
Tallinn 2020

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

MUHAMMAD QASIM IMRAN 182462IVSM

DUAL-ARM MANIPULATION IN ROBOTIC

WAITER USE CASE

Master’s Thesis

Supervisor: Gert Kanter

 PhD

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

MUHAMMAD QASIM IMRAN 182462IVSM

KAHE ROBOTKÄE KASUTAMINE

ROBOT-ETTEKANDJA NÄITEL

Magistritöö

Juhendaja: Gert Kanter

 Doktorikraad

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Muhammad Qasim Imran

05.01.2021

4

Abstract

The aim of the thesis is to develop a dual-arm manipulation capable mobile robot that can

be used as a robotic waiter. In the robotic waiter use case, dual-arm manipulation task is

to lift a single object, a tray, using two manipulators simultaneously while maintaining

the object’s orientation. The robotic waiter then has to move to a serving table to deliver

the object.

The task has been divided into four subtasks of perception, manipulation, navigation and

the integration of these three tasks to make a mobile robotic waiter. Robot Operating

System (ROS) framework has been used for this work. For perception, 3D point cloud

has been processed using PCL (Point Cloud Library) library to compute grasps (pick

points on the object). MoveIt has been used for motion planning of the manipulation

subtask. The goal of simultaneous dual-arm manipulation has been achieved using

trajectory mirror method. ROS navigation stack has been used for indoor navigation of

the robotic waiter. For the integration task, BehaviorTree.CPP library has been used.

The work also describes the main steps required to simulate Phoebe robot in Gazebo.

Testing of the developed solution has been carried out on robot in Gazebo simulator.

This thesis is written in English and is 67 pages long, including 7 chapters, 26 figures and

9 tables.

5

Annotatsioon

Kahe robotkäe kasutamine

robot-ettekandja näitel

Töö eesmärgiks on kahe robotkäega robotile tarkvaralahenduse loomine, mis võimaldab

robotil täita robot-ettekandja funktsiooni. Robot-ettekandja ülesandeks on laualt tõsta üles

kandik, kasutades selleks mõlemat robotkätt. Seejärel, peab robot-ettekandja viima

kandiku serveerimislauale.

Ülesanne on jagatud neljaks osaks: taju, objekti haaramine ja asetamine, navigatsioon

ning integratsioon. Integratsiooni alamülesande eesmärgiks on eelnevalt mainitud kolme

sammu üheks tervikuks lõimimine.

Ülesande lahendamisel on kasutatud robotite operatsioonisüsteemi ROS (ingl Robot

Operating System). Taju arenduses on kasutatud 3D punktipilvede töötlusteeki PCL (ingl

Point Cloud Library), et arvutada objekti haardeid. Liigutamisplaanimine teostatakse

MoveIt teegi abiga. Kahe robotkäe paralleelne juhtimine on saavutatud trajektoori

peegeldamisega. Siseruumides navigeerimiseks on kasutatud ROS navigatsiooniteekide

toel. Eelnevalt loetletud komponentide lõimimiseks on kasutatud BehaviorTree.CPP

teeki.

Töös on muuhulgas ka kirjeldatud peamised sammud Phoebe roboti simuleerimiseks

Gazebo simulaatoriga. Tulemuste valideerimine on teostatud simuleeritud robotiga.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 67 leheküljel, 7 peatükki, 26

joonist, 9 tabelit.

6

List of abbreviations and terms

API Application Peripheral Interface

AMCL Adaptive Monte Carlo Localization

BT Behavior Tree

COLLADA COLLAborative Design Activity

DAE Digital Asset Exchange

FPS Frames Per Second

GLUT OpenGL Utility Toolkit

GPD Grasp Pose Detection

HFSM Hierarchical Finite State Machines

ODE Open Dynamics Engine

OpenCV Open Source Computer Vision

OpenGL Open Graphics Library

PCL Point Cloud Library

RANSAC Random Sample Consensus

ROS Robot Operating System

SLAM Simultaneous Localization And Mapping

SDF Simulation Description Format

SVM Support Vector Machine

URDF Unified Robot Description Format

UVG Universal Vacuum Gripper

UGV Unmanned Ground Vehicle

7

Table of contents

1 Introduction ... 11

1.1 Research Goals .. 11

1.2 Research Questions ... 12

1.3 Organization of the work ... 12

2 Background and Related Works ... 13

2.1 Theoretical Background and Tools .. 13

2.1.1 Perception... 13

2.1.2 Manipulation .. 13

2.1.3 Navigation. ... 13

2.1.4 ROS ... 14

2.1.5 Gazebo ... 18

2.1.6 PCL .. 19

2.1.7 MoveIt .. 19

2.1.8 BehaviorTree.CPP .. 22

2.2 Related Work .. 24

3 Robot Configuration for Simulation ... 26

3.1 Robot Modelling in ROS ... 26

3.1.1 URDF ... 26

3.1.2 URDF configuration for simulation in Gazebo .. 27

3.2 Robotic Hardware to Simulate ... 28

3.2.1 PeopleBot ... 28

3.2.2 Cyton Gamma 1500 .. 29

3.2.3 Flea3 Camera.. 31

3.2.4 Bumblebee2 Stereo Vision Camera ... 32

3.2.5 Xtion PRO LIVE .. 33

3.2.6 Hokuyo LiDAR Scanner ... 33

3.3 ROS Control and controller configuration ... 35

3.3.1 ros_control framework .. 35

3.3.2 Controller configuration for manipulation using MoveIt 36

8

4 Implementation of Robotic waiter .. 39

4.1 Explored methods for single arm Pick and Place ... 39

4.1.1 Grasp pose detection using Simple Grasping package 39

4.1.2 Grasp Pose Detection(GPD) package .. 40

4.2 Selected Method for perception and manipulation ... 42

4.2.1 Implemented Perception Pipeline .. 42

4.2.2 Manipulation pipeline implementation .. 45

4.3 Phoebe indoor navigation using ROS navigation stack 48

4.3.1 Configuration of ROS Navigation stack .. 49

5 Experiments and Results .. 53

5.1 Experimental Setup ... 53

5.2 Perception pipeline test .. 53

5.3 Manipulation Pipeline testing .. 55

5.4 Navigation Pipeline testing .. 57

5.5 Integration testing .. 58

6 Conclusion and Future Work .. 60

6.1 Conclusion .. 60

6.2 Future Work .. 60

7 Summary ... 62

References .. 63

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis... 66

Appendix 2: Code Repository ... 67

9

List of figures

Figure 1. A basic Perception pipeline .. 13

Figure 2. Architecture of Gazebo [2] ... 18

Figure 3. High-Level architecture of MoveIt [6] .. 20

Figure 4: Picture of MoveIt Setup Assistant GUI [6] ... 21

Figure 5. Types of Nodes of BT [10] ... 23

Figure 6. A generic tree structured robot model showing links and joints [21] 27

Figure 7. Picture of Phoebe robot in the research laboratory .. 28

Figure 8. Picture of Cyton Gamma 1500 robot arm [24] .. 29

Figure 9. Picture of Flea3 Camera [25] .. 31

Figure 10. Picture of Bumblebee 2 Camera [26] .. 32

Figure 11. Picture of Xtion PRO LIVE [27] .. 33

Figure 12. Picture of Hokuyo LiDAR [28] .. 34

Figure 13. Overview of relationship between Gazebo, ROS and ros_control [30] 35

Figure 14: GPD output for unfiltered point cloud .. 41

Figure 15: GPD output for filtered cloud ... 41

Figure 16: Original Scene(Left) and Unprocessed point cloud (right) 43

Figure 17: Down-sampled and filtered point cloud (right) ... 43

Figure 18: Point Cloud after Plane segmentation and Euclidean Extraction 44

Figure 19: Handle Location from point cloud .. 45

Figure 20: Pre-grasp Pose of dual-arm group... 47

Figure 21: Pick Operation using dual-arms .. 48

Figure 22: Overview of ROS Navigation Stack [35] .. 49

Figure 23: Cafe World (a), Map of the café world created using SLAM 50

Figure 24: Path Planning using move_base. Red line: global plan, Yellow arc: local plan

 ... 52

Figure 25: Graph of the variation (difference between actual and computed values) in

perception readings ... 54

Figure 26: Trays used for Testing of manipulation pipeline ... 55

10

List of tables

Table 1. Phoebe Specifications [22] .. 29

Table 2. Cyton Gamma 1500 mechanical specifications [24] 30

Table 3. Cyton Gamma 1500 Joint Specifications [24] .. 30

Table 4. Hokuyo Specifications [28] ... 34

Table 5: Perception Pipeline Tests... 54

Table 6: Pick and Place task test data for Tray1 and Tray2 .. 56

Table 7: Path planning and execution test results ... 57

Table 8: Summary of navigation tests.. 58

Table 9: Summary of Integrated testing ... 59

11

1 Introduction

In this era of digitization, robots are performing daily tasks to ease human life. The robotic

manipulation is used to perform numerous tasks such as dishwashing, pick and place,

welding, lifting, etc. The importance of dual-arm robotic manipulation can be easily

understood when it is compared to single-arm manipulation. The dual-arm manipulation

allows a robot to perform its task more efficiently, lift heavier objects, carry out more

complex tasks, or handle delicate things.

A mobile humanoid robotic waiter is required to perform a variety of operations. Some

of these tasks require dual-arm manipulation e.g. carrying an object on a tray from the

kitchen to the customer. Dual-arm manipulation of an object is more complex than its

single-arm counterpart as it requires precise synchronization among the arms’ movement.

Modelling and simulation tools are frequently used in the field of robotics. These tools

can be used for testing and verification of new technologies and algorithms. Since the real

robots are generally expensive and are not readily available for everyone to use, especially

in larger groups like students in a class. Furthermore, the testing of experimental

algorithms on real robots can be costly and time-consuming. Therefore, the simulated

robots are the clear choice in such scenarios.

1.1 Research Goals

The main objective of this work is to develop software for the robot to identify the object

in a 3D environment, pick the object using both the arms, take the object from current

location to a target location while avoiding collisions with the obstacles in the

environment and then place the object at the target location.

The secondary objective is to simulate a specific robot, a customized PeopleBot named

Phoebe, in Gazebo. We will try to explain each step of the process so that this work can

be used as a guide to carry out a similar task on other robots.

12

1.2 Research Questions

This work is carried out to answer the following questions:

1. How to lift the object using two manipulators of Phoebe robot?

2. How to identify the object in a 3D environment for the robotic waiter use case?

3. How to move the Phoebe robot while carrying an object with the manipulators

from one point to another in a controlled environment?

4. How to simulate the Phoebe robot in Gazebo?

1.3 Organization of the work

This work is divided into following parts:

 Background, Related works and Tools: Since this thesis is the integration of

robotic perception, manipulation and indoor-navigation, therefore, in this chapter

the current research in the respective fields will be briefly described. The chapter

also provides an overview of the tools used in this work.

 Robot Configuration for Simulation: This chapter will give an overview of the

robot’s hardware and sensors; it will further explain how to configure the robot

for simulation in Gazebo.

 Implementation of Robotic Waiter: This section will cover object detection

from the 3D point cloud and dual-arm manipulation. It further explains how to

detect and avoid obstacles while moving around in a controlled environment.

 Experiments and Conclusion: The results of different experiments conducted

will be discussed and analyzed in this section.

13

2 Background and Related Works

2.1 Theoretical Background and Tools

2.1.1 Perception

Perception is defined as a way of conceiving something. In the robotics perspective,

perception is the system that enables a robot to understand its environment or be aware

of the surroundings. The system consists of the sensors that scan the environment and

provide data to the robot which is processed based on the functionality of the robot e.g.

object detection and recognition, obstacle detection and avoidance, scene recognition,

gesture understanding. Perception is necessary for a robot to plan, make decisions and

carry out actions. A basic perception pipeline is shown Figure 1.

2.1.2 Manipulation

The process of handling physical objects by a robot is called robotic manipulation e.g.

Pick and Place an object, opening of the door, folding the laundry. Robotic manipulation

is not a trivial computation task as it involves motion planning for robot joints while

avoiding collision with the surrounding object based on forward and inverse kinematics

analysis.

2.1.3 Navigation.

The ability of the robot to move to a goal position is called robotic navigation. Navigation

is an essential part of a mobile robotic waiter. The objective of the navigation system is

to safely move the robot from one point to another. The task of navigation is broadly

Figure 1. A basic Perception pipeline

Data Environment
Sensors:

(RGBD Camera, LiDAR,

LASER)

Algorithms

(Information extraction,

decision making,

interpretation)

14

divided into three subtasks: localization, path planning from source to destination and

path execution.

2.1.4 ROS

ROS stands for Robot Operating System. It is an open-source meta-operating system [1].

It provides hardware abstraction, message-passing between processes, low-level control,

and the implementation of commonly used functionality.

 ROS Concepts:

ROS has three levels of concepts

I. ROS FileSystem Level: FileSystem level is the actual files and folders that are

available in the disk regarding a project. It includes of the following:

a. Packages: In ROS the software is mainly organized in units called

Packages. A package can contain different runtime processes (nodes), a

ROS-dependent library, datasets, configuration files, or anything else that

is usefully organized together. Packages are the most granular thing that

can be built and released.

b. Metapackages: A group of related packages is represented by a

metapackage.

c. Package Manifest: The metadata of a package: including its name,

version, description, license information, dependencies, and other meta

information like exported packages, is provided by Package Manifest. It

is saved in package.xml file.

d. Repositories: A collection of packages which share a common VCS

system. Packages which share a VCS share the same version and can be

released together.

e. Message Types (msg): It defines the structure of the messages used by

the package for sharing data among the processes.

f. Services Types (srv): It defines the structure of request/response services

provided by ROS packages.

15

II. ROS Computation Graph Level: The Computation Graph is the peer-to-peer

network of ROS processes that are processing data together. The basic

Computation Graph concepts of ROS are nodes, Master, Parameter Server,

messages, services, topics, and bags, all of which provide data to the Graph in

different ways.

a. Nodes: The process that performs actual computation are called nodes.

Since ROS is designed to be modular therefore different functionalities of

a robot are implemented in different nodes. In addition to modularity, the

use of several nodes also provides various other benefits to the system.

The fault tolerance of the system increases as crashes are isolated to

individual nodes. Code complexity is reduced in comparison to monolithic

systems. Implementation details are also well hidden as the nodes expose

a minimal API to the rest of the graph and alternate implementations, even

in other programming languages, can easily be substituted.

b. Parameter Server: The Parameter Server is a central location that is used

to store data. Generally, the system configurations are stored on the

parameter server. Nodes can store and retrieve data on the server at

runtime.

c. Messages: Messages are the main mechanism of communication between

the nodes. Each message has a specific type. The default basic message

types provided by ROS are boolean, float, integer or string. However, a

user can create custom complex message types.

d. Topics: Each message shared between the nodes has a specific name

called Topic. The simplest semantics of message sharing between the

nodes is publish/subscribe. A node that produces data, for example, a

sensor or a camera, sends out a message by publishing it to a given topic.

And the node which needs this data subscribes to the topic. Each node can

publish on and subscribe to multiple messages. Multiple nodes can

concurrently publishers and subscribers for a single topic, and a single

node may publish and/or subscribe to multiple topics.

16

e. Services: Although the publish/subscribe model is a very flexible

communication paradigm, it is not appropriate for distributed systems

which need request/reply type of communication. In ROS a Service

provides request / reply type of communication. Each service has two

types of message structures: one for the request and one for the reply. A

server node offers a service under a name and a client uses the service by

sending the request message and awaiting the reply. A service is a blocking

remote procedure call: the client cannot do anything else until it has

received the response from the server.

f. Bags: Bags are a format for saving and playing back ROS message data.

Bags are an important mechanism for storing data, such as sensor data,

that can be difficult to collect but is necessary for developing and testing

algorithms.

g. Actions: An action is an asynchronous request/response type of

communication with the option of cancellation and moderation during

execution. They require an action server and an action client. Due to their

asynchronous and non-blocking nature, actions are used for remote

procedure calls. This allows the client to execute other commands while

its request is being executed by the server. Action server and client use

three types of messages to communicate: goal, feedback and result. The

client sends the ‘goal’ to the server. The server may send feedback to the

client about the current state of the execution and it sends a result message

as upon the completion of the task. The client can cancel the goal if

necessary, for example, if it takes too long or the feedback is negative.

The ROS Master is responsible for the peer-to-peer network of the nodes. It

provides naming and registration services to the nodes. Each node which needs to

publish/subscribe a topic registers with the master. Nodes connect to other nodes

directly; the Master only provides lookup information. Nodes that subscribe to a

topic will request connections from nodes that publish that topic and will establish

that connection over an agreed upon connection protocol. The most common

protocol used in a ROS is called TCPROS, which uses standard TCP/IP sockets.

17

III. ROS Community Level: provides the resources to different communities to

exchange knowledge and software. Its main parts are:

a. ROS Distributions: The installable collections of ROS packages that are

version controlled together e.g. ROS Kinetic and the latest, as of this

writing, ROS Neotic

b. The online resources like ROS wiki and ROS answer provide

documentation and support to the users of the ROS packages

18

2.1.5 Gazebo

The design and development of complex robotics systems can be eased by the use of

simulation tools. These simulators allow developing robotic applications without an

actual device/robot, hence saving cost and time. However, perfect simulation of real-

world environments is impossible with the current technology level, therefore the

simulators use abstraction and models to provide the almost-real environment. Gazebo

is a multi-robot simulator for outdoor and indoor environments, created by Nathan Koenig

and Andrew Howard at the University of Southern California [2]. Gazebo is capable of

simulating robots, sensors and objects in a three-dimensional world. It provides a dynamic

environment that a robot can encounter. The models simulated in Gazebo have mass,

friction, velocity and other simulated physical attributes.

 Architecture

A major feature of Gazebo is that it enables a user to easily create new robots, sensors,

arbitrary objects and actuators. All these objects are called models. Gazebo maintains a

simple API that enables the creation of the models.

A set of models and environmental factors such as gravity and lighting is called a world.

A model consists of at least one body and a number of joints and sensors. A model shares

data with a client through interfaces. A model can have multiple interfaces.

Figure 2. Architecture of Gazebo [2]

19

Gazebo uses ODE (Open Dynamics Engine) to simulate the dynamics and kinematics of

articulated rigid bodies [2]. The physics engine is accessed through an abstraction layer

provided by Gazebo.

Gazebo uses OpenGL and GLUT (OpenGL Utility Toolkit) for the user interface. Gazebo

also uses the free open 3rd party library to import various well-known 3D model formats,

so that the realistic reconstruction of real-world environments is possible.

Since Gazebo realistically simulates robots and environments, the robot software

designed using Gazebo simulation can ideally be directly used on a physical robot.

Unfortunately, this is rarely the case due to simulation inaccuracies.

2.1.6 PCL

PCL is a collection of tools and algorithms designed for processing three-dimensional

data. PCL was released in 2010 under the BSD License. PCL contains a number of

algorithms that can be used in common perception problems like to filter outliers from

noisy data, segmentation of the scene, joining 3D point clouds, extract keypoints and

compute descriptors for object recognition, etc. [3] For simplification of development,

PCL has been divided into different smaller code libraries that can be compiled

separately. This also allows the use of PCL on platforms with reduced computational

capabilities [4].

PCL is used in this thesis because PCL is free, open-source and it is also fully integrated

with ROS [3]. For example, there are conversions from ROS messages to PCL messages

and vice versa. The library version used in the thesis is 1.4.1.

2.1.7 MoveIt

MoveIt is an open-source free-space motion planning framework for ROS. It is an open-

source mobile manipulation software for robots developed at Willow Garage by Ioan A.

Sucan and Sachin Chitta [5]. MoveIt consists of ROS integrated software packages that

provide the capabilities of motion planning for mobile manipulators while avoiding

collision with the surrounding objects. MoveIt can be easily configured for any robot

hence making it user-friendly.

20

 MoveIt Architecture

The following figure shows the high-level system architecture of MoveIt [6]. Move Group

is implemented in a ROS node called move_group. This node integrates the MoveIt core

functionalities like motion planning, planning scene monitoring and collision detection

with ROS through ROS actions.

 MoveIt Configuration

MoveIt provides a GUI based configuration package called “Setup Assistant”. The Setup

Assistant can be used to configure MoveIt for any robot that has a robot model in URDF

format. Using URDF, the Setup Assistant generated an SRDF (Semantic Robot

Description Format) model of the robot. The SRDF file of the robot contains auto-

generated information about the Links of the robot that can never be in collision with each

other along with user-defined Planning groups. Users can select the Kinematics Solver,

end-effector and various valid poses for each motion group. During the setup, the user

Figure 3. High-Level architecture of MoveIt [6]

21

can also add 3D perception capability for motion planning, if the robot has an RGBD

camera or other 3D point cloud sensor.

Figure 4: Picture of MoveIt Setup Assistant GUI [6]

 Motion Planning and Control

MoveIt uses plugin infrastructure which provides the user with the flexibility of using

different combinations of components for motion planning and kinematics solving. By

default, MoveIt uses OMPL (Open Motion Planning Library) [7] for motion planning and

KDL [8] kinematics solver. KDL is numerical inverse kinematics solver provided by

Orocos KDL package. It currently only works for serial chains and follows joint limits

specified in the URDF file of the robot. Due to the plugin style of MoveIt, the user can

integrate different kinematics solvers e.g. IKFast kinematics solver, TRAC-IK [9] solver

or LMA solver [6]. The OMPL has several algorithms for motion planning so the user

can select any of them based on the application. By default, MoveIt uses RRT [7]

(Rapidly-Exploring Random Trees) and RRT* [7] (optimized RRT) algorithms for

manipulation.

MoveIt uses controller_manager to control the motion of the joints. It provides two

options for it: fake motion controller and real motion controller. The fake motion

controller is used only to visualize a trajectory planned by the Planning pipe line while

the real motion controller controls the actual joint of the robot may it be simulated in

Gazebo simulator or a real hardware robot. Each Planning Group needs to have a

22

dedicated controller; however, a single joint can have multiple controllers since it can be

part of more than one planning group.

ROS communication system is used for motion execution, monitoring and control. The

computed execution trajectory is sent to the controller manager using the ROS action.

The control manager uses FollowJointTrajectoryAction action, which is part of ROS

control_msgs package, to request the execution of a required action_goal from MoveIt.

The current status of the trajectory execution is provided through action_feedback

message and the result through action_result message.

2.1.8 BehaviorTree.CPP

BehaviorTree.CPP [10] is a C++ framework developed by Davide Faconti. It is released

under MIT license. It is used to design, execute, monitor and log robotic behaviors using

Behavior Trees [11]. BehviorTree.CPP provides multiple tools to help the user design,

compose and debug robot’s behaviors. State transitions can be recorded on file or be

published in real-time to allow tools such as Groot to visualize them in a human-friendly

way.

A Behavior Tree is a tree of hierarchical nodes that controls the flow of decision and

execution of tasks/actions. Behavior Trees are an alternative to hierarchical finite state

machines (HFSM).

A Behavior Tree (BT) consists of nodes. The nodes which don’t have any child are called

leaves. Leaves are the actual commands sent by BT to the actual system (robot). The

nodes of the tree which are not leaves control the flow of execution.

Nodes are of four types:

 ControlNodes have 1 to N children.

 DecorationNodes have only 1 child.

 ActionNodes are the LeafNode of the tree.

 ConditionNodes are special ActionNodes since they are always atomic and

synchronous. These nodes should not alter the state of the system.

23

 Advantages of Behavior Trees

 Hierarchical Nature of behavior tree (BT) allows the addition of subtrees to make

complex behaviors. It also allows reusing previously created trees.

 The graphical representation of a BT makes it easier to understand the

functionality of the system and the sequence of execution

Figure 5. Types of Nodes of BT [10]

24

2.2 Related Work

In this section, we will briefly mention some of the literature that has been studied for the

implementation of this work. Due to the nature of the work, i.e. dual-arm manipulation,

simulation of the robot and integration of different technologies, the exhaustive review of

the state of the art in each field has not been carried out.

The authors in [12] have discussed the integration of perception and dual-arm

manipulation for an aubergine harvesting robot. Support Vector Machine (SVM) has been

used to detect and localize an aubergine in the picture, the location of the vegetable is

passed to a controller which uses single or dual-arm to harvest it depending upon the

situation of the scene. A novel algorithm has also been proposed to deal with the situations

where the vegetable is partially hidden behind the leaves. In this case, dual-arms

collaborate to harvest the vegetable. One arm removes the leaves from view and the other

moves in to harvest the aubergine. Both arms can also work independently of each other

to harvest two vegetables simultaneously. This work uses dual-arm manipulation, as is

the objective of this thesis, however, the dual-arm collaborative manipulation is not

synchronized.

The authors in [13] have developed a dual-arm mobile robot that can be used in a

departmental store for stocking and disposing of items on the shelves. They have used a

universal vacuum gripper (UVG). They have developed a selection algorithm that

determines whether to use a single arm or both. Both arms are used when the place attitude

of the item needs to be changed. Dual-arm manipulation is used to re-grasp the object

whose orientation needs to be changed. The re-grasping idea of this work could have been

used for this thesis but was later discarded since the orientation of the object was to be

kept constant.

The work in [14] has programmed PR2 as a robotic waiter in the sense that it pushes/pulls

a cart using a single arm as well as a dual-arm. They have implemented a compliance

controller for co-manipulation of the cart with the human operator. They have also

compared the performance of the compliance controller in the trajectory following task

with the operations through joystick teleoperation. It was observed that using co-

manipulation the PR2 was able to complete the task in less time while achieving a similar

accuracy to that of teleoperation. This work was studied as it integrates dual-arm

25

manipulation and navigation however, it differs from the work of this thesis as it involves

human operators.

The authors in [15] have used ROS navigation stack for the simulation of a mobile service

platform. They have used an RGB-D camera, the Microsoft Kinect XBOX 360 with a

turtlebot robot. model for visualization. They have used Gazebo for simulation and

testing. The simulation results were visualized using RViz. Navigation based upon the

RGBD camera proposed in this work has been used for this thesis in addition to LiDAR.

In [16], the authors have used ROS 2D navigation stack with minimal changes for the

implementation of an autonomous mobile robot. They have used Pioneer 3-DX as a

mobile base. They have carried out 2 different experiments with 2 different configurations

of sensors and onboard computer. In the 1st test, they used Raspberry Pi 3 and 2D LiDAR

and in the 2nd experiment, they used Intel NUC with 2D LiDAR and RGBD camera. They

have concluded the robot can avoid objects in their path, or stop in case of unavoidable.

Navigation stack configuration used in this thesis is similar to the work proposed in this

reference.

The authors in [17] have shown the use of ROS and Gazebo for the simulation of a mobile

robot. They have used the ROS navigation stack based on 2D laser finder, cameras and a

SONAR. They show that the algorithms developed for the simulation of an accurate

model of a robot developed in Gazebo can be directly used on the real robot. They have

also discussed 3-D mapping for navigation.

The work in [18] has used ROS and Gazebo for modelling and simulation of an

Unmanned Ground Vehicle (UGV). They used ROS navigation stack for the development

of path planning algorithms in a known and unknown environment.

Study of the above two references has helped the author to better understand the

modelling and simulation of a robot using ROS and Gazebo.

26

3 Robot Configuration for Simulation

3.1 Robot Modelling in ROS

In the absence of a real robot, an accurate and realistic model of a robot is required for

the development and testing of algorithms/software. ROS provides different packages and

tools that assist in modelling of robots such as URDF, RViz, joint state publisher and

robot state publisher [1].

3.1.1 URDF

URDF stands for Unified Robot Description Format. It is an XML format that is used in

ROS to represent a robot model. URDF specification only works for tree structured robots

and cannot be used for parallel robots. Also it does not support the flexible elements [1].

URDF also supports Xacro. Xacro is an XML macro language. It allows repeating

elements of a robot to be defined as a macro. This reduces the file size and brings

modularity in the robot model. In URDF a robot is described by link element connected

together by joint elements.

A link element describes the rigid body of the robot. It contains inertial, visual and

collision properties of the robot. The visual properties include the position, shape, size,

material, color, texture etc. of each link. Since URDF is an XML format each property

has its own XML tag. 3D models developed in COLLADA [19] .dae and STL [20]

formats can be directly used in visual tag. Therefore, the robot models developed in other

CAD tools can be in ROS for better visualization. The inertial properties of a link element

include mass, location of center of mass and rotational inertia matrix. The collision tag is

necessary for simulation of the robot. It also contains the information about the shape of

the robot but it needs not to be exactly like the actual robot but can be approximated by

simpler geometric shapes to reduce processing time for simulations.

A joint element of URDF describes the kinematics and dynamics of each joint of the

robot. Each joint has two mandatory attributes i.e. name and type, and two mandatory

elements i.e. parent link name and child link name. Joint limits for revolute and prismatic

type joints are also mandatory. These limits include effort, lower and upper limits of

motion, and velocity. For simulation some additional properties like friction, and damping

are also required.

27

3.1.2 URDF configuration for simulation in Gazebo

Gazebo uses Simulation Description Format (SDF) for representing robot model, world

and other objects in the simulation. SDF is also an XML format that has additional

information to URDF. To use a URDF in Gazebo some additional tags must be included.

To visualize the colors in Gazebo <gazebo> tag is required for each link element. This

also coverts the .stl files to .dae file if the <mesh> tag has been used with .stl file.

Similarly, the simulated sensors are also added to the links under <gazebo> tag. In

addition to sensors and visuals, Gazebo requires a <transmission> tag for each moveable

joint. The transmission tag is required to actuate the joints of the robot. This will be further

explained in the controller configuration section. Gazebo uses different plugins for

different type of activities and these plugins need to be added in the URDF file of the

robot. For example, to simulate a robot’s controller in Gazebo gazebo_ros_control plugin

is required to be added in the URDF file.

Figure 6. A generic tree structured robot model showing links and joints [21]

28

3.2 Robotic Hardware to Simulate

For this work Phoebe has been used as a target mobile robot to simulate. The fully

integrated Phoebe robot is shown in Figure 7.

The constituent parts of Phoebe are described as follows.

3.2.1 PeopleBot

PeopleBot is a differential-drive mobile robotic platform. It is designed for service and

human interface projects. Some key characteristics of the robot are presented in Table 1

Figure 7. Picture of Phoebe robot in the research laboratory

29

S.No Parameter Value Unit

1 Base Robot Weight 12 (changes with

installed sensors)

Kg

2 Turn Radius 0 cm

3 Swing Radius 33 cm

4 Max. Forward/Backward Speed 0.8 m/s

5 Rotation Speed 150 deg/sec

Table 1. Phoebe Specifications [22]

 Configuration for simulation

PeopleBot has a differential-drive wheel system. Two options are available to control the

motion in simulation: gazebo_ros_diff_drive plugin for Gazebo and

differential_drive_controller package. Both options have been explored and used in this

work, however as the final choice the differential_drive_controller package has been

selected for it can also be directly used with the actual hardware with minimum or no

changes. The parameters of the controller have been configured as per the actual

specifications of the robot. Further documentation of the controller and the parameters

can be found at [23]. The transmission tags for each wheel have also been added in the

URDF.

3.2.2 Cyton Gamma 1500

Phoebe robot has two Cyton Gamma 1500 arms attached to it. Cyton Gamma is a

humanoid robot arm developed by Robai Corporation. It has 7 independent axes (motors)

which provide it kinematic redundancy like that of a human arm.

Figure 8. Picture of Cyton Gamma 1500 robot arm [24]

30

Cyton Gamma 1500 mechanical specifications are given in Table 2.

S.No Parameter Value Unit

1 Total weight 03 Kg

2 Payload at full reach 1200 g

3 Payload at mid reach 1500 g

4 Arm Length (base to tip) 76 cm

5 Arm Reach 68 cm

6 Gripper open range 3.5 cm

7 Max Linear arm speed 45 cm/sec

Table 2. Cyton Gamma 1500 mechanical specifications [24]

The joint specifications for Cyton Gamma 1500 are given in Table 3.

Joint Rotation Range(◦)

Shoulder Roll 300

Shoulder Pitch 210

Shoulder Yaw 210

Elbow Pitch 210

Wrist Pitch 210

Wrist Yaw 210

Wrist Roll 300

Table 3. Cyton Gamma 1500 Joint Specifications [24]

 Configuration for simulation

As mentioned in the URDF section above, each moveable joint of the robot needs to have

a transmission tag in order to be controlled in Gazebo simulator. The transmission

element is an extension to the robot URDF that describes the relationship between an

actuator and a joint. Each transmission element has name attribute and multiple elements

like <type>, <joint> and <actuator>. An example of a transmission for Cyton Gamma

1500 arm is given below:

31

<transmission name="right_arm_shoulder_roll_trans">

 <type>transmission_interface/SimpleTransmission</type>

 <joint name="right_arm_shoulder_roll_joint">

<hardwareInterface>hardware_interface/PositionJointInterface</hardware

Interface>

 </joint>

 <actuator name="right_arm_shoulder_roll_motor">

<hardwareInterface>hardware_interface/PositionJointInterface</hardware

Interface>

 <mechanicalReduction>1.0</mechanicalReduction>

 </actuator>

 </transmission>

3.2.3 Flea3 Camera

The Flea3 camera is mounted on Cyton Gamma 1500 manipulators so that the

manipulator can be moved based on the image from the camera. The physical dimensions

of the camera are 29 x 30 x 30 mm. The camera creates an image 1280 x 900 with a

horizontal FOV of 25.9 degrees and a vertical FOV of 16 degrees.

 Configuration for Simulation

Flea3 Camera is mounted on the manipulators through fixed joints therefore it doesn’t

require a transmission interface. For the simulation in Gazebo, gazebo_ros_camera

plugin has been used. This plugin publishes camera info and the image captured by

camera as sensor_msgs. The parameters of the plugin, e.g. FOV, resolution and focal

length, have been configured as per the actual specifications of Flea3 camera.

An Example of transmission element of URDF

Figure 9. Picture of Flea3 Camera [25]

32

3.2.4 Bumblebee2 Stereo Vision Camera

Phoebe robot has a bumblebee stereo vision camera. This camera can capture 648 x 488

video at 48 FPS.

 Configuration for simulation

The Bumblebee stereo vision camera is mounted on PTU (Pan-Tilt-Unit) in the Phoebe

robot so it is connected through two moveable joints. Two transmission tags have been

added in the URDF for controlling of Pan joint and tilt joint of PTU. For the simulation

in Gazebo, gazebo_ros_multicamera plugin has been used. This plugin synchronizes

multiple camera’s shuggers such that they publish their images together. This plugin is

used for stereo cameras. It publishes the camera info and image as sensor_msgs. The

parameters of the plugin, e.g. FOV, update rate, resolution and focal length, have been

configured as per the actual specifications of Bumblebee2 stereo camera.

Figure 10. Picture of Bumblebee 2 Camera [26]

33

3.2.5 Xtion PRO LIVE

Xtion Pro Live is a 3D camera. The camera uses infrared sensors and adaptive depth

detection technology. Xtion PRO LIVE provides color (RGB) image sensing therefore it

can be used to capture color images. It is also capable to monitor audio in real time. Xtion

Pro Live is installed above Bumblebee2 camera on Phoebe.

 Configuration for simulation

The Xtion Pro Live is attached to PTU of Phoebe robot through a fixed joint hence no

transmission is required. Its orientation is controlled through the joints of PTU. For

simulation in Gazebo, gazebo_ros_openni_kinect plugin has been configured and used.

This plugin simulates Microsoft Kinect, ASUS Xtion Pro and Xtion Pro Live. The plugin

publishes depth, RGB, and IR image streams.

The depth and image streams provided by the plugin were rotated around x and z-axis

therefore a virtual link “xtion_optical_fram” has been added in the URDF to transform

the streams back to accurate rotations.

3.2.6 Hokuyo LiDAR Scanner

Phoebe robot has a LiDAR range finder. This sensor has also been simulated in Gazebo.

Specifications of the sensor are given in Table 4

Figure 11. Picture of Xtion PRO LIVE [27]

34

S.No Parameter Value Unit

1 Total weight 130 g

2 Dimensions 50x50x70 mm

3 Light Source Semiconductor Laser λ=905nm nm

4 Detection Range 30 m

5 Accuracy ±40 mm

6 Scan Angle 270 deg

7 Scan speed 25 ms

8 Angular Resolution 0.25 deg

Table 4. Hokuyo Specifications [28]

 Configuration for simulation

In Phoebe robot the Hokuyo LiDAR is connected to the body of PeopleBot through a

fixed joint. For simulation in Gazebo, gazebo_ros_laser plugin has been configured and

used.

Figure 12. Picture of Hokuyo LiDAR [28]

35

3.3 ROS Control and controller configuration

In order to move each joint in Gazebo, a ROS controller is required. This controller needs

to be compatible with the hardware interface type of each joint. This interface type is

mentioned in the <transmission> tag of each joint. A ROS controller takes the current

state and the required state of the joint as input and calculates the output using a generic

loop feedback mechanism like a PID controller. The output depends upon the

hardware_interface type: effort (force/torque), position, velocity.

3.3.1 ros_control framework

The ros_control framework is a set of ROS packages that include controller interfaces,

controller managers, transmissions and hardware_interfaces. It provides the capability to

implement and manage robot controllers that can be shared within the robotic community.

The main feature of the framework is the Hardware Abstraction Layer, which serves as a

bridge to different simulated and real robots [29]. It also allows for integrating

heterogeneous hardware components transparently. The hardware_interface provides

this abstraction. The controller_manager is responsible for starting, stopping, loading and

unloading of the controllers. The framework also provides several ready-made controllers

for manipulation and mobile robots. The joint_trajectory_controller provided by the

framework is extensively used by position-controlled robots to interface with MoveIt!.

The Gazebo simulator communicates with ROS through ros_control framework.

Figure 13. Overview of relationship between Gazebo, ROS and ros_control [30]

36

 Controllers in ros_control

The ros_controllers package of the ros_control framework provides following built-in

ready to use controllers:

 effort_controllers: Used to control the joint through effort (force)

 position_controllers: Control the joint position

 velocity_controllers: control the velocity of the joint

 joint_trajectory_controllers: It provides the control for executing joint-space

trajectories on a group of joints

3.3.2 Controller configuration for manipulation using MoveIt

As mentioned above, MoveIt uses joint_trajectory_controller for controlling the position

of group of joints therefore, the position_controller/joint_trajectory_controller has been

used for this work. The following steps summarize the process of configuration of

controller:

 In the <transmission> tag of the URDF file use following hardware interface for

all the moveable joints of the robotic arm to be controlled through MoveIt

<hardwareInterface>hardware_interface/PositionJointInterface</hardwareInterface>

 To save the controller’s settings create a .yaml file. This file is generally saved in

config folder of the package. These settings are loaded to the parameter server

through roslaunch. Each manipulation group needs to have a separate controller.

Following is the example of Phoebe’s Right arm controller:

right_arm_controller: #Name of the controller
 type: "position_controllers/JointTrajectoryController"

 joints: #Joints of the right_arm

 - right_arm_shoulder_roll_joint

 - right_arm_shoulder_pitch_joint

 - right_arm_shoulder_yaw_joint

 - right_arm_elbow_pitch_joint

 - right_arm_elbow_yaw_joint

 - right_arm_wrist_pitch_joint

 - right_arm_wrist_roll_joint

 Example of Joint Trajectory Controller

37

 Create a launch file to load the configuration file created in the previous step to

the parameter server. Run the spawner node from controller_manager package

and pass all the controllers of the configuration file as arguments. Following code

listing shows an example:

<node name="controller_spawner" pkg="controller_manager"

type="spawner" respawn="false" output="screen"

args=" joint_state_controller

 left_arm_controller

 right_arm_controller

 left_gripper_controller

 right_gripper_controller

 ptu_controller

 wheels_controller

 "/>

 Now create controllers.yaml file in the robot_moveit_config/config folder. This

file contains the controller configuration of the move groups to be controlled

through MoveIt. Following code listing shows an example from

phoebe_moveit_config package of this work:

controller_list:

 - name: left_arm_controller

 action_ns: follow_joint_trajectory

 type: FollowJointTrajectory

 joints:

 - left_arm_shoulder_roll_joint

 - left_arm_shoulder_pitch_joint

 - left_arm_shoulder_yaw_joint

 - left_arm_elbow_pitch_joint

 - left_arm_elbow_yaw_joint

 - left_arm_wrist_pitch_joint

 - left_arm_wrist_roll_joint

 - name: right_arm_controller

 action_ns: follow_joint_trajectory

 type: FollowJointTrajectory

 joints:

 - right_arm_shoulder_roll_joint

 - right_arm_shoulder_pitch_joint

 - right_arm_shoulder_yaw_joint

 - right_arm_elbow_pitch_joint

 - right_arm_elbow_yaw_joint

 - right_arm_wrist_pitch_joint

 - right_arm_wrist_roll_joint

Example of controller list for MoveIt

Example of loading Controllers using controller_spawner node

38

 In phoebe_moveit_config/launch folder create a

phoebe_moveit_controller_manager.launch.xml file and load the

controllers.yaml to the parameter server. Following is the example:

<launch>

 <!-- loads moveit_controller_manager on the parameter server

which is taken as argument if no argument is passed,

moveit_simple_controller_manager will be set -->

 <arg name="moveit_controller_manager"

default="moveit_simple_controller_manager/MoveItSimpleController

Manager" />

 <param name="moveit_controller_manager" value="$(arg

moveit_controller_manager)"/>

 <!-- loads ros_controllers to the param server -->

 <rosparam file="$(find

phoebe_moveit_config)/config/controllers.yaml"/>

</launch>

Example of Launch file for loading controllers for MoveIt

39

4 Implementation of Robotic waiter

This chapter describes different approaches explored for the execution of the dual-arm

manipulation task using MoveIt and perception pipeline. Configuration of navigation

stack has been elaborated along with the integration of perception manipulation and

navigation pipeline for the robotic waiter use case.

4.1 Explored methods for single arm Pick and Place

There are different ways to pick an object using a robotic manipulator. The simplest is to

use a predefined set of joint values of the robotic arm, calculate the forward kinematics

based on these values and then place the object on that location. This approach is not

useful for any practical purposes, especially for an autonomous robot. The opposite and

more practical approach is to get the position of the object and use inverse kinematics to

calculate the joint values to reach that position. Given the end position and orientation,

also known as pose, of the end-effector of the robotic manipulator the inverse

kinematics(IK) solvers can give different values. So a valid combination of these values

has to be selected to perform a collision free pick and place.

MoveIt provides a pick and place pipeline for single manipulators. This pipeline uses

moveit_msgs::Grasp message for defining various poses and postures involved in the

grasping operation. The most important and complex among these poses include the

grasp_posture. The grasp_posture is the position and orientation of the manipulator’s

end-effector.

Author decided to use MoveIt pick and place pipeline for this work. MoveIt pick and

place pipeline uses the Grasp message which uses grasp_pose as an input. There are

different available open source ROS packages that provide the Grasp Pose. The

following sections briefly describe which packages have been explored during the

implementation of this work and the results obtained during the experiments.

4.1.1 Grasp pose detection using Simple Grasping package

Simple Grasping [31] is an open source package developed by Michael Ferguson. This

package generates end effector pose for grasping. It takes the point cloud data, and the

gripper’s geometry as input and generates a pose for grasping the detected objects. This

40

package has a basic_grasping_perception node that processes the point cloud data,

detects the distinct objects in the point cloud and then generates grasp poses for the end

effector. These end effector poses can then be passed to the MoveIt pick and place

pipeline.

 Experiments with Simple Grasping and results

For using the package, we created a configuration file for our gripper and remapped our

point cloud topic to basic_grasping_perception node’s input topic. This node provides an

action server for detecting “Graspable Objects” FindGraspableObjectsAction. During the

experiments, it was observed that this action server couldn’t properly classify our tray as

a graspable object. The next test was carried out using PR2 playground world that was

used in the tutorial of the package. The package succeeded in identifying the objects but

could not produce any grasp poses for our gripper. The reason assumed was that all the

items were large in size to fit in the gripper. In order to verify this assumption another test

was carried out. In this test a thin rod was used as an object to be grasped, this rod was

detected but no pose was generated for it as well. After these unsuccessful tests, it was

decided to not use this package any further and search for an alternate solution.

4.1.2 Grasp Pose Detection(GPD) package

The GPD [32] is an open source package to detect 6-DOF grasp poses for parallel jaw

grippers in 3D point cloud. This package can be used for new objects without needing

their CAD. It has on average 93% end-to-end grasp success rate for novel objects in dense

clutter. GPD operates in two main steps: first, a large number of grasp candidates are

generated from the point cloud and then each grasp is classified as a viable grasp or not.

This package uses CNN for the generation and classification of the grasps. GPD provides

a ROS wrapper, gpd_ros, that can be used directly in ROS.

 Experiments with gpd_ros

Since this package utilizes CNN, the developers have provided the configuration weights

for the model. These weight configuration files need to be included in the user’s package.

The gripper configuration file has to be updated according to the used gripper. The

package also has two configurable parameters, workspace and num_samples, that can be

used to improve the number of grasps found [33]. The smaller workspace and larger

num_samples improves the number of grasps detected. The package also allows 3D point

cloud processing, like filtration and voxel grid, through rosparam configuration.

41

Following experiments were conducted using this package:

 In the first test unfiltered point cloud was used, containing both the table and tray.

In this test the grasps were generated for both the tray and table.

 In the 2nd test table was filtered out using a pass-through filter of PCL and

provided only tray to the package. In this test, the grasp for all sides of the tray

were generated. The most suitable and desired grasp location for a tray is its

handles, however, the package generated minimum grasps for handles and

majority of the generated grasp were top down which is not suitable orientation to

lift using parallel jaw gripper.

Figure 15: GPD output for filtered cloud

Figure 14: GPD output for unfiltered point cloud

42

 In the 3rd test the body of the tray was filtered out and only handles were used to

generate the grasps. In this case few grasps were generated. But since most of the

tray body was filtered out therefore some of the generated poses were through the

walls of the tray.

The grasps from the 3rd test were passed on to MoveIt pick pipeline and it always failed

to produce a solution. Therefore, this approach was also discarded.

4.2 Selected Method for perception and manipulation

Based upon experiments conducted with the above packages, it was observed that

MoveIt! Pick and Place pipeline is not suitable for our manipulator and gripper.

Therefore, it was decided to implement our own perception pipeline, using PCL, and

manipulation pipeline using MoveIt!.

4.2.1 Implemented Perception Pipeline

The objective of the perception pipeline is to locate the left and right handles of the tray

in 3D point cloud generated by XtionPro Live camera. Following are the main steps of

the perception pipeline

 Transformation of 3D point cloud

The XtionPro Live camera publishes point cloud data as ROS sensor_msgs in its own

reference frame. This data is received by the perception node using a subscriber. In order

to use this point cloud data in PCL and subsequently for manipulation two operations are

required to be performed upon it.

 Reference frame transformation: Since the published data is in camera frame,

it is useful to transform it to robot base frame or world frame so that it can be

easily visualized and used in manipulation. In this work the point cloud is

transformed from xtion_optical_frame to base_footprint.

 Conversion from ROS to PCL: Point cloud from ROS sensor_msgs needs to be

converted to pcl::PointCloud to be used in PCL library.

43

Figure 16: Original Scene(Left) and Unprocessed point cloud (right)

 Down-Sampling and Filtering

The point cloud from the sensor is very dense and heavy for computation therefore it

needs to be down-sampled. Voxel grid filter has been used to down-sample the data. This

filter also removes any noise in the data in the form of NaN.

The down-sampled data is then used to filter out the unnecessary data related to, for

example, ground, etc. and extract the region of interest. Three series filters, one for each

axis, have been used in this work to crop out the table-top and tray.

Figure 17: Down-sampled and filtered point cloud (right)

44

 Plane Segmentation and Euclidean Cluster Extraction

In order to isolate the tray from the table we performed plane segmentation using

RANSAC [34] algorithm. Using the plane segmentation, the table surface was detected

and removed to get the tray was isolated.

The isolated tray cloud is then fed to the Euclidean cluster extraction algorithm. This

process is performed to detect multiple objects from a point cloud. In this work it has

been used to detect the handles of the tray.

 Pose detection of handles

To calculate the location of handles two approaches have been explored. In the first

approach the Euclidean cluster extraction output has been used. The extracted clusters

provided by the algorithm are arranged on the base of the size of each cluster, however

the generated clusters are not the same every time so detecting a cluster as a handle was

not straightforward therefore this approach has not been used in the final solution.

The other approach used the geometry of the tray. Since the handles of the tray are the

outermost parts on either side therefore this information has been used to calculate the

position.

Figure 18: Point Cloud after Plane segmentation and Euclidean Extraction

45

4.2.2 Manipulation pipeline implementation

Since we have decided to use MoveIt as a manipulation interface therefore the

manipulators need to be configured to be integrated with MoveIt.

 Phoebe MoveIt! configuration

MoveIt! Setup Assistant has been used for integrating the manipulators with MoveIt! This

package generates the required configuration and launch files. As MoveIt! uses the

planning groups for motion planning therefore, during the setup of MoveIt configuration

package six planning groups have been created: three for the arms and three for the end

effectors.

 Right Arm group

 Right gripper group

 Left arm group

 Left gripper group

 Dual-arm group: Contains two sub-groups of Right arm and left arm

 Grippers group: Contains two sub-groups of Right gripper and left gripper

The point cloud data from the Xtion Pro Live 3D sensor has also been integrated with

MoveIt!. The point cloud data is used by MoveIt! Planning Interface to update the

Figure 19: Handle Location from point cloud

46

planning scene which is subsequently used during motion planning and collision

detection and avoidance.

 Motion Planning and Execution

MoveIt provides multiple ways to plan motion i.e. Pose goal, joint-space goal and

Cartesian Paths etc. For a Pose goal we need to provide the quaternion, i.e. position and

orientation, of the end effector as a Pose message. Using the perception pipeline we can

get the position of handles of the tray. However, in order to pick the object, we also need

to provide the correct orientation of the end effector. This orientation depends upon the

geometry of the object to be manipulated. In our use case, we want the orientation to be

such that the gripper’s fingers are perpendicular to the handle of the tray so that while

lifting it up it remains horizontal. Therefore, fixed orientation of the end effector has been

selected.

The objective of our manipulation pipeline is to pick and place the tray using the dual-

arm group while keeping it horizontal and without breaking it apart. The motion planning

and IK solving plugins of MoveIt works only for connected chains [5]. However, the

dual-arm group consists of two sub-groups that do not form a chain, therefore, this group

cannot be directly used for motion planning using the Pose Goal function of MoveIt.

There are two possible solutions: use two instances of MoveIt! move_group nodes for

each arm or to come up with a custom solution. The former was not feasible due to the

following reasons:

 it requires double computation resources

 it is very difficult to synchronize both the instances to carry out the task

 IK solvers produce random solution so the arms may not be able to pick the tray

Keeping in view these issues it was decided to solve the task using a custom solution.

 Pick operation using dual-arms

The dual-arm pick operation has been divided into number of steps:

I. Planning pre-grasp pose for a single arm: In the first step we want the arms to

move close to the handles so that the grippers are perpendicular to the handles in

the horizontal axis. The position of the tray’s right side handle, received from the

47

perception pipeline, along with the pre-calculated orientation of the end effector

is sent to MoveIt as pose goal target for calculating pre-grasp pose for right arm

group. If the planning is successful, the move group node returns a plan trajectory

for the right arm.

II. Planning and executing pre-grasp pose for dual-arm: The trajectory received

in step I contains the joint position values for all the joints of the right arm. Since

both right and left manipulators of Phoebe are similar therefore the trajectory

calculated for the right arm can be mirrored for the left arm, provided we negate

the roll and yaw joint values. So we use the end point of the trajectory of the right

arm and mirror it for the left arm with proper sign changing. In this way we have

the final joint positions for dual-arm group to go to the pre-grasp position. We use

the set_joint_value_target method of move_group node to move both arms to the

pre-grasp position simultaneously while both arms follow similar trajectory and

the end effectors have the same orientation.

III. Moving Both arms forward to grasp the handles: Whence the pre-grasp pose

has been achieved successfully by dual-arm group, the grippers are opened and

each arm is moved separately in forward direction using Cartesian path planning.

If both the arms move forward successfully and the both the handles are within

the grippers, then the grippers are closed.

Figure 20: Pre-grasp Pose of dual-arm group

48

IV. Lifting up the tray using the dual-arm group: This is the critical step as we

need both arms to move synchronously. To perform this step, we plan a Cartesian

path in the upward direction for the right arm and then use mirror method to get

the joint values for the left arm and finally use the dual-arm group to lift the tray

up.

 Place Operation using dual-arms

During the place operation, in order to bring the tray down smoothly, the motion needs

to be synchronized. To achieve this, we use a Cartesian path and the mirror method to get

joint values for dual-arm group and place the tray on the table. Once the tray is on the

table, the grippers are opened and each arm is retracted backward individually to pre-

grasp position. From the pre-grasp position, the arms can be brought down individually

or synchronously using the dual-arm group.

4.3 Phoebe indoor navigation using ROS navigation stack

ROS provides a powerful 2D navigation stack that can be used for mobile robots. It

consists of multiple packages like amcl, move_base, global_planner, dwa_local_planner

and costmap_2d. It uses robot odometry, sensor data and goal pose to calculate the

velocity commands for the robot’s mobile base. ROS navigation stack can be used on

differential drive and holonomic wheeled robots only. It requires a laser or 3D sensor for

map building, localization and obstacle avoidance.

Figure 21: Pick Operation using dual-arms

49

4.3.1 Configuration of ROS Navigation stack

The overview of ROS navigation stack is shown in Figure 22

The amcl node of navigation stack implements the Adaptive Monte Carlo Localization

system for moving the robot in 2D against a known map. It uses map, laser scans and the

robot transforms to provide the estimated pose of the robot in the map. This node has a

lot of parameters that need to be configured for proper operation of the node. The

documentation for configuration of the amcl node can be found at [36].

 Creating a map using ROS

The gmapping [1] package of ROS can be used to create a map. This package implements

a laser based SLAM (Simultaneous Localization and Mapping) algorithm as

slam_gmapping node. This node can be used to create 2D occupancy grid map using laser

scan and robot odometry. In order to create the map of the area using SLAM, the robot

needs to be moved in that area. For this work, turtlebot_teleop [1] package has been used

by remapping our robot’s odometry to the node’s odometery input parameters in order to

move the robot. Figure 23 (a) show the Gazebo cafe world that has been used as an indoor

environment for the testing of robotic waiter. Figure 23 (b) depicts the map created using

slam_gmapping node. The obstacles, like tables, and walls of the cafe are shown black in

the map while the unoccupied area is represented by white space.

Figure 22: Overview of ROS Navigation Stack [35]

50

Figure 23: Cafe World (a), Map of the café world created using SLAM

(a)

(b)

51

 Path Planning using LiDAR and 3D Point Cloud

The move_base package is the main package that implements the path planning and

execution tasks of navigation stack. It implements global planning, local planning and

robot steering. The global planner is used to plan the entire path from start to end using

the information from the static map created through SLAM. The local planner uses the

path generated by the global planner, scans the path on runtime, using LIDAR and/or

RGB-D camera, for any obstacle. If it detects any obstacle it creates a new path and steers

the robot to avoid this obstacle. The local planner tries to return to the global plan after

any deviation in the path due to obstacles. Both local and global maps use costmaps to

keep all the information of the map. The costmaps are configured using three

configuration files:

 costmap_common_params.yaml: used by both planners. Contains information

about the sensors to be used for obstacle detection, scan range of the sensors, cost

scaling factor to tune the behavior of planner around obstacles, and geometry of

the robot. In this work we have integrated the LiDAR and XtionPro Live 3D

sensor with navigation stack therefore voxel type map has been used to detect

obstacles. High obstacles like table tops cannot be detected using sensors which

are mounted near the ground therefore the high mounted RGB-D camera

complements the LiDAR sensor.

 global_costmap_params.yaml: used by global planner only. Contains the

base_frame, map_frame and some other parameters.

 local_costmap_params.yaml: used by the local planner only. Contains local

planner window size in addition to the frames. Further details can be found at [37].

52

ROS provides global_planner [38] package that is used as global planner for navigation.

It can be configured to use A* or Dijkstra’s algorithm for path planning. It has different

parameters that need to be configured.

ROS provides various options for the selection of local planner. In this work

dwa_local_planner [39] package has been used. Further documentation and configuration

can be found [39]. Tuning of navigation stack has been carried out as per the guideline

provided in [40].

Figure 24: Path Planning using move_base. Red line: global plan, Yellow arc: local plan

53

5 Experiments and Results

During the development and testing of this work, a number of tests have been carried out.

This chapter will summarize those tests. As the task requires the integration of perception,

manipulation and navigation subtask, each subtask has been tested separately before final

integrated testing.

5.1 Experimental Setup

Following system configuration has been used for the development and testing:

 Computer with Ubuntu 16.04 Xenial

 ROS Kinetic

 MoveIt 1.0

 PCL 1.4.1

 Gazebo 7.1

5.2 Perception pipeline test

The main objective of the perception pipeline is to calculate position, (x, y, z), of tray

handles in the point cloud that is used in the manipulation task as target position. To test

the accuracy of the computed point we need to know the actual values of that point. In

the Gazebo world each link of every element has fixed coordinates. These coordinates,

transformed to robot’s reference frame, have been used as reference values for the testing

of perception pipeline. Lighting conditions, robot and tray positions, and PTU pose have

been kept constant during the tests. During development and testing the perception

pipeline has been tuned by adjusting voxel grid size, Euclidean cluster size and tolerance

and plane segmentation threshold. Following tables shows the results of the tests:

54

Test

No

Left

Handle

Actual

Position

(x, y, z)m

Left handle

Computed Position

(x, y, z)m

Right

Handle

Actual

Position

(x, y, z)m

Right Handle

Computed Position

(x, y, z)m

1

0
.5

6
4

5
,

0
.2

6
2

5
,

0
.7

0
5

0.5692,0.2636,0.6848

0
.5

6
4

5
,

 -
0

.2
7

2
5
,

 0
.7

0
5

0.5646,-0.2755,0.7050

2 0.5691,0.2634,0.7041 0.5645,-0.2756,0.7048

3 0.5692,0.2633,0.6784 0.5709,-0.2761,0.7056

4 0.5692,0.2634,0.6784 0.5708,-0.2762,0.7062

5 0.5692,0.2634,0.6783 0.5642,-0.2761,0.7050

6 0.5693,0.2628,0.6948 0.5644,-0.2763,0.7051

7 0.5694,0.2627,0.6949 0.5642,-0.2765,0.7050

8 0.5694,0.2626,0.6844 0.5643,-0.2767,0.7052

9 0.5695,0.2624,0.6945 0.5641,-0.2769,0.7052

10 0.5695,0.2624,0.6843 0.5626,-0.2802,0.7066

From the graphs with the limited number of tests, in the unchanging test conditions, it can

be seen that there is a significant variation in the output of the perception pipeline. In

order to improve the accuracy of the readings, an average of 3 readings has been used for

the integration.

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

1 3 5 7 9

d
if

f(
m

)

Test No

Left Handle Variations

x_diff

y_diff

z_diff

Table 5: Perception Pipeline Tests

Figure 25: Graph of the variation (difference between actual and computed values) in perception

readings

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

1 3 5 7 9

d
if

f(
m

)

Test No

Right Handle Variations

x_diff

y_diff

z_diff

55

5.3 Manipulation Pipeline testing

The objective of the manipulation pipeline is to pick and place the tray using dual arms

while maintaining its level and avoiding collision with the surrounding objects like table

etc. As previously described, MoveIt has been used in this work. During the development

phase of the work, different motion planners, e.g. PRMstarConfigDefault,

RRTConnectkConfigDefault etc., have been used for single and dual arm manipulation.

Similarly, the default IK Solver KDL as well as IKFast Kinematics Solver have also been

used.

For testing of the manipulation pipeline, two trays with different types of handles have

been used as shown in the following Figure 26. For each tray, different orientations of the

end effector have been used for testing. For the configuration (named Tray2) depicted in

Fig 25 (b) two orientations of the end effector are used and for configuration (Tray1) in

Fig 25(a) one orientation of the end effector.

Figure 26: Trays used for Testing of manipulation pipeline

Since the manipulation pipeline requires the Pose Goal target as input which in turn is

calculated based upon the output of the perception pipeline, therefore, the variations in

the output of the perception pipeline have caused some failures in the pick task of

manipulation.

A total of 30 repetitions of the pick and place task of manipulation pipeline have been

performed for both the tray of Fig 25. No extra obstacle has been added in the planning

scene except the table. The path planning was carried out under fixed orientation

constraint of the end effector for pre-grasp pose. The robot was positioned at a fixed

(a) (b)

56

distance, 57cm, from the table facing directly toward the tray to be lifted. This distance

has to be within the manipulator reach of 68cm. The exact value was selected based on

trial and error method of performing number a of planning tasks. The test results are

summarized in Table 6.

Test

Configuration

No of

Tests

Pass Fail Failure Stage/Reason

Tray1 30 24 6 3 failed due to collision with tray

handles due to inaccuracy of perception

calculations

1 failed during Cartesian path planning

of MoveIt

1 failed due to unequal movement of

arms. Robot orientation was not aligned

with the tray

1 failed during place stage. Tray

collided with table due to extra

downward motion

Tray2 30 17 13 9 failed due to collision with tray

handles due to inaccuracy of perception

calculations

2 failed during Cartesian path planning

of MoveIt

2 failed due to unequal movement of

arms. Robot orientation was not aligned

with the tray.

As can be observed from the above data, the majority of the failures, in each case, were

due to the position reported by the perception pipeline which is based upon the PCL

library. This can be mitigated by recalculating the position of the handles from the pre-

grasp pose by using the wrist-mounted cameras of the manipulators.

Furthermore, the maximum opening range of the gripper of the Cyton Gamma 1500

manipulator is only 3.5cm and the width of handles is approximately 1.2cm. In the case

of tray2, the handles are quite complex, for a robotic manipulation task using this gripper,

as the grippers have to be guided accurately between the 3 sides of the handles to grasp.

This complex handle shape, smaller gripper opening range and the variations in the

computed position caused the higher failure rate for Tray2.

Table 6: Pick and Place task test data for Tray1 and Tray2

57

During the motion of the manipulators, the tray needs to be kept stable. As mentioned in

section 3.3 ROS controllers use PID feedback mechanism to keep the joint stable

therefore the PID values for each joint of simulated manipulator have also been tuned

using rqt Dynamic Reconfigure tool [41].

5.4 Navigation Pipeline testing

For the navigation pipeline, the pass scenario is the collision free motion of robot from

kitchen to the serving table. The testing scene is Gazebo Cafe world as shown in Figure

23. The major part of the implementation of the navigation pipeline is the configuration

of local and global planners. The dwa_local_planner and global_planner using Dijkstra’s

algorithm have been used in this work. The maximum linear velocity, during the tests,

was 1.85 m/sec and the maximum rotation velocity was 2.5 rad/sec.

The objective of the testing is to evaluate the following capabilities:

 Navigation: The ability of the robot to plan and follow a path, for different

conditions. The repeatability has been tested by giving a same goal pose for 10

iterations under same conditions without any additional obstacle. The following

table shows the results. The achieved goal has been read from the robot’s pose in

the Gazebo world.

Test No Goal Pose

(x, y, ϴ)

Achieved Pose

(x, y, ϴ)

1 2.0, 5.25, 1.5708 1.985, 5.215, 1.562

2 1.975, 5.236, 1.554

3 2.05, 5.234, 1.564

4 2.05, 5.271, 1.557

5 1.97, 5.195, 1.552

6 1.98, 5.232, 1.563

7 2.07, 5.274, 1.564

8 2.04, 5.226, 1.557

9 1.98, 5.208, 1.559

10 1.99, 5.262, 1.562

Table 7: Path planning and execution test results

58

 Collision avoidance: Will the robot avoid new obstacles added in the environment

that are not in the static map?

Following table summarizes the test and the results.

Test Configuration No of

Tests

Pass Fail Failure Stage/Reason

Goal between the tables 5 5 0 Nil

Goal too close to the wall 5 0 5 The inflation layer around the walls

forced the robot to stop before the goal.

This is the required behavior, since it

ensures safety against collision with

the walls

Path too close to the table

edge

5 3 2 1 failed. PTU was pointed too high and

the table surface was higher than

LiDAR range. Both sensors could not

detect the obstacle.

1 failed due to high speed, table

surface was detected too late to avoid

the collision

Addition of obstacle in

the path

5 4 1 Robot speed was high and the added

obstacle was close to the robot.

Since some of the tests failed due to the speed of the robot, therefore, the maximum linear

and rotation velocities have been reduced to 0.35m/sec and 1.0 rad/sec respectively.

5.5 Integration testing

After the development and testing of individual components, the same were integrated to

carry out the complete task of robotic waiter: to pick the tray, from kitchen, using both

arms, move across the cafe, while carrying the tray in both arms, to the serving table and

place it there. A total of 20 repetitions have been carried out for the complete task and the

results are summarized in the following table:

Table 8: Summary of navigation tests

59

Test Configuration No of

Tests

Pass Fail Failure Stage/Reason

Locate the handles of the

tray from the point cloud,

pick the tray using both

arms, while stably holding

the tray move to the

serving table and place the

tray.

20 14 6 3 failed due to collision of the

manipulator with tray handles

2 failed during forward motion planning

of right arm

1failed during place operation

Table 9: Summary of Integrated testing

The results show that the proposed system can be used for dual arm manipulation.

However, the system is not very robust as there are two weak links in the proposed

solution that are the apparent cause of most of the failures. The position estimation based

upon the 3D point cloud using PCL is not very accurate. This erroneous position, when

used for motion planning and IK solutions causes failures. Motion planning and IK

solutions themselves fail occasionally.

60

6 Conclusion and Future Work

6.1 Conclusion

 Perception: The perception subtask has been implemented using PCL library. As

can be observed from the test results from the previous chapter, the output of

perception pipeline varies considerably. This output is used in manipulation. In

most of the cases this output is within the limits of gripper range of the

manipulator. When this variation exceeds the limit, it causes failures. In

conclusion, the perception pipeline is good enough to get the approximate pose of

the handles from the point cloud.

 Manipulation: MoveIt has been used for motion planning and IK solution of the

manipulation subtask. The overall performance of manipulation pipeline can be

graded good when the failures due to erroneous input coordinates are taken into

account.

 Navigation: ROS navigation stack has been used for robot navigation in the

simulated indoor environment. Due to the sensor fusion of LiDAR and RGB-D

camera, and low speed of the robot, the navigation stack has shown good

performance.

Based on the results presented in previous chapter, it can be concluded that the

performance of proposed solution is satisfactory in the simulated indoor environment.

However, the solution is not robust. It is very sensitive to errors in perception and also to

the pose of the robot and tray. The errors get magnified during motion planning and IK

solution and cause failures.

6.2 Future Work

The solution developed in this thesis can be extended and improved in multiple directions

as discussed below.

 Perception:

o 2D image processing capability can be integrated with 3D point cloud

processing to improve the accuracy of location estimation.

61

o Object detection and recognition capability can be added so that different

objects can be handled by the robot. This can further be used for automatic

grasp pose generation capability based on the type of recognized object.

 Manipulation

o Automatic grasp pose selection capability for different objects will be

beneficial for object manipulation.

 A GUI (Graphical User Interface) can also be developed that will allow the user

to select different simulation environments, selection of different sensor

combinations for the robot and different robotic platforms as well. This interface

can also be used to select robot speed during the navigation task etc.

62

7 Summary

The main objective of this thesis was to develop a solution for dual-arm manipulation for

a robotic waiter. The development task has been simplified to the use case of picking a

single object using dual-arms simultaneously while maintaining the orientation of the

object, moving the robot to another location, and placing the object

The task has been divided into three steps of locating two pick points on the object from

3D point cloud, lifting the object using both the manipulators simultaneously, and moving

the robot in the indoor environment to the place location. The task has been carried out

using a modular approach of developing individual components separately and then

integrating them to perform as a mobile robotic waiter. The perception and navigation

packages developed during the task can be used independently. The proposed solution

has been developed for the Phoebe robot. Open source tools like ROS, MoveIt, PCL, and

Gazebo have been used for the solution of the task.

The developed solution has been tested in the simulated environment using the Gazebo

simulator. On the basis of the results of these experiments it is concluded that the

developed solution is capable of achieving the required objective. However, the solution

is very sensitive to errors in perception and the relative pose of the robot and tray.

Furthermore, there are certain limitations for solution: it cannot be directly used for the

manipulation of any arbitrary shape object.

63

References

[1] "ROS Documentation," wiki.ros.org, [Online]. Available:

http://wiki.ros.org/Documentation. [Accessed 2020].

[2] A. H. Nathan Koenig, "Design and Use Paradigms for Gazebo, An Open-Source

Multi-robot Simulator," in IEEE/RSJ International Conference on Intellegent

Robots and Systems, Sendai, Janpan, 2004.

[3] R. B. R. a. S. Cousins, "3D is here: Point Cloud Library (PCL)," in 2011 IEEE

International Conference on Robotics and Automation, Shanghai, 2011.

[4] "PCL," [Online]. Available: https://pointclouds.org/documentation/. [Accessed

2020].

[5] I. S. S. C. Sachin Chitta, "MoveIt! [ROS Topics]," IEEE Robotics & Automation

Magazine, vol. 19, no. 1, pp. 18-19, March 2012.

[6] "MoveIt," [Online]. Available: https://moveit.ros.org/documentation. [Accessed

2020].

[7] "OMPL," [Online]. Available: https://ompl.kavrakilab.org. [Accessed 2020].

[8] "KDL," [Online]. Available:

https://www.orocos.org/wiki/Kinematic_and_Dynamic_Solvers.html. [Accessed

2020].

[9] "TRAC-IK," [Online]. Available: http://wiki.ros.org/trac_ik. [Accessed 2020].

[10] "BehaviorTree.CPP," [Online]. Available: https://www.behaviortree.dev/.

[Accessed 2020].

[11] M. C. C. S. a. P. Ö. A. Marzinotto, "Towards a unified behavior trees framework

for robot control," in 2014 IEEE International Conference on Robotics and

Automation (ICRA), Hong Kong, 2014.

[12] R. F. E. N. M. A. P. G.-D.-S. Delia Sepúlveda, "Robotic Aubergine Harvesting

Using Dual-Arm Manipulation," IEEE Access, vol. 8, pp. 2020, doi:

10.1109/ACCESS.2020.3006919., vol. 8, pp. 121889-121904, 2020.

[13] S. K. T. M. T. Y. W. W. Y. O. N. C. N. K. Y. N. I. M. T. S. Ryo Sakai, "A mobile

dual-arm manipulation robot system for stocking and disposing of items in a

convenience store by using universal vacuum grippers fo grasping items,"

Advanced Robotics, vol. 34, pp. 219-234, 2020.

[14] I. R. a. D. O. P. Sven Cremer, "Robotic Waiter with Physical Co-manipulation

Capabilities," in IEEE International Conference on Automation Science and

Engineering (CASE), Taipei, Taiwan, August, 2014.

[15] A. J. Ruchik Mishra, "ROS Based Service Robot Platform," in 4th International

Conference on Control, Automation and Robotics (ICCAR), Auckland, 2018.

[16] J. T. M. R. Sukkpranhachai Gatesichapakorn, "ROS based Autonomous Mobile

Robot Navigation using 2D LiDAR and RGB-D Camera," in 2019 First

64

International Symposium on Instrumentation, Control, Artificial Intelligence, and

Robotics (ICA-SYMP), Bangkok, Thiland, 2019.

[17] T. A. V. K. F. S. Kenta Takaya, "Simulation Environment for Mobile Robots

Testing Using ROS and Gazebo," in 20th International Conference on System

Theory, Control and Computing (ICSTCC), Sinaia, Romania, 2016.

[18] R. L. A. G. I. A. E. M. Maxim Sokolov, "3D modelling and simulation of a

crawler robot in ROS/Gazebo," in 4th International Conference on Control

Mechatronics and Automation, Barcelona Spain, 2016.

[19] "Collada," [Online]. Available: https://www.khronos.org/collada/. [Accessed

2020].

[20] "STL," [Online]. Available: http://www.fabbers.com/tech/STL_Format.

[21] "URDF," [Online]. Available: http://wiki.ros.org/urdf/Tutorials/.

[22] "PeopleBot DataSheet," [Online]. Available:

https://www.generationrobots.com/media/PeopleBot-PPLB-RevA.pdf.

[23] "ros_diff_drive," [Online]. Available: http://wiki.ros.org/diff_drive_controller.

[Accessed 2020].

[24] "CytonGammaDatasheet," [Online]. Available:

https://datasheet.octopart.com/CYTON-GAMMA-1500-Robai-datasheet-

67184669.pdf. [Accessed 2020].

[25] "Flea3Camera," [Online]. Available: https://www.flir.eu/products/flea3-usb3/.

[Accessed 2020].

[26] "BumbleBee," [Online]. Available:

https://www.flir.com/support/products/bumblebee2-firewire/#Overview.

[27] "XtionProLIve," [Online]. Available: : https://www.asus.com/us/3D-

Sensor/Xtion_PRO_LIVE/. [Accessed 2020].

[28] "HokuyoLiDAR," [Online]. Available: https://www.hokuyo-

aut.jp/search/single.php?serial=233. [Accessed 2020].

[29] E. M.-E. W. M. V. P. A. R. T. J. B. D. C. B. M. Sachin Chitta, "ros_control: A

generic and simple control framework for ROS," The Journal of Open Source

Software, 2017.

[30] "Gazebo," [Online]. Available:

http://gazebosim.org/tutorials?tut=ros_control&cat=connect_ros. [Accessed

2020].

[31] M. Ferguson, "Simple Grasping," [Online]. Available:

https://github.com/mikeferguson/simple_grasping. [Accessed 2020].

[32] A. t. Pas, M. Gualtieri, K. Saenko and . R. Platt, "Grasp Pose Detection in Point

Clouds," The International Journal of Robotics Research,, vol. 36, no. 13-14, pp.

1455-1473, 2017.

[33] "GPD_ROS," [Online]. Available: https://github.com/atenpas/gpd_ros/.

[34] R. R.-M. F. Pollefeys, "A Comparative Analysis of RANSAC Techniques

Leading to Adaptive Real-Time Random Sample Consensus," in European

Conference on Computer Vision, 2008.

[35] "move_base," [Online]. Available: http://wiki.ros.org/move_base. [Accessed

2020].

[36] "ROS-AMCL," [Online]. Available: http://wiki.ros.org/amcl?distro=noetic.

[Accessed 2020].

65

[37] "Config Navigation stack," [Online]. Available:

http://wiki.ros.org/navigation/Tutorials/RobotSetup. [Accessed 2020].

[38] "Nav_global_planner," [Online]. Available:

http://wiki.ros.org/global_planner?distro=kinetic. [Accessed 2020].

[39] "Nav_dwa_local," [Online]. Available:

http://wiki.ros.org/dwa_local_planner?distro=kinetic. [Accessed 2020].

[40] K. Zheng, "ROS Navigation Tuning Guide," 2016. [Online]. Available:

https://arxiv.org/abs/1706.09068. [Accessed 2020].

[41] "rqt," [Online]. Available: http://wiki.ros.org/rqt. [Accessed 2020].

66

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Muhammad Qasim Imran

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Dual-Arm Manipulation in Robotic Waiter Use Case”, supervised by Gert

Kanter

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

05.01.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

67

Appendix 2: Code Repository

The software packages developed for this work have been upload to the following

repository:

https://github.com/qasimimran1/robotic_waiter

	Author’s declaration of originality
	Abstract
	Annotatsioon Kahe robotkäe kasutamine robot-ettekandja näitel
	List of abbreviations and terms
	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Research Goals
	1.2 Research Questions
	1.3 Organization of the work

	2 Background and Related Works
	2.1 Theoretical Background and Tools
	2.1.1 Perception
	2.1.2 Manipulation
	2.1.3 Navigation.
	2.1.4 ROS
	2.1.4.1 ROS Concepts:

	2.1.5 Gazebo
	2.1.5.1 Architecture

	2.1.6 PCL
	2.1.7 MoveIt
	2.1.7.1 MoveIt Architecture
	2.1.7.2 MoveIt Configuration
	2.1.7.3 Motion Planning and Control

	2.1.8 BehaviorTree.CPP
	2.1.8.1 Advantages of Behavior Trees

	2.2 Related Work

	3 Robot Configuration for Simulation
	3.1 Robot Modelling in ROS
	3.1.1 URDF
	3.1.2 URDF configuration for simulation in Gazebo

	3.2 Robotic Hardware to Simulate
	3.2.1 PeopleBot
	3.2.1.1 Configuration for simulation

	3.2.2 Cyton Gamma 1500
	3.2.2.1 Configuration for simulation

	3.2.3 Flea3 Camera
	3.2.3.1 Configuration for Simulation

	3.2.4 Bumblebee2 Stereo Vision Camera
	3.2.4.1 Configuration for simulation

	3.2.5 Xtion PRO LIVE
	3.2.5.1 Configuration for simulation

	3.2.6 Hokuyo LiDAR Scanner
	3.2.6.1 Configuration for simulation

	3.3 ROS Control and controller configuration
	3.3.1 ros_control framework
	3.3.1.1 Controllers in ros_control

	3.3.2 Controller configuration for manipulation using MoveIt

	4 Implementation of Robotic waiter
	4.1 Explored methods for single arm Pick and Place
	4.1.1 Grasp pose detection using Simple Grasping package
	4.1.1.1 Experiments with Simple Grasping and results

	4.1.2 Grasp Pose Detection(GPD) package
	4.1.2.1 Experiments with gpd_ros

	4.2 Selected Method for perception and manipulation
	4.2.1 Implemented Perception Pipeline
	4.2.1.1 Transformation of 3D point cloud
	4.2.1.2 Down-Sampling and Filtering
	4.2.1.3 Plane Segmentation and Euclidean Cluster Extraction
	4.2.1.4 Pose detection of handles

	4.2.2 Manipulation pipeline implementation
	4.2.2.1 Phoebe MoveIt! configuration
	4.2.2.2 Motion Planning and Execution
	4.2.2.3 Pick operation using dual-arms
	4.2.2.4 Place Operation using dual-arms

	4.3 Phoebe indoor navigation using ROS navigation stack
	4.3.1 Configuration of ROS Navigation stack
	4.3.1.1 Creating a map using ROS
	4.3.1.2 Path Planning using LiDAR and 3D Point Cloud

	5 Experiments and Results
	5.1 Experimental Setup
	5.2 Perception pipeline test
	5.3 Manipulation Pipeline testing
	5.4 Navigation Pipeline testing
	5.5 Integration testing

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	7 Summary
	References
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis
	Appendix 2: Code Repository

