Metabolic compartmentation or the presence of a previously unknown reaction is
revealed if the optimal pool size parameters do not match well with measured meta-
bolic pool sizes.

e. In plant systems and autotrophic microorganisms that utilize CO2 as the sole carbon
source, or other mono atomic labeling systems (e. g. H182 O in Publication IV), the
isotopic steady state contains no information. In contrast, kinetic information can
be extracted from measured isotopologue dynamics.

2.2 dynamic isotopologue simulations within publication i

Publication I provides two sets of simulations to illustrate the information that can be ob-
tained using dynamic tracer-based MFA. The Vrst set of simulations illustrate howmetabolic
pool size parameters shift the time scale of the metabolic transient. The second set of sim-
ulations illustrate how the shape of the isotopic transient changes with diUerent isotopic
substrates. The second set of simulations show that more information can be obtained from
isotopic transient data if identical experiments are performed using diUerent isotopic sub-
strates and analyzed together; each substrate reveals information about diUerent parts of
the metabolism.

If the timing and shape of isotopic transients does not match with measured data, the
discrepancy provides clues about metabolic compartmentation. One such case was consid-
ered in Publication I. Looking at Equation 2.1, if the labeling enrichment in metabolite C
becomes enriched faster than metabolite B, this indicates that the experimental data should
be analyzed with a compartmentalized model of B, shown on the right.

A B C A

Bj

�

Bi C (2.1)

However, if B lies on the intersection of two diUerent metabolic pathways and C becomes
enriched faster, it may indicate that these pathways use diUerent pools of B that mix, or
two fully separated pools of B, shown in the middle and right of Equation 2.2 in illo ordine.

�

A

E

�

D

�

B C A Bi C

D Bj E

A Bi C

D Bj E

(2.2)
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2.3 dynamic tracer-based mfa using steady state data

Of course, all three of the cases in Equation 2.2 may contain a non-reacting side pool of B
as in Equation 2.1, and the compartmentalized cases may even contain two such pools.

2.3 dynamic tracer-based mfa using steady state data

The tricarboxylic acid cycle (TCA) cycle Wuxes of Saccharomyces uvarum were obtained in
Publication I by optimizing parameters of a dynamic isotopologue model using absolute
and conditional enrichment measurements of proteinogenic amino acids. This optimization
procedure demonstrated that lack of knowledge regarding metabolic pool sizes does not
make dynamic tracer-basedMFA any less reliable than a steady state model. Both simulation
approaches were seen to provide an equally good Vt to the same steady state data regardless
of the pool parameters.

2.4 summary of publication i

Publication I reviews research from a diverse set of research areas within the biological and
biotechnoligcal sciences. The main purpose of this contribution was to show that adopting
dynamic tracer-basedMFA in place of isotopically stationary approaches provides additional
insight into the compartmentation of metabolic Wuxes; a topic of fundamental interest in
the biological sciences and the main subject of this work.

Dynamic isotopologue simulation is not commonly used to interpret isotopic tracer
movement in large biological systems. For this reason another purpose of this contribu-
tion is to illustrate to non practitioners that the most diXcult task in applying dynamic
tracer-based MFA is our ignorance of the many manifestations of compartmental biology;
technical issues are no longer prohibitive.

Publication I also points towards the potential future marriage of phenomenological MFA

with predictive kinetic modeling. The attempts to combine these approaches have shown
promise, and is predicted to become increasingly important as the gaps in our fundamental
knowledge of in vivo kinetic mechanisms narrow.
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3
USE OF F LUX COORD I NAT E SY ST EMS

An algorithm was developed in Publication III to express all possible steady state so-
lutions of a large set of chemical transformations in terms of a Wux coordinate system.

The Vrst description of a Wux coordinate system is provided by Quek et al. [37]. Publication
III generalizes their deVnition, although, the existence of the contribution by Quek et al.
was unknown until quite recently.

3.1 definition of flux coordinate system

The example network provided in Figure 1 is used to introduce Wux coordinate systems.
The dynamic mass balance of this system is provided in Equation 3.1:



dA
dt

dB
dt

dC
dt

dD
dt

dE
dt


=



−1 0 −1 0 1 −1 0 0

1 −1 −1 −1 0 0 0 0

0 1 0 −1 0 1 0 0

0 0 0 1 0 0 −1 0

0 0 1 0 0 0 1 −1


×



νA→B

νB→C

νA+B→E

νB+C→D

νAin

νA→C

νD→E

νEout


. (3.1)

System boundary

A

B

C D

E

Figure 1 – Small example network to aid in the deVnition and discussion of Wux coordinate
systems. Reactions internal to the system are blue, reactions that transport Wux into and out of
the system are yellow. This open system has eight reactions and Vve metabolites, thus all steady
state Wux solutions are found using three parameters.

Setting the left hand side of Equation 3.1 to zero is equivalent to assuming that the mass
of all metabolites in the system are steady over time. The result is a homogeneous system
of linear equations that when solved, provides all possible steady state Wux solutions. The
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use of flux coordinate systems

solution is the kernel of the stoichiometric matrix. In this example, the kernel is a three di-
mensional linear subspace of an eight dimensional Euclidean space. This linear subspace is
spanned by a set of linearly independent basis vectors (columns of a matrix representation
of the kernel); many possible sets of basis vectors are possible, each a diUerent representa-
tion of the same linear subspace. Steady state Wux solutions are expressed through a linear
combination of the basis vectors.

As described in Publication III, the kernel can be found using various techniques, includ-
ing GJE, and singular value decomposition (SVD). The matrix representation of the kernel in
Equation 3.2 was found using GJE. The columns of the kernel matrix are the basis vectors.
In Equation 3.2, the last three rows of the kernel matrix form an identity matrix where the
rows are the independent Wux variables in the system. Another kernel matrix is obtained
using SVD, and shown in Equation 3.3.

νA→B

νB→C

νA+B→E

νB+C→D

νAin

νA→C

νD→E

νEout


=



−1 1 1

−1 1 0

0 −1 1

0 1 0

0 0 2

1 0 0

0 1 0

0 0 1


×

 νA→C

νD→E

νEout

 , (3.2)



νA→B

νB→C

νA+B→E

νB+C→D

νAin

νA→C

νD→E

νEout


=



−0.00459 0.47191 −0.47087

0.20089 0.15114 −0.55839

−0.61236 −0.00330 0.00266

0.40688 0.32407 0.08486

−0.41095 0.64155 0.17504

0.20600 0.17294 0.64325

0.40688 0.32407 0.08486

−0.20548 0.32078 0.08752


×

 α

β

γ

 . (3.3)

Note that in Equation 3.3 the rows are ordered as in Equation 3.2, however the 3 × 3
submatrix formed by the last three rows are dense.

A Wux coordinate system is thus deVned as a set of basis vectors of a kernel represen-
tation that form an identity submatrix. Publication III discusses that the process of GJE

naturally creates a Wux coordinate system, and that many possible Wux coordinate systems
are possible.

3.2 selection of a flux coordinate system

The algorithm developed in Publication III allows the researcher to specify a desired set
of Wuxes that form the Wux coordinate system. However, not all sets of Wuxes are able to
form a coordinate system (i. e., selecting two Wuxes in a linear pathway). If the selected Wux
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3.3 benefits of the algorithm developed in publication iii

variables cannot form a basis, the routine will discard such Wux variables and Vnd a viable
Wux coordinate system.

As discussed below, the freedom to choose a Wux coordinate system is prerequisite to
reaping the beneVts of using Wux coordinate systems.

3.3 benefits of the algorithm developed in publication iii

There are a number of reasons why the symbolic GJE routine developed in Publication III is
recommended to be used in place of optimized numerical SVD algorithms:

a. There is no computational penalty to using the symbolic GJE algorithm developed in
Publication III compared with optimized numerical SVD algorithms.

b. SVD algorithms create a dense solution that uses more memory than sparse matrix
GJE algorithms. With the examples we considered, doubling the network size quadru-
ples the memory requirement of SVD and roughly doubles the memory requirement
of GJE when applied to the same system.

c. The coordinate system of the steady state subspace found using SVD has no obvious
physical meaning and the components of the basis vectors aUect almost all metabolic
Wuxes making constraints on individual Wuxes diXcult (see subsection 3.4.1).

d. Inspection of the GJE kernel matrix allows for identiVcation of sub-networks within
the larger metabolic network.

e. The Wux coordinate system found using GJE can be selected by the user, thus enabling
one to reap the beneVts of using Wux coordinate systems.

f. The ability to select the Wux coordinate system means that the basis of the steady
state Wux subspace is no longer dependent on the original ordering of the rows and
columns of the stoichiometric matrix.

The limited scope of Publication III did not allow for discussion regarding some of the
potential beneVts of using Wux coordinate systems.

To the author’s best knowledge, Barret et al. is the Vrst study to have discussed the
beneVts of using sparse basis vectors to study the properties of metabolic networks [38].
They developed an algorithm that combined principal component analysis (PCA) and eigen-
vector rotation and shearing for the purpose of Vnding a top-down method of determin-
ing the molecular mechanisms that control cellular metabolic states. Applied to a subset
of the metabolism, their algorithm results in sparse basis vectors that \[provide] a low-
dimensional and biochemically interpretable decomposition of the steady Wux states of
the system" [38]. The sparse basis vectors they found resemble those of a Wux coordinate
system, however, to Vnd a full Wux coordinate system as deVned herein, the use of GJE is
recommended. The use of GJE also allows for the possibility of Vnding many Wux coordinate
systems, or a desired Wux coordinate system for the same steady state Wux subspace. A set
of Wux coordinate systems could be analyzed together to gain even deeper insight into the
operation of complex metabolic networks.
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use of flux coordinate systems

3.4 flux coordinates lessen the curse of dimensionality

Flux coordinate systems are also useful in the optimization process of tracer-based MFA [39].
It must be admitted that this was the motivation of developing the GJE algorithm in Publica-
tion III. Often, the analyst has prior knowledge of a subset of the Wuxes being analyzed by
tracer-based MFA. These Wuxes can be chosen to form the coordinate system that spans the
steady state metabolic subspace and constrained to reduce the dimension of the parameter
subspace to be traversed by an optimization routine. The example yeast network presented
within Publication III was composed to analyze dynamic isotopologue data. A Wux coor-
dinate system was chosen to correspond with 26 available biomass production rates. By
constraining these Wuxes directly, the entire steady state subspace is deVned by 13 inde-
pendent variables. Using the steady state representation found using SVD the optimization
routine will need to traverse 39 independent variables to span all possible steady state Wux
distributions. The high dimensional and convolved steady state representation provided by
SVD makes it diXcult to traverse all relevant steady state solutions. To avoid this problem,
random sampling of the steady state subspace has been applied [38, 40].

The above example, along with the two following subsections, demonstrate that the use
of Wux coordinates reduce the curse of dimensionality by: (I) removing dimensions with
constraints, and (II) reducing the number of parameters that inWuence speciVc metabolic
processes.

3.4.1 Reduction of the parameter space: SVD versus GJE

In the example system shown in Figure 1, all steady state solutions where the Wux νA→C
is speciVed, are found in a planar linear subspace. Looking at Equation 3.2, this is clear
because the speciVed point, νA→C, and the remaining two basis vectors, νD→E and νEout ,
form a plane. All other restrictions on the remaining seven Wuxes in the system reduce this
planar linear subspace to a rectangular polygon on the same plane. In higher dimensional
space this would be a bounded polytope.

Performing the same operation using the kernel matrix found using SVD is not as direct.
The bounds on α, β, and γ in Equation 3.3 that deVne the same planar linear subspace are
found by solving an additional linear system.

An equation to describe the planar linear subspace formed when νA→C is speciVed is
found by inverting the coloured 3× 3 submatrix in Equation 3.3 and solving for one of α,
β, or γ. Choosing α as the dependent variable results in an equation to calculate α when
β and γ are speciVed:

α = νA→C − 0.17 β − 0.64 γ. (3.4)

Equation 3.4 provides a deVnition of the same planar linear subspace formed by the point
νA→C and the νD→E and νEout basis vectors in Equation 3.2. Using the SVD kernel matrix,
the plane is formed by the point νA→C, and two vectors that lie on the plane, the β and
γ basis vectors in Equation 3.3. In essence, GJE provides a solution to the linear subsystem
in the form of the coloured identity submatrix in Equation 3.2 and makes reducing the
dimension of the parameter space much easier.
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3.5 use of the gje kernel in model reduction

3.4.2 Selective optimization within metabolic sub-networks

It was shown in Publication III that Wux coordinates control connected sub-networks of
Wuxes. This property could be used to aid the optimization process used in tracer-based MFA

because it allows the analyst to limit the optimizer to selected regions of the metabolism.
Measurements relevant to one area of the metabolism could be optimized by manipulating
the Wux parameters within that region of the metabolism.

3.5 use of the gje kernel in model reduction

The kernel of the GJEmatrix is visualized in Publication III Figure 2. It is sparse and provides
a direct visualization of network structure. Above the identity matrix of Wux coordinates are
a large number of reactions that are controlled by a single Wux coordinate. These reactions
belong to linear segments of metabolic pathways. It was beyond the scope of Publication
III to consider model reduction techniques, however, the structure of the GJE kernel with its
sparse matrix representation would aid in the creation of such routines. The simpliVcation
of linear pathways is required for eXcient simulation of dynamic isotopologue models, and
in addition would aid in the visualization of genome-scale networks.

3.6 analyzing coupled enzyme mechanisms

The reaction environment inside biological systems usually contain metabolites at a concen-
tration that greatly exceeds the enzymes that catalyze their interconversion. If one assumes
that the distribution of enzyme states remains stationary and is determined by the avail-
ability of metabolites, individual chemical transformations in the enzyme mechanism can
be treated in the same way as chemical reactions.

Coupled enzyme systems often contain hundreds of individual transformations with the
steady state characterized by a suXcient number of degrees of freedom to make analytical
analysis prohibitively tedious and error prone, and brute force techniques computationally
prohibitive. A Wux coordinate system composed of Wuxes in the enzyme mechanism that
are known to some extent allows one to reduce the size of the steady state Wux subspace
prior to functional analysis; eUectively lessening the impact of the curse of dimensionality.

3.7 summary of publication iii

The original motivation to begin Publication III was to Vnd a method of calculating all
possible steady state solutions of a metabolic network using Wux parameters. In the process
of developing the symbolic GJE routine we observed some properties of Wux coordinate sys-
tems. While comparing the routine with state of the art implementations of SVD we found
that sparse SVD did not conserve memory because the resulting kernel matrix is dense. In
contrast, the kernel of the GJE matrix is sparse and provides a basis for network simpliVca-
tion. The sparcity property shifts the limitation of analyzing very large systems from the
amount of memory available to the computational time considered tolerable. Considering
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use of flux coordinate systems

all of these properties, it is likely that the symbolic GJE routine developed in Publication III
has applications in the study of other large linear systems.

The scope of Publication III prevented a thorough analysis of the properties and useful-
ness of Wux coordinate systems. It is possible that an underlying canonical structure of the
steady state Wux subspace of metabolic systems could be found by analyzing the set of all
possible Wux coordinate systems.
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4
F LUX OF EN ERGY METABOL I T E S I N H EART

The dynamic tracer-based MFA modeling techniques developed in the initial phase
of this research to study yeast metabolism were applied in Publication IV to study the

recycling Wuxes of energy metabolites in heart.
In heart, the mechanisms that ensure that the recycling Wuxes of energy metabolites

meets the demand of adenosine triphosphatase (ATPase) reactions over a wide range of
workloads remains unclear. Fundamental to this search is an accurate understanding of
the Wuxes of ATP, ADP, inorganic phosphate (Pi), and phosphocreatine (PCr) between the
mitochondrial intermembrane space (IMS) and the ATPases on both the myoVbrils and sar-
coplasmic reticulum. adenosine-5’-triphosphate (ATP) is transported directly from the IMS to
the cytosol, as well as through the parallel adenylate kinase (AdK) and creatine kinase (CK)
shuttles. The compartmentalized network of the recycling Wuxes of energy metabolites in
heart studied in Publication IV is provided in Figure 2.

4.1 motivation to study energy metabolite fluxes in heart

The regulation of energy Wuxes in heart is an active area of research because the deleterious
eUects of various myopathies can be mitigated somewhat by manipulating these Wuxes.
The eUects of drug intervention on the energy status of hearts has been studied using 13C
tracer-based MFA [41]. However, forty years of searching has not revealed any deVnitive
mechanism of how TCA cycle Wux is controlled as a function of workload.

For some time calcium (Ca 2+) seemed to be an interesting candidate metabolite. In vitro
studies on TCA cycle enzymes display activation by Ca 2+ [42], modeling results demonstrate
that Ca 2+ activation could act as a stimulator of TCA cycle Wux [43], however, physiolog-
ical conditions prevent Ca 2+ from controlling enzyme rates to the extent required for the
regulation of homeostasis in vivo [44].
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flux of energy metabolites in heart
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Figure 2 – Compartmentalized heart phosphotransfer network with Wux distribution taken from
Publication IV. The intermediate state of both ATPase and ATP synthase is reversible with respect
to 18O.

13C tracer-based MFA is unable resolve the three parallel energy metabolite Wuxes be-
tween the IMS and the cytosol in Figure 2 because the recycling Wuxes of ATP, ADP, and PCr,
are much faster than the incorporation of 13C into these metabolites. The use of 13C also
prevents one from studying the recycling Wux of Pi which is important in this system.

4.2 techniques used to resolve parallel energy transfer in heart

Publication I reviews three NMR techniques that have been employed to study the Wux of
energy metabolites in heart: 31P–NMR saturation transfer [45–53], 31P–NMR inversion and
saturation transfer [54], and 18O–assisted 31P–NMR [55–69]. At least one study combined
the use of 13C tracer-based MFA with 31P–NMR saturation transfer [70] to study heart
Wuxes.
18O–assisted 31P–NMR uses 18O as an isotopic tracer by replacing the extracellular me-

dia with one containing an elevated quantity of H182 O. Equation 4.1 shows how ATPase and
ATP synthase move 18O from H182 O into Pi and the oxygen atoms attached to γ-ATP:

AP
i

P
j

P + H2

k νf

νr
AP

i
P +

j+k
P , (4.1)

where i, j, k are the components of the labeling system where the oxygen atoms they con-
tain have an equal probability of being labeled with 18O. The lack of positional labeling
information in this system is ensured because Pi is the only metabolite that accepts 18O
from water and all oxygen atoms in Pi are equivalent (See Publication IV Supplemental
materials 2 for the full system of equations).

Although ATP synthase is unidirectional with respect to the adenine group (A), the in-
termediate enzyme state exhibits multiple reversals with Pi prior to release by the enzyme
complex [71].
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4.3 why are the fluxes different?

The use of 18O increases the rate of label incorporation compared with 13C tracer-
based techniques and was used to study the energetic Wuxes in heart for just over twenty
years [55–69].

4.3 why are the fluxes different?

The motivation to carry out the sensitivity analysis in Publication IV stemmed from a
striking contrast:

The Wuxes calculated using the 18O–assisted 31P–NMR method are smaller
than the same Wuxes calculated using both 31P–NMR saturation transfer, and
31P–NMR inversion and saturation transfer.

In studies that utilize 18O–assisted 31P–NMR it is typically assumed that the observed
labeling dynamics provide a measure of net Wux through the AdK and CK shuttles, however,
prior to Publication IV no sensitivity analysis had been performed to test this assumption.
If true, this property would make the 18O–assisted 31P–NMR method unique because label
movement occurs with the unidirectional forward and reverse Wuxes in all other methods
that track label movement.

Publication IV shows that the labeling state is not sensitive to net Wuxes, and it is total
Wux that deVnes the labeling state.

4.4 sensitivity analysis of phosphotransfer fluxes

A dynamic mass isotopologue model with bidirectional Wuxes and enzymatic compartmen-
tation was composed in Publication IV to test the sensitivity of the kinetic parameters on
the labeling state of metabolites. The phosphotransfer network in Publication IV contains
parallel loops with potentially rapid exchange Wuxes (the CK shuttle and the AdK shuttle).
It was shown that the sum of the net and exchange Wuxes in each shuttle (total Wux) de-
termines the labeling state; net Wux does not determine the labeling state as stated previ-
ously [55–69]. Analysis in Publication IV shows that as the total Wux is increased in each
shuttle, the molar fraction of the 18O isotopologues of β-ATP and PCr approach a horizon-
tal asymptote. If the unidirectional forward and reverse Wuxes of the AdK and CK reactions
are increased, the 18O labeling state of β-ATP and PCr approach a state when they are in
isotopic equilibrium with both the reactant and product pools. The rate of change of the
labeling state of the reactant and product pools is determined by the rate of 18O input into
the system. In general, dynamic tracer-based MFA cannot be used to Vnd exchange Wuxes
that are signiVcantly higher than the rate of labeling input into the reaction.
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Figure 3 – \Pseudo-linear" estimation of CK Wux. In [58], the CK Wux was estimated by sup-
pressing CK activity with DNFB. The red dots show the fraction of inhibition used in [58] to
calculate the CK Wux. The black total oxygen labeling curve is found by combining the label-
ing curves of the three labeled species in Figure 6, Publication IV, using the equation for total
labeling used by Dzeja et al. [62]. The \pseudo-linear" estimated CK Wux is found by the inter-
section of the horizontal green line and the linear blue Vt to labeling data. The vertical green
line provides a visual aid to show the estimated CK Wux. The estimated value is close to the CK

Wux reported in [62] for heart. The above geometry shows that the \pseudo-linear" method
underestimates total CK Wux.

Because the total CK shuttle Wux is more rapid than the rate of ATP synthase, Dzeja et al.
developed the \pseudo-linear" approximation technique to estimate this Wux [58]. This es-
timation technique continues to be applied [69] although no study has assessed the validity
of applying the \pseudo-linear" technique when the assumption of unidirectional Wuxes is
lifted. Figure 3 shows the application of the \pseudo-linear" approximation technique to
a simulated total labeling curve. The error in the \pseudo-linear" labeling technique illus-
trated in Figure 3 is related to an observation made in Publication IV: As the Wux through
the AdK and CK shuttles is increased, the labeling state becomes insensitive to changes in
these Wuxes. This property ensures that the \pseudo-linear" technique will provide an esti-
mate at the low end of the range of possible CK shuttle Wuxes.

The insensitivity analysis of the dynamic isotopologue model over the range of Wuxes
measured using 18O–assisted 31P–NMR, 31P–NMR saturation transfer, and 31P–NMR inver-
sion and saturation transfer shows that the same kinetic model is able to explain all known
measurements of the energetic Wuxes in healthy normoxic heart.

4.5 improving the sensitivity of 18O–assisted 31P–nmr

Publication IV demonstrated that the sensitivity of the predicted labeling state to changes
in pool sizes and the bidirectionality of reactions increased with the use of 100% H182 O.
This increase in sensitivity is due to an increase in the rate of label input into the system.
In general, it was found that more information about the Wuxes in the system can be deter-
mined when the rate of label input into the system is increased. To this end, a number of
strategies are recommended to increase the rate of label input and thus gain the greatest
possible insight from 18O–assisted 31P–NMR experiments. In addition, the use of multiple
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4.6 summary of publication iv

sampling points during diUerent phases of the isotopic transient would aid in the analysis
using a dynamic isotopologue model.

All known applications of the 18O–assisted 31P–NMR method [55–69] have used 30%
or lower H182 O, introduced at lower workloads. Use of H182 O with a higher enrichment
at higher workloads would introduce the isotopic label into the system at the maximum
possible rate.

These 18O–assisted 31P–NMR studies did not consider metabolite compartmentation cou-
pled with bidirectional transport and enzyme reactions. It was mentioned in Publication IV
that the original data from the above papers could be reanalyzed with an integrative ki-
netic model to extract more information about the Wuxes in this system and should be
undertaken in future 18O–assisted 31P–NMR studies. The original data is not available, so
no such analysis was possible in Publication IV. Considering that the labeling conditions
were not ideal and typically only one transient labeling state was characterized, it is likely
that no new insight can be derived from historical 18O–assisted 31P–NMR data [55–69].

4.6 summary of publication iv

Publication IV was initiated to resolve a long-standing debate conducted over a number
of years. The debate focused on determining why the 18O–assisted 31P–NMR method pro-
vides lower estimates of total CK Wux than both 31P–NMR saturation transfer, and 31P–NMR

inversion and saturation transfer. As mentioned in the introduction, it is often diXcult to
directly apply deductive reasoning on a complex system without the use of a mathematical
model; the above debate exempliVed this principle.

Upon initial analysis of the system it became clear that the analysis method applied in all
18O–assisted 31P–NMR studies [55–69] hinged upon the assumption that the 18O–assisted
31P–NMR method provides a measure of net Wux and not total Wux. This assumption was
tested using a dynamic isotopologue model that was suXciently complex to warrant the de-
velopment of model generation software. The earliest 18O–assisted 31P–NMR papers were
conducted at a time when the dynamic isotopologue model used in Publication IV would
have pushed the limits of commonly available computational hardware. This could be the
main reason why initial studies used simpliVed kinetic models that excluded compartmen-
tation and bidirectional reactions [55, 56], and judiciously warned that such models should
be used as a Vrst approximation.

The above debate was resolved with the observation that the Wuxes determined from
18O–assisted 31P–NMR, 31P–NMR saturation transfer, and 31P–NMR inversion and satura-
tion transfer all lie in the insensitive region where the 18O dynamic isotopologue model
provides almost identical predictions of the labeling state. Other observations regarding
the use of dynamic isotopologue modeling to resolve rapid bidirectional Wuxes are gener-
ally valid for all applications of isotope tracer-based MFA.
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4.7 summary of publication ii

By measuring the oxygen consumption in populations of isolated cardiomyocytes, along
with activity measurements, one can assess the overall rate of ATP synthesis. This tech-
nique cannot resolve Wuxes in parallel pathways. However, it is widely used to assess how
heart energetics change with drug treatments, genetic manipulation, pathologies, or during
the process of maturation. Publication II is a critique of another Journal of Physiology paper
that studied how the energetic pathways in mouse heart change during postnatal develop-
ment. Our review points out that the original paper misinterpreted a change in one derived
quantity, which we explained by a change in the compartmentation of adenine nucleotides
during maturation. We point out that the original authors did not measure the potential
contribution of ATP from glycolysis that was shown to be important in an analogous study
on the maturation of rabbit heart. Publication II concludes by pointing out that interpreting
the original data would have been made easier with the use of a systems biology approach
using mathematical models coupled with statistical methods. Due to strict space and refer-
ence restrictions in Journal of Physiology journal club articles we were unable to expand
our analysis or include additional references to stress this latter point.
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SUMMARY





5
CONCLUS IONS

This dissertation focuses on the application of dynamic tracer-based MFA on the com-
partmentalized biological systems of yeast and the mammalian heart. The main con-

clusions deriving from this work are listed below, grouped according to the publication
they originate from.

5.1 conclusions from publication i

Wahrheit et al. wrote that Publication I is the only publication they are aware of that dis-
cusses the potential of using isotopologue transients to describe compartmentation [36].
The main Vndings are reported below:

a. Dynamic tracer experiments performed under the same steady metabolic state
using diUerent isotopic substrates are best analyzed together.

Parallel solution of dynamic isotopologue simulations using diUerent substrates may be
evaluated in the same optimization loop to Vnd the Wux solution that best describes all
data. This approach ensures that the properties of the metabolism revealed by each isotopic
tracer are represented in the optimal Wux solution.

b. If the timing and shape of isotopic transients does not match with measured
data, the discrepancy may indicate a need to add additional metabolic compart-
mentation to the model.

Discrepancies between measured data and simulated isotopologue dynamics provide in-
sight into the shortcomings of the metabolic model and may lead to further insight into the
compartmentation of the underlying biology.

c. Shortcomings in the model used to simulate the isotope dynamics are more
likely to be revealed when optimizing data from multiple substrates simultane-
ously.

This statement results from combining conclusions a and b. Optimization with a single
labeled substrate may mask shortcomings in the compartmental structure of the model
because the shape of dynamic transients are also inWuenced by the combined eUect of
bidirectional and net Wuxes. An optimal set of bidirectional and net Wuxes will be less likely
to imitate multiple dynamic transients that result from multiple labeling experiments using
diUerent substrates.
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5.2 conclusions from publication ii

The following are the main points raised in the critique:

d. The increase in KmADPKCr
during maturation of mouse cardiomyocytes is not nec-

essarily due to increased CK coupling or activity; changes in the compartmen-
tation of adenine nucleotides during maturation can also explain the increase.

The original work by Piquereau et al. [72] potentially overemphasizes the importance of
various CK isoforms in the regulation of energy metabolite Wuxes. Highlighting the impor-
tance of compartmentation in the regulation of energy metabolite Wuxes could inWuence
the research goals of future studies.

e. The regeneration of energetic metabolites by glycolysis may be signiVcant dur-
ing maturation.

Considering that previous studies have shown that glycolysis regenerates a signiVcant frac-
tion of energy metabolites, future studies should consider including this system in the anal-
ysis.

f. Mathematical models are useful in studying the properties of integrated sys-
tems.

It was pointed out in the introduction that directly applying deductive reasoning to inte-
grated systems can be misleading. The use of mathematical models aids in the process of
excluding hypotheses.

5.3 conclusions from publication iii

Publication III developed a computationally eXcient method of expressing all possible
steady state Wux solutions of a system of chemical transformations in terms of a Wux coor-
dinate system. The main Vndings from this work are listed:

g. All steady state solutions of a chemical system can be expressed using many
Wux coordinate systems; GJE naturally provides this convenient representation
of the solution subspace.

A deVnition of Wux coordinate system is given in Chapter 3 Section 3.1. Some Wux coordi-
nate systems are more useful than others. The symbolic algorithm provided in Publication
III allows a desired Wux coordinate system to be speciVed by the analyst; a feature unique
to this algorithm.

h. If a Wux coordinate corresponds to a known Wux, the dimension of the steady
state subspace is reduced by one. If a Wux coordinate is known within a range
of values, the steady state subspace has a reduced span.

Limiting both the dimensions and ranges of coordinates that are used to represent all steady
state solutions limits the curse of dimensionality because other representations of the steady
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5.4 conclusions from publication iv

state solution space cannot avoid using all dimensions when scanning the space. The exam-
ple provided in Publication III illustrates this point by reducing the space from 39 dimen-
sions to 13.

i. Inspection of the GJE kernel matrix allows for identiVcation of sub networks
within the larger metabolic network.

The size of genome-scale metabolic networks makes them diXcult to visualize and interpret.
The kernel found using GJE potentially provides a way to break the larger system into
subsystems. Each Wux coordinate system provides a diUerent set of subsystems, so perhaps
exploring the properties of subsystems for many Wux coordinate systems will enable one
to Vnd canonical properties of the steady state solution subspace and thus the biological
system as a whole.

j. The sparse kernel found from the symbolic GJE routine takes up less memory
than dense SVD kernels; in practice, this shifts the limitation of analyzing very
large systems from the amount of memory available to the computational time
considered tolerable.

The sparse symbolic routine developed in Publication III opens up the possibility of Vnding
the steady state solutions for chemical systems with possibly millions of reactions because
the Vnal representation of the steady state solution is much more memory eXcient.

5.4 conclusions from publication iv

The sensitivity analysis in Publication IV resolved a number of questions regarding the Wux
of energy metabolites in heart. A core set of Vndings is provided:

k. The total Wux through each shuttle determines the labeling state; net Wux does
not determine the labeling state as stated previously.

Studies that utilize the 18O–assisted 31P–NMR method typically assume that the isotopic
labeling state is a direct measure of net Wux. The direct implication of this assumption is that
label movement does not occur in the opposite direction to net Wux. The model predictions
in Publication IV (and Publication I) demonstrate that metabolites become labeled even in
the case of zero net Wux.

l. If the total Wux is increased in either the CK or AdK shuttles, the labeling state
of the 18O isotopologues approach a horizontal asymptote. The asymptote is
determined by the rate of 18O input into the system.

This property limits the range of applicability of the 18O–assisted 31P–NMR method be-
cause the total bidirectional Wuxes in the CK and AdK shuttles are known to be more rapid
than the combined rate of ATPase reactions. Higher workloads and a higher enrichment of
H182 O extend the range of applicability.
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m. The sensitivity of the predicted labeling state to changes in pool sizes and the
bidirectionality of reactions increased with the use of 100% H182 O because the
rate of label input into the system increased.

In general it was found that more information about the Wuxes in the system can be deter-
mined when the rate of label input into the system is increased. To this end a number of
strategies are recommended in Publication IV to increase the rate of label input and thus
gain the greatest possible insight from 18O–assisted 31P–NMR experiments.

n. The insensitivity of the dynamic isotopologue model over the range of Wuxes
measured using 18O–assisted 31P–NMR, 31P–NMR saturation transfer, and 31P–
NMR inversion and saturation transfer shows that a single kinetic model is able
to explain all known measurements of the energetic Wuxes in healthy normoxic
heart.

The predictions of the labeling state using 30% H182 O display a suXciently wide insensitive
region that even the low Wux predictions from the 18O–assisted 31P–NMR method provide
almost the same labeling state of PCr as both 31P–NMR saturation transfer and 31P–NMR

inversion and saturation transfer. Simulations using 100% H182 O extend this range, but not
past the Wux predictions provided by 31P–NMR saturation transfer and 31P–NMR inversion
and saturation transfer.
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Abstract: Isotope labeling is one of the few methods of revealing the in vivo bidirectionality
and compartmentalization of metabolic fluxes within metabolic networks. We argue that a
shift from steady state to dynamic isotopomer analysis is required to deal with these cellular
complexities and provide a review of dynamic studies of compartmentalized energy fluxes
in eukaryotic cells including cardiac muscle, plants, and astrocytes. Knowledge of complex
metabolic behaviour on a molecular level is prerequisite for the intelligent design of geneti-
cally modified organisms able to realize their potential of revolutionizing food, energy, and
pharmaceutical production. We describe techniques to explore the bidirectionality and com-
partmentalization of metabolic fluxes using information contained in the isotopic transient,
and discuss the integration of kinetic models with MFA. The flux parameters of an example
metabolic network were optimized to examine the compartmentalization of metabolites and
and the bidirectionality of fluxes in the TCA cycle of Saccharomyces uvarum for steady-state
respiratory growth.

Keywords: Metabolic network; isotopomer dynamics; MFA; mathematical modeling; com-
partmentalization; 13C NMR.
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1. Introduction

Isotope labeling is widely used to gain insight into the operation of metabolic networks despite the
fact that neither the collection of isotopomer data, nor its simulation and analysis is considered routine.
Both experimental and analytical methods enabling dynamic studies that require direct measurement of
the mass and/or positional isotopomers and the pool sizes of intermediate metabolites are developing
quickly [1, 2, 3]. The move from isotopomeric steady state flux analysis to studies involving dynamic
enrichment is required to deal with the complexities of the eukaryotic cell and multicellularity. The
compartmentalization of metabolites into organelles, often with parallel enzyme systems coupled with
complex transport mechanisms makes the application of Metabolic Flux Analysis (MFA) at isotopic
steady state difficult and uncertain.

MFA is an important tool for strain improvement in biotechnology [4] with a vast potential for further
improvement. However it has recently been stated that ”in order to truly exploit the synthetic capacity
of biological systems and broaden the creation of microbial chemical factories, it is necessary to go
beyond natural pathways for the synthesis of natural products towards the de novo design and assembly
of biosynthetic pathways for both natural and unnatural compounds.” [5]. Synthetic Biology, while
probable in the long term, is optimistic in light of our current understanding of metabolic systems and
will depend on knowledge gained from the flux analysis of natural pathways. The great potential for
genetic improvement has not been realized largely due to an incomplete understanding of the metabolic
operation within organisms - especially their dynamic nature.

This paper is a short review of the motivations for moving from MFA using data collected at isotopic
steady state to making full use of the information contained in the isotopic transient. Examples are taken
from recent studies that make good use of this information followed by a short section on performing this
analysis under conditions of unstationary metabolism. An attempt is made to point towards the future
of dynamic modeling of cellular systems using predictive kinetic models–The holy grail of modern
biology. Simulations of isotopic transients are used to explore the information contained in the isotopic
transient and examine techniques to exploit this information. Following this is a short example where the
flux parameters are optimized for the TCA cycle in Saccharomyces uvarum for steady-state respiratory
growth fed with 13C1,2 acetate and unlabeled glucose.

1.1. Motivation for exploiting the dynamic transient

The majority of MFA studies have been conducted at metabolic steady state, and the majority of these
involve measuring isotopomers at isotopic steady state. Recent studies conducted at the metabolic and
isotopic steady state include Blank et al. [6] and Vo et al. [7]. These and other studies have contributed
and will continue to contribute to our understanding of metabolic function, however MFA at metabolic
and isotopic steady state is complicated by a number of factors including compartmentalization [8, 9]
and makes it more difficult to study the robustness of metabolic networks [10] since a separate flux
analysis is required for each metabolic perturbation. Dynamic isotopic analysis allows one to directly
probe metabolic robustness and control.

A recent study demonstrates the use of MFA at metabolic steady state using isotopic transient data
in the pentose phosphate pathway and citric acid cycle (TCA) of E.coli [11]. Their modeling was made
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easier by assuming that the flux from precursor metabolites to free amino acids to protein bound amino
acids was uni-directional and there was no lag in the isotopomer dynamics due to protein turnover and
bi-directional transamination reactions as measured in Saccharomyces cerevisiae [12]. den Hollander et
al. [13] measured this effect in 1981 using 13C NMR to track metabolite dynamics. Although little is
known about protein turnover rates in vivo prokaryotes are expected to display less protein turnover than
eukaryotes [14]. Isotopic dynamics in prokaryotes avoids the most obvious types of compartmentaliza-
tion, so most examples of MFA in this review are taken from eukaryotic systems.

2. Dynamic MFA in eukaryotic systems

MFA using isotopic transient data is more often applied in eukaryotic systems as it is not so easy to
avoid compartmentalization and bi-directional exchange with large metabolic pools. However, since the
nature of many of these dynamic processes has yet to be elucidated, MFA using isotopic transient data
has been performed mostly on small linear branches of the metabolic networks without accounting for
global dynamic behavior [15]. There are a few exceptions however, notably Heinzle et al. [16] who used
a combination of kinetic network modeling and simulation to calculate metabolic fluxes in a secondary
metabolic network in potato (Solanum tuberosum). Shastri and Morgan [17] assess the experimental
needs for conducting isotopic transient MFA experiments on plants, and a few recent papers review
techniques for determining fluxes in plant networks [18, 19].

Often, the organism of interest cannot be sustained in a steady metabolic state over long periods
of time. To overcome this limitation one could resort to simulating the isotopic transient with a non-
steady metabolism, or shorten the labeling experiment to less than one minute since the concentrations
of enzymes in cells remain constant over short time spans (10 s to 1min) [20].

2.1. Flux analysis with non-steady metabolism

There has been some progress recently in MFA studies with a non-steady metabolism and a lack of
kinetic structure. A few researchers have started the move towards non-stationary MFA, with Wahl et
al. [21] and Baxter et al. [22] recently publishing papers that outline frameworks for performing
transient isotopic experiments under a transient metabolic state. Experimental and analytical techniques
have advanced to the point where it is possible to collect the data needed for studies involving non-
steady metabolism, and this class of dynamic MFA should start becoming more common and will aid in
excluding hypotheses regarding cellular compartmentalization and dynamic metabolic behavior.

2.2. Utilizing metabolic oscillations

It is widely accepted that metabolic systems ubiquitously display oscillations in metabolic fluxes
through temporal compartmentalization, proposed to be driven by oscillating metabolic cycles [23]. By
turning metabolic cycles on and off biochemical reactions can be carried out under optimal conditions
and futile cycles reduced. Fluctuations in fluxes have prompted Wiechert and Noh [14] to argue that
“MFA is currently reaching the biological limits of its applicability” because population inhomogeneities
and flux oscillations prevent one from obtaining meaningful dynamic measurements. There are cases
when these limitations can be minimized through the use of oscillations, however.
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In continuous culture yeast can be enticed to grow with a stable oscillating metabolism with a period
between 40 minutes to 5 hours[24]. While growing in this state the metabolic state of most cells in the
fermenter are operating in synchrony, thus reducing population inhomogeneities to a minimum, although
it should be noted that some inhomogeneities persist, such as that due to cells operating at different stages
in the cell cycle. Tu et al. [25] measured the periodicities of expressed genes while yeast was growing
in this state and found that over half of the (≈ 3,552) yeast genes exhibited periodic expression at a
confidence level of 95%. Tu et al. [25] conclude by arguing that metabolic oscillation may ”constitute
the primordial device upon which the divergent circadian and ultradian biological oscillators of modern
organisms have been built”.

Keeping in mind that enzyme concentrations remain constant over short time spans it is conceivable
that one could use a device like the BioScope [26] to perform transient isotopic pulse experiments at
different stages in the oscillating cycle (at a good approximation to metabolic steady state over the
sampling period) thus avoiding metabolic inhomogeneities in the vast majority of the population and
large flux oscillations. This would enable the analysis of metabolic fluxes using isotopic transient data
at different metabolic states under one cultivation condition. A data set of this nature could also be used
for MFA at the metabolic and isotopic steady state and could aid in the construction of a predictive large
scale kinetic model of yeast metabolism with cell signaling dynamics [27].

3. Building predictive kinetic models

Predictive kinetic models can be created in systems where the in vivo kinetics of many enzyme sys-
tems within the metabolic network are well characterized. For many systems this information is not
available, so development of kinetic models of metabolic systems is much less common than the use of
phenomenological MFA to characterize metabolic activity. However, predictive kinetic models allow us
to use the information content of experimental data points measured at one physiological condition to
predict the dynamic behavior of the system at another physiological condition.

The modeling process involves (1) developing a theory of how the biological system operates, (2)
representing the system as a set of ordinary and/or partial differential equations with direct physical
meaning, (3) fitting the parameters of this system using one dataset, (4) testing the predictive quali-
ties of the system using another related dataset, and (5) adjusting the theory and repeating the process
as required. Metabolic models that have passed this kind of scrutiny allow us to predict bi-directional
metabolic fluxes and system behavior under conditions where measured data is sparse. Great improve-
ments can be achieved with the use of data gathered decades ago, which is often of high quality and
fundamental in nature.

The complexity and scope of the model ought to be limited by the quality and amount of measured
data used to tune it, so introduction of kinetic parameters into dynamic models must be carefully consid-
ered. It is wise to restrict the addition of kinetic parameters to enzyme systems that have been systemat-
ically studied such that the kinetic scheme is biologically relevant and the kinetic parameters are known
with some level of confidence. This ensures that there is additional data available for the tuning process,
and the parameters are physiologically relevant.
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With this approach it is possible to maintain the structural identifiability of the model while adding
more parameters. If many parameter sets can fit the available data, biological insight is severely limited if
not impossible, so it is wise to always check the robustness of the solution during parameter optimization.
With this in mind, it is not recommended to replace phenomenological MFA with phenomenological
kinetic schemes that include more parameters since this only works to reduce the structural identifiability
of the model while adding no biological insight.

Ultimately, the construction of a predictive kinetic model involves the laborious task of studying each
enzyme system in vivo under a wide range of metabolic conditions. With the availability of additional
kinetic insight and data metabolic flux analysis in the heart has progressed along a different path from
the microbial and plant systems mentioned above. Predictive kinetic models in the heart are widespread
since drug development is only possible with fundamental knowledge of enzyme operation, and this work
is best performed in the public domain. With the future shift towards the use of cellulosic biorefineries
it is predicted that there will be an increasing economic stimulus to study the fundamentals of exotic
metabolisms and thus a resurgence in fundamental kinetic studies in plant and microbial systems.

With the complexity of biological systems, predictive models are useful to exclude hypotheses re-
garding their function. Vendelin et al. [28] quantified the oxygen dependence on the workload in rat
cardiomyocytes using published data. By working with the kinetic assumptions in the model they re-
futed the assumption that the ADP concentration does not contain gradients, and found the gradients to
be workload-dependent. Intra-cellular concentration gradients were not required for phosphocreatine,
creatine, and ATP, whose concentrations can be assumed to be in spatial equilibrium. The change in
ADP concentration taken together with changes in inorganic phosphate were found to be major compo-
nents of the metabolic feedback signal to control respiration in muscle cells. Using the same modeling
approach, the control of respiration was found to be dependent on the dynamics of the system [29].

Predictive kinetic models are better suited to exclude hypotheses regarding dynamic metabolism than
phenomenological MFA. Selivanov et al. [30] and Liebermeister and Klipp [31] have published methods
to make use of transient isotopic data in predictive kinetic models of dynamic cellular behavior, although
the application of this technique is in its infancy due to the complexities of the underlying dynamic sys-
tem including the problem of how to analyze multi-compartment labeling. The use of kinetic information
coupled with isotopomer analysis will become an increasingly important tool.

3.1. Measurement of in vivo kinetics

One important tool for probing the mechanisms of complicated kinetic systems in vivo is the NMR
saturation and inversion transfer technique developed in theory by McConnell [32] and in practice by
Forsen and Hoffman [33]. Nuclei having been saturated or inverted with radio frequency radiation can
retain their magnetic orientation through a chemical reaction. Thus, if the time span of the reaction
is short compared to the relaxation time, the NMR spectrum may show the effects of the saturation or
inversion on the corresponding, unirradiated line in the spectrum. Saturation and inversion detects only
the pool of molecular species that are able to react, and gives direct insight into reaction kinetics and
metabolite compartmentalization.
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A number of reviews discuss techniques for using saturation and inversion transfer for studying the
kinetics of complex reaction schemes [34, 35, 36]. The application of saturation and inversion transfer
using 31P NMR to study the energy metabolism in hearts is a good example of how compartmentalization
and bi-directionality of reaction steps complicates the analysis of a small network of reactions.

Early studies observed a discrepancy between the measured forward and reverse rate in the creatine
kinase reaction when the myocardium was operating at steady state. To resolve this discrepancy it was
concluded that analysis of the NMR data should include either compartmentalization of substrates or
enzymes, or include an exchange of ATP with other phosphorus species such as inorganic phosphate [37,
38]. In the case of compartmentalization, each compartmentalized pool will require fitting a different
T1 value [39].

Since the amount of information available from one single magnitization transfer protocol is insuffi-
cient to fit all parameters, Joubert et al. [40] used four different magnitization transfer protocols in one
experiment and used this additional data to fit multiple possible kinetic schemes. They determined that
three different creatine kinase reactions schemes should be considered and both subcellular compart-
mentalization and multiple exchange with inorganic phosphate are important. This work reveals insight
into the spatial and temporal buffering of ATP in cardiac cells [41], which is linked with heart failure
when operating in a sub-optimal mode [42].

A complimentary method for exploring in vivo kinetics was developed to study energy metabolism
in skeletal muscle using mass spectrometry to follow the enrichment of oxygen isotopes into energy
metabolites. Replacing the external cellular environment with H18

2 O results in the incorporation of hy-
droxyl ions from H18

2 O into the phosphoryl groups of energy metabolites resulting in an equilibrium
distribution of phosphoryls with 1, 2, or 3 18O atoms as a function of the enrichment of 18O in the wa-
ter [43]. The size of metabolic pools can be calculated from the distribution of these molecular species
at isotopic equilibrium, and using the time course of 18O incorporation into the high-energy phosphoryls
one can determine the rate of hydrolysis of the energy metabolites [43].

There are a number of technical difficulties when implementing this approach. The analytical work
is very laborious and many animals are required for a statistically significant study. Each dynamic data
point requires sacrificing one animal where an 18O transient is induced, followed by freeze clamping in
liquid nitrogen and a long preparatory procedure prior to analysis in the mass spectrometer.

The analysis of the data is also tricky since phosphotransfer dynamics contain compartmentalized
metabolites and bi-directional reaction steps. To simplify the analysis of their transient experimental
data on the uptake of 18O in the energy metabolites of toad skeletal muscle, Dawis et al. [43] assumed
that the fluxes through the enzymatic complexes were uni-directional and only one 18O could be incorpo-
rated per molecular turnover. They judiciously discussed the issues bi-directional reaction steps within
enzymatic complexes and wrote that “In practice, it will be difficult to verify a multiple-reversal model
for the intact cell. Consequently, it will not be easy to choose between a multiple reversal model and a
compartmentalization model.” Dawis et al. [43] also stressed that the influence of bi-directional reaction
steps “should be examined but will be difficult to prove.”

A proper study of the bi-directionality of phosphotransfer networks has yet to be completed, and the
amount of data collected in 18O transfer studies is probably not enough to distinguish between possible
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reaction networks with various combinations of compartmentalization and bi-directional fluxes. Because
of these limitations the above assumption of uni-directional fluxes was applied in a series of papers that
explored the kinetics and compartmentalization of energy metabolism in rat skeletal muscle [44, 45, 46,
47, 48]. However, the assumption of uni-directional fluxes is not a necessary limitation of the method
and should be evaluated in future studies.

Saturation and inversion using 31P NMR can be enhanced by the use of either a 17O or 18O induced
isotope shift in the 31P NMR spectra. Pucar et al. [49] introduced the 18O assisted 31P NMR method to
study energetics in mouse heart. The method was employed in a series of papers exploring compartmen-
talized energetics [50, 51, 52] [53, Pages 178-181], with each study using the above mass spectroscopy
method to determine longer time 18O transfer kinetics, all with the same assumption of uni-directional
fluxes. The development of improved methods utilizing NMR saturation and inversion will extend the
range of applicability of this powerful technique [54, 55] while reducing the labor required.

Table 1. Metabolite abbreviations within each compartment.

Metabolite Abbreviation
Cytosolic Mitochondrial

acetate ACo
acetyl-CoA AcCoAo AcCoAm
pyruvate PYo PYm
PY biomass precursor PBm
citrate/isocitrate CIm
oxaloacetate OAo OAm
succinate SUm
malate MAm
2-oxoglutarate OGm

4. Simulation of isotopic transients

The isotopic transient contains information about the underlying behavior of the metabolic system.
The task is to build a model of the metabolic system that can best reproduce both the isotopic tran-
sient and the steady state isotopomer distribution of all metabolites. This involves finding the sizes of
metabolic pools, the bi-directional rates of exchange between compartments in the cell, and the effect
of bi-directional enzyme reactions on the isotopomer distribution. Of these, only the sizes of metabolic
pools do not affect the steady state labeling state of the metabolites and the biomass created from them.

4.1. Composition of the metabolic network

To aid in the discussion of extracting information from isotopic transient data, we have composed a
simple example of the TCA cycle with carbon enrichment found in Figure 1. Included in the metabolic
scheme are atom mappings between all species including the amino acids and their respective biomass
precursors, with the carbon numbers corresponding to chemical nomenclature as in Maaheimo et al.
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[56]. Pyruvate and acetate are inflows to the system, and carbon dioxide and biomass precursors are
outflows. The metabolic system is assumed to operate at steady state and is thus simulated with net
flux distributions that satisfy this criteria. There are eight degrees of freedom in this system, so eight
net fluxes are specified. The remaining dependent net fluxes were calculated from equations that were
generated symbolically.

Figure 1. Metabolic scheme with atom mapping and bi-directional compartmentalization
between mitochondria (shaded green) and cytosol. Carbon numbers correspond to chemical
nomenclature and the arrows between them indicate bi-directionality. Each reaction label
is given above the red arrows that indicate the assumed net positive reaction flux. Pyruvate
(PYx) derived from extracellular glucose and acetate (ACx) are inflows to the system (blue),
and CO2 and amino acids are outflows(red). Metabolite abbreviations are given in Table
1. Green carbons indicate biomass precursor metabolites with mappings to the amino acids
they produce. Carbons of the same color are equivalent due to molecular symmetry.
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Analogous schemes can be drawn for any biological isotope including oxygen, phosphorus, and nitro-
gen isotopes, although the atom transitions in these networks are less well defined and functional groups
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containing these elements tend to be more reactive resulting in a network with a significant number of
side reactions and sinks that complicate analysis as in the above phosphotransfer network studies.

4.2. Solving for the isotopic transient state

Isotopomer balance equations can be generated from the metabolic network, and using these, an
isotopic transient can be simulated. The transient is induced by a step change in any or all members of
the isotopomer population distribution of all metabolites that act as inputs or outputs to the system. For
isotopomers that act as outputs to the system, the bi-directionality of the exit reaction step will induce
isotope labeling in reverse direction to the net flux. The isotopomer distributions of all metabolites in
the system begin at the natural labeling state of 1.1% 13C and end at isotopic equilibrium at an enriched
13C state with steady isotopomer population distribution. Thus, the steady state isotopomer distribution
for each metabolite is found from the last points of the simulation when the system has reached isotopic
steady state.

We used the most direct approach to solve for the isotopic transient by numerically solving the full set
of isotopomer balances. Various strategies have been devised to transform this system into an equivalent
system that is computationally more efficient to solve, including the bondomer approach [57], decom-
position of the network into Elementary Metabolite Units (EMU) [58], and transforming the isotopomer
equations into cascaded cumomer systems [59] where lumped variables are used to represent groups of
isotopomers. The 252 isotopomer balance equations in our small example network are solved in 0.4 to
6 seconds when setting the metabolic pool sizes as being equal, so use of the above methods to speed up
simulation is not required in this case.

To illustrate the information one can obtain from the isotopic transient, we present two sets of sim-
ulations. Our nomenclature for isotopomers in the figures and discussion below can be summarized as
follows: The carbons are numbered according to chemical nomenclature and start at the right with 0’s
representing 12C and 1’s representing 13C.

The first set was obtained by continuously feeding pyruvate and acetate while performing a step
change in the acetate isotopomer population from natural enrichment to 100% fully labeled 13C1,2 ac-
etate. Two simulations were made with two different sets of metabolic pool sizes (A and B). The pool
sizes of all metabolites in both sets were selected at random over three orders of magnitude. All net flux
and exchange flux parameters were the same in both simulations. Since only metabolic pool sizes were
changed between simulations, the steady state isotopomer distribution are identical for both simulations,
as expected. The isotopic transients of the most highly enriched isotopomers of mitochondrial citrate
from both simulations are given in Figure 2. Comparing the transient curves for the same isotopomers
between pool size set A and B, it is clear that they exhibit the same general transient shape with the
main difference being the time scale of the transient. Figure 2 does not show every isotopomer, however
all carbons become enriched in 13C when acetate is used as the tracer illustrating the usefulness of this
inexpensive tracer for studying the TCA cycle.

The second set of simulations was obtained by continuously feeding pyruvate and acetate. The three
simulations were made by performing (1) a step change to fully labeled acetate as above, (2) a step
change from natural enrichment to 100% fully labeled 13C1,2,3 pyruvate, and (3) a step change in both
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fully labeled acetate and fully labeled pyruvate together. All other parameters, including metabolic pool
sizes, net fluxes, and exchange fluxes were the same in all three simulations. The citrate isotopomers
from these three simulations are given in Figure 3.

Figure 2. The isotopic transient of the metabolic system given in Figure 1 was simulated
with two different sets of metabolic pool sizes chosen at random over three orders of mag-
nitude. All other parameters are the same between the two simulations. For clarity, only the
isotopomers of mitochondrial citrate reaching the highest enrichment are included with their
nomenclature explained in the text.
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Different isotopomers from each of the three simulations display similar dynamics as the metabolic
system is operating in the exact same way. Comparing the dynamics of the citrate isotopomers between
the acetate and pyruvate switch, three pairs of isotopomers reach the same proportion of the steady state
isotopomer population: (1) the unlabeled citrate isotopomers, (2) the 000011 and 111100 complimentary
pair, and (3) the 100011 and 011100 complimentary pair. Different isotopic tracers reveal the same un-
derlying metabolic behavior at steady state for the TCA cycle intermediates, with the dynamics revealing
complimentary information.

When fully labeled acetate is fed to the metabolic system, the 000011 citrate isotopomer reveals
similar dynamics as the same isotopomer when both acetate and pyruvate are fed to the metabolic system.
When fully labeled pyruvate is fed to the metabolic system, the 011100 citrate isotopomer reveals similar
dynamics as the 011111 citrate isotopomer when both acetate and pyruvate are fed to the system.
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When both labeled acetate and labeled pyruvate enter the metabolic system, we see both types of
isotopomer dynamics appear, however in this case when the isotopomer populations of pyruvate and
acetate consist of 100% fully labeled compounds all information about the steady state is lost as the
system becomes fully labeled. Thus the use of multiple labeling experiments on the same metabolic
system under the same growth conditions is useful to study the dynamic behavior of the metabolic
system, and is thus useful to gain insight into the metabolic pool sizes, compartmentalization, and the
bi-directionality of metabolic fluxes.

Figure 3. Three simulations of isotopic dynamics in the metabolic system given in Figure
1 were performed with identical net flux, exchange flux, and metabolic pool sizes. Isotopic
transients of mitochondrial citrate are given following a switch to: (1) fully labeled acetate,
(2) fully labeled pyruvate, and (3) both fully labeled acetate and pyruvate. For clarity, only
the isotopomers of mitochondrial citrate reaching the highest enrichment are included.
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To make these two example simulations quantitative one must find the appropriate metabolite pool
sizes, net fluxes, and exchange fluxes that adequately reproduce a sufficient amount of transient iso-
topomeric data, possibly supplemented with additional steady state isotopomeric data, measurements of
metabolic pool sizes, substrate utilization rates, and biomass production rates.

5. Extracting information from isotopomeric data

Any difference between measured data and model predictions can be used in an optimization routine
to find sets of net fluxes, exchange fluxes, and pool sizes that can reproduce the measured data within

71 Publication I



Int. J. Mol. Sci. 2009, 10 1708

experimental errors. If the optimization routine cannot obtain a realistic fit with a sufficient amount of
data, the metabolic scheme must be adjusted, possibly with the inclusion of compartmentalization and
the process repeated. After finding a set of model parameters that can sufficiently reproduce measured
data, one can gain insight into the operation of the metabolic network.

All types of isotopomeric measurement can be compared with the output from the dynamic solver,
including data collected at isotopic steady state: Mass isotopomers from mass spectrometers, NMR po-
sitional enrichments, double enrichments, triple enrichments, and beyond all contain information about
the operation of the metabolic scheme. Each measurement type requires one to sum up the appropriate
pool of simulated isotopomers that correspond to the measured 13C enrichment probability.

It should be noted that the process of optimization is not restricted to experiments performed with one
enriched substrate. Data from multiple experiments at the same metabolic state using different labeled
substrates can be combined to optimize one set of parameters. In this case the optimizer must simulate
the isotopomer balance equations once for every experiment with a different step change in labeled
substrate using the same set of parameters, and comparing each with their respective set of experimental
data. The three simulations in Figure 3 could each be matched with data collected using labeled acetate,
labeled glucose or a mixture of both to optimize the single set of parameters that govern the metabolic
system.

5.1. Inclusion of metabolic pool sizes

Since it is difficult to accurately measure many metabolic pools, making the transient simulation
quantitative typically requires additional transient isotopic data. Using an optimization routine it is
possible to find a realistic set of metabolic pool sizes that best match isotopic transient data and pool
size measurements. To accomplish this, the optimizer would be allowed to manipulate all metabolic
pool sizes, thus changing the isotopic transient, while attempting to minimize the difference between
measured isotopomeric data and measured pool sizes. In practice one would not usually optimize only
the metabolic pool sizes as one usually needs to optimize the net flux and exchange flux parameters at
the same time.

Figure 2 shows a dramatic increase and then decrease in the 13C1,2 isotopomer of citrate. With this
in mind, transient data that is able to capture the shape and timing of major transient curves like this one
are useful for constraining not only the net fluxes and bi-directionality of the metabolic network, but also
metabolic pool sizes. If the pool size found by optimization does not match that measured during the
experiment, it could be a clue that this metabolic pool is compartmentalized. Other clues in the shape of
these transients also aid in identifying compartmentalization.

5.2. Compartmentalization is revealed in the dynamics

Information about the bi-directionality of fluxes and the compartmentalization of metabolic pools is
contained in the isotopic dynamics. Compartmentalization is revealed in a number of ways. Consider a
linear pathway:

A −−⇀↽−− B −−⇀↽−− C (1)
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If the labeling in C becomes enriched faster than B, B is compartmentalized. This means that one
should optimize the flux parameters for at least two separate pools of B:

A −−⇀↽−−

Bj

�

Bi
−−⇀↽−− C (2)

The shape of the isotopic transient depends on the exchange of Bi with Bj and their pool sizes. ATP
exhibits compartmentalization in cardiomyocytes and astrocytes, as evidenced by a 31P NMR saturation
and inversion analysis of the creatine kinase reaction[60]:

PCr2− +MgADP− +H+ −−⇀↽−− Cr +MgATP2− (3)

The kinetic data suggest that ATP exchanges with inorganic phosphorus and participates in other
reactions via separate compartments:

PCr
k1f−−⇀↽−−
k1r

γATP1
k2f−−⇀↽−−
k2r

Pi
k3f−−⇀↽−−
k3r

γATP2 (4)

Fitting the data to this kinetic scheme suggests the need to consider both the function of the bound
enzymes and restrictions of diffusion in the system, which both may lead to localized compartmentaliza-
tion. Evidence for diffusional restrictions and compartmentalization of ATP was explored by Sonnewald
et al. [61] who observed large gradients in ATP concentration in astrocytes. Monge et al. [62] per-
formed a kinetic analysis of oxidative phosphorylation in rat brain synaptosomes and mitochondria and
found evidence for localized cycling of ADP and ATP between mitochondrial creatine kinase and ade-
nine nucleotide translocase.

Localized compartmentalization of energy metabolites in cells with high energy requirements is well
known [63, 64]. Kaasik et al. [65] studied the energy metabolism in mouse cardiomyocytes and demon-
strated that this localized cycling of energy metabolites was effective enough to maintain a moderate
workload even in genetically modified mice deficient in creatine kinase. These studies clearly show
the functional importance of localized compartmentalization separated by diffusional barriers. Further-
more, diffusional restrictions of ADP in rat cardiomyocytes could influence the control mechanisms of
oxidative phosphorylation, as shown in several modeling studies [66, 67].

Vendelin and Birkedal [68] found diffusion coefficients in rat cardiomyocytes using a fluorescently
labeled ATP analogue and found them to be anisotropic. For this, raster image correlation spectroscopy
(RICS) was extended to discriminate anisotropy in the diffusion tensor. Although the reason for the
anisotropic diffusion is unclear, it may be related to the ordered structure of the cardiomyocytes or local-
ized diffusional barriers. To explore these localized diffusional barriers on a cellular level using math-
ematical models, the accurate geometry of mitochondria within the muscle cells is required. Vendelin
et al. [69] developed a method to analyze the two dimensional positioning of mitochondria in various
muscle types, and extended this method to three dimensions in a comparative physiology study between
trout and rat cardiomyocytes [70].

Compartmentalized metabolic pools may play a role in controlling shifts in metabolism. Separate
cytosolic pools of pyruvate in astrocytes have been observed to switch between acting as the precursor
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for energy production depending on the substrate being consumed [71]. In general compartmentalization
is more complex than we have previously assumed and we may only be scratching the surface with
regards to studying compartmentalized metabolism in cellular systems. With this view it is hard to avoid
introducing realistic kinetic schemes into dynamic flux analysis.

5.3. Example optimization of the TCA cycle in yeast

To illustrate the process of extracting information from isotopomeric data using isotopic simulation
coupled with optimization, we have included a simple example of the TCA cycle in Saccharomyces
uvarum. This example introduces the basic process of extracting information from isotopomeric data
and does not include many details in the modeling process such as sensitivity analysis and a through
discussion of the flux parameters found. Judicious analysis of this system will require a separate publi-
cation.

The metabolic system is given in Figure 1 and was optimized using a non-linear constraint optimizer
[72] using data collected by Paalme et al. [73]. We optimize a subset of their data where they performed
a step change to fully labeled acetate while feeding yeast a mixture of glucose and acetate. Paalme et al.
[73] measured 13C NMR absolute and conditional enrichments from the carbon skeleton of proteinogenic
amino acids harvested and hydrolyzed at isotopic steady state. This excludes the optimization of pool
sizes so they have all been set to be equal to simplify simulation, and all comparisons to measured data
were made at the last time point simulated after all isotopic dynamics reached steady state.

We have included measurements of the rate of biomass production from all TCA metabolites in Figure
1 to constrain the net fluxes that exit the system. These net fluxes include all biomass production,
including production of amino acids, nucleic acids, and lipids, however, only amino acids are included in
the metabolic scheme since it was their isotopomers that were used to constrain the isotopic steady state.
By not constraining the metabolic system explicitly using the biomass production rates the optimizer is
given more flexibility to find better solutions by roaming around the full flux parameter space.

The optimization was carried out with the following reactions set to be bi-directional: malate dehy-
drogenase (EC 1.1.1.37), fumerase (EC 4.2.1.2), citrate synthase (EC 2.3.3.1), and the three transport
reactions for oxaloacetate, pyruvate, and acetyl-coenzyme A. All reactions involving carbon dioxide,
except for the bi-directional production of bicarbonate via carbonic anhydrase (EC 4.2.1.1), were set to
be uni-directional.

By starting at a large number of plausible starting points selected at random over the range of the free
flux parameters, the optimizer always settled on one single optimal solution and occasionally stopped at
a few other local optima that did not reproduce the data very well. Changing the weighting of measured
data points within the optimizer and excluding one or two at random did not significantly change the
optimal solution found as this solution matched all available data quite well. The optimal fit to the
isotopomeric data is given in Figure 4. It is immediately seen that the fit between the NMR data and the
model predictions is very good. This means that this metabolic system can adequately account for the
observed labeling pattern and no important elements of the metabolic system are missing. With regards
to net fluxes, the optimal fit matches that found in [73].
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With respect to bi-directional reactions, malate dehydrogenase was found to be very bi-directional
with ν5f

ν5r
= 1.3, while the ratio for fumerase ν4f

ν4r
= 575.0. The transport of pyruvate was found to be

quite reversible with ν200f
ν200r

= 1.2, while the transport of acetyl-coenzyme A was much less reversible
with ν100f

ν100r
= 12.4, and the transport of oxaloacetate was found to be essentially uni-directional.

Figure 4. Optimization of example system with absolute and conditional 13C NMR data.
Simulated points are marked with stars and measured data are marked with circles. Absolute
enrichments are written with one carbon label, and conditional enrichments have a second
carbon label. Conditional enrichment is the probability of 13C enrichment in the first carbon
when the second carbon is a 13C.
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The pyruvate fit was the least perfect and the fit required the pyruvate transporter (R200) to be bidi-
rectional. This may be telling us that the assumption that mitochondrial pyruvate is the sole precursor
for Ala production is not entirely true, although at least some production of Ala from mitochondrial
pyruvate is required to fit the data. Ala is produced from cytosolic pyruvate during fermentative growth
so it is possible that both mitochondrial and cytosolic pyruvate act as precursors for Ala production,
but this must be confirmed with additional data and future simulations possibly with the inclusion of an
additional compartmentalized pool.

Pyruvate is a metabolite that participates in a large number of intersecting central metabolic pathways,
typically has a low intra-cellular concentration, and has been observed to exhibit multiple cytoplasmic
compartments along with mitochondrial compartmentalization [71, 74]. This hub metabolite may be
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compartmentalized in a more complicated way than has been supposed and should be studied with a
larger data set containing dynamic isotopic transients.

The steady state isotopomer profiles of the cytosolic and mitochondrial pools of oxaloacetate are given
in Figure 5. The labeling pattern in each compartment is quite different and has important implications
for the origin of Asp biosynthesis as discussed by Paalme et al. [73]. These simulations support the
previous findings that Asp synthesis originates from mitochondrial oxaloacetate since no adequate set
of net flux and exchange flux parameters could be found that give a steady state isotopomer profile for
cytosolic oxaloacetate that matched with the measured enrichments in the respective carbons in Thr and
Ile [73].

To make the transient of this optimization quantitative we would have to include slow bi-directional
exchange with storage compounds, since this has been found to dramatically influence the time scale
of isotopic dynamics. The isotopic dynamics of TCA cycle metabolites such as 2-oxoglutarate, succi-
nate, fumerate, glutamate, and aspartate, are all influenced by reversible aminotransferase reactions that
transfer amino groups from α-amino acids to α-keto acids [12]. This makes the isotopic dynamics in
the TCA cycle on the same temporal order of magnitude as reaching steady-state isotopomer labeling in
the biomass. Accurate simulation of short time TCA dynamics requires a long term dynamic component
that can only be quantified with labeling data from a long labeling experiment. Without accurate steady
state labeling data, the interpretation of short term labeling experiments is difficult [75].

Figure 5. Simulated steady state isotopomer distribution of mitochondrial and cytosolic
oxaloacetate. Since the isotopomers differ between compartments comparing the simulation
with measured data can help determine the functional location of biosynthesis reactions.
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6. Conclusions

We have shown that dynamic isotopic transients reveal important insights into the operation of metabolic
networks, including the bi-directionality of enzyme and transport reactions, and the compartmentaliza-
tion of metabolites, including localized compartmentalization not separated by a membrane barrier and
that caused by diffusional restrictions. Our optimization of the TCA cycle illustrates that using dynamic
isotopic models does not complicate the analysis of steady state isotopomeric data if the transient part
of the simulation is excluded, and the possibility for additional insight with the inclusion of only a small
amount of transient data should not be overlooked. Models that make use of isotopic transient data are
expected to become increasingly important as steady state isotopomeric models currently struggle with
the realities of compartmentalization.

The predicted rise in the use of dynamic models is supported by the rapid development of analytical
techniques to measure both isotopomeric transients and the kinetics of individual reactions in vivo. Nu-
merical tools are also developing rapidly, however the current state of dynamic modeling continues to
grapple with the difficulties of compartmentalization. Teasing out the details of compartmentalization
using dynamic models involves the addition of more parameters. When introducing such parameters,
the structural identifiability of the model must be preserved so that biological insight can be extracted
from the measured data. This is a challenge for large metabolic systems and can only be accomplished
by including as much information as possible to constrain the trajectories of the model solution. Ex-
amples include thermodynamic constraints, constraints on the pool sizes, integration of known kinetic
information, and the fitting of isotopomeric data from as many experiments as possible.

Although a vast amount of kinetic detail is required to build predictive kinetic models, their use within
isotopic transient models is expected to improve and expand phenomenological MFA. It is hoped that
fundamental kinetic studies will once again become a funding priority and through their continuation
support the use of kinetic schemes within realistically sized metabolic models, since the marriage of
kinetics and MFA is predicted to become an ever increasingly important tool in systems biology.
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Production and transfer of metabolites like
ATP and phosphocreatine within cardio-
myocytes is crucial for the robust availability
of mechanical work. In mammalian cardio-
myocytes, mitochondria, the main suppliers
of usable chemical energy in the form
of ATP, are situated adjacent to both the
ATPases near the mechanical apparatus,
and the sarco(endo)plasmic reticulum
Ca2+-ATPase (SERCA) calcium pumps.
Operation of these ATPases requires a high
ATP/ADP ratio, which is maintained by two
parallel energy transfer systems – creatine
kinase (CK) and direct adenine nucleotide
channelling (DANC). Compartmentation
of energy metabolites works to lessen
the impact of dynamic changes in the
availability of usable energy on the
operation of these ATPases, and allows for
a higher phosphorylation potential where it
is required most.

The operational mechanism, structure
and development of the barriers responsible
for energetic compartmentation within
cardiomyocytes have yet to be elucidated
despite intensive research in this area. A
recent article in The Journal of Physiology
by Piquereau et al. (2010) is an extensive
investigation into how the structural and
energetic properties of mouse heart muscle
change during postnatal development.
It includes observations on structural
changes and cellular morphology using
electron microscopy, quantification
of mitochondrial, myofibrillar and
SR proteins, assessment of organelle
functionality, and the quantification of the
energy flux in both the CK and DANC
transfer systems. SERCA function was
measured via calcium mediated tension
generation, while myosin ATPase function
was quantified by measuring rigor tension
development. Total activity of CK and
mitochondrial CK (mi-CK) were estimated.

The article by Piquereau et al. builds
upon a strong research tradition at Inserm
U769, Univ. Paris-Sud, which focuses on
studying how cardiac mechanisms function
in response to both pathological and physio-
logical stimuli. This includes work on
contractile, sarcoplasmic reticulum (SR),
and mitochondrial proteins, membrane
receptors, ion channels and signalling. Their
work has inspired new areas of inquiry into
the function of energy compartmentation
in the heart with various implications
for therapeutic targets to improve both
function and clinical outcomes.

As main results of their recent publication,
Piquereau et al. concluded that the
formation of energetic microdomains
occurs very early in postnatal development,
and that the maturation of cellular
architecture plays an important role in
achieving maximal flexibility in regulation
of ATP production by mitochondria.
They found that the development of
regulatory energetic pathways does not
happen simultaneously. Throughput of
energy transfer between mitochondria and
myosin ATPases is correlated with the
changes in the cytoarchitecture in contrast
to the CK supported energy transfer which
seems to depend on specific localization
and expression of CK. Development
between days 3 and 7 is crucial in
increasing the capacity of energy trans-
fer and involves major remodelling of the
contacts between organelles. The density
of intracellular organelles increases at the
expense of free cytosolic space. Contacts
between mitochondria and longitudinally
oriented myofibrils and between SR and
mitochondria are established to form an
effective intracellular energetic unit. After
the first week (post natum), a different
phase of hypertrophy occurs without major
structural changes to the contacts between
organelles. After 3 weeks, the respiratory
capacity of mitochondria increases, whereas
heart weight to body weight ratio decreases.
The main results of the article are
summarized in Fig. 1.

Considerable effort has been invested by
Piquereau et al. in determining various
changes during cardiomyocyte maturation.
Several questions arise, however, when
comparing the publication with previous
studies. Firstly, in 3-day-old cells, based
on results from electron microscopy and

SR protein expression experiments, the
authors deduce SR not to be present
in quantities high enough to enable
SR Ca2+ content measurement. However,
volume measurements from electron micro-
scopy are known to be very sensitive to
sample preparation procedures, especially
as dimensions of different organelles
can change in different ratios as a
result of fixation. The low level of
SR protein expression in 3-day-old cells
could be explained by results obtained
in embryonic mouse cardiomyocytes
(Takeshima et al. 1998), where SR Ca2+

release channels do not play a major role
in excitation–contraction (EC) coupling
but, instead, are required for cellular Ca2+

homoestasis. Full SR function develops
rapidly in neonates, possibly explaining
both the dramatic increase in SR Ca2+

content between day 3 and day 7 fibres, and
the difficulty the authors had in conducting
the experiment with fibres from 3-day-old
mice.

Secondly, the authors concluded that the
functional coupling of adenine nucleotide
translocase (ANT) and mi-CK (‘functional
activity’ in Piquereau et al. 2010) was
considerably higher in adult myocytes. This
conclusion, however, seems to be based on
misinterpreting the KmADP/KCr ratio graph
(article Fig. 5F). As is evident from the K m

plots in the article (article Fig. 5E), K mCr

is constant throughout the ageing process,
whereas K mADP increases notably in older
fibres. The increase in K mADP/K Cr ratio
stems from the increase of K mADP and is
not, in this case, indicating increases in
mi-CK–ANT coupling nor mi-CK activity.
Rather, it can be interpreted as indication
of an increase in diffusion restrictions to
adenine nucleotides in the cytosol caused
by changes in either mitochondrial outer
membrane or myofibrillar and other cyto-
solic structures, or both (Vendelin &
Birkedal, 2008; Sepp et al. 2010). In order
to measure the coupling between mi-CK
and ANT, different experimental techniques
need to be employed, such as measuring
changes in respiration in response to ATP
titration.

Two observations can be made from
further analysing SR calcium uptake and
rigor tension sensitivity results from the
article (article Figs 2 and 4). By looking at
ratios of values obtained during different

C© 2010 The Authors. Journal compilation C© 2010 The Physiological Society DOI: 10.1113/jphysiol.2010.199901
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conditions, it is possible to eliminate
auxiliary effects and focus on how the
role of energy supply pathways change in
relation to one another as the cell matures.
Two examples are given in Fig. 1 (bottom
row). Firstly, from the difference in rigor
tension levels (�pMgATP50) supported by
CK and ATP energy supply systems (Fig. 1,
line b), it is evident that myosin ATPase
activity supported by CK is consistently
higher than exogenous ATP throughout
the growing process. On the other hand,
the capacity of the CK system to load
the SR increases ∼2 times by day 61
(Fig. 1, line d). We suggest that this is
further evidence of the role of SR trans-
itioning from maintaining Ca2+ homo-
estasis (Takeshima et al. 1998) to playing
an essential role in EC coupling. A possible
explanation for this could be activation of
SR-bound CK by day 21, whereas myo-

fibril bound CK is already active from
day three. Secondly, pMgATP50(DANC) –
pMgATP50(ATP) (Fig. 1, line a) indicates
that after an initial increase caused by
changes in mitochondrial positioning,
myofibrils stay constantly more sensitive
to stimulation via direct channelling
compared to exogenous ATP. At the
same time, however, direct channelling is
able to maintain an increasingly higher
SR load than exogenous ATP (Fig. 1,
line c). This can be explained by
structural changes in the cell, whereby
SR becomes more closely situated with
respect to mitochondria (article Fig. 8D).
Clearly, these interpretations should be
verified through further experiments and
modelling.

Building on results obtained by Piquereau
et al. some directions could be explored in
the future. One matter of interest would

be how the role of glycolysis changes
during maturation. It has been shown
that embryonic mouse heart responds in
a similar manner to inhibition of either
glycolysis or oxidative phosphorylation
and that in early stages of postnatal
development, ATP consumed by ion pumps
is preferentially supplied through glycolysis
(Chen et al. 2007). Additionally, in
1-day-old rabbit, 44% of consumed ATP
comes from glycolysis, whereas by day 7 this
goes down to 7% (Lopaschuk et al. 1992).
In the paper under discussion, the possible
contribution of glycolysis to ATP supply was
not directly addressed. Especially in young
mouse cells, the effect from this could be
considerable and might impact some of the
conclusions of the article.

Another possible area to explore in the
future could be to analyse these results
with the aid of a computational model.

Figure 1. Summary of results from the article by Piquereau et al.
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This would help in further unravelling the
interplay between different factors during
cell maturation, especially in questions
where experimental methods fail to yield
clear results. Different mathematical models
could be compared with statistical methods
in order to determine the role of various
pathways and the existence of metabolite
pools or spatial compartmentation in the
developing cell (Sepp et al. 2010).

In summary, the extensive experimental
work performed in the work by Piquereau
et al. covers various aspects of energy
metabolism and morphological changes
in the cell during maturation. The work
provides new information on postnatal
development of heart energetics in mice –
a popular animal model used for studying
the effects of genetic manipulation.
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Abstract

Background: With the advent of genomic technology, the size of metabolic networks that are subject to analysis
is growing. A common task when analyzing metabolic networks is to find all possible steady state regimes. There
are several technical issues that have to be addressed when analyzing large metabolic networks including
accumulation of numerical errors and presentation of the solution to the researcher. One way to resolve those
technical issues is to analyze the network using symbolic methods. The aim of this paper is to develop a routine
that symbolically finds the steady state solutions of large metabolic networks.

Results: A symbolic Gauss-Jordan elimination routine was developed for analyzing large metabolic networks. This
routine was tested by finding the steady state solutions for a number of curated stoichiometric matrices with the
largest having about 4000 reactions. The routine was able to find the solution with a computational time similar to
the time used by a numerical singular value decomposition routine. As an advantage of symbolic solution, a set of
independent fluxes can be suggested by the researcher leading to the formation of a desired flux basis describing
the steady state solution of the network. These independent fluxes can be constrained using experimental data.
We demonstrate the application of constraints by calculating a flux distribution for the central metabolic and
amino acid biosynthesis pathways of yeast.

Conclusions: We were able to find symbolic solutions for the steady state flux distribution of large metabolic
networks. The ability to choose a flux basis was found to be useful in the constraint process and provides a strong
argument for using symbolic Gauss-Jordan elimination in place of singular value decomposition.

Background
The explosion of tools available to simulate the systems
level properties of biological systems is indicative of the
wide scale uptake of integrative biology. The Systems
Biology Markup Language (SBML) Web site [1] now
lists over 200 packages that make use of their library.
This large number of tools reflects both the wide variety
and abundance of biological data now available to con-
strain biological models as well as the large variety of
simplifying assumptions made to gain insight from this
plethora of data.
At the core of many of these analytical tools is the

strict requirement of conservation of mass for each bio-
logical transformation. Because models of metabolic sys-
tems are typically under-determined, a common task
when analyzing them is to find all possible steady state

regimes when the concentrations of each metabolite do
not change appreciably with time.
With the advent of genomic technology, the size of

networks that are subject to conservation analysis is
growing. This is true also of the amount of data that
constrains biological function, forcing the analysis pro-
cedure to become more involved. This is especially true
when faced with the realities of compartmentation in
large biological systems.
The analysis of systems of chemical reactions can be

traced back to 1921 when Jouguet established the notion
of independence of reactions and the invariants of a sys-
tem of reactions [2]. In the 1960s, with the advent of
computers, routines were written for solving systems of
chemical equations [3]. These were made accessible to
biologists and opened up the possibility for simulating
complex biological systems [4].
It may come as a surprise to many biologists that the

mathematically simple operation of finding a set of
* Correspondence: pearu@sysbio.ioc.ee
Laboratory of Systems Biology, Institute of Cybernetics at Tallinn University
of Technology, Akadeemia tee 21, 12618 Tallinn, Estonia

Schryer et al. BMC Systems Biology 2011, 5:81
http://www.biomedcentral.com/1752-0509/5/81

© 2011 Schryer et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

91 Publication III



parameters that describe the steady state solution of
large chemical systems continues to challenge the limits
of widely used numerical libraries used to perform this
task, and the development of robust computational rou-
tines for this purpose continues to be an active research
area [5]. Sauro and Ingalls reviewed a number of techni-
cal issues related to the analysis of large biochemical
networks and mention the attractiveness of using
rational arithmetic routines that avoid the accumulation
of errors [6]. They point out that this symbolic approach
requires a complete rewrite of the algorithms used to
solve these systems. Programs that perform conservation
analysis exist. A review [6] discusses 13 software
packages that perform stoichiometric conservation ana-
lysis. However, only one of these (emPath by John
Woods) uses rational arithmetic. For analyzing large
metabolic networks the use of numerical algorithms
with floating point arithmetics seems to be considered
the only practical approach, especially because of the
numerical robustness of singular value decomposition
(SVD) algorithm that is an integral part of many analysis
tools. A more recent study uses a Computer Algebra
System for symbolic Metabolic Control Analysis [7].
The author notes that the most pertinent issue with
symbolic computation is its inefficiency and for the ana-
lysis of very large systems more efficient methods and
software need to be developed. Other methods exists to
avoid floating point operations, for example, de Figueir-
edo et al use a linear integer programming approach to
find the shortest elementary flux modes in genome scale
networks [8]. Linear programming was also used to
avoid exhaustive identification of elementary flux modes
as well as problems in computing null-space matrices
for large metabolic networks [9].
It is notable that existing software packages do not

take into account the inherit sparsity of large metabolic
networks [6]. This is most likely because the result of
SVD is generally non-sparse and further analysis would
require non-sparse data structures. So, the use of SVD
based algorithms for large metabolic networks will be
limited by the size of available computer memory. For
example, creating a dense stoichiometric matrix with
4000 reactions takes approximately 100MB of computer
memory and various matrix operations may increase the
actual memory need by a factor of ten. Holding the
same stoichiometric matrix in a sparse data structure is
almost one thousand times more memory efficient
(Recon 1 [10] has a sparsity of 99%, for instance).
To our knowledge, no software package is available

that both makes use of rational arithmetic and accounts
for the inherit sparsity of large metabolic networks. To
use sparse representations of metabolic networks, SVD
based algorithms need to be replaced with alternative
algorithms that would preserve the sparsity property in

their results. To achieve the same numerical robustness
of these algorithms as SVD provides, rational arith-
metics can be used. The decrease of performance due to
the use of rational arithmetics ought to be balanced by
the sparsity of matrices as the number of numerical
operations is reduced considerably. The aim of this
paper is to develop a routine that symbolically finds the
steady state solutions of large chemical systems.
Specifically, we have developed a routine that solves

for the kernel of large stoichiometric matrices using a
symbolic Gauss-Jordan Elimination (GJE) routine. For a
given metabolic network the routine computes steady
state solutions in a form of steady state flux relations
that define how certain fluxes termed as dependent
fluxes vary when the rest of fluxes termed as indepen-
dent fluxes are changed. The list of dependent and inde-
pendent flux variables can be either computed by the
routine or specified by the researcher. The performance
of this method is compared with Singular Value Decom-
position (SVD) implemented in a widely used numerical
routine. In addition, we demonstrate that the usefulness
of solving for the stoichiometric matrix kernel symboli-
cally goes beyond the avoidance of numerical errors.
Specifically, the kernel arrived at using GJE consists of
flux vectors that align with actual metabolic processes
which is useful for applying constraints on steady state
metabolism.

Results
A symbolic GJE routine was developed within Sympy-
Core [11] during the course of this research. This rou-
tine was tested by finding the kernels for a number of
curated metabolic models, and then utilized to calculate
a metabolic flux distribution for the central metabolic
and amino acid biosynthesis pathways of yeast.

Comparison of GJE and SVD
Five large metabolic networks of increasing complexity
were selected to test the performance of symbolic GJE
to that of numerical SVD. These metabolic networks
were formulated in a closed form as described by Famili
and Palsson [12]. To obtain non-trivial solutions to the
steady state equations, the metabolic networks need to
be converted to open form where the boundary condi-
tions are specified via transport fluxes into the network
rather than via external metabolites. For simplicity, we
convert the metabolic networks to open form by intro-
ducing transport fluxes across the network boundary to
metabolites that either appear in exactly one reaction or
are products of polymerization reactions (see Methods).
The kernel of five stoichiometric matrices were solved

for using both numerical SVD and the symbolic GJE
routine with the results given in Table 1. The computa-
tion time for both methods was found to be almost the
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same with SVD being slightly faster. However, we noted
that the numerical SVD routine used effectively two
CPUs (see Methods for details about the test computer
system) while the symbolic GJE routine used only one.
Hence for a number of parallel kernel calculations that
would consume all computer CPUs, the symbolic GJE
routine would be more productive. Figure 1 (top) illus-
trates how the kernel computation time depends on the
size of the network. The computational time increases
exponentially with the size. It should be noted that the
ratio of these exponents depends on a computer system
and underlying computational libraries. Also note that
the complexity of both SVD and GJE algorithms are O
(mn2), that is, increasing the network size by a factor of
10, the complexity should increase by 1000 times. The
actual complexity increase (about 400 for SVD and 640
for GJE) is smaller because of using threaded libraries
for the SVD routine and because of computing with
high sparsity for the GJE routine. The numerical errors
introduced when using SVD were found to be insignifi-
cant for the purpose of biological flux calculations and
confirm the fact of numerical robustness of the SVD
routine. This assessment was made by calculating the
maximum relative flux error εSVD using Equation (11).
Note that this loss of accuracy is in agreement with the
condition number calculated for Vindep in Equation (9);
the number of inaccurate digits is approximately equal
to the order of magnitude of εSVD.
With our test computer system both numerical SVD

and symbolic GJE routines can easily cope with 4000+
reaction networks. To test the limits of these routines,
we repeatedly doubled the sizes of considered networks
by repeating given stoichiometric matrix diagonally
within a doubled stoichiometric matrix and then ran-
domly shuffling the columns. The doubled stoichio-
metric matrix would then correspond to two
independent but identical metabolic networks. The shuf-
fling is needed for modeling the structure of actual
metabolic network models where the order of columns
is arbitrary. The process of increasing the sizes of net-
works was repeated with doubled stoichiometric

matrices until applying our routines were close to
exceeding the resources of our computer system. Figure
1 (bottom) shows the dependence of the memory usage
on the size of the network. The memory usage for com-
puting the kernels increases exponentially with the size.
The two times smaller memory increase when using the
symbolic GJE routine compared to the numerical SVD
routine is explained by the fact that symbolic GJE rou-
tine preserves sparsity while the result of numerical
SVD routine is generally non-sparse. This is illustrated
in Figure 2 where the corresponding kernels from SVD
and GJE algorithms are shown for the example yeast
network (see next Section). For other tested networks
the sparsity of GJE kernels varied in the range 95-99.9%
and the sparsity of SVD kernels in 1-25%.

Application of constraints to the example yeast network
Often one needs to constrain the flux values that are
physiologically meaningful, that is, either they have been
experimentally measured or they must be non-negative
due to the irreversibility of some reactions. We demon-
strate the application of constraints by calculating a flux
distribution for an example yeast network. The meta-
bolic network is given as an SBML file in additional file
1: yeast_example.xml, and is laid out in Figure 3. This
network contains 129 reactions and 118 metabolites,
including 62 metabolites in the cytosol, 29 metabolites
in mitochondria, and 27 metabolites that are external to
the network. Because the list of external metabolites is
known in this example then the system can be con-
verted to open form by removing those rows from the
stoichiometric matrix that correspond to external meta-
bolites. Note that this is our alternative method of open-
ing metabolic networks (see Methods).
The symbolic GJE of the stoichiometric matrix for the
open system provides 91 relations for the dependent
fluxes expressed in terms of 39 independent fluxes. A
full list of reactions, metabolites, and steady state flux
relations is given in additional file 2: yeast_example.pdf.
The corresponding kernel matrix is shown in Figure 2.
The relations are formed from the rows of this matrix.

Table 1 Performance of GJE versus SVD

Model Publ. Species Reactions Flux variables CPU time (s) εSVD ×10-12 Condition number

Orig. Open Dep. Indep. SVD GJE

Example 118 129 156 118 39 0.02 0.03 0.003 15

iPS189 [15] 433 350 482 413 69 0.3 0.4 0.07 31000

iND750 [16] 1177 1266 1561 1162 399 6.2 8.0 6.37 68000

AraGEM [17] 1767 1625 2361 1720 641 19.7 34.2 12.65 3000

iAF1260 [18] 1972 2382 2773 1960 813 30.5 34.3 1.43 2800

Recon 1 [10] 3188 3742 4480 3169 1311 123.5 145.6 32.63 71000

Kernel computation times for numerical SVD and symbolic GJE for the example yeast network given in Figure 3 and five genome-scale metabolic networks. All
techniques are described in Methods. The condition number was calculated for Vindep from Equation (9). The inversion of Vindep is required to directly compare
SVD results with the solution found from GJE. The difference between the results is given by ε SVD in Equation (11).
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Figure 1 Computational resources for computing kernels. The computational time (upper) and memory usage (lower) for computing kernels
of stoichiometric matrices using SVD and GJE algorithms for curated genome-scale networks. The system names correspond to those from Table
1. The squares correspond to SVD while circles to GJE. Numbers in upper legend denote the number of duplicated versions of the same
network (see Results). Note that the computational time increases with increasing network size and the growth rate is roughly the same for both
methods. However, SVD memory usage increases at twice the rate of GJE memory usage.
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The independent fluxes can be selected prior to per-
forming GJE. We compose the set of independent fluxes
from biomass production rates that have been experi-
mentally measured. In total, 26 measured biomass fluxes
taken from Cortassa et al [13] were used to constrain
this network. The table of such exchange fluxes and
their values is given in additional file 2: yeast_example.
pdf. The remaining 13 independent flux variables are
left unspecified which means that the symbolic GJE rou-
tine will choose a viable set of independent fluxes. In
this example these are all internal to the network.
After substituting the biomass production values into

the steady state flux relations, 27 dependent fluxes
become fully specified with 64 relations described by the
13 internal variables. Inspection of this system of equa-
tions (also given in additional file 2: yeast_example.pdf)

immediately reveals which part of the metabolism each
of these 13 variables controls. Each internal variable is
connected to dependent variables via nonzero entries in
the corresponding column of the kernel matrix. The set
of these dependent variables share metabolites and thus
can be considered as one connected sub-network of the
original system. Five of these sub-networks determine
the split between cytosolic and mitochondrial valine,
leucine, alanine, and aspartate biosynthesis via BAT1
and BAT2, the split between LEU4 and LEU9, ALT1
and ALT2, and AAT1 and AAT2. Two determine the
interconversion and transport of glutamine, glutamate,
and oxoglutarate via the split between GLT and GDH.
The remaining six determine: (1) urea cycle flux, (2)
relative production of glycine from either serine or
threonine, (3) the flux of D-Glucose 6-phosphate direc-
ted towards D-Ribulose 5-phosphate, (4) production of
pyruvate by the malic enzyme MAE1, (5) the production
of phosphoenolpyruvate by PCK1, and (6) the relative
production of acetaldehyde to acetyl-CoA from pyru-
vate. Figure 3 gives one flux distribution calculated by
specifying the values for the 26 biomass fluxes and 13
internal fluxes. The values chosen to substitute into the
flux relations are highlighted on the figure.
In addition to constraining the measured independent

variables directly, knowledge about the dependent fluxes
in the example yeast network was used to constrain the
network. We specified the net flux direction for reac-
tions that involved the production of carbon dioxide.
The constraints of measured flux values and the speci-
fied net flux direction of reactions, can be written as a
system of 91 flux relations, 26 measured independent
fluxes, and 17 inequalities. Following this all redundan-
cies were removed using computational geometry tech-
niques described in Methods. The result is a set of five
upper and lower bound conditions for 5 independent
fluxes, given in additional file 2: yeast_example.pdf.

Discussion
It is now computationally practical to find the kernel of
large stoichiometric matrices symbolically. The compu-
tational expense of symbolic GJE was not found to be
overly restrictive with SympyCore [11], the package we
used for analyzing genome-scale metabolic networks.
The kernel obtained using the symbolic approach avoids
numerical errors that may occur when applying numeri-
cal methods. The numerical errors result from the mul-
titude of row operations that are needed to decompose
large stoichiometric matrices [6]. The maximum relative
flux error presented in Table 1 was found to be insignif-
icant for biological flux calculations. However, symbolic
GJE was found to be useful in more ways than avoiding
numerical errors.

GJE SVD

Figure 2 Kernels for the example yeast network. Two kernels of
the stoichiometric matrix of the example yeast network obtained
with SVD (left) and GJE (right) algorithms, respectively. The kernels
define the same steady state solutions but the sparsity of the GJE
kernel allows easier interpretation of these solutions.
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Figure 3 Example yeast network. One flux distribution for the central metabolic and amino acid biosynthesis pathways of yeast. Metabolite
abbreviations, reaction details, and the symbolic flux relations used to calculate this steady state are provided in additional file 2: yeast_example.
pdf. The values of the independent flux variables substituted into the flux relations are set in italic font. The mitochondrial compartment is
separated with a purple boarder and all inter-compartmental transport reactions are given as orange arrows. Amino acid synthesis reactions are
green, and all transport fluxes out of the system are depicted with green cartoon bubbles. The pentose phosphate pathway reactions are given
in red and the urea cycle is shown in brown. Dots are placed next to reactions that are coupled; pink dots indicate the transformation of
glutamate to oxoglutarate, and the blue dot shows the transformation of glutamine to glutamate. Species that occur in more than one place
within one compartment are circled with a dotted blue line.
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Symbolic relationships give an informative representation
of metabolic network structure
There are several technical issues that complicate analy-
sis of large metabolic networks. Among them are
numerical robustness of the algorithm and presentation
of solution to the researcher [5,6]. Those problems are
resolved when using symbolic GJE presented in this
work. While GJE and SVD provide mathematically
equivalent methods of solving for the steady state flux
relations of metabolic networks, there is a difference in
how the solutions are formed. In SVD, steady state solu-
tion is given through a combination of eigenvectors that
often span the entire metabolic network [12]. Those
eigenvectors contain information about the metabolic
network, however extracting and interpreting this infor-
mation is not always trivial and has inspired the creation
of a diverse set of tools and techniques [14]. In contrast,
symbolic GJE gives the researcher an opportunity to
find the set of independent fluxes and relationships
between independent and dependent fluxes. Through
such relationships it is easy to see which dependent
fluxes are influenced by any particular independent flux
and gain insight into the operation of the metabolic
network.
In the example yeast network given in Figure 3, many

different sets of independent fluxes can be used to find a
steady state solution. The GJE routine allows the
researcher to specify which independent fluxes will be
used to form the solution. By choosing biomass produc-
tion rates, one can constrain the operation of the meta-
bolic network to any given set of biomass measurements.
In our example, application of biomass constraints

leaves 13 independent variables that are internal to the
network and define all steady state flux distributions.
We found that these 13 independent fluxes influence
only a specific portion of the metabolism. Each inde-
pendent variable only influences those dependent
fluxes that have non-zero values in its column of the
GJE kernel matrix. This property has potentially far
reaching implications for the physical interpretation of
steady state metabolism in large networks. All nonzero
entries in each column of the GJE kernel define a set
of dependent variables. These variables share metabo-
lites and thus form a sub-network. Sub-networks that
share common dependent variables can be combined
into a larger sub-network. For example, it allows one
to identify sub-networks within the metabolic network
that are linked with shared metabolites and are con-
trolled by sets of independent fluxes. In the example
yeast network two fluxes are needed to describe gluta-
mine, glutamate, and oxoglutarate transport and inter-
conversion while five fluxes control the split between
cytosolic and mitochondrial production of valine, leu-
cine, alanine, and aspartate. The loops within these

sub-networks are determined solely by independent
fluxes that occur within each sub-network.

Applicability of symbolic GJE and technical issues
We found that the computational time of applying sym-
bolic GJE and numerical SVD routines to be similar for
all networks considered. The memory usage of numeri-
cal SVD routine for networks with 6000+ reactions
became close to exceeding memory resources of our test
computer system. With the same memory usage level
GJE routine would be able to analyze a network with
106 reactions, however, this calculation is estimated to
take one year. Even when memory usage will be opti-
mized in the SVD routine, the doubling network size
will quadruple SVD memory usage while GJE memory
usage would only double. This is because GJE algorithm
preserves sparsity.
We did not observe the phenomena of coefficient

explosion that would be typical for GJE algorithm using
rational arithmetics on large matrices. This is explained
because genome-scale stoichiometric matrices are inher-
ently sparse and majority of elements are small integers
such as 1 or -1. In addition, SympyCore [11] minimizes
the number of operations by its pivot element selection
rule (see Methods) to reduce computational time and
this has added benefit of reducing the chance of coeffi-
cient explosion.
The reduced row echelon form of the stoichiometric

matrix is formed by elementary row operations. The
sequence of elementary row operations typically depends
on the original ordering of the rows and columns, which
is arbitrary. However, if one chooses the set of indepen-
dent flux variables, i.e. columns to be skipped in the
reduction process, the same reduced row echelon form
of the matrix is found irregardless of the original order-
ing of the rows and columns. For this to be true, the
columns corresponding to the chosen set must be line-
arly independent. When a viable set of independent flux
variables is unknown or only partially known before-
hand, the GJE routine implemented in SympyCore will
choose the remaining independent flux variables to
complete the matrix reduction process.

Flux analysis in vivo
One of the most challenging tasks for the analysis of
fluxes in vivo is intracellular compartmentation. There
are several levels of compartmentation that ought to be
taken into account in a large scale metabolic model.
They range from the organ level to the sub-cellular
level. The genome-scale metabolic models used in this
text [10] are typical in that they are compartmentalized
into standard intracellular compartments separated by
membrane barriers, such as mitochondria. However,
even smaller compartmental units exist such as
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submembrane space leading to the coupling between the
K-ATP sensitive channel and creatine kinase [19], or
intracellular diffusion barriers grouping ATPases and
mitochondrial oxidative phosphorylation in cardiomyo-
cytes [20-23], and the compartmentation of metabolites
within enzyme systems [24]. These forms of compart-
mentation are often excluded from metabolic models. A
genome-scale model that includes all such smaller com-
partmental units has yet to be formulated and will be
larger. The symbolic GJE routine developed in this
paper would be a suitable tool to analyze such large net-
works due to its efficiency.
Frequently, compartmentation can be analyzed by fully

or partially decoupling the links between metabolites
and reactions in the stoichiometric matrix. However,
concentration gradients within the cell cannot be incor-
porated into a stoichiometric model. This form of com-
partmentation requires the use of reaction-diffusion
models that take into account the three dimensional
organization of the cell [25,26], and the development
and application of specialized techniques such as the
measurement of diffusion coefficient in the cell [27] and
the use of kinetic measurements to estimate the diffu-
sion restrictions partitioning the cell into compartments
[22]. Thus the concentration gradients limit the applica-
tion of stoichiometric modeling to the thermodynamic
level.
Even without resorting to spatial modeling, the analy-

sis of compartmentation remains challenging since more
data is required to constrain the extra degrees of free-
dom introduced when splitting up metabolic pools. A
recent organ level study of human brain [28] discusses
the challenges of both composing an organ level com-
partmentalized model and obtaining the data required
to constrain it. Our analysis of the example yeast net-
work shows that each degree of freedom controls a local
sub-networks of fluxes. By specifying intercompartmen-
tal fluxes to be part of the set of independent fluxes the
influence of compartmentation may be characterized by
a subset of variables making the analysis of compart-
mentation more straight forward.
Functional coupling within enzyme systems is often

neglected in large scale metabolic models. When study-
ing enzyme kinetics, it is often assumed that the distri-
bution of the states of the enzyme remains stationary
and is determined by the availability of metabolites. This
assumption has been applied to study coupled enzyme
systems [29] whose steady state is non-trivial since they
may contain hundreds of transformations. When this
assumption is made, individual mechanistic transforma-
tions can be treated in the same way as chemical reac-
tions. The ability to choose some of these mechanistic
transformations to be part of the set of independent
fluxes would aid in the constraint process. It would also

help one to incorporate enzyme mechanisms into larger
stoichiometric models since the fluxes through the
branches in the enzyme mechanism would be controlled
by a subset of the independent variables and this subset
would not influence remote regions of the metabolism.
Several approaches have been developed to study flux

distributions in vivo without perturbing enzyme func-
tion. Notably, isotope labeling [30] and magnetization
transfer [31]. The dynamic component of the labeling
can be used to reveal compartmental effects such as the
identification of barriers to metabolite transport. How-
ever this approach requires the use of optimization tools
that must scan a high-dimensional space [30]. Recently,
an improved optimization approach was developed that
makes use of a flux coordinate system found using GJE
[32]. Our GJE routine allows for the pre-selection of the
independent variables, and it is anticipated that a well
chosen flux coordinate system would further improve
the application of this optimization procedure.

Different representations of steady state solutions
The goals of constraint based flux analysis are currently
pursued using an increasing number of complimentary
approaches including extreme currents [33], extreme
pathways [34], elementary modes [35,36], minimal gen-
erators [37], minimal metabolic behaviors [38], and
other techniques [39]. In this paper we only applied
symbolic GJE algorithm to carry out Metabolic Flux
Analysis (MFA).
SympyCore can be extended by implementing the

double description method [40] which is an integral part
of Elementary Flux Mode Analysis (EFMA).
Although both MFA and EFMA provide solutions to

the same steady state problem, comparing these solu-
tions must take into account differences in the represen-
tations of the solutions and underlying assumptions in
these methods. While MFA defines a subspace of steady
state flux distributions then EFMA restricts this sub-
space by taking into account of irreversibility of certain
reactions.
Within MFA, to represent a point in such a flux sub-

space, it is convenient to use a linear combination of
the columns of the kernel of the stoichiometric matrix.
Note that such a kernel is not unique: in the SVD
approach the kernel depends on the ordering of reac-
tions as they are used to compose the stoichiometric
matrix; and in the symbolic GJE approach, the kernel
depends on the initial choice of independent and depen-
dent flux variables. Reaction irreversibilities convert to
constraints on the coefficients of the linear combination.
In the case of the SVD kernel, these constraints are dif-
ficult to interpret because of the convolved nature of
the SVD coefficients: change of one coefficient will have
effect to all fluxes. In the case of the GJE kernel, the
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coefficients are fluxes themselves (independent fluxes)
and hence the constraints on the coefficients have a
straightforward interpretation.
Within EFMA, it is mathematically more convenient

to use convex polytope to represent the restricted part
of the flux subspace because the conditions of reaction
irreversibilities directly define the representation. This
approach has given rise to the now widely used notation
of elementary flux modes [41] and extreme pathways
[34] that mathematically speaking are extreme rays of
the convex polytope of thermodynamically feasible
steady state flux distributions. It is interesting to note
that in the case of pointed polytope the steady state flux
distribution can be represented as a conical combination
of elementary flux modes. While the elementary flux
modes are uniquely determined then different combina-
tions of elementary flux modes may define the same
steady state solutions. This is orthogonal to kernel based
representations: steady state solutions can be repre-
sented via different kernels but when fixing a kernel
then the linear combination of its columns uniquely
defines the flux distribution.

Conclusions
A symbolic GJE routine was developed within Sympy-
Core [11] to efficiently calculate the steady state flux
distribution of genome-scale metabolic networks.
Constraints can be applied directly to each indepen-

dent flux. The independent flux variables can be speci-
fied in the symbolic GJE routine to match the measured
data available. In addition, it was demonstrated that
knowledge regarding dependent flux variables can be
used to find limits on the possible ranges of indepen-
dent flux variables.
We found that independent fluxes influence only spe-

cific portions of the metabolism and sub-networks can
be identified from the GJE kernel matrix. This property
has potentially far reaching implications for the physical
interpretation of steady metabolism in genome-scale
metabolic networks.
Note that usage of the symbolic GJE routine does not

introduce numerical errors while numerical SVD rou-
tines do. We estimated the relative flux error introduced
by the numerical SVD routine and concluded that the
numerical errors are insignificant for biological applica-
tions and confirm the numerical robustness of the SVD
routine. Both numerical SVD and symbolic GJE routines
are equivalent with respect to computation time, how-
ever, the memory consumed by numerical SVD routine
increases two times faster than that of the symbolic GJE
routine using sparse data structures.
The main arguments for using symbolic GJE routine

for analyzing large metabolic networks are memory effi-
ciency, numerical robustness, freedom of choosing

different sets of independent fluxes, and the ability to
define sub-networks.
Our results show that symbolic implementation of

relevant algorithms are competitive with highly efficient
numerical algorithms when taking into account the
inherit sparsity of genome-scale metabolic networks.

Methods
In this section we present two alternative procedures to
obtain steady state solutions of possibly large under-
determined metabolic networks. The first approach uses
a symbolic GJE algorithm that guarantees exact solu-
tions and the second approach uses SVD implemented
in a numerical algorithm that ought to give better per-
formance. In addition, we describe a method for apply-
ing constraints to the steady state solution.

Statement of the steady state problem
Every chemical reaction and thus reaction system has
the strict requirement of conservation of mass. A system
of mass balances around each species has the form:

ẋ = Nν, (1)

where ẋ is a length m vector of the time derivative for
each mass density of metabolic species, N is the m × n
stoichiometric matrix that links metabolites to their
reactions via stoichiometry, and ν is a length n vector
that describes the flux through each reaction. For a sys-
tem at steady state with n reactions and m species, the
system of chemical reactions becomes:

Nν = 0. (2)

The number of flux variables that need to be specified
to calculate a viable steady state is f = n - r where r is
the rank of N. Let us denote the vectors of dependent
and independent flux variables as νdep and νindep of
length r and f, respectively. Then with a n × n permuta-
tion matrix P that reorders the columns of N such that
columns corresponding to dependent flux variables
appear earliest, the steady state Equation (2) reads

N1νdep + N2ν indep = 0, (3)

where ν = P
[

νdep

ν indep

]
and N = [N1 N2] PT. Clearly,

when the m × r matrix N1 is regular (m = r and det N1

≠ 0), the relation between νdep and νindep vectors can be
computed directly:

νdep = −N−1
1 N2νindep. (4)

However, for many metabolic networks the stoichio-
metric matrix N may contain linearly dependent rows
(r < m). In addition, ν indep or P are not known in
advance.
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In the following we consider two methods based on
GJE and SVD procedures that solve Equation (2) for the
relation between dependent and independent flux vari-
ables: The general solution is written as:

ν = P
[

νdep

ν indep

]
, (5a)

νdep = Rνindep. (5b)

We identify R as a kernel of the steady state solution
where the columns are flux basis vectors and νindep are
flux coordinates.

Solving the steady state problem via GJE
Solving the steady state problem via GJE is based on trans-
forming the stoichiometric matrix N to a row-echelon
form NGJE where all columns corresponding to dependent
flux variables would have exactly one nonzero element
and Equation (5) can be easily composed (NGJE

1 is identity

matrix and hence R = −NGJE
2 ). The column permutation

matrix P is constructed during the GJE process while
applying the leading row and column selection rules (pivot
element selection). One of the advantage of using GJE is
that it allows one to influence the pivot element selection
rules so that a preferred flux basis for the system will be
obtained. If the selected flux variables cannot form a basis,
the routine will move one or more of the preselected inde-
pendent variables to become dependent.
Note that in numerical GJE algorithms the typical

leading row and column selection rule consists of
choosing a pivot element with largest absolute value for
maximal numerical stability. Symbolic GJE algorithms
that calculate in fractions avoid numerical rounding
errors and can implement more optimal selection rules
that take into account the sparsity of the system. In
SympyCore [11] the leading row and column selection
rule consists of choosing such a pivot element that
minimizes the number of row operations for minimal
computation time.

Solving the steady state problem via SVD
Solving the steady state problem via SVD is based on
decomposing the stoichiometric matrix N into a dot
product of three matrices:

N = Um×m

[
σ r×r 0r×f

0(m−r)×r 0(m−r)×f

][
VT
im f×n

VT
ker r×n

]
, (6)

where u, v = [Vim Vker] are orthogonal matrices and s
is a diagonal matrix with nonzero values on the diago-
nal. The solution to the steady state Equation (2) is

ν = Vkerα, (7)

where a is a f vector of arbitrary parameters. Note
that the SVD approach does not provide a numerically
reliable and efficient way to determine the vectors of
dependent and independent flux variables and in the fol-
lowing we use these in the form of the permutation
matrix P found from the GJE approach:

[
νdep

νindep

]
= PTVkerα =

[
Vdep

Vindep

]
α, (8)

which gives Equation (5b):

νdep = VdepV−1
indepν indep, (9)

where Vindep is a regular f × f matrix.

Processing and analysis of metabolic networks
SBML models of metabolic networks were obtained
from the BiGG database [42]. During the parsing all
floating point numbers were converted to fractional
numbers. All species that did not participate in any
reactions were excluded. Species that are appear as both
a reactant and product, i.e. in polymerization reactions,
were removed from the list of reactants, and an addi-
tional reaction transporting this species across the sys-
tem boundary was added.
Each metabolic network was transformed into open

form using the following rule: if a species participated in
exactly one reaction, a reaction transporting this species
across the system boundary was added. As an alternative
rule used in the example yeast network, if all transport
reactions out of the system are known, then transforma-
tion to open form is accomplished by removing rows for
the species that are external to the system.
Both of these approaches result in equivalent steady

state solutions because adding extra reactions extends
linear pathways that each contain a species that exits the
system. Both approaches were applied to the example
yeast network: external species were removed to calculate
the flux distribution in Figure 3 and additional file 2:
yeast_example.pdf while the algorithm to add extra trans-
port reactions was used to calculate the values in Table 1.

Composing the example yeast network
The example yeast network given in Figure 3 was manu-
ally composed for analyzing carbon isotope dynamics, and
thus excludes metabolites that do not participate in carbon
rearrangement, i.e. cofactors. To simplify the model, Car-
bon 3 of histidine (by InChI carbon number) was assumed
to come from bicarbonate, and not Carbon 2 of ATP.
Similarly, Carbon 1 of methionine was also assumed to
come from bicarbonate, and not 5-Methyltetrahydropter-
oyltri-L-glutamate. In addition, the glyoxylate cycle and
thus the third pathway for producing glycine was removed.
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All relevant details of the network including metabolite
abbreviations, reaction definitions, the steady state solu-
tion, and substituted flux values used to constrain the sys-
tem are given in additional file 2: yeast_example.pdf.
The example yeast network makes use of fictitious

metabolites that link the stoichiometry of coupled reac-
tions. The three pentose phosphate pathway reactions
are broken into two parts each linked with a fictitious
metabolite that represents the carbon skeleton that is
broken off of one metabolite in the first step and trans-
ferred to the next. In the additional file 2: yeast_example.
pdf fictitious metabolite names start with either a capital
X, Y, or Z, followed by a lower case Greek number indi-
cating the number of carbons they contain followed by a
section indicating their use. This latter section is either
the yeast enzyme they participate in, the code for the
metabolite they are derived from, or GOG indicating the
transfer of glutamate to 2-Oxoglutarate.

Applying constraints to the steady state solution
The GJE routine provides a flux based coordinate system
to describe the steady state flux space while SVD pro-
vides an orthogonal coordinate system. When specifying
a flux value that is part of a flux coordinate system, one
dimension from the steady state flux space is removed.
Many different sets of independent flux variables can

form a coordinate system for the steady state flux space.
The GJE routine allows the researcher to specify which
flux variables forms a flux coordinate system and thus
can match the choice of coordinate system with the
experimental data available. The basis vectors formed
from a flux coordinate system are often sparse and tend
to span connected portions of the metabolism.
Let us assume a relation between dependent and inde-

pendent flux variables as given in Equation (5). In addition
to that, let us assume some constraining knowledge about
the dependent variables, for example, the flux positivity for
irreversible reactions: νdepi

≥ 0 for some i Î [1; r]. The
problem being solved is how the constraints on νdep con-
strain the independent flux variables ν indep. The goal is to
determine how the steady state flux space is bounded.
This is useful for many techniques used to analyze the
properties of metabolic networks, for example in optimiza-
tion procedures that must scan the steady state flux space
while avoiding regions that are not feasible [32].
To find the constraints for ν indep, we set up the fol-

lowing system:

νdep = Rνindep, (10a)

Gν indep = b, (10b)

Qνdep ≥ 0, (10c)

where g × f matrix G and g vector b define g mea-
sured data constraints for νindep; q × r matrix Q that
defines q positivity constraints for νdep. The system in
Equation (10) defines a convex polytope and due to the
constraining parts it is redundant. The redundancy can
be removed by using the following geometric computa-
tion algorithm: solve the vertex enumeration problem
for the convex polytope defined by Equation (10) and
then using the obtained vertexes and rays solve the facet
enumeration problem. The solution to the facet enu-
meration problem is a set of inequalities that has no
redundancies and defines the same convex polytope as
Equation (10). Note that the intermediate result of the
vertex enumeration problem (polytope vertexes and
rays) provides convenient information to volume scan-
ning applications.

Computational software and error analysis
The GJE results of this paper are obtained using a
Python package SympyCore [11] that implements both
memory and processor efficient sparse matrix structures
and manipulation algorithms. For solving the steady
state problem we are using the symbolic matrix object
method get_gauss_jordan_elimination_o-
perations that allows one to specify the list of pre-
ferred leading columns (that is, the preferred list of
dependent flux variables) for the GJE algorithm and
after applying the GJE process the method returns a
matrix object that is in row-echelon form. In addition to
that, the method returns also a list of all applied row
operations that can be later efficiently applied to other
matrix objects. This feature is especially useful for add-
ing extra columns to a stoichiometric matrix and then
applying GJE process without the need to recompute
the row-echelon form of the original matrix. One could
use this to add transport reactions to a metabolic net-
work during the constraint process.
The SVD results of this paper were obtained using a

Python package NumPy [43] that provides a function
numpy.linalg.svd for computing SVD of an array object.
NumPy was built with LAPACK and ATLAS (version
3.8.3) libraries that provide a state-of-the-art routine
(dgesdd) for computing SVD.
Since the results obtained with the symbolic GJE rou-

tine are correct and the results of the numerical SVD
routine contain numerical rounding errors then in the
error analysis we are using maximal relative flux error

εSVD = max
i∈[1,r]

∑f
j=1 |RGJE

ij − RSVD
ij |∑f

j=1 max(1, |RGJE
ij |, |RSVD

ij |
, (11)

where RGJE
ij and RSVD

ij are matrix elements in Equation

(5) obtained with GJE and SVD routines, respectively.
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Note that εSVD characterizes relative errors in dependent
flux variables introduced by the numerical SVD routine.
For solving vertex and facet enumeration problems we

use a Python package pycddlib [44], a wrapper of the
cddlib (version 094g) that implements the double
description method [40].
The Python scripts used for computing the results are

available in SympyCore [45]. The performance timings
were obtained on a Ubuntu Linux dual-core (AMD Phe-
nom(tm) II X2 550) computer with 4GB RAM.

Additional material

Additional file 1: SBML model of the example yeast network. This
file is marked up in SBML and contains all of the reactions of the
example yeast network.

Additional file 2: SBML model details. This is a PDF file that
summarizes the details of the model given in additional file 1:
yeast_example.xml and presents all calculated results.
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