DOCTORAL THESIS

Area Efficient Design and
Implementation of a Novel
Divider Circuit Block

Udayan Sunil Patankar

TALLINNA TEHNIKAULIKOOL
TALLINN UNIVERSITY OF TECHNOLOGY
TALLINN 2025

TALLINN UNIVERSITY OF TECHNOLOGY
DOCTORAL THESIS
29/2025

Area Efficient Design and Implementation
of a Novel Divider Circuit Block

UDAYAN SUNIL PATANKAR

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Thomas Johann Seebeck Department of Electronics

This dissertation was accepted for the defense of the degree 25/04/2025

Supervisor:

Co-supervisor:

Expert reviewer:

Opponents:

Dr. Ants Koel

Thomas Johann Seebeck Department of Electronics
Tallinn University of Technology

Tallinn, Estonia

Dr. Tamas Pardy

Thomas Johann Seebeck Department of Electronics
Tallinn University of Technology

Tallinn, Estonia

Prof. Emeritus Toomas Rang

Thomas Johann Seebeck Department of Electronics
Tallinn University of Technology

Tallinn, Estonia

Prof. Dr. Serge Dos Santos, Associate Professor (Hab. Dir. Rech.)

INSA Centre Val de Loire, Blois Campus Department of Industrial Systems
Inserm U1253 iBraiN- University of Tours

Tours, France

Prof. Dr. Andras Poppe

Department of Electron Devices

Budapest University of Technology and Economics (BME)
Budapest, Hungary

Defense of the thesis: 28/05/2025, Tallinn

Declaration:

Hereby, | declare that this doctoral thesis is my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology, has not been submitted
for a doctoral or equivalent academic degree.

Udayan Sunil Patankar

signature

Copyright: Udayan Sunil Patankar, 2025

ISSN 2585-6898 (publication)

ISBN 978-9916-80-297-7 (publication)

ISSN 2585-6901 (PDF)

ISBN 978-9916-80-298-4 (PDF)

DOI https://doi.org/10.23658/taltech.29/2025
Printed by Koopia Niini & Rauam

Patankar, U. S. (2025). Area Efficient Design and Implementation of a Novel Divider Circuit
Block [TalTech Press]. https://doi.org/10.23658/taltech.29/2025

https://doi.org/10.23658/taltech.29/2025

TALLINNA TEHNIKAULIKOOL
DOKTORITOO
29/2025

Uudne efektiivne jagamistehte riistvaraline
realisatsioon

UDAYAN SUNIL PATANKAR

Contents

[o) i o0 o] [ToF: | o] o -3 RSN 7
Author’s contributions to the publications........ccccevviiiiiiiii e 8
Abbreviations and tEIMS.....ocui i 9
LISt OF fIGUIES ..ttt sttt s r e et sneennees 12
LISt OF taDIES c.veiiiieete et st aeenaas 13
[N oo [0 4 T] o RO USRS 14
1.1 The scope and the organization of the thesiscccoeviiiiiiiiiiniicneee, 16
1.2 Problem statement and research objectivescocccoviiiiiiiiiiiniciiiee, 17
1.3 Thesis CONTIDULION ...ueiiiiiiiieieiii et ssaee e s sbaeeeens 18
2 Division circuit block — overview of division algorithmscc.cccoeveeiiiieeecciee e, 19
2.1 Importance of division Circuit bIOCKSeeeeiiiiiiiiiie e 19
2.2 Division circuit block taXonomycooviiiiiiiiiiii e 20
2.2.1 Digit recurrence €lass (DRC) ...ccceeicieeeieeriieeieesieeeieesteeesreestee s e e sbeessseeebaeenseeenes 21
2.2.2 Very high radix digit recurrence class (VHRDRC)ccccceevuirirnieneenieenieeniesee e 22
2.2.3 LooK-UP table €lass (LTC)eeeeiiiieeeiieeeciiee e ettt e eette e e stte e e e sate e e eeava e e e stvee e e enraeeeeanaeas 22
2.2.4 Functional iteration class (FIC)cccueeiiiiieeeiiiie ettt e st e 22
2.2.5 Variable 1atency €lass (VLC)cuuiiccuiee ettt ettt et e e st e e e earae e e 23
2.3 HAardWare arChit@CLUIESc.cevuiiiiieeiiie e siee ettt et sbe et sbe e sbeesabeesbeesabaesreesane 23
2.4 Performance improvement teChNIQUESccceeriiiriieniiiiiee e 23
2.5 Summary of comparative @analysiscccerviieiiiniiiieie e 24
P Y Ol g F- o] = gt olo T Vol [F Y [o PSS 30
3 Design methodology — objective, hypothesis, and algorithm for the proposed divider

circuit block implementation ... 31
I8 0 1= 4 SRR 31
302 o V] Yo g 1= [SRR 31
3.3 Introduction t0 the VediC SULIAsc.ceeveeriiieiienieeeee sttt 33
3.3.1 Veshtanam sutra (by 0SCUlation)ccceeeeiiiiieciiee et 33
3.3.2 Lopana-Sthapanabhyam sutra (by elimination and retention).........c..cccccevvvenneen. 33
3.3.3 Aanurupyen sutra (proportionately or by suitable ratio)cccccceeveiieeeiiiee e, 33
3.4 Introduction to the proposed novel USP-Awadhoot divider circuit block................ 34
3.5 Important terms of the USP-Awadhoot divider circuit block.........cccccoevveeeeirirennnenn. 35

3.6 The Awadhoot matrix for iterative circuit elements of the processing circuit stage 37
3.7 The working principle of the proposed novel USP-Awadhoot divider circuit block.. 40

3.8 Summary of the proposed USP-Awadhoot divider realizationcccceeeevereennenn. 46
3.9 Chapter CONCIUSION.......uiiiiieei et e e e e e e e e s eabbar e e e e e e seananaes 47
4 Complex division by Baudhayan-Pythagoras triplet method using a novel USP-
AWAOOT dIVIETiiiiiiiiiiieeeeee et saaeenaes 48
4.1 Complex division by Baudhayan-Pythagorean triplet method using the proposed
USP-AWAAhOOt diVIAEIeiiiiiiiiiiiiei ettt sttt st e s sbaeeeeas 49
4.2 Circuit illustration and state diagram........ccceeeeiiieiciiiiiee e 52
.3 SUMIMIATY iiiiieieieieieieeeseeeseeesesesesese s e se s e s e s e s e sesesesesesasesesesasesasasesssesasesssssssnsesesesesesesesesnsns 56
ViR @l o F- To] 4] g ole] o Vol [U1] [o] o VUSRS PURRNE 57
5 Implementation and performance statisticS.......ccccveeveriiiiieecci e, 58

5.1 Implementation and performance analysis of the USP-Awadhoot divider circuit

DIOCK ettt be e aneeneas 60
5.2 Waveform @analysSis. ...t 67
5.3 Summary of comparative analysiscccccueeeeiiiii i 69
YN ol o F- o] = gl olo T Vol [V 1Y T SRR 75
Conclusion and future Work proSpectsccoceeeveeriiiieieeniicee e 76
REFEIENCES ...ttt st st st sr e b e ettt eaeesneesbeere s 78
ACKNOWIEAGMENTS ...ttt nees 92
LAY o153 1 - ot ST P PO PRUR PSP 93
LUNTKOKKUVBEE ... ettt st et s sr e et esaneenees 95
PN o] 01T e | PP PPPURN 97
APPENAIX 2 .ttt ettt st e bt st e e bt bt e e bt e s be e e bee s beeenbee s beeenneenare 135
APPENAIX 3 ettt ettt et e e st e et e s b et e bee s be e e naeeebeeeneenane 145
PN o 01T o | PP 149
APPENAIX S ettt ettt sttt st e et st e et s bt e bee s beeenaee s beeeneenane 179
PN o 01T o | TSP 189
APPENAIX 7 ottt ettt ettt st e ettt e e bt e s bt e s be e e b e s be e e bt e e beeeneenane 193
CUPTICUIUM VLA .ttt sttt et et ebe e sbe e b e sbeenees 198
EIUIOOKIFIEIAUS ...ttt st esaee e 200

List of publications

The list of the author’s publications, upon which the thesis has been prepared:

Patankar, Udayan.; Koel, Ants, “Review of Basic Classes of Dividers Based on Division
Algorithm” in IEEE Access, Vol. 9, 23035-23069. DOI: 10.1109/ACCESS.2021. 3055735.

Patankar, Udayan; Koel, Ants; Patankar, Sunil; Flores, Miguel, “Area Efficient
Hexadecimal Divider Circuit Implementation Based on USP-Awadhoot Division
Algorithm” in 2021 IEEE International Conference on Engineering, Technology, and
Innovation (ICE/ITMC), 2021, pp. 1-8. DOI: 10.1109/ICE/ITMC52061.2021.9570263.

Patankar, Udayan; Koel, Ants; Patankar, Sunil; Flores, Miguel, “Division Method And
Circuit” in PTC the International Patent System, International Bureau of the World
Intellectual Property Organization, application no.: PCT/IB 2021/054942, submission
no.: 054942, Date: 06 June 2021; published on 15-12-2022, publication no
W02022259009. https://patentscope.wipo.int

Patankar, Udayan; Koel, Ants; Patankar, Sunil; Flores, Miguel, “Novel Data
Dependent Divider Circuit Block Implementation for Complex Division and Area
Critical Applications,” in NATURE Scientific Reports. Sci Rep 13, 3027 (2023).
https://doi.org/10.1038/s41598-023-28343-3.

Author’s contributions to the publications

The author’s contributions to the papers in this thesis were:

During the research, the author aimed to establish common study points for
comparing the various possible division circuit implementations and application
possibilities. After surveying existing solutions, the author analyzed and evaluated
their conversion logic, critical procedures, constraints, and implementation statistics
to determine the optimal option for a given application. In addition, he proposed a
new division algorithm development goal to implement dynamic separate scaling
operations for input operands to save space overhead and eliminate overlapping
conversion logic sections. Furthermore, he drafted the entire manuscript with input
and feedback from co-authors and supervisors.

The author proposed a hexadecimal number system for developing a divider circuit
based on a novel USP Awadhoot digit recurrence division algorithm to improve the
implementation area. He simulated the VHDL code for the proposed divider circuit
using Xilix’s VIVADO and Intel Quartus Prime Lite design tools. He also developed a
table of all possible input combinations to validate its simulation and hardware
implementation. Furthermore, he drafted the entire manuscript with co-authors’
feedback, and published the article under the guidance of supervisors.

The author proposed a divider circuit implementation based on a novel
USP-Awadhoot division algorithm. He designed the finite state machine steps for the
proposed divider implementation and developed the Awadhoot matrix computation
scheme, simulating the VHDL code for hardware implementation. He also drafted
the complete manuscript with co-authors’ feedback, and published the article under
the guidance of supervisors.

This article is the extended version of papers Il and Ill. The author presented
mathematical models for the proposed novel USP-Awadhoot digit recurrence
division algorithm and Baudhayan-Pythagoras triplet algorithm. He proposed the
8-bit, 16-bit, 24-bit, and 31-bit implementations of the novel USP-Awadhoot digit
recurrence division algorithm-based divider circuit. He conducted experiments to
design, simulate, and verify the VHDL code for the proposed 8-bit, 16-bit, 24-bit, and
31-bitimplementations. He designed the truth tables for verifying their performance
and validated the results after simulations and hardware implementations. He also
drafted the complete manuscript, with co-authors’ feedback, and published the
article under the guidance of supervisors.

Abbreviations and terms

ALM Arithmetic and Logical Module

Al Artificial Intelligence

ASP Analog Signal Processing

AGC Automatic Gain Control

AQ Additional Quotient

BN Boron Nitride

C_D, Dividend complex number

C_D, Divisor complex number

cd_enable Complex enable

C_Dgyq USP-Awadhoot Dividend complex number
C_D, USP-Awadhoot Divisor complex number

CLB Configurable Logic Blocks

CLK Clock signal

CMOS Complementary Metal Oxide Semiconductor
CPI Cycles per Instruction

CPU Central Processing Unit

Cc_Q The final quotient complex number

C_Q; Imaginary number coefficient of USP-Awadhoot quotient
C_Q, Real number coefficient of USP-Awadhoot quotient
C_Rem The final remainder complex number
C_Rem; Imaginary number coefficient of USP-Awadhoot remainder
C_Rem, The real number coefficient of USP-Awadhoot remainder
Dy The dividend

D, The divisor

DRC Digit Recurrence Class

DSP Digital Signal Processing

Ec Conduction band energy level

Ev Valence band energy level

e, A small positive fractional value

FD Flag Digit

F,_enable Enable signal for ASP Awadhoot Divider

FIC Functional Iteration Class

FPGA Field Programmable Gate Array

GaN Gallium Nitride

GaSe Gallium Selenide

GDA Goldschmidt Division Algorithm

GD,, Group Dividend

GPU Graphic Processing Unit

GQ The final value of the group quotients

GQ, Individual group quotient

GQ,_4 Previous iteration group quotient

G,Dg, Gross Dividend

GSA Generalized Svoboda algorithm

GSchA Goldschmidt Algorithm

GSEFIC Goldschmidt Series Expansion Type Functional Iteration Class

HAC Hardware Architecture Class

HT High Temperature

IC Integrated Circuit

ICT Information and Communication Technologies

loT Internet of Things

-V Current - Voltage

LTC Look-Up Table Class

Mat_Term1l The first triplet matrix term

Mat_Term2 The second triplet matrix term

MD, Modified Divisor

MIC Many Integrated Cores

MSB Most Significant Bit

ND,, Net Dividend

ND, New Divisor

NRA Newton—Raphson Algorithm

NRDRC Non-Restoring Type Digit Recurrence Class

NRFIC Newton—Raphson Type Functional Iteration Class

NSTA New Svoboda-Tung Algorithm

NSTDRC New Svoboda-Tung Type Digit Recurrence Class

NZC Number of Zeros Cancelled

OFDM Orthogonal Frequency Division Multiplexing

p Redundancy factor

PLA Programmable Logic Array

PQ, Partial Quotient

Q The Quotient

q; The quotient bit from the j iteration

Q_Result Quotient signal

QST Quotient Selection Look-up Table

R Residue

7 Complex number one is termed as x; + y;i

T, Complex number two is termed as x, + y,i

Ry The remainder generated during the calculation of the additional
quotient

RDRC Restoring Type Digit Recurrence Class

Rem_Residue

Remainder signal

The partial remainder of the j** iteration

RNG Random Number Generator

R, Present Remainder

R,_4 Previous Remainder

RST Reset signal

SBD Signed binary digit

SDRC Svoboda Type Digit Recurrence Class
SEA Series Expansion Algorithm

Si Silicon

SiC Silicon Carbide

10

SOC System On Chip

SOl Silicon on Insulator

SRT Sweeney-Robertson-Tocher

SRTDRC SRT Type Digit Recurrence Class

STA Svoboda-Tung Algorithm

STDRC Svoboda-Tung Type Digit Recurrence Class

SVD Singular value decomposition

T _Term The triplet term

TP_Terml The first triplet product term

TP_Term?2 The second triplet product term

TP_Term3 The third triplet product term

TP_Term4 The fourth triplet product term

TSEA Taylor Series Algorithm

TSEFIC Taylor Series Expansion Type Functional Iteration Class
xDy Real number coefficient of Dividend complex number
xD,. Real number coefficient of Divisor complex number
yD, Imaginary number coefficient of Dividend complex number
yD, Imaginary number coefficient of Divisor complex number
Valid_0O/P Computation Completion Acknowledgment

VHRDRC Very High Radix Digit Recurrence Class

VLC Variable Latency Class

VLSI Very Large Scale Integration

11

List of figures

Figure 1. Basic block diagram of the sensor package.......c.cccovveeriienienniieniecnieeeeee, 14
Figure 2. The scope and the organization of the thesis.c.cccoeoiiiiiiiiinienniee, 16
Figure 3. Division algorithm taXonomy.cccceeiiiiiiiiiieiiiee e 21
Figure 4. Functional block diagram of the proposed novel USP-Awadhoot divider. 34
Figure 5. The AWadhoot MatriX......ccccceccuiieiiiiie e e e e e e eae e s ereeeeas 37
Figure 6. Schematic block diagram of the proposed USP-Awadhoot divider. 40
Figure 7. The logic flow state diagram of the proposed USP-Awadhoot divider. 44
Figure 8. Schematic block diagram of the complex divider.c...ccoooeriiiiiienniiiniennee. 50
Figure 9. State diagram of the proposed Baudhayan-Pythagorean Triplet algorithm.... 52

Figure 10. Schematic diagram of the proposed Baudhayan-Pythagorean triplet section of
The COMPIEX AIVIAET. woeeiiiieeee e e 54
Figure 11. Generalized architectural illustration of FPGA building blocks. 59
Figure 12. Logictest bench board.cccooviieieiiii e 60
Figure 13. Test arrangements for the first method.ccooeeeiiiiiciec e, 61
Figure 14. Test arrangements for the second method.cccceeviiiiiiiniiiiennieeeee, 62
Figure 15. Hardware resource Utilization.........cccoueeviienieiniieniecnieeeeeee e 64
Figure 16. Estimated power CONSUMPLION.c.ciiiiiriiieiiieie e 65
Figure 17. Divider cloCK freqQUENCY.coouiiiiieiieriteeeeeet et 65
Figure 18. Clock performance analysis based on the distance between the dividend and
TN IVISON. 1ieiieieecie et sttt e et e s b e s be e s bt e e bt e e be e e s ab e e ateenaaeenaes 67
Figure 19. Waveform reference for initial operating condition............cccccoveeeecieeeiinneennn. 68
Figure 20. Comparative analysis of the proposed USP-Awadhoot divider with the radix-n
(s =To IY S I 1Y/ T =T P PP P PP PPRPTOPPRO 70
Figure 21. Comparative analysis of the proposed novel USP-Awadhoot divider with
different functional diVIdErs.cooiiiiiiiiie e 71

12

List of tables

Table 1. Publications containing the thesis’ contributions.ccooceiiiiiiiiiiiinnennn. 18
Table 2. Summary of a comparative study of different dividers..........ccccceeeviniineennnnnnn. 25
Table 3. Hexadecimal representation of addition.........ccceecveiiieiee e, 39
Table 4. Comparative analysis of the proposed USP-Awadhoot divider and the Xilinx
LogiCORE IP integer divider generator V4.0 (8-bit).....cccceeecvieeeeciereiiieee e 72
Table 5. Comparative analysis of the proposed USP-Awadhoot divider and the Xilinx
LogiCORE IP integer divider generator V4.0 (32-bit).....ccceeecvieeeecieriiieee e 72
Table 6. Summary of the comparison between standalone divider implementations year
2009 [5]. ettt ettt ettt ettt ettt 74
Table 7. Summary of the Taiga soft processor divider implementation comparison year
2009 [5]. ettt ettt ettt ettt r et n e en e 74

13

1 Introduction

Enhancement in the semiconductor industry enables the development of new areas of
work and studies in the fields of signal processing, statistical data analysis, computational
processing, image processing, artificial intelligence, high-performance graphics
rendering systems (such as graphic processing units (GPU)), complex systems on chips,
central processing units, biomedical equipment, fuzzy control, and space engineering
[1-14]. Signal and image processing environments utilize theoretical and applied
mathematics for algorithms and hardware that transform preliminary signals from
natural and artificial sources into constructive data, which is valuable for
application-specific purposes. Figure 1 illustrates the generalized block view of a sensor
package. The sensor package comprises a primary sensing element, input channel
interface, data conditioning/signal processing, signal/data transmission, storage,
reference clock, and power subsystem. The primary sensing element converts a physical
quantity into an electrical signal, generating the required information/data component
and noise. It requires further signal processing and noise cancellation to improve the
quality of sensor signals and extract the relevant properties (such as amplitude,
frequency or spectral content, phase, or timing information) from the varying electrical
signals [14].

Generalized Sensor Package Bias / Reference
Excitation Clock and

Power Timing

Source Source

Data Conditioning /

Primary Sensing\ Signal Processing

L
i Element Input

Physlc?l Ej) / E> Char;mel - Correction and Manipulation

Quantity / Element

Interface
Conversion Noise Cancelation
Element Element
Arithmetic -
ADC Element Operations Quantization

Element

*Addition *Subtraction Data { Signal e
St d
- o [::> Presentation

*Multiplication *Division Transmission

* Resistive
* Capacltive
*Inductive

* Other

Challenges

[—+Area and Physical Challenges
[—+Power Challenges

[—+Technological Challenges

—Time Challenges
Figure 1. Basic block diagram of the sensor package.

Analog filters have several significant disadvantages that affect filter performance,
such as component aging, temperature drift, and component tolerance, with a significant
drawback in the inflexibility of the system response. On the contrary, digital signal
processing (DSP) is adaptive and flexible, with a high tolerance for component aging and
temperature drift. To achieve good results, the DSP system must implement all

14

mathematical operators in a thoroughly optimized way [1]. The evaluation of addition
and multiplication implementations typically falls into the latency range of 1 to 10 clock
cycles. The performance evaluation of division operation implementation typically falls
into the latency range of 10 to 100 clock cycles [15-19], which is also referred to as
‘execution time’. When executing division on n-bit operands, recursive subtraction is
required for n iterations to get the n-bit quotient.

The division operation can be replaced by several methods using iterative approaches,
such as sequential subtraction (numerical iteration applications) and multiplication
(functional iteration applications). Execution time and implementation area are the two
basic parameters of comparison. Existing Dividers can be classified into subtractive
iteration or functional iteration dividers. Digit recurrence dividers were the first to use
successive subtractions, beginning with the least significant bit to calculate the required
quotient. For n-bit operands, the division requires n recursive subtraction iterations to
produce the n-bit quotient. Digit recurrence dividers are easy to implement for larger bit
size operands, due to subtractive iterations, but require extensive conversion time, chip
implementation area, and a critical selection logic and overlapping region for quotient
bit selection. The SRT (Sweeney-Robertson-Tocher) divider, named after the researchers,
is one of the most implemented non-restoring digit recurrence type dividers. SRT divider,
also known as the radix-n divider. The radix number (n) determines how many quotient
bits are calculated in a single iteration. In SRT dividers, the radix size is typically kept small
because increasing the radix not only increases the number of quotient bits generated
per iteration but also significantly complicates the quotient bit selection logic. This
complexity arises from the need to handle a larger set of quotient values and manage
overlapping regions [15, 20-21]. High-radix division algorithms are implemented with
different architectures (e.g., the array structure or cascading architecture) but require a
comparatively higher chip implementation area [15]. Overflow, due to overcompensation,
causes the selection of a quotient digit out of the range [22-25] and is one of the possible
drawbacks of the Svoboda and Svoboda-Tung algorithm-based radix-n divider, that only
requires a few Most Significant Bits (MSBs) of the partial remainder for the quotient
selection logic.

Functional iterations compute the quotient bit based on the estimation or
approximation of series expansion functions, such as the Newton-Rapson [26-27],
Goldschmidt [11, 28-31], and Taylor series [11, 32-35]. These require the selection of a
reciprocal value at the initial iteration of the conversion. It makes the quotient bit
selection logic critical and complex. Nevertheless, the precision of the outcome and the
possibility of error are contingent on the proximity of the initial reciprocal selection and
rounding off the approximate solution values, rather than infinitely precise ones.
The error depends on the accuracy of the initial estimation. Reducing the error requires
introducing a trade-off between the additional chip area for the look-up table and the
latency of the divider. The Goldschmidt algorithm is a second functional iterative divider
that is only effective for floating-point division because it does not provide the remainder
[31]. Taylor series expansion calculates an accurate anti-divisor (reciprocal) to reduce the
error in the least significant bits of quotient precision with a parallel powering section,
causing extra hardware overhead. The upcoming application areas of high-speed
computation, embedded systems, artificial intelligence [3, 7-8, 36-37], complex SOC [9],
vision systems [1, 5-6, 36-37], automotive control [9], telecommunications [36-37],
the internet of things (loT), cryptography [4, 36-37], and many others, offer the
possibility and requirement of further improvements in division implementation.

15

However, a research gap exists for simultaneously utilizing multiple performance
improvement techniques with individual input operands. This provides the possibility of
developing a new technique or combination of a fast or moderate, less complex quotient
selection logic and methods to reduce the chip implementation area. Reducing the
implementation area of the divider block can enhance the overall resource utilization of
the larger system in which it is integrated.

The work presented in this thesis contributes to the significant challenges of quotient
selection logic criticality, the chip implementation area reduction of hardware, and
circuit implementation for the divider, by proposing a novel division algorithm.
The ultimate target of the research is to provide simple quotient selection logic, with
dynamic separate scaling operations for the dividend and divisor, to reduce the
possibility of devastating and costly problems (causing system failure) and reducing the
implementation area for digit recurrence divider implementation. The proposed novel
divider implementation includes a detailed step-by-step conceptualization, outlining
the implementation requirements, and provides resource utilization statistics for further
study and implementation with various applications.

1.1 The scope and the organization of the thesis

A A
(Chapter 1 \ 4 Chapter 2 and 3

A
N\ Chapter 4 \

Proposed

Review
Study

Implementation Results and

Idea Experiments Future Goals

Chapter 1 and 2) Chapter 2,3 and 4

Y

\

Figure 2. The scope and the organization of the thesis.

Figure 2 illustrates the progression of the concept of a new divider toward a physical
implementation and evaluation through its various phases. The scope of the overall
thesis is focused on the research required to provide simple quotient selection logic in
order to reduce the possibility of devastating and costly problems, which could cause
operation failure and reduce the implementation area for digit recurrence divider
implementation.

Chapter 1 presents a detailed study of the major concepts, methods, techniques, and
algorithms regarding divider implementation, including the working idea, requirements,
and implementation statistics. This chapter provides a comprehensive overview
of division operation and explains various ways of classifying division operation
implementation with detailed information on specifications, advantages, and
disadvantages.

Chapter 2 describes the definition and conceptualization of the proposed novel
USP-Awadhoot divider implementation.

Chapter 3 presents a detailed description of the application of the novel
USP-Awadhoot divider for complex number division using the Baudhayan-Pythagorean
triplet algorithm.

Chapter 4 presents a detailed comparative analysis study of the implementation
statistics for resource utilization of the proposed novel USP-Awadhoot divider. Waveform
analysis explains the idle working state of each signal in the novel USP-Awadhoot divider.

16

It also describes the road map for future research activities to refine the implementation
along with different applications.

Appendix 1 to Appendix 7 present publication details, examples of the proposed novel
USP-Awadhoot divider, and functional waveforms.

1.2 Problem statement and research objectives

Division is a derived operation, similar to multiplication. The division operation can be
replaced by several methods using iterative approaches, such as sequential subtraction
(numerical iteration applications) and multiplication (functional iteration applications).
Multiplicative or functional iterative algorithms are faster than subtractive algorithms
but require a larger area on a chip for implementation; whereas, subtractive algorithms
require less area but have longer execution time. The overlapping region refers to a range
of partial remainder values, where the selection of the next partial quotient is ambiguous
due to the step size of a radix-n divider. It could cause a problem in selecting the true
quotient value. Research and implementation have been carried out for alternative
approaches to design a quotient selection logic, which requires only a few MSBs of the
partial remainder. Because of this, the final remainder value cannot be calculated at the
end of the division. Thus, such a divider is limited to the applications that do not require
remainder data.

Many researchers have worked on various performance improvement techniques,
such as pre-scaling operands, carry-save remainders, array implementations, truncations,
cascading, and differential LUTs. However, these performance improvement techniques
have yet to be fully explored to address the research gap of utilizing multiple performance
improvement techniques simultaneously with individual input operands. This approach
could potentially lead to the development of a new technique or a combination of fast
or moderate methods to optimize conversion time and implementation area. Thus,
the main objective of the present research is to provide a combination of multiple
techniques that can be simultaneously utilized on the individual input operands to
achieve an area-efficient solution for divider circuit implementation. This Ph.D. research
focuses on the following research objectives (RO).

e RO1 - Investigate the currently existing divider solutions to understand the different
concepts of conversion logic, conceptualize the trade-off between area, speed,
and power, and propose a suitable option or combination of options to develop
an efficient divider.

e RO2 - Develop the theory of conversion logic to implement dynamic separate
scaling operations for input operands. Here, a separate scaling operation means
simultaneously using different scaling operations for input operands. A partitioning
operation is used for the dividend. An operation composed of “Veshtanam Sutra
(by osculation) and Lopanasthabhyam sutra (by elimination and retention)” is used
for the divisor. ‘Dynamic’ refers to the different values of “Flag Digit (FD) and
Number of Zeros Cancelled (NZC)”, used in Veshtanam Sutra (by osculation) and
Lopanasthabhyam sutra (by elimination and retention), depending on the
combination of input operands.

e RO3 - Divider algorithm formulation to reduce the criticality of conversion logic by
eliminating overlapping regions in quotient selection.

e RO4 - Implement the divider based on the formulated algorithm, and improve the
area requirements to compose the operand-dependent divider circuit design.

17

1.3 Thesis contribution

The main objective of this doctoral dissertation is to explore the research gap in the
simultaneous use of multiple performance enhancement techniques with individual
input operands, aiming to design and implement a divider circuit block with reduced
area. It also intends to provide a solution, based on the divisor and the dividend
relationship, that improves the quotient bit calculation logic and avoids rounding-off
errors. As stated before, this Ph.D. research work relate to the derivation of a new
algorithm for reduced area implementation of the divider circuit block. The design is
developed by simulating the proposed approach and cross-verifying it by performing
regular sequential and pseudo-random performance analyses against standard result

tables generated by simulations and the theoretical study of the proposed idea. Table 1

summarizes the thesis contributions, in relation to the research papers. The novelty and

main contributions of the Ph.D. thesis are as follows:

e In association with RO1, RO2, RO3, and RO4, this thesis contributes to the
development of a novel algorithm for implementing a divider circuit block.
The innovative concept of dynamic separate scaling operations for the dividend and
divisor reduces resource requirements, resulting in a divider circuit block with a low
area footprint.

e In association with RO2, RO3, and RO4, | developed an easy Group Quotient (GQ,,)
value selection logic in the proposed divider circuit block based on the unique
relation derived between Dividend Groups (GD,), Modified Divisor (MD,.), and Flag
Digit (FD) without any critical overlapping.

e Inassociation with RO2, RO3, and RO4, | developed a clear process for selecting the
final quotient based on the Group Quotient (GQ,,), Partial Quotient (PQ,), and
Additional Quotient (AQ) values without critical overlapping regions.

e In association with RO2 and RO3, | implemented a complex divider based on the
Baudhayan-Pythagorean triplet algorithm with the proposed USP-Awadhoot divider
circuit block.

e The described steps reduce the criticality of the conversion logic by eliminating
overlapping regions in the quotient bit selection logic.

Table 1. Publications containing the thesis’ contributions.

Contributions Publication Publication Publication | Publication

I I n v

RO1- Review V4 V4 V4

RO2- Develop dynamic

separate scaling v v v

operations

RO3- Divider Algorithm

formulation) v 4

RO4- Divider

Implementation and v v v

Improvements

18

2 Division circuit block — overview of division algorithms

This chapter is based on publications I, Il, and IV. In the past, limited communication and
transportation made it difficult to establish uniform mathematical standards worldwide.
Hindu-Arabic numerals, which comprise the ten symbols -1, 2,3,4,5,6,7,8,9,and 0,
are based on India's decimal number system. They were mentioned in Aryabhata’s
‘Aryabhatiya’ and Brahmagupta’s ‘Brahmasphuta Siddhanta’ in the 6" and 7" centuries,
and, according to al-Qifti, they were introduced to the Arab world in the late 7 century.
Later, in the 12t century, these were transmitted to Europe via the chronologies of the
scholars, particularly al-Khwarizmi, al-Kindi, and the Italian mathematician Leonardo
Pisano (also known as Fibonacci) [38-41].

Although new concepts, operations, logic, and relations have been developed in
mathematics, ‘addition’, ‘subtraction’, ‘multiplication’, and ‘division’ are still the firm
foundations of applied mathematics [1, 10]. Due to the commutative and associative
properties of addition and multiplication, operands can be rearranged flexibly without
affecting the result [42-43]. The division operation is a derived operation in the same way
that multiplication is also but, instead of successive addition, it is derived by successive
subtraction, along with some controlling conditions. Similar to subtraction, division also
lacks commutative and associative properties, making its implementation in electronic
circuitry critical and challenging. Thus, it is essential to understand the importance of the
critical parameter requirements and problems associated with the implementation of a
division circuit block.

2.1 Importance of division circuit blocks

A Field Programmable Gate Array (FPGA) is an advanced technological feature.
It provides hardware re-programmability, which reduces implementation time and
hardware costs. It gives the flexibility to implement a system on a chip for different
purposes. The Arithmetic and Logical Modules (ALMs) of FPGAs are essential building
blocks for implementing desired logic [44]. FPGA applications are more critical for
automotive control, online data processing, and a wide range of computational tasks,
which could be solved by implementing a small, complex system (such as a computer
system) on a single chip. In general-purpose applications, central processing units
(CPU/processor) perform division with several iterations, even for a few bits. This
problem becomes critical, along with an increasing bit count [10]. Such issues are even
more severe in the graphics processing unit (GPU) and Intel’s many integrated core (MIC)
architecture, which provides parallel architecture [45]. The CPU’s working frequency has
increased to 3 GHz over time; however, this has also led to higher power dissipation [12].

Complex division used in various applications in essential engineering works, such as
earth fault distance protection, acoustic pulse reflectometry, astronomy, non-linear
radio frequency measurements [46,53], and control theory applications (e.g. investigating
root locus, Nyquist plot, Nichol's plot, and microwave system frequency response) [47].
It is also required in digital signal processing and numerical computation applications,
such as Vertical Bell Laboratories layered space-time detection (V-Blast), orthogonal
frequency division multiplexing, and channel equalization of the MIMO system [48].
Earlier, the lack of a dedicated divider (due to its low usage and high chip area
requirements) resulted in an emphasis on division operations performed by software
[6, 18, 49-51]. Designers also have to consider the implementation technology for the

19

algorithm as it is directly related to the area and time concerns of divider circuit
implementation [51-52].

As per the studies presented in [15-19] and [51-52], the typical latency for addition
and multiplication ranges from 2 to 8 clock cycles. In contrast, division latency ranges
from 8 to 80 clock cycles [53]. The division could be performed using adders and
multipliers, instead of creating separate hardware for the divider. Such an arrangement
to perform a division operation comes with a significant risk of extended overhead and
possible error in the final result due to rounding off. The algorithms and architectures
studied in [52, 54] show that the focus was placed on improving adders and multipliers
rather than developing a dedicated divider circuit. However, solely prioritizing these
improvements can lead to undesirable behavior, including numerical vulnerabilities and
a higher risk of overflow. [51, 52, 54].

Even if it were possible to build a multiplier to compute in a single cycle, finding a
matching adder would be difficult. Fast-operating multipliers, such as array multipliers,
can have low cycles to execute at the cost of significant area overhead, which would not
be a cost-effective area solution for implementing division operation [51, 52]. This
indicates that the area distribution among the adder, multiplier, and divider circuits
should be proportionally balanced to have an efficient and optimized system. As per the
study presented in [51, 52], iterative algorithms are preferred over pure combinational
algorithms, for implementing division circuit blocks to achieve a low area footprint
system. The study also suggested that neglecting improvements in division operation
implementation is a key factor contributing to performance loss in embedded systems,
digital systems, digital circuits, computer systems, and integrated circuits. Thus, it is
necessary to focus on low-area footprint divider circuit implementation, as the
implementation area introduces critical delays and timing issues in its standard
execution. Also, the increase in the application demand and development of new
application areas encourage the development of area-efficient divider circuit blocks.

2.2 Division circuit block taxonomy

A study conducted by [55] demonstrated that the installation of division circuit blocks
influences the performance of a complicated system. In addition, even the slightest
change, such as a 1% improvement in the performance of the division circuit block, might
affect the system’s performance by up to 20%. Division operations were performed
based on sequential, linear operations and digital circuitry in the applications with low
computation requirements, to express logic functions with high accuracy on account of
the large area and latency [56-58]. Implementation area, computation time, and power
consumption are the three main topics of interest from a system implementation point
of view. The applications developed at this stage required area reduction for the division
because their current implementations lack area and latency efficiency [59-61]. Area
efficiency refers to the percentage of the available hardware resources utilized to
implement the divider. An algorithm can be specified as a computer program or a
hardware circuit design with specifications that describe the computational procedure
to be followed during implementation [62]. Thus, many methods or algorithms have
been researched, designed, and implemented over time, with the common goal of an
efficient divider circuit implementation for an efficient system.

20

Very High Radix Look-Up Table Variable Latency

Functional Iteration

Digit Recurrence

Predictive/ DEC
Multiplicative > Radix-10 Cascaded Radix Alpha21164
Self timing

Iterative
Subtraction

Pre-Computed Distributed
Valug Table
SRT based

Radix-n

Architecture
Serial / Sequential Parallel m

Figure 3. Division algorithm taxonomy.

In the studies described in [7, 15, 31, 63-65, 71-73], numerous mathematical algorithms
were devised and analyzed over several decades. Many algorithms are difficult to
distinguish precisely, but they may be divided into two categories: digit recursion and
functional iteration [65]. Still, depending on the quotient conversion logic, they can be
broadly summarised into multiple divider classes. The study presented in [15] showed
that division algorithms can be categorized into five distinctive classes. The hierarchical
distribution of various classes of division algorithms is expressed as division algorithm
taxonomy in Figure 3 and described based on the four factors representing conversion
logic, hardware architecture, performance, and execution type [6, 15, 66-67]. There are
five broad categories of division algorithms: digit recurrence, functional iteration, very
high radix, look-up table, and variable latency. Based on the hardware architecture and
access techniques, they can be further classified as serial, sequential, parallel, pipeline,
slow, fast, iterative, and predictive.

2.2.1 Digit recurrence class (DRC)

The digit recurrence class (DRC) of the division algorithm is the earliest and most
pioneering class among all division algorithms [15, 20]. The quotient is calculated using a
series of successive subtraction operations, beginning with the least significant bit [1-3,
15, 20, 66-70]. The digit recurrence class of algorithm-based dividers is categorized into
two types of dividers, commonly known as ‘restoring’ and ‘non-restoring’ algorithm-based
dividers.

Many processors such as Intel Pentium, HP PA 8000, and Sun UltraSPARC [70] initially
implemented a restoring type DRC algorithm-based long division divider concept.
Thus, the remainder and quotient values remain either positive or zero [1, 3, 20, 61, 68,
71-73]. The SRT algorithm is one of the most popular non-restoring digit recurrence

21

division algorithms to implement. Furthermore, many attempts [74-105] have been
orchestrated to develop, investigate, and discuss the original concept of the SRT
algorithm, in order to improve it. The trade-off between the components of the choices
to be made is mainly the radix, quotient, and partial remainder representation [15, 50,
97-98], resulting in diverse application selections ranging from less critical to crucial,
which impacts time-cost requirements. A rise in radix value increases the size of the
quotient selection logic table, beyond the practical limits of the implementation. It is
evident that Intel has lost millions of dollars due to the Pentium processor’s flaw in the
overlapping region of the floating-point divider [92, 104]. In 1963, Svoboda devised
another digit recurrence division algorithm based on the partial remainder alone.
It considers quotient digit selection logic based on the remainder’s MSBs [8, 22-25,
119-122]. Tung [22-24, 119, 121] investigated the potential of implementing the Svoboda
algorithm using a signed digit number system.

2.2.2 Very high radix digit recurrence class (VHRDRC)
Unlike SRT and other radix-n divides, these very high radix algorithms have different
hardware and circuitry for quotient selection and partial remainder generation. The high
radix algorithm proposed by Wong and Flynn [123] requires at least one look-up table,
Comprising(Z(m'l) X m) bits. The high radix algorithm proposed by Lang and Nannarelli
[124] shows the construction of a radix-2* divider to implement a radix-10 divider whose
quotient digit is partitioned into two sections, one in radix-5 and the other in radix-2.
The Cyrix 83D87 arithmetic co-processor utilizes a short reciprocal algorithm similar
to the accurate quotient approximation method, to obtain a radix-217 divider [15].
The possible methods, which are applicable to high radix dividers, include the use of:
different look-up tables for quotient digit selection logic [23, 93, 125], pre-scaling
operands [126-131], Fourier division [132-133], alternative digit codes (like BCD digits
instead of decimal and basic binary digits [105]), cascading multiple stages of lower radix
dividers [45], overlapping two or more phases of low radix [85, 94], a truncated schema
of exact cell binary shifted adder array [100, 134-135], on-line serial and pipelined
operand division [136], the parallel implementation of low radix dividers [137], and array
implementation [4].

2.2.3 Look-up table class (LTC)

Look-up tables can hold the pre-computed values, standard values and exact values of
the approximation of the reciprocal for the quotient bit finalizing technique. The latest
development described in [138] pertains to the bipartite reciprocal table, which can be
utilized for reciprocal approximation in dividers. It uses two separate look-up tables for
positive and negative values. The look-up table class is a hybrid class of dividers, as
look-up tables are used to improve dividers from different classes.

2.2.4 Functional iteration class (FIC)

This division method uses successive multiplications instead of subtractions. It is possible
to get multiple quotient digits in a single iteration but at the cost of accuracy, due to the
rounding off of solution values and implementation area [139]. The Newton-Raphson
method is used in IBM 360/91 and Astronautics ZS-1 [26-27]. Taylor Series Expansion is
used in IBM RS/6000 and AMD K7 processors [33, 35]. Later, J. Liu et al. [33] presented a
hybrid algorithm that combined prescaling, series expansion, and Taylor series expansion
for the implementation of a divider.

22

2.2.5 Variable latency class (VLC)

The DEC Alpha 21164 is one of the best examples of a variable latency class algorithm
implementation based on the basic normalizing non-restoring division algorithm [15, 50,
145]. Sometimes, multiple stages are cascaded together with a self-timing partial
remainder in the self-timing technique [118, 146]. The Hal SPARC V9 processor and
Sparc64 are examples of practical implementations of the variable latency self-timing
division algorithm [15, 50]. Richardson [147] described a mechanism for caching results
that can be used with the divider to accelerate calculations in applications involving
repeating operands. In [89], Cortadella mentioned implementing the SRT divider with
variable latency, detecting a variable number of quotient bits at each iteration.

2.3 Hardware architectures

The three primary classifications of hardware architecture are: sequential or serial,
parallel or concurrent, and pipelined or hybrid. The serial hardware architecture consists
of the sequential implementation and processing of the components required for
algorithm implementation and is primarily used for general purposes. Subtractive
iteration-based digit recurrence division algorithms are the best examples of serial
dividers [20, 36, 136, 148]. The parallel hardware architecture consists of multiple
hardware units implemented and processed concurrently to get the desired result with
fewer iterations. This approach is mainly used for graphical processing units (GPUs) and
in Intel's many integrated core (MIC) processors [6, 10, 13, 149-150]. A parallel divider,
based on the Jebelean exact division algorithm [149-151], is another example of a parallel
hardware architecture class divider. The third approach provides parallel processing by
executing the instruction level overlapping of a computational approach [4, 9, 20, 91,
136]. This architecture allows the simultaneous performance of several instructions of
the computation process to achieve some degree of parallelism. Pipeline work structure
can be achieved by designing a computational logic that provides functional overlap in
the execution stage and arranging pipelined hardware, like a fully pipelined array structure
[4, 9].

2.4 Performance improvement techniques

Performance-improvement techniques, like simple staging, overlapping/pipelined
execution, overlapping quotient selection, overlapping partial remainder computation,
range reduction, operand scaling, and circuit family effects are significant in divider
implementation. HP PA-7100 [15, 106] and AMD 29050 [15, 107] microprocessors are
examples of two radix-4, clocking faster than the system clock to perform radix-16 work
in every machine cycle [15, 108]. The AMD 29050 microprocessor also exhibited the same
logic of achieving higher radix. The study presented in [85, 109] showed that many
circuit-level implementations of the SRT algorithm yield different performances, depending
on the choice of circuit family. In the overlapping/pipelined execution, the partial
remainder-dependent pipelined form of execution is performed when a redundant format
represents the partial remainder. In contrast, the quotient selection execution-dependent
pipeline is suitable when a non-redundant format represents the partial remainder [110].

The technique of reducing the divisor by a fixed factor, to bring it as close as possible
to one, is known as ‘divisor pre-scaling’ [15, 111]. The basic concept of the pre-scaling
divisor and dividend, by common pre-scaling factor, is explained in [112-113]. A similar
concept was explained in [102] and it was suggested that the user uses six digits of the

23

redundant partial remainder to generate quotient bit selection logic in implementing the
Radix-4 divider. Performance improvement techniques can also be considered for other
classes of division algorithms depending on the particular requirements of individual
algorithm class-based dividers [83, 102, 109-118]. However, no single performance
improvement technique can concurrently address all performance factors, and one has
to decide what type of option to select based on the particular application.

2.5 Summary of comparative analysis

An efficient divider is required for an effective and efficient computation system. Table 2
summarizes a comparative study of the different division algorithm-based dividers.
The initial distribution gives digit recurrence, functional iteration, very high radix,
a look-up table, variable latency, serial/sequential, parallel, and pipelined classes of a
divider [6, 15, 23, 50, 68]. Digit recurrence is the most trusted, implemented, researched,
and commercially used division class amongst all divider implementation classes.
The restoring, and some non-restoring, algorithms implement simple conversion logic
but require a long time and a large area. Functional iterative class dividers compute
the quotient bits by estimating or approximating series expansion functions such as,
Newton-Rapson [26-27], Goldschmidt [11, 28-31], and Taylor series [11, 33-35], where
an approximated reciprocal multiplies the dividend to converge toward the required
quotient. They use multiplication instead of subtraction, which decreases the number of
iterations and provides several quotient digits with minimal latency in a single iteration.

However, multipliers require a larger footprint than adders or subtractors.
Multiplication makes functional iteration dividers more complicated than basic digit
recurrence dividers. This divider has the significant drawback of the quotient bit’s
inaccuracy because of direct rounding off of the approximate solution values, rather than
infinitely precise ones. In the Newton-Raphson iteration, which is limited to two
multiplications and must proceed in series, a significant error is generated. The generated
error depends on the accuracy of the initial estimation. Reducing the error requires
introducing a trade-off between the additional chip area for the look-up table and the
latency of the divider.

Unlike the Newton-Rapson method, which only multiplies the dividend,
the Goldschmidt algorithm multiplies the dividend and the divisor by the anti-divisor.
It is only useful for floating-point division because it does not offer the remainder [31].
Another drawback is that 1’s complement can avoid carry propagation delay but it adds
a new approximation error in each iteration. In Taylor series dividers, series expansion
computes an accurate anti-divisor (reciprocal) to reduce the error in the least significant
bits of quotient precision, with a parallel powering section that calculates high-order
terms, increasing the hardware overhead. Variable latency class [89, 124, 145, 147]
dividers are uncommon due to their complexity and large area. High radix [124] reduces
the latency but requires a large capacity look-up table, which is impractical for
implementation. The look-up table class [67, 138] involves storage like ROM, which
increases the area requirements for implementation. Dividers can be implemented using
one of three distinct hardware architectures.

The serial hardware architecture [20, 36, 136, 148] necessitates increased latency and
conversion time, making it unsuitable for mission-critical applications. In contrast to
serial architecture, parallel hardware architecture [6, 10, 13, 149-150] requires the
concurrent operation of multiple cores, precise synchronization, and a significant
implementation area, resulting in a higher implementation cost.

24

Table 2.

Summary of a comparative study of different dividers.

Sr.
No.

Algorithm

Equations

Important Points

Restoring
Divider
[1-3, 15, 20,
61, 66-73].

For J*" iteration
g =0 if R;<0
g =1 if R; =0
R, = 2R, ifq;=0

R =R ifq;=1

It is similar to the long-division algorithm.

Simple logic for implementation.

No requirement for a look-up table.

Iterative subtraction is performed.

The non-redundant number system is used
to write a quotient.

If the partial remainder value not positive or
zero, then the divisor is restored by the
subtraction result performed in that

iteration.

It requires a full-width comparator in each
iteration, and the subtractor, shift register,
and multiplier give the approximate area
requirement for algorithm implementation.

Possible loss of most significant bit (MSB)
and checks for overflow are required.

Requires full-width comparison in every
iteration to get one bit of quotient.

The quotient needed to be rearranged to
get the actual quotient.

Non-
Restoring
Divider
[1-3, 15, 20,
61, 66-73,
174].

For Jt" iteration
g=-1 if R <0
q=1 if R, =0

-1

R;=2R;_; + D, ifq;

R, = 2R

;=2Rj_, — D,ifg;= +1

Like the restoring algorithm, it does not
require the restoring of the partial

remainder if subtraction becomes negative.

No requirement for a look-up table.

Based on the previous iteration sign value of
the partial remainder, only one addition or
subtraction can be performed in each
iteration.

Partial remainder kept between -Dr to +Dr
and quotient digit is -1 or 1.

It requires a sign bit to decide whether to
perform addition or subtraction; the adder,
subtractor, and shift register give the
approximate area requirement for

algorithm implementation.

Requires an extra bit to be added with the
partial remainder, to have a track on a sign.

It requires a separate adder and subtractor
in each iteration.

Area utilization of implementation is
approximately equal to the area required to
implement an adder, subtractor, and shift

register.

25

SRT
Divider
[15, 50, 66
74-105]

For Jt" iteration
;=1 if 2R, <-D,

q;=0 if —D. <2R;; <D,

q;=1 if 2R_, =D,

Has one of the values -m, -m+1... -1,
0, +1. . . m-1, m, where m is an
integer comprising k digits of radix-
nas

1

E(n—l) <m<n-1

n=2 and k= *Ib

k
Q= Z qn’
=1

Quotient g is generated as a
dividend division by a divisor of x
most significant bits retiring b bits
of the quotient in each iteration. It
is called a ‘radix-n performing k
iterations’
quotient.

to get the desired

It is a non-restoring algorithm based on
radix-n.

Named after Dura W. Sweeney [74], James
E. Robertson [75], and Keith D. Tocher [7].

For x bits, integer division requires k=x/b
iterations, b is the number of bits detected
in each iteration.

n decides how many quotient bits are
detected in each iteration; if n=2, then one
quotient bit is detected per iteration. Radix—
n is typically selected as a power of base 2.

Each quotient digit has a value from {-m, -
m+1,,-1,0, 1, , m-1, m}.

The algorithm implements 2’s complement
value of D, instead of D,., which provides
shifting over zeros to eliminate extra adders
and subtractors.

It needs an extra subtractor to find out the
next partial remainder.

Error results due to few MSBs being used to
predict quotient bits as in low radix, which
decreases with the increase of radix.

Quotient select table plus carry-save adder
(CSA)
requirement for algorithm implementation.
It shows the iteration time of accessing the

gives the approximate area

select quotient table plus multiple forms and
subtraction. It requires a quotient selection
look-up table.

Selecting higher quotient bits causes
complexity in quotient selection logic, and
higher radix implementation is complex due

to impractical multiples of the divisor.

It needs to convert the last remainder to
conventional representation to find the sign
bit, and the quotient correction stage
selection depends on the sign bit.

Very high
radix
[4, 15, 23,
85, 93-94,
100,
123-137]

3 % 3k %k ok %k ok

It retires more than ten quotient bits in one
iteration and requires a large look-up table
with a bigger capacity for quotient selection
logic. A lookup table is required for obtaining
an initial approximation to reciprocal and
quotient digit selection logic.

It uses multiplication to form divisor

multiples.

It differs from the regular radix-n divider

regarding the number and type of

operations used in each iteration and

quotient digit selection logic.

High radix makes quotient selection logic
more complex and impractical to implement

26

Taylor
Series
[11, 33,
35, 144]

D,
q= d/Dr and X, = l/D,
q = DaXo{1+ (1 - D.X,o) +
(1= D,X)* + (1 — Dy X)%}
D, = Dividend and D,. = Divisor
1/D, = Antidivisor

It is a multiplicative iteration-based

algorithm, hence requiring a large area.

The precision depends upon the closeness
to the anti-divisor (reciprocal) estimation.

It provides a parallel powering section that
computes high-order terms faster with
minimal extension to hardware overhead.

Quotient digit selection logic look-up table
and three full word length multiplier gives
the approximate area requirement for

algorithm implementation.

Newton-

Raphson
[26-27,

139-141]

Q= Dy/Dy=px(q)™"
fX)=1/X-q7'=0

i)
XD

X=X

a/xi-a™"
X =Xi— = 2 =Xix(2-
a7t xXp)
€n=€ (@)

p = Dividend and (q)!
= Antidivisor

The accuracy can be improved by selecting
a proper root at the beginning.

Latency and error in convergence are
directly dependent on the root selected at
the beginning of the convergence and show
the iteration time approximately equal to
two serial

the time required for

multiplications.

Multiplier, quotient select look-up table,
and control logic give the approximate area
requirement for algorithm implementation.

The final quotient is derived by multiplying
the approximated reciprocal and dividend.

Shows error due to inaccuracy of quotient
digit prediction or estimation.

It requires multiplication and addition or
subtraction at each iteration; using 1's
complement includes more error.

Goldschmidt
(31, 142-
143]

D,/D,=N/D = A/B

Xne1 = X0 (2 = W) = Xy,

Ynt1 = V(2 =) = YTy,

It is a convergence-based functional

iterative class divider algorithm.

It multiplies both dividend and divisor by
the anti-divisor or reciprocal.

It originates from the Taylor-Maclaurin
seriesof 1/(x + 1).

It does not provide a remainder.

1's complement can be used instead of (2 -
¥n) to avoid carry propagation delay, but it
adds a new approximation error in each
iteration.

Quotient digit selection logic look-up table,
one full word length multiplier, and one full
word length adder/subtractor logic give the
approximate requirement for
algorithm implementation.

area

Variable
Latency
[15, 50,
89, 118]

% %k %k %k k

Variable conversion times for different sets
of dividends and divisors due to the varied
rate of quotient bit retiring

Self-timing, result cache, and speculation of
quotient digit are some techniques used to
provide variable latency.

27

8 Variable The DEC Alpha 21164 is one of the best
Latency examples of variable latency class algorithm
[145-147] implementation, based on the concepts of
the simple normalizing non-restoring
division algorithm.
9 Svoboda mn The quotient digit is predicted based on the
Algz:(tjhm {(m+ Dn—-1) < D, p.ar.tlal remainder without considering the
m(n—2) divisor; one or two MSBs of the partial
Svoboda- m} remainder are used for generating the
Tur.1g quotient digit selection logic.
Algorithm {—m/n —1 <k <m/n- 1} It can select a quotient digit out of the radix
[18i9221_2225]' Range = {0, %1,,+m} range as an overflow occurred due to
Boundry limit ={n/2+1 < compensation.
m<n-—1} It requires pre-scaled operands and can
m = Range of SBD and n work on conventional and signed digit
= Radix ranges.
It is also a radix-n-based algorithm with sign
binary digit numbers, like the SRT algorithm.
It is applicable to more than radix 4 and pre-
scaled operands are required; it needs extra
multipliers, resulting in more hardware
overhead.
10 Smaller a1 It is the simplest parallel computing
DivEg]end N, = Z gy 220 ilhgorithm.‘ : :
= e basic phenomenon behind this
n-1 algorithm is to consider division as a
N, = Z 20 fraction.
i=0 It requires an actual dividend greater than
Dy=N, +N, the divisor, i.e., the dividend bit counts as 4n
and the divisor bit counts as n.
Da/Dy = (N, + NZ)/D_r N,/D We can represent dividends in terms of fixed
IN:/D: partitions based on associated weights, as
per the dividers' radix.
The area is directly dependent on the
number of dividend partitions related to the
dividers' radix.
11 Jebelean It applies when a completed division is
Exact bi=d*Q i d long integer rands in
performed on long integer operands
Division Dy = Dgypin® + Dy, digital computation, even after knowing that
[149-151].

by = (—=1n"*Dai) moaa

b = (=150 aDaie) mod d

the remainder is zero.

It works from the least significant digit of the
operands.

Remarkable performance is observed when
radix is a prime or a power of 2.

It takes constant execution time to access a
fixed word-length lookup table.

It takes O(log n) execution time and for short
division, O(n/p +logp), where n is the
word length of the dividend and p is the
number of processors.

It needs synchronization for borrowing
calculation in parallel.

28

12 Proposed Division(Q,R) = f(Dg, D,) It is a digit recurrence class, operand

USP- = f(Awadhoot matrix, Condition) | data-dependent variable latency divider.
Awgt?lhoot It is a non-restoring algorithm based
divider Awadhoot matrix(GQy, Ry) divider but it could be implemented as a
= f(GDg, MD,, FD) restoring algorithm-based divider with

particular changes in the Awadhoot

f(GDq, MD,, FD) matrix and conditions.

= {[(Ry-111GDay)
+ (P —Term),] It implements the novel concept of the
— (8§ —Term),} dynamic separate scaling operations for
the dividend and divisor.

Condition(Q, R)
= f(NDgn, PQ, AQ) The average clock cycle could be reduced
with the help of LUTs.

Division(Q, R) - — - -
= (PQ,0) if NDgp =0 No overlapping region in the quotient bit
’ an selection logic.

Divisi ,R - - -
;v[z(sngn(Q) Simple conversion logic as the Awadhoot

+1),0 if NDo. = D matrix is defined with a simple adder,
), 0] f NDqn = D subtractor, and multiplier.

Division(Q,R)

= (PQ,NDgy,) if NDg, <D,

Division(Q,R)

=[(PQ
+ AQ), Rag] if NDgy > Dy

A pipelined architecture [4, 9, 20, 91, 136] achieves parallelism in sequential architecture
with parallel processing. Some or all processes of division algorithms can be pipelined to
achieve partial parallel processing. The radix-based SRT division algorithm is among the
most often used non-restoring digit recurrence algorithms. The SRT algorithm is widely
utilized in serial, parallel, pipelined, or cascading architectures and various applications
[15, 20, 50, 70-83, 85-86, 97]. Although the SRT algorithm was the first choice for
commercial implementation in the majority of soft and modern processors, like Intel’s
Pentium processor [92], Xilinx’s FPGA controllers [152], and ALU units of complex
hardware, it is restricted to specific low radix values, significantly less than 10. Radix-2
and radix-4 are the most implementable formats of the SRT algorithm. The primary
reasons for restricting SRT algorithm implementation to specified low radix values are
the increase in the criticality of the quotient selection logic and the significant increase
in storage area requirements for lookup tables for this logic.

Primarily, low-radix implementation is limited to one or two quotient bits per
iteration. In order to decrease division latency, more bits must be retired per cycle.
Increasing the radix can improve the cycle time but raises the divisor multiplier formation
complexity. The alternative is either a pipelined structure or two-stage lower radix stages
merged to generate higher radix dividers through simple staging or, possibly, overlapping
the quotient selection logic and partial remainder computation hardware. The use of
architecture is not limited or restricted to a particular application. Maximum division
algorithm-based dividers can be implemented by a serial, parallel, or pipelined architecture
depending on the application’s cost, area, and complexity suitability. Generally,
improvement in one of these aspects worsens the others; thus, one has to select a
particular algorithm based on the specific application requirements. Many researchers
have worked on various SRT parameter improvement techniques, such as pre-scaling
operands, carry-save remainder, array implementation, truncation, differential look-up

29

tables, and pre-computed values, but they have not worked on two different performance
improvement techniques simultaneously with individual input operands. This gap in the
research (i.e., not simultaneously utilizing multiple performance improvement techniques
with individual input operands to improve divider implementation) presents an opportunity
to develop a new technique or combination of fast or moderate methods that are also
area-efficient. | propose a digit recurrence divider based on a state-of-the-art novel
USP-Awadhoot algorithm, for improving distinctive divider implementation with moderate
operation speeds that are suitable for area critical application. The USP-Awadhoot
divider algorithm developed the dynamic separate scaling operations for input operands.
In the following sections, | discuss the implementation of a state-of-the-art novel
USP-Awadhoot divider, developed according to the ancient theories provided by Vedic
mathematics [164] centuries ago. | also discuss the statistical analysis of implementation
resources and elaborate on the comparative discussion with different dividers, followed
by a conclusion and suggested future work directions.

2.6 Chapter conclusion

A detailed analysis of the different dividers has been presented to understand the needs
of the divider circuit block. It helps to decide the fundamentals of the dynamic separate
scaling operations. This chapter covers RO1 — Investigate the currently existing divider
solutions to understand the different concepts of conversion logic, conceptualize the
trade between Area, Speed, and Power, and propose a suitable option or combination of
options to develop an efficient divider. Publications |, I, and IV cover a detailed review
of the different divider implementations.

30

3 Design methodology — objective, hypothesis, and algorithm
for the proposed divider circuit block implementation

This chapter is based on publications Il, lll, and IV. All mathematical operations have been
implemented by using electronic or digital platforms. However, it is still critical to
implement division operations, even though more focus has been put on developing
high-performance, faster adders and multipliers than the divider logic. As per Oberman
and Flynn’s article [15], the electronic implementation of multiplication and addition
requires considerably fewer clock/machine cycles and falls into a range of less than ten
clock cycles. On the contrary, division operations require more than tens of clock cycles,
particularly in the range of 10 to 80 clock cycles. Recursive subtraction or multiplication
is at the core of every division algorithm used for the electronic implementation of a
divider. Details of the proposed novel USP-Awadhoot divider are discussed further in this
chapter.

3.1 Objective

The division operation is the most complex and essential arithmetic operation for digital
circuits, computer systems, and embedded systems. Attempts have been made to
improve its implementation by optimizing hardware resources or latency cycles.
Generally, improvements in one aspect worsen the others, requiring the selection of a
particular technique based on application requirements. Implementing division
operations in FPGA is necessary because these devices are increasingly employed to
develop essential system-on-chip applications or enhance current systems, and indirect
division operation results are insufficient. Over the past five years, minimal research has
been conducted and presented in the direction of designing a better division algorithm.
Most have been developed on the SRT algorithm, based on radix-n and high radix
dividers. In the past decade, a few efforts have been based on different theories,
alternate physical designs, application-specific parallel computation, and functional
iterations, to develop a state-of-the-art algorithm for efficient divider implementation.
This has motivated the development of a new technique or combination of improving
latency time and implementation area reduction techniques.

3.2 Hypothesis

There are two primary approaches to enhancing the electronic implementation efficiency
of a divider circuit block. The first involves optimizing the algorithms that govern the logical
data flow and computational processes within the hardware. The second focuses on
improving the hardware design, including the interconnectivity of components and the
overall architecture of the divider circuit block. The first form of improvement is favored
because it is more time and cost-efficient compared to hardware upgrades, which can be
up to 100 times more expensive than soft modifications, such as algorithm enhancement.
Due to the interdependence of software and hardware changes, better algorithms can
be developed based on the best hardware; the best hardware can be developed based
on algorithmic requirements, even though we must consider a better trade-off between
soft and hardware changes for better improvements. Depending on technological
advancements, new algorithms are concurrently being developed with older algorithms
to accomplish the same function more effectively. Based on the application requirements,

31

previous algorithms could be improved, a new algorithm could be constructed, or a new
hardware architecture could be created.

Scaling down the operands with a static (fixed) scaling factor is a primary choice in
most schemes used to enhance the performance of divider circuit blocks. There may be
different methods of calculating the scaling factor but the same factor has scaled down
both operands (divisor and dividend). Thus, even after scaling down, the relationship (or
ratio) between the divisor and dividend remains the same.

If the dividend is (x) and the divisor is (y) and both the operands are scaled down by
a common scaling factor (m) then the relation between the dividend and divisor is
expressed as

(x =y) = (tm = Ym) (1)

For example, if the dividend (x) = 500 and divisor (y) = 50, this is scaled down by a
common factor (m) =5. So, the scaled down value of the dividend (x,,,) = 100 and divisor
(3) = 10. The ratio of the initial value of the dividend (x) and divisor (y) is given as:

(x) _ <500> — 10 2)

y/ \s50/)

and the ratio of the scaled-down value of the dividend (x) and divisor (y) is presented as
xm) (100)
—)=(—)=10 3
<ym 10 ®)

There may be several ways of finalizing the scaling factor but, as the state-of-the-art,
the same scaling factor is used to scale down the operands. By scaling the operands,
we can reduce their values which, in turn, decreases the number of iterations needed to
calculate the quotient bits. However, after a certain point, further scaling becomes
impossible because one of the operands reaches its limit, even though the other operand
could still be scaled down further. Nevertheless, it increases the area overhead. Thus,
in the present research, we hypothesized that a novel concept of the dynamic separate
scaling operation or factor could be utilized for operands, lowering the number of
iterations necessary for quotient computation and ensuring area reduction.

Additionally, it is believed to be advantageous to divide the initial dividend value into
multiple group dividends to ease the quotient bit selection logic. It is also hypothesized that
using Vedic sutras can derive a new and constant logic for quotient bit selection. | also
considered a hexadecimal system frame structure in developing the quotient selection
logic, which is expected to provide easy computation. The following sections describe the
novel algorithm for divider implementation, developed based on the above-considered
hypothesis. This chapter is concerned with the following research objectives.

e RO2 — Develop the theory of conversion logic to implement dynamic separate
scaling operations for input operands. Here, a separate scaling operation
means using different scaling operations simultaneously for input operands.
A partitioning operation is used for the dividend. An operation comprising the
“Veshtanam Sutra (by osculation) and Lopanasthabhyam sutra (by elimination
and retention)” is used for the divisor. ‘Dynamic’ refers to the different values
of “Flag Digit (FD) and Number of Zeros Cancelled (NZC)”, used in the Veshtanam
Sutra (by osculation) and Lopanasthabhyam sutra (by elimination and retention)
depending on the combination of input operands.

32

e RO3 - Divider Algorithm formulation to reduce the criticality of conversion logic
by eliminating overlapping regions in quotient selection.

3.3 Introduction to the Vedic sutras

This section describes the basics of some Vedic sutras that were used for developing the
novel USP-Awadhoot divider. Vedic Mathematics is an ancient system of mathematics
that originated in India, derived from the Vedas, the oldest Indian scriptures. It is a
collection of mathematical techniques and shortcuts designed to simplify and speed up
calculations. The system was rediscovered in the early 20" century by Swami Bharati
Krishna Tirthaji, who compiled and explained these methods in his book “Vedic
Mathematics” [164, 167]. Vedic sutras are generally the equations that define relationships
between variables or quantities. The following Vedic sutras were used in the development
of the novel USP-Awadhoot divider:

e Veshtanam sutra (by osculation)
e Lopana-Sthapanabhyam sutra (by elimination and retention)
e Aanurupyen sutra (proportionately or by suitable ratio)

3.3.1 Veshtanam sutra (by osculation)

The Veshtanam sutra is a key principle in Vedic Mathematics; it emphasizes the concept
of ‘wrapping’ or ‘encircling’. The word Veshtanam means “to encircle, enclose, or wrap
around” in Sanskrit. This Sutra is often applied in solving equations, particularly in
algebra, and in operations involving multiplication, division, and factorization. The Sutra
suggests that a solution or simplification can often be achieved by encircling or grouping
terms in a convenient way, to simplify calculations. It is especially useful in cases where
operations involve recurring patterns or cyclic properties. The sutra can be applied to
wrap numbers around a convenient base for easier computation.

3.3.2 Lopana-Sthapanabhyam sutra (by elimination and retention)
The Lopana-Sthapanabhyam sutra is a profound and versatile principle in Vedic
Mathematics. The Sanskrit phrase can be broken down as follows:

e Lopana: elimination or removal
e Sthapanabhyam: retention or substitution

Thus, the sutra translates to “by elimination and retention” and it provides a systematic
approach to simplifying and solving problems by strategically eliminating and retaining
terms or variables.

3.3.3 Aanurupyen sutra (proportionately or by suitable ratio)
The Aanurupyena sutra is an important principle in Vedic mathematics. Its meaning can
be derived from the Sanskrit term:

e Aanurupyena: proportionately or by a suitable ratio

This sutra is often applied in mathematical operations where proportions, patterns,
or ratios can simplify calculations. It emphasizes solving problems by finding a proportional
relationship or a convenient scale or identifying patterns that make the computation
easier. It reduces complex division problems into simpler equivalent ratios.

33

3.4 Introduction to the proposed novel USP-Awadhoot divider circuit
block

Digit recurrence division has been proven to be utilized in most processors. Commercial
users like IBM, Xilinx, Intel, AMD, Quartus, and HP use many digit recurrence
implementations for their processors, as seen in [15, 50, 70, 75, 83, 88, 92-105, 109-118,
152], due to its simple logic for conversion. It gives the root thought of working with digit
recurrence division. As per [154], a division is one of the most complex and slowest
arithmetic operations performed electronically. Even though division occurs less
frequently than other arithmetic operations, an efficient divider is required for optimal
system performance. While working with large digital systems, there are new
possibilities for reading and writing errors. One common way to solve this problem is to
put the binary numbers in a predetermined order [153]. In the proposed novel
USP-Awadhoot divider, the Dividend (D), Divisor (D,), Quotient (Q), and Remainder and
Residue (R) are presented in hexadecimal format, similar to the concept of using
alternative BCD coding in a radix-10 SRT divider implementation [105].

Input l
—_
101- Select Dividend and Divisor I

¥ 109

I 102-New Divisor and Flag Digit |

‘ 110 | Pre-Processing
Circuit Stage

103-Modified Divisorand
Number of Zeros Cancelled

111

— I 104-Dividend Grouping |
—
112
116
Qo
113
1 1
Processing 0 USP-Awadhoot Matrix 0
Circuit Stage
6 6

107-Condition
Check?

Post-Processing
Circuit Stage

108-Rearrangement and
Finalization of the Result

1 Result l

Figure 4. Functional block diagram of the proposed novel USP-Awadhoot divider.

34

Figure 4 illustrates the functional block diagram of the proposed novel USP-Awadhoot
divider circuit block, which consists of three circuit stages: pre-processing, processing,
and post-processing. The pre-processing circuit stage consists of number blocks {101 to
104}. Block {101} represents the dividend and divisor selection; block {102} represents
new divisor and flag digit calculation; block {103} represents modified divisor calculation
and number of zeros cancellation; and block {104} represents a dividend grouping
operation. Block {101} accepts the input data (dividend and divisor values) and performs
initial processing to verify that the operands are in the proper format for further
calculations. In the pre-processing circuit stage, blocks {102 to 104} implement the
different scaling operations or factors on the input operands. These different scaling
operations, or factors, introduce a nonlinear relationship between the dividend and
divisor, effectively reducing the number of iterations required to calculate the quotient.
In the proposed novel USP-Awadhoot divider, the dividend grouping circuit plays an
essential role in delivering variable latency, as the quotient digit is generated based on
dividend grouping, and the size of the dividend groups varies based on the input operand
and the number of zeros cancellation (NZC) circuits. This variable nature of the dividend
group determines the number of input operand bits used to calculate a group quotient.
Hence, the output latency is correlated with the distance between input operands. This
partitioning dividend and divisor operand flexibility improves the scaling impact and
minimizes the instances required to generate a quotient.

The processing circuit stage consists of number blocks {104 to 107}. Block {105} and
{107} work as condition checks and control units. Block {106} represents the Awadhoot
matrix; a detailed explanation is given in Subsection 3.6. Block {105} manages the data
received from the pre-processing circuit stage and condition check unit for the Awadhoot
matrix. After performing dividend grouping, iterations, and condition checks, the
Awadhoot matrix circuit works on each dividend group in sequence. After performing
the last iteration, which is nothing but the last dividend group, all individual dividend
group results are provided to the post-processing circuit stage. The post-processing
circuit consists of number blocks {107 to 108}. Block {108} represents the rearrangement
and finalization of the results. It receives separate quotient bits (hereafter termed group
quotient bits) and the last iteration remainder to formulate the final quotient and
remainder. Additionally, it generates a controlling signal output that validates the
correctness of the division operation performed by the proposed divider circuit block.
Detailed explanations of the key terms and working principles of the proposed novel
USP-Awadhoot divider are presented in the subsequent sections of this chapter.

3.5 Important terms of the USP-Awadhoot divider circuit block

Pre-processing circuit elements perform input processing and provide data for
processing circuit stage elements. This covers input data storage, control, number of
zeros cancellation, and modified divisor circuits. The multiple outputs yielded by the
pre-processing circuit stage are further fed into the processing circuit stage.
The processing circuit stage iteratively constructs the core conversion logic
demonstrated by the Awadhoot matrix. This Awadhoot matrix consists of dividend
groups, P-term, S-term, net dividend, group quotients, and the remainder, arranged
within each iterative circuit stage. At the end of the processing circuit stage, all individual
dividend group quotients and the remainder are passed to the post-processing stage.
In the post-processing stage, all the individual dividend group quotients are re-arranged
to form the final quotient and remainder. A detailed description of the three stages is

35

provided but it is essential to understand the vital terms or elements used in these three
circuit stages of the USP-Awadhoot divider circuit implementation. The important signals
and terms used in the proposed novel USP-Awadhoot divider are:

Dividend (D;) = Divisor (D,.) X Quotient (Q) + Remainder (R) (4)

e D; = [dydy......d]; where “D;” represents dividends with a maximum
size of “k” digits.

o Q = [q1qp e qx); where “Q” represents the quotient with a maximum
size of “k” digit.

e D, =[didy.... di]; where “D,” represents the divisor with a maximum
size of “k” digits.

e R =[rr... 1%]; where “R” represents the remainder with a maximum
size of “K” digits.

e ND, = [ndr, ndr,ndn,]; where “ND,” represents the “New Divisor”

with a maximum size of "m" digits. The range is defined as:
“k—1<m< k+1".

e FD = [fd,]; where “FD” represents the “Flag Digit” with the maximum size of
a single digit in a fixed range of [1,2......9].

e MD, = [mdlmd2 mdp]; where “MD,” represents the “Modified
Divisor” with a maximum size of “p” digits. The range is defined as:
Ilp S k — 111.

e NZC = [nzc1 NZCy wur en e nch]; where “NZC” represents the “Number of
Zeros Cancelled” with a maximum size of “p” digits. The range is defined as
“p < k—-1".

e ND,; = [ndd, ndd, ndd,,]; where “ND,” represents the “Net Dividend”

with a maximum size of “k” digits.

e G.D; = [gdd, gdd, gdd,]; where “G.D,;” represents the “Gross
Dividend” with a maximum size of “k” digits.

e GD,; = [gd, gd, gd,l; where “GD,” represents the “Group Dividend or
Dividend Group” with a maximum size of “k” digits.

e GQ,= 1991992 - - 9qx]; where “GQ,,” represents the “Group Quotient”
with a maximum size of “k” digits.

e (P—Term) =[(p—term); ... (p — term),]; where “(P — Term)”
represents the product term with a maximum size of “k” digits.

e (S—Term) =[(s —Term); ... (s — Term),]; where “(S — Term)”
represents the sum term with a maximum size of “k” digits.

o PQ= [pq,pqz Pqi]; where “PQ” represents the partial quotient with a
maximum size of “k” digits.

e AQ = [aq, agy aqy]; where “PQ” represents the additional quotient
with a maximum size of “k” digits.

36

’

® Rug = [rag1Tagz o Tagk-1]; Where “R,,” represents the remainder
generated during the calculation of the additional quotient with a maximum size
of “k” digits.

3.6 The Awadhoot matrix for iterative circuit elements of the processing
circuit stage

Figure 5 illustrates the particular arrangement of the elements of the processing circuit
stage of the proposed novel USP-Awadhoot divider. The structure is defined as the
Awadhoot matrix. Awadhoot means a ‘different than normal’ or ‘unique’ arrangement.
The Awadhoot matrix provides a computational arrangement of various aspects of the
processing circuit stage of the proposed novel USP-Awadhoot divider. The Awadhoot
matrix is a vital element of the proposed novel USP-Awadhoot divider. Figure 5 shows
that each column represents an individual iterative circuit stage, and each row
represents the elements of the corresponding iterative circuit stage. The logical
interconnection between different aspects of the Awadhoot matrix is described in the
inset picture of Figure 5. Depending on the hardware architecture to be used, we can
either use a single set or multiple sets of iterative circuit elements. The Awadhoot matrix
arrangement is composed of the previous remainder (R,,_;), group dividend (GDy,),
previous iteration group quotient (GQ,_,), gross dividend (G,Dy,), flag digit (FD),
modified divisor (MD,.), net dividend (ND,,), the present quotient (GQ,) and the
present remainder (R,).

Group
Dividend

Iterative circuit stage - 1 Iterative circuit stage - 2 Iterative circuit stage - n
Group Dividend 1 Group Dividend 2 Group Dividend n
GrDd1 GDd2 GeDdn
P - Term1 P - Term: P - Termn
NDa1 NDaz NDdn
S-Term1 S-Term: S-Termn
GQ1 GQ: GQn

Figure 5. The Awadhoot matrix.

37

The hardware requirements of the proposed divider circuit depend on the possible
number of dividend groups created during the pre-processing circuit stage of the
proposed divider; the maximum number of dividend groups is related to the maximum
width of available operands. This Awadhoot matrix arrangement provides a detailed
structure of the processing circuit stage, which can be realized by serial, parallel, or
pipeline hardware architecture. During the execution of the first iterative circuit stage,
both the previous remainder (R,,_;) and the previous iteration group quotient (GQ,,_1)
are assumed to be zero, to avoid computation errors. Upon completing the first iteration,
the generated remainder and group quotient are passed to the next iteration circuit
stage, where they serve as the previous remainder (R,,_;) and the previous iteration
group quotient (G Q,,—,). This process is repeated for each subsequent iteration, until the
final iteration circuit stage is reached.

A detailed description of the Awadhoot matrix is given in the patent application [166].
In short, the gross dividend (G,-Dg,,) is derived from the previous remainder (R,,_;) and
the present value of the group dividend at the first level of the iterative circuit stage of
the Awadhoot matrix. Further simple addition and multiplication operations are
performed with gross dividend (G, Dy,,), previous iteration group quotient (GQ,_;) and
flag digit (FD), to derive the value of the net dividend (ND,,), which is indicated by the
P-term terminology in the Awadhoot matrix. Further multiplication operations are
performed, depending on the condition of the present net dividend (NDg,,) value in
comparison with the value of the modified divisor (MD,), to obtain the value of the
S-term. Depending on the comparison, the final value of the group quotient (GQ,,) and
the present remainder (R,,) are calculated and presented for the next iterative circuit
stage or post-processing circuit stage. During the execution of the post-processing circuit
stage, all individual group quotient values are re-arranged together, along with the
associated weights, to form the final quotient value. Later, this final quotient and the
remainder values are displayed or transmitted to other circuits if necessary.

In the USP-Awadhoot divider, the dividend grouping circuit is crucial for providing
variable latency features. Unlike others, the proposed USP-Awadhoot divider converts
the dividend into group dividends, which are not required to add up to the primary
dividend value. Dividend = (group dividend 1, group dividend 2, ..., group dividend n),
where Dividend # (group dividend 1+group dividend 2+---+group dividend n). For example,
if the dividend is 1055, it can be partitioned into two group dividends, such as 10 and 55,
where the sum of these two group dividends, i.e., 10 + 55 = 65, is not equal to the original
dividend value. This dividend grouping mechanism works as a separate dividend scaling
factor or operation. After completing the dividend grouping, iterate through each group
sequentially, performing calculations and condition checks on each. After the final
iteration, which is the final set of dividends, the post-processing circuit stage calculates
the final quotient and remainder. | considered the hexadecimal number system to
implement the proposed system due to its ease of use in digital systems and computer
applications. In digital electronics, hexadecimal numbers give better readability and
provide a fixed bit size frame structure to represent each decimal number in digital form.

The binary representation of decimal numbers or digits provides multiple modes of
representation. Sometimes, it can be represented by a one-bit equivalent binary number
or multiple-bit binary number; whereas, in the case of hexadecimal representation, every
hexadecimal digit is defined as a frame of four binary bits. The fixed frame of
representing hexadecimal numbers in digital or binary form provides better support to
perform operations like shifting, comparing, and giving a simple logic for quotient bit

38

selection in the processing circuit stage. A hexadecimal system also simplifies internal
operations, such as concatenating digits in digital computation. A binary system could
also be used but hexadecimal numbers give the advantage of working with four bits per
digit each time. In the binary system, the minimum number of bits to be considered for
computation is one; in the hexadecimal system, four binary bits are used, which provides
greater clarity for comprehending the computation process performed on a digital
system containing long bitstream data.

As expressed in equations (5) to (7), the conversion of any digit value of any number
system into a single digit by the repetitive addition of all digits is called ‘Beejank’ or
‘Digital root’. Beejank does not indicate a deficiency in minimum (zero) and maximum
numbers. If the place of a digit(s) in a number is/are interchanged, then this change is
not indicated by the Beejank.

(F89A0BCD),s = (F+8+9+A+0+B+C+ D)y, (5)

=(4E)16 = (4 + E)16 = (12)16 = (316 (6)
Beejank calculations are helpful for confirming the correctness of the quotient
calculated in the Awadhoot matrix. As shown in equation (7), if the left side value equals
the right side value, then it is confirmed that the calculated quotient is correct.

Beejank(D,) = Beejank(Q) * Beejank(D,) + Beejank(R) (7)

For example, let us consider a dividend D;=9216, a divisor D,=72, a calculated
quotient (Q)=128, and a remainder (R)=0. The Beejank values are as follows:
Beejank(9216)=9, Beejank(72)=9, Beejank(128)=2 and Beejank(0)=0.

Beejank(9216) = Beejank(128) * Beejank(72) + Beejank (0) (8)

9=2%x9+0=18=9 (9)

Table 3. Hexadecimal representation of addition.

Add
1 1 2 3 4 5 6 7 8 9 A
2 2 3 4 5 6 7 8 9 A B
3 3 4 5 6 7 8 9 A B C
4 4 5 6 7 8 9 A B C D
5 5 6 7 8 9 A B C D E
6 6 7 8 9 A B C D E F
7 7 8 9 A B C D E F 10
8 8 9 A B C D E F 10 11
9 9 A B C D E F 10 11 12

The operation of Beejank (digital root) and alternate representation of addition and
subtraction, which we perform during the iteration of the processing circuit stage,
exhibits great ease in the quotient bit selection logic developed with the hexadecimal
system. Table 3 expresses the hexadecimal representation of addition. Hence, we consider
a hexadecimal number system in quotient bit selection logic, to confirm the correct
selection of the quotient bit in a particular iteration.

39

3.7 The working principle of the proposed novel USP-Awadhoot divider

circuit block
o jul
Dr

A—
Control
Dd
Input
* * * * * k kK Kk k k k k * *x & kqak *k *k * k * *k * *k k k * * k k k k k *
* Divisor (Dr) *
: Input :
* 3 Register *
x Pre - Processing *
& Dividend *
: (Dd) Input :
. Register *
* *
. Modified y
Divisor *
(MDr) *
Circuit N
Dividend | Dividend | Dividend HE
Group 1 Group 2 Group n
Remand | Remand | Remand
GDd GDd GDd
P-Term P-Term P-Term
NDd [NDd) NDd
S-Term S-Term
) Post - Processing -
. Circuit Stage i
B Quotient Remainder Error Signal &
Ml Register Register Register [
Quotient Remainder Error
Display Display Display
i . i = - i ——— g
Figure 6. Schematic block diagram of the proposed USP-Awadhoot divider.
Division(Q,R) = f (D4, D,) (10)
= f(Awadhoot matrix, Condition)
Awadhoot matrix(GQ,, R,,) = f(GD4,MD,,FD) (11)

40

f(GDg,MD,,FD) = {[(Ry-11|GDgy) + (P — Term),]

— (S —Term),,} (12)

Condition(Q,R) = f(NDgy, PQ, AQ) (13)

where PQ is the partial quotient, AQ is the additional quotient and Ry, is the
remainder generated during the calculation of the additional quotient. Therefore, after
the last iteration of the Awadhoot matrix, based on the condition function, the final
quotient and remainder value are calculated and represented as

Division(Q,R) = (PQ,0) if NDgn = 0 (14)
Division(Q,R) = [(PQ + 1),0] if NDgy, = D, (15)
Division(Q,R) = (PQ,NDg,) if NDgy < D, (16)
Division(Q,R) = [(PQ + AQ), Raq] if NDgy, > D, (17)

Equations (10) to (17) represent the proposed USP-Awadhoot divider algorithm
formulation. This indicates that the actual division is a function of the input operands,
depending on the conditions explained in the function of the Awadhoot matrix and
controlling conditions. Figure 6 illustrates the schematic block diagram of the proposed
novel USP-Awadhoot divider derived from the functional block diagram presented in
Figure 4. The key functional block {101} represents the dividend and divisor input register
with the control circuit block, while functional block {102} handles the flag digit (FD) and
the new divisor (ND,.) calculation circuit. Functional block {103} manages the modified
divisor (M D,.) and the number of zeros cancelled (NZC) calculation circuit, while functional
block {104} performs the dividend grouping (GD,) operations. Functional blocks {105,
106, and 107} execute the Awadhoot matrix calculations and condition checks, and
functional block {108} handles the quotient and remainder re-arrangement, along with
the output display circuit.

After providing all inputs, at numbered block {101}, the pre-processing circuit stage
obtains the divisor (D,) and dividend (D;) with a maximum word size of “k” digits.
The width of the dividend and divisor determines the circuit hardware requirements.
Prior to storing inputs in the dividend and divisor operand register, the divisor (D,.) and
dividend (D,;) operands undergo an input normalizing process to verify that the width
size of the input operands is within permissible limits and in the required frame format.
The use of hexadecimal numbers simplifies the implementation of this phase. This
stipulation is not a limitation. Multiple number systems were utilized in SRT divider
implementations, to reduce the criticality of the input circuitry. One of the best ways to
show this is with BCD numbers, as shown in [105], which explains how BCD numbers are
used to implement the radix-10 SRT divider. A hexadecimal number format is used with
the proposed algorithm, to offer a robust framework for electronic implementation. It is
not limited to hexadecimal number systems and may also be used with binary, decimal,
and octal number systems. The controlling signal circuit generates reference signals for
regulating the individual elements of the three circuit stages of the proposed divider,
then the divisor (D,.) undergoes the condition check for invalid conditions, i.e., dividing
by zero. This would indicate an error signal at numbered block {108}, as indicated
by signal 115, and this would be redistributed for display or transmission in the
post-processing circuit stage, upon detecting the invalid condition. In a false scenario,

41

signal 109 passes the divisor (D,.) to numbered block {102}, where the circuit acquires
the flag digit (FD) and new divisor (ND,.) and follows the basic concept of obtaining the
flag digit (FD) and new divisor (ND,.).

Later, at numbered block {103}, the flag digit (FD) and new divisor (ND,.) are used to
obtain the modified divisor (MD,.) and the number of zeros cancelled (NZC). This step
follows the basic concept of obtaining the MD, and the NZC. The MD, works as a
separate divisor scaling factor or operation. Furthermore, the FD and NZC values are
delivered to the numbered block {104} by the 111 path. At this stage, dividend
sectioning/regrouping is carried out, and dividend groups are distributed based on the
NZC value generated in the previous stage. Unlike the various SRT implementations
that utilize operand pre-scaling or truncation [92, 134, 147], a fixed number of
dividend sectioning or partitioning operations [4], the proposed divider performs a
cross-combination of pre-scaling of the divisor and sectioning or partitioning of the
dividend. This simultaneous cross-implementation of two different procedures yields the
innovative concept of the dynamic separate scaling operation or factor for the dividend
and the divisor.

As discussed, the hardware requirements depend on the operand size; the maximum
number of elements in an iterative circuit stage never exceeds the maximum operand
size. It is recommended that, if the operand size is 8 bits, a maximum of eight iterative
circuit stages may be used and yet, the number of iterative circuit stages used in a
particular conversion depends on the NZC value. Similar to the variable latency class
algorithms, the dynamic nature of iterative circuit stages provides flexible conversion
clock cycles for every dividend-divisor combination, with the possibility of a variable
quotient bit retiring rate in different iterations or some iterations requiring less execution
time. This results in different conversion times in different sets of dividends and divisors.

Once the NZC value has been determined, the circuit completes the pre-processing
stage and sends the data to numbered blocks {105-107}, to arrange the dividend,
MD,,and FD in separate dividend groups, as shown by the Awadhoot matrix.
As illustrated in Figure 6, the Awadhoot matrix is employed in the processing circuit stage
of the proposed divider, to calculate the group quotient and remainder. The number
block {106} represents the iterative circuit steps. As previously mentioned, the maximum
number of iterative circuit steps cannot exceed the width of the operand. The condition
checker, numbered block {107}, confirms the end of computation in the iterative circuit
step of the processing circuit stage. Once block {107} completes the calculation and the
data is passed to the post-processing circuit stage at block 108. Figure 6 shows the group
re-arrangement circuit, followed by a distribution circuit, allowing separate visualization
or transmission of the quotient (Q) and the remainder (R). After computing the
Awadhoot matrix block {106}, via equation (11), the individual group quotients are
re-arranged as per their relative weights, to generate the final group quotient (Q).
The final residue or remainder is obtained from the last iterative circuit step, depending
upon the conversion status.

e First: Net Dividend (NDy;) = 0. Shows that the dividend (D) is completely
divisible by the divisor (D,), with the Remainder (R) = 0 and the Quotient
(Q) = the Partial Quotient (PQ,,) formed by concatenating the individual group
quotient (GQ,,).

42

e Second: Net Dividend (ND,;) = Divisor (D,). Shows that the dividend (D) is
completely divisible by the divisor (D,.) with the Remainder (R) = 0 and the
Quotient (Q) = the Partial Quotient (PQ,,) + 1.

e Third: Net Dividend (ND) > Divisor (D,.). The Remainder (R) = Ry, is the value
obtained during the calculation of the additional quotient (AQ) and the
Quotient (Q) = the Partial Quotient (PQ,,) + the Additional Quotient (AQ), where
the Additional Quotient (AQ) is derived by initializing the count to zero and
subtracting the Divisor (D,.) from the last iteration Net Dividend (ND,) number,
incrementing the count by one. Continue the same process until we get a
subtraction result of zero or less than the divisor (D,).

e Fourth: Net Dividend (ND;) < Divisor (D,.). Remainder = value of the last iteration
ND, and the Quotient (Q) = the Partial Quotient (PQ,,).

In the postprocessing circuit stage, the final step of the proposed divider rearranges
the individual group quotient (GQn). At the end of the division process, the final quotient
and remainder are generated, accompanied by an error signal indicator to verify the
accuracy of the data. Figure 7 presents a detailed explanation of the data flow and critical
circuit path of the proposed divider circuit speculated in Figure 6. Inputs include the
dividend (D,) and divisor (D,.), in addition to the control inputs (reset, fd_enable, and
clock). The logic flow state diagram of the proposed divider circuit contains twenty-four
states, of which twenty-three are functional logic states, and one is an error state.
The green track represents the critical path of the proposed divider circuit implementation,
the red track represents the feedback path, and the purple track represents the
conditions. Multiple iterations must be performed depending on the conditions indicated
by the purple track. Details of individual states are given as:

e St0: This is the initial state of the proposed divider circuit indicating the idle
condition of operation, where the outputs are deactivated, and the previous
rest and quotient values are set to zero prior to initializing circuit operation.
Both fd_enable and RST control signals are active high signals. The divider circuit
maintains its idle state StO until the fd_enable control signal is turned to logic
one, and RST is turned to logic 0, indicating that when the circuit overcomes its
idle state and continues the process. If the RST control input is activated (RST = 1)
during operations, the course returns to the idle St0O state until the RST control
input is deactivated and a new fd_enable is applied to the circuit. No input data
is transmitted until fd_enable is applied to the circuit; information is available
on the input data lines.

e St1: This logic flow state represents dual responsibilities to delineate. After the
activation of the fd_enable control signal, the circuit allows the data available
at the input data lines to be stored at input registers. The most significant bits
(MSB) and the less significant bits (LSB) are stored as an array of hexadecimal
integer elements for the dividend and divisor. FD is formulated by only working
on the hexadecimal LSB part of the divisor. This process further extends and
computes the value of ND,.. Another responsibility is to investigate an invalid
condition, which is considered to be divided by zero. If the invalid condition
appears in the existing computation, the circuit activates the error signal state
in the logic flow represented as the StEr signal. In the absence of the invalid
division condition, the computation continues to execute the next stage (5t3).

43

anpisay=way
UOISIAIP 3Y3 JO 3INS3J [BUY=3|NS3Y

Figure 7. The logic flow state diagram of the proposed USP-Awadhoot divider.

44

St2: This logic flow state is not used for computation; instead, it is used as a
buffer state and reserved for future computation improvements with extended
operand widths.

St3: This logic flow state represents the dual responsibilities of obtaining values
of NZC and MD,. from the provided operands. Depending on the value of NZC,
there are one, two, or multiple dividend groups (GD,;,). The formation of
dividend groups (GDg;,) is based on the relative weights of the hexadecimal
operand. Every operand group is represented as an iterative circuit stage. Thus,
the hardware requirement depends on the number of dividend groups expected
to be computed based on the provided operand width. If the MD, value is
greater than the first iterative circuit stage (GDgy,) value, then the next logic
flow state to be executed is St5, otherwise St6 is selected.

St4: This logic flow state is not used for computation; instead, it is used as a
buffer state and reserved for future dynamic computation improvements with
extended operand widths.

St5: Every iterative circuit stage is associated with an individual group quotient
(GQ,) and partial group quotient. The partial group quotient precedes the
group quotient in order to store partial results during individual iterative circuit
stage computation, with the idle value set to zero. The residue is the first
element of (GDg,,). Upon completion, it performs the next state, St6.

St6: This reflects the concatenation effect in computing the (GD,,,) value. Upon
completion of the computation of (GD,;,,) the next logic flow state is St7.

St7: This iterative circuit stage computes the value of ND;. G_Q is an array
where an individual group quotient(G@Q,,) is stored. Upon completion, if the
counter is greater than the number of groups, it performs the next state, St14;
otherwise, the next state is St8.

St8: This iterative circuit stage maintains the counter value and acts as a buffer
stage. Upon completion, it performs St9 as the next logic flow state.

St9: This iterative circuit stage computes the P—term value. If the value of
P-term < the value of ND, then the next state is St10, and if the value of
P—term > the value of ND,; then the next state is St11, else St12.

St10: This iterative circuit stage maintains the counter value and acts as a buffer
stage. Upon completion, it performs St9 as the next logic flow state.

St11: This iterative circuit stage computes the iterative circuit stage’s expected
residue. Upon completion, it performs St13 as the next logic flow state.

St12: This iterative circuit stage is performed if the residue is zero. Upon
completion, it performs St13 as the next logic flow state.

St13: This iterative circuit stage maintains the counter value and acts as a buffer
stage. Upon completion, it performs St6 as the next logic flow state.

St14: This iterative circuit stage executes an additional quotient’s computation
whose idle value is set to 0. Upon completion, if ND, is zero, it performs St16;
else, it performs St15 as the next state.

45

e St15: This state computes the value of residue and additional quotient.
If ND; = D, then it performs St21; else, it performs St17 as the next state.

e St16: This state computes residue value and additional quotient in the standard
case, then it performs St21 as the next state.

e St17: This state decides the comparative study of the ND; Value. If it is less
than D, then it performs St19 as the next state; else, it performs St20a as the
next state.

e St18: This state acts as a buffer stage and is not used for active computation.
Upon completion, it performs St9 as the next logic flow state.

e St19: This state computes the value of the additional quotient when the residue
value equals the ND, value. Upon completion, it performs St21 as the next logic
flow state.

e St20a: This state acts as a buffer stage and is not used for active computation.
Upon completion, it performs St20b as the next logic flow state.

e St20b: This state computes residue value and performs St21 as the next state
upon completion.

e St21: This state computes the final values for quotient and residue as per the
display, transfer, or storage requirements.

e St22: This state acts as a buffer stage and is not used for active computation.
It is used to transmit results to the output data lines.

e StEr: This logic flow state acts as an error indicator, especially indicating invalid
computation. It is an active high logic controlling signal endorsing the correct
calculation at the end.

3.8 Summary of the proposed USP-Awadhoot divider realization

The proposed divider consists of three circuit parts: the pre-processing circuit stage,
the processing circuit stage, and the post-processing circuit stage. All the data operands
and control inputs are connected to the pre-processing circuit stage of the proposed
divider. Upon receiving input operands and control signals, the pre-processing circuit
stage performs the preliminary action of generating data for the processing circuit stage.
During the pre-processing circuit stage application or operation, the Modified divisor
(MD,.) and dividend grouping, based on NZC, works as a separate scaling factor or
operation for the divisor and dividend. It helps to reduce the distance between the
dividend and divisor beyond the linear relation. The proposed divider converts the
dividend into group dividends, unlike others that are not required to add to the primary
dividend value. Dividend = (group dividend 1, group dividend 2, ..., group dividend n)
where dividend # (group dividend 1+group dividend 2+:--+group dividend n). The execution
of the processing circuit stage depends on the Awadhoot matrix, which derives the
relation between variably scaled operands and provides quotient bit selection logic.
The last step of the proposed divider re-arranges the individual group quotient (GQ,,) in
the post-processing circuit stage. Upon completing a division, the final quotient and
remainder are available, along with an error signal, to indicate the correctness of the
division and presented data.

46

In Summary, the proposed novel USP-Awadhoot divider circuit implementation
generally has 11 steps, depending on the input operands’ values, which are as follows:
Step 1 — Define Dividend (D) and divisor (D,.).

Step 2 — Derive New Divisor (ND,.) and Flag Digit (FD).

Step 3 — Obtain Modified Divisor (M D,.) and Number of Zeros (NZC).

Step 4 — Dividend Grouping.

Step 5 — Arrange the Awadhoot Matrix. At the beginning of the 1% iteration, the remainder
and previous quotient values are equal to 0, considering the idle condition at the start.
Step 6 — Start Iteration 1 circuit by checking that MD,.> value from 1% group dividend
(GD,) and derive gross dividend (G,-Dg4;,,) by concatenating the remainder.

Step 7 — Derive p-term from the previous iteration quotient; if it is the 1% iteration, then
the value of the last quotient is considered to be an idle condition.

Step 8 — Derive net dividend (NDy), check for a positive value, and compare MD,. value
with ND, value to get group quotient (G@,,) value and group remainder value. The group
remainder generated in the current iteration acts as a carry-forward value for the next
iteration.

Step 9 — Every iteration circuit stage contains steps 6 to step 8.

Step 10 — In the last iteration circuit stage, check the value of ND, and validate the
conversion.

Step 11 — Re-arrange the group quotient values and residual values from the iteration
circuit stages to provide valid quotient and remainder values.

3.9 Chapter conclusion

A detailed explanation of the basic working concept of the proposed novel USP-Awadhoot

divider is described in this chapter. Modified divisor (MD,.), flag digit (FD), and the group
dividend (GDg ;) operations of the pre-processing circuit stage implement the dynamic
separate scaling operations for input operands. In the processing circuit stage,
the Awadhoot matrix calculates the group quotients (GQ,), while the post-processing
circuit stage provides a clear process of selecting the final quotient based on the group
quotient (GQ,,), partial quotient (PQ), and additional quotient (AQ) values without
critical overlapping regions.

This chapter covers RO2 — “Develop the theory of conversion logic to implement
dynamic separate scaling operations for input operands”. Here, a separate scaling
operation means using one conversion operation for the dividend and another
conversion operation (a different one in the general case) for the divisor. ‘Dynamic’ refers
to the resulting different scaling operations, depending on the input operand value
combinations. RO3 — “Divider algorithm formulation to reduce the criticality of
conversion logic by eliminating overlapping regions in quotient selection”. Publications
I, 11, and IV cover detailed information on the proposed novel USP-Awadhoot divider.

47

4 Complex division by Baudhayan-Pythagoras triplet method
using a novel USP-Awadhoot divider

This chapter is based on publication IV. Complex number arithmetic computation is
crucial in electrical and electronic applications, such as signal processing, control theory,
microwave systems, complex orthogonal transformations, astronomy, automatic gain
control (AGC) systems, and demodulators in receivers [46-49, 56, 155-157]. A complex
number is represented as a combination of real and imaginary parts. Its real and
imaginary parts must be treated separately, making it very complicated to perform
arithmetic operations on a complex number. It makes a complex divider critical and
space-intensive, which could limit its hardware implementation. There have been several
attempts to implement different logical approaches, by recommending an alternative
number system to represent a complex number as a unique and combined entity instead
of base 2. Examples of this are, the quarter-imaginary number system with a 2j, —4,
(=14 /) and j+/2 base, a complex binary number system with a (—1 + j) base, and a
redundant complex number system [158-159]. The main problem associated with the
quarter-imaginary number system with 2j, —4, and (—1 + j) base is to derive a definitive
division process where the quarter-imaginary number system with j\/f base partially
generates the solution. This is because the even power of the base generates the real
part and the odd power of the base generates the imaginary part. A complex binary
number system with a (—1 + j) base and a redundant complex number system requires
more complex conversion logic for division, resulting in higher area requirements for
implementation [158-162].

As the current state-of-the-art, we must implement two sets of dividers for the real
and imaginary components of complex numbers in the case of a complex divider.
A software or hardware divider forms complex numbers based on the conventional
formula mentioned in equation (19), where z; and z, are two complex numbers that may
lead to overflow or underflow conditions when the operands are near the extreme ends
of the representable range [46].

zy =x, +iy,and z, = x, + iy, (18)

Z (122 + ¥1Y2) | (X2y1 — X170

Z O +y5) (x5 +y3)
There have been several attempts to implement dividers such as digit recurrence
SRT dividers and functional iteration-based multiplicative dividers, which resemble the
Newton-Raphson and Taylor series. These dividers require two separate dividers to
perform the division on the real and imaginary parts of the complex number, giving rise
to critical quotient selection logic and extra overhead, to generate the final quotient and
remainder in complex numbers. SRT base radix-2 divider implementation is discussed in
[46] but it is restricted to low radix values, due to the impracticable quotient digit
selection logic. In the case of functional iteration dividers, the correctness of the result
depends on the closeness of the reciprocal value selected in the initial iteration.
A pre-scaled divider [46, 163], where the divisor and dividend are multiplied by the same
scaling factor so that the resultant divisor must be in close proximity to unity, is one of
the best approaches for a high-radix complex divider. This method has the primary
drawback of requiring an additional full-width divider for calculating the scaling
factor. In this chapter, | discuss the method of complex division based on the

(19)

48

Baudhayan-Pythagorean triplet method and the proposed novel USP-Awadhoot divider
circuit block. The use of the Baudhayan-Pythagoras triplet algorithm is possible because
of the geometric properties of the complex numbers, which can be used to represent
them via real and imaginary axis. The proposed complex division implementation is
partitioned into three parts.

The Baudhayan-Pythagorean triplet algorithm is used for the input circuit stage,
ensuring the separation of the real and imaginary parts of complex numbers for further
calculation. The second stage consists of a novel USP-Awadhoot divider circuit
block, which divides the real and imaginary parts of the complex number. The third
stage involves rearrangement, representing the final results in complex numbers.
The Pythagorean theorem was known long before Pythagoras (570-500/490 BCE);
Baudhayan (800-740 BCE) is said to be the pioneer of the Pythagorean theorem.
Baudhayan formulated the relation between the hypotenuse and other sides of a
triangle, in terms of the area, in his book titled “Baudhayan Sulbas(itra” [164]. In contrast,
Pythagoras presented proof of the relationship between the hypotenuse and other sides
of a triangle in terms of length [164-165], giving the equation:

Bodhayan — Pythagorean Triplet (x,y,z) = T (x,y,2) (20)

Here T (x,y,z) is represented as the area of the square formed by hypotenuse or
larger side and (z) equals to the area of squares formed by the first side (x) plus the
area of squares formed by the second side (y) of a triangle. The Vedic formula
proportionately tells us that if one triplet is a multiple or sub-multiple of another triplet,
then they are called equal triplets because the triangles of these triplets have the same
shape and angles, e.g.,, 5,12,13 =10,24,26 = 25,60,65. When transposing
the first two triplet elements, they get converted into a complementary triplet,
e.g., 3,45 &4,3,5 are complementary triplets after transposing 3 and 4. Similarly, it is
possible to apply addition, subtraction, multiplication, and division operations to triplets,
to solve more complex computational problems.

4.1 Complex division by Baudhayan-Pythagorean triplet method using
the proposed USP-Awadhoot divider

A complex number is a number of the form (x + iy), where x and y are any real numbers,
and i is called an imaginary unit, where i = v/—1 or i? = —1. x is the real part coefficient
of a complex number and y is the imaginary part coefficient.

Asi =+/—1ori? = —1, and based on the proposed novel approach, we can correlate
the Baudhayan-Pythagorean triplet T (x,y,z) function with the complex number,
representing a given complex number in terms of T (x,y,z). The real and imaginary
coefficients of a given complex number are represented by the first two variables
of a triplet, e.g.,, the complex number r =x + iy can be represented in the
Baudhayan-Pythagorean triplet T (x, y, z). The following equations are used to develop
the input circuit stage.

rn=x+iy;andr, = x, + iy, (21)
T(r) =f (x1,Y1,21) (22)
T(ry) = f (x2,¥2,22) (23)

zi = (x + %) (24)

49

As per the equations (19) and (22) to (24), the triplet of the division can be found as:

[T ((ﬁ))] [(x1,¥1,21)

(25)

=== [(x12, + y1¥2), (1 — X1¥2), 25]

(r2) f (x2,2,22)
o
g 8 g
CONTROL
Data Data

INPUT

i

* k k * k k k *k k k% L L L B * k k k k ok k ok Kk ok k%

Input Register Control Circuit Input Register

dok ok ok ok ok ok ok Kk Kk k ok ok ok k ok k Kk ok k k % * ok ok ok k ok k ok k k k * d ok ok ok ok ok ok ok k kK

Baudhayan-Pythagorean Triplet Algorithm

Derive Dividend Complex Derive Divisor Complex
Number (C_Dd) Number (C_Dr)

Derive (xDd) ’ Q) Derive (yDd)

Ve
w “ -

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

* ok k ok * k k k kK

* Kk k *

* NzC
USP-Awadhoot|USP-Awadhoot 4 I_

Divider 1 Divider 2 a4 Modified
Divisor (MDr)
Circuit

Iteration -n | Iteration-n

CQr& CQr&
C_Remr C_Remr

USP-Awadhoot Divider

Rearrangement

* k Kk k k k k k k k k %k %

F ok % F ok ¥ Ok F ¥ F F ok F Ok ¥ ¥ F ¥ ¥ F F
ok ok ok ok % F ¥ ok F ok ok ¥ o ¥ ¥ 3k * ¥ ¥

h ok ko k k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok k ok ok ok k

Complex Number

Complex Quotient Sl Complex Remainder Error Signal Divider
Register Register Register

k ok ok ok ok K ok ok Kk k ok

% Ok ok ok ok ok ok b ok ok b ok ok ok ok k k H ok ok F ok ok ok X N ok k H k k k F X Ok d ok H ok ok F F N Ok ¥ F F * * N * X ¥ ¥
® Ok ok % ko F ok ok R ok %k Ok ¥ F ok OF ok % O % %k F % % Ok ok % K Ok ok % F F Ok F F K F Ok ¥ F F K Ok F % K * X F * ¥ *

h ok ok ok kK ok ok ok K ok & d ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

Quotient Remainder Error
Display Display Display

Figure 8. Schematic block diagram of the complex divider.

50

A detailed list of the essential terms associated with the complex divider are given as:

Complex number one is termed as 1y = x; + y;1i.

Complex number two is termed as 1, = x5 + y,i.

Dividend complex number is termed as “C_D,;".

Divisor complex number is termed as “C_D,.”.

The real number coefficient of the dividend complex number is termed as
“xDg".

The imaginary number coefficient of the dividend complex number is termed as
“yD,".

The real number coefficient of the divisor complex number is termed as “xD,.”.
The imaginary number coefficient of the divisor complex number is termed as
“yD,.”.

The first triplet product term is named as “TP_Term1”.

The second triplet product term is named as “TP_Term?2”.

The third triplet product term is named as “TP_Term3”.

The fourth triplet product term is named as “TP_Term4”.

The triplet term is named as “T_Term”.

The first triplet matrix term is named as “Mat_Term1”.

The second triplet matrix term is named as “Mat_Term?2”.

The USP-Awadhoot Dividend complex number is termed as “C_Dg,"”.

The USP-Awadhoot Divisor complex number is termed as “C_D,,"”.

The real number coefficient of the USP-Awadhoot quotient is termed as “C_Q,”.
The real number coefficient of the USP-Awadhoot remainder is termed as
“C_Rem,”.

The Imaginary number coefficient of the USP-Awadhoot quotient and termed
as “C_Q;".

The Imaginary number coefficient of the USP-Awadhoot remainder and termed
as “C_Rem;”.

The final quotient complex number is termed as “C_Q".

The final remainder complex number is termed as “C_Rem”.

Figure 8 illustrates the process of complex division implementation based on the
Baudhayan-Pythagorean triplet algorithm and the proposed novel USP-Awadhoot divider
circuit block. The implementation consists of three sections: the Baudhayan-Pythagorean
triplet algorithm circuit block, the novel USP-Awadhoot divider circuit block, and the
complex number re-arrangement circuit block. Unlike Smith and Stewart’s algorithm,
which provides an additional pre-scaling by a factor of y, and x, [46], as expressed in
equations (26) and (27), the initial part of the proposed complex division is similar to the
generalized formula but it is interpreted differently, in terms of the Baudhayan-Pythagoras
triplet form (as expressed in equations (21) to (25)).

Y2 Y2
T_I_x1+iy1_x_2(x1+y1) x_z(}’1_x1)

= - = i if (xz=y2) (26)
T2 Xty %(xz +¥2) %(xz +¥2)

xZ xZ
r X +i —(x1+y1) _(xl_yl)
ALt Y +i22 if (z<y) (27)
T, Xyt iy y—z(xz +y,) y—z(xz +2)
2 2

51

Despite the addition of pre-scaling to enhance robustness, the implementation of
Smith and Stewart’s algorithm for complex numbers requires a significantly larger area.
Smith and Stewart’s algorithm does not always ensure the precise rearrangement of the
real and imaginary components in the resulting complex quotient and the remainder.
This issue arises from the underflow and overflow conditions caused by a larger difference
between the divisor and dividend [46, 163]. The need for additional full-width dividers
to compute the different scaling factors, underflow, and overflow conditions is a significant
drawback of the Smith and Stewart’s complex divider implementation. | used the
Baudhayan-Pythagorean triplet algorithm as an input circuit stage of the complex divider.
Thus, the first stage of the Baudhayan-Pythagorean triplet algorithm circuit block of the
proposed divider separates the real and imaginary parts of the input operands.
It calculates the intermediate terms by processing the input operands and provides the
Mat_Term1, Mat_Term2, and T_Term values to the proposed USP-Awadhoot divider in
the next stage. The Mat_Terml, Mat_Term2, and T_Term values are essential for
keeping the operations in bounded conditions and to avoid underflow and overflow by
using the proposed novel USP-Awadhoot divider, which works on reducing the distance
between the divisor and the dividend. During the second stage, the USP-Awadhoot
divider circuit block generates two sets of the quotient and remainder values/signals
separately as an output. In the final stage of the proposed complex divider, the complex
number re-arrangement circuit rearranges the real and imaginary parts of the quotient
and the remainder of the complex number. It provides calculated quantities for other
displays, storage, or further communication.

4.2 Circuit illustration and state diagram

Figure 9 shows the state diagram of the proposed Baudhayan-Pythagorean triplet
algorithm, illustrating the circuit’s logic flow in the first part of the complex divider circuit
implementation. Figure 10 illustrates the FPGA circuit implementation of the proposed
Baudhayan-Pythagorean triplet algorithm according to the complex divider’s schematic
block diagram and logic flow state diagram.

0000

Complex Division
OJ'P Mat_Term1, Mat_Term2, and T_Term

Figure 9. State diagram of the proposed Baudhayan-Pythagorean Triplet algorithm.

52

The State diagram of the proposed Baudhayan-Pythagorean triplet algorithm indicates
the present and next stage conditions depending on the situation of the input operands
and control signals. The complex divider circuit’s input operands include the dividend,
divisor, reset, clock, and cd_enable signals. The FSM stages for the proposed circuit
comprise the following states:

e st0: This is the initial state. This state takes the input values and transfers them to
registers. It waits until cd_enable is one and reset (RST) is O to pass to the next state
(st1_2); else next state is st0.

e stl_2: If the clock and cd_enable signals are applied, and the reset (RST) signal is
low, this stage converts the standard logic vectors x;, x,, v, and y, received from
the input operands to integers xD;, yDy, xD,, and yD,, respectively. If the reset
(RST) signal is still at zero, the next state is st3.

e st3: If the clock and cd_enable signals are applied, and the reset (RST) signal is low,
it calculates TP_term1. If the reset (RST) signal is still at zero, the next state is st5a.

e st3a: If the clock and cd_enable signals are applied, and the reset (RST) signal is low,
it calculates TP_term?2. If the reset (RST) signal is still at zero, the next state is st3a.

e st3b: If the clock and cd_enable signals are applied, and the reset (RST) signal is low,
it calculates TP_term3. If the reset (RST) signal is still at zero, the next state is st3c.

e st3c: If the clock and cd_enable signals are applied, and the reset (RST) signal is low,
it calculates TP_termd4. If the reset (RST) signal is still at zero, the next state is st4a.

e stda: If the clock and cd_enable signals are applied, and the reset (RST) signal is low,
it partially calculates T_term. If the reset (RST) signal is still at zero, the next state is
stdb.

e stdb: If the clock and cd_enable signals are applied, and the reset (RST) signal is low,
it fully calculates T_term. If the reset (RST) signal is still at zero, the next state is st5.

e st5: If the clock and cd_enable signals are applied, and the reset (RST) signal is low,
it calculates Mat_term1. If the reset (RST) signal is still at zero, the next state is st5b.

e st5b: If the clock and cd_enable signals are applied, and the reset (RST) signal is low,
it calculates Mat_term?2. If the reset (RST) signal is still at zero, the next state is st6.

e st6: The final state, used to indicate, hold and transfer the results from the calculations
to the outputs to connect with the USP-Awadhoot divider as a second part of the
complex divider.

The schematic diagram of the proposed circuit implementation of the Baudhayan-
Pythagorean triplet algorithm is shown in Figure 10. For the sake of easier understanding,
the implementation of the proposed Baudhayan-Pythagorean algorithm is illustrated by
three subsequent stages: input, intermediate, and output stages (see Figure 10).
The different signals used in the circuit implementation of the Baudhayan-Pythagoras
triplet algorithm are grouped into input operand, control, output, and indicator signal
groups.

53

Lsd LSH LSA Mm,w_w
[MT1D 1D b
1D - =
— Jqeu 7
| sqeuE po EL = alqEuE P>
— 1571998
Jqeny pd A\ 4 E
SisTpaps das
ﬂa lwwwlul _l@ S1spajag e
- s i v g P g [T B
4/0 puEA o s
T oy S15)
— LT1NIN
SisTops Sis paps
Lo i @] 3=
e
wmRy L &w
33,
S HE o
sigTeeq| A X
SisTaps
= a_‘ LININ -
N] 5 IS
e D —
AUI e _‘@\ E (A |
WL IBIN| xo
2y 1apng]
- x| | o
32y
L1 =

[8 SisTpaps
— TN

B

e
2
z

I_

|

—<
X

B1s e

Figure 10. Schematic diagram of the proposed Baudhayan-Pythagorean triplet section of the
54

complex divider.

All signals are divided into groups such as input operand data signals (ry, 13),
computation completion acknowledgment (Valid_O/P), and error (Error) indicator
signals. Enable (cd_enable), clock (CLK), and reset (RST) are considered to be control
signals, and Mat_term1, Mat_term2, and T_term are output signals. The control group
clock signal (CLK) provides the timing reference signal for the computation and the
reference clock signal’s period value depends on the operating frequency of the circuit.
When the CLK signal continues generating the reference signal and the control group
signals (cd_enable and RST), both possess low logic values; the operation of the circuit is
then in an idle state. The input operand, output, and indicator group signal values are in
a high-impedance tri-state condition during the idle state.

As shown in Figure 10, the input operand signals r; and r, provide two complex
numbers, which are used to perform division operations based on the current states of
the cd_enable, CLK, and RST control signals. In the input circuit stage, all real and
imaginary parts of the input operands are separated and stored in the input buffer and
wait until the cd_enable signal is high (1) and reset (RST) is low (0). The output circuit
stage initializes the Mat_Term1, Mat_Term2, and T_Term signals from the output and
indicator signal group to 00, assuring that the previous computation results are not
involved in the current computation. Once the cd_enable signal is applied, this signal is
used to develop a select signal and is stored in the control register to connect with further
circuit stages. The input operand data is provided for further computation in the input
circuit stage. The input operand data gets stored into xy,x,,y, andy, buffers
respectively to extract xD;, yDg4, xD,, and yD,. values for the generation of B to G
signals.

The intermediate circuit stage receives the signal B to signal G data from the input
circuit stage. The forward signals B, C, D, F, H, and G are generated from the TP_Term1
to TP_Term4 computation. The computed data is stored in separate buffers and made
available for further computation, based on the select signal data required to calculate
partial Mat_Term1, partial Mat_Term2, and partial T_Term values. Signals K, L, and N
indicate the partial Mat_Term1, partial Mat_Term2, and partial T_Term values and
transfer respective data to the next circuit stage.

The output circuit stage receives signals K, L, and N from the intermediate circuit stage
and stores the respective data in Mat_Term1, Mat_Term2, and T_Term buffers. The
output circuit initializes the indicator signals for computation completion
acknowledgment (Valid_O/P) and error (Error) to a value of 00, to ensure that no residual
data from previous computations is included. When the reset (RST) signal is deactivated,
and the cd_enable signal is activated during the initial state, the partial values are further
converted into the final Mat_Term1, Mat_Term2, and T_Term values, based on the
selected signal logic, and further utilized as Mat_term1, Mat_term2, and T_term output
group signals. These signals are further connected with the USP-Awadhoot divider circuit
block and complex number re-arrangement circuit, to receive the final division results of
complex input operands. The Valid_O/P and Error signals indicate computation completion
and invalid operating conditions, respectively. If a logic high signal activates a reset (RST)
signal, the divider circuit suspends its current state of computation operation and resets
itself to the initial state. After completing the computation operation, depending on the
completion of data computation, Valid_O/P and error (Error) are updated, and validating
the computation and O/P results, i.e., whether values are correct or incorrect.

55

4.3 Summary
The basic steps involved in the proposed complex divider can be summarized as:

Step 1 - Define the dividend complex number (C_D,) and Divisor complex number (C_D,.)
from given complex numbers r; = x; + y,i and r, = x, + y,i; where C_D; =7; and
C_DT = rz.

Step 2 - Derive Cartesian coordinates: xDy4, yDy, xD,., and yD,..

xDg = x;
yDa =y
xD, = x,
yD, =y,

Step 3 - Derive the triplet product term (TP_Term) values.

TP_Terml = (xD; X xD,)
TP_Term2 = (yDy X yD,.)
TP_Term3 = (xD, X yDg)
TP_Term4 = (xD; X yD,.)

Step 4 - Derive the triplet term (T_Term) value.
T_Term = (xD,)? + (yD,)?
Step 5 - Derive the triplet matrix term (Mat_Term) value.

Mat_Term1 =TP_Terml + TP_Term?2
Mat_Term2 =TP_Term3 - TP_Term4

Step 6 - Supply Mat_Terml, Mat_Term2, and T_Term values to the USP-Awadhoot
divider for the final division sub-process.

Step 7 - USP-Awadhoot divider one receives Mat_Term1 and T_Term values to perform
the division sub-process.

C_D4, =Mat_Terml
C_D,;=T_Term

Giving the computation results C_Q, and C_Rem,.

Step 8 - USP-Awadhoot divider two receives Mat_Term2 and T_Term values to perform
the division sub-process.

C_Dg, = Mat_Term?2
C_D,, =T_Term

Giving the computation results C_Q; and C_Rem;

Step 9 — Concatenate the step 7 and step 8 computational results to restructure the
Cartesian coordinates to get the final quotient and remainder of the complex division.

Quotient=C_Q =(C_Q, concatenate C_Q;) and
Remainder = C_Rem = (_Rem,. concatenate C_Rem;)

56

4.4 Chapter conclusion

A detailed explanation of the basic working concept of the proposed Baudhayan-
Pythagoras triplet algorithm, used in association with the proposed novel USP-Awadhoot
divider, is described in this chapter. The proposed Baudhayan-Pythagorean triplet
algorithm helps to simplify inputs, ensuring the separation of the real and imaginary parts
of complex numbers for further calculation. This chapter covers RO3 — “Divider algorithm
formulation to reduce the criticality of conversion logic”. Publication IV covers detailed
information on the proposed Baudhayan-Pythagoras triplet algorithm associated with
the novel USP-Awadhoot divider.

57

5 Implementation and performance statistics

This chapter is based on publications |, Il, and IV. Very-large-scale integration (VLSI) plays
a critical role in the integration of millions of transistors onto a single chip, providing the
foundation for today’s cutting-edge devices. A crucial aspect of the VLSI design flow is
the use of hardware description languages (HDLs) such as VHDL, which serve as the
cornerstone for defining and simulating hardware functionality during the front-end
design process. The front end involves creating high-level abstractions of system behavior,
requiring precise algorithms to ensure logical correctness, optimized performance, and
scalability. Conversely, the back-end process focuses on translating these abstractions
into physical realizations, including circuit layout, synthesis, and the detailed
specifications necessary for fabrication. Algorithms bridge these domains by serving as
an intermediate representation that facilitates the logical-to-physical transformation,
enabling the efficient and reliable implementation of the hardware. As previously
mentioned, cost, area, execution time, and energy consumption are the essential
evaluation metrics for any divider implementation. In some applications, such as consumer
electronics and embedded systems, the focus is often on minimizing the area and cost to
achieve compact, affordable designs. In contrast, high-performance applications, such as
biomedical computations, prioritize low latency and fast execution times to ensure
timely and accurate results.

Implementation and performance statistics can be divided into two essential
parts: implementation area and latency time analysis. | implemented the synthesizable
architecture of the proposed divider to analyze its functionality and verify the correctness
of its calculation logic. This approach also helped determine the resources required to
deploy the proposed divider on an FPGA and enabled a comparison with various other
divider implementations. The behavioral simulation results were compared with
standard theoretical calculations, to verify the correctness of the proposed divider
algorithm. Additionally, timing/waveform analysis confirms the execution time/latency
of the divider implementation. This analysis is especially critical for data-dependent
divider implementations, where the operand values directly influence latency.

Figure 11 provides a generalized architectural illustration of FPGA building blocks.
Configurable logic blocks (CLB) are the core building blocks of an FPGA. The architecture
of CLBs is crucial for the FPGA’s ability to implement various digital logic functions. While
the exact architecture varies across FPGA families from different manufacturers, most
CLBs share standard configuration features. Considering Figure 11, one CLB consists of
two logic slices, and each slice contains four look-up tables (LUT), four flip-flops, latches,
and two multiplexers (F7MUX and FBMUX). A LUT is a collection of hard-wired logic gates
on an FPGA. LUTs store a predefined list of outputs for every possible combination of
inputs and provide a fast way to retrieve the output of a logic operation. A flip-flop is a
memory circuit which is capable of two stable states with a single bit. A multiplexer, or
‘mux’, is a circuit that selects between two or more inputs and outputs the selected input.
Different FPGA families implement slices and LUTs differently. For example, a logic slice
on a Virtex-1l FPGA has two LUTs and two flip-flops; whereas, a logic slice on a Virtex-5
FPGA has four LUTs and four flip-flops. In an FPGA, a fixed number of identical transistors
(N,.) is required to build each LUT, flip-flop, and multiplexer. Thus, knowing the number
of each LUT, flip-flop, and multiplexer used in implementing a particular circuitry on an
FPGA ultimately leads to a resistor-transistor circuit level, giving us the final count of
required transistors.

58

FPGAs (e.g., the Xilinx XCZU7EV-FFVC1156-2-E) consist of millions of programmable
logic gates (which are constructed from transistors) but are described at a much higher
level of abstraction like CLBs, the number of slices, LUTs, FFs, and multiplexers.
It provides an accurate estimate of the required transistor number and a precise value of
the implementation area, as the transistor area is fixed. The datasheet of the Xilinx
XCZU7EV-FFVC1156-2-E FPGA states that it has approximately 230,400 LUTs and 460,800
FFs. In the UltraScale+ architecture, including the XCZU7EV, the LUTs are typically 6-input
LUTs (LUT6), which can be stored using 64 SRAM cells and accessed by a 64:1 multiplexer.
Generally, six transistors are needed for one SRAM cell and two transistors are needed
to build a 2:1 multiplexer; thus, approximately 384 (for SRAM) + 126 (for MUX) = 510
transistors are needed to build one 6-input LUT.

§ g

CLB K=Y 1c k=) CLB

]
& e k=) K2 e
%

a

e, CLB Ic =] CLB

g 8§ 3

— Slice Logic 0 .
1 LuTo
[— = —
-
— i [~
1 LuTt3
m— =
-
Slice Logic 1 M
—1 LUTO
F— | S—
R— i [
—1] LUT3
E— b —
-

Figure 11. Generalized architectural illustration of FPGA building blocks.

Similarly, in the Xilinx UltraScale+ architecture, including the XCZU7EV-FFVC1156-2-E,
each slice contains flip-flops (registers) used for storage and sequential logic [172, 173].
The flip-flops in these slices are often similar in design to conventional D flip-flops,
requiring around 20 transistors per flip-flop [172, 173]. This number gives a rough estimate,

59

and the actual count might vary slightly, depending on specific optimization in the CLB
slice implementation within the UltraScale+ architecture. In the chosen FPGA family,
LUTs usually have two to six inputs. A register is a group of flip-flops used to store a bit
pattern. A register on an FPGA has a clock, input data, output data, and enabled signal
ports. Logic slices, look-up tables (LUTs), flip-flops (FFs), and multiplexers are fundamental
resources in FPGA architectures. Their utilization provides an effective basis for evaluating
and comparing the divider circuit designs.

5.1 Implementation and performance analysis of the USP-Awadhoot
divider circuit block

The proposed novel USP-Awadhoot divider is implemented in VHDL (Very high-speed
integrated circuits Hardware Description Language). In order to realize the theoretical
concept and idea of the proposed novel USP-Awadhoot divider, we developed a
synthesizable architecture, which is also referred to as the USP-Awadhoot divider circuit
block. This synthesizable implementation provides a unified way of comparing and
testing the divider. To implement and test the proposed USP-Awadhoot divider, we used
two vendor architectures to cross-verify the simulation results by comparing the outputs
separately with the truth table.
1. Vivado 2016 simulation tool with the Zybo development board based on Xilinx*
Zynq XC7Z010, XCZU7EV-FFVC1156-2-E with Zynqg UltraScale + MPSoC.
2. Quartus Prime Lite simulation software with the Cyclone IV development board
based on the EPACEGE22C8N Cyclone IV FPGA manufactured by Altera?.

Here, two different FPGAs (Xilinx and Altera) were used to test the correctness of the
logical results when implemented with differently structured FPGAs. Unless otherwise
specified, the Xilinx implementation and simulation statistics of the proposed divider are
considered further for comparisons, as most available data for the applications used
Xilinx FPGA to test and implement various dividers.

~LEDI2
- LEDI6

»
’
b

-

Figure 12. Logic test bench board.

A truth table, covering all possible combinations of the operands comprising the valid or
theoretical results, was referred to in order to check the validity of the generated output.

1 AMD acquired Xilinx in 2022.
2 Intel acquired Altera in 2015.

60

« — = -
g] 215
s —4o > a2 18
- — 2 -
e o} 2
% —— 2|8
2 P
T FPGA . . '_E
1 Implementation -
Control of USP-Awadhoot
In Divider Circuit ;
Block >+
218
1 28
B ™™ et > -
@ -
S /= ¢ %
=5 > N &
P i =
b /— £ E
ol :
=]
1

1 ﬁ P Q
1
I— —— Power —_— Status j— — -

Indicator

First Method

‘PGA-Progra;mmer |

USB Blaster

Figure 13. Test arrangements for the first method.

61

Automatic
Sequence
&
Control
Signal
Generator

AV

Clock IN

v

FPGA
Implementation
of USP-
Awadhoot
Divider Circuit
Block

Status

VAvAY

Test
Bench
Board

Second Method

FPGA-Program

USB Blaster

Figure 14. Test arrangements for the second method.

62

After connecting the test bench board to the FPGA test board, the proposed divider
was tested with all possible input operand combinations. Operand values are selected
from the test bench and provided to the divider’s input ports. Control signals generated
by the test bench trigger the divider to perform the division operation, producing the
quotient and remainder. These outputs are then sent back to the test bench board for
displaying. Finally, the results are compared against the truth table to verify the accuracy
of the divider results. Both experimental FPGA test boards were used to verify all possible
input operand conditions. During verification, the input operand values were selected in
both sequential and random orders. A random number generator (RNG) and a sequential
number generator (SNG) were used to evaluate the random and sequential operation of
the proposed divider implementation. As shown in Figure 12, | designed and used a logic
test bench board which was capable of providing input and output operands with varying
word sizes, to test the proposed implementation. The FPGA test board is connected to
the test bench board through connectors, which supply the input operands and display
the generated quotient and remainder outputs on LEDs. We tested the operation of the
proposed novel USP-Awadhoot divider in multiple ways.

As illustrated in Figure 13, the first method involves utilizing the test bench board’s
dual in-line package (DIP) switches as input operands and displaying output through
indicator LEDs. This configuration is created to manually test the sequential and random
operation of the proposed divider. Figure 14, shows that the second technique,
the automatic sequence generator (sequential and random), and the controlling signal
are connected to the input operands of the proposed divider built on the development
boards, and the output operands are connected to the test bench board for result
verification. This configuration is meant to automatically test the sequential and random
operation of the proposed division. An automatic sequence generator (sequential and
random) and the controlling signal are created using Arduino or other embedded systems;
an external function generator provides a working clock signal. In the third method, we
used simulation tools (Vivado and Quartus Prime Lite) to verify the sequential and random
operation of the proposed divider. Finally, the output accuracy is validated by comparing
the results provided by three verification methods to the theoretical results truth table.

After verifying the simulations and hardware implementation of different versions of
the proposed divider circuit, the implementation statistics of every version are mapped
to the LUTSs, flip-flop registers, multiplexers, latches, basic gates, and clock frequency.
It specifies the number of transistors or gates used, indicating the quantity of implemented
area or hardware resources used in the proposed novel USP-Awadhoot divider.
As explained previously in Chapter 2, all processes involved in the pre-processing,
processing, and post-processing circuit stages are implemented sequentially. Bounded
input-outputs (I/Os) are divided into two data operands: input and output data lines.
Input control lines are used to control the divider’s operation, and output status lines are
used to report an error if it occurs during computation.

The pre-processing circuit allows data from input data lines, i.e., dividend (D) and

divisor (D,), to be stored in input registers. The most significant bits (MSB) are stored as
a separate hexadecimal integer number. The least significant bits (LSB) are stored as
another hexadecimal integer in an array of hexadecimal integer elements for the
dividend. The same process is applied to both the dividend (D), and the divisor (D,.).
Concurrently, the pre-processing circuit stage formulates the FD and ND,. values by only
working on the least significant hexadecimal part of the divisor.

63

The processing circuit stage concurrently executes the ND; and GQ,, calculation step
for each group dividend (GD,) and utilizes the pre-defined values for error conditions.
In the last group dividend (GD,), the processing circuit stage concurrently executes the
residue/remainder and additional quotient calculations if needed. The processing circuit
stage introduces an extra buffer and counters to improve the expected group
residue/remainder and additional quotient calculations. Once the last group dividend
(GD,) calculations are completed, the condition selection and rearrangement circuits
are activated in the post-processing circuit stage to compute the final values for quotient
and residue as per the display/storage requirements.

Figures 15-17 show the resource requirements, power, and frequency estimations
of multiple versions of the proposed USP-Awadhoot divider implementations; each
implementation is referred to as a‘version’. Version V8.1 is an 8-bit operand
implementation of the proposed USP-Awadhoot divider, while versions V16.1, V24.1,
and V31.1 are the 16-bit operand, 24-bit operand, and 31-bit operand implementations,
respectively, based on the V8.1 version. The V31.1 implementation uses 31-bit operand
due to software configuration limitations to avoid overflow conditions during conversion.

RESOURCE UTILIZATION
2000
u 1800 60
[T X
9 1600)
. 0s
U i 1400
-k E
n W 1200 40 w
53 v
o m 1000 g
20 302
g 3 800 i
5 600 200
1S
) 400 g
g 10 <
200
0 0
V8.1 Vi16.1
& Slice Logic LUTs 266 622
Slice Register FFs 146 241
N F7 MUX 0 1 2 5

Implementation of the Proposed USP-Awadhoot Divider

Figure 15. Hardware resource utilization.

Figures 15-17 illustrate the actual data for the proposed circuit implementation based
on the Xilinx FPGA simulation tool. This is used as a baseline for comparing the numerous
alternatives and enables the drawing of a comparative analysis, as in Sections 5.3 and
5.4.

64

POWER (W)

9
7,994
8
g’ 5,887
S ’
-
3
4 3,601
g 3,366
< 3
2
1
(]
vs.1 Vi6.1 Vv24.1 v31.1

Implementation of the Proposed USP-Awadhoot Divider

Figure 16. Estimated power consumption.

A study of different implementation versions indicates the total trade-off between
area, time, and power estimation. So, depending on the application, one must decide
which implementation version must be utilized. As per Figures 15-17, the V8.1 version,
which represents the 8-bit implementation of the proposed divider, requires 266 slice
logic LUTs, 146 slice register flip-flops, and 37 bounded input-outputs with zero latches,
DSPs, or eight-input multiplexers. It utilized 0.12% of the available LUTs and 0.03% of the
available slice register flip-flops, in total. Simulation confirms that it operates at a moderate
divider clock frequency of up to 285 MHz and consumes 3.366 watts of estimated power.

CLOCK FREQUENCY (MHz)
300 285
o 250
2 200
pi
X 150
<& 100 76 N 70
50
o HE = B
va.1 V16.1 v24.1 V3Ll

Implementation of the Proposed USP-Awadhoot Divider

Figure 17. Divider clock frequency.

65

As the bit size increases, there is a progressive increase in resource usage, which is
nearly double that of the prior version. The V16.1 version, which represents the 16-bit
implementation of the proposed divider, requires 622 slice logic LUTs and 241 slice
register flip-flops. Simulation confirms that it operates at 76 MHz clock frequency and
consumes 3.601 watts of estimated power. It utilized 0.26% of the available LUTs and
0.05% of the available slice register flip-flops in total. Similarly, the V24.1 and V31.1
versions of the proposed divider, which represent 24-bit and 31-bit implementations,
require 1274 and 1836 slice logic LUTs, as well as 821 and 1352 slice register flip-flops,
respectively. It utilized 0.55% to 0.79% of the available LUTs and 0.17% to 0.29% of the
available slice register flip-flops in total. Furthermore, we used versions V8.1 and V16.1
of the proposed divider circuit in all of the comparative implementation resource
utilization studies.

The divider uses the divider clock frequency as a reference for performing division
operations. The proposed USP-Awadhoot divider’s behavior is mapped with a latency
time performance function, designed to keep track of the number of clock cycles
required for a given pair of input operands. So, the latency analysis is performed in terms
of clock cycles. Simulations identify the performance of the proposed divider latency
time by analyzing the clock cycle calculation of the best and worst conditions. We
consider two ways to evaluate the proposed divider’s latency time performance. The first
is a sequential truth table, which ensures that each combination of input operands is
considered during execution and its associated data is saved. The second option, RNG,
is suitable for evaluating operands with larger word sizes. The execution time of the
data-dependent divider is decided by how far the divisor is from the dividend rather than
by the value of the dividend. The greater the distance between the dividend and the
divisor, the longer the execution time.

Variable latency can be used to provide a variable conversion rate or time. Achieving
variable latency in the divider is critical, due to the difficulty of synchronizing iterations
to get the correct results. To understand the nature of the variable latency in the
proposed divider, | performed a clock performance analysis of the entire range of 8-bit
operands using the RNG and the sequential truth table, with 65K possible combinations.
The RNG method is only considered for larger bit sizes, due to the possibility of billions
of combinations. The clock performance analysis of the proposed USP-Awadhoot divider
is performed at a 125MHz clock frequency.

66

70
60
50
40

30

0 e
0

00 01 02 03 04 05 06 07 08 09 OA OF 14 19 1E 23 28 2D 32 5A 64 6E 96 C8 DC FO

Average Clock Cycles

o

Difference Between Dividend and Divisor
Figure 18. Clock performance analysis based on the distance between the dividend and the divisor.

Figure 18 illustrates the proposed divider’s behavior based on the difference between
the dividend and divisor values. It demonstrates that the proposed divider circuit uses
the fewest clock cycles (approximately 1 to 3) when the divisor value is 0, as division by
zero results in an invalid condition. When the distance between the divisor and dividend
values is small, the minimum necessary average number of clock cycles remains in the
range of thirteen to twenty-four clock cycles. When the divisor value is one, the smallest
number of clock cycles is required (7 clock cycles). If the dividend value was previously
confirmed to be non-zero, the final quotient value is calculated directly after ensuring
that the divisor value is unity. Mid-range operand combinations required fifteen to
thirty-five clock cycles, whereas large-range operand combinations required twenty-eight
to sixty-eight clock cycles. A dividend value of zero is an exception to the invalid
condition; when the input operand value indicates that the dividend and divisor values
are both zero, the proposed divider circuit needs slightly longer clock cycles (17 clock
cycles) to complete the execution process. The main reason for this is that the circuit first
detects the dividend value to identify it as a nonzero value. If a zero dividend value is
detected, the temporary output is set to zero and it checks the divisor for a non-zero
value. If it detects a non-zero value, the quotient is set to zero; otherwise, the error signal
indicates an invalid condition.

5.2 Waveform analysis

The functional waveform analysis of the proposed divider based on the USP-Awadhoot
division algorithm is discussed in this section. The operating conditions of the various
signals used or generated by implementations in various scenarios, such as idle/initial
and off/on states, are presented in Figure 19. We consider multiple dividend and divisor
combinations in order to better understand various signals and data during an individual
conversion process. The nine signal data were studied using waveform analysis,
to provide a clear picture of the proposed divider's working conditions based on the
USP-Awadhoot division algorithm. The nine signals required for waveform analysis are:

67

the reference clock (CLK), dividend (Dy), divisor (D,), enable (fd_enable), quotient
(Q_Result), the remainder (Rem_Residue), computation completion acknowledgment
(Valid_0O/P), error (Error), and reset (RST). These nine signals are divided into five groups
based on their nature: the reference group, the I/P operand group, the control group,
the O/P results group, and an indicator group.

Different dividend and divisor combinations require different clock cycles for
computation; the timing reference signal for computation execution is provided by the
reference group CLK signal. The dividend (D) and divisor (D) signals are part of the I/P
operand group. The Control group consists of fd_enable and RST signals, to provide start
and end control signals for the computation process. The indicator group consists of
Valid_O/P and Error signals, which indicate computation completion and notify the
system of invalid working conditions or erroneous execution. The final and most important
O/P results group consists of the Q_Result and Rem_Residue signals, which provide the
quotient and remainder values as the result of the division operation conducted by the
proposed USP-Awadhoot divider.

Idle Initialisation Operation Next

ok \ / \ / \]\ / \ / \ / \
“), Divdend] Dafa =Value ! Next Data
g b Duderd [[Daa = Vae I Nex Data
o //
g e Q Resut = Iniial Value Setto 00| i Q Result=Valug
g Rem_Residve 777717777/} Rem Residue = Initia Value Setto 00H i Rem_Residue = Value
gl aor g, / / (I
: Err [/ (U
g[RS / /A U S

Figure 19. Waveform reference for initial operating condition.

Figure 19 indicates a reference functioning waveform for the initial working conditions.
The working waveform is primarily segmented into an idle state, an initialization state,
an operation state, and the ‘next’ state. The idle state shows the proposed divider
circuit’s non-working or stationary status and the beginning state after a shutdown when
only a power source is applied to the circuit. In the idle state, the CLK signal continues to
generate the reference signal and the dividend (D) and divisor (D,) signals of the I/P
operand group are in the high-impedance tri-state condition. The Control group fd_enable
and RST both have low logic values, suggesting no operation. Similarly, the value of the
indicator group and O/P results group’s Q_Result and Rem_Residue signals are in a high
impedance tri-state condition, indicating a stationary working condition. After applying
the fd_enable control signal to the proposed division, the initialization state signals the

68

next stage. The proposed circuit resets the signal value of the O/P results group to the
initial value of 00H during the initialization stage, implying no results at the start. As stated
previously, it fetches the dividend (D) and divisor (D,.) data from input data lines and
stores them in the input operand registers for further computation. The Valid_O/P and
Error signals in the indicator group are set to logic low values, indicating that no
calculation operations have yet been completed. During the operation state, the proposed
divider circuit computes the Q_Result and the Rem_Residue signals. After completing the
computing process, the Valid_O/P and Error signals are modified, and the accuracy of the
computation and quotient values is validated. The proposed USP-Awadhoot divider
suspends its current computing state and resets to its initialization state if a high-logic
signal triggers the RST signal. The RST signal is set to low logic, signifying an inactive reset
signal, allowing the ongoing computing process to compute the final quotient values.
Once the quotient value has been determined, the proposed divider is ready to proceed
to the next computation, depending on the control group signal.

5.3 Summary of comparative analysis

This section includes a study of the various divider implementations, providing a
comprehensive overview of the other implementations that could be used to compare
the performance of the proposed divider implementation. It demonstrates the need to
establish a good trade-off between time, cost, area, and complexity while selecting a
suitable division algorithm for a required application. The Vivado 2016 simulation tool
with the Zybo development board based on Xilinx Zyng XC72010, XCZU7EV-FFVC1156-2-E
with Zynq UltraScale + MPSoC and the Quartus Prime Lite simulation software with
the Cyclone IV development board based on the EP4CE6E22C8N Cyclone IV FPGA
manufactured by Altera were used to develop and implement the proposed novel
USP-Awadhoot divider. The simulation results and FPGA implementation were
cross-verified by separately comparing the outputs with the truth table indicating
results for all input combinations. Here, two different FPGAs (Xilinx and Altera) were used
to test the correctness of the logical results when implemented with different structured
FPGAs. Unless otherwise specified, the Xilinx implementation and simulation statistics of
the proposed USP-Awadhoot divider are considered further for comparisons, as most
applications used Xilinx FPGA to test and implement various dividers.

Restoring and non-restoring algorithms are comprehensive concepts. The restoring
algorithm is identical to the actual long division algorithm or the theoretical paper and
pencil algorithm, and the non-restoring algorithm is similar to the restoring algorithm
except for the restoring stage. These algorithms are the fundamental algorithms of the
dividers in the digit recurrence class. Many scholars have investigated the complexity,
timing, area, and other properties of the implementations of simple restoring and
non-restoring algorithms [1, 3, 66, 68]. Many non-restoring algorithms have been
designed and implemented, but the SRT algorithm is the most implemented approach.
Many algorithms that appear later are either entirely or partially derived from the digit
recurrence concept and functional iteration class division algorithms.

69

2500 Slice Logic LUTs Slice Register FFs

2000
S
]
2 1500
£
S
2
3 1000
S
a
[
< 500
0 - =
Radix-2 Radix-4 Radix-8 Radix-16 Proposed
USP-Awadhoot
SRT based Radix Dividers Divider

Figure 20. Comparative analysis of the proposed USP-Awadhoot divider with the radix-n based SRT
divider.

The basic SRT algorithm was implemented in [5, 9, 12, 17, 19, 21, 35, 51, 58, 68, 76-83]
for different applications utilizing different aspects of the algorithm. Figure 20 illustrates
the comparative analysis regarding the hardware resource utilization of the proposed
USP-Awadhoot divider and other SRT-based radix-n dividers. The proposed USP-Awadhoot
divider requires 266 slice logic LUTs and 146 slice register flip-flops. In contrast, the radix-2
to radix-16 divider implementations require 1500 to 2100 slice logic LUTs and 1100 to
1200 slice register flip-flops [7]. This indicates that the concept of different pre-scaling
operations or factors for the input operands used in the proposed novel USP-Awadhoot
divider helps to reduce its chip area requirements.

70

TLEs / LUTs Memory (Byte) DSP Elements
1437

1203
1200 1146

768 768 816

647

2
o
o

406

Resource Utilization
H [~
8 8

213

~N
o
o

84
0 28 0 00 00 0 0 00

o

IP core from PST (DSP) PST (nonDSP) Pre computed Goldschmidt's Divider from Proposed USP-

MegaWizard divider algorithm Quartus Mega Awadhoot
functions(32bits) Divider (Altera
Cyclone IV)

Functional Iteration and Different Algorithm Based Divider

Figure 21. Comparative analysis of the proposed novel USP-Awadhoot divider with different
functional dividers.

Figure 21 illustrates the comparative analysis of hardware resource utilization of the
proposed USP-Awadhoot divider implementation with functional iteration and different
algorithm-based dividers. For this comparison, we considered the implementation of the
proposed USP-Awadhoot divider on Altera EP4CE6E22C8N Cyclone IV FPGA, as other
dividers also implemented Altera FPGA and were feasible for other modern FPGA
devices. The illustration considers the study by Md. F. Kasim, T. Adiono, Md. Fahreza and
Md. F. Zakiy, which discussed a divider block with pre-computed values stored in a
read-only memory as a look-up table [67]. J. Liu, M. Chang, and C-K. Cheng discussed the
PST (DSP/non-DSP) algorithm that utilizes pre-scaling, series expansion, and Taylor series
expansion together [33]. The comparison also considered the Mega Wizard IP core
divider, Goldschmidt’s algorithm-based divider, and the Quartus Mega function divider.
The Altera EP4CE6E22C8N Cyclone IV FPGA implementation of the proposed novel
USP-Awadhoot divider is used for the comparison. This implementation requires
406 LUTs / total logic elements (TLE) but zero memory and DSP elements.

In contrast, the PST (non-DSP) algorithm-based divider requires 213 TLEs / LUTs and
768 bytes of memory; whereas, the PST (DSP) algorithm-based divider needs 1437 TLEs
/ LUTs, 768 bytes of memory, and 28 DSP elements [33]. The pre-computed divider and
Goldschmidt’s algorithm-based divider require 647 and 816 TLEs / LUTs, respectively.
The Mega Wizard IP core, DSP, and non-DSP dividers significantly delay the results,
as their maximum clock frequencies are limited to 50-73 MHz. These dividers require
relatively more resources than the proposed USP-Awadhoot divider. Additionally,
the pre-computed values introduce rounding errors in the calculation process.
The proposed USP-Awadhoot divider displays better implementation area requirements
and maximum clock frequency performance.

Table 4 and Table 5 illustrate a resource consumption comparison of the proposed
USP-Awadhoot divider and the Xilinx LogiCORE IP Divider Generator V4.0 [171]. Xilinx
LogiCORE IP Divider Generator V4.0 creates a circuit for integer division based on a
non-restoring radix-2 division algorithm or a high-radix division with pre-scaling [171].

71

The implementation statistics for the proposed USP-Awadhoot divider are obtained with
Error and Valid_O/P signals. The Valid_O/P signal indicates that the computation has
been completed, but the Error signal shows that an invalid condition has occurred due
to a zero divisor value, i.e., the divide-by-zero condition. The proposed USP-Awadhoot
divider implementation’s resource requirements are analyzed with XilinxLogiCORE IP
Divider Generator core V4.0, based on a non-restoring radix-2 division algorithm.
Xilinx is the top candidate in the IC business, with a comprehensive set of Intellectual
Property (IPs).

Table 4. Comparative analysis of the proposed USP-Awadhoot divider and the Xilinx LogiCORE IP
integer divider generator V4.0 (8-bit).

Dividend Width 8 8 8 8 8

Divisor Width 8 8 8 8 8
Remainder 8 8 8 8 8

And Quotient Width

LUT6 -FF Pairs 223 218 217 215 000

No. of LUTs 203 205 203 197 266

No. of FFs 288 288 288 288 146

IC Name Virtex7 | Kintex7 | Virtex6 | Spartan6 Xilinx Zyngq XC72010

Table 5. Comparative analysis of the proposed USP-Awadhoot divider and the Xilinx LogiCORE IP
integer divider generator V4.0 (32-bit).

Dividend Width 32 32 32 32 32

Divisor Width 32 32 32 32 32
Remainder 32 32 32 32 32

And Quotient Width

LUT6 -FF Pairs 2196 2209 2195 2185 000

No. of LUTs 2068 2060 2126 2130 1836

No. of FFs 3202 3202 3202 3202 1352

IC Name Virtex7 | Kintex7 | Virtex6 | Spartan6 Xilinx Zyng XC72010

During the comparison, we considered Xilinx Virtex 6 and 7, Kintex 7, and Spartan 6
FPGA with a LogiCORE IP Divider Generator V4.0. The number of slice register flip-flops
used in each FPGA IC is constant at 288, although the number of LUTs used changes from
197 to 205, and the number of six input LUT-FF pairs used changes significantly from 215
to 223, for 8-bit implementation in Virtex 7, Kintex 7, Virtex 6, and Spartan 6. Similarly,
the number of slice register flip-flops used in each FPGA IC is constant at 3202, although
the number of LUTs used changes from 2060 to 2130, and the number of six input
LUT-FF pairs used changes significantly from 2185 to 2209, for 32-bit implementation in
Virtex 7, Kintex 7, Virtex 6, and Spartan 6. The proposed USP-Awadhoot divider requires
266 to 1836 slice logic LUTs and 146 to 1352 slice register flip-flops. The power
consumption of the LogiCORE IP Divider Generator V4.0 is not mentioned in the
document, but the recommended divider based on the USP-Awadhoot division algorithm
simulation estimates 3.366 Watts.

Based on the statistics presented in [9], the proposed novel USP-Awadhoot divider
implementation shows improvements in its FPGA resource utilization, i.e., 77-88%
improvement in the number of required slice logic LUTs (depending on the use of 8-bit

72

or 16-bit operands) and 96-96.36% improvement in the number of slice register flip-flops
required (depending on the use of 8-bit or 16-bit operands) in the Xilinx IP core pipelined
divider. The proposed novel USP-Awadhoot divider implementation uses 266 to 622 slice
logic LUTs and 146 to 241 slice register flip-flops, depending on 8-bit or 16-bit operands,
compared to the 2247 to 2742 slice logic LUTs and 4020 to 4904 slice register flip-flops
of the IP core pipelined divider by Xilinx.

In [6], K. Tatas, D. J. Soudris, D. Siomos, M. Dasygenis, and A. Thanailakis discussed
different concepts involved in partitioning the actual dividend into segments, to
represent an actual division of a numerator by a denominator as a series of smaller
divisions with a necessary requirement for the numerator to meet (Numerator N= N; +
N, +...), as in equations (28) and (29). All intermediate operations are performed by
considering the weight of the dividend bits. This concept of a series of divisions,
showcases a smaller dividend division algorithm, where we must perform shifting,
partisan division, and accumulation operations. Any existing division algorithm can be
utilized for the small division process; the best-suited option must be selected depending
on the trade-off between cost and area. This algorithm can be implemented in both
series and parallel ways [6]. At last, add all the small division's results to get a combined
result.

N N, N, N; N,

_ = —_ —_— b Cee e ees s 28
D D + D + D + D + (28]
where, N=N; + N, + N3 + - (29)

This algorithm is implemented with an N=32-bit dividend and parallel array divider,
a sequential divider with two partitions, or a parallel divider with two sections in the
partial division stage. Its respective implementation requires 4316, 2136, and 3050 slices
on Xilinx Virtex-E 1000. From the above data, it is clear that the sequential implementation
of this algorithm requires more hardware resources. Compared to this divider,
the proposed USP-Awadhoot divider does not partition the given Numerator (Dividend)
into smaller dividends, like N; and N,, which requires the following N = N; + N,
relation. In contrast, the proposed USP-Awadhoot divider partitions the numerator
(dividend) into group dividends that do not need to sum to the actual dividend value,
as shown in the equations. (30) and (31).

Thus, Numerator = Dividend = X

= group dividend 1, group dividend 2, , group dividend n (30)

Where, X # group dividend 1 + group dividend 2 + -+ (31)
+ group dividend n

73

Table 6. Summary of the comparison between standalone divider implementations year—2019 [5].

In [5], E. Matthews, A. Lu, Z. Fang, and L. Shannon discussed integer divider designs
for FPGA-based soft processors that influence the use of variable latency execution units
in their instruction pipeline. Implementation efforts focused on the Quick-Div divider,
which exhibits data dependency and variable latency in integer division. It is optimized
on FPGA and integrated into the Taiga RISC-V pipelined soft processor. They pointed out
that a 64-bit floating/fixed-point divider requires almost ten times more resources than
a 32-bit radix-2 integer divider [5, 168]. FPGA soft-core processors such as Micro Blaze
[152], NIOS Il [169], and the LEON3 processor [170], implemented fixed-latency radix-2
dividers with 32 cycles of latency for performing division operations. As illustrated in
Table 6, experimental implementations of the Quick-Div divider are performed over the
Xilinx Virtex UltraScale + VCU118 board (XCVU9P-L2FLGA2104E) using the Vivado 2018.3
synthesis tool. It also provides comparative statistics between the data-dependent
variable-latency Quick-Div dividers stand-alone implementation and fixed-latency
radix-n (n = 8, 16) divider implementations. Here, frequency is the divider clock frequency
used for the division operation.

Table 7. Summary of the Taiga soft processor divider implementation comparison year—2019 [5].

74

All dividers are realized with the RISC-V Taiga soft processor on Xilinx FPGA by
influencing variable latency execution units in their instruction pipeline. As illustrated in
Table 7, a comparative statistic is derived between the implementation of data-dependent
variable-latency Quick-Div dividers with the Taiga RISC-V soft-processor and fixed latency
radix-n (n = 8, 16) dividers. Considering Table 6 and Table 7, the variable-latency
Quick-Div dividers and fixed-latency radix-n (n = 8, 16) dividers require 5 to 7 times more
chip area than the proposed USP-Awadhoot divider, which is represented by the number
of LUTs and flip-flops used for implementation. In contrast, the maximum clock
frequency of variable-latency Quick-Div dividers and fixed-latency radix-n (n = 8, 16)
dividers is almost double that of the maximum clock frequency of the proposed novel
USP-Awadhoot divider. This indicates that the proposed novel USP-Awadhoot divider
implementation achieved improvements in FPGA resource utilization.

To summarize, compared to the existing state-of-the-art digit recurrence dividers,
the proposed novel USP-Awadhoot divider implements multiple performance
improvement techniques simultaneously (i.e., dynamic separate scaling operations) with
individual input operands. This approach achieves variable latency and a small area
footprint without overlapping regions in the quotient calculation logic. To implement and
test the proposed novel USP-Awadhoot divider, | used the Vivado simulation tool with
the Zyng XC72010 and XCZU7EV-FFVC1156-2-E Xilinx FPGAs, as well as the Quartus
Prime Lite simulation software with the EP4CE6E22C8N Cyclone IV Altera FPGAs.
All comparisons were conducted using the same synthesis tools and FPGA platforms.
More specifically, if another divider was implemented using the Xilinx Vivado synthesis
tool with Xilinx FPGAs, the proposed novel USP-Awadhoot divider implementation was
compared on the same platform. Similarly, if another divider was implemented using the
Altera Quartus synthesis tool with Altera FPGAs, comparisons were conducted using the
same Altera Quartus synthesis tool with the Altera FPGA platform.

5.4 Chapter conclusion

A detailed explanation of the proposed novel USP-Awadhoot divider implementation
statistics, verification test strategies, waveform analysis, and comparative analysis is
described in this chapter. This demonstrates how the proposed USP-Awadhoot divider
improves divider implementation, especially regarding implementation area requirements.
This chapter covers RO4 — “Implement the divider based on the formulated algorithm
and improve the area requirements to compose the operand-dependent area-efficient
divider circuit design”. Publications |, Il, and IV cover detailed information on the proposed
novel USP-Awadhoot divider implementation statistics, verification test strategies,
waveform analysis, and comparative analysis.

75

Conclusion and future work prospects

The evaluation of addition and multiplication implementations typically falls within a
latency range of a few clock cycles to less than ten, while the performance evaluation of
division operations usually spans tens to hundreds of clock cycles and requires a
significantly larger implementation area. The main objective of this doctoral dissertation
is to address the research gap in simultaneously applying multiple performance-
enhancement techniques to individual input operands, with the goal of designing and
implementing a divider circuit that minimizes implementation area, avoids rounding
errors, and prevents overlapping regions in the quotient bit calculation logic. The details
presented in Chapters 3 and 5 confirm the successful implementation of the proposed
novel USP-Awadhoot divider circuit block. The USP-Awadhoot divider integrates multiple
performance-enhancing techniques (dynamic separate scaling operations) for each input
operand, achieving variable latency and preventing overlapping regions in the quotient
bit calculation logic. The design is developed by simulating the proposed technique and
cross-verifying the results against standard truth tables, which include all possible
combinations of input operands, generated from a theoretical evaluation of the proposed
idea. The main contributions highlighted in the thesis are as follows:

e |n association with RO1, RO2, RO3, and RO4, this thesis contributes to the
development of a novel algorithm for implementing a divider circuit block.
The innovative concept of dynamic separate scaling operations for the dividend and
divisor reduces resource requirements, resulting in a divider circuit block with a low
area footprint.

e In association with RO2, RO3, and RO4, | developed an easy Group Quotient (GQ,,)
value selection logic in the proposed divider circuit block based on the unique
relation derived between Dividend Groups (GD,), Modified Divisor (MD,.), and Flag
Digit (FD) without any critical overlapping.

e Inassociation with RO2, RO3, and RO4, | developed a clear process for selecting the
final quotient based on the Group Quotient (GQ,), Partial Quotient (PQ,,), and
Additional Quotient (AQ) values without critical overlapping regions.

e In association with RO2 and RO3, | implemented a complex divider based on the
Baudhayan-Pythagorean triplet algorithm with the proposed USP-Awadhoot divider
circuit block.

e The described steps reduce the criticality of the conversion logic by eliminating
overlapping regions in the quotient bit selection logic.

Future work prospects

e Asthe current implementation verifies the successful performance of the proposed
divider on different FPGAs, the next target is to design a dedicated chip. The first
step is to develop a physical layout and floor plan for the chip-level implementation,
which determines where each circuit component is placed and extracts parasitic
values to prepare the final design for fabrication.

e To develop a speed-oriented USP-Awadhoot algorithm-based divider circuit that
achieves low latency and conversion time, we need to fuse certain intermediate
functional blocks. For example, separate operations like addition and multiplication
can be performed in a fused mode, such as fused multiply-add (FMA). Additionally,

76

the focus should be on improving the 24-bit and 32-bit implementations of the
proposed divider.

The current implementation validated its successful performance by using
combinational circuits. Certain processes in the proposed divider can be represented
using different hardware architectures, such as pipelined architecture, parallel
architecture, array structure, and cascade structure.

The performance of the proposed divider implementation needs to be verified in
various applications such as image processing, particle detection, telecommunication,
and signal processing.

77

References

[1] Bailey, D. G. “Space-Efficient Division on FPGAs,” Electronics New Zealand Conference,
pp. 206-211, 2006.

[2] Qasaimeh, M., Denolfy. K., Loy, J. Vissersy, K. Zambreno, J. and Jones, P. H. Comparing
energy efficiency of CPU, GPU and FPGA implementations for vision kernels. Proc. Int.
Conf. on Embedded Software and Systems. (ICESS) 1-8, 1906.11879v1, 2019.

[3] Kumari, J. and Yasin, M. Y. Design and soft implementation of n-bit SRT divider on FPGA
through VHDL. Int. Jou. for Innovations in Eng. Sci. and Management. Vol. 3, issue 4, 13-19,
April 2015.

[4] Narendra, K., Ahmed, B. S., Kumar, K. S. and Asha, G. H. FPGA Implementation of fixed-
point integer divider using iterative array structure. Int. Jou. of Eng. and Tech. Research
—JETR. Vol. 3, issue 4, 170-179, 2321-0869, April 2015.

[5] Matthews, E., Lu, A., Fang, Z. and Shannon, L. Rethinking integer divider design for
FPGA-based soft-processors. IEEE 27th Annual Int. Symp. on Field-Programmable Custom
Comp. FCCM. 289-297, 10.1109/FCCM.2019.00046, 2019.

[6] Tatas, K., Soudris, D. J., Siomos, D., Dasygenis, M. and Thanailakis, A. A Novel division
algorithm for parallel and sequential processing. 9th Int. Conf. on Elecs., Cir., and Sys.
553-556, 0-7803-7596-3, 2002.

[7] Tocher, K. D. Techniques of multiplication and division for automatic binary computers.
Quart. Journ. Mech. and Applied Math. Vol. XI, pt. 3, 364-384, 1958.

[8] Asai, H. A recursive radix conversion formula and its application to multiplication and
division. Comp. and Maths. With Applications.Vol. 2, 255-265, 1976.

[9] Sorokin, N. Implementation of high-speed fixed-point dividers on FPGA. Jou. of Com.
Sci. & Tech. Vol. 6, no. 1, 8-11, 1666-6038, April 2006.

[10] Huang, K. and Chen, Y. Improving performance of floating-point division on GPU and
MIC. Proc. of 15th Int. Con. on Algo. and Arch. for Parallel Proc.- ICA3PP. 691-703,
10.1007/978-3-319-27122-4 48, Nov.2015.

[11] Fang, X. and Leeser, M. Vendor agnostic, high performance, double-precision
floating-point division for FPGAs. Proc. of IEEE High-Perf. Extreme Com. Conf., HPEC,
pp. 1-5. 10.1109/HPEC.2013.6670335, Sep.2013.

[12] Liu, W. and Nannarelli, A. Power dissipation challenges in multicore floating-point

units. Proc. of 21st IEEE Int. Con. on App.-spec. Sys. Archit. and Proc. 257-264,
10.1109/ASAP.2010.5540986, 2010.

78

[13] Thall, A. Extended-precision floating-point numbers for GPU computation. Proc. of
Spec. Interest Grp. on Comp. Graphics and Interactive Tech. Con.- SIGGRAPHO06. 978-1-
59593-364-5, 2006.

[14] Sinha, P. Smart Sensors use DSCs for Embedded Signal Processing. Jour. Microchip
Technology Inc. 2021. https:// cdn. Weka-fachmedien.de/whitepaper/files/
108_mcad71wp_sensor signal processing with dscs.pdf.

[15] Oberman, S. F., and Flynn, M. J. Division algorithms and implementations. IEEE Trans.
on Computers, Vol. 46, no. 8, 833-854, August - 1997.

[16] Pineiro, J. A., Bruguera, J. D., Lamberti, F. and Montuschi, P. A radix-2 digit-by-digit
architecture for cube root. IEEE Trans. On Computers, Vol. 57, No. 4, 562-566, April -
2008.

[17] Takagi, N., Kadowaki, S. and Takagi, K. A hardware algorithm for integer division.
Proc. of the 17th IEEE Symp. on Com. Arit.-ARITH. 1-7, pp. 140-146, 1063-6889/05 (2005).

[18] Lee, B.R. and Burgess, N. Improved small multiplier based multiplication, squaring,
and division. Proc. of the 11th Annual IEEE Symp. on Field-Prog.Custom Com.- FCCM,
pp. 91-97, 1082-3409/03, 2003.

[19] Nannarelli, A. and Lang, T. Low-power divider. IEEE Tran. On Com. Vol. 48, No. 1,
pp. 2-14, 0018-9340/99, 1999.

[20] G. Sutter, G. Bioul, J-P Deschamps, “Comparative Study of SRT-Dividers in FPGA,”
Becker J., Platzner M., Vernalde S. (eds) Field Programmable Logic and Application.
FPL 2004. Lecture Notes in Computer Science, vol 3203. Springer, Berlin, Heidelberg,
pp. 209-220.

[21] M. Reddy, Vasantha MH, N. Kumar, D. Dwivedi, “Design of Approximate Dividers for
Error Tolerant Applications” IEEE 61st International Midwest Symposium on Circuits and
Systems - MWSCAS ISBN- 978-1-5386-7392-8/18, 2018, pp. 496-499.

[22] J-S. Chiang, H-Da. Chung and M-S. Tsai, “Carry-Free Radix-2 Subtractive Division
Algorithm and Implementation of the Divider,” Tamkang Journal of Science and
Engineering, Vol. 3, No. 4, 2000, pp. 249-255.

[23] E. M. Schwarz, and M. J. Flynn, “Using A Floating-Point Multiplier’s Internals For
High-Radix Division And Square Root,” Dept. Elect. Eng. Comput. Sci., Comput. Syst. Lab.,
Stanford Univ., Stanford, CA, USA, Technical Report CSL-TR-93-554, January 1993.

[24] N. Burgess, “A Fast Division Algorithm for VLSI,” IEEE International Conference on

Computer Design: VLSI in Computers and Processors, Cambridge, MA, USA, 14-16 Oct.
1991, pp. 560-563.

79

[25] M. Kuhlmann, and K. K. Parhi, “Fast Low-Power Shared Division and Square-Root
Architecture,” Proceedings International Conference on Computer Design. VLSI in
Computers and Processors, 1998, pp. 128-135.

[26] S. F. Anderson, J. G. Earle, R. E. Goldschmidt, and D. M. Powers, “The IBM
System/360 Model 91: Floating-Point Execution Unit,” IBM J. Research and development,
vol. 11, pp. 34-53, Jan. 1967, doi: 10.1147/rd.111.0034.

[27] D. L. Fowler and J. E. Smith, “An Accurate, High-Speed Implementation of Division
by Reciprocal Approximation,” Proc. Ninth IEEE Symp. Computer Arithmetic, pp. 60-67,
Sept. 1989, doi: 10.1109/ARITH.1989.72810.

[28] B. Liebig, and A. Koch, “Low-Latency Double-Precision Floating-Point Division for
FPGAs,” International Conference on Field-Programmable Technology (FPT), Shanghai,
China, 10-12 December 2014, p.p-107-114.

[29] K. N. Han, A. F. Tenca, and D. Tran, “High-speed floating-point divider with the
reduced area,” Proc. SPIE 7444, Mathematics for Signal and Information Processing,
CCC code: 0277-786X/09, doi: 10.1117/12.827850, 2009, pp. 0.1-0.8.

[30] 1. Kong, and E. E. Swartzlander, Jr., “A Goldschmidt Division Method With Faster Than
Quadratic Convergence,” IEEE Transactions On Very Large Scale Integration (Vlsi) Systems,
Vol. 19, No. 4, April 2011, pp. 696-700.

[31] R. E. Goldschmidt, “Applications Of Division By Convergence,” Masters Degree
Thesis, Department of Electrical Engineering, Massachusetts Institute of Technology,
June 1964, URI: http://hdl.handle.net/1721.1/11113.

[32] T. J. Kwon, J. Sondeen, and J. Draper, “Floating-Point Division and Square Root
using a Taylor-Series Expansion Algorithm,” 50th Midwest Symposium on Circuits and
Systems, Montreal, Que., Canada 5-8 Aug. 2007, DOI-10.1109/MWSCAS.2007.4488594,
pp. 305-308.

[33] J. Liu, M. Chang, and C.-K. Cheng, “An Iterative Division Algorithm for FPGAs,” 14th
Int. Symp. on Field programmable gate arrays FPGA’06, Feb. 22—-24, 2006, Monterey,
California, USA, ACM 1595932925/06/0002, pp. 83-89.

[34] A. Kumar, and T. N. Sasamal, “Design of Divider Using Taylor Series in QCA,” 1st
International Conference on Power Engineering, Computing and Control, PECCON-2017,
Chennai, India, Energy Procedia 117, 818-825, pp. 818-825.

[35] A. A. Liddicoat and M. J. Flynn, “High-Performance Floating-Point Divide,” Proceedings
Euromicro Symposium on Digital Systems Design, Warsaw, Poland, 4-6 Sept. 2001,
pp. 354-361.

[36] Trummer, R., Zinterhof, P. and Trobec, R. A high-performance data-dependent

hardware divider. Chapter 7: Systems and Simulation, Parallel Numerics, 961-6303-67-8,
193-206, Uni. of Salzburg 2005.

80

[37] R. K. L. Trummer, “A High-Performance Data-Dependent Hardware Integer Divider,”
Master thesis, Institute of Computer Science and Systems Analysis, Paris Lodron
University, Salzburg, May 2005.

[38] Britannica, The Editors of Encyclopaedia. “Hindu-Arabic numerals.” Encyclopedia
Britannica, 8 September 2017, https://www.britannica.com/topic/Hindu-Arabic-numerals.

[39] The Arabic Numeral System (MacTutor by the School of Math. and Stat. at the
University of St Andrews, Scotland). Available online-https://mathshistory.st-
andrews.ac.uk/HistTopics/Arabic_numerals/.

[40] Brahmagupta (MacTutor by the School of Math. and Stat. at the University of St
Andrews, Scotland). Available online- https://mathshistory.st-
andrews.ac.uk/Biographies/Brahmagupta.

[41] Robertson, E. and O’Connor, J. Aryabhata, the Elder. MacTutor by the School of
Math. and Stat. at the University of St Andrews, Scotland. https://mathshistory.st-
andrews.ac.uk/Biographies/Aryabhata_|.

[42] A. Kaplan, Math on Call: A Mathematics Handbook. Wilmington, MA, USA: Great
Source Education Group, 2004.

[43] T. Bassarear and M. Moss, Mathematics for Elementary School Teachers, 4th ed.
Independence, KY, USA: Cengage Learning, 2008.

[44] Detrey, J., and Dinechin, F. D. A tool for unbiased comparison between logarithmic
and floating-point arithmetic. Jou. of VLSI Signal Processing, 49, 161-175, 10.1007/s11265-
007-0048-7, 2007.

[45] A. Nannarelli, “Radix-16 combined division and square root unit,” in Proc. 20th IEEE
Symp. Comput. Arithmetic, Jul. 2011, pp. 169-176, doi: 10.1109/ARITH.2011.30.

[46] M. D. Ercegovac and J-M Muller “Design of a complex divider,” Proc. SPIE 5559,
Advanced Signal Processing Algorithms, Architectures, and Implementations XIV, 26
October 2004; pp. 51-59, https://doi.org/10.1117/12.560154D.

[47] M. M. Kermani, N. Manoharan, and R. Azarderakhsh, “Reliable Radix-4 Complex
Division For Fault Sensitive Applications,” IEEE Transaction on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 34, No. 4, April 2015, pp. 656-667.

[48] D. Wang, P. Ren, and L. Liu, “A High- Throughput Fixed-Point Complex Divider
For FPGA,” IEICE Electronics Express Letter, Vol. 10, No. 4, pp. 1-8, DOL:
10.1587/elex.10.20120879.

[49] A. A. Varghese, C. Pradeep, M. E. Eapen, and R. Radhakrishnan, “FPGA implementation

of area-efficient IEEE 754 complex divider,” in Proc. Technol., vol. 24, 2016, pp. 1120-1126,
doi: 10.1016/j. protcy.2016.05.245.

81

[50] S. F. Oberman and M. J. Flynn, “An analysis of division algorithms and
implementations,” Comput. Syst. Lab., Dept. Elect. Eng. Comput. Sci., Stanford Univ.,
Stanford, CA, USA, Tech. Rep. CSL-TR-95-675, Jul. 1995.

[51] B. K. Bose, L. Pei, G. S. Taylor, and D. A. Patterson, “Fast multiply and divide for a
VLSI floating-point unit,” 1987 IEEE 8th Symposium on Computer Arithmetic (ARITH),
1987, pp. 87-94, doi: 10.1109/ARITH.1987.6158684.

[52] H. Nikmehr, “Architectures for Floating-Point Division,” Ph.D. thesis, School of
Electrical and Electronic Engineering, The University of Adelaide, Australia, August 2005.

[53] P. Soderquist, and M. Leeser, “Division and square root: choosing the right
implementation,” IEEE Micro, Vol. 17, pp. 56-66, 1997.

[54] E. N. Frantzeskakis and K. J. R. Liu, “A class of square root and division free algorithms
and architectures for QRD-based adaptive signal processing,” in IEEE Transactions on
Signal Processing, vol. 42, no. 9, pp. 2455-2469, Sept. 1994, doi: 10.1109/78.317867.

[55] D. Piso, J. A. Pineiro, and J. D. Bruguera, “Analysis of the Impact of Different
Methods for Division/Square root Computation in the Performance of a Superscalar
Microprocessor,” Journal of Systems Architecture, 49 (12-15): 543-555, December 2003.

[56] Reza Z, Mehdi K, Arash F, Ali Kusha, Saeed S, Massoud P, “SEERAD: A High Speed yet
Energy-Efficient Rounding based Approximate Divider” Design, Automation & Test in
Europe Conference & Exhibition — DATE 2016, ISSN: 978-3-9815370-7-9, pp. 1481-1484.

[57] Elizabeth A, Suganthi V, and Seok-Bum Ko “Approximate Restoring Dividers Using
Inexact Cells and Estimation From Partial Remainders” leee Transactions On Computers,
Vol. 69, No. 4, April 2020, pp. 468-474.

[58] L. Chen, J. Han, W. Liu, F. Lombardi, “Design of Approximate Unsigned Integer Non-
restoring Divider for Inexact Computing” Great Lakes Symposium on VLS|, GLSVLSI- 2015,
Pittsburgh Pennsylvania USA, ISBN- 978-1-4503-3474-7, May 2015, pp. 51-56.

[59] N. Jamadagani, Jo Ebergen, “An Asynchronous Divider Implementation” IEEE 18th
International Symposium on Asynchronous Circuits and Systems, 1522-8681/12, 2012
IEEE, pp. 97-104.

[60] P. Saha, D. Kumar, P. Bhattacharyya, A. Dandapat, “Vedic division methodology for
high-speed very-large-scale integration applications” Journal of Engineering; Accepted
on 7 January 2014 Vol. 2014, Iss. 2, pp. 51-59.

[61] M. Reddy, Vasantha MH, N. Kumar, D. Dwivedi, “Design of Approximate Dividers for

Error Tolerant Applications” IEEE 61st International Midwest Symposium on Circuits and
Systems- MWSCAS ISBN- 978-1-5386-7392-8/18, 2018, pp. 496-499.

82

[62] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Introduction to Algorithms,”
third edition, The MIT Press, Cambridge, Massachusetts London, England. ISBN 978-0-
262-03384-8 (hardcover)—ISBN 978-0-262-53305-8 (pdf).

[63] O. L. MacSorley, “High-Speed Arithmetic in Binary Computers,” Proceedings of the
IRE, 49, pp. 67-90, January 1961.

[64] G. Metze, “A class of binary divisions yielding minimally represented quotients,” IRE
Trans. Electronic Computers, vol. EC-11, pp. 761-764, December 1962.

[65] P. Soderquist and M. Leeser, “Area and performance tradeoffs in floating-point
divide and square-root implementations,” ACM Comput. Surveys, Vol. 28, Issue. 3,
pp. 518-564, September 1996. DOI:https://doi.org/10.1145/243439.243481.

[66] S. Dixit and M. Nadeem, “FPGA accomplishment of a 16-bit divider,” Imperial J.
Interdiscipl. Res., vol. 3, no. 2, pp. 140-143, 2017.

[67] M. F. Kasim, T. Adiono, M. Fahreza, and M. F. Zakiy, “FPGA implementation of fixed-
point divider using pre-computed values”, 4th Int. Conf. on Electrical Eng. and Informatics
ICEEI Vol. 11, 206-211, 2013.

[68] R. S. Hongal and D. J. Anita, “Comparative study of different division algorithms for
fixed and floating-point arithmetic unit for embedded applications,” Int. J. Comput. Sci.
Eng., vol. 4, no. 9, pp. 48-54, 2016.

[69] S. Kaur, M. Singh, and R. Agarwal, “VHDL implementation of non-restoring division
algorithm using high-speed adder/subtractor,” Int. J. Adv. Res. Electr., Electron. Instrum.
Eng., vol. 2, no. 7, pp. 3317-3324, Jul. 2013.

[70] N. Boullis and A. Tisserand, “On digit-recurrence division algorithms for self-timed
circuits,” INRIA-Institut Nat. De Recherche En Informatique Et En Automatique, France,
Tech. Rep. RR-4221, Jul. 2001.

[71] Behrooz Parhami, “Computer Arithmetic: Algorithms and Hardware Designs,” book,
Oxford University Press, 2010, 641 pages.

[72] Milo$ D. Ercegovac and Tomas Lang, “Digital Arithmetic A volume in The Morgan
Kaufmann Series in Computer Architecture and Design,” Imprint: Morgan Kaufmann,

2004, ISBN- 978-1-55860-798-9.

[73] K. Jun, “Modified non-restoring division algorithm with improved delay profile,” M.S.
thesis, Fac. Graduate, School Univ. Texas Austin, Austin, TX, USA, 2011.

[74]). Cocke and D. W. Sweeney, “High-Speed Arithmetic in a Parallel Device,” Technical
Report, IBM Corp., February 1957.

[75]). E. Robertson, “A new class of digital division methods,” IRE Trans. Electron. Comput.,
vol. EC- 7, issue no. 3, pp. 218-222, Sep. 1958.

83

[76] M. Nadler, “A High-Speed Electronic Arithmetic Unit for Automatic Computing
Machines,” Alta Technica (Prague), Vol. 6, pp. 464-478, 1956.

[77] O. L. MacSorley, “High-Speed Arithmetic in Binary Computers,” Proceedings of The IRE,
Vol. 49, pp. 67-91, January 1961.

[78] J. B. Wilson and R. S. Ledley, “An Algorithm for Rapid Binary Division,” IRE Transactions
on Electronic Computers, EC-10, pp. 662-670, 1961.

[79] G. Metze, “A Class of Binary Divisions,” IRE Transactions on Electronic Computers,
EC-11, Vol. 6, 1962.

[80] L. Ciminiera and P. Montuschi, “Simple Radix 2 Division and Square Root with
Skipping Some Addition Steps,” Proceedings of The 10th IEEE Symposium on Computer
Arithmetic (ARITH-10'91), pp. 202-209, Grenoble, France, 26-28 June 1991, IEEE
Computer Society Press.

[81] D. M. Mandelbaum, “A systematic Method for Division with High Average Bit
Skipping,” IEEE Transactions on Computers, Vol. 39, Issue 1, pp. 127-130, 1990.

[82] D. E. Atkins, “The Theory and Implementation of SRT Division,” Technical Report
UIUCDCS-R-67-230, Department of Computer Science, the University of lllinois at
Urbana-Champaign, Urbana, lllinois, USA, 1967.

[83] P. Montuschi and L. Ciminiera, ‘‘Reducing iteration time when result digit is zero for
radix 2 SRT division and square root with redundant remainders,” IEEE Trans. Comput.,
vol. 42, no. 2, pp. 239-246, Feb. 1993.

[84] N. Takagi and S. Kuwahara, “Digit-recurrence algorithm for computing Euclidean
norm of a 3-D vector,” ARITH '99: Proceedings of the 14th IEEE Symposium on Computer
Arithmetic, April 1999. DOI: 10.1109/ARITH.1999.762833.

[85] D. L. Harris, S. F. Oberman, and M. A. Horowitz, “SRT Division: Architectures, and
Implementations” Proceedings 13th IEEE Symposium on Computer Arithmetic, Asilomar,
CA, USA, July 6-9, 1997, 0-8186-7846-1. DOI.10.1109/ARITH.1997.614875.

[86] Sumiksha, P. Konda, and S. Shetty, “Computation of SRT and CORDIC Division
Algorithms,” IOSR Journal of Electronics and Communication Engineering (IOSR-JECE),
vol. 12, issue 4, ver. Il, pp. 53-56, July-Aug. 2017, e-ISSN: 2278-2834, ISSN: 2278-8735.

[87] D. Tyanev and Y. Petkova, “Hardware Divider,” CompSysTech’18: Proceedings of the
19th International Conference on Computer Systems and Technologies, pp. 139-143,

September 2018, https://doi.org/10.1145/3274005.3274009.

[88] D. M. Russinoff, “Computation and formal verification of SRT quotient and square
root digit selection tables,” IEEE Trans. Comput., vol. 62, no. 5, pp. 900-913, May 2013.

84

[89] J. Cortadella and T. Lang, “High-radix division and square-root with speculation,”
IEEE Trans. Comput., vol. 43, no. 8, pp. 919-931, Aug. 1994.

[90] N. Burgess and T. Williams, “Choices of operand truncation in the SRT division
algorithm,” IEEE Trans. Comput., vol. 44, no. 7, pp. 933-938, Jul. 1995.

[91] B. Mehta, J. Talukdar, and S. Gajjar, “High-speed SRT divider for intelligent embedded
system,” in Proc. Int. Conf. Soft Comput. Eng. Appl. (icSoftComp), Dec. 2017, pp. 1-5.

[92] R. E. Bryant, “Bit-level analysis of an SRT divider circuit,” in Proc. 33rd Design
Automation Conf., Las Vegas, NV, USA, 1996, pp. 661-665.

[93] S. F. Oberman and M. J. Flynn, “Minimizing the complexity of SRT tables,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 6, no. 1, pp. 141-149, Mar. 1998.

[94] T. M. Carter and J. E. Robertson, “Radix-16 signed-digit division,” IEEE Trans. Comput.,
vol. 39, no. 12, pp. 1424-1433, Dec. 1990.

[95] R. Erra, “Implementation of a hardware algorithm for integer division,” M.S. thesis,
Elect. Eng., Fac. Graduate College Oklahoma State Univ., Payne County, OK, USA, Aug.
2019.

[96] I. Rust and T. G. Noll, “A digit-set-interleaved radix-8 division/square root kernel for
double-precision floating-point,” in Proc. Int. Symp. Syst. Chip, Tampere, Finland, Sep.
2010, pp. 150-153, doi: 10.1109/I1SSOC.2010.5625547.

[97] E.M. Clarke, S.M. German, and X. Zhao, “Verifying the SRT Division Algorithm Using
Theorem Proving Techniques,” In Alur R., Henzinger T.A. (eds) Computer Aided Verification.
CAV 1996. Lecture Notes in Computer Science, vol 1102. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/3-540-61474-5_62, pp. 111-122.

[98] S. F. Oberman and M. J. Flynn, “Design issues in division and other floating-point
operations,” |IEEE Trans. Comput., vol. 46, no. 2, pp. 154-161, Feb. 1997.

[99] S. Knowles, “Arithmetic processor design for the T9000 transputer,” Proc. SPIE,
vol. 1566, pp. 230-243, Dec. 1991.

[100] A. Nannarelli, “Performance/power space exploration for binary64 division units,”
IEEE Trans. Comput., vol. 65, no. 5, pp. 1671-1677, May 2016.

[101] D. E. Atkins, “Higher-radix division using estimates of the divisor and partial
remainders,” IEEE Trans. Comput., vol. C-17, no. 10, pp. 925-934, Oct. 1968.

[102] M. D. Ercegovac and T. Lang, “Simple radix-4 division with operands scaling,” IEEE
Trans. Comput., vol. 39, no. 9, pp. 1204-1208, Sep. 1990.

[103] W. Liu and A. Nannarelli, “Power efficient division and square root unit,” IEEE Trans.
Comput., vol. 61, no. 8, pp. 1059-1070, Aug. 2012.

85

[104] H. P. Sharangpani and M. L. Barton, “Statistical analysis of floating-point flaw in the
Pentium processor (1994),” Intel Corp., Santa Clara, CA, USA, Tech. Rep., 1994, pp. 1-32.

[105] A. Vazquez, E. Antelo, and P. Montuschi, “A radix-10 SRT divider based on alternative
BCD codings,” in Proc. 25th Int. Conf. Comput. Design, Lake Tahoe, CA, USA, Oct. 2007,
pp. 280-287, doi: 10.1109/ICCD. 2007.4601914.

[106] S. Oberman, “Design issues in high-performance floating-point arithmetic units,”
Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Stanford Univ., Stanford, CA, USA, Nov.
1996.

[107]). Fandrianto, “Algorithm for high-speed shared radix 8 division and radix 8 square
root,” in Proc. 9th Symp. Comput. Arithmetic, Jul. 1989, pp. 68-75.

[108] S. E. McQuillan, J. V. McCanny, and R. Hamill, “New algorithms and VLSI
architectures for SRT division and square root,” Proc. IEEE 11th Symposium Computer
Arithmetic, Jul. 1993, pp. 80-86.

[109] P. Montuschi and L. Ciminiera, “Over-redundant digit sets and the design of digit-
by-digit division units,” IEEE Trans. Comput., vol. 43, no. 3, pp. 269-277, Mar. 1994.

[110] P. Montuschi and L. Ciminiera, “Radix-8 division with over-redundant digit set,”
J. VLSI Signal Process., vol. 7, no. 3, pp. 259-270, May 1994.

[111] N. Quach and M. Flynn, “A radix-64 floating-point divider,” Comput. Syst. Lab.,
Stanford Univ., Stanford, CA, USA, Tech. Rep. CSL-TR-92-529, Jun. 1992.

[112] H. R. Srinivas and K. K. Parhi, “A fast radix-4 division algorithm and its architecture,”
IEEE Trans. Comput., vol. 44, no. 6, pp. 826-831, Jun. 1995.

[113] G. S. Taylor, “Radix 16 SRT dividers with overlapped quotient selection stages,” in
Proc. 7th IEEE Symp. Comput. Arithmetic, Jun. 1985, pp. 64-71.

[114] T. E. Williams and M. A. Horowitz, “A zero-overhead self-timed 160- ns 54-b CMOS
divider,” IEEE J. Solid-State Circuits, vol. 26, no. 11, pp. 1651-1661, Nov. 1991.

[115] T. Asprey, G.S. Averill, E. Delano, R. Mason, B. Weiner, and J. Yetter, “Performance
Features of the PA7100 Microprocessor,” IEEE Micro, vol. 13, no. 3, pp. 22-35, June 1993.
[116] T. Lynch, S. Mcintyre, K. Tseng, S. Shaw, and T. Hurson, “High-Speed Divider with
Square Root Capability,” U.S. Patent No. 5,128,891, 1992.

[117] D. Hunt, “Advanced Performance Features of the 64-bit PA-8000,” Digest of Papers
COMPCON ’95, pp. 123-128, Mar. 1995.

[118] A. Svoboda, “An Algorithm for Division,” Information Processing Machines, vol. 9,
pp. 29-34, 1963.

86

[119] C. Tung, “A division algorithm for signed-digit arithmetic,” IEEE Trans. Comput.,
vol. C-17, no. 9, pp. 887-889, Sep. 1968.

[120] L. A. Montalvo, K. K. Parhi, and A. Guyot, “New Svoboda-Tung division,” IEEE Trans.
Comput., vol. 47, no. 9, pp. 1014-1020, Sep. 1998.

[121] J. S. Chiang and M.-S. Tsai, “A radix-4 new Svobota-Tung divider with constant
timing complexity for prescaling,” J. VLSI Signal Process., vol. 33, pp. 117-124, Jan. 2003.

[122] L. Montalvo and A. Guyo, “Svoboda-Tung division with no compensation,” in Proc.
IEEE Int. Conf. VLSI Design, Jan. 1995, pp. 381-385.

[123] D. Wong and M. Flynn, “Fast division using accurate quotient approximations to
reduce the number of iterations,” IEEE Trans. Comput., vol. 41, no. 8, pp. 981-995, Aug.
1992.

[124] T. Lang and A. Nannarelli, “A radix-10 digit-recurrence division unit: Algorithm and
architecture,” IEEE Trans. Comput., vol. 56, no. 6, pp. 727-739, Jun. 2007.

[125] J.-A. Pineiro, M. D. Ercegovac, and J. D. Bruguera, “High-radix iterative algorithm
for powering computation,” in Proc. 16th IEEE Symp. Comput. Arithmetic, Santiago de
Compostela, Spain, Jun. 2003, pp. 204-211.

[126] M. D. Ercegovac and J. M. Muller, “Complex square root with operand prescaling,”
in Proc. 15th IEEE Int. Conf. Appl.-Specific Syst., Archit. Processors, Sep. 2004, pp. 1-11.

[127] M. D. Ercegovac and J. M. Muller, “Complex division with prescaling of operands,”
in Proc. Appl.-Specific Syst., Archit., Processors, Jun. 2003, pp. 304-314.

[128] M. Baesler, S. O. Voigt, and T. Teufel, “FPGA implementations of radix-10 digit
recurrence fixed-point and floating-point dividers,” in Proc. Int. Conf. Reconfigurable
Comput. FPGAs, Dec. 2011, pp. 13-19.

[129] M. D. Ercegovac and J. M. Muller, “Variable radix real and complex digit- recurrence
division,” in Proc. 16th Int. Conf. Appl.-Specific Syst., Archit., Processors, Jul. 2005,
pp. 316-321.

[130] D. Wang, M. D. Ercegovac, and N. Zheng, “Design and analysis of high radix complex
dividers,” in Proc. 2nd Int. Conf. Comput. Eng. Technol., vol. 1, Apr. 2010, pp. V1-84-V1-88.

[131] M. D. Ercegovac, T. Lang, and P. Montuschi, “Very-high radix division with
prescaling and selection by rounding,” IEEE Trans. Comput., vol. 43, no. 8, pp. 909-918,
Aug. 1994.

[132] M. D. Ercegovac and R. Mcllhenny, “Design and FPGA implementation of a radix-10

algorithm for division with limited precision primitives,” in Proc. Conf. Rec. 42nd Asilomar
Conf. Signals, Syst. Comput., Pacific Grove, CA, USA, Oct. 2008, pp. 762-766.

87

[133] M. D. Ercegovac and R. Mcllhenny, “Design and FPGA implementation of radix-10
combined division/square root algorithm with limited precision primitives,” in Proc. Conf.
Rec. Forty 4th Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA, USA, Nov. 2010,
pp. 87-91.

[134] L. Chen, F. Lombardi, P. Montuschi, J. Han, and W. Liu, “Design of approximate
high-radix dividers by inexact binary signed-digit addition,” in Proc. Great Lakes Symp.
VLSI, May 2017, pp. 293-298, doi: 10. 1145/3060403.3060404.

[135] H. Nikmehr, B. Phillips, and C.-C. Lim, “Fast decimal floating-point division,” |EEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 14, no. 9, pp. 951-961, Sep. 2006.

[136] A. F. Tenca and M. D. Ercegovac, “On the design of high-radix on-line division for
long precision,” in Proc. 14th IEEE Symp. Comput. Arithmetic, Adelaide, SA, Australia,
Apr. 1999, pp. 44-51.

[137] J. D. Bruguera, “Radix-64 floating-point divider,” in Proc. IEEE 25th Symp. Comput.
Arithmetic (ARITH), Jun. 2018, pp. 84-91.

[138] D. Das Sarma and D. W. Matula, “Faithful bipartite ROM reciprocal tables,” in Proc.
12th Symp. Comput. Arithmetic, Jul. 1995, pp. 12-25.

[139] B. Pasca, “Correctly rounded floating-point division for DSP-enabled FPGAs,”
in Proc. 22nd Int. Conf. Field Program. Log. Appl. (FPL), Oslo, Norway, Aug. 2012,
pp. 249-254.

[140] M. P. Vestias and H. C. Neto, “Revisiting the Newton-Raphson iterative method for
decimal division,” in Proc. 21st Int. Conf. Field Program. Log. Appl., Sep. 2011, pp. 138-143.

[141] M. Joldes, O. Marty, J.-M. Muller, and V. Popescu, “Arithmetic algorithms for
extended precision using floating-point expansions,” IEEE Trans. Comput., vol. 65, no. 4,
pp. 1197-1210, Apr. 2016.

[142] P. Saha, D. Kumar, P. Bhattacharyya, and A. Dandapat, “Vedic division methodology
for high-speed very large scale integration applications,” J. Eng., vol. 2014, no. 2, pp. 51-59,
Feb. 2014.

[143] J.-A. Pineiro and J. D. Bruguera, “High-speed double-precision computation of
reciprocal, division, square root, and inverse square root,” IEEE Trans. Comput., vol. 51,
no. 12, pp. 1377-1388, Dec. 2002.

[144] T. J. Kwon, J. Sondeen, and J. Draper, “Floating-point division and square root using
a Taylor-series expansion algorithm,” in Proc. 50th Midwest Symp. Circuits Syst.,

Montreal, QC, Canada, Aug. 2007, pp. 305-308, doi: 10.1109/MWSCAS.2007.4488594.

[145] P. Bannon and J. Keller, “Internal architecture of Alpha 21164 microprocessor,” in
Dig. Papers OMPCON Technol. Inf. Superhighway, vol. 95, Mar. 1995, pp. 79-87.

88

[146] T. Williams, N. Parkar, and G. Shen, “SPARC64: A 64-b 64-Active-Instruction Out-of-
Order-Execution MCM Processor,” IEEE J. Solid-State Circuits, vol. 30, no. 11,
pp. 1,215-1,226, Nov. 1995.

[147] S. E. Richardson, “Exploiting trivial and redundant computation,” Proceedings of
IEEE 11th Symp. Computer Arithmetic, July. 1993, pp. 220-227.

[148] H. F. Ugurdag, F. D. Dinechin, Y. S. Gener, S. Goren, and L.-S. Didier, “Hardware
division by small integer constants,” IEEE Trans. Comput., vol. 66, no. 12, pp. 2097-2110,
Dec. 2017.

[149] N. Emmart and C. Weems, “Asymptotic optimality of parallel short division,” in
Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS), May 2016, pp. 864-872.

[150] N. Emmart and C. Weems, “Parallel multiple precision division by a single precision
divisor,” in Proc. 18th Int. Conf. High-Perform. Comput. Dec. 2011, pp. 1-9, doi:
10.1109/HiPC.2011.6152712.

[151] T. Jebelean, “An algorithm for exact division,” J. Symbolic Comput., vol. 15, no. 2,
pp. 169-180, Feb. 1993.

[152] MicroBlaze Processor Reference Guide, Xilinx Inc. [Online]. Available: xilinx.com/
support/ documentation /sw manuals/xilinx2016 4/ug984- vivado-MicroBlaze-ref.pdf.

[153] S. M. Mueller, and S. D. Trong, “Optimized Structure For Hexadecimal and Binary
Multiplier Array,” United State Patent, Patent No.: US 9.720.648 B2, August 2017.

[154] 1. C. Ebergen, N. P. Jamadagni, and I. E. Sutherland, “Performing Quotient Selection
for A Carry-Save Division Operation,” United States Patent, Patent No.: US 9.298.421 B2,
March 2016.

[155] P. Kubinec, J. Pucik, M. Hagara, E. Cocherovd, and O. Ondracek, “Successive
Approximation Algorithm for Complex Number Magnitude and Argument Computation,”
30th International Conference Radioelektronika-2020, pp. 1-4, doi: 10.1109
/radioelektronika 49387.2020.9092432.

[156] T. Aoki, H. Amada and T. Higuchi, “Real/complex reconfigurable arithmetic using
redundant complex number systems,” Proceedings 13" IEEE Symposium on Computer
Arithmetic, 1997, pp. 200-207, doi: 10.1109/ARITH.1997.614896.

[157] M. M. A. Basiri and N. M. Sk, “An efficient hardware-based MAC design in digital
filters with complex numbers,”v2014 International Conference on Signal Processing and
Integrated Networks (SPIN), 2014, pp. 475-480, doi: 10.1109/SPIN.2014.6777000.

[158] T. Jamil, “An Introduction to Complex Binary Number System,” 2011 Fourth

International Conference on Information and Computing, 2011, pp. 229-232, doi:
10.1109/ICIC.2011.37.

89

[159] Zaini, H. and R. G. Deshmukh. “A novel method for arithmetic operations using
complex binary number system and the reconversion of the result to the decimal
complex number system.” IEEE SoutheastCon, 2003. Proceedings. (2003): 31-37.

[160] T. Jamil, “Complex Binary Associative Dataflow Processor - A Tutorial,”
SoutheastCon 2018, 2018, pp. 1-3, doi: 10.1109/SECON.2018.8478931.

[161] T. Aoki, Y. Ohki and T. Higuchi, “Redundant complex number arithmetic for high-
speed signal processing,” VLS| Signal Processing, VIII, 1995, pp. 523-532, doi:
10.1109/VLSISP.1995.527523.

[162]Y. Ohi, T. Aoki, and T. Higuchi, “Redundant complex number systems,” Proceedings
25th International Symposium on Multiple-Valued Logic, 1995, pp. 14-19, doi:
10.1109/ISMVL.1995.513504.

[163] D. M. Priest, “Efficient scaling for complex division,” ACM Transactions on
Mathematical Software, Volume 30, Issue 4, pp. 389-401, December 2004,
https://doi.org/10.1145/1039813.1039814.

[164] Agrawala, Dr. V.S. (Ed.). & Jagadguru Swami Sri Bharati Krsna Tirthaji Maharaja,
“Vedic Mathematics: Sixteen simple mathematical formulae from the Vedas,” Motilal
Banarsidass: Delhi, 1988. ISBN-10: 8120801636, ISBN-13: 978-8120801639.

[165] J. J. O’Connor and E. F. Robertson, “The Indian Sulbasutras,” MacTutor by the
School of Mathematics and Statistics, University of St Andrews, Scotland,
https://mathshistory.st-andrews.ac.uk/HistTopics/Indian_sulbasutras/.

[166] U. S. Patankar, A. Koel, “Division Method and Circuit” PTC the International Patent
System, International Bureau of the World Intellectual Property Organization, application
no.: PCT/IB2021/054942, submission no.: 054942, Date: 06 June 2021; published on- 15-
12-2022, publication no W02022259009. patentscope.wipo.int

[167] U. S. Patankar and S. M Patankar, “Elements of Vedic Mathematics” Book ISBN
9789949832163.

[168] X. Fang and M. Leeser, “Open-source variable-precision floating-point library for
major commercial FPGAs,” ACM Trans. Reconfigurable Technol. Syst., vol. 9, no. 3, p. 20,

Jul. 2016, doi: 10.1145/2851507.

[169] Intel Corp. Nios Il Gen2 Processor Reference Guide. Accessed: Aug. 2020. [Online].
Available: https://altera.com/en US/pdfs/literature/ hb/nios2/n2cpu-niisvigen2.pdf.

[170] GRLIB IP Core User’s Manual, Cobham Gaisler AB. Accessed: Aug. 2020. [Online].
Available: https://gaisler.com/products/grlib/grip. Pdf.

[171] Product Specification, “LogiCORE IP Divider Generator V4.0,” Xilinx, Inc, DS819,
June 2011, pp. 1-27.

90

[172] Xilinx user guide, “UltraScale Architecture Configurable Logic Block,” Xilinx, Inc,
UG574 (v1.5) February 28, 2017.

[173] AMD Xilinx technical reference manual, “Zynq UltraScale+ Device,” AMD Xilinx, Inc,
UG1085 (v2.3.1) January 4, 2023.

[174] G. Sutter and J.-P. Deschamps, “High speed fixed point dividers for FPGAs,” 2009
International Conference on Field Programmable Logic and Applications, Prague, Czech
Republic, 2009, pp. 448-452, doi: 10.1109/FPL.2009.5272492.

91

Acknowledgments

I would like to thank the Thomas Johann Seebeck Department of Electronics, Tallinn
University of Technology, for providing me with this opportunity to pursue a Ph.D. degree
as an individual researcher. | want to thank my supervisors, Dr. Ants Koel, Dr. Tamas
Pardy, Prof. Toomas Rang, and Prof. Yannick Le Moullec, who guided me, assisted my
journey, and motivated me throughout my Ph.D. studies. | am especially thankful to Dr.
Ants Koel and Prof. Toomas Rang for supporting and nurturing my thoughts and ideas,
and encouraging me to write my first book. They provided me with an exciting
opportunity to work with the TTU satellite design team and encouraged my participation
in different semiconductor manufacturing training, such as the Rochester Institute IC
design course and Infineon winter school.

I am also thankful to my colleagues at the Thomas Johann Seebeck Department of
Electronics and Tallinn University of Technology, especially Andres Eke, for encouraging
me to take part in summer schools and various teaching assistance opportunities. | would
like to thank: Hip Koiv for conducting exciting blood pressure sensor experiments; the
TTU satellite design team, for a unique experience; IT manager Fredrick Rang, who was
always available and willing to solve any IT-related problems, sometimes accompanying
me in several memorable events; staff members Eva Keerov and Jana Rang, for helping
throughout the study by providing all information whenever needed; Nodirkhon
Yusupov, for demonstrating project management skills and ideas and encouraging me
during the summer school; all fellow student members and friends, who have supported
me directly or indirectly throughout my studies. | sincerely thank Dr. Vilas Nitnaware and
Mandar Jagdale (Mandar dada) for their unwavering support and guidance. | am also
thankful to my colleague Miguel E. Flores from Don Bosco University, El Salvador, for
collaborating on my research. | want to express a special thank you to my wife, Ketaki,
whose unwavering support, boundless patience, and understanding have been a constant
source of strength. Through my moments of stress and unavailability, she stood by me
with a smile and comforting words. Her prayers and encouragement sustained me
throughout this entire Ph.D. journey, and | am forever grateful for her presence in my
life. | extend my deepest gratitude to my Guru, teachers, parents, and brother, whose
unwavering support, encouragement, and love have been the foundation of my journey.
My gurus’ and parents’ constant presence, guidance, blessings, and belief in me have
been a source of immense strength, and | am truly blessed to have had them by my side
throughout every step of this path.

Finally, | express my most heartfelt gratitude to the following entities for their financial
support during my Ph.D. studies:

e This work partly received funding from the European Union’s Horizon 2020 research
and innovation program under grant agreement No. 668995 and is supported by the
Estonian Research Council under grants PUT1435, IUT1911, and PRG780.

e The ICT Doctoral School at Tallinn University of Technology.

e The IT Academy Scholarship at Tallinn University of Technology.

e The DoRa Program.

92

Abstract

Area Efficient Design and Implementation of a Novel Divider
Circuit Block

A better electronic system must implement all the essential mathematical operators and
indicate that addition, subtraction, multiplication, and division are vital building blocks
for modern theories. Division operation is also a derived operation like multiplication;
instead of successive addition, it is derived by successive subtraction or multiplication
and some controlling conditions. Time, area, and power are the basic requirements of
embedded systems, digital systems, integrated circuits, digital circuits, and computer
systems. Many techniques which have been designed and implemented to improve the
division operation can be classified into digit recurrence and functional iteration classes.
Digit recurrence algorithm-based divider techniques are the most commercially
implemented dividers, and SRT division is one of the most implemented non-restoring
digit recurrence division algorithms. Still, it is restricted to low-order radix due to the
requirement of a practically unfeasible quotient selection table. The overlapping region
in the quotient selection table can cause a problem in selecting the quotient value. Many
performance improvement techniques were researched and used, such as operand
scaling, simple circuit staging, overlapping, and pipelined execution, which helped to
improve execution time requirements but failed to improve a considerable amount of
implementation area requirements. Some studies have also researched and implemented
alternative approaches for designing quotient selection logic, such as the Generalized
Svoboda algorithm-based divider (GSA), Svoboda-Tung algorithm-based divider (STA),
and the new Svoboda-Tung algorithm (NSTA), which only requires a few MSBs of the
partial remainder for developing quotient selection logic. Despite using a few MSBs from
only a partial remainder to reduce the criticality of quotient selection logic, it has some
drawbacks. Overflow can occur due to overcompensation, causing the quotient digit
selection from out of the remainder digit range. Because of this, the final remainder value
cannot be calculated at the end of the conversion. Thus, the use of such a divider is
limited to applications which specifically do not require remainder data.

The implementation of a low area footprint division circuit is needed because of the
emerging applications where these devices are used to implement some critical
system-on-chip application or improve the existing application; indirect division
operation results are not enough. High radix reduces latency but requires a large capacity
look-up table, which is impractical for implementation. Furthermore, functional
iteration-based dividers use multiplicative algorithms, which are fast but require more
significant area requirements for implementation. Functional iteration-based dividers
are generally based on series expansion algorithms such as Newton-Raphson, Taylor series,
and the Goldschmidt division algorithm, which requires multipliers that add to area
overheads. Functional iteration-based dividers generate an error, depending on how
close the selected multiple of the reciprocal or anti-divisor value is at the beginning of
the initial iteration. Therefore, to reduce rounding-off errors, it needs many anti-divisor
values to choose the initial estimation of the quotient approximation, the iterative
process that approaches closest to the final value, and convergence to the anti-divisor,
i.e., the reciprocal.

Many researchers have worked on various performance improvement techniques,
including pre-scaling operands, carry-save remainders, array implementations,

93

truncations, cascading, and differential LUTs. However, these performance improvement
techniques have yet to be fully explored in addressing the research gap for
simultaneously utilizing multiple performance improvement techniques with individual
input operands. This approach could potentially lead to the development of a new
technique or a combination of fast or moderate methods to optimize execution time and
implementation area.

This doctoral dissertation’s main objective is to design and implement a reduced area
divider circuit block with a solution based on the relation between the divisor and the
dividend that improves the conversion logic, avoiding rounding off errors and
overlapping regions. The design is developed by simulating the proposed technique and
cross-verifying it by performing regular sequential and pseudo-random sequential
analysis of implementation against standard result tables generated by simulations and
the theoretical study of the proposed idea.

Based on the comparative analysis presented, the proposed USP-Awadhoot divider
implementation uses 64% less FPGA hardware resources than the Handel-C built-in
divider. The variable-latency Quick-Div dividers and fixed-latency radix-n (n = 8, 16)
dividers require 5 to 7 times more chip area than the proposed novel USP-Awadhoot
divider. The proposed novel USP-Awadhoot divider implementation shows improvements
in its FPGA resource utilization in terms of 77% to 88% improvements in the number of
required slice logic LUTs (depending on the use of 8-bit or 16-bit operands) and 96% to
96.36% improvements in the number of slice register flip-flops required (depending on
the use of 8-bit or 16-bit operands) in Xilinx IP core pipelined divider. This indicates that
the proposed novel USP-Awadhoot divider implementation improved FPGA resource
utilization.

Similarly, we compared the proposed USP-Awadhoot divider with the LogiCORE IP
Divider Generator V4.0 on Xilinx Virtex-6, Virtex-7, Kintex-7, and Spartan-6 FPGAs for a
comprehensive evaluation. Xilinx LogiCORE IP Divider Generator V4.0 creates a circuit for
integer division based on a non-restoring radix-2 division algorithm or a high-radix
division with pre-scaling. The number of slice register flip-flops used in each FPGA IC is
constant at 288, although the number of LUTs used changes from 197 to 205, and the
number of six input LUT-FF pairs used changes significantly from 215 to 223, for 8-bit
implementation in Virtex 7, Kintex 7, Virtex 6, and Spartan 6. Similarly, the number of
slice register flip-flops used in each FPGA IC is constant at 3202, although the number of
LUTs used changes from 2060 to 2130, and the number of six input LUT-FF pairs used
changes significantly from 2185 to 2209, for 32-bit implementation in Virtex 7, Kintex 7,
Virtex 6, and Spartan 6. The proposed USP-Awadhoot divider requires 266 to 1836 slice
logic LUTs and 146 to 1352 slice register flip-flops.

To summarize, compared to the existing state-of-the-art digit recurrence dividers,
the proposed novel USP-Awadhoot divider simultaneously implements multiple
performance improvement techniques (i.e., dynamic separate scaling operations) with
individual input operands. This approach achieves variable latency and a small area
footprint while preventing overlapping regions in the quotient calculation logic.

94

Liihikokkuvote

Uudne efektiivne jagamistehte riistvaraline realisatsioon

Kaasaegsetes elektroonilistes susteemides on vajalik rakendada k&iki pdhilisi
matemaatilisi tehteid. Liitmine, lahutamine, korrutamine ja jagamine on tanapdevaste
rakenduslike algoritmide olulised ehituskivid. Jagamistehe on sarnaselt korrutamisega
tuletatud tehe. Kui korrutamine on tuletatud jarjestikuse liitmise abil, siis jagamine
on tuletatud jarjestikuse lahutamise vOi korrutamise ja algoritmi spetsiifiliste
juhtimistingimuste kaudu.

Aeg, pindala ja vOimsus on pdhilised nduded nii manussisteemidele,
digitaalsusteemidele, integraallulitustele, digitaalliilitustele kui arvutisisteemidele.
Enamikku tehnikaid, mis on vilja tootatud ja rakendatud jagamistehte tdiustamiseks,
saab liigitada kahte klassi: numbri korduvkasutusel pd&hinev ja funktsionaalsel
iteratsioonil p&hinev klass. Numbri korduvkasutuse algoritmidel pd&hinevad
jagamistehnoloogiad on koige laialdasemalt kasutatavad kommertsjagurid ning
SRT-jagamine on ks enimrakendatud mitte-taastavate numbri korduvkasutuse
algoritmide seas. Siiski on selle rakendamine piiratud madala astmearvuga (radix), kuna
korge astmete arv vajab praktiliselt teostamatut jagatise valiku tabelit.

Jagatise valiku tabeli katvusalad vdivad poOhjustada probleeme sobiva jagatise
vadrtuse valikul. Joudluse parandamise erinevaid tehnikaid on uuritud ja kasutatud,
sealhulgas naditeks operandide skaleerimine, lihtne jarjestikskeemide kasutamine,
kattuvad lahendialad ja jadatditmine (pipeline execution), mis on aidanud kiirendada
algoritmi tditmise aega, kuid pole suutnud oluliselt vihendada realiseerimiseks vajalikku
komponentide arvu — seekaudu ka kiibi pindala.

Monedel juhtudel on uuritud ja rakendatud ka alternatiivseid lahenemisviise jagatise
valiku loogika kavandamiseks, nditeks Generaliseeritud Svoboda algoritmil pShinev jagur
(GSA), Svoboda-Tung algoritmil pdhinev jagur (STA) ning uus Svoboda-Tung algoritm
(NSTA), mis vajavad jagatise valiku loogika loomiseks ainult osa jaagi kdige olulisematest
bittidest (MSB-dest). Kuigi jagatise valiku loogika kriitilisust on vahendatud, kasutades
ainult mdone MSB vaartusi osalisest jaagist, on sellel realisatsioonil siiski moningaid
puudusi. Ulekompensatsioon vib p&hjustada lletditumist, mille tdttu valitakse jagatise
number valjaspool jadgi numbrivahemikku. Selle tulemusena ei ole voimalik teisenduse
[6pus jadgi Ioplikku vaartust arvutada. Seetdttu on selliste jagurite kasutamine piiratud
rakendustega, mis ei nGua jadgiandmeid.

Vdikese pindala kasutusega jagamisahela realiseerimine on vajalik uute rakenduste
kasutusnduete tottu, kus neid seadmeid kasutatakse kas mdne kriitilise slisteemikiibil
(SoC) pGhineva rakenduse loomiseks voi olemasoleva rakenduse taiustamiseks. Sellisel
juhul kaudsed jagamistehte tulemused ei ole piisavad. K&rge astmearv (radix) vidhendab
latentsust, kuid nduab mahukat otsingutabelit, mis on praktilise rakenduse seisukohalt
ebaotstarbekas.

Lisaks kasutavad funktsionaalsel iteratsioonil p&hinevad jagurid multiplikatiivseid
algoritme, mis on kill kiired, kuid vajavad suuremat kiibipindala. Sellised jagurid
pohinevad tavaliselt jadalahutuse algoritmidel, nagu Newton-Raphsoni meetod, Taylori
rida vOi Goldschmidti jagamisalgoritm, mis eeldavad korrutite kasutamist, suurendades
seeldbi pindalandudeid.

Funktsionaalse iteratsiooni pohised jagurid tekitavad vea, mis séltub sellest, kui
lahedane on valitud podrdarvu (vastandarvu) vaartus tegelikule péordarvule iteratsiooni
alguses. Seetottu, et vdhendada Gimardamisvigu, on vaja mitmeid pddrdarvu vaartusi,

95

et valida jagatise lahenduse algvaartus, mis viib iteratiivse protsessi kaudu véimalikult
Iahedale I6plikule vaartusele ning tagab Iahendamise pddrdarvule ehk vastandarvule.

Paljud teadlased on tootanud erinevate joudluse parandamise tehnikate kallal,
sealhulgas operandide eelneva skaleerimise, jadkide carry-save meetodi, arvumassiivide
teostuste, karpimiste (truncation), kaskaadimise ja diferentsiaalsete téevaartustabelite
(LUT) kasutamisega. Siiski ei ole neid joudluse parandamise tehnikaid veel tdiel maéaral
uuritud selles kontekstis, kuidas kasutada korraga mitut erinevat tehnikat koos
individuaalsete sisendoperandidega. Selline Iahenemine vdiks viia uue tehnika vai kiirete
ja mdddukate meetodite kombinatsiooni valjatddtamiseni, mis optimeeriks tditmisaega
ja teostuspindala.

Kaesoleva doktorit66 peamine eesmérk on projekteerida ja teostada vidikse pindalaga
jaguriahel, mis pGhineb jagaja ja jagatava vahelisel seosel, parandades teisendusloogikat
ning véltides Umardamisvigu ja kattuvaid piirkondi. Lahendus on vélja too6tatud
simuleerides pakutud lahendustehnikat erinevatel platvormidel ning seda on
kontrollitud tavalise jarjestikuse ja pseudo-juhusliku jarjestikuse analiiiisi abil, vGrreldes
tulemusi alternatiivsete algoritmide standardsete simulatsioonitabelite ja teoreetilise
kasitluse pdhjal saadud tulemustega.

Vordleva analiilisi pohjal kasutab pakutud USP-Awadhooti jaguri teostus 64% vahem
FPGA riistvararesursse kui Handel-C sisseehitatud jagur. Muutliku latentsusega Quick-Div
jagurid ja fikseeritud latentsusega radix-n (n = 8, 16) jagurid vajavad 5 kuni 7 korda
rohkem kiibipinda kui pakutud uus USP-Awadhooti jagur. Pakutud USP-Awadhooti jaguri
teostus nditab olulist paranemist FPGA ressursikasutuses: segment loogika LUT-ide
vajadus vdaheneb 77% kuni 88% (sGltuvalt sellest, kas kasutatakse 8-bitiseid v&i 16-bitiseid
operande) ning segment registri triger (flip-flop’ide) vajadus vaheneb 96% kuni 96,36%
(jallegi soéltuvalt operandide pikkusest), vorreldes Xilinx IP core jarjestikjaguriga. See
viitab sellele, et pakutud USP-Awadhooti jaguri teostus parandab oluliselt FPGA ressursi
kasutust.

Samamoodi vorreldi USP-Awadhooti jagurit ka LogiCORE IP Divider Generator V4.0
teostusega Xilinx Virtex-6, Virtex-7, Kintex-7 ja Spartan-6 FPGA-de peal, et tagada
pdhjalik hindamine. Xilinx LogiCORE IP Divider Generator V4.0 loob tdisarvude
jagamisahela, mis pohineb mitte-taastaval radix-2 jagamisalgoritmil voi kdrge radix’iga
jagamisel koos eelneva skaleerimisega. Iga FPGA kiibi puhul on kasutatud triger arv
konstantne — 288tk. 8-bitise teostuse korral —, kuid LUT-ide arv varieerub 197-st 205-ni
ning kuue sisendiga LUT-FF paaride arv muutub margatavalt 215-st 223-ni Virtex 7, Kintex
7, Virtex 6 ja Spartan 6 kiipide vahel. 32-bitise teostuse korral on triger arv igas FPGA-s
konstantne — 3202tk., kuid LUT-ide arv varieerub 2060-st 2130-ni ja kuue sisendiga
LUT-FF paaride arv 2185-st 2209-ni. Samas vajab pakutud USP-Awadhooti jagur vaid 266
kuni 1836 segment loogika LUT-i ja 146 kuni 1352 segment registri triger.

Kokkuvottes, vorreldes olemasolevate tipptasemel numbri korduvkasutusel
pohinevate jaguritega, rakendab pakutud uus USP-Awadhooti jagur samaaegselt
mitmeid joudluse parandamise tehnikaid (naiteks diinaamiline eraldi skaleerimine)
individuaalsete sisendoperandidega. Selline lahenemine saavutab muutliku latentsuse
(mis siiski suures osas vastab voi lletab ootusi lahenduskiirusele) ja vaikese vajaliku
komponentide arvu — mis valjendub kiibi vajaliku pindala vdhenemises, viltides samal
ajal katvusalade probleemi jagatise arvutusloogikas.

96

Appendix 1

Publication |

Appeared in:

Patankar, Udayan; Koel, Ants;

“Review of Basic Classes of Dividers Based on Division Algorithm” in IEEE Access, Vol. 9,
23035-23069. DOI: 10.1109/ACCESS.2021.3055735.

97

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 8, 2021, accepted January 19, 2021, date of publication January 29, 2021, date of current version February 9, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3055735

Review of Basic Classes of Dividers
Based on Division Algorithm

UDAYAN S. PATANKAR™, (Member, IEEE), AND ANTS KOEL, (Member, IEEE)

Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia
Corresponding author: Udayan S. Patankar (udayan.patankar45 @ gmail.com)

This work was supported in part by the Estonian Research Council Institutional Research Projects under Grant ITUT19-11, Grant PUT1435,
and Grant PRG780, and in part by the European Union’s Horizon 2020 Research and Innovation Program under Grant 668995.

ABSTRACT The electronics world is very well described in two distinct but dependent interdisciplinary
areas, namely hardware and software. Arithmetic operations are very vital building blocks of an electronic
system. An algorithm is a systematic arrangement that helps develop a sophisticated electronic system,
including hardware and software aspects. Addition, subtraction, multiplication, and division are critical
elements of arithmetic implementation in the electronic system, but fewer efforts have been made to
implement division than other arithmetic operations, even though the number of transistors on a chip is
increasing beyond the Moore’s law prediction. It is quite complicated to implement arithmetical operations;
here, a sophisticated algorithm is essential to successful implementation. Technological upgrades are leading
to a new paradigm of applications, where the performance of a division circuit or block is a vital and
critical feature of a successful system. The lexicon of algorithms used in the implementation of the division
operation in electronics systems is discussed in detail in the present article, which indicates the mathematical
formulation, criticality, conversion pattern, hardware requirements, and logic used for conversion. The
current report describes the broad classification of dividers into basic classes named digit recurrence,
high radix, functional iteration, estimation, a look-up table, and variable latency. It also illustrates that,
in practical implementation, many algorithms have been developed that combine one or many classes and
are implemented with different hardware architectures. The study indicated the possibility of improving the
presently available algorithms or creating a new algorithm to enhance practical implementation.

INDEX TERMS Divider, SRT, restoring, non-restoring, digit recurrence, radix-n, FPGA, functional iteration,

look-up table, variable latency.

I. INTRODUCTION

Mathematics is not just a word but has also had a colos-
sal status in the life of human beings from its very begin-
nings. Sometimes it is not only an indicative word but also
acts as a science of numbers and their relations or, eventu-
ally, both. The theoretical study of mathematics is specially
named Theoretical Mathematics, whereas another side of it,
termed Applied Mathematics, is useful in different comput-
ing aspects of daily life [1], [2]. It is no exaggeration to
say that mathematics is everything and that everything is
mathematics. From the very early stages of the human race,
mathematics has been in force. From the beginning of our
evolution, mathematics was involved in counting, time, and
space; later, when humans started to understand more aspects

The associate editor coordinating the review of this manuscript and

approving it for publication was Gian Domenico Licciardo

VOLUME 9, 2021

of life, it stimulated the study of various fields like astron-
omy, architecture, ratio proportions, navigation, etc., to fulfill
their requirements. This gave a more significant aspect to
the requirement for applied mathematics in human life; until
the industrial revolution, mathematics was extensively used
in chemistry, physics, architecture, metallurgy, and financial
sectors. The initial phases of industrialization were reliant
on the new ways of theoretical mathematics and physics in
the field of industry to develop mass production techniques
that could provide a better solution to economic difficulties
in producing various items or products. These efforts from
applied physics and mathematics gave birth to new possibili-
ties, leading to the newborn field of electronics and integrated
circuits, which has proved very valuable and innovative for
existing applications like communications, transport, and
calculations. In the beginning, communication was fully ana-
log. With technological evolution, it changed to digital, but

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 23035

IEEE Access

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

whether analog or digital, the concept of modern communi-
cation at that time also showed a significant dependence on
mathematics. In current times, the importance of digital com-
munication and computation has reached a different level.
Which in turn allows the evolution of new fields of work
and study in the data protection area, statistical data anal-
ysis, computational processing, signal processing, artificial
intelligence, image processing, complex systems on chips,
central processing unit, graphics processing unit, biomedical
equipment, fuzzy control, space engineering, etc. [3]-[11],
[52]-[56]. Fig. 1 illustrates the different trends of application.
However, addition, subtraction, multiplication, and division
remain vital building blocks in implementing modern theories
of theoretical and applied mathematics [4], [52], [58], [59]
and represent the mathematical operations’ essential proper-
ties as illustrated in Fig. 2.

Early Age
Applications
Communication | Signal Processing Navigational
Modern Age .
Automobiles Applicatiois Educational
. of Lo .
High Speed Quantum Computing Space / Satellite

Communication (5G)

Artificial Intelligence
Internet of Things

FIGURE 1. The trends of application.

Mathematical Operators
Basic Pillars of Mathematics

Addition Subtraction Multiplication Division
Comn?utfitive Identity Commutative Tdentity
Associative Inverse Associative Ticiss
Tdentity Identity
Tnverse Inverse

Distributive

FIGURE 2. The properties of various mathematical operators.

Due to the lack of communication and transport means,
there was no such typical period of evolution of mathemat-
ics around the world. In the modern era, mathematicians
have researched old concepts and developed new concepts to
meet today’s computational and technological enhancement
requirements. Although new concepts, operations, logic, and
relations have been developed in mathematics, addition, sub-
traction, multiplication, and division are still the strong foun-
dation of applied mathematics [4], [52]. The addition is a
simple terminology that indicates the action of collecting or
grouping in general. The commutative and associative aspects

23036

of the addition operation have made it easy to perform its
electronic application from the beginning of the new electron-
ics era [12], [13]. Subtraction is a second but very important
operation. It is defined as the act of reduction. Multiplica-
tion is one of the basic operations but a derived function
in mathematics. It also combines multiple quantities into a
single amount like addition. Multiplication is also known as
successive addition. The division operation is also a derived
operation like multiplication; instead of successive addition,
it involves successive subtractions along with some control-
ling conditions. The result of the successive subtractions
must be tested under several controlling conditions before
its finalization. It has a high dependency on the order of two
quantities connected by the division operator. Unlike multi-
plication and addition, the division operation does not possess
commutative and associative properties, making it critical and
challenging to implement in an electronic way [3]-[11].

Fig. 3 (a), (b), and (c) show the fundamental ways of per-
forming division operations using (a) the successive subtrac-
tion method, which is also called a long division algorithm
or paper and pencil algorithm, and (b), (c) the look-up table
method. The successive subtraction method looks very easy
and possesses a simple quotient conversion logic; when it
comes to implementing electronically for critical systems,
it is not suitable to use simple recursive logic for conversion.
Thus, many methods or algorithms have been researched over
a period to implement an efficient divider for an efficient
system. There exist various algorithms to perform division
in multiple ways. Still, broadly, depending on the logic of the
quotient conversion, they can be summarised into multiple
divider classes, which are discussed and compared in detail
in the next sections of this article. Selection of the appropriate
divider option depends on the criticality of the application,
i.e., time-critical or space-critical. Based on that, one has
to select the perfect alternative for the divider circuit or
block in implementation. In the second section of this article,
we discuss the various ways of stratifying different division
algorithm classes for particular applications, which can be
selected as either stand-alone or in combination with other
classes to achieve the maximum efficiency in implementing
the divider circuit or block. In later parts of an article, section
three to section eight, we discuss the individual divider
classes. Section nine discusses a large range of division algo-
rithm implementations, followed by a comparative study in
section ten.

Il. DIVISION ALGORITHM BACKGROUND

All mathematical operations have been implemented using a
digital platform, but it is still critical to implement the divi-
sion operation. Researchers’ unceasing efforts in technolog-
ical development have boosted computational complexities,
which demand high-level systems performance. Nowadays,
computers are ubiquitous in almost every field. A Field Pro-
grammable Gate Array (FPGA) is one of the outcomes of
improved technology. It enables reprogrammable hardware,
which reduces the hardware cost and implementation time.

VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm I E E E ACCGSS

10+2 = Ans 5 Remainder=10

Quston 2)710 (Qu siep2 T (8

Rem - 02
08
p 42
Step 1) (uﬂ e
Pl 2] 10 06
- 02
08
Step3 2 | 10 ‘ 0+H1+1 Stepd 2 ' 10 | O+1+1+1+H1
- 0 - 02
08 08
02 = 0
06 06
- n = 02
04 04
02
02
Step 5 2
e adding the
08 number of
- 02 successive
06 subfraction done
successive 02 until remainder is
subtraction 04— 0 or less than
\ 02 divisor is answer

\ 02
- 02
‘ Remainder

(a)

Look up table
D+1=0 D+2=0 0+3=0 0+4=0
1+1=1 2:2=1 3+3=1 4+4=1
2:1=2 4+2=2 6+3=2 8+4=2
3:1=3 6+2=3 9:3=3 12:4=3
4+1=4 8:2=4 12+:3=4 | 16+4=4

(b)
= Divisor
1|2 |3 |4|5|6|7 8|9 |10
0 0
D 1 1
| 2 2 1
v B 3 1
| 4 4 2 1
D = 5 g
E 6 6 3 2 1
N 7 z 1
D 8 8 4 2 i
9 9 3 1.
10| 10 5 2. 1
(©

FIGURE 3. (a). The successive subtraction method of the division
operation. (b), (c) The look-up table methods of the division
operation.

VOLUME 9, 2021

FPGA has implemented many critical systems. It gives the
flexibility to implement a system on a chip for different
purposes. In FPGA, the arithmetic and logical module (ALM)
is an essential building block for implementing the desired
logic. FPGA applications are most important and critical for
automotive control, online data processing, and a wide range
of computational tasks, which can be solved by implement-
ing a small complex system like a computer system on a
single chip. All mathematical operations have been imple-
mented electronically, but it is required to focus on improving
dividers because the improved technology has given birth to
new applications that require a faster speed of response and
critical calculation with reduced area requirements; hence
more effort has been put into developing improved adders and
multipliers instead of improving dividers. This is because of
the ease of developing and implementing adder and multipli-
cation logic more effectively than divider logic. The typical
latency performance for addition and multiplication falls in
the range from a couple of clock cycles to less than ten
clock cycles; on the other hand, a division is in the range of
tens of clock cycles [14], [73]-[76]. Computer performance
could be degraded in the long run due to unimproved divider
operation for new computer applications, so better imple-
mentation of the divider operation is required. The best way
of understanding the merits and demerits of dividers is by
classifying division algorithms in different classes. Classes
are no more than the indicative name given to a group of
algorithms that exhibit similarities in their conversion logic.
The hierarchical distribution of various categories of division
algorithm is shown in Fig. 4 and is described as follows:

Division Classes

| \
Functional Iteration | Very High Radix Look-Up Table Variable Latency

Predictive/
Multiplicative

Digit Recurrence

lterative
Subtraction

1o

DEC

y I : Alpha21164
> Radix-10 Cascaded Radix Self timing

SRT based [Racix-n [IR
Radix-n based Pre-Computed Distributed
Table

Value

Serial / Sequential Parallel

FIGURE 4. The distribution of different division algorithms.

Based on the method of conversion, we can distinguish
division algorithms in the following classes.

1. Digit recurrence

2. Functional iteration

23037

IEEE Access

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

3. Very high radix

4. Look-up table

5. Variable latency
Based on hardware architecture [8], [14], we can classify
types of dividers as:

1. Serial or sequential type

2. Parallel type

3. Pipelined type
Based on performance [15], we can classify types of dividers
as:

1. Slow type

2. Fast type
Based on execution [16], we can classify types of dividers as

1. Iterative subtraction type

2. redictive type
Various attempts have been made to study different division
algorithms to state their quotient conversion logic, purpose,
and design requirements [14], [17], covering some aspects
of comparison. In the next section, we briefly discuss the
comparative study of various classes along with different
advantages and problems associated with them. There are
five general classifications of division algorithms. Depend-
ing on the hardware architecture and accessing techniques,
they can also be further characterized as serial, sequential,
parallel, pipeline, slow, fast, iterative, and predictive classes,
along with digit recurrence, functional iteration, very high
radix, look-up table, and variable latency classes of division
algorithm-based dividers.

1Il. DIGIT RECURRENCE CLASS (DRC)

The simplest and most commonly implemented division algo-
rithm class is the digit recurring class due to its simple
conversion logic. It is considered the oldest and pioneer
class amongst all the division algorithms. Many surveys
and research articles have been published based on these
algorithm-based division circuits. At the beginning of the dig-
ital era, it was difficult to implement extensive algorithms due
to the limited capabilities of programmable logic devices like
FPGAs. Thus, the implementation of the DRC algorithm was
preferred for commercial applications. The digit recurrence
algorithm resembles the simple paper and pencil technique
of division, as illustrated in Fig. 3 (a) above, in discussions
on the process of a division operation, which works digit-
by-digit and produces a quotient in sequence. It uses iterative
type subtraction to calculate the quotient. This means the
division is performed by repeated subtraction of the divisor
from the dividend until the resultant quantity of subtraction is
smaller than the divisor quantity. Quotient conversion logic is
an iterative process of subtraction, which generates specific
digits or bits of quotient at each iteration, from 1 to n digits or
bits per iteration. In other words, the quotient is derived from
a number of iterative subtractions that have been performed
and is generated digit-by-digit in sequence, with its most
significant bit first, like a paper and pencil algorithm [4], [5],
[14]-[20]. The key point in using this type of divider is that
it requires a combination of simple operations like addition,

23038

shifting, multiplication, etc., shown in (1), and the remainder
has to fulfill the requirement stated in (2) [4].

Dividend = (Quotient x Divisor) + Remainder (1)
0 < Remainder < Divisor)

This class of division algorithm mainly covers three types of
dividers

1. Restoring

2. Non-restoring

3. SRT (radix n)

Although it is easy and less critical, it has both merits and
demerits. Being an easy and less complex conversion logic
for the quotient is a merit, but it exhibits relatively higher
latencies as a demerit. The long division algorithm is a good
example of this. The speed of SRT-based dividers is mainly
determined by the complexity of the quotient-digit selection
logic. The division algorithm generally does not provide any
finite result. It depends on the accuracy required to decide the
length of quotient digits or bits. It has to use a quotient digit
selection look-up table (QST) to enhance the quotient con-
version time. It requires extra storage space either in ROM,
programmable logic arrays (PAL), or combinational logic.
Distinct sequential streams of digits represent the quotient
and remainder, with the MSB digit or bit generated first in the
quotient and remainder sequence. Many processors like Intel
Pentium, HP PA 8000, and Sun UltraSPARC [20] initially
implemented this concept.

| Dividend olololo]
- TR | Divisor l
| Par remainder | 0

------- | Divisor

| Par remainder |0
— —————— 1 Divisor

| Par remainder |0

.......... -| Divisor

Parremainder | 0
———————————— Divisor

FIGURE 5. Long division algorithm of the digit recurrence class.

A. RESTORING ALGORITHM (RA)

The restoring algorithm has similarities with the long division
method, which is also known as a paper and pencil algorithm
in general, and is described in section I. Fig. 5 illustrates
the long division algorithm of the digit recurrence divider
class. In the case of standard long division, the algorithm’s
single quotient bit is calculated in each iteration by subtract-
ing the divisor from the partial remainder generated in the
previous iteration. In the case of the initial iteration, where
the partial remainder is considered a dividend, the divisor’s

VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

IEEE Access

initial iteration subtraction is performed from the dividend.
The resultant partial remainder is considered for the next
iteration. In each iteration, its divisor is checked against the
shifted partial remainder of the previous iteration to verify the
quotient bit for that particular iteration. If the divisor is found
to be less than or equal to the shifted partial remainder, then
the quotient bit for that iteration is considered to be one, else
considered to be 0.

qJ =0 ifZRj_l < Dr (3)
g =1 if2R;_| > D, 4)
Rj = 2Rj-1 —qj x D¢ 5)

Equations (25) to (27) represent conditions for the long
division algorithm Dy to be the dividend, where Dy is the
divisor, gj is the quotient bit from the j iteration, and Rj is
the partial remainder for the j iteration. No special case is
required to test the maximum case in any iteration, which
is nothing, but the initial dividend and value is equal to the
divisor. Still, there is the possibility of losing a significant
bit during the shifting process if the dividend is greater than
the divisor, causing output error. Thus, an extra test case is
required for checking the overflow state during the first itera-
tion, and its last remainder is discarded; whereas, in restoring
the algorithm at any moment, if the partial remainder value is
other than positive or zero, then the divisor is restored by the
subtraction result performed in that iteration.

Divisor

Decision Making
Unit

—| Partial Remainder k—' (Dividend; Quotient)

FIGURE 6. The restoring division algorithm of the digit recurrence class.

Fig. 6 illustrates the restoring division algorithm of the
digit recurrence class. A non-redundant number system,
which is also considered as a number system that doesn’t
use multiple bits to represent a single digit, is preferred
to represent the quotient and remainder of the restoring
algorithm-based dividers. To perform the division of the
dividend number by the divisor number using a restoring
algorithm, it is crucial to have a positive dividend and divisor;
this is the essential requirement. Thus, the remainder and
quotient values remain either positive or zero [4]. Its vital
point for implementation is that it requires full-width com-
parisons to glean the new quotient digit. In every iteration of
the algorithm, it performs shift, compare, add, and subtract
operations. The steps to achieve this restoring algorithm are:

VOLUME 9, 2021

1. Select initial values for divisor (D;), dividend (Dy),
the partial remainder (R;), and the number of bits (n)
arranged in shift position to left, as indicated by the
arrow sign shown in Fig. 6.

2. Subtract divisor (Dy) from the partial remainder (R;),
and the result is stored in the partial remainder (R;).

3. Check for the most significant bit of the partial remain-
der (Rj); if 0, then the least significant bit of Q is set to
1; otherwise, the least significant bit of Q is set to 0, and
the value of the partial remainder (R;) is restored back
to the value prior to the subtraction.

4. Reduce the value of n by one.

. Continue iterations until we get a value of n = 0.

6. Lastly, the quotient (q;) is obtained in the quotient div-
idend block.

Consider Dy is the dividend, D; the divisor, g; the quotient of

the j™ iteration, and R; the partial remainder. At the initial iter-

ation, we can consider the dividend as partial remainder Ry.

The R;j and q; values can be represented as the following

equations:

W

R) = 2Rj_| - D; (6)
g =0 ifR’j <0 7
g =1 ifRj>0 ®)
Rj=2Rj; ifq =0 ©)
Rj=R; ifg=1 (10)

B. NON-RESTORING ALGORITHM
This algorithm is very similar to that of the previously dis-
cussed restoring algorithm. One difference is that in a non-
restoring algorithm, unlike the restoring algorithm, it is not
required to restore the partial remainder if the subtraction
goes negative. Similar to the restoring algorithm, in the non-
restoring algorithm, we shift and subtract the divisor (D)
depending on the value we get in the partial remainder, except
that the range of the partial remainder (R;) in the case of
the non-restoring algorithm is {—Dy, D;}. In a non-restoring
algorithm, only one decision, either add or subtract, must
be made per quotient bit q, [4], [5], [15], [57]. There is no
restoring step after the addition or subtraction decision is
made to reduce the actions from the previously discussed
restoring algorithm. The steps to perform this non-restoring
algorithm are:
1. At the beginning, reset all values to zero.
2. Allot the corresponding values to the dividend (Dy),
divisor (D;), and the number of bits in the dividend (n).
3. Check for the sign bit of the partial remainder. For the
first iteration, consider the sign positive, as the partial
remainder value is set to an initial value of zero.
4. For the first iteration, subtract the divisor from the
partial remainder.
5. If the result is negative, then shift the partial remainder
left by one bit.
6. Add the divisor to the partial remainder.

23039

IEEE Access

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

7. After shifting the partial remainder one bit left in each
iteration, the divisor is either subtracted from or added
to the partial remainder, depending on the value of the
previous iteration’s sign bit.

It is mandatory to keep the partial remainder between the set
of values {— Dy, +D;} [4], [5], [15]. Thus, we have to add
or subtract in the next step. This implies testing when to add
and when to subtract the divisor from the partial remainder.
When the dividend is positive, the first iteration is always
subtraction. Thus, the iteration may be set as Ry = 2Dy - Dy;
unlike the restoring algorithm, in the non-restoring algorithm,
gj ranges from —1 to +1 instead of O to 1. In a non-restoring
algorithm, it is required to maintain separate hardware for
addition and subtraction for each iteration, causing overhead.
The equations (11) to (14) represent the values of the partial
remainder (R;) and quotient (g;).

qj=—-1 ifRj_; <0 an
gg=1 ifRj-1 >0 (12)
Rj = 2Rj_; +D; ifg=—1 (13)
Rj = 2Rj_; — D, ifqj=+1 (14)

The major drawback of this is that we need to maintain an
extra sign bit to keep track of the sign and decide whether
to perform addition or subtraction, which leads to deciding
whether to perform addition or subtraction, leading to area
and latency limitations when implementing this algorithm.
Another minus point is that we need to maintain separate
hardware to perform addition or subtraction. Thus, it sug-
gests further optimization with 2’s complement, in which
2’s complement of D, replaces —D; as (37) to (46) and
Table. 1 summarize the basic points of comparison between
restoring and non-restoring algorithm.

gg=-1 ifRj_1 <0 (15)
qj = 1 iij,1 >0 (16)
Rj = 2Rj_1 + Dy ifqj = —1 a7
Rj =2Rj_; +D;+1 ifg=+1 (18)

C. SRT ALGORITHM (RADIX-N)

Digit recurrence algorithms are an enduring favourite for
computer and electronic implementation. The SRT algorithm
is one of the most popular of all the digit recurrence division
algorithms to implement and one of the non-restoring digit
recurrence algorithms. The primary application area of the
SRT algorithm is in general-purpose processors, which are
generally used for personal computers, FPGA systems, and
ASIC processors. The SRT algorithm is named after the three
individual researchers who individually proposed utilizing
the 2’s complement technique of shifting over zeros for the
division to replace the range of the partial remainder in
terms of reducing the resource requirements [15], [21]. As in
the non-restoring algorithm, where the partial remainder is
maintained in the —D; to +D; range, it requires an extra set
of hardware to perform addition and subtraction. The SRT

23040

TABLE 1. Comparison between restoring and non-restoring algorithm.

Restoring

Non-Restoring

It is similar to the long division
method, which resembles a
normal pencil and paper
algorithm. It restores partial
remainder while working.

It is similar to that of the
restoring algorithm except
restoring partial remainder.

When performing division on
2n bit number, it can require up
to 2n+1 adders.

As it eliminates the restoring
cycle, it requires only n adders
to perform division on the 2n
bit number.

It doesn’t allow -ve values of

the partial remainder in
between two consecutive
iterations.

It allows +ve as well as -ve
values of the partial remainder
in between two consecutive
iterations.

No error can be seen between

A small amount of error can be

consecutive iterations. available during subsequent
iterations.
Ri
Dr|
TR I I | T
O qn =1 /
Dr e, 2Ril
}
|
I
-Dr

FIGURE 7. The radix-2 SRT algorithm.

algorithm implements 2’s complement value of D; instead
of —Dy, which indeed provides shifting over zeros to eliminate
the extra adder and subtractor [14], [15], [20], [21]. The
following Fig. 7 and expressions illustrate the SRT algorithm
for radix-2.

gj=1 if2Rj_; < —D (19)
q =0 if —D; <2Rj_; <D (20)
g =1 if2Rj_; >D; 1)

In the SRT algorithm, each quotient digit has one of the
values —m, —m—+1...—1,0, +1... m—1, m, where mis an
integer [21], [58] such that (22) comprises k digits of radix-n
as:

1
E(n—l)fmfn—l (22)
n=2" and k =%/, (23)
k .
— .
Q= 1 9 (24)

Quotient q is generated as a division of the dividend by
a divisor of x bits significand, i.e., 4, 8, 16, 32, etc. The
algorithm retires b bits of the quotient in each iteration.
Thus, it is called a radix-n algorithm. Radix-n is typically

VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

IEEE Access

selected as a power of base 2. Such an algorithm performs
k iterations to get the quotient. Thus, it shows the latency of k
cycles, where the cycle time is considered as the maximum
time to compute one iteration of the algorithm. This may
or may not be the same as the clock time of the processor.
This shows the algorithm’s radix dependency, suggesting the
higher the radix, the lower the latency time. The quotient digit
is preliminarily guessed based on a few MSBs of the divisor
and the partial remainder, rather than by computing. Thus,
it requires a quotient digit selection and partial remainder
generation in one iteration. Here the radix number n repre-
sents the trial subtractions performed while predicting the
quotient [32], [33]. The IEEE has standardized some data for-
mats commonly used for floating-point calculation, mainly
named single and double-precision floating-point format with
a significant 24 bits for single precision format and 53 for
double precision format [5].

Partial Remainder — Divisor

For intital iteration consider Dividend

Shift left by kbits by
multiplying with
radix-n

Quotient Selection

Table
Multiplier
Subtractor
Partial Remainder Quotient Digit

FIGURE 8. Block diagram of SRT algorithm.

Fig. 8 illustrates the SRT algorithm’s block diagram per-
formed at every quotient bit generation in every iteration.
At the initial iteration, the partial remainder is considered
as a dividend, and then it is multiplied by radix-n, which
is represented as a shift left by k bits, as shown in Fig. 8.
The resultant product is then given to the quotient selection
table (QST) and the subtractor as one input. The divisor pro-
vides the second input for the quotient selection table. Now,
based on a few MSBs of the product term and the divisor,
it surmises the quotient digit for the next iteration. The second
input to the subtractor is provided by the multiplier output,
which works on the output of the quotient selection table
and divisor to generate the next partial remainder. In the

VOLUME 9, 2021

next iteration, this partial remainder is used instead of the
dividend. This will continue until all the quotient bits are
revealed. In the last iteration, the generated partial remainder
is considered as the final remainder. After the K™ iteration,
the final quotient is achieved in redundant format, which
shows that the resultant quotient can be represented in several
formats, giving an alternative selection for the quotient digit
in each digit position. Thus, it requires an extra subtractor
to represent the final quotient in terms of a non-redundant
number containing no negative digit. To achieve this, it is
necessary to subtract the positionally weighted digit of the
quotient from the positionally weighted positive digits. Carry
out propagation is necessary to perform this subtraction once
after the last iteration. The quotient selection is performed in
the form of a redundant number system, which shows that a
given position of the quotient digit requires the approximation
of the divisor and partial remainder with a few MSB bits
indicating the smaller error.

Meanwhile, the error in the guessed/predicted value of the
quotient and the partial remainder relates directly to the num-
ber of unexamined bits from the divisor and partial remainder.
It is expected that smaller errors possibly be resolved by the
less significant bits of the quotient. Equation (22) suggests the
range of maximum digits to consider, which is represented
by m. If we select a lower range where m is equal to the value
(n-1) / 2, this shows lower redundancy, and m equal to the
value (n-1) shows maximum redundancy. Higher redundancy
eases the quotient selection logic design and requires fewer
bits from the partial remainder to be examined.

On the contrary, this requires more multipliers of the divi-
sor to be formed; this will make it necessary to pre-compute
the values of the multipliers and also requires extra space
to include with the actual algorithm along with the quo-
tient selection table. From this implementation point of view,
the available choices with specific components will con-
tribute to the cost, area, and, ultimately, the algorithm’s
performance. The trade-off between these components will
lead to different application choices, from less critical to
critical, and affect the time-cost requirements. The com-
ponents with choices to be made are mainly the radix,
quotient representation, and partial remainder representation

[14], [23], [58], [79].

1) CHOICE OF RADIX

In general, the radix is termed as a base number, which is
primitive and from which we can produce other numbers in
connection, which can be termed as the number system. It is
also termed as the fundamental number of any system. In the
case of the SRT algorithm, it considers the power of 2 for
selecting different radix types. The main reason to consider
the power of 2 here is that the product of the partial remainder
and radix can be presented as a shifting operation, which
makes for the easier design of the hardware. Here radix-n
indicates how many quotient bits will be revealed and, for
that, how many subtraction stages are required. Thus, increas-
ing the radix will increase the quotient bits revealed in one

23041

IEEE Access

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

iteration, causing a reduction of the total iterations required
to get the ultimate quotient. As radix-2 retires one quotient
bit per iteration and radix-4 retires 2 bits per iteration, this
reduces the latency.

On the contrary, it increases the complexity of the logic for
quotient digit selection. In practice, the iterations are reduced
due to an increase in the radix, but this also increases the crit-
icality in the quotient digit selection logic, requiring a longer
look-up table to be implemented. Thus, the time required
to access the quotient selection table will increase with the
radix increase, possibly increasing the total time required
to compute the quotient bit. So, the total time required to
compute n quotient bits is not reduced as per the calculations.
In general, the radix-n SRT algorithm is implemented serially
so that a single look-up table can be used for all iterations.
Thus, the maximum hardware implementations are restricted
to radix-4 SRT [4]. Along with this, more multipliers need
to be formed for an increased radix, requiring a greater area.
Thus, these two factors adversely affect the advantage of
an increased radix, making lower radix values preferable
for implementation, which also introduces some error in the
predicted value and the exact value of the quotient, which can
be resolved at the least significant bits in the last iteration.

2) CHOICE OF QUOTIENT DIGIT SET

In digit recurrence algorithms, it is possible to decide digit
ranges; in short, to decide the value of a digit among the
given set of possible values. To improve the algorithm’s speed
and performance, we use symmetric consecutive digits with
signed bits with a maximum possible value of m, and the
number of digit values must contain higher than N consec-
utive integer values, including value zero, i.e. —m, —m +
1...—1, 0, +1... m—1, m. Digit value must be valid for
m > n / 2 condition to make the digit range redundant. The
redundancy factor p, is responsible for the redundancy of
digit range [69]-[74], [76], which can be express as (25)

p=m/(n—1) and p>1/2 (25)

When the value of m is n/2, digit range is minimal redundant,
and when m is (n-1), the digit range is maximum redundant.
Once the redundancy factor p is selected, we can perform
quotient selection logic. Thus, while performing quotient
digit selection from the digit range, we have to consider
the containment condition defined by the sectional inter-
val between two consecutive redundant digit values in the
digit range. We can represent the containment condition as a
region covered by conditions given in (26), where Hy and Ly
stand for higher and lower cut off, which can be represented
as a line with slop p + k and —p + k [14], [21], [58], [62],
[64]-[68].

Hy = (p+k)D, and Ly = (—p + k) D, (26)

To improve performance, we consider using a redundant digit
set, which allows us to select the quotient digit based on the
partial remainder. This introduces a small error, which can
be rectified in a later iteration: e.g. the radix-2 digit set is

23042

(=1, 0, 1) and for radix-4 there are two possibilities, a min-
imal set having (-2, —1, 0, 1, 2) and a maximum set
(=3, =2, -1, 0, 1, 2, 3) [15], [32], [35], [70], [72]-[76].
A greater possible value for the quotient bit leads to simplify-
ing the logic for quotient digit selection, but at the same time,
it will make a more complex product of the partial remainder
and divisor, which may require more multipliers, causing an
area increase.

The most critical part of divider performance is how effi-
ciently implemented quotient selection logic. If we use redun-
dant digit value representation for remainder digits, then we
will not be able to derive the exact value of partial remainder
or residue, which will cause uncertainty in selecting an exact
value for the next quotient digit. Thus We have to use redun-
dant digit value range representation for selecting quotient
digit. When we use redundant digit value range representation
for selecting quotient digit, it is not important to know the
exact value of partial remainder or residue, but it must be
required to know, as shown in Fig. 9, the exact location in
which sectional interval range of partial remainder - divisor
graph it will fall. The realization of quotient digit selection
logic is performed by approximating partial remainder and
divisor. The quotient selection logic’s complexity depends
upon how many bits of partial remainder and divisor are uti-
lized. A separate look-up table is performed, which contains
all possible values of the selection logic. In the generalized
look-up table method, we utilize selection constants. We per-
form sectionizing the complete divisor range into equal inter-
vals (D, Dyj11) expressed as

Dy =1/2, Dy =Dy+27° 27
Two consecutive sections share an overlapping region,
as shown in Fig. 9. Extra attention needed to be given while
deciding logic to select quotient digit in this overlapping
region. The regions are indicated by the most significant bits

_Hk=(+k)Dr

q=3

Partial Remainder

T Lk=(p+R)Dr

2
53
S

i q=2
0011 [

| Overlapping
7 Region

1 2 3 4 Divisor

FIGURE 9. Partial remainder - Divisor (PD) graph.

VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

IEEE Access

of the divisor, which are used for selection logic based on the
selection constant Sy (7) is given as

if sk (i) <nrj <sgp1 () —n™" (28)

then the range of selection constant si (i) for a given value
of k forms a series of steps that connect the overlap region.
Higher redundancy factor cause wider steps and requires
less divisor and partial remainder bits. However, an increase
in the radix directly influences the quotient digit selection
logic’s complexity and, ultimately, the look-up table. The
vital problem associated with the SRT algorithm is predict-
ing quotient digit in the overlapping region caused by the
same region corresponding to different coefficients. Quotient
digit value has to be one which can either be ¢ = ¢; or
q = gj+1 depending on the selection logic derived by the
divisor and partial remainder [14], [35], [51], [58], [60]-[62],
[64]-[68]. The step function is not constant for all overlap-
ping regions. Depending upon what radix is used, causing
the more divisor-sectional regions, increasing step function
in the higher radix. This small looking problem can cause a
magnificent loss in practical implementation in terms of cost
and time and lead to total system failure. The most famous
example of this problem is Intel’s Pentium processor flaw
in the Floating-point divider, which was design based on the
SRT algorithm [32], [61], [65], [69], [71], [76], [78]. A poten-
tial problem in overlapping regions costs USD 475 million to
Intel to replace the faulty Pentium processor chip [65].

gi+1 =k

3) CHOICE OF REMAINDER REPRESENTATION

There are two options available with the SRT algorithm
to represent its partial remainder and remainder, which are
the redundant and non-redundant format. The conventional
2’s complement is an example of the non-redundant form,
while the carry-save two’s complement is an example of a
redundant form. When we consider the non-redundant form,
then subtraction is required to find the partial remainder
required to implement the carry propagated full-width adder.
When we use the redundant form, then subtraction can be
performed by carry-save adders, but this complicates the
quotient digit selection logic as it is dependent on the shifted
partial remainder value. A summary of the SRT algorithm is
given in Table 2.

4) SRT ALGORITHM PERFORMANCE IMPROVEMENT
TECHNIQUES

As we have stated earlier, the SRT algorithm has been very
popular from the very beginning. Thus many attempts have
been made to improve the performance of the traditional
SRT algorithm. As we have discussed in earlier sections
on different parameters and how they affect the traditional
SRT algorithm’s performance, many techniques have been
claimed to improve the traditional SRT algorithm’s perfor-
mance, some of which are discussed in [34]-[44]. Some of the
performance-improving techniques like simple staging, over-
lapping execution, overlapping quotient selection, overlap-
ping partial remainder computation, range reduction, operand

VOLUME 9, 2021

TABLE 2. Summary of SRT algorithm.

Pros

Cons

Simplicity in low radix
implementation due to linear
convergence.

Linear convergence of quotient
bit makes it considerably slow
with large bit size operands
(input).

Availability of final remainder
and quotient at the end of the
computation.

Required normalized operands.

Use redundant digit set
representation for input
operands; this allows a valid
quotient digit to be selected
from just estimating the current
partial remainder and reducing
it to execute redundantly.

The possibility to select more
than one quotient digit values
during quotient digit selection
due to the availability of
overlapped region in quotient bit
selection logic makes it critical
and cause a big problem in actual
working.

Avoids carrying propagation
during reduction.

Needs critical attention for
designing quotient bit selection
logic for higher radix
implementations.

Uses symmetric signed digit
consecutive integers ~ with
maximum digit value m.

It requires a multipliers range of
power of 2. If not, then it requires
extra hardware for addition
circuit.

No requirement of prescaling
for operands.

The step function is constant for
all overlapping regions. It
increases with an increase in
radix, causing it critical to work
with a higher radix level where
the number of overlapped
regions and quotient digit
selection values are also more.

The conversion speed depends
upon the number of cycles
required to finish the
computation. Speed of
conversion increases ~ with
increase radix.

The quotient digit selection logic
look-up table Srows
quadratically with an increasing
radix, containing thousands to
millions of entries.

Few MSB's of the divisor and
partial remainder are required
for generating quotient digit
selection logic look-up table.

Hokeskok sk ok

a: SIMPLE STAGING

scaling, and circuit effects are important and discussed in the
later sections.

Cascading is the method used to connect two blocks of
circuits back-to-back, suggesting that one circuit’s output is
connected to another circuit’s input. In terms of the SRT
algorithm, if we connect two low radix divider circuits back-
to-back in a cascaded fashion, it can work as a higher radix
divider as one unit, as shown in Fig. 10.

23043

IEEE Access

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

Divisor

Partial Remainder
For intitial iteration consider Dividend

Shift left by kbits by
multiplying with
radix-n

I Radix block 1

Quotient Selection | |
Table

: | Subtractor H Multiplier I—
; Partiagql%emainder

Shift left by kbits by
] multiplying with
radix-n

Quotient Selection | | i
Table

Divisor

Radix block 2

|
' | Subtractor |—| Multiplier I—

f Partial Remainder
(Next)

Quotient Digit =

FIGURE 10. Block diagram of cascaded implementation of SRT algorithm.

Cascading multiple lower-order radix dividers together
will contribute to a higher radix divider, but at the cost of
higher area requirements than the usual one unit of a high
radix divider. The key point in using multiple low radix blocks
together is to use them at a much higher clocking frequency
than the system clock frequency; likewise, we are able to
work out multiple blocks in one system clock cycle. It is
possible to arrange multiple low radix dividers to completely
determine all the quotient bits in one system clock cycle. The
major drawback of this may be an enormous amount of area
and having an unacceptably low cycle time. HP PA-7100 and
AMD 29050 microprocessors are examples of two radix-4
clocking faster than the system clock to perform radix-16
work in every machine cycle [14].

b: CIRCUIT FAMILY EFFECT

The study shows that the two circuits built using the same
logic family of digital circuits cause similar delays. If the
same circuits are implemented in the different logic family of
the digital circuit, this shows visible changes in the circuit’s
performance, either worse or better. The study presented
in [32], [34] shows that many circuit-level implementations
of the SRT algorithm yield different performance depend-
ing on the choice of base architecture and the choice of

23044

radix-2 or radix-4. When performed, implementation in
CMOS and dual-rail domino circuits provide a 1.5 to 1.7
times speedup performance.

c: OVERLAPPING / PIPELINE EXECUTION

A divider circuit is a very complex operation formed by
connecting different components sequentially and logically,
which makes it possible to overlap some of the operations of
components to execute them together in the same cycle. This
ultimately leads to a pipeline structure of the components and
reduces the execution cycles [14], [43].

1 V) T3 T4 5 T6
Normal | Qs [om | PR
os [om | R |
IOVerlapl Qs | DM PR
Qs oM | PR |

2 Ovetlap | Qs DM

Qs oM | R |

FIGURE 11. The conditions of execution.

Fig. 11 illustrates the three different conditions of execu-
tion of the SRT algorithm. In short, the SRT algorithm has
three components, which execute their work after finishing
the previous component’s execution, as shown in the normal
form of SRT algorithm execution. In the normal form of
execution, the second iteration starts after completion of the
first iteration, indicating that the next stage’s quotient selec-
tion (QS) is dependent on the partial remainder (PR) gener-
ated in the previous iteration. The execution depends on the
partial remainder execution time in the one overlap form, sug-
gesting that overlapping quotient selection execution depends
on the partial remainder execution time. In the case of 2 over-
laps, execution is dependent on the quotient selection exe-
cution time, which indicates a pipelining quotient selection
execution along with the divisor multiplier (DM) and partial
remainder execution time. The partial remainder dependent
pipelined form of execution is performed when a redundant
format is used to represent the partial remainder, whereas the
quotient selection execution dependent pipeline is suitable
when a non-redundant format is used to represent the partial
remainder.

D. SVOBODA ALGORITHM (GSA)

SRT is the most implemented digit recurrence algorithm,
which works on the principle of developing a quotient digit
selection logic based on a few MSB’s of the divisor, and the
partial remainder. SRT does not require prescaled operands,
but it worked on the normalized operands. In 1963, Svoboda
came up with a radix-n digit recurrence division algorithm
based on the only partial remainder. Unlike the SRT digit

VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

IEEE Access

recurrence algorithm, it considers quotient digit selection
logic based on remainder’s MSBs [10], [59], [80], [95]-[100].
Svoboda division algorithm, also known as generalized Svo-
boda division algorithm or simply GSA. Svoboda division
algorithm requires inputs to be in prescaled form, near to 1.
Thus, it can be represented as (1 + e;), where e, is a small
positive fractional value e, < 1 / n and n is the radix. We can
describe the Svoboda digit recurrence algorithm in simple
steps [95], [96] as

o In the first stage, consider normalized inputs. If not,
convert it in normalized form and prescale operands to
represent (1 4 e;), i.e., near to 1.

« Inthe second stage, the actual iteration process will start.
At each iteration j, the quotient digit of that iteration
qj+1 is multiplied by a small positive fractional value e;
and subtracted from the partial quotient q;. The resulting
partial quotient bit is considered for examination.

o If gj results in —ve, it indicates overshooting, to com-
pensate overshooting by adding/subtracting e, and per-
forming right shift operation by j-1 places depending on
the last step was subtraction/addition.

o After i iteration, left i digits of the partial remainder
are considered as quotient digits, and the rest of the digits
are considered remainder.

Even though the Svoboda digit decurrence algorithm requires
only remainder MSB digits to estimate quotient digits, there
are certain limitations [59], [80], [95], [99] to Svoboda
implementation

o It requires prescaled inputs in a particular range near
to 1, causing additional clock cycles.

« Extra two multiplications are needed if operands are not
in prescaled form.

« Possible overflow due to overcompensation causing to
select quotient digit from out of the remainder digit
range.

« It is applicable above n > radix 4.

E. SVOBODA-TUNG ALGORITHM (STA)

Later Tung [59], [95], [97], [98] investigated the possi-
bility of the Svoboda algorithm implementation with the
signed digit number system, whereas the generalized Svo-
boda division algorithm is implemented on redundant digit
representation. Tung Implementation of Svoboda algorithm
known as Svoboda-Tung (ST) algorithm. Svoboda-Tung
(ST) algorithm also exhibits the same drawbacks as that
of the Svoboda algorithm mentioned above. Along with
that, Tung has exploited the carry propagation free prop-
erty of the signed digit number system and the simplic-
ity of quotient digit selection logic [95]. Later in 1991,
Burgess [95] has implemented Svoboda-Tung (ST) algo-
rithm with a slight change. In Burgess implementation, they
have considered two MSB’s of partial quotient instead of
one MSB to determine quotient digit. Upon the worst con-
dition of overshoot, unlike Svoboda-Tung (ST) algorithm,
here it gives several possibilities which are summarized
as {00,01,01, 10, 11, Ii, iO,il,H} to perform different

VOLUME 9, 2021

controlling operations defined for all the alternatives given
in the range, like not operate when MSB value is 00, 01, Oi,
Subtract e, when MSB value is 10, 11, add e, when MSB
value is IO,H, rewrite 01 when MSB value is 11 and rewrite
Olwhen the MSB value is 11. Where sign digit range is
given as

Range = {0, +1,....... , tm} (29)

Boundry limit = {n/2+1§m§n—1} (30)

In this, m in (29) is considered the maximum digit value in
the balanced signed digit range, which could be selected for
the quotient digit, and n in (30) is the radix of dividers. The

arithmetic limit for the partial remainder is given as (31), and
the valid range of divisor (D) is given as (32)

{[=m/n—1<Ri<m/n—1} @31

mn m(ﬂfz)
{(m+1><n— D= e - 1>} 2

F. NEW SVOBODA-TUNG ALGORITHM (NSTA)

To overcome the basic drawbacks of the Svoboda-Tung (ST)
algorithm without losing up any of the benefits is possi-
ble by incorporating the following updates in the actual
Svoboda-Tung (ST) algorithm [59], [97], [98], [100], signed
digit range is given as

Range = {0, £1,....... , tm} (33)
Boundry limit = {n/2+1<m<n—1} (34

In this, m in (33) is considered the maximum digit value in the
balanced signed digit range, which could be selected for the
partial remainder Rj along with the signed binary digit (SBD)
range given in (35) and n in (34) is the radix of dividers. The
valid range of divisor (Dr) is given as (36)

SBD = {—1 <m <1} (35)
Dyrange = {0, 1,....... ,n—1} (36)

This arrangement allows for addition /subtraction with carry
propagation up to one left position. The second drawback
of ST, i.e., overshoot due to compensation, is avoided by
implementing the alternative method of recoding two MSB’s
of the partial remainder with alternate consecutive positions
causing to follow and keep the partial remainder in bounded
condition

Boundry limit = {—m/n -1 <R < m/n — l} (37)

IV. VERY HIGH RADIX CLASS

Very high radix class algorithms are similar to non-restoring
digit recurrence class algorithms. In short, we can differenti-
ate the Simple SRT algorithm and high radix algorithm based
on the number of quotient bits retired in one iteration. Gener-
ally, a divider retiring more than 10 quotient digits in one iter-
ation qualifies as a very high radix algorithm. These very high
radix algorithms show different hardware and logic arrange-
ments for quotient selection and partial remainder generation

23045

IEEE Access

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

than SRT-based radix -n algorithms. The main difference
between the SRT and high radix algorithm is that it has a more
complex divisor multiple process and quotient-digit selection
hardware, which increases the cycle time and area. Similar
to the low radix SRT algorithm, a very high radix algorithm
also uses a look-up table, but the size and complexity are
greater. The high radix algorithm proposed by Wong and
Flynn [22] requires hardware with at least one look-up table
of size 2"(m-1) m bits. Three multipliers are required, with a
carrying assimilation multiplier of size (m + 1) x n for the
divisor’s initial multiplications, a carry-save multiplier of size
(m + 1) x mis used to compute the quotient segments. The
look-up table has m = 11, i.e., 2*(11-1) = 1024 entries, each
11 bits wide, so in total, 11K bits are required in the look-
up table with the slower implementation of the algorithm.
In contrast, the fast implementation of the algorithm requires
a look-up table with 736K bits. The high radix algorithm
proposed by Lang and Nannarelli [45] shows the construction
of a radix-2X divider for implementing a radix-10 divider
whose quotient digit is decomposed into two parts, one in
radix-5 and the other in radix-2. In radix-5, the quotient
digit is represented as values {—2, —1, 0, 1, 2}, requiring
three multipliers. Radix-2 is used to perform division on the
most significant slice. It uses an estimation technique in the
quotient selection component, which requires the use of a
redundant digit format.

The Cyrix 83D87 arithmetic co-processor utilizes a short
reciprocal algorithm similar to the accurate quotient approx-
imation method to obtain a radix-2 17 divider [14]. The
Cyrix divider has a single 18 x 69 rectangular multiplier
with an additional adder port to perform a fused multiply/add.
Therefore, it can also actas a 19 x 69 multiplier. Although the
high radix division algorithm works with a scaling dividend
and divisor by correct initial approximation of the reciprocal
followed by quotient selection logic with a multiplier and
subtraction, it exhibits the basic SRT properties radix-n algo-
rithm. It uses the reciprocal approximation to investigate the
correct quotient bit based on the formatting scaling factor
based on the look-up table, instead of the look-up table only.
It requires post-correction and rounding off if needed, with
final sign detection. In short, we can say that the high radix
dividers are the same as that of SRT based radix dividers with
a basic difference of increased complexity and criticality in
quotient digit selection techniques. Higher complexity and
criticality in SRT based radix divider is not the only way
to implement high radix dividers, as early we said that a
combination of two or more alternatives together could solve
this problem for high radix implementation. Many research
works are going on all around the world to provide different
aspects for high radix dividers. Use of different look-up tables
along with quotient digit selection logic look-up table [66],
[80], [83], speculating quotient digit and using arithmetic
functions to multiplicative iterations rather than subtractive
iterations [51], prescaling operands [88]-[93], using Fourier
division [86], [87], using alternative digit codes like BCD dig-
its instead of decimal and basic binary digits [81], cascading

23046

multiple stages of lower radix dividers [77], overlapping two
or more stages of low radix [32], [67], a truncated schema of
exact cell binary shifted adder array [68], [82], [85], on-line
serial and pipelined operand division [84], parallel imple-
mentation of the low radix dividers [94], array implementa-
tion [6], these are some of the possible ways applicable for
high radix dividers.

V. LOOK-UP TABLE CLASS

A look-up table class algorithm can be utilized along with
functional iterative class and high radix algorithms. For lower
precision applications like consumer electronics, it can be
used to avoid subsequent use of the algorithm. Look-up tables
can be used to hold the values of pre-computed values for the
quotient bit finalizing technique, standard values, etc. SRT
radix-n is the best example of a look-up table class division
algorithm. The approximation can be achieved by a look-up
table that can provide a faster option at the cost of an increased
area. As the number of bits increases, the look-up table area
requirements also increase. Direct approximation and linear
approximation require the use of the look-up table for the ini-
tial approximation value. In direct approximation processes,
it is expected to prepare a look-up table containing the exact
value of the approximation of the reciprocal function directly
at every stage separately. In this case, the table is formed by
the entries of the reciprocal of the midpoint and successor
in the range 1, by, by bx. The recent upcoming stated
in [46] about the bipartite reciprocal table, which can be used
for approximation in dividers. It uses two separate look-up
tables for positive and negative values. The table forms result
in a redundant format which needs further conversion using
multipliers. In the case of linear approximation, the look-up
table uses some polynomial approximation, which can be
expressed as a truncated series as in (38).

P (a) = Xo + X1a + X2d* + X3a° (38)

The initial order coefficients X0 and X1 are stored in the
look-up table, followed by multiplication and addition. The
absolute error in the final iteration values depends on the ini-
tial approximation. In the case of a linear and direct approxi-
mation look-up table, it depends on the trade-off between the
j number of iterations and the n'™ number of bits provided to
the look-up table. The look-up table class is hybrid, in which
look-up tables are utilized to improve different classes of
algorithms; e.g., the look-up table can be used in the SRT
algorithm to store the quotient bit selection table and in func-
tional iteration class algorithms to store the elements required
for initial approximation, which ultimately reduces the abso-
lute error. Moreover, one more type of algorithm is discussed
in [16], explaining the use of the look-up table for storing and
utilizing pre-computed values to perform the division opera-
tion. In the algorithm, it first scales down the denominator in
the range of 0.5 to 1; then it refers to the pre-computed value
for the reciprocal of a scaled-down divisor to multiply with
the numerator to get the quotient bit. The drawback of this is
that it generates an absolute error.

VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

IEEE Access

VL. FUNCTIONAL ITERATION CLASS
Unlike linear convergence algorithms where a single digit of
quotient is calculated in every iteration, a functional iteration
divider computes the quotient of division by estimation; thus,
it can give more than one digit of the quotient in one iteration.
This division method is based on the use of multiplication
instead of subtraction, which ultimately reduces the iterations
and can generate multiple quotient digits in one iteration with
low latency at the cost of the accuracy of the ultimate result.
The implementation of multiplication for conversion requires
a greater area, and for that purpose, it is implemented with
small size multipliers. The use of multiplication for func-
tional iteration dividers makes it more complex than simple
digit recurrence dividers. This type of divider has a major
drawback of the inaccuracy of the quotient result of direct
rounding off approximate solution values rather than infi-
nite precise values. Functional iteration based algorithm per-
forms division effectively but fails to give exact results every
time. They employ rounding off methods while converging
towards quotient, which allows keeping some rounding off
error [110]. The standard of rounding off includes four tech-
niques named RN, RZ, RM, and RP, of which RN is unbiased
rounding to the nearest method, which performs rounding
even if in a Tie case. Functional iteration dividers work on
the series expansion phenomenon, some of which is shown in
the [14], [47]:

1. Newton—Raphson algorithm (NRA)

2. Goldschmidt algorithm (GSA)

3. Series expansion algorithm (SEA)

4. Taylor series algorithm (TSEA)

A. NEWTON-RAPHSON ALGORITHM (NRA)

As shown in (39), it is considered possible to express the
result of the division process as a single term of a product
of the dividend and anti-divisor (reciprocal). To compute the
anti-divisor in the Newton—Raphson algorithm depends on
selecting the priming function, which points out its root at
the anti-divisor [14], which generally has many values. Based
on which root is selected, the quotient convergences accuracy
will vary, causing an error in the division and generating over-
head if the root selected is over the true quotient as indicated
by (43). This indicates that the accuracy can be improved by
first selecting the proper root, which can cause a reduction
of latency. Thus, latency and error in the convergence are
directly dependent on the root selected at the beginning of the
convergence [101]. The same method is used in IBM 360/91
and Astronautics ZS-1 [24], [25].

Q=Dy/Dr=px(g)" 39)
foO=1/x-g"=0 (40)
fXi)
Xiy1 = Xi — 41
+1 %) 41)
(/Xi—q7") _
Xit1 =X,-—1/7Xi2=x,«x(2—q 'xX) (42
€1 =€ (@ " 43)

VOLUME 9, 2021

Dr| Dd

Comparator

LUT

FIGURE 12. The block diag of N Raph
implementation.

algorithm

Fig. 12 above illustrates the block diagram of the Newton—
Raphson algorithm implementation for the division. After
applying the dividend and divisor, the Newton—Raphson
architecture starts with the first approximation to find the
anti-divisor (x| = D 1), i.e., the reciprocal or anti-divisor,
and store it in LUTs. Multiplexers make a choice of selecting
the initial approximation, and then the multiplier is used to
generate product term Dy and the Dy result is fed to 2’s
complement block for (2-p) calculation, and the result is fed
to the second multiplier, which computes the value of the
new approximation x, = D~ 1(2-p). This new approximation
is utilized to find a new partial remainder, which is required
to calculate the next approximation. After the last iteration
output of the second multiplier is fed to the last multiplier
to find the final value for the final approximation, it shows
that each iteration works on refining the anti-divisor (recip-
rocal), and after n iterations, the quotient approximation is
performed by the last multiplier. Thus, we can divide the
Newton— Raphson algorithm into three parts, namely initial
estimation of the quotient approximation, the iterative process
to approach nearest to the final value, and convergence to
the anti-divisor, i.e., the reciprocal. A major drawback is that
it requires a large gate count, and with an increase in the
iterations, it increases to an enormous amount, which is not
practically possible to implement.

B. SERIES EXPANSION ALGORITHM

Another known method of functional iteration is the series
expansion method, in which the series can represent the root
of the anti-divisor or reciprocal, which can be used in the iter-
ations for rounding off. As per (44), series expansion is equiv-
alent to the Newton—Raphson iteration for value Xo = 1.
Unlike Newton-Raphson iteration, which implements con-
vergence of the anti-divisor followed by multiplication with
the dividend, in series expansion, the iteration performs
pre-scaling of the dividend and divisor by series approxima-
tion or rounding off and then performs series convergence.

23047

IEEE Access

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

Z

Dr |
Comparator

LUT

q

FIGURE 13. The block diagram of Goldschmidt algorithm implementation.

Thus, it shows the possibility of the use of pipeline or par-
allel hardware architecture. For performing series expansion,
a Taylor series is used for function g(y) at point a, p. Very
often, this series expansion method is named the Goldschmidt
algorithm [48].

v —p)

g =g(p)+(y—p)g/(p)+Tg”(p)+... (44)

q="%Y,=axgQ) (45)

Fig. 13 above illustrates the block diagram of Goldschmidt
algorithm implementation. Similar to the Newton—Raphson
algorithm, the Goldschmidt algorithm also uses initial
approximation g; = D ! stored in LUTs. The next step
computes quotient approximation q; = g; * Dq and error
e; = g1 * Dy in the initial iteration; parallel multipliers con-
sider the value of q; and e; to calculate the value of g,. Later
parallel multipliers calculate the new quotient approximation
and error. This means that this algorithm generates a new
quotient approximation at each iteration, unlike the Newton—
Raphson algorithm.

C. GOLDSCHMIDT DIVISION ALGORITHM (GDA)

Goldschmidt division algorithm (GDA) is one of the
convergence-based algorithms used for performing
division, similar to that of the Newton-Rapson algorithm [53],
[105]-[109]. Like the Newton-Rapson algorithm, GDA also
offers quadratic convergence of quotient, but there is a
difference between them. Unlike the Newton-Rapson algo-
rithm, which first calculates anti-divisor and then multiplies
with dividend, the Goldschmidt division algorithm multi-
plies both dividend and divisor by anti-divisor [53], [109].
Contrary to subtractive iteration based algorithms, conver-
gence based multiplicative iteration algorithms perform inter-
action between adder output and control logic only after

23048

multiplication [109]. Goldschmidt division algorithm origi-
nates from the Taylor-Maclaurin series of 1 / (x + 1) [109].
The basic operation of the Goldschmidt division algorithm
can be expressed as [53], [105], [106], [108]

Dy/D. =N/D=A/B (46)
Xnt+1 = Xp (2 - yn) = Xnln (47)
Yo+l = Yn (2= Yu) =Yl (48)
where,
xg = Dg x LUT (1/D,) (49)
yo =D, * LUT (1/D;) (50)
LUT (1/D;) = LUT (f (1)) (51)

Equation (47) and (48) shows that x;,, y, are bound to 2,
and the value used for multiplication is always calculated
by subtracting the divisor’s current value from 2. The divi-
sion boundary condition is set to {1 / 2 <Dy / D,< 1}. This
algorithm’s major drawback is that it does not provide
the remainder, making it useful only for the floating-point
division [109]. First multiplication required for finding out
values of x,, and y, requires full precision. Another draw-
back, 1’s complement can be used instead of (2 - y,) to
avoid carry propagation delay, but it adds a new approxi-
mation error in each iteration. To overcome this problem,
one basic observation comes in handy that when y, reaches
to Ithen (2-y,) also reaches to 1, which can be advanta-
geous for implementation by reducing area and performance
at a time [109]. Later Harrison and Markstein found that
the actual Goldschmidt division algorithm can be expressed
as recursive equations that use multiplication and square
operations in each iteration [105], [106], [108]. Such type
of applications of Goldschmidt division algorithm is termed
as modified Goldschmidt division algorithm and useful for
software library implementation [109].

D. TAYLOR SERIES ALGORITHM (TSA)
Extended latency in dividers is seen because of the use
of the Ist order Newton-Rapson algorithm and binomial
expansion based Goldschmidt algorithm because of the major
issue regarding reusing multiplier in between two subsequent
operations [102], [104]. The next operations have to wait
in subsequent operations until the preoccupied multiplier
gets free from the previous operation. Taylor series expan-
sion is also a multiplicative iteration division algorithm like
Newton-Rapson and Goldschmidt algorithm. As we previ-
ously discussed in multiplicative algorithms, the precision
depends upon the closeness with anti-divisor (reciprocal)
estimation. Thus Taylor series expansion is used to calcu-
late accurate anti-divisor (reciprocal) to reduce the error in
the least important bits of quotient precision. Taylor series
expansion dividers work in two stages [53], [102], [103]

« In the first stage, after providing both operands, it per-

forms an estimation of anti-divisor (reciprocal).

VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

IEEE Access

« In the second stage, partial remainder and quotient are
reformed during multiplicative iterations of Taylor series
expansion until expected precision is achieved.

q="Difp and xo=1/p (52)
L+ (1= DyXo) + (1 = D,Xo)*
= DX 53
q d A0 { +(1 =D, Xo)? (53)
Operand 1 Operand 2
Ds D.
‘ l
MUL1 [Lookup L_d nuL2
Xo
1-SUB
(1_DrX0)2 (1_D1X0)3
v v
MUL3 1+SUM
Da/ D
FIGURE 14. Op I block diag of Taylor series algorithm.

Taylor series expansion implementation provides a parallel
powering section that computes high order terms faster with
minimal extension to hardware overhead. An operational dia-
gram is shown in Fig. 14. It is used in IBM RS/6000 and AMD
K7 processors [30], [104]. Even though the Taylor series
expansion gives a better anti-divisor value, the huge amount
of operational multiplication load, causing more power and
area utilization [30]. Later, Liu et al. [30] presented a hybrid
algorithm formed by combining prescaling, series expansion,
and Taylor series expansion for a different purpose in dividers
implementation. In their proposed structure, in the first stage,
prescaling is used to prescale input operands to keep the
divisor in the proper range. In the second stage, the series
expansion algorithm performs an accurate anti-divisor pre-
diction, which can later use in multiplicative iterations. In the
third stage, multiplicative iterations were performed to cal-
culate partial remainder and quotient until achieved required
precision level using the Taylor series expansion algorithm.

VIl. VARIABLE LATENCY CLASS

Till now, we have seen that division algorithms depend on
retiring a fixed amount of quotient bits at the end of every
iteration. In the case of the digit recurrence algorithms class,
like restoring and non-restoring algorithm retiring single bit

VOLUME 9, 2021

in every iteration, the radix-based SRT algorithm has multiple
possibilities, from one quotient bit to several quotient bits
in one iteration, depending on the radix used to design the
divider, e.g., radix-2 retires one quotient bit and radix-4 retires
two quotient bits. High radix and look-up table class algo-
rithms are also similar to the digit recurrence class. It shows
the linear convergence towards its quotient detection, which
suggests a fixed number of cycles until it reaches the quo-
tient’s final bit. In the case of the functional iterations class,
the number of quotient bits retired in one iteration is greater in
every iteration, but the number of cycles is fixed. As we have
discussed, it is possible to reduce these dependencies and pro-
vide a solution with variable conversion time or latency time.
Variable latency class algorithms are similar to the previous
algorithms but with the possibility of a variable quotient bit
retiring rate in different iterations or some iterations requiring
less execution time, resulting in different conversion times in
different sets of dividends and divisors.

The DEC Alpha 21164 is one of the best examples of vari-
able latency class algorithm implementation and is based on
the concepts of the simple normalizing non-restoring division
algorithm. In DEC Alpha 2164 implementation, whenever the
partial remainder is generating zeros or ones consecutively
in the partial remainder, then similar weight quotient bits are
also set to the sequence of 0’s or 1’s detected in the partial
remainder [49]. It is found that the average number of quo-
tient bits retired in one iteration varies from 2 to 3 depending
on the stream of bits in the partial remainder. There are certain
ways to provide a variable conversion time due to variable
execution time in a particular iteration, given the fact that the
execution of a particular combination of divisor and dividend
in a particular iteration can be completed in a short time and
normal execution time. It is possible to do so by saving very
common bit combinations that result in early iterations and
reusing that result in the next particular iteration. Ways to do
so include

1. Self-timing

2. Result cache

3. Speculation of quotient digit

A. SELF-TIMING

In the self-timing technique, multiple stages are cascaded
together with a self-timing partial remainder, suggesting no
shift register is required to store the partial remainder in two
cascaded stages. To match the timing of execution of the two
cascaded stages, it has to self-time the partial remainder of
the previous stage with the next stage, and thus the execution
of the next stage with the generation of the partial remainder
in the previous stage of the cascaded connection, providing
overlapping of execution. It improves the latency by provid-
ing the average cycle time instead of the combined cycle time
in cascaded stages. In [44], details have reported the imple-
mentation of a variable latency SRT algorithm-based divider.
It uses five stages of cascaded radix-2 with the self-timing
partial remainder, meaning no delay in transmitting the partial
remainder to the next stage. Thus, in the next stage, execution

23049

IEEE Access

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

starts before the previous stage’s quotient reaches the next
stage. Hal SPARC V9 processor and Sparc64 are examples of
practical implementation of the variable latency self-timing
division algorithm.

B. RESULT CACHE

In typical division applications like an inversion of the matrix,
square root, etc., it must perform repeated operations. In an
inversion of the matrix, each and every term of the matrix is
divided by the determinant, and in such cases, the possibility
of repeating the same operands for operation is likely to be
very high. Thus it is preferable to store the result of the
operands in cache memory so that the next time the same
operands perform a division; then this will just be copied
from the cache. By recognizing such redundant behaviours or
operations, or applications, it is possible to develop a variable
latency divider. In [50], Richardson presents a result caching
technique to implement along with the divider, resulting in a
reduction of the conversion time. It allows a trade-off between
the execution time and memory area. It provides a variable
execution time on account of the large memory area. This
caching results concept uses two stages: one is cache training,
in which standard operation is executed depending on the
reputability of the operands, and the result is stored in the
cache memory. So, when a required operation is executed
at that time, two events have started: one is the execution
of operands, and the second is cache access. Suppose cache
access results in the presence of a combination of operands.
In that case, the result of that combination stored in the
cache memory is transmitted and used further by terminating
actual execution. In contrast, if there is a mismatch, then the
operand’s execution continues to get the result, and this result
is stored in the cache memory. Thus, if the same operand
combination arises in the next iterations, it does not need to
be computed. Then it will take the result directly from cache
memory, resulting in a reduction of conversion time. Using
the cache to improve latency will affect the area efficiency;
e.g., in radix-4, it needs to store 160 bits per cache entry.

C. SPECULATION OF QUOTIENT DIGIT

In [51], Cortadella mentioned implementing the SRT divider
with variable latency, which detects a variable number of
quotient bits in each iteration. This technique’s main concept
is to utilize fewer bits from the divisor and partial remain-
der than the normal radix-n divider utilizes. In this case,
the accuracy of getting the correct quotient bit at the end of an
iteration is uncertain. One extra iteration is required to rectify
the incorrect conjecture in iteration due to too few bits for
quotient bit selection. An increase in the number of iterations
depends upon the degree of closeness when a correct quotient
bit is detected in an iteration.

VIIl. DIVISION HARDWARE ARCHITECTURE

To improve the electronic implementation efficiency of math-
ematical operators has two possibilities. The first one relates
to improving algorithms that can be responsible for logical

23050

data flow and conversion process in hardware. Simultane-
ously, the second one deals with improving hardware archi-
tectures, which are nothing but hardware interconnection and
implementation for performing a mathematical computation.
The first form of improvement is mostly considered because
it takes less cost and time than a hardware change, which
can cause 100 times costlier than soft changes like algorithm
improvement. Even though we have to consider a better trade-
off between soft changes and hardware changes for better
improvement, because of the interdependency of software
changes and hardware changes, better algorithms can be
developed based on the best hardware, and the best hardware
can be developed based on algorithmic needs. New algo-
rithms are developing alongside old algorithms to efficiently
perform the same operation, depending on new technological
developments. The development of hardware and algorithm
sometimes depends on the available situations required for
a particular application. Depending on application require-
ments, old algorithms can be upgraded, or a new algorithm
can be designed, or new hardware architecture can be devel-
oped. The timeline required to develop hardware is much
longer and costlier than that of algorithm development. Thus
it is preferred in most applications. At the beginning of the
electronic era, things were analog, which took over decades
to switch over digital, but algorithms are the same or modified
more or less. Initially, after developing digital circuits and
integrated circuits, hardware architecture classification falls
into two broad areas; one is sequential or serial, and the
other is parallel or concurrent hardware. Over a period, new
hardware developed along with new and modified algorithms
gives a different dimension to it, and we can have sequential-
parallel, i.e., pipelined hardware architecture. It supports
modification in the sequential algorithm, which could per-
form some operations parallel to improve efficiency. Sequen-
tial implementation requires less area and requires more time
for conversion, whereas parallel architectures required a large
area but very fast in conversion, and pipeline architecture is
the best amalgamation of both.

In general-purpose applications, central processing units
(CPU/processor) performs division with several iterations,
even for a small number of bits. This problem goes critical,
along with an increase in bit count [52]. Such problems are
even more serious in the graphics processing unit (GPU)
and Intel’s many integrated core (MIC) architecture, which
provides parallel architecture. The basic hierarchy of archi-
tectures goes from CPU, MIC to GPU. CPU works on the
architecture consist of a single core, MIC works on mul-
tiple cores, whereas GPU works on several cores. Both
GPU and MIC doesn’t have any dedicated dividers unit or
direct instruction to perform division [77]. Floating-point
implementations performed on GPU and MIC with higher
precision. The floating-point divider is implemented on the
NVIDIA K20 GPU card with CUDA programming support
that includes 30 different basic instructions and memory
access. CPU’s working frequency increased up to the 3GHz
overtime period, and on the other hand, it increases the

VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

IEEE Access

power dissipation. An alternative to this is to use several
CPU cores in parallel, which gives GPU or MIC exposure
in general-purpose processing [54].

Each of the algorithm classes, which we have discussed in
the previous sections, can be categorized into three categories
based on the hardware architecture used for implementation.
Serial hardware architecture consists of the sequential imple-
mentation of the algorithm’s components required for algo-
rithm implementation, basically used for general purpose.
Processing in CPU or FPGAs; the best example of serial
dividers is the simple restoring non-restoring digit recurrence
algorithm. Simple architecture and ease of understanding are
the main plus points of this technique, but it lacks latency,
as the second iteration depends on the completion of the
first iteration. The second technique used is parallel archi-
tecture. Multiple sets of hardware units are executed simulta-
neously to get the result in fewer iterations, basically used for
graphical processing unit (GPU) or Intel’s many integrated
cores (MIC) processors. It is latency-efficient but lacks area
efficiency. A third technique is a hybrid technique that essen-
tializes the parallel execution to get the average area and
latency efficiency. It performs certain operations in sequence
and some in parallel, causing an average latency cycle instead
of a combined latency cycle. The iterative divider structure
shows the serial implementation of the division algorithm,
whereas the array base implementation structure of the divi-
sion algorithm represents a parallel and pipelined architecture
for the implementation of the division algorithm, depend-
ing on the execution sequence. In the parallel architecture,
the array starts execution of all array stages together, whereas
in a pipelined architecture, the next stage’s execution starts
after a particular level of the previous stage is achieved.

A. SERIAL/SEQUENTIAL DIVIDER

Subtractive iteration based digit recurrence division algo-
rithms is the best example of a serial divider, where iterations
are interdependent to perform its operation. Hardware divi-
sion by small integers occurs decimal to binary conversion,
memory access. Online division, as Fig. 15, is also the best
example of serial implementation of division. When are con-
sider serial dividers, then there come two possibilities. When
the input operands are provided sequentially like on-line
dividers and others, the input operands are provided, but
the iterative conversion process works serially to converge
quotient linearly [17], [69], [84], [111]. The long division,
which resembles the theoretical paper-n-pencil algorithm,
is also a sequential subtractive algorithm. The basic idea of
a radix-n algorithm also performs sequential iterations based
on radix number n [69]. Many efforts have been made to
make the sequential process faster, and the most efficient
and successfully implemented method is the SRT algorithm.
Many processors like Pentium has implemented this division
algorithm. As discussed in the previous section, this method’s
major drawback is it needs a careful design of quotient digit
selection logic in the overlapped region. General-purpose
processing applications demand improvement in simple and

VOLUME 9, 2021

Du D.

Append Reg

Digit
Vector
Mul

Redundant Adder

Sub

Vi

FIGURE 15. Operational block diagram of the online division algorithm.

easied algorithms. One of them is data-dependent dividers,
which work to avoid redundant operations and perform only
shift over zeros operation used in the SRT algorithm to nor-
malize the remainder. They can introduce higher throughput
than radix-2 dividers, so it is useful to use them in small
architectures [69], but the conversion speed is currently not
implemented in other architectures. SRT algorithm can be
implemented on different architectures [17]. As we have
discussed, the division’s serial operation, in on-line division
prescaled operands are provided serially. Thus the quotient
generation rate depends on the rate at which input operands
are provided [84]. The output generates upon completion of
8 clock cycles after the first digit from the first operand is
supplied to dividers. This on-line delay conversion time varies
from conversion to conversion depending on the size of the
input operand, number system, and radix used. The on-line
division [84] is represented as

Sl =7rSG— 1)+ Dgss—1r " —rgi_1D, G— 1)
—Dyjs-1QG— D r?t (54)

where,
Dyt =Y D! (55)
D=3 Dy (56)
Sl = 220 Sir™! 57
ol =Y ar (58)
S U1 = 7 (D41~ D, 1 QL) (59)

It indicates that S is a scalable residual value defined as (59).
Quotient digit is selected based upon quotient digit selection
logic similar to that used in SRT algorithms. Higher radix in
on-line serial dividers yields fewer iterations and potentially
better performance on account of a large area and longer cycle
time.

23051

IEEE Access

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

B. PIPELINED DIVIDER

Pipelined architecture is one of the distinctive outcomes of
performance enhancive efforts. As dividers applications are
increasing, the need for high performance (area, time, power)
dividers is increasing. Clock cycles required for integer divi-
sion is unexpectedly long and uncertain [6]. A pipeline
architecture is one of the keys to improving overall computa-
tional performance. This architecture allows performing sev-
eral instructions of the computation process simultaneously
to achieve some degree of parallelism. Pipeline architecture
provides parallel processing by performing the instruction-
level overlapping of a computational process [6], [11], [17],
[61], [84]. The execution of pipelined architecture is very
similar to that of the production-line workflow. Every work-
ing point worked on a specific task and passed on the task
to the next level. Likewise, when the task is in the second
level, the first level can start a new task; thus, it looks like a
parallel working. Pipeline work structure can be achieved by
designing a computational logic that will provide functional
overlap in the execution stage and by arranging pipelined
hardware like a fully pipelined array structure [6], [11].
In short maximum serial computational algorithms can be
performed using pipeline architecture.

SRT division algorithm is the best example of this imple-
mentation. Functional iterative division algorithms are based
on multiplicative iteration, which almost required no extra
hardware to work on pipelined architecture whereas, in the
case of digit recurrence algorithms like SRT algorithm, which
works on subtractive iteration. The subtractive iteration algo-
rithm requires separate hardware at each stage; thus, the SRT
algorithm needs to use separate addition, subtraction, and
shifting in each computational cycle, causing increased com-
plexity and the size of the quotient digit selection logic
look-up table [6], [11], [61]. As we discussed, the imple-
mentation of on-line serial dividers in the previous section
requires a different clock cycle depending on the operand
digit count. To use pipelined architecture in on-line dividers,
we need to have a two-stage pipelined implementation of
on-line dividers, as shown in Fig. 16. The first stage will com-
pute the remainder’s partial value and append the new divisor
to the vector value of the divisor. In the second remainder,
and the next quotient digit is calculated. Working of 2 stage
pipelined on-line dividers can be expressed as (60)

S[jl =rS[j— 1+ Dgrs—1r " — rgi_ 1D, [j]
—Djs—1Q[=217t (60)

The critical path is reduced in the second stage of dividers
as compared to normal implementation. Block-level imple-
mentation of two-stage pipelined on-line dividers is shown
in Fig. 16.

C. PARALLEL DIVIDER

As we previously stated, the division requires larger latency
as compared to other operators.Even though it rarely occurs in
general-purpose computing, it is the most necessary operator

23052

Ds Sti-1
a

Stagel Stage2

Dia

Dj-1]

!

N S

S Dy

Stage 1

Sii-1] Qi

FIGURE 16. Block-I
divider.

I impl ion of 2-stage pipeli

in applications like vector calculation, complex number
calculation, artificial intelligence, graphics processing unit,
etc. [8]. Sequential / serial implementation could be tricky
to achieve high speed and accuracy. Thus these applications
require a high degree of parallelism in architecture [8]. The
basic idea of parallelism indicates simultaneous working or
computing of the same operation. In a basic way, there are
possibly two ways to achieve this parallelism. One is to
optimize implemented hardware architecture, and the second
is to optimize soft processes or algorithms [8], [52], [55],
[112], [113]. Considering the optimization of hardware
means to redesign the hardware would cost most and time
consuming, which means to upgrade integrated circuit chips
used in processors. On the other hand, optimizing soft pro-
cess means upgrading computational algorithms in soft-
ware to make optimal use of existing hardware [52], [55].
Graphics Processing Unit (GPU) and Intel’s Many Integrated
Cores (MIC) hardware are the best examples of parallel
architecture used for computation. Intel’s MIC architecture
consists of a few cores parallel with no direct hardware to
compute division. Whereas, in the case of GPUs, it considers
several cores in parallel [8], [52], [55], [112], [113]. Such
parallel architecture is best suited for the systems that work
on the bits n pieces of data, i.e., data packets like digital
signal processing in which parallel architecture gives multi-
thread computation possibilities. GPU and MIC work on a
large number of the multidimensional array data structure for
numerical computing techniques. It generates an opportunity
to explore the use of single instruction multiple data paral-
lelism (SIMD) techniques, which exhibits property conver-
gence through iteration of several stages to achieve a certain
condition.

VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

IEEE Access

1) SMALLER DIVIDEND DIVISION ALGORITHM

It is the simplest algorithm in terms of complexity when we
come to parallel computing. When we are implying high radix
dividers, it is one option to use multiple small radix dividers
in the pipelined or cascaded form to achieve the required
solution. As the use of small radix dividers for implementing
high radix yields the desired solution but on the other hand,
it increases the complexity, area, and performance ratio to
cost factor [8]. The basic phenomenon behind this algorithm
explained in [8], [31] is to consider division as a fraction.
Thus by applying properties of fractions, it can reduce the
complexity associated with the parallel division. Consider
two unsigned numbers for dividend and divisor. Consider
dividend bit count as 4n and divisor bit count as n. We can
represent dividends in terms of partitions based on associated
weights. Then we can represent the dividend as the addition
of number partition as (61-64).

2n—1 .
Ny=)) w2t (61)
2n—1 .
Ny = Zi=0 xi2! (62)
Dg = N1+ N, (63)

Dq/D; = (N; +N2) /D, =N /D, + N2 /D, (64)

Fig. 17 shows the basic implementation of the algorithm.
Thus by calculating the total of fractions, we can derive an
actual solution for the division. The algorithm consists of
three stages as

D. ‘I'Dd
4
. | Pre-processing Unit |
7
nge ,l, ,I, iy’
[Divider1 | Divider2 |
3n-bit 3n-bit
Quotient Register Quotient Register
Partial Quotient Partial Remainder
Accumulator Accumulator
Comparator
Incrementer
MUX 2X1 |
llln
Subtractor
vQ RY”

FIGURE 17. Block-level implementation of small dividend division
algorithm.

VOLUME 9, 2021

« In the first stage, a preprocessing stage here performs
dividend partitioning depending on the radix.

« In the second stage, the iteration stage performs itera-
tions to compute a division of partitions and generate
partial quotient and partial remainder.

« In the third stage, the combining stage operates to obtain

the final quotient and remainder.
For a better understanding of the algorithm, steps involved

in radix-2 division using a smaller dividend algorithm is

gives as
« In stage one, based on radix-2, make two partitions of 4n

bit size dividend.

« Instage two, perform iterations in N1 and N2, partitions
of 2n bits, forming ql,q2, r1,r2 as partial quotient and
partial remainder.

o In stage 3, combine the partial remainder and partial

quotient to receive the final quotient and remainder.
The simplicity of conversion logic is an advantage and

reduces the latency on account of increased hardware require-
ments as it requires separate dividers equals to the number
of partitions performed with a dividend. It also exhibits some
limitations like the need for a higher dividend than the divisor,
synchronization between parallel units, a special focus on
recombining logic for partial quotient, and the partial remain-
der to generate the final quotient and remainder. This algo-
rithm’s major benefit is that it can use any existing method
to compute partial division in the iteration stage. It gives
a better tread between area and time to choose the desired
combination as per the application needs.

2) JEBELEAN EXACT DIVISION ALGORITHM

We perform complete division on long integer operands in
digital computations even after knowing that the remainder
will be zero. It causes unnecessary computation time. In such
cases, Tudor Jebelean proposed an algorithm in 1992 to use
the advantage of division being exact. It proposes to work
starting from the least significant digit of operand [114].
Implementation of this algorithm works remarkably well
only when radix is prime or power of 2. The algorithm
uses the least significant digits operand first to generate the
least significant bits of the quotient, making it significant
for pipeline or parallel implementation. Pompeiu introduced
the basic idea of the algorithm in 1959 that uses only the
least significant digit of operands to find the least significant
digit of the quotient as operands and quotient are represented
multi-precision positive integers expressed as radix —n. As the
division is considered as exact thus, it can show Dg =d * Q.
We can Express the algorithm [112]-[114] as

n .

Dy=Y. Dan' (65)
w

0=) an" (66)

Dgi and q; are the least significant digits of dividend and
quotient stored in the least significant digit first format. Thus
after k' iterations, we get

k .
Dy = Zi:l Dgin'™! (67)

23053

IEEE Access

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

m _

Dagk =) Dan'™'™* (68)
k .

Q=) qn (69)

Dy = Ddupknk + Dy, (70)

where Dy, Daypk, Qx and by as a state of the Jebelean
algorithm Dy is a multi-precision number formed by
Dy1,Dg2,Dg3. .o .. Dgi. Daypr is the upper part of the
dividend Dgk+1, Dgk+2s -« v Dgy. The actual dividend
can be represented as the (70), and the quotient is the
multiple-precision quotient after the k™ iteration. To imple-
ment the Jebelean algorithm parallelly, it needs to borrow by
calculation in parallel, which is quite challenging. Parallel
computation of borrow by is expressed as

b = <_n_dek>modd (71)

—k
b = <_nmod dde)mad d 72)

Assuming we have n processors, we can assign k' pro-
cessors to perform a calculation to find out by value and
then qx value. Each processor will compute Daxnk~ !, then
run a parallel prefix sum and then multiply by n=%. Exe-
cution is performed by modulo d. Takahashi’s algorithm
uses a slightly different approach to derive left to right
Jebelean algorithm. In Takahashi, the remainder is executed
sequentially, and if the remainder could get parallelly, then
the final quotient could get parallelized. Recurrence for the
remainder [112], [113] is given as

1k = (k41 + D) mod a (73)

e = <de +nD g +1 +n2de+2 +.....+ n2n7dekm>
mod d

(74

Takahashi uses a parallel cyclic reduction method to solve the
remainder recurrence. The general form of i iteration

rlgl) = (rlgl v + nd(l)rlgld]()j))madd
where look ahead distance is d(i), it gets doubled at each
step; thus, d(i) = 20 1t is also called a short division or exact
division.

(75)

IX. IMPLEMENTATION STATISTICS

A variety of applications has implemented many division
algorithms. One has to select an appropriate algorithm that
can cater to the cost, area, time, and complexity requirements
of applications and technology to manufacture. This section
presents a study of different division algorithm implementa-
tions, which gives a broad insight into the different implemen-
tations. Upon this, one can understand the necessity to choose
a proper trade-off between time, cost, area, and complexity
while selecting the proper algorithm that can be suitable for
fulfilling an application’s requirements. Considering the sim-
plicity and vast variety of implementation possibilities had
before and would come in future digit recurrence algorithm
is mostly the choice of interest for many applications, but it is

23054

very experimental to visualize the different implementation
aspects of various algorithm which could lead towards new
ideas to improve some old implementations or to develop a
new one.

TABLE 3. Summary of Handel-C implementation comparison.

LUT's Frequency (MHz)
From To
Handel - C 747 7,21 10,965
Restoring 115 13,716 20,345
Non restoring 144 24,175 40,073
Non restoring 66 37,806 63,558
with pipeline

Restoring and non-restoring algorithms are very broad
concepts. The restoring algorithm resembles the actual
long division algorithm or, never the less with theoretical
paper n pencil algorithm, and a non-restoring algorithm is
similar to restoring except restoring stage. These are the
basic algorithms of the digit recurrence class of dividers.
Many algorithms come later, which are fully or partially
derived based upon non-restoring algorithms ideology. Many
researchers [4], [5], [15], [18] have explained the complex-
ity, timing, area, and other features related to the imple-
mentations of basic restoring and non-restoring algorithms.
D. G. Bailey [4] presented an article about the statistical
implementation data for restoring and non-restoring algo-
rithm in 2006. In this article, he presented a comparative
analysis of FPGA and Handel-C implementation of restoring
and non-restoring algorithm. Algorithms were implemented
on RC-100, RC-300 development boards produced by Celox-
ica using Xilinx’s Spartan-II and Virtex-II FPGA. Restoring
and non-restoring dividers were built as macro expressions
with Handel-C language and compiled to generate EDIF
file within Celoxica DK4.0 environment further EDIF file is
mapped with respective FPGA of RC-100 and RC-300 board
using Xilinx ISE version 6.1.03 [4]. Handel-C is very similar
to that of the C programming language with the additional
benefit of inherent parallelism property [115], [116]. A sta-
tistical comparison is presented between algorithms imple-
mented as macro expressions with Handel-C built-in integer
divider. It is to be considered that, for comparison, only
restoring and no restoring algorithms based on basic equa-
tions expressed in the earlier section are used without imple-
menting the radix SRT algorithm. The comparison presented
in table 3 concludes that Handel-C built-in divider is the
slowest as it can work on frequencies near 10 MHz. The chip
area required in FPGA is approximately more than double
the chip area required by designed algorithms. In Handel-C
implementations, it indicates that the use of subtraction for
performing a comparison and reusing it as an input to a multi-
plexer and using separate LUTs for addition and multiplexing

VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

IEEE Access

requires extra hardware limiting speed improvement. Imple-
mentation of the basic idea of restoring and non restoring
division algorithm could implement in a sufficiently low chip
area, but the maximum working frequency is low. The number
of LUT’s may vary based on considering HDL languages to
implement the above algorithms. Many non-restoring algo-
rithms were designed and implemented, but the SRT algo-
rithm is the most implemented. The basic SRT algorithm was
implemented in [7], [11], [17], [51], [57], [63], [64], [67],
[691, [71], [32],[741, [76]. [78], [81] for different applications
utilizing different aspects of algorithm.

In [4], E. Matthews, A. Lu, Z. Fang, and L. Shannon
discussed integer divider designs for FPGA based soft-
processors ascendancy over patronage of adaptation of vari-
able latency execution unit in their instruction pipeline.
Implementation efforts were focused on the Quick-Div
divider, which shows data-dependency and variable-latency
in integer division. It integrated into the FPGA-based Taiga
RISC-V pipelined soft-processor. Comprehensive results
compared with fixed latency radix-2/4/8/16 dividers. It has
been mentioned that dividers also are classified into two
types. One as fractional dividers (floating point) and the sec-
ond as integer dividers. Integer dividers also have several
applications in today’s digital world, from simple pseu-
dorandom number generators to complex applications like
image processing, signal processing, etc. [7], over decades.
It has been followed to use floating-point/fixed-point divider
with a sufficient degree of numerical precision for work-
ing on integer division, sometimes on FPGAs, but hardware
constraints are always there indicating the use of floating-
point/fixed-point divider for integer division cause wasting of
resources. It points out that a 64-bit floating-point/fixed-point
divider requires almost ten times more resources than a
radix-2 divider [7], [26]. FPGA soft-core processor, Micro
Blaze [27], NIOS II [28], and the LEON3 processor [29]
implemented fixed-latency radix- 2 dividers with 32 cycles
of latency for performing division operation. In general
basic arithmetic operations required two to three cycles,
whereas radix —2 requires 32 cycles, making it comparatively
slower with respect to others. Experimental implementations
have been performed over the Xilinx Virtex UltraScale+
VCU118 board (XCVU9P-L2FLGA2104E) using Vivado
2018.3 synthesis. In this article, they have given a compar-
ison of different radix — n and Quick-Div dividers. Table 4
compares different dividers based on working frequency,
LUTs, FFs, etc., when implemented stand-alone. With ascen-
dancy over the variable latency execution unit’s patronage
in the Taiga soft-processor instruction pipeline, all dividers
are realized with the RISC-V Taiga soft-processor. A com-
parative statistic is derived between the implementation of
data dependant variable-latency Quick-Div dividers and fixed
latency radix-n (n = 2, 4, 8, 16) dividers with and without the
RISC-V soft-processor Taiga. Taiga is RISC-V open-source
soft processor. Quick-Div dividers are unsigned processes,
so that sign conversion before and after completing con-
version is required depending on the instruction operands

VOLUME 9, 2021

TABLE 4. Summary of comparison between stand alone implementation
based on LUTs, cycle and frequency.

Cyecles Frequency
Name - y LUTs | FFs (MHz)
Min | Max
Radix-2 32 32 100 | 100 900
Radix-4 16 16 250 | 150 725
Radix-8 11 11 500 | 75 475
Radix-16 8 8 700 | 200 320
Quick-Div Initial 1 32 300 | 100 300
Quick-Div count 2 33 350 | 170 400
leading zeros
Quick-Div CLZ- 2 33 450 | 170 300
2BIT worst case
optimization

TABLE 5. Summary of comparison between taiga soft processor
implementation based on LUTs, cycle and frequency.

Name LUTs FFs F r(‘l”\‘}[';lez';cy
Radix-2 1500 1100 375
Radix-4 1520 1200 350
Radix-8 1990 1000 350
Radix-16 2100 1200 300
Quick-Div Initial 1600 1000 350
Quick-Div count 1600 1150 375
leading zeros
Quick-Div CLZ-2BIT 1700 1100 300
worst case optimization

and type. Due to this, Quick-Div requires additional 3 cycles
for sign conversion, as mentioned in Table 5.

In [11], N. Sorokin discussed the implementation of
fixed-point dividers based on different algorithms on Xilinx
FPGA’s common platform. Different divider modules have
been compared with Xilinx’s 32-bit IP core pipelined divider.
Itindicates that the non-restoring algorithm based fixed-point
divider module is particularly faster than 32-bit Xilinx’s IP
core pipelined divider. In this article, it is pointed out that,
in practical division operation results are more of approxi-
mated values than exact values in digital operations. These
approximated values can make some trouble in more critical
applications, like biomedical applications, sensors signal pro-
cessing, coordinate computation for an item, etc. [11]. As we
have discussed earlier, even for integer division, we have
to use the fractional divider, which includes a fixed point
or floating-point divider; thus, floating-point implementation
is critical and complex, making it sometimes impracticable.
Out of many theoretical concepts, one practicable solution
was provided by Xilinx’s IP core pipelined divider. Still,
32-bit input operands cause to produce 32-bit remainders in
many cases, which is impossible to implement in applications

23055

IEEE Access

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

TABLE 6. Comparison based on conversion time of Xilinx IP core and
other divider module.

TABLE 9. Other comparison with restoring and non-restoring dividers.

TABLE 7. Properties of 32-bit IP core pipelined divider.

Number Properties
of bits
Slices / LUTs FFs Look-up | Frequency
tables (MHz)
8 2247 4020 1400 204,3
16 2742 4904 1680 201,6
32 3843 6864 2240 193,1

TABLE 8. Comparison with restoring and non-restoring dividers.

Number Frequency (MHz)
of bits
Xilinx IP core | Non Restoring Restoring
8 204,3 250 130
16 201,6 248 115
32 193,1 245 100

where high precision in calculations is required. Another
implementation problem-focused in this article is about the
chip area requirements of this solution. The fixed-point algo-
rithm follows the basic principles like simple paper n pencil
division algorithm. A fixed bit length quotient is generated
in every iteration of fixed-point divider like digit recurrence
type of dividers. A major focus was given on improving addi-
tion and multiplication operations, as speeding up addition
operations reduces computational time in the actual division
process. Replacement of divisor by its inverse value can allow
multiplying by anti-divider to obtain division result. Speeding
up dividers has been achieved by developing fast adders, carry
look-ahead adders, matrix or array type adders, etc. Xilinx’s
Ip core divider has certain properties:

« Itisavailable in drop-in modules for all Virtex, Virtex-II,

Virtex-II Pro, Virtex-4, Spartan-3, etc.

o The dividend can be up to 32 bits.

« Full pipelined architecture.
Table 6 - Table 9 shows the implementation properties
and comparison of the 32-bit IP core pipelined divider by

23056

Parameters Time of conversion (ns) Stices / LUTSs FFs
Parameters
8 16 32 8 16 32
8 16 32
Xilinx IP core 211 253 350 Xilinx IP core | 2247 | 2742 | 3843 | 4020 | 4904 | 6864
SRT 525 635 854 Non Restoring | 126 | 142 | 159 | 178 | 180 | 186
Non Restoring 165 198 265
Restoring 160 180 200 178 195 210
Restoring 324 405 597

Xilinx. The comparison is made with 8-bit, 16-bit, and 32-bit
operands, which generate similar bit remainders. Even though
the IP core divider gives an improved calculation speed, it still
requires a large area and storage to store look-up tables for its
performance. Fixed-point division core from Xilinx results
in difficulty implementing it universally in every applica-
tion due to some restrictions imposed by its implementation
requirements as

o A large area occupied by the design and the limited
widths of the operands, and the division’s fixed-point
result.

« If there is a need to increase the result’s precision, one
must find some ways to apply different operands’ scal-
ing techniques.

In [16], Md. F. Kasim, T. Adiono, Md. Fahreza and
Md. F. Zakiy discussed a divider block with pre-computed
values stored in read-only memory in terms of a look-up
table. This divider working is similar to that of dividers based
on functional iteration type of algorithms like Goldschmidt’s
algorithm and Newton’s method [16]. Thus, the result of this
divider is also approximate value, unlike iterative subtraction
class-based dividers. Table 10 gives a comparative analysis of
the pre-computed divider concerning other implementations.
In this case, they consider the same bit size numerator (N) and
denominators (D), assuming N,D > 0and N <D < 1.

Steps of algorithms are given as

o Scaling N and D so that D has a value between 0.5 and 1.

o After scaling the denominator, find the value of x = 1/D
from pre-computed values stored in the look-up table.

o Then multiply the value of x with the numerator,
which is similar to optimizing the division algorithm to
speedup division operation [11].

« Suppose we take p most significant bits out of n bits of
D and reserve 2p items of pre-computed values, which
cause an error. Thus Y = N/ (Dk + D). Dx is the p most
significant bits of D and DL remaining, i.e., n-p bits.

o Perform Taylor expansion to the above point, and
we will get Y = N/Dg (1-D/Dx + D?/D% —
D} /Di+....).

o 2p memory is utilized to save pre-computed values
if we consider p bits, and the possible error can
be 2-p. It makes it critical to select the value of p to opti-
mize performance and control the memory utilization

VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

IEEE Access

in storing look-up tables and maintaining error con-
ditions within acceptable limits. The maximum error
of 0.187595 can occur when p = 1, which gets improved
with an increasing number of p’s, so the maximum error
of 0.000051 will come for p = 15 at the same time
memory requirement will increase from 21 to 215.

In [8], K. Tatas, D. J. Soudris, D. Siomos, M. Dasygenis,
and A. Thanailakis discussed the different concept of parti-
tioning the main dividend in segments so that it represents
an actual division of the numerator by denominator as a
series of smaller division. By considering the weight of the
dividend bits, all intermediate operations are performed. This
concept of a series of divisions showcases a smaller dividend
division algorithm, where we have to perform shifting, partial
division, and accumulation operations. Any existing division
algorithms can be utilized for the partial division process; the
best-suited option must be selected depending on the trade-off
between cost and area. Implementation of this algorithm is
possible in both series and parallel ways [8]. A higher radix
system is critical and difficult to implement, and its perfor-
mance is not very high. In digital signal processing, field data
is available in a series of bursts like packets, making through-
put requirements more critical over latency. The concept is
to divide a large numerator into multiple smaller parts, i.e.,
partitioning into fixed numbers with its associated weight,
then divide this small numerator by a denominator. At last,
to add all small divisions to give a result.

N N1 N2 N3 N4 76

=D + D + D + D +o (76)
The partitioned numerator’s partial division process can be
performed either serially or parallel due to the tread between
cost and time. This algorithm is implemented with a length
of N = 32-bit dividend and parallel array divider, sequen-
tial divider with two partitions, or parallel divider with two
partitions in the partial division stage. Its respective imple-
mentation required 4316, 2136, and 3050 slices on Xilinx
Virtex-E 1000. From the above data, it is clear that sequential
implementation of this algorithm is more area efficient and
moderate in time delay. If any corrective stage is required
in sequential dividers, it will degrade the efficiency of serial
dividers. In contrast, parallel implementation produces a
slight reduction in delay but not a sufficient decrease in area
and latency. Array Implementation of this algorithm is not at
all efficient as it increases chip area four times on doubling
word length.

In [30], J. Liu, M. Chang, and C-K. Cheng discussed
an algorithm that utilizes prescaling, series expansion, and
Taylor series expansion together; hence it is sometimes called
a PST algorithm. At the starting, both operands are prescaled
up to it reached to the suitable starting level. Operand prescal-
ing is performed based on the scaling factor Eg, which is
stored in the look-up table. In the second stage of the PST
algorithm, series expansion is applied on scaled operands to
obtain an accurate anti-divisor approximation. To calculate
the partial quotient and the next remainder in the iteration

VOLUME 9, 2021

TABLE 10. Comparison of 32 bit pre computed divider along with other
dividers.

Parameters TLEs / Latency RMS error
LUTs (uS)
Pre computed divider 647 3,22x 102 437x10*
Goldschmidt's 816 3,82x 1072
algorithm
Non-restoring radix 676 5,75x 102
2
Divider from Quartus | 1146 15,3 x 102
Mega functions (32
bits)
TABLE 11. Impl ion of PST divid
Parameters Frequency LUTs Memory | DSP
(MHz)
IP core from 50,16 1203 84 0
MegaWizard
PST (DSP) 72.8 213 768 28
PST (non DSP) 73,2 1437 768 0

stage, it utilizes 0-order Taylor series expansion. Iterations
have to continue until getting the quotient with a required
precision range of error. Three Taylor expansion iterations
and a look-up table are needed to finish one operation. As per
the performance comparison with the IP core and DSP and
non-DSP structure of this algorithm shown in Table 11, the
divider shows significant delay and doesn’t save sufficient
area than Xilinx IP core and some other divider design.
PST divider is FPGA feasible, and new placing routing and
packaging techniques may generate an improved version of
the PST divider.

In [81], A. Vazquez, E. Antelo, and P. Montuschi presented
the SRT algorithm base radix-10 architecture to work as a
floating-point divider. It works on the basics of the SRT algo-
rithm like sign digit (SD) redundant digit range for quotient
and digit selection logic design on constant comparison of
carry-save estimation of the partial remainder. These show-
case the alternate use of the BCD number range for repre-
senting decimal operands instead of regular weighted binary
arrangement. Basic SRT implementations show the genera-
tion of odd multiples of divisors in the radix-2¥ high radix
system, which could degrade the implementation. It could be
resolved using simple overlapping of two recurrences of low
radix-n systems, but in this system implementation, it shows
that odd multiples of divisor can be generated by simply using
decimal carry propagated adders and resue further. To repre-
sent operands in signed digit range, it uses 10’s complement
representation of bit length 4. Table 12 gives details about
implementing the BCD system for the floating-point divider.
A delay is represented as a delay term of multiple of an

23057

IEEE Access

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

TABLE 12. Implementation statistics of BCD floating-point divider.

Parameters Slices / LUTs
Area Delay
(No. of NAND gates) (FO4)
Selection logic 3200 223
Multiple generator 2000 18.4
Adder 2600 21.8
Mux/Latch 2700 3.0
Total 10500 253

inverter with a fanout of 4. The rough estimation of hardware
size and complexity is given in multiples of the minimum
equivalent area of a two-input NAND gate.

Many different applications are possible for radix-n base
non-restoring digit recurrence algorithm. In [86], [87], M. D.
Ercegovac and R. Mcllhenny present the implementation of
radix-10 with limited precision primitives, which uses mod-
ules of 1to 3 or 1 to 4 decimal digits. The proposed method
is based on the use of limited precision multipliers, adders,
and look-up tables. Minor changes have been suggested at
the initial stages to work with limited precision, such as
using the Fourier series to achieve the desired recurrence
for limited precision primitives. It produces one quotient
digit per iteration using shifted short partial remainder and
short anti-divisor or reciprocal. Implementation is performed
using Xilinx’s d10.1 and 12.1 design suit tool and mapped
to Xilinx’s vertex-5 and vertex-6 FPGA. Total delay can
occur due to a short reciprocal look-up table (Trec), selec-
tion function (SEL), a digit by digit multiplier along with
compensation factor (C-net), auxiliary residue (V-net), Next
residue(W-net), and on-the-fly conversion for signed digit
conversion to conventional decimal representation. The
implementation of 1 to 3 decimal digit short reciprocal for
significant size n = 7 and 14 respectively requires 782 LUTs,
105 ns approx delay, and 1263 LUTs, 197 ns approx delay.
Implementing 1 to 4 decimal digit short reciprocal for sig-
nificant size n = 7 and 14 respectively requires 1384 LUTs,
102 ns approx delay, and 2047 LUTs, 204 ns approx delay.
The main lacking of routing delay indicated in implementa-
tion is very high.

In [90], M. Baesler, S.O. Voigt, and T. Teufel presented
the implementation data for shift and subtract algorithm, digit
recurrence algorithm with signed redundant quotient, and
carry-save representation. The second representation uses
ROM to calculate the quotient digit, whereas, in the third rep-
resentation, the quotient is derived from digit decomposition
without ROM. Type 1 uses a simple shift and subtract algo-
rithm for the fixed-point divider, which indicated unsigned
and non-redundant quotient digit calculation. Type 2 uses
signed digit calculation for quotient digit with redundancy
factor 8/9 with operand scaling to get divisor in range in

23058

between 0.4 to 1.0. Type 3 uses divider scaling to calculate
quotient digit, where the divisor is prescaled in between 0.4 to
0.8 with redundancy factor 8/9. For normalized decimal fixed
point divider, type 1 divider requires 3868 LUTs and FF
in combine total latency of 154 ns and maximum working
frequency of 123 MHz. Type 2 requires 2210 LUTs and FF in
total and can work up to 118 MHz max frequency and provide
a latency of 162 ns. Type 3 requires 2203 LUTs and FF in
total and can work up to 88 MHz max frequency and provide
a latency of 230 ns.

In [91], M. D. Ercegovac, and J-M. Muller proposed a
digit-recurrence algorithm for real and complex number divi-
sion. The concept presented in this article indicates the use of
a variable radix divider as a key element along with prescaled
operands by using sufficiently low radix. It elaborates the
method of using a low radix conversion to high radix during
iterations post initial estimation in the first iteration. Imple-
mentation parameters are given in comparison with the area
and delay of the full adder. Thus, the total delay is counted
as the overall delay that occurred in all building blocks like
registers, adders, multipliers selection logic, multiplexers,
etc. It estimates the proposed scheme’s area requirements
up to radix-256 with internal precision of 64 bits in total
1750 to 1880 times the full adder area. In [61], B. Mehta,
J. Talukdar, and S. Gajjar present high-speed SRT dividers
based on a highly parallel pipelined structure with fuzzy
logic quotient digit selection proposed a high level of par-
allel performance of execution steps. It represents design
implementation based on parallel SRT radix-4 module algo-
rithm, which initiates prediction based on dividend and later
correction made by fuzzy logic to reduce Q selection logic
look-up table size. For 64-bit double-precision floating-point
number required 1879 LUTSs,283 Registers with a lowest
critical conversion time came out to be 210 ns. In [110],
B. Pasca presented a piece-wise polynomial approximation
and Newton-Rapson algorithm for the division for DSP sup-
portive families of FPGA from Altera. As a basic prob-
lem of the Newton-Rapsom algorithm, it contains some
rounding errors. Thus to overcome this problem associ-
ated with the Newton-Rapson method, it proposes using
highly tuned piece-wise polynomial approximation, which
provides faithful rounded implementation with one extra bit
of precision. This method is similar to dewpoint rounding.
Synthesis results for floating-point implementation of the
proposed method required 274-426 ALUT, 291-408 Regis-
ters, 3-4 DSPs for a polynomial approximation of d = 2. For
a polynomial approximation of d = 4 required 1113 ALUT,
1825 Registers, and 9 DSPs. For a polynomial approxima-
tion, d = 2, 4 and Newton-Rapson required 887-947 ALUT,
823-1296 Register, and 9 DSPs.

In [52], K. Huang, and Y. Chen proposed a fast approx-
imation algorithm to estimate the floating-point numbers in
IEEE 754 format. It consists of two parts one is the prediction
stage, and another is the iteration stage. The floating-point
division is normally required several cycles to complete its
execution on CPU base architectures where serial or pipelined

VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

IEEE Access

implementation is used, whereas in the case of GPU and MIC
architectures where they don’t have any direct instruction to
perform division, this situation is more critical and required
more cycles to complete the division operation. In this pro-
posed method, improvement of time performance is the prior
focus to achieve than the area requirements. In the iteration
stage, the Goldschmidt algorithm with the binomial theorem
is used as it indicates a fast convergence rate and ease in
implementation using fussed multiplication and adder (FMA)
construction on MIC and GPUs. The iteration step improves
the precision of result approximation based on an initial esti-
mation of anti-divisor or reciprocal. In this implementation,
lower degree polynomial approximation cannot reach the
required level of precision, and a higher degree of polyno-
mial approximation increases the complexity of calculation.
A technique is applied to overcome the problem by con-
sidering floating-point numbers as a fixed point integer and
perform simple integer subtraction to generate the required
accuracy in estimating anti-divisor or reciprocal. Prediction
stage maximum allowed error has no value more than 0.06.

Implementation results were generated on NVIDIAs
K20GPU having 2469 cores with CUDA 5.0 compiler and
0.71GHz working frequency. The implementation was com-
pared with Intel’s Xeon Phi 5100 Series MIC having 60 cores
with Intel composer XE 2013.2.146. It indicates that the
initial prediction stage error up 0.0508 to 0.0614. It took
117.7 GFlops on MIC K20, while built-in implementation
of CUDA takes only 46.6 GFlops, and on MIC, it requires
3736 GFlops. In [113], N.Emmart, and C. Weems presented a
multi-precision integer division algorithm by single-precision
value using GPU. The proposed algorithm is based on the
parallel version of Jebelean’s exact division algorithm with
left-to-right borrow chain computation. Further improvement
in precision is achieved by implementing Takahashi’s cyclic
reduction technique. Results show that the proposed parallel
algorithm worked 20% slow in a 1024 bit size of dividend but
shows 40% faster performance for 2048 bit size of dividend
than Takahashi’s algorithm.

X. COMPARISON

Even though the division operation looks simple, it is very dif-
ficult to implement due to strict conversion rules, and an effi-
cient system needs to implement an efficient divider. Many
algorithms were discussed in the previous sections, stating
different logical concepts of achieving the division operation.
It is very complex to differentiate all the implementable
algorithms into independent classes, but there are broadly
four. The first uses digit recurrence, which is also an iterative
type of division. The best examples of this class are the
restoring, non-restoring, and radix-n based SRT algorithms,
in which a specific number of quotient bits are discovered
in each iteration. The restoring and non-restoring algorithms
work on iterative subtraction, whereas the radix-n based SRT
algorithm works on predicting the quotient bit depending
on a few MSB bits of the divisor and partial remainder
followed by subtraction. The second functional iteration is

VOLUME 9, 2021

an approximation type of division. The best examples of
this class are the Newton—Raphson algorithm and the series
expansion algorithm. In the third, the look-up table stores a
logic of quotient bit selection or pre-computed values that
can be used in each iteration to detect the quotient bits in
that particular iteration. This can be used along with digit
recurrence or functional iterative algorithms. The fourth class
is variable latency, which has a basic requirement of variable
conversion time. One can design a division algorithm based
on the nature of any one of these classes or an interdepen-
dent nature for better efficiency in implementation. The area,
latency, and criticality of the quotient bit selection logic are
the main trade-off points.

Given the continued industrial growth and technological
improvement, there is a demand for achieving an efficient
trade-off between the area, latency time, and criticality of
the conversion logic. Operand pre-scaling and a high degree
of redundant sets in quotient bits are two techniques com-
monly used for reducing the latency time. In the case of a
radix-4 divider operand, pre-scaling can reduce the number
of bits selected from the partial remainder and divisor for
the quotient bit selection logic, which can improve the con-
version speed by reducing the latency time. Simple staging
(cascading), overlapping execution like overlapping quotient
selection, or overlapping partial remainder computation in
the execution of the SRT algorithm are also methods used
to reduce the latency time on account of the extra area
due to the extra hardware required for the implementation
of performance-improving techniques along with the SRT
algorithm. These requirements increase with the increase
of the radix-n number; thus, SRT algorithm implementation
is restricted to fewer than ten numbers. A very high radix
generally refers to an SRT algorithm that retires more than
10 bits in one iteration. The basic difference between the SRT
and high radix algorithm is the different logic of quotient bit
selection and multipliers’ number and width. An increase in
radix causes the use of a quotient bit selection logic table
that is impracticable in size, which ultimately affects the
cycle time. Approximation and pre-scaling techniques do not
require an extra multiplier.

Unlike the SRT algorithm, Svoboda gave an alternative
possibility to generate quotient bit selection logic based on
only a partial remainder. Thus the criticality of the quotient
bit selection logic gets reduced as compared to the SRT
algorithm. Although the generalized Svoboda algorithm gives
shorter quotient bit selection logic, it required normalized
and pre-scaled operands; otherwise, it utilizes extra two
multipliers causing more area and time. Later in the new
Svoboda-Tung algorithm developed with a signed digit num-
ber system which avoids overshoot due to compensation, by
implementing the alternative method of recoding two MSB’s
of the partial remainder with alternate consecutive positions
causing to follow and keep the partial remainder in bounded
condition. Svoboda —Tung algorithm is valid for radix more
than two, whereas the new Svoboda-Tung algorithm is valid
for generalized radix range. In the case of the functional

23059

IEEEACCGSS U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

TABLE 13. (a) Summary of different division algorithms.

Sr. No. Algorithm Equations Important Points
1 Long Division For J" iteration It is similar to a normal paper and pencil algorithm
Digit recurrence class

q;=0 if 2R, <D, Iterative subtraction is performed

q;=1 if 2Ry, =D, Only a single quotient bit is calculated in each iteration
Rj=2Rj_; —qj x D,

No requirement for a look-up table

The shift register, subtractor, multiplier for every iteration gives the
approximate area requirement for algorithm implementation

2 Restoring For J™ iteration It is similar to the long division algorithm
Simple logic for implementation
q =0 if R;<0 No requirement for a look-up table
Iterative subtraction is performed
q =1 if R']- >0 The non-redundant number system is used to write a quotient.
If the partial remainder value comes other than positive or zero, then the
R; =2Rj, ifg;=0 divisor is restored by the subtraction result performed in that iteration
R =R, ifq =1 It rgquires a fulljwith comparator ip each iteration., and subtractor, §hiﬁ
register, multiplier gives the approximate area requirement for algorithm
implementation

R = 2R, — D,
3 Non restoring For J™" iteration Similar to restoring algorithm and it does not require to restore the partial
remainder if subtraction goes negative

q=-1 if Ry, <0 No requirement for a look-up table

g=1 if R, =0 Operation in each iteration depends on the result of the previous iteration.

-1 Only one addition or subtraction can be performed in each iteration, so
separate hardware is required

R;=2R_, + D, ifg;

Rj=2Rj_; — D,ifq;= +1 Partial remainder kept between -Dr to +Dr and quotient digit -1 or 1

It requires a sign bit to decide whether to perform either addition or
subtraction; adder, subtractor, and shift register gives the approximate area
requirement for algorithm implementation

4 SRT For J™ iteration It is also non restoring algorithm based on radix-n

Named after Dura W. Sweeney, James E. Robertson, and Keith D. Tocher

q=1 if 2R, <-D, _ i _ i
For x bit, integer division requires k=x/b iterations, b= number of bits
. detected in each iteration
if -D, <2Rj; <D, . ferafion . —
n decides how many quotient bits are to be detected in each iteration; if
n=2, then one quotient bit is detected per iteration, radix—n is typically
selected as a power of base 2

q;=0

q=1 if 2R, =D,

1 Each quotient digit has a value from {-m, -m+1,,-1,0, I, .. m-1,
E(n—l)SmSn—l m}
The algorithm implements 2’s complement value of Dr instead of —Dr,
n=2" and k=% /b which indeed provides shifting over zeros to eliminate extra adder and
subtractor
L Needs extra subtractor to find out next partial remainder
= nJ
¢ Z an Error results due to few MSB's being used to predict quotient bits as in low
=1

radix, which decreases with the increase of radix

Requires quotient selection look-up table. Quotient select table plus carry-
save adder (CSA) gives the approximate area requirement for algorithm
implementation and shows the iteration time of accessing quotient select
table plus multiple form and subtraction

5 Very high radix Rk It is the same as the SRT algorithm, with the only difference is that it retires
more than ten quotient bits in one iteration; it requires a very large look-up
table with a big capacity for quotient selection logic

It uses multiplication to form divisor multiples

A look-up table is required for obtaining an initial approximation to
reciprocal and quotient digit selection logic

Differs from normal radix-n divider in terms of number and type of
operations used in each iteration and quotient digit selection logic

23060 VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

IEEE Access

TABLE 13. (Continued.)(b) Summary of different division algorithms.

6 Svoboda Algorithm

Quotient digit is predicted based on the partial remainder

And {L <D, < M} without considering divisor; one or two MSBs of the partial
Svoboda-Tung (m+1Dn-1) m—-1(m-1) remainder are used for generating quotient digit selection
Algorith logi

gorithm {-m/n—-1 < R < m/n— 1} ogic . — .

It can select quotient digit out of the radix range as an
Range = {0, %1,, tm} overflow occurred due to compensation

Boundry limit = (n/2 +1 <m <n—1) It requires pre-sgaled gperands and can work on

conventional and signed digit number range
Like the SRT algorithm, it is also a radix-n based algorithm
7 New Svoboda-Tung It records/re-stores the partial remainder's two most
Algorithm significant digits to overcome overflow due to

SBD={-1<m <1}

D,range ={0,1,.......,n — 1}

Boundry limit
= {—m/n -1 <Ry <m/n-— 1}

compensation

This arrangement allows for addition/subtraction with
carry propagation up to one left position

Rest the working is similar to that of the Svoboda-Tung
algorithm

Total conversion time is given as a collective time required
for scaling, recursion, conversion in terms of an initial
clock cycle, thus Tyiy = (Tscate + Trec + Teonv) * Tk

Quotient digit selection logic, one full word length fast
carry propagation adder, 2 full word length carry free
adder/subtractor, and 2 full word length latches gives the
approximate area requirement for algorithm
implementation depending on the selection of maximal or
minimal redundancy

The major drawback of this algorithm is high hardware
overhead

8 Look-up table

st sk ok ok ok

It stores the values, logic, numbers, quotients, etc., which
are useful to execute division

Look-up table class algorithm can be utilized along with
functional iterative class and high radix algorithms

Look-up tables are useful in initial approximation in the
case of SRT and functional iteration class algorithms.

A direct approximation, linear approximation, partial
product array, pre-computed values array, result, or
quotient cache are the common examples of look-up table
implementation in the division algorithm

9 Newton-Raphson

Q= Dg/Dr=px(q)7"

fX)=1/X—q1=0

f(X;)
Xiy1 = Xj _TXl-)
1
(1/Xi—q~Y) _
Xiv1 :Xi_#:)(i X (2—q7txX)

€n=€ (@)

It comes under the functional iteration class

Requires look-up table

It works on the estimation technique

It considers the convergence of quotient by estimation or
prediction

The final quotient is derived by multiplying approximated
reciprocal and dividend

Shows error due to inaccuracy of quotient digit prediction
or estimation

It requires multiplication and addition or subtraction at
each iteration

The accuracy can be improved by selecting a proper root at
the beginning

Latency and error in convergence are directly dependent on
the root selected at the beginning of the convergence and
shows the iteration time approximately equals to the time
required for two serial multiplication

Multiplier, quotient select look-up table, and control logic
gives the approximate area requirement for algorithm
implementation

VOLUME 9, 2021

23061

IEEEACCGSS U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

TABLE 13. (Continued.) (c) Summary of different division algorithms.

10 Series It comes under the functional iteration class and shows the possibility
Expansion gy) =glp)+y—pg'P to use pipeline or parallel architecture of hardware
-, ‘ — 4 4
+ 2 g"(p) + -+ [Series represents the root of the anti- divisor or reciprocal, which can

be used in the iterations for approximation

q= a/b =a xg(y) Each iteration performs prescaling dividend and divisor by series
approximation or rounding off and then performs series convergence

Multiplier, quotient select look-up table, and control logic gives the
approximate area requirement for algorithm implementation and
shows the iteration time approximately equals the time required for
multiplication or two multiplication in parallel

11 Variable Horkkdkk Variable execution time thus results in different conversion time for a
Latency different set of dividend and divisor

The DEC Alpha 21164 is one of the best examples of variable latency
class algorithm implementation, which is based on the concepts of the
simple normalizing non-restoring division algorithm

Self-timing, result cache, and speculation of quotient digit are some of
the techniques used for providing variable latency

12 Goldschmidt It is a convergence based functional iterative class divider algorithm
Dy/D, =N/D=A/B

It multiplies both dividend and divisor by anti-divisor or reciprocal

It originates from the Taylor-Maclaurin series of 1/(x + 1)

Xnpr = X (2 = V) = X1 It does not provide a remainder

I's complement can be used instead of (2 - y,) to avoid carry
propagation delay, but it adds a new approximation error in each
Yn+1 = (2 = V) = YT lteration

Quotient digit selection logic look-up table, one full word length
multiplier, and one full word length adder/subtractor logic gives the
approximate area requirement for algorithm implementation

13 Taylor It is also a multiplicative iteration based algorithm
Series

The precision depends upon the closeness with anti-divisor
q= Dy /D and X, = 1 /p (reciprf)cal) estimation . ' '

T T It provides a parallel powering section that computes high order terms
1+ (1-D,X,) + (1 —D,X,)? } faster with minimal extension to hardware overhead

q= DdXO{

+(1— D,X,)3 Quotient digit selection logic look-up table, and three full word length
multiplier gives the approximate area requirement for algorithm
implementation
14 Smaller onet It is the simplest parallel computing algorithm
Dividend onti - - - - - - ——
Ny = Z Xon+i2 The basic phenomenon behind this algorithm is to consider division
i=0 as a fraction
2n-1 It requires an actual dividend greater than the divisor, i.e., dividend
N, = Z x;2! bit count as 4n and divisor bit count as n
i=0 We can represent dividends in terms of fixed partitions based on
associated weights as per the dividers' radix
Dy =N, +N, grsasp

The area is directly dependent on the number of dividend partitions
Dq/D, = (N; + N,)/Dy = Ny /D, + N /D, | related to the dividers' radix

15 Jebelean . It is applicable when completed division is performed on long integer
Exact Da=d"Q operands in digital computation even after knowing that the remainder
Division Dy = Dgypien + D will be zero

It works from the least significant digit of the operands
b = (=n"*Dyg) moda

. Remarkable performance is observed when radix is prime or power of
by = (=Mumoa aDar) moaa 2

It takes constant execution time to access a fixed word length look-up
table

It takes O(log n) execution time, and for short division, O(n/p +
log p), where n is the word length of dividend and p is the number of
processors

23062 VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

IEEE Access

TABLE 14. (a) Comparison table.

division algorithm

(MSB)

Less complex conversion method

Check for overflow is required

No extra test is required when
dividend is less than divisor

Execution is slower as it requires
restoration of remainder in each
iteration

The remainder and quotient values
remain either positive or zero

Requires separate registers for partial
remainder in each iteration

The divisor is added back to result of
division when divisor subtraction
produces a negative result in iteration

Requires full width comparison at
every iteration to get one bit of
quotient

To perform division it requires to have
positive dividend and divisors

Quotient needed to be rearranged to
get actual quotient

required and subtraction

Long Simple and similar to paper and pencil Only one quotient bit can be detected For x bit dividend x shifts are X Area utilization of implementation
Division algorithm in each iteration required and subtraction where x is the number of bits | is dependent on the size of
in input operands operands as the number of
Simplest conversion logic Special test condition is required to subtractive iteration depends on
check if dividend is greater than divisor and dividend size. One
divisor. Possibility of loss of most iteration area utilization is
significant bit causing error approximately equal to the area
No look-up table required Area and latency inefficient req.uued to implement shift
register, subtractor, and
Remainder is not required after last The comparison to determined qi comparator
iteration so avoids final subtraction before subtraction to determine new
partial remainder
Restoring Simple implementation similar to long Possible loss of most significant bit For x bit dividend x shifts are Area utilization of implementation

X
where x is the number of bits
in input operands

is approximately equaled to the
area required to implement
subtractor, shift register,
multiplier, and comparator

Non restoring

Doesn’t restore partial remainder

Requires extra bit to be added with

Need to check only sign bit of partial
remainder

partial to have a track on
sign

Quotient is the actual quotient that we
required

Can be improved by replacing
subtraction by adding 2's complement

Requires separate adder and subtractor
in each iteration

For x bit dividend x shifts are
required and subtraction /
addition

X
where x is the number of bits
in input operands

Area utilization of implementation
is approximately equaled to the
area required to implement adder,
subtractor, and shift register

GPU or MIC

Remarkable performance is observed
when radix is prime or power of 2. It takes
constant execution time to access the
fixed word length look-up table

Borrow calculation in parallel is
challenging and critical, which needs to
follow synchronization requirements

Very high Reduces iteration and thus latency High radix makes quotient selection Approximatly time required to {[Z] + Scal e} Area utilization of implementation

radix logic more complex and impractical to access quotient select table, n is approximately equaled to the
implement multiple form, and subtraction | Where X is the number of area required to implement
Demand to use very large look up bits in input operands quotient select table and carry-
tables save adder (CSA)

Goldschmidt It is a convergence based functional | The algorithm's main drawback is that it [Approximatly time {[lo f] + 1} 42 Area utilization of implementation
iterative class divider algorithm; It | does not yield a remainder, limiting its | required to access 82 j mul is approximately equaled to the
provides quadratic convergence for anti- | application only for the floating-point | quotient select table if tpy > 1 area required to implement one full
divisor and division operation implementation three multipliers, and word length multiplier, adders, and
It multiplies both dividend and divisor by | As it requires multipliers, which are fast | tWo adders {2 [logz f] + 3} quotient select table; Approximate
anti-divisor or reciprocal but larger in area o area depends on the architecture
It originates from the Taylor-Maclaurin | 1's complement can be used instead of (2 if toa =1 consu_lcr‘cdvlo‘ use a r_nu!upl_mr, e

es of 1/(x + 1 ~ 4 id tion delay, but three in series or one in sharing, i.e.,
series of 1/(x +1) = Yn) t0 avoid carry propagation delay, bu and approximately 16-18 reuse
it adds a new approximation error in each syele
iteration cyeles
It can imply fast multiply schemes than | The floating-point multiplier can be
carry propagate adders shared between iterative — multiply
Duc to two parallel multipliers, it can | OPerations to reduce area but results in
provide more parallelism than other | long latency, and subs.equenl operation
functional iterative algorithms can’t be started until the previous
operation ends

Taylor The precision depends upon the closeness | As it requires multipliers that are fast but | Approximatly time 8-12 cycles Area utilization of implementation

Series with anti-divisor (reciprocal) estimation | larger in area required to access one is approximately equaled to the
It provides a parallel powering section | Precision depends on the closeness with 1°°kj“9 [f‘blev three area required to implement quotient
like squaring and cubing section that | initial approximation as it requires to take | Multiplication and select table and three full word
computes high order terms faster with | several iterations to reach the required | three adder/subtraction length multipliers
minimal extension to hard overhead | precisi

Svoboda Quotient digit is predicted based on the | It can select the quotient digit out of the | Ty, = (Tseqre + FhERE Area utilization of implementation

and partial remainder without considering | radix quotient digit range as an overflow | Ter + Teony) * Tk is approximately equaled to the

Svoboda- divisor. One or two MSBs of the partial | occurred due to compensation area required to implement quotient

Tung remainder are used for generating select table, 1 full word length fast
quotient digit selection logic carry propagation adder, 2 full
It requires pre-scaled operands and can | If input operands are not pre-scaled, then word length carry free
work on conventional and signed digit | it requires two extra multipliers adder/subtractor +2 full - word
number range It is applicable more than radix 4 length latches

New It is similar to that of the Svoboda and | Pre-scaled operands are required else; it | Ty, Fokdkkx Area requirement is appriximaly

Svoboda- Svoboda-Tung algorithm, except it | needs extra multipliers resulting in more w area required by LUT, 1 full word

Tung overcomes the overflow problem due to | hardware overhead = (3+ (7) length fast carry propagation adder,

p i It uses two w 2 full word length carry free adder
consecutive MSB's of the partial + TC""") * (22 + T) /subtractor, and 2 full word length
remainder latches

Jebelean It works from the least significant digit of | It is applicable for exact division, | O(log n)and O(n/p + Hkk ok Depends on GPU or MIC

Exact the operands, making it more suitable for | knowing that the remainder will be zero | logp) for short architecture

Division parallel architecture implementation like division

VOLUME 9, 2021

23063

IEEE Access

U. S. Patankar, A.

Koel: Review of Basic Classes of Dividers Based on Division Algorithm

TABLE 14. (Continued.) (b) and (c) Comparison table.

SRT It produces a fixed bit of quotient in The choice of selecting higher quotient bits causes | Approximatly {[f] + Scale} Area utilization of
each iteration complexity in quotient selection logic time required to n implementation is
access quotient . . approximately
It is an improvement over a non- Higher radix implementation is difficult due to | select table, | where x is the .number .ot bits in input | equaled to the area
restoring algorithm impractical multiples of the divisor multiple form, | operands and n is the radix required to
Doesn’t require a separate adder and To overcome these problem requires the use of pre- | and subtraction implement ~ quotient
subtractor, unlike a non-restoring scaling and prediction method which increases overhead select table and
algorithm carry-save adder
Determines more than one quotient Needs to convert the last remainder to conventional (CSA)
bit representation to find out sign bit
Reduce latency time by increasing Rounding provisions are required, generally performed
radix by computing an extra digit, i.e., guard digit in quotient
and examining it in the final remainder
Need to normalize divisor prior to starting division
requires extra hardware
It requires extra multipliers for high radix-n stages,
causing increased access time and increases the criticality
and size of a look-up table
Quotient correction stage selection is dependent on the
sign bit
Newton- It can select any one root of priming Use of 1's complement includes more error Approximatly x Area utilization of
. . . . 2llog—[+1¢ tuy + 1 ‘ X X
Raphson function from available roots time required to bi implementation s
— access two serial i
3 contains WO . . approximately
Eacllll_ 1ll§ra:{un ‘t,un(tiam;ltwof multiplication and | where x is the number of bits in input equaled to the area
multiplications and sublraction subtraction operands and j is the number of bits of qua’ d 4
Subtraction can be performed as 2's accuracy from initial approximation and requlre . o
complement t_mul is the latency of multiplier fused implement ~ quotient
- adder unit select table, one
It can also use 1 ﬁc?mplelnent to multiplier, and
reduce area and timing .
control logic
Series Series represents the root of the anti- Iteration operations are independent; error in one | Approximatly 1 x : Area utilization of
. . . . B L) . N . N 0gy —| + 1t tyuy + 2 if by > 1 : N)
expansion | divisor or reciprocal, which can be iteration is not self-corrected in the next iteration time required to Jj implementation ~ is
used in. the ilcrations for pcrlfo_rrlr_| one-two . approximately
approximation multiplication {2 [logzj—,] + 3} if tpy =1 equaled to the area
Each iteration performs prescaling Shows rounding error in multiplications sums through ‘requlred i to
dividend and divisor by series the iterations where x is the number of bits in input implement quotient
approximation or rounding off and operands and j is the number of bits of | select table, one to
then performs series convergence accuracy from initial approximation and | two multiplier, and
t_mul is the latency of multiplier fused ic
First, prescale dividend and divisor Requires wide bit size multiplier adder unit Y P control logic
by initial approximation followed by
direct convergence to the quotient

iteration algorithm, the quotient convergence is quadratic,
which works on the initial approximation. In the Newton—
Raphson algorithm, which shows the result in the product
term of dividend and reciprocal, the reciprocal depends on the
selection of the priming function, which points out its root
at the reciprocal or anti-divisor, which generally has many
values.

Based on which root is selected, quotient convergence
accuracy will vary, causing an error in the division and gen-
erating overhead if the root selected is over the true quotient.
It means that the multiplication is dependent and must be per-
formed sequentially. In series expansion, iteration performs
pre-scaling of the dividend and divisor by series approxima-
tion or rounding off and then performs series convergence;
thus, the multiplication can be implemented in parallel. The
functional iteration algorithm does not provide the final
remainder at the last iteration. In the variable latency class,
self-timing, result cache, and quotient digit speculation tech-
niques have been used to provide reduced average latency.
A reciprocal cache can be utilized effectively along with a
functional iterative algorithm to reduce the time required for
initial approximation. An additional area will be required for
implementing a reciprocal cache, but it will be less than that

23064

required for the initial approximation look-up table. The self-
timing technique requires the use of switching techniques,
which can clock the circuit synchronously with the other
components of the algorithm along with test checking to con-
firm correct operation. The division algorithm can be imple-
mented in three hardware architectures: serial, pipelined, and
parallel. Serial and pipelined architecture implementation of
the division algorithm is comparatively slower than parallel
implementation but more area efficient than parallel imple-
mentation. Synchronization of various divider units is the
main problem associated with parallel architecture, which can
be critical due to the sluggish behavior of hardware compo-
nents used in a parallel architecture over time. The general-
ized application like CPU, FPGA, ASIC serial, and pipeline
dividers are prone to be used due to their less area and control-
ling requirements, whereas critical applications like Graphics
Processing Unit (GPU) and Many Integrated Cores (MIC)
require the fastest implementation of dividers, so parallel
dividers are preferred over serial and pipelined dividers.
Table 13 (A), Table 13 (B), and Table 13 (C) give a sum-
mary of the different division algorithms. Table 14 (A) and
Table 14 (B) illustrates a summary of the comparative study
considering the approximate iteration time, latency, and area.

VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

IEEE Access

XI. CONCLUSION
The division is the most complex basic arithmetic operation,
and efforts have been made to improve its implementation
in digital circuits, computer systems, and embedded sys-
tems by optimizing the area, hardware resources needed,
or latency cycles. Generally, improvement in one of those
aspects worsens the others; thus, one must select a particular
technique based on the specific application requirements,
which gives room for continuing research on developing an
algorithm for division operations suitable for new generation
application requirements. For the implementation of division
operations in the area concerning portable programmable
devices, FPGAs are vital because of the emerging applica-
tions in which these devices are used to implement some
critical system-on-chip application or improve the existing
application, and the results of indirect division operation
are not sufficient. As explained in the article, restoring and
some non-restoring algorithms implement simple conversion
logic but require a long time and large area. Although the
conversion logic is simple, it does not suit high-frequency
applications due to latency problems. Also, in the case of
sensor nodes, portable devices of the IoT, where the area is
of major concern, it fails due to the large area requirements
for implementing these algorithms. However, restoring and
non-restoring algorithms are the main point of study for
developing new algorithms to perform division operations
theoretically and electronically. The radix-based SRT divi-
sion algorithm is one of the most implemented non-restoring
algorithms. Although the SRT algorithm was the first choice
for commercial implementation in the majority of soft and
modern processors like Intel’s Pentium processor, FPGAs
controllers, and ALU units of complex hardware, it is
restricted to certain low radix values, especially less than
10. Radix-2 and radix-4 are the most implementable formats
of the SRT algorithm. The main reasons for restricting SRT
algorithm implementation to certain low radix values are the
increase in the quotient selection logic’s criticality and the
enormous increase in area requirements for storing look-up
tables for this logic. This causes it to fail to follow the
execution cycle, which is considered as two cycles. Whereas
low radix implementation provides low area requirements
and possibly follows very tight conditions of execution cycle
time, its major drawback is the higher latency, which depends
on the number of bits discovered in every iteration; in low
radix implementation, this is restricted to one or two quotient
bits per iteration. Therefore, to reduce division latency, more
bits need to be retired in every cycle. However, directly
increasing the radix can improve the cycle time at the cost
of increasing the complexity of divisor multiplier formations.
The alternative is a pipelined structure or two-stage lower
radix stages combined to form higher radix dividers by simple
staging or possibly overlapping one or both the quotient
selection logic and partial remainder computation hardware.
Svoboda algorithm is also another radix based divider algo-
rithm. The quotient bit is generated in the Svoboda algorithm

VOLUME 9, 2021

based on the only partial remainder, unlike the SRT algo-
rithm. The quotient bit selection logic is based on partial
remainder and divisor. Although the Svoboda algorithm uses
the only partial remainder for quotient bit selection logic,
it requires normalized and pre-scaled operands. If not, then it
requires an extra two multipliers causing more area and time
requirement. The pre-scaled divisor needs to be in a certain
range near to 1. Thus, it can be represented as (1+e;), where e;
is a small positive fractional value e; < 1 / nand n is the radix.
In each iteration, if gj results in —ve, it indicates overshooting,
to compensate overshooting by adding/subtracting e, and
performing right shift operation by j-1 places depending on
the last step was subtraction/addition. A new Svoboda-Tung
algorithm is presented with a sign digit range to overcome
the Svoboda algorithm’s limitations. The major drawback of
the new Svoboda-Tung algorithm is that it generates a direct
quotient value, but the final remainder should be calculated
by scaling partial remainder with the same factor as the
operands. Thus it restricts its use with applications where the
unscaled remainder is a must.

All these radix base alternatives lead to an increase in the
area, conversion complexity, and potentially the cycle time.
In contrast, the functional iterative class offers an alternative
to the SRT algorithm. It computes the quotient bit based on
estimation or approximation of series expansion functions
like Neuton-Rapson Goldschmidt, Taylor series, etc. It uti-
lizes multiplication instead of subtraction operations, which
ultimately reduces the number of iterations and can generate
multiple quotient digits in one iteration with low latency. The
use of multiplication for functional iteration dividers makes
it more complex than simple digit recurrence dividers. This
type of divider has a major drawback of the quotient bit’s
inaccuracy because of direct rounding off of the approximate
solution values rather than infinitely precise values. The error
depends on the accuracy of the initial estimation. In the
Newton—Raphson iteration, which is limited to two multipli-
cations and must proceed in series, a large error is generated.
Reducing the error requires the introduction of a trade-off
between the additional chip area for the look-up table and
the latency of the divider. The series expansion provides
relatively lower latency. The area-focused implementation
refers to shared multipliers and creates an additional enmity
for the multiplier, which can be overcome by an additional
multiplier, causing an area increase. Goldschmidt algorithm
is another functional iterative divider that multiplies both
dividend and divisor by anti-divisor, whereas in Neuton-
Rapson, it multiplies only with the dividend. This algorithm’s
major drawback is that it does not provide the remainder,
making it useful only for the floating-point division [109].
First multiplication required for finding out values of x,,, and
v, requires full precision. Another drawback, 1’s complement
can be used instead of (2 - y,) to avoid carry propagation
delay, but it adds a new approximation error in each iteration.
In Taylor series dividers, Taylor series expansion calculates
accurate anti-divisor (reciprocal) to reduce the error in the

23065

IEEE Access

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

least important bits of quotient precision with a parallel pow-
ering section that computes high-order terms caused extra
hardware overhead causing area increase.

Variable latency class dividers are very rare due to their
complexity and area constraints. Some techniques like radix-
n, functional iteration, and variable latency require extra
storage for look-up tables, and the high radix reduces the
latency but requires a large capacity look-up table, which is
impractical for implementation. The look-up table requires
storage like ROM, which increases the area requirements
for implementation. Optimized area and hardware resources
are needed, or the latency cycles need to be interrelated.
There are three possibilities of the hardware architecture that
can be used for dividers implementation. Serial hardware
architecture, generally maximum division algorithms, pro-
cesses sequentially, so it is best suited for implementation.
However, the sequential implementation provides less area
and easy logic for implementation but requires higher latency
and conversion time, making it infelicitous for highly critical
applications. The parallel hardware architecture is contrasting
with serial architecture. Parallel architecture has several same
element configuration devices or cores connected in parallel,
simultaneously operating, causing a reduction in latency and
execution time. As it requires multiple cores to work together
simultaneously, it makes critical synchronization and high
area requirements, leading to increased implementation cost.
Thus parallel architecture implementation is costlier, making
it unique for critical applications like graphics processing
units (GPU). A pipelined architecture is the best choice for
achieving parallelism in sequential architecture with parallel
processing. Some or all processes of division algorithms can
be pipelined to achieve partial parallel processing. GPU and
MIC have an advantage of parallel architecture for achieving
low latency and execution time on account of the high area
and complex controlling logic. As the division algorithm’s
initial nature is sequential, GPU and MIC require developing
a complex controlling logic to ensure parallelism require-
ments. In Jebelean exact division algorithm, we have an
experience that the simultaneous borrow calculation is quite
critical, and in Takahashi’s algorithm, the remainder is exe-
cuted sequentially, and if the remainder could get parallelly,
then the final quotient could get in parallel. Thus Takahashi
uses a parallel cyclic reduction method to solve the remainder
recurrence. Division algorithm implementation on parallel
architecture can cost large hardware overhead due to the use
of multiple cores in parallel, which ultimately leads to high
implementation cost but quicker execution.

On the contrary, the CPU incorporates sequential or
pipelined architecture to imply division algorithms with less
complexity and hardware overhead on account of latency
and execution time, which can be improved to some extent
by using variable latency division algorithms. Thus the use
of CPU based implementation is very useful and suitable
for general purpose and dedicated embedded applications,
an ASIC or FPGA based applications where the area is more
concerned. On the other hand, applications with a high-speed

23066

response as the first priority and area as a second prior-
ity can use GPU and MIC implementation like graphics
processing, biomedical applications, artificial intelligence,
research applications, etc. The use of architecture is not
limited or restricted to a particular application. Maximum
division algorithms can be implemented by serial, parallel,
or pipelined architecture depending on cost, area, and com-
plexity suitability with the application. Generally, improve-
ment in one of those aspects worsens the others; thus, one has
to select a particular algorithm based on the specific applica-
tion requirements. This opens the possibility of developing a
new technique or combination of techniques, which are fast
in operation and area-efficient.

XiIl. FUTUR WORK

Based on the review, it is found out that the digit recurrence
division algorithm is most likely preferred for implemen-
tation in different applications considering its ease in con-
version logic and considerable area and latency constraints.
Area and latency constraints are very important for embedded
systems and ASIC design, where fast action in a considerably
less area is of great importance. We put efforts into developing
a new digit recurrence algorithm, which has simple conver-
sion logic and benefits in the area and variable conversion
time constraints of the divider circuit. The target for future
works

1. To improve the basic idea of a new algorithm by stan-
dardising algorithm steps to achieve area and timing
improvements.

2. Floorplanning and circuit implementation using mul-
tiple logic families for delay and power consumption
comparison.

3. Utilizing a new circuit in different applications to verify
results.

ACKNOWLEDGMENT

A preliminary patent is applied in Estonia based on the
research work of developing a new algorithm for division.
Application no-70390 date-June 2020.

REFERENCES

[1] Merriam-Webster Dictionary. Accessed: Jul. 2020. [Online]. Available:
https://www.merriam-webster.com/dictionary/mathematics

[2] Cambridge Dictionary by Cambridge University Press. Accessed:
Jul. 2020. [Online]. Available: https://dictionary.cambridge.org/
dictionary/english/mathematics

[3] R.K. L. Trummer, “A high-performance data-dependent hardware inte-
ger divider,” M.S. thesis, Inst. Comput. Sci. Syst. Anal., Paris Lodron
Univ., Salzburg, Austria, May 2005.

[4] D. G. Bailey, “Space efficient division on FPGAs,” in Proc. Electron.
New Zealand Conf., 2006, pp. 206-211.

[51 J. Kumari and M. Y. Yasin, “Design and Soft Implementation of N-bit

SRT Divider on FPGA through VHDL,” Int. J. Innov. Eng., Sci. Manage.,

vol. 3, no. 4, pp. 13-19, Apr. 2015.

K. Narendra, S. Ahmed, S. Kumar, and G. H. Asha, “FPGA implemen-

tation of fixed point integer divider using iterative array structure,” Int.

J. Eng., Tech. Res., vol. 3, no. 4, pp. 170-179, Apr. 2015.

[7]1 E.Matthews, A. Lu, Z. Fang, and L. Shannon, “‘Rethinking integer divider
design for FPGA-based soft-processors,” in Proc. IEEE 27th Annu.
Int. Symp. Field-Program. Custom Comput. Mach. (FCCM), Apr. 2019,
pp. 289-297, doi: 10.1109/FCCM.2019.00046.

[6

VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

IEEE Access

[8]

91

[10]

[11]
[12]
[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

K. Tatas, D. J. Soudris, D. Siomos, M. Dasygenis, and A. Thanailakis,
“A novel division algorithm for parallel and sequential processing,”
in Proc. 9th Int. Conf. Electron., Circuits, Syst., Dubrovnik, Croatia,
Sep. 2002, pp-553-556.

K. D. Tocher, “Techniques of multiplication and division for auto-
matic binary computers,” Quart. J. Mech. Appl. Math., vol. 11, no. 3,
pp. 364-384, 1958.

H. Asai, “A recursive radix conversion formula and its application
to multiplication and division,” Comput. Math. with Appl., vol. 2,
nos. 3—4, pp. 255-265, 1976.

N. Sorokin, “Implementation of high-speed fixed-point dividers on
FPGA,” J. Comput. Sci. Technol., vol. 6, no. 1, pp. 8—11, Apr. 2006.

A. Kaplan, Math on Call: A Mathematics Handbook. Wilmington, MA,
USA: Great Source Education Group, 2004.

T. Bassarear and M. Moss, Mathematics for Elementary School Teachers,
4th ed. Independence, KY, USA: Cengage Learning, 2008.

S. F. Obermann and M. J. Flynn, “Division algorithms and implementa-
tions,” IEEE Trans. Comput., vol. 46, no. 8, pp. 833-854, Aug. 1997.

S. Dixit and M. Nadeem, “FPGA accomplishment of a 16-bit divider,”
Imperial J. Interdiscipl. Res., vol. 3, no. 2, pp. 140-143, 2017.

M. F. Kasim, T. Adiono, M. F. Zakiy, and M. Fahreza, “FPGA implemen-
tation of fixed-point divider using pre-computed values,” in Proc. Tech-
nol., vol. 11, Jun. 2013, pp. 206-211, doi: 10.1016/j.protcy.2013.12.182.
G. Sutter, G. Biol, and J.-P. Deschamps, “Comparative study of SRT-
dividers in FPGA,” in Field Programmable Logic and Application (Lec-
ture Notes in Computer Science), vol. 3203, J. Becker, M. Platzner, and
S. Vernalde, Eds. Berlin, Germany: Springer, 2004, pp. 209-220.

R. S. Hongal and D. J. Anita, “Comparative studyof different division
algorithms for fixed and floating point arithmetic unit for embedded
applications,” Int. J. Comput. Sci. Eng., vol. 4, no. 9, pp. 48-54, 2016.
S. Kaur, M. Singh, and R. Agarwal, “VHDL implementation of non-
restoring division algorithm using high-speed adder/subtractor,” Int.
J. Adv. Res. Electr., Electron. Instrum. Eng., vol. 2, no. 7, pp. 3317-3324,
Jul. 2013.

N. Boullis and A. Tisserand, ““On digit-recurrence division algorithms for
self-timed circuits,” INRIA-Institut Nat. De Recherche En Informatique
Et En Automatique, France, Tech. Rep. RR-4221, Jul. 2001.

J. E. Robertson, “A new class of digital division methods,” IRE Trans.
Electron. Comput., vol. 7, no. 3, pp. 218-222, Sep. 1958.

D. Wong and M. Flynn, “Fast division using accurate quotient approx-
imations to reduce the number of iterations,” IEEE Trans. Comput.,
vol. 41, no. 8, pp. 981-995, Aug. 1992.

S. F. Oberman and M. J. Flynn, “Design issues in division and
other floating-point operations,” IEEE Trans. Comput., vol. 46, no. 2,
pp. 154-161, Feb. 1997.

S. F. Anderson, J. G. Earle, R. E. Goldschmidt, and D. M. Powers,
“The IBM System/360 model 91: Floating-point execution unit,” /BM
J. Res. Develop., vol. 11, no. 1, pp. 34-53, Jan. 1967.

D. L. Fowler and J. E. Smith, “An accurate, high speed implementation of
division by reciprocal approximation,” in Proc. 9th IEEE Symp. Comput.
Arithmetic, Sep. 1989, pp. 60—67.

X. Fang and M. Leeser, “Open-source variable-precision floating-point
library for major commercial FPGAs,” ACM Trans. Reconfigurable Tech-
nol. Syst., vol. 9, no. 3, p. 20, Jul. 2016, doi: 10.1145/2851507.

Xilinx Inc. MicroBlaze Processor Reference Guide. Accessed:
Aug. 2020. [Online]. Available: https:/xilinx.com/support/documentation/
swmanuals/xilinx20164/ug984-vivado-microblaze-ref.pdf

Intel Corp. Nios II Gen2 Processor Reference Guide. Accessed:
Aug. 2020. [Online]. Available: https:/altera.com/en US/pdfs/literature/
hb/nios2/n2cpu-niiSv1gen2.pdf

GRLIB IP Core User’s Manual, Cobham Gaisler AB. Accessed:
Aug. 2020. [Online]. Available: https://gaisler.com/products/grlib/grip.
pdf

J. Liu, M. Chang, and C.-K. Cheng, “An iterative division algorithm
for FPGAs,” in Proc. Int. Symp. Field Program. Gate Arrays (FPGA),
Monterey, CA, USA, 2006, pp. 83-89.

A. A. Varghese, C. Pradeep, M. E. Eapen, and R. Radhakrishnan,
“FPGA implementation of area-efficient IEEE 754 complex divider,”
in Proc. Technol., vol. 24, 2016, pp. 1120-1126, doi: 10.1016/j.
protcy.2016.05.245.

D. L. Harris, S. F. Oberman, and M. A. Horowitz, “SRT divi-
sion architectures and implementations,” in Proc. 13th IEEE Symp.
Comput. Arithmetic, Asilomar, CA, USA, Jul. 1997, pp. 18-25, doi:
10.1109/ARITH.1997.614875.

VOLUME 9, 2021

[351

[36]

[39]

[40]

[41]

[42]

43

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[551

[56]

Sumiksha, P. Konda, and S. Shetty, “Computation of SRT and CORDIC
division algorithms,” IOSR J. Electron. Commun. Eng., vol. 12, no. 4,
pp. 53-56, July./Aug. 2017.

S. Oberman, “Design issues in high-performance floating-point arith-
metic units,” Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Stanford
Univ., Stanford, CA, USA, Nov. 1996.

M. D. Ercegovac and T. Lang, “Simple radix-4 division with operands
scaling,” IEEE Trans. Comput., vol. 39, no. 9, pp. 1204-1208, Sep. 1990.
J. Fandrianto, “Algorithm for high speed shared radix 8 division and
radix 8 square root,” in Proc. 9th Symp. Comput. Arithmetic, Jul. 1989,
pp. 68-75.

S. E. McQuillan, J. V. McCanny, and R. Hamill, “New algorithms and
VLSI architectures for SRT division and square root,” in Proc. IEEE 11th
Symp. Comput. Arithmetic, Jul. 1993, pp. 80-86.

P. Montuschi and L. Ciminiera, “Reducing iteration time when result digit
is zero for radix 2 SRT division and square root with redundant remain-
ders,” IEEE Trans. Comput., vol. 42, no. 2, pp. 239-246, Feb. 1993.

P. Montuschi and L. Ciminiera, “Over-redundant digit sets and the design
of digit-by-digit division units,” IEEE Trans. Comput., vol. 43, no. 3,
pp. 269-277, Mar. 1994.

P. Montuschi and L. Ciminiera, “Radix-8 division with over-redundant
digit set,” J. VLSI Signal Process., vol. 7, no. 3, pp. 259-270, May 1994.
N. Quach and M. Flynn, “A radix-64 floating-point divider,” Comput.
Syst. Lab., Stanford Univ., Stanford, CA, USA, Tech. Rep. CSL-TR-92-
529, Jun. 1992.

H. R. Srinivas and K. K. Parhi, “A fast radix-4 division algorithm and
its architecture,” IEEE Trans. Comput., vol. 44, no. 6, pp. 826-831,
Jun. 1995.

G. S. Taylor, “Radix 16 SRT dividers with overlapped quotient selec-
tion stages,” in Proc. 7th IEEE Symp. Comput. Arithmetic, Jun. 1985,
pp. 64-71.

T. E. Williams and M. A. Horowitz, “A zero-overhead self-timed 160-
ns 54-b CMOS divider,” IEEE J. Solid-State Circuits, vol. 26, no. 11,
pp. 1651-1661, Nov. 1991.

T. Lang and A. Nannarelli, “A radix-10 digit-recurrence division unit:
Algorithm and architecture,” [EEE Trans. Comput., vol. 56, no. 6,
pp. 727-739, Jun. 2007.

D. Das Sarma and D. W. Matula, “‘Faithful bipartite ROM reciprocal
tables,” in Proc. 12th Symp. Comput. Arithmetic, Jul. 1995, pp. 12-25.
M. P. Vestias and H. C. Neto, “Revisiting the Newton-Raphson iterative
method for decimal division,” in Proc. 21st Int. Conf. Field Program. Log.
Appl., Sep. 2011, pp. 138-143.

P. Saha, D. Kumar, P. Bhattacharyya, and A. Dandapat, *“Vedic division
methodology for high-speed very large scale integration applications,”
J. Eng., vol. 2014, no. 2, pp. 51-59, Feb. 2014.

P. Bannon and J. Keller, “Internal architecture of Alpha 21164 micropro-
cessor,” in Dig. Papers OMPCON Technol. Inf. Superhighway, vol. 95,
Mar. 1995, pp. 79-87.

S. E. Richardson, “Exploiting trivial and redundant computation,”
in Proc. IEEE 11th Symp. Comput. Arithmetic, Jul. 1993,
pp. 220-227.

J. Cortadella and T. Lang, “High-radix division and square-root with
speculation,” IEEE Trans. Comput., vol. 43, no. 8, pp.919-931,
Aug. 1994.

K. Huang and Y. Chen, “Improving performance of floating point divi-
sion on GPU and MIC,” in Proc. 15th Int. Conf. Algorithms Archit. Par-
allel Process., Zhangjiajie, China, 2015, pp. 691-703, doi: 10.1007/978-
3-319-27122-4_48.

X. Fang and M. Leeser, “Vendor agnostic, high performance, double
precision floating point division for FPGAs,” in Proc. IEEE High Per-
form. Extreme Comput. Conf. (HPEC), Sep. 2013, pp. 1-5, doi: 10.
1109/HPEC.2013.6670335.

W. Liu and A. Nannarelli, “Power dissipation challenges in multi-
core floating-point units,” in Proc. ASAP-21st IEEE Int. Conf. Appl.-
Specific Syst., Archit. Processors, Jul. 2010, pp.257-264, doi: 10.
1109/ASAP.2010.5540986.

A. Thall, “Extended-precision floating-point numbers for GPU compu-
tation,” in Proc. Special Interest Group Comput. Graph. Interact. Techn.
Conf., Boston MA, USA, Jul. 2006, p. 52.

M. Qasaimeh, K. Denolfy, J. Loy, K. Vissersy, J. Zambreno, and
P. H. Jones, “Comparing energy efficiency of CPU, GPU and FPGA
implementations for vision kernels,”” in Proc. Int. Conf. Embedded Softw.
Syst. (ICESS), Jun. 2019, pp. 1-8.

23067

IEEE Access

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[791

23068

K. Jun, “Modified non-restoring division algorithm with improved delay
profile,” M.S. thesis, Fac. Graduate, School Univ. Texas Austin, Austin,
TX, USA, 2011.

S. F. Oberman and M. J. Flynn, “An analysis of division algorithms
and implementations,” Comput. Syst. Lab., Dept. Elect. Eng. Comput.
Sci., Stanford Univ., Stanford, CA, USA, Tech. Rep. CSL-TR-95-675,
Jul. 1995.

J.-S. Chiang, H.-D. Chung, and M.-S. Tsai, “Carry-free radix-2 sub-
tractive division algorithm and implementation of the divider,” Tamkang
J. Sci. Eng., vol. 3, no. 4, pp. 249-255, 2000.

N. Burgess and T. Williams, “Choices of operand truncation in the SRT
division algorithm,” IEEE Trans. Comput., vol. 44, no. 7, pp. 933-938,
Jul. 1995.

B. Mehta, J. Talukdar, and S. Gajjar, “High speed SRT divider for
intelligent embedded system,” in Proc. Int. Conf. Soft Comput. Eng. Appl.
(icSoftComp), Dec. 2017, pp. 1-5.

D. M. Russinoff, “Computation and formal verification of SRT quotient
and square root digit selection tables,” IEEE Trans. Comput., vol. 62,
no. 5, pp. 900-913, May 2013.

W. Liu and A. Nannarelli, “Power efficient division and square
root unit,” IEEE Trans. Comput., vol. 61, no. 8, pp.1059-1070,
Aug. 2012.

A. Nannarelli, “‘Performance/power space exploration for binary64 divi-
sion units,” [EEE Trans. Comput., vol. 65, no. 5, pp. 1671-1677,
May 2016.

R. E. Bryant, “Bit-level analysis of an SRT divider circuit,” in
Proc. 33rd Design Automat. Conf., Las Vegas, NV, USA, 1996,
pp. 661-665.

S. F. Oberman and M. J. Flynn, “Minimizing the complexity of SRT
tables,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 6, no. 1,
pp. 141-149, Mar. 1998.

T. M. Carter and J. E. Robertson, “Radix-16 signed-digit division,” /EEE
Trans. Comput., vol. 39, no. 12, pp. 1424-1433, Dec. 1990.

D. E. Atkins, “Higher-radix division using estimates of the divisor
and partial remainders,” IEEE Trans. Comput., vol. C-17, no. 10,
pp- 925-934, Oct. 1968.

R. Trummer, P. Zinterhof, and R. Trobec, “A high-performance data-
dependent hardware divider,” in Systems and Simulation, Parallel Numer-
ics. Ljubljana, Slovenia: Salzburg Univ.; Ljubljana JoZef Stefan Institute,
2005, ch. 7, pp. 193-206.

R. Erra, “Implementation of a hardware algorithm for integer division,”
M.S. thesis, Elect. Eng., Fac. Graduate College Oklahoma State Univ.,
Payne County, OK, USA, Aug. 2019.

I. Rust and T. G. Noll, “A digit-set-interleaved radix-8 division/square
root kernel for double-precision floating point,” in Proc. Int.
Symp. Syst. Chip, Tampere, Finland, Sep. 2010, pp. 150-153, doi:
10.1109/ISSOC.2010.5625547.

S. Knowles, ‘““Arithmetic processor design for the T9000 transputer,”
Proc. SPIE, vol. 1566, pp. 230-243, Dec. 1991.

A. Pineiro, J. D. Bruguera, F. Lamberti, and P. Montuschi, “A radix-2
digit-by-digit architecture for cube root,” IEEE Trans. Comput., vol. 57,
no. 4, pp. 562-566, Apr. 2008.

N. Takagi, S. Kadowaki, and K. Takagi, “A hardware algorithm for inte-
ger division,” in Proc. 17th IEEE Symp. Comput. Arithmetic, Jun. 2005,
pp. 140-146.

B. R. Lee and N. Burgess, “Improved small multiplier based
multiplication, squaring and division,” in Proc. 1lth Annu. IEEE
Symp. Field-Program. Custom Comput. Mach. (FCCM), Apr. 2003,
pp. 91-97.

A. Nannarelli and T. Lang, “Low-power divider,” IEEE Trans. Comput.,
vol. 48, no. 1, pp. 2-14, Jan. 1999.

A. Nannarelli, “Radix-16 combined division and square root unit,” in
Proc. 20th IEEE Symp. Comput. Arithmetic, Jul. 2011, pp. 169-176,
doi: 10.1109/ARITH.2011.30.

H. P. Sharangpani and M. L. Barton, “Statistical analysis of floating-
point flaw in the Pentium processor (1994),” Intel Corp., Santa Clara,
CA, USA, Tech. Rep., 1994, pp. 1-32.

E. M. Clarke, S. M. German, and X. Zhao, “Verifying the SRT division
algorithm using theorem proving techniques,” in Computer Aided Ver-
ification (Lecture Notes in Computer Science), vol. 1102, R. Alur and
T. A. Henzinger, Eds. Berlin, Germany: Springer, 1996, pp. 111-122,
doi: 10.1007/3-540-61474-5_62.

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

(911

[92]

[93]

[94]

[95]

[96]
1971

[98]

[99]

[100]

[101]

[102]

E. M. Schwarz and M. J. Flynn, “Using a floating-point multiplier’s
internals for high-radix division and square root,” Dept. Elect. Eng.
Comput. Sci., Comput. Syst. Lab., Stanford Univ., Stanford, CA, USA,
Tech. Rep. CSL-TR-93-554, Jan. 1993.

A. Vazquez, E. Antelo, and P. Montuschi, ““A radix-10 SRT divider based
on alternative BCD codings,” in Proc. 25th Int. Conf. Comput. Design,
Lake Tahoe, CA, USA, Oct. 2007, pp. 280-287, doi: 10.1109/ICCD.
2007.4601914.

L. Chen, F. Lombardi, P. Montuschi, J. Han, and W. Liu, “Design of
approximate high-radix dividers by inexact binary signed-digit addition,”
in Proc. Great Lakes Symp. VLSI, May 2017, pp.293-298, doi: 10.
1145/3060403.3060404.

J.-A. Pineiro, M. D. Ercegovac, and J. D. Bruguera, “‘High-radix iterative
algorithm for powering computation,” in Proc. 16th IEEE Symp. Comput.
Arithmetic, Santiago de Compostela, Spain, Jun. 2003, pp. 204-211.

A. FE. Tenca and M. D. Ercegovac, “On the design of high-radix on-
line division for long precision,” in Proc. 14th IEEE Symp. Comput.
Arithmetic, Adelaide, SA, Australia, Apr. 1999, pp. 44-51.

H. Nikmehr, B. Phillips, and C.-C. Lim, “Fast decimal floating-point
division,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 14,
no. 9, pp. 951-961, Sep. 2006.

M. D. Ercegovac and R. Mcllhenny, “Design and FPGA implemen-
tation of radix-10 algorithm for division with limited precision primi-
tives,” in Proc. Conf. Rec. 42nd Asilomar Conf. Signals, Syst. Comput.,
Pacific Grove, CA, USA, Oct. 2008, pp. 762-766.

M. D. Ercegovac and R. Mcllhenny, ““Design and FPGA implementation
of radix-10 combined division/square root algorithm with limited preci-
sion primitives,” in Proc. Conf. Rec. Forty 4th Asilomar Conf. Signals,
Syst. Comput., Pacific Grove, CA, USA, Nov. 2010, pp. 87-91.

M. D. Ercegovac and J. M. Muller, “Complex square root with operand
prescaling,” in Proc. 15th IEEE Int. Conf. Appl.-Specific Syst., Archit.
Processors, Sep. 2004, pp. 1-11.

M. D. Ercegovac and J. M. Muller, “*‘Complex division with prescaling of
operands,” in Proc. Appl.-Specific Syst., Archit., Processors, Jun. 2003,
pp- 304-314.

M. Baesler, S. O. Voigt, and T. Teufel, “FPGA implementations
of radix-10 digit recurrence fixed-point and floating-point dividers,”
in Proc. Int. Conf. Reconfigurable Comput. FPGAs, Dec. 2011,
pp. 13-19.

M. D. Ercegovac and J. M. Muller, ““Variable radix real and complex digit-
recurrence division,” in Proc. 16th Int. Conf. Appl.-Specific Syst., Archit.,
Processors, Jul. 2005, pp. 316-321.

D. Wang, M. D. Ercegovac, and N. Zheng, “Design and analysis of high
radix complex dividers,” in Proc. 2nd Int. Conf. Comput. Eng. Technol.,
vol. 1, Apr. 2010, pp. V1-84-V1-88.

M. D. Ercegovac, T. Lang, and P. Montuschi, ““Very-high radix divi-
sion with prescaling and selection by rounding,” /IEEE Trans. Comput.,
vol. 43, no. 8, pp. 909-918, Aug. 1994.

J. D. Bruguera, “Radix-64 floating-point divider,” in Proc. IEEE 25th
Symp. Comput. Arithmetic (ARITH), Jun. 2018, pp. 84-91.

N. Burgess, “A fast division algorithm for VLSL,” in Proc. IEEE Int.
Conf. Comput. Design, VLSI Comput. Processors, Cambridge, MA, USA,
Oct. 1991, pp. 560-563.

C. Tung, “A division algorithm for signed-digit arithmetic,” IEEE Trans.
Comput., vol. C-17, no. 9, pp. 887-889, Sep. 1968.

L. A. Montalvo, K. K. Parhi, and A. Guyot, “New Svoboda-Tung divi-
sion,” IEEE Trans. Comput., vol. 47, no. 9, pp. 1014-1020, Sep. 1998.
J.-S. Chiang and M.-S. Tsai, “‘A radix-4 new Svobota-Tung divider with
constant timing complexity for prescaling,” J. VLSI Signal Process.,
vol. 33, pp. 117-124, Jan. 2003.

M. Kuhlmann and K. K. Parhi, “Fast low-power shared division and
square-root architecture,” in Proc. Int. Conf. Comput. Design. VLSI Com-
put. Processors, Oct. 1998, pp. 128-135.

L. Montalvo and A. Guyo, “Svoboda-Tung division with no com-
pensation,” in Proc. IEEE Int. Conf. VLSI Design, Jan. 1995,
pp. 381-385.

M. Joldes, O. Marty, J.-M. Muller, and V. Popescu, ““Arithmetic algo-
rithms for extended precision using floating-point expansions,” IEEE
Trans. Comput., vol. 65, no. 4, pp. 1197-1210, Apr. 2016.

T.J. Kwon, J. Sondeen, and J. Draper, “‘Floating-point division and square
root using a Taylor-series expansion algorithm,” in Proc. 50th Midwest
Symp. Circuits Syst., Montreal, QC, Canada, Aug. 2007, pp. 305-308,
doi: 10.1109/MWSCAS.2007.4488594.

VOLUME 9, 2021

U. S. Patankar, A. Koel: Review of Basic Classes of Dividers Based on Division Algorithm I E E E ACCGSS

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]
[115]

[116]

A. Kumar and T. N. Sasamal, “Design of divider using Taylor series in
QCA,” Energy Procedia, vol. 117, pp. 818-825, Jun. 2017.

A. A. Liddicoat and M. J. Flynn, ‘“High-performance floating-point
divide,” in Proc. Euromicro Symp. Digit. Syst. Design, Warsaw, Poland,
Sep. 2001, pp. 354-361.

B. Liebig and A. Koch, “Low-latency double-precision floating-point
division for FPGAs,” in Proc. Int. Conf. Field-Program. Technol. (FPT),
Shanghai, China, 2014, pp. 107-114.

K. N. Han, A. E Tenca, and D. Tran, “High-speed floating-point
divider with the reduced area,” Proc. SPIE, vol. 7444, Sep. 2009,
Art. no. 744400, doi: 10.1117/12.827850.

J.-A. Pineiro and J. D. Bruguera, ““High-speed double-precision compu-
tation of reciprocal, division, square root, and inverse square root,” /EEE
Trans. Comput., vol. 51, no. 12, pp. 1377-1388, Dec. 2002.

I. Kong and E. E. Swartzlander, “A goldschmidt division method with
faster than quadratic convergence,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 19, no. 4, pp. 696700, Apr. 2011.

R. E. Goldschmidt, “Applications of division by convergence,” M.S. the-
sis, Dept. Elect. Eng., Massachusetts Inst. Technol., Cambridge, MA,
USA, Jun. 1964.

B. Pasca, “Correctly rounded floating-point division for DSP-enabled
FPGAS,” in Proc. 22nd Int. Conf. Field Program. Log. Appl. (FPL), Oslo,
Norway, Aug. 2012, pp. 249-254.

H. E. Ugurdag, F. D. Dinechin, Y. S. Gener, S. Goren, and L.-S. Didier,
“Hardware division by small integer constants,” IEEE Trans. Comput.,
vol. 66, no. 12, pp. 2097-2110, Dec. 2017.

N. Emmart and C. Weems, “Asymptotic optimality of parallel short
division,” in Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS),
May 2016, pp. 864-872.

N. Emmart and C. Weems, “‘Parallel multiple precision division by a
single precision divisor,” in Proc. 18th Int. Conf. High-Perform. Comput.
Dec. 2011, pp. 1-9, doi: 10.1109/HiPC.2011.6152712.

T. Jebelean, “An algorithm for exact division,” J. Symbolic Comput.,
vol. 15, no. 2, pp. 169-180, Feb. 1993.

DK Design Suite User Guide, DK Version 4, document UM-2005-4.2,
Celoxica Limited, 2005.

Handel-C Language Reference Manual, DK Version 4, document RM-
1003-4.2, Celoxica Limited, 2005.

VOLUME 9, 2021

UDAYAN S. PATANKAR (Member, IEEE) was
born in Nagpur, Maharashtra, India, in September
1987. He received the Diploma degree in elec-
tronics and communication from the Maharashtra
State Board of Technical Education, Mumbai,
India, in 2008, and the B.E. degree in electronics
design technology and the MLE. degree in elec-
tronics engineering from RTMNU, Nagpur Uni-
. versity, Nagpur, in 2011 and 2014, respectively.

4 He s currently pursuing the Ph.D. degree with the
Thomas Johann Seebeck Department of Electronics, Tallinn University of
Technology, Estonia. He is one of the authors of the book titled Elements
of Vedic Mathematics (Tallinn Press, 2018). His research interests include
mathematics, semiconductor electronics, circuit design, analog-digital cir-
cuits, and semiconductor devices. He is also a member of the IEEE Consumer
Electronics Society and the Electron Devices Society.

ANTS KOEL (Member, IEEE) was born in Tallinn,
Estonia, in August 1962. He received the Diploma
degree in industrial electronics from the Tallinn
Polytechnic Institute, Estonia, in 1985, the mas-
ter’s degree in 1998, and the Ph.D. degree from the
Tallinn University of Technology, Tallinn, Estonia,
in 2014. He became a member of the Wessex Insti-
tute International Advisory Committee on Mate-
rials Characterization and the Chairman of the
Steering Committee of the IEEE-Sponsored Baltic
Electronics Conference 2020 organized by TUT.

23069

Appendix 2

Publication Il

Appeared in:

Patankar, Udayan; Koel, Ants; Patankar, Sunil; Flores, Miguel;

“Area Efficient Hexadecimal Divider Circuit Implementation Based on USP-Awadhoot
Division Algorithm” in 2021 IEEE International Conference on Engineering, Technology,
and Innovation (ICE/ITMC), 2021, pp. 1-8, doi: 10.1109/ICE/ITMC52061.2021.9570263.

135

2021 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC) | 978-1-6654-4963-2/21/$31.00 ©2021 IEEE | DOI: 10.1109/ICE/ITMC52061.2021.9570263

Area Efficient Hexadecimal Divider Circuit
Implementation Based on USP-Awadhoot
Division Algorithm

1% Udayan Patankar
TJS Department of Electronics
TalTech Tallinn University of
Technology
Tallinn, Estonia
udayan.patankar45@gmail.com
Orcid Id- 0000-0003-4167-6755

2" Dr. Ants Koel
TJS Department of Electronics
TalTech Tallinn University of
Technology
Tallinn, Estonia

ants.koel@taltech.ce
Orcid Id- 0000-0001-5635-0139

3t Sunil Patankar
Kavi Kulguru Kalidas Sanskrit
University
Ramtek, India

smpatankarl956@yahoo.com

4% Miguel E. Flores
School of Electronics
Don Bosco University

Soyapango, El Salvador
miguel.flores@udb.edu.sv

Orcid Id- 0000-0003-0514-6239

Abstract— Arithmetic operations are crucial in the current
age of technology and development. Electronic implementation
of mathematical operations is a very important and critical part
of a digital system. Even though the number of transistors on a
chip, increases beyond Moore's law prediction, it is quite
complicated to implement arithmetical operations; a
sophisticated algorithm is essential to successful
implementation. Different dividers have been developed based
on various algorithms to provide better results for division
implementation in digital hardware. Generally, the major
aspects considered are quotient convergence rate, hardware
primitives, area overheads, and mathematical formulation.
Many algorithms were implemented to achieve dividers, which
provide a solution with or without any error percentage.
Although many error-resilient applications exist, such dividers
fail to work satisfactorily in terms of power consumption and
overall circuit performance. In some cases, estimation and
approximation-based dividers are used to provide faster usage
with a considerable error, but digit recurrence algorithms are
used in most commercial applications, which requires more
area. Thus, we developed a new, three-stage zero error digit
recurrence USP-Awadhoot division algorithm. The present
article illustrates the design and implementation statistics of an
area-efficient divider circuit based on a novel USP-Awadhoot
division algorithm and the effective use of a hexadecimal
number system to achieve ease in quotient conversion logic.

Keywords— Approximate computing, Dividers, Functional
iteration, Prediction, FPGA, SRT

I INTRODUCTION

It is perverse to consider mathematics as terminology,
which deals with, numbers, whereas mathematics itself
governs the very deep meaning of science of numbers and
their relations and sometimes both. Theoretical mathematics
allows us to see the world in terms of pure equations, relations
and provides studies to develop various mathematical
theories. In the past, before the beginning of the computer and
electronics era, many researchers had given different
mathematical theories to support human evaluation.
However, such theories may not be implemented at that time.

This project has received funding from the Estonian Research Council
Institutional Research, EAS - Enterprise Estonia, and partly from the
European Union's Horizon 2020 Research and Innovation Program.

978-1-6654-4963-2/21/$31.00@2021 IEEE

Currently, in the era of the electronics and computer
revolution, another side of mathematics has been developed,
providing the implementation for various mathematical
theories that are useful for improving human beings' lives.
Collectively, we know this other side of mathematics as
applied mathematics. It gave a more significant aspect to
mathematics, applying its concepts in human life.

The initial phases of industrialization were reliant on the
new ways of theoretical mathematics and physics in the
industries to develop mass-production techniques that could
provide a better solution to economic difficulties when
producing various items or products. These applied physics
and mathematics efforts gave birth to new possibilities,
leading to the newborn field of electronics and integrated
circuits, which has proven valuable and innovative for
existing applications like communication, transport, and
calculations. In the current computer generation, the
importance of digital communication and computation has
reached a different level. Which in turn allows the evolution
of new fields of work and study in the data protection area,
statistical data analysis, computational processing, signal
processing, artificial intelligence, image processing, high-
performance graphics rendering system like graphic
processing units (GPU), complex systems on chips, central
processing unit, biomedical equipment, fuzzy control, space
engineering.

An increase in the applications increases the demand for
the implementation of various arithmetic operations such as
addition, subtraction, multiplication, and division with a
more sophisticated approach. A better electronic system
needs to implement all the basic mathematical operators'
basic properties, as illustrated in Fig. 1. It indicates that
addition, subtraction, multiplication, and division stand as
vital building blocks of implementing modern theories of
theoretical and applied mathematics [2]. Like the
multiplication operation, division operation is also a derived
operation, where instead of successive addition, it involves
successive subtractions and critical controlling conditions,
which indicates that the division operation is a difficult
activity for digital hardware. The involvement of successive
subtraction makes it highly dependent on the order of two
quantities connected by the division operator.

2021 IEEE International Conference on Engineering,
Technology and Innovation (ICE/ITMC)

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on May 16,2024 at 21:48:16 UTC from IEEE Xplore. Restrictions apply.

More efforts have been put into improving addition,
subtraction, and multiplication operators, than the efforts put
forward for performing a division operation. The upcoming
working application areas of high-speed computation,
embedded systems, artificial intelligence [1] [3] [7-8],
complex SOC [9], vision systems [1-2] [5-6], automotive
control [9], telecommunications [1], the internet of things
(IoT), cryptography [1] [4] and many others give the
possibility of further improvements in the division operation's
implementation.

Basic Pillars of
Mathematics

L

Addition ‘ Subtraction Multiplication‘ Division ‘

Commutative Identity
a+b=b+a a-0=a

Commutative Identity
a*b=b*a al1=a
Associative

a*(b*c)=(a*b)*c

Associative
a+(brc)=(a+h)+c

Inverse
atb-b=a

Inverse
a/b*b=a

Identity Identity
a+0=a a*1=a

Inverse Inverse
a+b-b=a a*b/b=a

Distributive

m*(n+p)=m*n+m*p
or

m*(n-p)=m*n-m*p

Fig.1. Basic pillars of mathematics

Algorithms are the best tool for implementing derived
operators like division, giving a systematic way of
performing various critical controlling conditions involved
along with division operation. Area, time, and power
consumption are the three topics of interest from the system
implementation point of view. This gives us the motivation
to design a new algorithm that provides improved area
utilization and moderate latency. The implementation of the
USP-Awadhoot division algorithm has shown advantages
over current alternatives, those advantages are presented and
compared with current options for division implementation.

1L EXISTING THEORIES & PREVIOUS WORK

At the beginning of the electronics era, mathematical
operations, 1.e., addition subtraction, multiplication, and
division, were involved in CPUs, microprocessors,
calculators, counting equipment, and devices in applications
with low computation requirements. Division operation was
performed based on sequential, linear operation, and digital
circuitry to express logic function with high accuracy on
account of large area and latency [10-12]. The applications
developed at this stage required area improvement for the
division because its current implementations lack in area and
latency efficiency, and it was less expected to occur in normal
working conditions [13-15].

The distributive property of multiplication and the
commutative, associative, identity, and inverse properties
like addition make it easier for improvements in the final
implementation [16-25]. Thus, many efforts were put into
improving adders and multipliers to improve system
performance in terms of area and latency; the one-step
multiplier algorithm from Wallace [26] is an example.
Several options were suggested and implemented for
performing division operation, which can be presented in
different classes: digit recurrence, functional iteration, very
high radix, a look-up table, and variable latency class divider.

978-1-6654-4963-2/21/$31.00@2021 IEEE

A comparative study of various dividers from the above
classes is presented in Table [; it explains the basic logic of
computation and the architecture used, which points out the
pros and cons of the particular class algorithms used for
division circuit implementation. It gives basic points of
comparison with the proposed algorithm implementation. In
the early years of electronics, the use of division was very
much visible in computer architecture, CPUs, ASIC
implementation, FPGA, embedded systems. Division
operation is one of the most resources demanding operations
in the arithmetic and logical unit (ALU) and for graphic
processing unit (GPU) work.

Division operation has consecutive sort of operations with
the most exorbitant requirements as far as computational
intricacy than other numerical operations. To cater to such
application needs, various dividers based on diverse
algorithms, like the digit recurrence, functional iteration, high
radix, and look-up table divider, either in combination or
alone, have been discussed and implemented in the past.
When we discuss the various division algorithm's
implementation statistics, it is preferable to classify them into
different classes based on common properties. Classes are no
more than the indicative name given to a group of algorithms
that exhibit similarities in their conversion logic and the
physical hardware arrangement. The hierarchical distribution
of various classes of division is described based on the four
factors representing conversion logic, hardware architecture
performance, and execution type as follows:

Based on the method of conversion, we can distinguish
division algorithms in the following classes.

1. Digit recurrence

2. Functional iteration
3. Very high radix

4. Look-up table

5. Variable latency

Based on hardware architecture [8, 14], we can classify types
of dividers as:

1. Serial or sequential type
2. Parallel type
3. Pipelined type

Based on performance [15], we can classify types of dividers
as:

1. Slow type

2. Fast type

Based on execution [16], we can classify types of dividers as
1. Iterative subtraction type

2. Predictive type / Multiplicative type

Even though we distribute different implementations of a
division operation, it shows some interdependency as well.
Meaning the classes are the indicative term used to highlight
their important part of working and implementation. It shows
that a divider from one class can be implemented fully or
partially based on another class; for example, a digit
recurrence divider can be implemented in serial or sequential

type or pipelined type.

2021 IEEE International Conference on Engineering,
Technology and Innovation (ICE/ITMC)

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on May 16,2024 at 21:48:16 UTC from IEEE Xplore. Restrictions apply.

TABLEI

COMPARATIVE STUDY OF DIFFERENT DIVISION ALGORITHMS

Sr. No. Algorithm

Equations

Important Points

1 SRT

For J™ iteration

It is a non-restoring algorithm based on radix-n

q;=1 if 2R, <D,

Named after Dura W. Sweeney, James E. Robertson, and Keith D.
Tocher

q=0 if —D, <2Ri, <D,

For x bit, integer division requires k=x/b iterations, b=number of bits
detected in each iteration

q=1 if 2R, =D,

n decides how many quotient bits are to be detected in each iteration;
if n=2, then one quotient bit is detected per iteration, radix—n is
typically selected as a power of base 2

has one of the values -m, -m+1... -1, 0, +1... m-
1, m, where m is an integer comprises k digits of
radix-n as

Each quotient digit has a value from {-m, -m+1,,-1,0, 1,,
m-1, m}

1
-(n—-1) <m<n-1

The algorithm implements 2’s complement value of Dr instead of —
Dr, which indeed provides shifting over zeros to eliminate extra
adder and subtractor

2
and k= 7%/,

Needs extra subtractor to find out next partial remainder

n=2>
k
Q :qun‘f
=

Error results due to few MSB's being used to predict quotient bits as
in low radix, which decreases with the increase of radix

Quotient q is generated as a division of the
dividend by a divisor of x most significand bits
retires b bits of the quotient in each iteration
Thus, it is called a radix-n performing k iterations
to get desired quotient.

Requires quotient selection look-up table. Quotient select table plus
carry-save adder (CSA) gives the approximate area requirement for
algorithm implementation and shows the iteration time of accessing
quotient select table plus multiple form and subtraction

2 Very high

radix

sk ok ok

It is the same as the SRT algorithm, with the only difference that it
retires more than ten quotient bits in one iteration; it requires a very
large look-up table with a big capacity for quotient selection logic

It uses multiplication to form divisor multiples

A look-up table is required for obtaining an initial approximation to
reciprocal and quotient digit selection logic

Differs from normal radix-n divider in terms of number and type of
operations used in each iteration and quotient digit selection logic

3 Taylor
Series

It is a multiplicative iteration based algorithm

D
q= d/D, and XO:l/D,

The precision depends upon the closeness with anti-divisor
(reciprocal) estimation

1+ (1 =D, Xp) + (1 = D,X,)?
=D.X 0. T40. }

=" "{ +(1- D, X,)?

D4 = Dividend and D, = Divisor

It provides a parallel powering section that computes high order
terms faster with minimal extension to hardware overhead

1/D, = Antidivisor

Quotient digit selection logic look-up table, and three full word
length multiplier gives the approximate area requirement for
algorithm implementation

4 Variable
Latency

skokokokokok

Variable execution time thus results in different conversion time for
a different set of dividend and divisor

The DEC Alpha 21164 is one of the best examples of variable latency
class algorithm implementation, which is based on the concepts of
the simple normalizing non-restoring division algorithm

Self-timing, result cache, and speculation of quotient digit are some
of the techniques used for providing variable latency

5 Newton-
Raphson

Q= Dg/Dr=px ("

The accuracy can be improved by selecting a proper root at the
beginning

f(X)= 1/X—q1=0

f(X)

Latency and error in convergence are directly dependent on the root
selected at the beginning of the convergence and shows the iteration
time approximately equals to the time required for two serial
multiplications

Xiv1 = X T

Multiplier, quotient select look-up table, and control logic gives the
approximate area requirement for algorithm implementation

a/xi-q™") -
Xt =X, =32 = Xix @ = q7 % X)
:

The final quotient is derived by multiplying approximated reciprocal
and dividend

Enm=€ (@

Shows error due to inaccuracy of quotient digit prediction or
estimation

p = Dividend and (q) ™" = Antidivisor

It requires multiplication and addition or subtraction at each iteration

6 Svoboda
Algorithm
And
Svoboda-
Tung
Algorithm

mn b m(n—2)
{(m+1)(n—1) <D< (n—l)(m—l)}

Quotient digit is predicted based on the partial remainder without
considering divisor; one or two MSBs of the partial remainder are
used for generating quotient digit selection logic

{-m/m-1 <R < m/n-1}

It can select quotient digit out of the radix range as an overflow
occurred due to compensation

Range = {0,£1,, +m}

It requires pre-scaled operands and can work on conventional and
signed digit number range

Boundry limit ={n/2+1 <m <n-—1}

m = Range of SBD and n = Radix

Like the SRT algorithm, it is also a radix-n based algorithm with sign
binary digit numbers

978-1-6654-4963-2/21/$31.00@2021 IEEE

2021 IEEE International Conference on Engineering,
Technology and Innovation (ICE/ITMC)

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on May 16,2024 at 21:48:16 UTC from IEEE Xplore. Restrictions apply.

Digit recurrence algorithm-based dividers are the most
commercially implemented dividers due to ecase in
implementation because of their relatively less complex
conversion logic. The error is reduced by retiring a fixed
number of quotient digits by incremental operand use in the
digit recurrence method. Restoring and non-restoring are the
two subtypes of the digit recurrence division algorithm. The
restoring division algorithm replicates the long division
method, which resembles a paper and pencil algorithm,
which generally showcases the application of iterative
subtraction. Having an easy and less complex conversion
logic for the quotient is a merit, but it exhibits relatively
higher latencies as a demerit. A non-restoring algorithm type
is very similar to that of restoring algorithm, except that it is
not required to restore the partial remainder.

SRT division is one of the most implemented non-
restoring digit recurrence division algorithms. It was
developed individually by three researchers Sweeney,
Robertson, and Tocher. Who proposed utilization of the 2's
complement technique of shifting over zeros for the division
to replace the range of the partial remainder in terms of
reducing the resource requirements [15, 21]. Although SRT
dividers exhibit simple conversion logic, the implementation
of the SRT divider is restricted to low order radix due to the
practically unfeasible quotient selection table requirement. A
rise in radix value increases the size of the quotient selection
logic table beyond practical limits of implementation,
causing area overhead. High-radix division algorithms are
implemented with different architectures like array structure
and cascading architecture but require a comparatively higher
area. Usually, Look-up table-based dividers are mostly used
partially combined with other types of dividers like SRT,
High radix type [11, 18]. Svoboda and Svoboda-Tung
algorithm is also a radix base algorithm but requires only
partial remainder MSB's to decide quotient result.

The basic terminology used in all of the above-stated
implementations is similar to the generalized paper and
pencil method but inefficient in terms of area and latency, but
ultimate quotient results are more accurate. After digit
recurrence class dividers, functional iterative class dividers
come second. The functional division class showcases the use
of iterative multiplication over the estimation or prediction
primary reciprocal root for the quotient value based on the
chosen priming function. The effective implementation of
such dividers is dependent on the accuracy in selecting the
nearest reciprocal root of the priming function out of the
number of reciprocal roots. The main disadvantage of using
functional iteration is the criticality in obtaining the exact
result after rounding off, leading to rounding error in the
divider's final quotient result. Variable latency class
algorithms are similar to the previous algorithms, but with the
possibility of a variable quotient bit retiring rate in different
iterations or some iterations requiring less execution time,
resulting in different conversion times in different sets of
dividends and divisors It is found that the average number of
quotient bits retired in one iteration varies from 2 to 3,
depending on the stream of bits in the partial remainder.
Variable latency division implementation is very difficult due
to synchronization problems. The extra circuitry required for
synchronizing and speculation of quotient digit cost more
area. Thus, more focus was expressed to improve adders and
multipliers, requiring 2 to 6 cycles, whereas the divider
requires a 4 to 80 cycle depending on the combination of
architecture and algorithm or technique. As explained in [13,

978-1-6654-4963-2/21/$31.00@2021 IEEE

18], it is vital to improving divider implementation in terms
of area and latency, along with adder and multipliers. To
improve the system performance of electronic and embedded
systems, it is required to reduce area requirements for divider
implementation. The digit recurrence algorithm can be
appropriate for applications such as embedded systems,
FPGA design, ASIC design where minimizing chip area is
the priority, [18], latency can be high. The SRT division
algorithm is the most famous and widely implemented by
commercial applications, but the increase in quotient
conversion logic complexity with an increase in radix causes
it to be practically unimplementable.

II1. METHODS

a. Presented study, Research question & Hypothesis

TABLE I
COMPARISON TABLE

Name of algorithm

Latency (Cycle)

Approx. area

SRT

{[%] + Scale}

Quotient selection
table + CSA

Svoboda and
Svoboda-Tung

ok ok

LUT+I full word
length fast carry
propagation adder+
2 full word length
carry free
adder/subtractor +2
full word length
latches

New Svoboda-Tung

ok ok

LUT+! full word
length fast carry
propagation adder+
2 full word length
carry free
adder/subtractor +2
full word length
latches

Very high radix

[[%] + Scale}

Quotient select
table + CSA

Taylor Series

8-12 cycles

LUT+three full
word length
multipliers

Newton-Raphson

aEs

One multiplier+
table +control

+ 1} tt + 1
Goldschmidt f] } One full word
{[logzj 1 b length multipliers+
+ 2 if tyy > 1 adders+ LUT

o]

+3} if by = 1

16-18 cycles

Table II shows the comparative study of implementations
of various division algorithms in terms of area and latency.
As per the study of previously implemented division
algorithms, it is clear that the restoring and some non-
restoring algorithms implement simple conversion logic but
require a long conversion time and a large area for practical
implementation. However, the SRT algorithm is the first
choice for commercial implementation in most soft and
modern processors like Intel's Pentium processor, FPGA

2021 IEEE International Conference on Engineering,
Technology and Innovation (ICE/ITMC)

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on May 16,2024 at 21:48:16 UTC from IEEE Xplore. Restrictions apply.

controllers, and ALU units of complex hardware. It is
restricted to certain low radix values, especially less than 10,
due to an increase in the quotient selection logic's criticality
and the enormous increase in area requirements for storing
look-up tables. The major drawback of the new Svoboda-
Tung algorithm is that it generates a direct quotient value, but
the final remainder should be calculated by scaling partial
remainder with the same factor as the operands, restricting its
use with applications where the unscaled remainder is a must.
The main disadvantage of using functional iteration is the
criticality in obtaining the exact result after rounding off,
leading to rounding error in the divider's final quotient result.
Based on this study, we derive the need for designing an area-
efficient division algorithm.

b. Applied Research Methods- USP — Awadhoot division
algorithm

As per the study shown in previous sections, it is clear that
digit recurrence algorithms are most suitable for embedded
and consumer applications where cost and area are of utmost
importance rather than latency time. To improve area
efficiency in digit recurrence dividers, we propose a novel
state-of-the-art USP-Awadhoot division algorithm. USP —
Awadhoot division algorithm is conceptualized based on the
restoring type of digit recurrence concept of the division
algorithm, one of the famous and most commercially
implemented class of division algorithms.

Unlike a non-restoring type SRT division algorithm, the
USP-Awadhoot algorithm is a restoring type of algorithm and
more area efficient. We developed a new algorithm
consisting of three stages during our research, i.c., stagel,
stage 2, and stage 3, and named it as USP-Awadhoot division
algorithm, as shown in Fig. 2. Preliminary, the working of the
USP-Awadhoot division algorithm is described in stage | as
a pre-processing input circuit stage, stage 2 as the main
processing circuit stage, and stage 3 as the post-processing
circuit stage. D, represents the dividend value, D, represents
the divisor value, Q,, represents the quotient value and R,,,
represents the remainder value of the proposed USP-
Awadhoot division algorithm. The key point in using
restoring type digit recurrence divider is that it requires a
combination of simple operations like addition, shifting,
multiplication as shown in (1), and the remainder has to fulfill
the requirement stated in (2).

D "I| Stage ’ Stage
N 1 2
Dr » F

Stage
3

—> Qn
—

Rem

Fig.2. Block diagram of USP-Awadhoot division algorithm

Dividend (D;) = {Quotient(Q,) X Divisor(D,)} +
Remainder(R,,,) (1)

0 < Remainder(R,,) < Divisor(D,) ?2)

978-1-6654-4963-2/21/$31.00@2021 IEEE

Fig. 3 illustrates the functional block diagram of the USP-
Awadhoot division algorithm. Operations and
responsibilities of stage 1 of the proposed division algorithm
are named pre-processing circuit stage, further sub-
categorized into state 101,102,103, and 104. State 101 is
responsible for collecting and preserving a copy of input
operand data (Dy and D,.) in case, the occurrence of restoring
the previous condition. State 102 and 103 are responsible for
normalizing input and supplying it in the required
hexadecimal format to further state 104. State 104 is
responsible for pre-processing normalized hexadecimal
operand data (Dy and D,.) and supply required data for the
Awadhoot matrix. Therefore, operations and responsibilities
of stage 2 of the proposed division algorithm are further sub-
categorized into states 105, 106, and 107.

INPUT
IN

|PRE - PROCESSING
CIRCUIT STAGE

PROCESSING
CIRCUIT STAGE

aor
X1

POST - PROCESSING
[CIRCUIT STAGE

OUTPUT V
RESULT

Fig.3. Functional block diagram of the USP-Awadhoot division

State 105 represents the restoring stage in case of the
occurrence of restoring the previous condition, and in a
normal case, it passes previous iteration data from one
iteration to the next iteration of the Awadhoot matrix. State
106 and 107 represent the main processing circuit stage of the
Awadhoot matrix. Later, state 107 is responsible for
providing group quotient and remainder value from every
iteration of the Awadhoot matrix to the next state 108. The
operations and responsibilities of stage 3 of the proposed
division algorithm represented state 108 and considered a
post-processing circuit stage.

Awadhoot matrix is the tabular arrangement of presenting
pre-processed input for main iterative circuit stages. Similar
to the SRT algorithm, this algorithm also generates the
quotient bits separately in different iterations. All these
quotients are generated separately, and remainder values are
fed to the recombination circuit in the post-processing circuit
stage. The final quotient value and remainder value are
generated at the end of the post-processing stage at state 108
and available for further display or transmission to different
devices if needed. The hypothesis is that the USP-Awadhoot
division algorithm can reduce resources used and improve
division calculation speed compared with current

2021 IEEE International Conference on Engineering,
Technology and Innovation (ICE/ITMC)

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on May 16,2024 at 21:48:16 UTC from IEEE Xplore. Restrictions apply.

implementations of other division algorithms. The
implementation of the proposed algorithm was used for
validation of its performance and evaluation of its results.
Outputs (@, and R,,,) obtained were compared with their
truth table answers and verified the hardware resources
utilization to understand the hardware requirements for the
proposed USP-Awadhoot division algorithm
implementation.

c. Research Model & Instrument

For implementing the proposed USP-Awadhoot division
algorithm, we have used the Vivado 2016 simulation tool
with the Zybo development board based on Xilinx Zynq
XC7Z010. We also tested the implementation of the proposed
USP-Awadhoot division algorithm on Quartus prime lite
simulation software with Cyclone IV development board
based on EPACE6E22C8N Cyclone IV FPGA manufactured
by Altera to generate a truth table and cross-verify simulation
results by comparing output result. Table 3 represents the
resource utilization of the divider circuit implemented based
on the USP-Awadhoot division algorithm. Figure 4 and 5
represents the comparative analysis of proposed divider
based on Awadhoot division algorithm with different SRT
digit recurrence algorithm-based radix divider, different digit
recurrence division algorithms based dividers and other
division algorithm class dividers.

d. Experimental set-up

To test the implementation of the proposed USP-
Awadhoot division algorithm, we prepared the HDL code
based on the functional block diagram of the proposed USP-
Awadhoot division algorithm as shown in figure 3 and
programmed it into the Zybo development board based on
Xilinx Zynq XC7Z010 and Cyclone IV development board
based on EP4CE6E22C8N FPGA manufactured by Altera.
All the possible input operand conditions are checked
sequentially and randomly on both experimental test boards.
To test the working of implementation, we used a
pseudorandom code generator to get random values for
different input operands as well as we tested the working of
proposed algorithm implementation with static inputs
supplied via separate single pole single throw rocker
switches. To determine the working latency and conversion
speed, we have executed simulations with different clock
frequencies and tested them by implementing them into the
Zybo development board based on Xilinx Zynq XC7Z010
and Cyclone IV development board based on
EP4CE6E22C8N FPGA manufactured by Altera.

Iv. FINDINGS

a. Data Collection and Analysis

During various simulations performed on the Vivado
2016 simulation tool and Quartus prime lite simulation
software, the results of various input operand combinations
are collected, forming a truth table for all possible
combinations of input operands. The collected simulation
data is summarized into time, current operands (dividend and
divisor) value, the present value on control signals, and the
outputs (quotient, remainder, error state, and valid output)
obtained by the computation of the algorithm. Data collected
from the output of hardware implementation were compared
with their know solutions from the reference truth table

978-1-6654-4963-2/21/$31.00@2021 IEEE

prepared from simulations. Once the data obtained from the
output of hardware implementation were successfully
compared, resources and execution speed was compared
against other implemented division processes to support the
proposed algorithm's initial hypothesis. Table 3 represents
the resource utilization of the divider circuit implemented
based on the USP-Awadhoot division algorithm. The
proposed division algorithm requires 238 LUT logic slices, 5
flip-flop slice registers, 140 latch slice registers, 8 seven input
mux, and a total of 37 bounded I/o's for providing input
operands and reading quotient and remainder outputs. The
proposed division algorithm's working speed is given in
terms of working frequency, equal to I00MHz with a power
dissipation of 5.658 watts.

TABLE III

RESOURCE UTILIZATION OF PROPOSED DIVISION ALGORITHM
Sr. No. Resource Parameter Quantity

1 Slice LUT (Logic) 238

2 Slice LUT (Memory) 0

3 Slice Register (Flip-flop) 5

4 Slice Register (Latch) 140

5 MUX (F7) 8

6 MUX (F8) 0

7 DSP 0

8 Bounded 10 37

9 Power(W) 5.658

10 Frequency (MHz) 100

b. Discussion

Fig. 4 illustrates the comparative analysis of hardware
resource utilization of the USP-Awadhoot division
algorithm-based divider with other SRT-based radix — n
algorithms-based divider. The proposed USP-Awadhoot
division algorithm-based divider requires 238 slice logic
LUT's and 145 flip-flop or latches, whereas radix-2 to radix-
16 requires 1500 to 2100 slice logic LUT's and 1100 to 1200
flip-flop or latches [7].

Comparison of Proposed Division

Algorithm
2500
2000
1500
1000
500
0
v M @ ©
IS S &
< < & @ v\%o
L
o‘—:
&

Different SRT Based Radix Dividers
M Slices / LUTs M FFs

Fig.4. Comparative analysis of hardware resource utilization of the USP-
Awadhoot division algorithm-based divider with other SRT based radix —
n algorithms-based divider

Fig. 5 illustrates the comparative analysis of hardware
resource utilization of the USP-Awadhoot division algorithm

2021 IEEE International Conference on Engineering,
Technology and Innovation (ICE/ITMC)

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on May 16,2024 at 21:48:16 UTC from IEEE Xplore. Restrictions apply.

with different functional iteration division algorithms. PST
algorithm-based divider required 213 slice logic LUT's, 768
bytes of memory, and 28 DSP [27]. Fig. 6 illustrates the
comparative analysis of the approximate conversion time of
the USP-Awadhoot division algorithm-based divider with
different digit recurrence algorithms-based divider. The
proposed divider shows 250 ns for approximate conversion
time, whereas Xilixs IP core required approximately 200 ns,
SRT requires approximately 520 ns, restoring and non-
restoring algorithms required approximately 320 ns and 160
ns [11]. Finally, we can summarize the performance of the
proposed dividers as it indicates 65 % to 85 % area
improvement over various dividers.

Comparison of Proposed Division

Algorithm
1500
1000
500
. | g
D D © N
\Q“) P) \A\b & N
A & S & O
o S > o %
A <N & 5 \s
N N\ >
Q N Iy &
ol R
<
&]
Different Functional Iteration Division
Algorithms
MW Slices / LUTs M FFs Lookup tables

Fig.5. Comparative analysis of hardware resource utilization of the USP-
Awadhoot division algorithm-based divider with different functional
iteration division algorithms-based divider

Approximate Conversion Time (ns)

600
500
400
300
200
0
2 A
& S (\(‘o" (&% . \@‘Q
N s° & o
3 @ W o
N < 2
RS %0 OO
&
&

Q
(—)
Different Digit Recurrente Algorithms

Fig.6. Comparative analysis of approximate conversion time of the USP-
Awadhoot division algorithm-based divider with different digit recurrence
algorithms-based divider

978-1-6654-4963-2/21/$31.00@2021 IEEE

V. CONCLUSION

Digit recurrence division algorithms are easy to
implement but critical to control quotient conversion logic,
especially with SRT digit recurrence algorithm-based
dividers. Based on the comparative analysis of experimental
data of the proposed USP-Awadhoot algorithm-based
divider, we conclude that the proposed USP-Awadhoot
algorithm-based divider circuit is successfully designed and
verified by implementing it using Vivado 2016, and Quartus
prime lite simulation software and the Cyclone IV
development board manufactured based on Altera
EP4CE6E22C8N Cyclone IV FPGA and Zybo development
board based on Xilinx Zynq XC7Z010. Even though the
proposed USP-Awadhoot algorithm-based divider is
implemented with only sequential and combinational
hardware architecture, thus it requires more conversion time
and works on moderate frequency up to 100 MHz. Also, from
the resource utilization Table III and comparative analysis
Fig. 4, 5, and 6, we can conclude that the proposed division
algorithm shows remarkable improvement in the
implementation area requirements compared to SRT base
digit recurrence and functional iteration-based dividers. It
suggests that the use of a proposed algorithm is suitable for
an embedded system where the area is an important resource
to maintain as low as possible.

VL FUTURE WORK
The target for future works

e As the current implementation verifies the successful
implementation of the proposed divider on different
FPGAs, the next target is to design a dedicated
integrated circuit IP. The first step is to design a
physical layout, starting from the floor plan, which
decides which circuit component is placed in which
arca and extracts the parasitic values to prepare the
final layout for fabrication.

e Another future work target is to improve the working
frequency and conversion time. To do so, we have to
fuse some intermediate functional blocks like
separate addition, and multiplication can be
performed in fused mode like fused multiply-add
(FMA). We need to test implementation and verify
the resource utilization concerning the proposed
divider to validate changes.

e Current implementation validated the successful
implementation using combinational circuits. Thus,
reducing the area and hardware resource utilization is
also a future target. Some processes involved in the
proposed divider can be represented as the different
hardware architecture like pipelined architecture,
parallel architecture, array structure, and cascade
structure. Thus, it is required to validate the usage of
different architectures and compare their resource
utilization to prove the usability of the proposed
divider in different working environments with
different requirements. It gives detailed
implementation results to choose the best suitable
architecture implementation of the proposed divider
in various applications as per their time, area, and
power requirements.

e We have to verify the performance of the proposed
divider in various applications like image processing,

2021 IEEE International Conference on Engineering,
Technology and Innovation (ICE/ITMC)

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on May 16,2024 at 21:48:16 UTC from IEEE Xplore. Restrictions apply.

particle detection, and signal processing. Complex
number arithmetics is very important and critical,
which requires careful design and more hardware
resources. It is also very helpful in various essential
engineering applications such as acoustics pulse
reflectometry, astronomy, non-linear radio frequency
measurements, control theory application such as
finding out root locus, Nyquist plot, and microwave
system frequency response. Our next target is to
verify implementation resource utilization of the
proposed divider for complex number computation.

ACKNOWLEDGMENT

This project has received funding from the Estonian

Research Council Institutional Research Project PRG780,
EAS - Enterprise Estonia under project number: EU60351
and partly from the European Union's Horizon 2020 Research
and Innovation Program under Grant 668995. A preliminary
patent is applied in Estonia based on the research work of
developing a new algorithm for division. Application no-
70390 date- June 2020.

[4]

[10

REFERENCES

R. K. L.Trummer, "A High-Performance Data-Dependent Hardware
Integer Divider," master thesis, Institute of Computer Science and
Systems Analysis, Paris Lodron University, Salzburg, May 2005.

Donald G. Bailey, "Space Efficient Division on FPGAs," Electronics
New Zealand Conference 2006, p-p —206-211.

Jyotika Kumari and Dr.M.Y.Yasin "Design and Soft Implementation
of N-bit SRT Divider on FPGA through VHDL," International Journal
for Innovations in Engineering, Science and Management, Volume 3,
Issue 4, April 2015, ISSN 2347 — 7911, p.p- 13 - 19.

Narendra K., S. Ahmed, S. Kumar, Asha G.H. "FPGA Implementation
of Fixed-point Integer Divider Using Iterative Array Structure,"
International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869, Volume-3, Issue-4, April 2015, p.p-170-179.

E. Matthews, A. Lu, Z. Fang, and Lesley S., "Rethinking Integer
Divider Design for FPGA-based Soft-Processors," 2019 IEEE 27th
Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), DOI: 10.1109/FCCM.2019.00046.

K. Tatas, D. J. Soudris, D. Siomos, M. Dasygenis, and A. Thanailakis,
"A Novel Division Algorithm For Parallel And Sequential processing,"
9th International Conference on Electronics, Circuits, and Systems,
Dubrovnik, Croatia, Croatia, 10 December 2002, ISBN: 0-7803-7596-
3,p.p-553-556.

K. D. TOCHER, "Techniques Of Multiplication And Division For
Automatic Binary Computers," Quart. Journ. Mecta. and Appd. Math.,
Vol. XI, Pt. 3, 1958 p.p — 364-384.

H. Asai, "A Recursive Radix Conversion Formula And Its Application
To Multiplication And Division," Comp. and maths with appls., Vol.
2. pp. Z55-265 Pergamon Press 1976.

Nikolay Sorokin, "Implementation of high-speed fixed-point dividers
on FPGA," Journal of Computer Science & Technology; vol. 6, no. 1
ISSN: 1666-6038, April 2006, p.p- 8-11.

Reza Z, Mehdi K, Arash F, Ali Kusha, Saeed S, Massoud P, "SEERAD:
A High Speed yet Energy-Efficient Roundingbased Approximate
Divider" Design, Automation & Test in Europe Conference &
Exhibition — DATE 2016, ISSN: 978-3-9815370-7-9, p.p- 1481-1484.

978-1-6654-4963-2/21/$31.00@2021 IEEE

(1]

[12]

[14]

[16

(17

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Elizabeth A, Suganthi V, and Seok-Bum Ko "Approximate Restoring
Dividers Using Inexact Cells and Estimation From Partial Remainders"
Ieee Transactions On Computers, Vol. 69, No. 4, April 2020, p.p- 468-
474.

L. Chen, J. Han, W. Liu, F. Lombardi, "Design of Approximate
Unsigned Integer Non-restoring Divider for Inexact Computing" Great
Lakes Symposium on VLSI, GLSVLSI- 2015, Pittsburgh
Pennsylvania USA, ISBN- 978-1-4503-3474-7, May 2015, p.p- 51-56.

N. Jamadagani, Jo Ebergen, "An Asynchronous Divider
Implementation" IEEE 18th International ~Symposium on
Asynchronous Circuits and Systems, 1522-8681/12, 2012 IEEE, p.p-
97-104.

P. Saha, D. Kumar, P. Bhattacharyya, A. Dandapat, "Vedic division
methodology for high-speed very large scale integration applications"
Journal of Engineering; Accepted on 7 January 2014 Vol. 2014, Iss. 2,
pp- 51-59.

M. Reddy, Vasantha MH, N. Kumar, D. Dwivedi, "Design of
Approximate Dividers for Error Tolerant Applications" IEEE 61st
International Midwest Symposium on Circuits and Systems-
MWSCAS ISBN- 978-1-5386-7392-8/18, 2018, p.p- 496 — 499.

Andrew Kaplan, "Math on Call: A Mathematics Handbook," Published
2004.

Bassarear, "Mathematics for Elementary School Teachers," Fourth
Edition book, Publisher: Richard Stratton 2008.

S. F. Oberman and M. J. Flynn "Division Algorithms and
Implementations," Ieee Transactions On Computers, Vol. 46, No. 8,
August 1997, p.p — 833 — 854.

S. Dixit and Mohd. Nadeem, "FPGA Accomplishment of a 16-Bit
Divider," Imperial Journal of Interdisciplinary Research (IJIR), Vol-3,
Issue-2, 2017, ISSN: 2454-1362, p.p — 140 — 143.

Muhd. Kasim, T. Adiono, Muhd. Fahreza, "FPGA Implementation of
Fixed-Point Divider Using Pre-Computed Values," The 4th
International Conference on Electrical Engineering and Informatics
ICEEI 2013, Procedia Technology 11 (2013), p.p. - 206 —211.

G. Sutter, G. Bioul, J-P Deschamps, "Comparative Study of SRT-
Dividers in FPGA," Becker J., Platzner M., Vernalde S. (eds) Field
Programmable Logic and Application. FPL 2004. Lecture Notes in
Computer Science, vol 3203. Springer, Berlin, Heidelberg, p.p — 209-
220.

R..S.Hongal, Anita D.J., "Comparative Study of Different Division
Algorithms for Fixed and Floating-Point Arithmetic Unit for
Embedded Applications," International Journal of Computer Sciences
and Engineering, Volume-4, Issue-9, E-ISSN: 2347-2693, p.p- 48-54.

Sukhmeet Kaurl, Suman2, Manpreet Singh Manna3, Rajeev Agarwal,
"VHDL Implementation of Non-Restoring Division Algorithm Using
High-Speed Adder/Subtractor," International Journal of Advanced
Research in Electrical, Electronics and Instrumentation Engineering,
Vol. 2, Issue 7, July 2013, ISSN (Print): 2320 — 3765 ISSN (Online):
2278 — 8875, p.p— 3317 - 3324.

N. Boullis, A. Tisserand, “On digit-recurrence division algorithms for
self-timed circuits,” Inriainstitut National De Recherche En
Informatique Et En Automatique, Research Report RR-4221, inria-
00072398, July 2001, ISSN 0249-6399 ISRN INRIA/RR—4221.

J. E. Robertson, "A New Class of Digital Division Methods," IRE
transactions on electronic computers, Volume: EC-7, Issue: 3, Sept.
1958. P.p—218 —222.

C. S. Wallace, "A suggestion for a fast multiplier," IEEE Trans.
Electronic Computers, vol. EC-13, pp. 14-17, February 1964.

J. Liu, M. Chang, and C.-K. Cheng, "An Iterative Division Algorithm
for FPGAs," FPGA'06, Feb. 22-24, 2006, Monterey, California, USA,
ACM 1595932925/06/0002, pp. 83-89.

2021 IEEE International Conference on Engineering,
Technology and Innovation (ICE/ITMC)

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on May 16,2024 at 21:48:16 UTC from IEEE Xplore. Restrictions apply.

Appendix 3

Publication Il

Appeared in:

Patankar, Udayan; Koel, Ants; Patankar, Sunil; Flores, Miguel;

“Division Method and Circuit” in PTC the International Patent System, International
Bureau of the World Intellectual Property Organization, application no.:
PCT/1B2021/054942, submission no.: 054942, Date: 06 June 2021; published on
15-12-2022, publication no W02022259009.
https://patentscope.wipo.int/search/en/detail.jsf?docld=W02022259009& _cid=P20-
LEVJIH-48100-1

145

PATENT COOPERATION TREATY

From the

INTERNATIONAL SEARCHING AUTHORITY

To:

see form PCTASAR220

PCT

WRITTEN OPINION OF THE
INTERNATIONAL SEARCHING AUTHORITY

(PCT Rule 43bis.1)

Date of mailing
(day/monthjear) see form PCTASAR10 (second sheet)

Applicant's or agent's file reference

see form PCTASAR20

FOR FURTHER ACTION

See paragraph 2 below

International application No.

PCT/AB2021/054942

International filing date (day/nonthyear) Priority date (day/month/ear)
06.06.2021

INV. GO6F7/535

International Patent Classification (IPC) or both national classification and IPC

Applicant
AWADHOOT LABS oU

K KX O

2. FURTHER ACTION

will not be so considered.

whichever expires later.

1. This opinion contains indications relating to the following items:

BJ Box No. | Basis of the opinion

[0 Box No. Il Priority

[0 Box No. Ill Non-establishment of opinion with regard to novelty, inventive step and industrial applicability
[0 Box No. IV Lack of unity of invention

Box No. V Reasoned statement under Rule 43bis.1(a)(i) with regard to novelty, inventive step and industrial
applicability; citations and explanations supporting such statement

Box No. VI Certain documents cited
Box No. VIl Certain defects in the international application
Box No. VIII Certain observations on the international application

If a demand for international preliminary examination is made, this opinion will usually be considered to be a
written opinion of the International Preliminary Examining Authority ("IPEA") except that this does not apply where
the applicant chooses an Authority other than this one to be the IPEA and the chosen IPEA has notifed the
International Bureau under Rule 66.1bis(b) that written opinions of this International Searching Authority

If this opinion is, as provided above, considered to be a written opinion of the IPEA, the applicant is invited to
submit to the IPEA a written reply together, where appropriate, with amendments, before the expiration of 3 months
from the date of mailing of Form PCTASAR220 or before the expiration of 22 months from the priority date,

For further options, see Form PCTASA/220.

Name and mailing address of the ISA:

:@) European Patent Office

D-80298 Munich
Tel. +49 892399 - 0
Fax: +49 89 2399 - 4465

Date of completion of Authorized Officer \
this opinion (ST,

<,
see form . s) :
POTIOAR10 Prins, Leendert | 0» i

Telephone No. +49 89 2399-0 *

%,
%,
e 300 *

Form PCTASAR237 (Cover Sheet) (January 2015)

WRITTEN OPINION OF THE International application No.
INTERNATIONAL SEARCHING AUTHORITY PCT/AB2021/054942

Box No.V Reasoned statement under Rule 43bis.1(a)(i) with regard to novelty, inventive step or
industrial applicability; citations and explanations supporting such statement

1. Statement

Novelty (N) Yes: Claims 1-16
No: Claims

Inventive step (IS) Yes: Claims 1-16
No: Claims

Industrial applicability (IA) Yes: Claims 1-16
No: Claims

2. Citations and explanations

see separate sheet

Box No. VIl Certain defects in the international application

The following defects in the form or contents of the international application have been noted:

see separate sheet

Box No. VIl Certain observations on the international application

The following observations on the clarity of the claims, description, and drawings or on the question whether the
claims are fully supported by the description, are made:

see separate sheet

Form PCT/ASA/237 (January 2015)

Appendix 4

Publication IV

Appeared in:

Patankar, Udayan; Koel, Ants; Flores, Miguel;

“Novel Data Dependent Divider Circuit Block Implementation for Complex Division and
Area Critical Applications,” in NATURE Scientific Reports. Sci Rep 13, 3027 (2023).
https://doi.org/10.1038/s41598-023-28343-3.

149

www.nature.com/scientificreports

scientific reports

OPEN

‘ W) Check for updates

Novel data dependent divider
circuit block implementation
for complex division and area
critical applications

Udayan S. Patankar®'*, Miguel E. Flores®? & Ants Koel ®*

This article elaborates on the state-of-the-art novel Udayan S. Patankar (USP)-Awadhoot algorithm
for distinctive implementation area improvement for area-critical electronic applications. The
proposed USP-Awadhoot divider is a digit recurrence class, but it can be flexibly implemented

as a restoring or nonrestoring algorithm. The implementation example indicates the use of the
Baudhayan-Pythagoras triplet method in association with the proposed USP-Awadhoot divider. The
triplet method provides an easy way to generate Mat_Term1, Mat_Term2, and T_Term, which are
further utilized with the proposed USP-Awadhoot divider. The USP-Awadhoot divider is implemented
in three parts. First is preprocessing circuit stage for executing a dynamic separate scaling operation
on input operands, ensuring the inputs are in the correct form. Second is the processing circuit

stage for implementing the conversion logic expressed by the Awadhoot matrix, and third is the
postprocessing circuit stage for recombining the individual results into the final result. The proposed
divider works upto 285 MHz frequency with a power estimation of 3.366 W, also significantly improves
the chip area requirements over those of the commercially and noncommercially implemented
solutions.

Enhancement in the semiconductor manufacturing industry has proven valuable and innovative for existing
applications such as communications, transport, signal processing, and computation, where mathematics plays
a vital role and enables the evolution of new fields of work and study, mainly data protection, statistical data
analysis, computational processing, signal processing, artificial intelligence, image processing, high-performance
graphics rendering systems (such as graphic processing units (GPUs), complex systems on chips, central pro-
cessing units, biomedical equipment, fuzzy control, and space engineering'~'°. Performance evaluations of
division operation implementations typically fall into the latency range of tens of clock cycles to hundreds of
clock cycles'®-*%. Researchers have focused more on creating better adders and multipliers instead of develop-
ing dedicated algorithms for division operations to improve the divider circuit’s implementation performance.
Therefore, the prospect of improving or developing a new algorithm is plausible. This article elaborates on the
state-of-the-art novel Udayan S. Patankar (USP)-Awadhoot algorithm to achieve distinctive implementation area
improvement. Furthermore, the sections below describe a divider implementation based on the state-of-the-art
novel USP-Awadhoot algorithm; a statistical analysis of its implementation resources; a comparative discussion
with different dividers, complex division operations, and area-critical application followed by the conclusion
and the future work directions.

Division circuit block taxonomy. A study presented in** indicated the performance dependency of a
sophisticated system on a division circuit block implementation. It stated that the slightest improvement, such as
a 1% improvement in a division circuit block, can increase the original system performance by up to 20%. The
hierarchical distribution of various classes of division algorithms is expressed as a division algorithm taxonomy
in Fig. 1 based on conversion logic, hardware architecture, performance, and execution type®!©24-3,

Digit recurrence is one of the most trusted, implemented, researched, and commercially utilized division
algorithms among all divider implementation classes. Restoring algorithms and some nonrestoring algorithms
implement simple conversion logic but requiring longer conversion time and large areas. Although the conver-
sion logic is simple, it is not suited for high-frequency applications due to latency problems. Functional iterative

Tallinn University of Technology, Tallinn, Estonia. 2Electronics School, Don Bosco University, Soyapango, El
Salvador. “'email: udayan.patankar45@gmail.com

Scientific Reports | (2023) 13:3027 | https://doi.org/10.1038/s41598-023-28343-3 nature portfolio

www.nature.com/scientificre ports/

Division Classes

Digit Recurrence i i Look-Up Table

Iterative Predictive/ Distributed
Subtraction Multiplicative

DEC Alpha21164

Self timing

Serial / Sequential Paralle

Figure 1. Division algorithm taxonomy.

class dividers compute a quotient bit based on the estimation or approximation of series expansion functions,
such as the Newton-Rapson algorithm®"*?, Goldschmidt algorithm'"**-%, Taylor series algorithm'"*=*". This
approach utilizes multiplication instead of subtraction operations, reducing the number of required iterations,
and can generate multiple quotient digits in one iteration with low latency, but the area required for a multiplier
is higher than that of an adder or subtractor. This type of divider has a major drawback regarding quotient bit
inaccuracy because of the direct rounding off of approximate solution values rather than infinitely precise values.
The induced error depends on the accuracy of the initial estimation.

In the Newton-Raphson iteration method, which is limited to two multiplications and must proceed in
series, a large error is generated due to the rounding off to approximate value. Reducing this error requires the
introduction of a trade-off between the additional chip area required for the LUT and the latency of the divider.
The Goldschmidt algorithm is another functional iterative divider whose major drawback is that it does not
provide a remainder, making it useful only for floating-point division®*. Another drawback is that 1’s complement
can prevent carry propagation delay, but it adds a new approximation error in each iteration. In Taylor series
dividers, Taylor series expansion is used to calculate accurate anti-divisors (reciprocals) to reduce the error in
the least-important bits of quotient precision with a parallel powering section that computes high-order terms,
leading to extra hardware overhead and increased area requirements.

Variable-latency class*"*? dividers are very rare due to their complexity and area constraints. A high
radix divider*’ reduces the latency but requires a high-capacity LUT, which is impractical for implementation.
The LUT class*”* requires storage such as read-only memory (ROM), which increases the area requirements
of its implementations. For better performance, either optimized area and hardware resources are needed, or
the latency cycles must be interrelated. Three types of hardware architectures can be used for divider imple-
mentations. A serial hardware architecture’*>*® requires higher latency and a larger conversion time, mak-
ing it inappropriate for highly critical applications. A parallel hardware architecture®'*'* contrasts with serial
architectures, requires multiple cores to work together simultaneously, makes synchronization critical, and has
high area requirements, leading to increased implementation costs. A pipelined architecture®*>*>* is the best
choice for achieving parallelism in a sequential architecture with parallel processing. Some or all processes of
division algorithms can be pipelined to achieve partial parallel processing. The radix based SRT division algo-
rithm is one of the most implemented nonrestoring digit recurrence algorithms. The SRT algorithm named after
Sweeney, Robertson, and Tocher is used in serial, parallel, pipelined, and cascaded architectures and various
applications!'®?*?#45-04_ Although the SRT algorithm was the first choice for commercial implementations of the
majority of soft and modern processors, such as Intel’s Pentium processor®, Xilinx’s FPGA controllers®, and the
arithmetic logic units (ALUs) of complex hardware, it is restricted to specific low radix values (significantly less
than 10). Radix-2 and radix-4 are the most implementable formats of the SRT algorithm. The main reasons for
limiting the implementations of the SRT algorithm to low radix values are the increase in the quotient selection
logic’s criticality and the enormous increase in the area requirements of storing LUTs for this logic. It results in
the failure to follow the execution cycle, as it requires multiple clock cycles for execution.

Complex divider. A software or hardware divider forms complex numbers based on the conventional for-
mula using a complex conjugate, where z;, and z, are two complex numbers consisting of real and imaginary
parts. The divide-and-conquer concept must be used to implement two separate dividers for a complex number’s
real and imaginary parts. In the end, these two parts must be connected into one part to represent a complex
quotient and the remainder as a final result. Many different approaches have recommended alternate number
system for complex number representation as a single entity instead of separate real and imaginary parts, but
it increases the complexity of conversion logic, resulting in area overhead®’~"". A software or hardware divider
forms complex numbers based on the conventional formula mentioned in (2), where z;, and z, are two complex

Scientific Reports |

(2023) 13:3027 | https://doi.org/10.1038/s41598-023-28343-3 nature portfolio

www.nature.com/scientificreports/

numbers that may lead to overflow or underflow conditions when the operands are near the extreme ends of the
representable range’”.

z1 =x1 + iy, and z, = x; + iy, 1)

a_ (x1x2 +y1y2) (3231 — x1p2)i
2 (3+) (5 +»3)

Smith’s algorithm solved this drawback by providing a more robust calculation, which was further enhanced
by the Stewart process. Ultimately, the Stewart process makes the algorithm more complex rather than making it
more robust. It also lacks a guarantee regarding the correctness of the rounding process for the quotient’s real and
imaginary parts during complex division. The hardware implementation of Smith’s division algorithm is unsuit-
able because of the overhead caused by the costliest hardware components needed’”. The hardware implementa-
tion of a single divider could be critical and in the complex divider, we must implement two sets of dividers for
the real and imaginary parts of the given complex number, restricting the SRT divider to low radix to keep low
area overhead and less critical conversion logic. In the case of a functional iteration divider, the correctness of the
obtained result depends on the closeness of the reciprocal value selected in the initial iteration. Among several
approaches for high-radix complex dividers, the best is a prescaled divider’>”*, where the divisor and dividend
are multiplied by the same scaling factor so the resultant divisor must be close to unity. The main drawback of
this method is that it requires an extra full-width divider for calculating the scaling factor.

@

Research questions. Many researchers have worked on various parameter improvement techniques, such
as prescaling operands, carry-save remainders, array implementations, truncations, and differential LUTs, lead-
ing to the possibility of developing a new technique or combination of fast or moderate methods in terms of time
and area efficiency. The current article is concerned with the following research problems/questions.

® Investigate the theory of conversion logic to develop a dynamic separate scaling operation/factor for input
operands. Here separate scaling operations/factors mean one for the dividend and another for the divisor.
Also, dynamic means different values for separate scaling operations/factors for different combinations of
input operands.

e Improve the implementation area requirements to realize a dedicated divider circuit.

e Reduce the criticality of conversion logic by avoiding overlapping regions in quotient selection.

We propose a digit recurrence divider based on a state-of-the-art novel USP-Awadhoot algorithm for improv-
ing distinctive divider implementations with moderate operation speeds suitable for complex division and area-
critical applications. In the following sections, we discuss the implementation of a Baudhayan-Pythagoras triplet
method using a novel state-of-the-art USP-Awadhoot algorithm-based divider developed according to the ancient
theories provided by Vedic mathematics during the early centuries. We also discuss the statistical analysis of
implementation resources and elaborate on a comparative discussion with different dividers, followed by a
conclusion and future work directions.

Complexdivisionviathe Baudhayan-Pythagorastripletalgorithmusinganovelstate-of-the-art
USP-Awadhoot divider circuit block. In the present article, we discussed the unique way of complex
division based on the Baudhayan-Pythagoras triplet method and the proposed novel state-of-the-art USP-
Awadhoot divider circuit block. The use of the Baudhayan-Pythagoras triplet algorithm is possible because of
the geometric properties of the complex numbers, which can be used to represent them via real and imaginary
axis. The proposed complex division implementation is partitioned into three parts. The Baudhayan-Pythagoras
triplet algorithm is used for the input circuit stage, ensuring the separation of the real and imaginary parts of
complex number for further calculation. The second stage consists of a novel state-of-the-art USP-Awadhoot
divider circuit block, which actually performs the division in real and imaginary parts of the complex num-
ber. The third stage consists of the recombination stage representing the final results in complex numbers. The
Pythagorean theorem was known long before Pythagoras (570-500/490 BCE); Baudhayan (800-740 BCE) is
said to be the pioneer of the Pythagorean theorem. Baudhayan formulated the relation between the hypotenuse
and other sides of a triangle in terms of the area of the triangle in his book titled Baudhayan Sulbasitra, and in
contrast, Pythagoras presented proof of the relationship between the hypotenuse and other sides of a triangle in
terms of length’*”® giving the equation

Baudhayan-Pythagoras Triplet(x,y,z) = T(x,y,z) (3)

Asi = /—1ori? = —1, we can correlate the Baudhayan-Pythagoras triplet function T'(x, y, z) with the com-
plex number, and we can represent a given complex number in terms of T'(x, y, z). The first two variables of the
triplet are considered the real and imaginary coefficients of a given complex number. The following equations
are used to develop the input circuit stage.

1 =x) + iy and r, = x3 + iy, (4)
T(r) = f(x1,y1,21) (5)
Scientific Reports | (2023) 13:3027 | https://doi.org/10.1038/s41598-023-28343-3 nature portfolio

www.nature.com/scientificreports/

T(ry) = f(x2,y2,22) (6)
T(r1) =f(x1,}/1,21) _
T(r)) f(x2,92,22)

A detailed list of essential terms associated with the input circuit stage of complex divider implementation,
as shown in Fig. 2, given below:

[(x1%2 + y132), (231 — x132), 23] @

e Complex number one is termed r; = x; + y1i.
e Complex number two is termed r, = x5 + y,i.
e The dividend of a complex number is termed “C_D .
e The divisor of a complex number is termed “C_D,”.
e The real number coefficient of the dividend of a complex number is termed “xD,”
e The imaginary number coefficient of the dividend of a complex number is termed “yD ;"
e The real number coefficient of the divisor of a complex number is termed “xD,”.
e The imaginary number coefficient of the divisor of a complex number is termed “yD,”.
o The first triplet product term is named “TP_Term1”.
e The second triplet product term is named “TP_Term2”.
e The third triplet product term is named “TP_Term3”.
e The fourth triplet product term is named “TP_Term4”.
e The triplet term is named “T_Term
e The first triplet matrix term is named “Mat_Term1”.
e The second triplet matrix term is named “Mat_Term2”.
.
bt * ok ok ok ok ok ok ok ok ok ok k Hk k ok ok k ok ok ok k ok ¥
* Triplet Algorithm * *
: v Derive Dividend Complex Derive Divisor Complex M :
Input Operands /. Number (C_Dd) Number (C_Dr) M
R b
7 : Bl Derive (xDd) Derive (xDr) Derive (yDr) & :
= 7 . value value value T
Baudhayan- ,/ . .
Pythagoras 4 b e
Triplet N o €
Algorithm M oF g e
- Ko * *
N T
- * k * *
. .
- .
uspP-Awadh - = : :
-Awadhoot =y : * .
Divider S : . .
> 5 NzC : ‘
* * *
- S \ * r‘m’cuit * *
* Usp- JsP: i . g
\’ Divider1 | Divider2 I_ 14 Modified g N
- * N Iteration -n | Iteration -n V'? D) * *
% = Circuit % :
- K . g
. - * *
* * *
. . H :
* * *
* Complex Number
OUtpUt N Complex Quotient Jill Complex Remainder Error Signal Divider :
Register Register Register
Operands K & < - :

Quotient Remainder Error
Display Display Display

Figure 2. Schematic block diagram of the complex divider.

Scientific Reports |

(2023) 13:3027 | https://doi.org/10.1038/s41598-023-28343-3 nature portfolio

www.nature.com/scientificreports/

The USP-Awadhoot dividend of a complex number is termed “C_Dg;”.

The USP-Awadhoot divisor of a complex number is termed “C_D,;”.

The real number coefficient of the USP-Awadhoot quotient is termed “C_Q,”.

The real number coeflicient of the USP-Awadhoot remainder is termed “C_Rem,”.

The imaginary number coefficient of the USP-Awadhoot quotient is termed “C_Q;”.

The imaginary number coefficient of the USP-Awadhoot remainder is termed “C_Rem;”.
The final quotient of a complex number is termed “C_Q".

The final remainder of a complex number is termed “C_Rem”.

Figure 2 illustrates the process of complex division implementation based on the Baudhayan-Pythagoras tri-
plet algorithm and the proposed novel state-of-the-art USP-Awadhoot divider circuit block. Smith and Stewart’s
algorithm’>”*, represented by Egs. (8) and (9), is generally used for software implementation of complex division,
but the underflow and overflow conditions could occur during extreme distance between divisor and dividend,
which results in the incorrect recombination of the real and imaginary part of the quotient and remainder®”.
We use the Baudhayan-Pythagoras triplet algorithm as an input circuit stage of the complex divider to eliminate
this drawback.

. 2 Y2
n x+in mE@En) Zhi-x)
- = + >
no xtin Z(a+rn) "z (%2 +y2) flazy) ®

X2

no_ X1+ iy _ %(Xl-l‘}’l)i%(xl—)’l) if (<) ©)
a2 Bt | 0

The first stage of the Baudhayan-Pythagoras triplet algorithm circuit block of the proposed divider separates
the real and imaginary parts of the input operands and considers their real numeric values, especially the imagi-
nary number’s real numeric value without considering the imaginary unit (i), which is recombined at the final
recombination circuit block. During the Baudhayan-Pythagoras triplet algorithm circuit block, all operands are
processed to develop the Mat_Term1, Mat_Term2, and T_Term values/signals as an output of the first stage of
the proposed divider. The logic behind Mat_Term1, Mat_Term2, and T_Term is explained in the next section
with Fig. 3. In the second stage, the USP-Awadhoot divider circuit block receives Mat_Term1, Mat_Term?2,
and T_Term values/signals from the first stage. The Mat_Term1, Mat_Term2, and T_Term values/signals are
essential to keep the operations under bounded conditions and avoid underflow and overflow conditions. Dur-
ing the second stage, the USP-Awadhoot divider circuit block generates two sets of the quotient and remainder
values/signals separately as an output. In the final stage, the recombination circuit block rearranges quotients and
remainders into complex numbers by adding an imaginary unit (i) with the real numeric value of the imaginary
coefficient. It provides resultant quantities for display, storage, or further communication. The detailed work is
explained in the next section.

Working theory of the Baudhayan-Pythagoras triplet algorithm. Figure 3a-c illustrates the
schematic diagram of the proposed Baudhayan-Pythagoras triplet algorithm circuit block implementation. It
consists of three circuit stages: input, intermediate, and output. The different signals used in the Baudhayan-
Pythagoras triplet algorithm circuit block implementation are grouped into input operand, control, output, and
indicator signal groups.

The signals | and r, are the input operand data signals; Mat_Term1, Mat_Term2, and T_Term are output
signals; Valid_O/P and Error are indicator signals; and cd_enable, CLK, and RST are considered control signals.
the control group CLK signal provides the timing reference signal for computation execution. The reference
clock signal’s period value is dependent on the working frequency. When the CLK signal continues generating
the reference signal and the control group signals (cd_enable and RST) both possess low logic values, then the
operation of the proposed circuit is in an idle state. The values of the input operand, output, and indicator group
signals are in a high-impedance tri-state condition during the idle state. As shown in Fig. 3a, the input operand
signalsry and r, provide two complex numbers used to perform division operations based on the current statuses
of the cd_enable, CLK, and RST control signals. In the input circuit stage, all real and imaginary parts of input
operands are separated and stored in the input buffer and wait until the cd_enable signal is high (1) and reset
(RST) is low (0), and the output circuit stage initializes the Mat_Term1, Mat_Term2, and T_Term signals from
the output and indicator signal group to 00, assuring that the previous computation results are not involved in
the current computation. Once the cd_enable signal is applied, this signal is used to develop a select signal and
is stored in the control register to connect with further circuit stages. The input operand data is provided for
further computation in the input circuit stage. The input operand data is stored into x1,x2, y1 and y; buffers to
extract xDg, yD 4, xD,, and yD, values, respectively, for the generation of signals B to G.

Figure 3b illustrates the intermediate circuit stage of the proposed Baudhayan-Pythagoras triplet algorithm
implementation. The intermediate circuit stage receives signal B to signal G data from the input circuit stage and
the O signal data from the output circuit stage. The forward signals B, C, D, F, H, and G are generated from the
computation of TP_Term1 to TP_Term4, as

TP_Terml = (xD4 X xD,) (10)

Scientific Reports |

(2023) 13:3027 | https://doi.org/10.1038/s41598-023-28343-3 nature portfolio

www.nature.com/scientificreports/

(a) e (b) S pae s
Y1 T Data_Sig - B - =
[yod_ £
Buffer Reg D— 'll;;:‘n:ll E:le—
es
r1 r/ I_/]/
B
T MULT =
Data_Sig[] [ADD
X1 = i
o X1 Dd_ s Data_Sig|
[Buffer Reg TP T
Term2 —{LH f— Term2|
L] o e A
Select_sig
~ MULT
X2 x2 Data_Sig o
(I uffer| Reg D
(L |17 e
r2 D
1 ®——o
~_ MULT
Y2 v2 Data_Sig _‘;I__
= [Buffer Reg
| L F
—®—o ”
S8 [Saect_sie
MULT H
S~canrt_sig ||| | o wsned PSS
Control —GD G S8 [Salect_sig]
s
A DH
—
By
[
CdﬁEngle Cd_Enable DCd_Enable
CLKD CLK — oCLK
RST > RST . RST

Figure 3. Schematic diagram of the proposed Baudhayan-Pythagoras triplet algorithm circuit block of the
complex divider.

TP_Term2 = (yD,; x yD,) (11)
TP_Term3 = (xD, x yD,) (12)
TP_Term4 = (xDg4 x yD,) (13)

The computed data are stored in separate buffers and provided for further computation based on the selected
signal data to calculate partial Mat_Term1, partial Mat_Term?2, and partial T_Term values. Signals K, L, M, and
N, indicate the partial Mat_Term1, partial Mat_Term?2, and partial T_Term values and transfer the respective
data to the next circuit stage.

T_Term = (xD,)* + (yD,)? (14)
Mat_Term1 = TP_Terml1 + TP_Term2 (15)
Mat_Term2 = TP_Term3 — TP_Term4 (16)

Figure 3c illustrates the output circuit stage of the proposed Baudhayan-Pythagoras triplet algorithm imple-
mentation. It receives signals K, L, M, and N from the intermediate circuit stage and stores the respective data
in Mat_Term1, Mat_Term2, and T_Term buffers. The output circuit initializes the Valid_O/P and Error signals
of the indicator group to 00 to ensure that no previously computed data are included. When the RST signal is
deactivated, the cd_enable signal is activated during the initial state. Partial values are converted into the final
Mat_Terml, Mat_Term2, and T_Term values based on the selected signal logic, and they are utilized as the
Mat_Term1, Mat_Term2, and T_Term output group signals. These signals are connected with the proposed
USP-Awadhoot divider circuit block and complex number recombination circuit to receive the final division
result of complex input operands. The Valid_O/P and Error signal indicates computation completion and invalid
working conditions, respectively. After completing the computation operation, depending on the completion
of data computation, the Valid_O/P and Error are updated and validate the computation and O/P results, i.e.,

Scientific Reports | (2023) 13:3027 | https://doi.org/10.1038/s41598-023-28343-3 nature portfolio

www.nature.com/scientificreports/

OP |Mat_Terml
Mat_ =
Select_sig | Term1,
L Re;
3’1: Mat_Term2
Ma
Term2— >
gER
Select_sig H
M
D 9% |T_Term
Term

Select_sig

Valid_O/P

!

>
[vé
o

Select_sig [Error

Select_sig —
DCd_Euable ’— OD
[CLK
D RST

Figure 3. (continued)

whether the obtained values are correct or incorrect. If a high logic signal activates an RST signal, then the
proposed divider circuit suspends its current computation operation state and resets it to the initialization state.

Working theory of the proposed novel state-of-the-art USP-Awadhoot divider circuit
block. As discussed in the previous section, the novel state-of-the-art USP-Awadhoot Divider Circuit Block
is the second major part of the proposed complex divider. The Baudhayan-Pythagoras triplet algorithm circuit
is used as an input stage to arrange given operands in a required format to be supplied for the next stage of a
complex divider to reduce the criticality of calculation and reduce the area overhead due to complex conversion
logic. The major requirement of using novel state-of-the-art USP-Awadhoot divider circuit block is to reduce the
implementation area for conversion logic. As we know, we have to use separate dividers for real and imaginary
parts in maximum complex dividers. The SRT dividers are restricted to low radix as the implementation area
increases with high radix, making conversion logic very complex due to overlapping regions. Functional iterative
dividers take more area than SRT dividers, and sometimes the final results contain round-off errors. Thus, we
proposed to use novel-state-of-the-art USP-Awadhoot Divider Circuit Block developed on the novel concept of
a dynamic separate scaling operation/factor for input operands to reduce the implementation area for conver-
sion logic and eliminate the overlapping region, which can simplify the conversion logic.

The working theory of the proposed novel state-of-the-art USP-Awadhoot divider circuit block is based on
a three-stage algorithm developed and built on the ancient Indian mathematics (Vedic mathematics) rules. The
detailed embodiments of the state-of-the-art USP-Awadhoot divider circuit block are presented herein with
reference to the accompanying results, facts, and figures that describe a circuit implementation for achieving an
area-effective implementation of the divider circuit with moderate time and power consumption. Figure 4 illus-
trates the functional block diagram of the proposed divider circuit block and is expressed in three circuit stages:
Preprocessing circuit stage, Processing circuit stage, and Postprocessing circuit stage. Numbered blocks {101 to
104} stipulate preprocessing circuit stage components/elements as per the proposed algorithm. The preprocessing
circuit stage accepts the input data (here, the dividend and divisor values) from the external channel, performing
initial input processing and confirming that the data are in their correct form for the primary processing circuit
stage. Arrows between the numbered blocks indicate data flow directions. Numbered blocks {105 to 107} stipulate
processing circuit stage components/elements as per the proposed algorithm. This stage accepts the input data
from the preprocessing circuit, performs iterations to implement the steps involved in the Awadhoot matrix, and
provides separate group quotient bits that are further supplied to the postprocessing circuit stage. Numbered
blocks {107 to 108} stipulate the postprocessing circuit stage components. This stage recombines separate quotient
bits (hereafter termed group quotient bits) and presents the quotient and remainder data separately; output on
the controlling signal verifies the correctness of the division operation performed by the circuit.

Scientific Reports |

(2023) 13:3027 | https://doi.org/10.1038/s41598-023-28343-3 nature portfolio

www.nature.com/scientificreports/

Pt
Tt

CONTROL
INPUT DATA

******t*****

<

koK ok Kk

Circuit Stage

Contral Divisor (Dr)

VA Dividend (Dd)

Register

Quotient
Display

Register

/ Input Circuit InPUt
/ Register Register
2 4 NZC Circuit
2 Modified
/ Divisor
/ - = (MDr)
P_R'? PROCESSING Circuit
CIRCUIT STAGE
Dividend Dividend Dividend
Group 1 Group 2 Group n
Remand Rem and Remand
| 6d || ed || Gbd
| ptem [ptem [prem
_- # \I NDd [NDd \| NDd
] S-Term -
- ¥
113 4 -
/

1 1 1 £ GhbuvENEe e Lo 1t T
PROCESSING | 0 0 / * *
CIRCUIT STAGE - * *

6 n 6 / X

/ , * . *

5 + Post - Processing -

/ ; Circuit Stage i

POST - PROCESSING : /
CIRCUIT STAGE M Quotient Remainder Error Signal

Register

—

Remainder|

Error

.

Display

Display

Figure 4. Schematic block diagram of the proposed USP-Awadhoot algorithm-based divider.

The first number is Divisor (D,), and the second number, Dividend (D), are provided as input data signals for
the proposed divider circuit, and Enable (E), Clock (CLK), Reset (RST), and Fd_Enable are provided as control
input signals for the proposed divider circuit. The preprocessing circuit element covers the input data storage,
control circuit, NZC circuit, and modified divisor circuit. The multiple outputs yielded by the preprocessing cir-
cuit stage are further fed to the processing circuit stage. The processing circuit stage iteratively constructs the core
conversion logic, consisting of a dividend group, a p-term, an ND; S-term and group quotients are arranged in a
particular sequence of steps in one iterative circuit stage. The same element structure is used in all iterative circuit
blocks of the processing circuit stage. At the end of the processing circuit stage, all individual dividend group
quotients and the remainder are passed to the postprocessing stage. The individual dividend group quotients
are recombined to form the final quotient and remainder in the postprocessing stage. In the end, confirmation
of the completion of a successful conversion is validated by the present value of the valid output signal and the
error signal in the postprocessing circuit stage. Detailed descriptions of the three stages are explained further, but
it is essential to understand the vital terms or elements used in these three circuit stages of the USP-Awadhoot
technique for the hardware and circuit implementation of a divider (or simply the USP-Awadhoot division
technique). This approach utilizes a variable conversion time based on the dividend grouping technique. It has
the following important terminology.

e Dy=|[didy...di], where "D," represents dividends with a maximum size of "k" digits.

Scientific Reports | (2023) 13:3027 | https://doi.org/10.1038/s41598-023-28343-3 nature portfolio

www.nature.com/scientificreports/

e Q= [qlqz qkq}, where "Q" represents a quotient with a maximum size of "k — 1" digits. Except
for the condition in which both operands are single digits, the maximum digit size is "k" digits.

o Dy =[didy... di], where "D," represents a divisor with a maximum size of "k" digits.

e R=[rnr......... rk—1], where "R" represents a remainder with a maximum size of "k — 1" digits.

e ND, = [ndrindry...ndry], where "ND," represents a "New Divisor" with a maximum size of

"m" digits. The range is definedas "k — 1 <m < k+1".
e FD= de 1), where "FD" represents a "Flag Digit" with a maximum size of a single digit with a fixed range of

o MD, = [mdimd;y......... md,], where "MD," represents a "Modified Divisor" with a maximum size of
"p" digits. The range is defined as "p < k — 1".

e NZC= |nzcinzcy... nzcp |, where "NZC" represents the "Number of Zeroes Cancelled" with a maxi-
mum size of "p" digits. The range is defined as "p < k — 1".

e ND,;=[nddinddy... nddy], where "ND," represents a "Net Dividend" with a maximum size of "k"
digits.

e GDy= [gddlgdd2 gddk}, where "G,D," represents a "Gross Dividend" with a maximum size of
"k" digits.

After providing all inputs, at numbered block 101, the preprocessing circuit stage obtains a divisor (D,) and
dividend (Dy) with maximum word sizes of "k" digits. The widths of the dividend and divisor determine the
circuit hardware requirements. Prior to storing the input in the operand registers, i.e., the dividend register
and divisor register, the divisor (D,) and dividend (D) operands undergo an input normalization process that
confirms that the input operands’ widths are within the permissible limits and are in the required frame format.
The use of a hex number system aids in keep this stage simple in terms of the implementation. This condition is
not a restriction. In the SRT divider implementation, multiple number systems were used to reduce the critical-
ity in the input circuitry. One of the best examples for expressing this involves binary-coded decimal (BCD)
numbers, as explained in’®, where BCD numbers are used to implement the radix-10 SRT divider. The proposed
algorithm is represented with a hexadecimal number system to provide a robust frame structure for electronic
implementation. It is not restricted to hexadecimal number systems and can be used with other number systems,
such as binary, decimal, and octal systems. The controlling signal circuit generates reference signals to control
individual elements of the proposed divider’s three circuit stages; then, the divisor (D,) undergoes a check for
invalid conditions, i.e., division by zero. This would indicate an error signal at numbered block 108 derived by
signal 115 and redistribute further for display or transmission in the postprocessing circuit stage upon detecting
the invalid condition. In the false case, the divisor (D;) is passed by 109 to numbered block 102, where the circuit
obtains a flag digit (FD) and a new divisor (ND,); this step follows the basic concept of obtaining the FD and ND,.

Later, at numbered block 103, the FD and ND, are used to obtain the modified divisor (MD,) and the num-
ber of zeros canceled (NZC); this step follows the basic concept of obtaining an MD, and the NZC with respect
to Fig. 4. Furthermore, the values of the FD and NZC are supplied to numbered block 104 by the 111 path. At
this stage, dividend sectioning/regrouping is performed, and dividend groups are given out based on the NZC
value provided by the previous step. Unlike the various SRT implementations that utilize operand prescaling
or truncation®”’, a fixed number of dividend sectioning or partitioning operations are performed to enhance
the implementation; the proposed divider performs a cross combination of divisor prescaling and dividend
sectioning or partitioning, giving us the upper hand to achieve area efficiency in the division implementation.

As discussed, the hardware requirements depend on the operand size; the maximum number of iterative
circuit elements never exceeds the maximum operand size. This suggests that if the operand size is 8 bits, then a
maximum of 8 iterative circuit stages is needed. Nevertheless, the number of iterative circuit stages used in a par-
ticular conversion depends on the value of the NZC. Similar to the variable-latency class algorithms, the dynamic
nature of iterative circuit stages provides flexible conversion clock cycles for every dividend-divisor combina-
tion with the possibility of a variable quotient bit retiring rate in different iterations or some iterations requiring
less execution time, resulting in different conversion times in different sets of dividends and divisors. Once the
NZC value is determined, the circuit completes the preprocessing circuit stage and arranges the dividends MD,
and FD in separate dividend groups as per the arrangement shown in the Awadhoot matrix by sending data to
numbered blocks 105-107. The proposed divider’s processing circuit stage performs a computational process on
the Awadhoot matrix (following Fig. 4) to obtain the group quotient’s value and the remainder. Block number
106 shows the iterative circuit stages; as discussed earlier, the maximum number of iterative circuit stages is not
greater than the operand width size. Numbered block 107 is the condition checker, which confirms that the com-
putation ends in the iterative circuit stage. Once block 107 ensures the completion of the computation, the data
are passed to the postprocessing circuit stage at block 108 of Fig. 4. Figure 4 represents the group recombination
circuit followed by a distribution circuit for the separate visualization or transmission of the quotient (Q) and
the remainder (R). After computing the Awadhoot matrix, the individual group quotients are recombined as
per the relative weights and form a final quotient (Q). The final residue or remainder is obtained from the last
iterative circuit stage, depending upon the conversion status.

® First: Net Dividend =0. This shows that the dividend (D) is completely divisible by the divisor (D,), where
the remainder (R) =0 and the quotient (Q) =the partial quotient (PQ,) formed by concatenating the indi-
vidual group quotients (GQ,,).

e Second: Net Dividend = Divisor (D,). This shows that the dividend (D) is completely divisible by the divisor
(Dy), where the remainder (R) =0 and the quotient (Q) = the partial quotient (PQ,) + 1.

Scientific Reports |

(2023) 13:3027 | https://doi.org/10.1038/s41598-023-28343-3 nature portfolio

www.nature.com/scientificreports/

e Third: Net Dividend (ND,) > Divisor (D,). The remainder (R) = R4 the value obtained during the calculation
of the additional quotient (AQ), and the quotient (Q) = the partial quotient (PQ,,) + the additional quotient
(AQ), where the AQ is derived by initializing the count to zero, subtracting the divisor (D,) from the last
iteration of the net dividend (ND,), and incrementing the count by one until we obtain a sub-result that is
zero or less than the divisor (D;).

e Fourth: Net Dividend (ND,) < Divisor (D,). The remainder = the value of the last iteration of the ND,, and
the quotient (Q) =the partial quotient (PQ,,).

The last step of the proposed divider recombines the individual group quotient (GQ,,) in the postprocessing
circuit stage. Upon completing the conversion process, the final quotient and remainder are available, along with
an error signal indicating the conversion’s correctness and the presented data.

Dy=[dydy... dy) and D, =[didy... di] (17)
Division(Q,R) = f(Dg, D;) = f (Awadhoot matrix, Condition) (18)
Awadhoot matrix(GQ,, R,) = f(GD4, MD,, FD) (19)

k
f(GDg4, MD,,FD) = anl[(Rn,l |GDgy) + (P — Term),, — (S — Term),] (20)
Condition(Q,R) = f(NDgy, PQ, AQ) (21)

Therefore, after the last iteration of the Awadhoot matrix, based on the condition function, the final quotient
and remainder value are calculated and represented as follows:

Division(Q,R) = (PQ,0) if NDg, =0 (22)
Division(Q, R) = [(PQ+1),0] if NDg, = D; (23)
Division(Q,R) = (PQ,NDg,) if NDg4, < D, (24)

Division(Q,R) = [(PQ + AQ),Raq] if NDg, > D» (25)

where PQ is the partial quotient, AQ is the additional quotient and Rsq is the remainder generated during the
calculation of the additional quotient.

In most of the performance enhancement schemes utilized in divider circuit block implementations, scaling
down the operands with a common static scaling factor is considered a preliminary option. Different methods
may be available for calculating the scaling factor, but the same factor scales down both operands (divisor and
dividend). Thus, even after scaling down, the relationship between the divisor and dividend remains the same.
Considering that the dividend is (x), the divisor is (y), and both operands are scaled down by a common scaling
factor (m), the relation between the dividend and divisor is expressed as

(x =) = (xn > ym) (26)
Example: If the dividend = 500, the divisor =50, and they are scaled down by common factor 5, then
200 100 1000%
>« -
= b 27)

where the relationship between the scaled-down values is presented as

100
<W x 100> = 1000% (28)

Several ways of finalizing the scaling factor may be available, but the same scaling factor is used to scale down
both operands. By performing scaling, we can reduce the values of operands, which can reduce the number of
iterations required to calculate the quotient bits; however, this does not allow us to reduce the divisor quantity
beyond the preliminary relation. Even though it is possible to further scale down the dividend or divisor, it is
not executed because of the divisor has reached its limits. Nevertheless, doing so increases the area overhead. As
explained in Fig. 4, the preprocessing circuit consists of the control circuit, NZC circuit, and modified divisor
circuit, confirming the use of a dynamic separate scaling operation/factor, reducing the number of iterations
required for the quotient calculation and ensuring that different factors scale down the divisor and dividend.
Partitioning the original dividend value into several group dividends is also considered to ease the process of
designing the quotient bit selection logic. The preprocessing circuit provides a key improvement to achieve
performance enhancement. The processing circuit stage provides restoring and nonrestoring functionality for
executing the division steps described in the Awadhoot matrix. It also provides a second improvement in the form

Scientific Reports |

(2023) 13:3027 | https://doi.org/10.1038/s41598-023-28343-3 nature portfolio

www.nature.com/scientificreports/

of clearer and simpler quotient selection logic without overlapping conditions, unlike in the SRT divider, where
the overlapping region is critical and causes severe losses in the case of misalignment of the overlapping area.

The Awadhoot matrix circuit elements of the processing circuit stage. Figure 5 illustrates the
particular arrangement of the processing circuit stage elements of the proposed algorithm. The structure is
termed the Awadhoot matrix. The Awadhoot matrix provides a computational arrangement of various aspects
of the processing circuit stage of a proposed divider. Figure 5 shows that each column represents an individual
iterative circuit stage, and each row represents the elements of the corresponding iterative circuit stage. We can
use a single set or multiple sets of iterative circuit elements depending on which hardware architecture is con-
sidered for implementation.

The Awadhoot matrix arrangement is composed of the previous remainder (R,_1), the group dividend
(GDgy), the group quotient of the previous iteration (GQ,—), the gross dividend (G,Dg,), the flag digit (FD),
the modified divisor (MD,), the net dividend (NDj,), the present quotient (Q,) and the present remainder
(Ry). The proposed divider circuit hardware requirement depends on the number of dividend groups made in
the preprocessing stage of the divider, and the maximum possible number of dividend groups is related to the
maximum width among the available operands. This Awadhoot matrix arrangement provides a detailed struc-
ture of the processing circuit, which can be realized by serial, parallel, or pipeline hardware architectures. In
the present article, we compare the sequential combinational circuit implementation of the Awadhoot matrix.
Under the idle condition, the values of the previous remainder (R,—;) and the previous iteration group quotient
(Qu—1) are considered zero to avoid any computational errors in an iterative circuit. Upon the execution value
of the first iteration circuit stage, the group quotient and remainder are used as the previous iteration group
quotient (Q,—1) and the previous remainder (R,_), respectively, for the next iteration circuit stage and depend
on the number of dividend groups.

A detailed description of the Awadhoot matrix is given in the patent application. In short, a gross dividend
(GrDyy) is derived from the previous remainder (R,_;) and the present value of the group dividend at the first
level of the iterative circuit stage of the Awadhoot matrix. Further simple addition and multiplication operations
are performed with the gross dividend (G,D,,), previous iteration group quotient (GQ,_;) and flag digit (FD)
to derive the value of the net dividend (ND,,), which is indicated by the p-term terminology in the Awadhoot
matrix. Additional multiplication operations are performed depending on the condition of the present net
dividend (NDg,) value in comparison with the value of the modified divisor (MD;) to obtain the value of the
s-term. Depending on the comparison, the final value of the group quotient (GQ) and the present remainder
(Ry,) are calculated and presented for the next iterative circuit stage or postprocessing circuit stage. During the
execution of the postprocessing circuit stage, all individual group quotient values are recombined together with
the associative weights to form the final quotient value. Later, this final quotient and remainder value are dis-
played or transmitted to other circuits if necessary. We consider the hexadecimal number system to implement
the proposed system due to its ease of use in digital systems and computer applications. Hexadecimal numbers

Dd 4w D
D < Dd
Q
MDr erative age ative age erative age
FD Group Dividend 1 Group Dividend 2 Group Dividend n r! Rn
GDd1 GDad2 GDdn
P - Term1 P - Termz P - Termn
NDd1 NDd2 NDdn
S-Term S-Termz S-Termn
Qi Q Qn

Figure 5. The Awadhoot matrix.

Scientific Reports |

(2023) 13:3027 | https://doi.org/10.1038/s41598-023-28343-3 nature portfolio

www.nature.com/scientificreports/

in digital electronics result in better readability and provide a frame structure with a fixed bit size to represent
each decimal number in a digital form.

We obtain several representation forms in the binary representations of decimal numbers or digits. Some-
times they can be represented by one-bit equivalent binary numbers or multiple-bit binary numbers, whereas
in the case of hexadecimal representation, every hexadecimal digit is defined as a frame of four binary bits. The
fixed frame used for representing hexadecimal numbers in digital or binary form provides better support for
performing operations such as shifting, comparing, and giving a simple logic for quotient bit selection in the
processing circuit stage.

The use of a hexadecimal system also simplifies internal operations, such as concatenating digits in digital
computations. A binary system could also be used, but hexadecimal numbers also provide the advantage of
working with four bits per digit each time. In the binary system, the minimal number of bits to be considered
for computation is one; in the case of a hexadecimal system, four binary bits are used, providing more clarity for
understanding the computation process performed on a digital system with long bitstream data. The conversion
of any digit value of any number system into a single digit by repetitively adding all digits is called a beejank or
digital root. The beejank operation (digital root), alternate beejank operation, deviation, and alternate representa-
tion of addition and subtraction, which we perform during the iteration of the processing circuit stage, exhibit
great ease of use in the quotient bit selection logic developed with the hexadecimal system.

The beejank approach is used to verify answers except for the binary number system; hence, we consider a
hexadecimal number system in the quotient bit selection logic to confirm the correct selection of the quotient
bit in a particular iteration. The same operations are performed with a number and its beejank; if both results
are found to be the same, the answer is verified. The beejank does not indicate a deficiency in the minimum
(zero) and maximum numbers. If the placement(s) of a digit (digits) in a number is/are interchanged, then this
change is not indicated by the beejank. If the beejank is negative, then ‘9’ is added to convert it to a positive value.

(F89AOBCD) ;s = (F+8+9+A+0+B+C+ D) (29)

(F89AOBCD) 6 = (4E)16 = (4 + E)1s = (12)15 = (3)16 (30)
The difference between a number and its nearest base is called the deviation.
Number = (100F),5 Base = 1000 Deviation = 00F (31)

During computation, the deviation also supports the representation of the addition or subtraction of two
numbers as one hexadecimal number, which can reduce the number of steps required in the quotient bit selection
logic and helps to reduce the area requirement and complexity of the quotient bit selection logic.

Implementation statistics and performance results analysis. The very high-speed integrated cir-
cuit (VHDL) hardware description language is used to develop the implementation idea based on the functional
block diagram of the proposed USP-Awadhoot algorithm-based divider. To realize the theoretical concept and
idea of the proposed state-of-the-art novel USP-Awadhoot algorithm-based divider, we develop a synthesiz-
able architecture. This synthesizable architecture implementation provides a unified way of comparing and test-
ing the proposed divider. To develop and implement the proposed USP-Awadhoot algorithm-based divider,
we use the Vivado 2016 simulation tool with the Zybo development board based on Xilinx Zynq XC7Z010,
XCZU7EV-FFVC1156-2-E with Zynq UltraScale + MPSoC and the Quartus Prime Lite simulation software with
the Cyclone IV development board based on the EPACE6E22C8N Cyclone IV FPGA manufactured by Altera to
generate a truth table and cross-verify the simulation results by comparing the outputs separately. Here two dif-
ferent FPGA's (Xilinx and Altera) were used to test the correctness of the logical results when implemented with
different structured FPGAs. Xilinx implementation and simulation statistics of the proposed divider considered
further for comparison. The overall performance of the divider depends on the proposed algorithm for the data-
dependent divider, which determines the latency for a particular input operand combination. To gain complete
control over each implementation detail and make the synthesis as technology independent as possible, we
create a set of components based exclusively on register transfer level (RTL) descriptions. In other words, each
component is described by some structure composed of basic gates, and their connectivity is similar to that of
the various implementations studied during the review.

We verify the simulation output of the proposed divider, which depends on the random number generator
(RNG) outputs for the random and sequential input operand combinations covering complete bit or digit range
operands, as proposed by the truth table. To verify whether the generated output is valid, we prepare a truth
table for every possible operand combination, including the true or theoretical results. We execute this process
for every possible input operand combination and compare its results with the truth table. Any differences in the
results indicate the incorrectness of the calculation and are rectified via corrective actions. Also, all the possible
input operand conditions are sequentially and randomly checked on both experimental test boards. We created
one logic test bench board, as shown in Fig. 6, that can provide operand values with multiple word sizes. The
logic test bench board is designed so that it can check minuscule bit size combinations and offer the flexibility
to add extra bits to the input operands in cases with extended bit sizes. We tested the operation of the proposed
USP-Awadhoot algorithm-based divider with static inputs supplied via separate single-pole single-throw rocker
switches and a continuous sequence generator. We executed simulations with different clock frequencies and
also tested by implementing them in both development boards to determine the working latency and conver-
sion speed.

Scientific Reports |

(2023) 13:3027 | https://doi.org/10.1038/s41598-023-28343-3 nature portfolio

www.nature.com/scientificreports/

S remigDiz
>

s b= LEDI 6 !
Q‘h .

Figure 6. Logic test bench board.

After verifying the simulations and hardware implementations of different versions of the proposed divider
circuit, the implementation statistics of every version are mapped to the LUTs, flip-flops, registers, multiplexers,
latches, adder, subtractor, multiplier, basic gates, clock frequency, and power. In short, the number of transis-
tors or gates used indicates the implemented area, hardware resource utilization, working frequency, and power
consumption needed to realize the proposed USP-Awadhoot algorithm-based divider. Thus, the behavior of the
proposed USP-Awadhoot algorithm-based divider is mapped to the latency performance function designed to
keep track of the required clock cycles for a given pair of input operands. It is the best way to compare implemen-
tation statistics based on area, and the other approach for performance comparison is based on the latency time.

The physical implementation of the proposed divider based on the USP-Awadhoot division algorithm is per-
formed with various hardware implementation techniques, referred to as the implementation versions. A study
of different implementation versions indicates the total trade-offs between area, time, and power, so depending
on the application, one must decide which implementation version should be utilized. Implementation versions
V8.1 to V8.9 are based on 8-bit operands, whereas V16.1, V24.1 and V31.1 are the 16-bit operand, 24-bit operand,
and 31-bit operand implementations, respectively. The variances in the resulting parameters for different versions
of the proposed divider circuit indicate the effectiveness of the corresponding versions.

As mentioned above, version V8.1 is the first implementation version of the proposed USP-Awadhoot divider
with 8-bit operands. All the steps involved in the preprocessing, processing, and postprocessing circuit stages
are implemented sequentially, and the execution of each step is concluded in a separate clock cycle. However,
it requires less implementation area (explained in a further section), resulting in the slowest implementation of
the proposed divider circuit because storing the intermediate values generated during execution is not needed,
as the next step is executed only after the completion of the first step. Version V8.2 is the successor to version
V8.1; it includes storing intermediate values generated during the execution process, causing the area overhead
to increase compared to that of the predecessor version (V8.1). Version V8.3 is the third version of the 8-bit
implementation of the proposed USP-Awadhoot divider in the series utilizing separate clock cycle executions
for each step of the preprocessing, processing, and postprocessing circuit stages. While implementing these ver-
sions, we change the ND, the remainder and the error signal calculation circuit and provide an extra buffer to
hold the values. This improves the accuracy of the output by providing the correct remainder value. Version V8.4
initiates the concurrent execution concept to implement the proposed USP-Awadhoot divider. In this version,
the circuit allows the data available at the input data lines to be stored at input registers, the most significant bits
(MSB) are stored as separate hexadecimal integers, and the least significant bits (LSB) are stored as additional
hexadecimal integers in an array of hexadecimal integer elements for the dividend. The same process is applied
to the divisor. Concurrently, the preprocessing circuit stage formulates the FD and ND, values by working only
on the least significant hexadecimal part of the divisor.

V8.5, V8.6, V8.7, V8.8 and V8.9 are the successors of the V8.4 version of the proposed USP-Awadhoot divider
implementation. In the V8.5 version of the implementation, the processing circuit stage concurrently executes the
ND, and GQ,, calculation steps. In the V8.6 version of the implementation, the processing circuit stage utilizes
the predefined values for error conditions during the concurrent execution of the ND and GQ,, calculations. It
reduces the area overhead and power consumption while increasing the execution speed. In the V8.7 version
of the implementation, the processing circuit stage concurrently executes the residue/remainder and additional
quotient calculations. Based on the concurrent execution process, the ND4 values are compared, and the condi-
tion selection circuit is activated in the postprocessing circuit stage to compute the final values for the quotient
and residue as per the display requirements. In the V8.8 version of the implementation, the processing circuit
stage introduces an extra buffer and counter in addition to those in the V8.7 version to improve the expected
group residue/remainder calculations. This version improves the working clock cycle requirements and main-
tains the same area requirements as the V8.7 version of the proposed USP-Awadhoot divider implementation. In
the V8.9 version of the implementation, the processing circuit stage introduces different logic to implement
alternate conditions to the residue/remainder and additional quotient calculations. This version improves the
implementation area or resource utilization by keeping same clock cycle requirements as the V8.8 version of
the proposed USP-Awadhoot divider implementation. Versions V16.1, V24.1 and V31.1 are the 16-bit operand,

Scientific Reports |

(2023) 13:3027 | https://doi.org/10.1038/s41598-023-28343-3 nature portfolio

www.nature.com/scientificreports/

RESOURCE UTILIZATION

2000
1800
&= 1600
1]
Kol
E 1400
3
2 1200
x
o 1000
S
s
800
<
600
400
200
- B B 1 | = = =
o BE_ REH B HES B85 £ HEEE B AR f
v8.1 v8.2 V8.3 V8.4 V8.5 V8.6 v8.7 v8.8 V8.9 Vie.l v24.1
1 Slice Logic LUTs. 238 358 346 349 401 302 319 319 266 622 1274
1 Slice Register FFs 145 265 265 261 261 237 237 237 146 241 821
' Slice Register Latchs 140 151 149 147 147 123 123 123] 32 438
= F7 MUX 8] ¢ ! 1 26 8 o]] | 2 5
Implementation of Proposed Divider
(a)
L
7,994
8
7
5,887
g 6 5,658
©
>
x
g. i 3,928 -
. 3,535 3,469 ajae ,
< b] 2,788
2,525
2
1
0,108 0,108
° e —
v8.1 V8.2 V8.3 v8.4 V8.5 V8.6 v8.7 vs.g8 V8.9 Vvie.l v24.1 V311

Implementation of Proposed Divider

(b)

Figure 7. Hardware resource utilization of the proposed USP-Awadhoot algorithm-based divider.

Scientific Reports | (2023) 13:3027 | https://doi.org/10.1038/s41598-023-28343-3 nature portfolio

www.nature.com/scientificreports/

Approx Frequency Value in MHz

300

250

150

CLOCK FREQUENCY
285 285
125
100 100 100
I I 76 |
58

45] 50 I I I
va.1 vs.2 v8.3 va.4 V8.5 V8.6 ve.7 ve.s V8.9 vie.l v24.1 V31l

Implementation of Proposed Divider

Figure 7. (continued)

24-bit operand, and 31-bit operand implementations, respectively, based on the modifications performed in
the V8.9 version. V31.1 implementation uses 31 bit operands to avoid overflow condition during conversion.

Figure 7a—c shows hardware resource utilizations required by multiple versions of the proposed USP-Awad-
hoot algorithm-based divider implementations. The results shown in Fig. 7 are the actual data for the proposed
circuit implementation based on Xilinx FPGA and Vivado 2016 simulation tool, which is considered as a baseline
to compare with several other implementations to draw a comparative analysis. The circuit arrangements are
different in terms of how they execute the various states of the logic flow state diagram of the proposed divider
to improve the implementation area and enhance the operational performance with respect to the space, latency
time, and power of the proposed divider circuit based on the USP-Awadhoot division algorithm. While imple-
menting these versions, we must consider that area is an essential point when working with embedded systems.
Based on the slice logic LUT graph of the hardware resource utilization, we confirm that each implementation
requires a minimum of 238 counts of slice logic LUTs after comparing the different 8-bit implementation versions.

Slice logic represent the group of hardware resources necessary to create a configurable logic block. Every slice
logic contains a fixed numbers of LUTs and slice register flip-flops; sometimes, they are accompanied by slice
register latches and multiplexers. A LUT is a collection of logic gates that are hard-wired on an FPGA. LUTs store
a predefined list of outputs for every combination of inputs and provide a fast way to retrieve a logic operation’s
output. A flip-flop is a circuit that is capable of two stable states and represents a single bit. A multiplexer, also
known as a mux, is a circuit that selects between two or more inputs and outputs the selected input. Different
FPGA families implement slices and LUTs differently. For example, a logic slice on a Virtex-II FPGA has two
LUTs and two flip-flops, but a logic slice on a Virtex-5 FPGA has four LUTs and four flip-flops. Additionally, the
number of inputs to a LUT, commonly two to six, depends on the selected FPGA family. A register is a group
of flip-flops that stores a bit pattern. A register on an FPGA has a clock, input data, output data, and enabled
signal ports. Every clock cycle, the input data are latched and stored internally, and the output data are updated
to match the internally stored data.

While implementing the proposed divider, an approximately one hundred and forty-six slice register flip-
flops, and 37 bounded input outputs are required in the case of an 8-bit implementation. The bounded I/O is
divided into two groups of data operands, which are input, and output data lines and control lines used to control
the divider’s operation and indicate an error if it occurs during computation. Some implementation versions
require additional seven-input multiplexers or eight-input multiplexers. Versions V8.1 and V8.6 require eight
seven-input multiplexers, V8.3 and V8.4 require one seven-input multiplexer, and V8.5 requires twenty-six
seven-input multiplexers. Along with the area and power analyses, frequency or cycle time calculations also
form an important part of divider circuit analysis.

The proposed divider’s implementation uses variable power (approximately from a minimum of 0.108 watts
to a maximum of 7.9941 W). It works at up to 285 MHz depending on the implementation version selected, i.e.,
the 8-bit, 16-bit, 24-bit, or 31-bit implementation. Depending on the best suitable hardware resource utiliza-
tion combination and a better performance analysis of the proposed USP-Awadhoot algorithm-based divider
implementation, version V8.9 is the most suitable option for implementation in an application with a lower-to-
moderate range of resource requirements. This version requires 266 slice logic LUTs, 146 slice register flip-flops,
zero latches and 37 bounded input-outputs with no seven-input multiplexers, DSP, or eight-input multiplexers.
Simulation confirms it works at a moderate frequency up to 285 MHz and requires 3.366 watts estimated power
to run. For all the comparative studies we consider version V8.9 of the proposed divider circuit.

Scientific Reports |

(2023) 13:3027 | https://doi.org/10.1038/s41598-023-28343-3 nature portfolio

www.nature.com/scientificreports/

During each clock cycle, the processing unit can perform basic operations such as fetching instructions or
data, accessing memory, and reading or writing data. The processing unit often requires multiple clock cycles to
complete a single process. The processing unit’s frequency is calculated depending on the clock cycles, also termed
the cycles per second or frequency. Here, the clock frequency is considered the system frequency or the divider’s
working frequency. The clock frequency is also considered a reference point for executing different instructions
during the implementation of a particular operation. The frequency of a processing unit is also known as the pro-
cessor’s clock speed. Clock speed is essential for determining the processor’s overall performance. Since proces-
sors have different instruction sets, they may differ in the number of cycles needed to complete each instruction
(or cycles per instruction (CPI)). Some processors can perform faster than others, even at slower clock speeds.
This indicates that studying the clock cycles required for a particular conversion is essential.

Latency analysis is conducted in terms of clock cycles as the behaviour of the proposed USP-Awadhoot
algorithm-based divider is mapped with a latency time performance function designed to keep a record of the
number of clock cycles required given a pair of input operands. Simulations obtain the minimum and maximum
performance of the proposed divider with analytically determining best and worst cases. The use of a latency
time calculation in terms of clock cycles for determining the best and worst cases is rational when comparing
divider performance. To consider the latency time performance of the proposed divider, we choose two options;
the first is a sequential truth table that assures that each combination of input operands is considered during the
execution, and its related data are stored.

The second option is RNG, is suitable for evaluating operands possessing larger word sizes with more sig-
nificance. In the case of the data-dependent divider, the execution time depends not on how large the dividend
is but on how far the divisor is from the dividend. The larger the distance between the dividend and divisor,
the more execution time is needed. We conduct a clock performance analysis of the comprehensive range of
dividends and divisors for 8-bit operands with the RNG and the sequential truth table, where the number of
possible combinations is 65K; for higher bit sizes, only the RNG method is considered due to the possibility of
billions of combinations. There are two possible ways to achieve variable-latency time in the division operation:
one is by varying the frequency for performing the iteration process, and the second is by varying the number
of iterations. One can provide a variable conversion rate or time by having variable latency. Latency is defined
as the total time taken by an operation to generate the first output after providing an input; in other words, it is
the total number of clock cycles required after providing inputs to develop the first result. We conduct a divider
circuit clock performance analysis to understand the nature of the proposed divider.

The proposed division circuit based on the USP-Awadhoot algorithm executes all possible input operand
combinations while performing the divider circuit’s clock performance analysis. Every possible combination of
dividend and divisor values is executed, giving us the details regarding the number of clock cycles required to
compute a dividend-divisor combination. In the present article, we provide the implementation data for the
eight-bit operands, suggesting that the divisor’s width and the dividend’s width are eight bits. The eight bits of each
operand are expressed as two hexadecimal numbers, making it easier to execute the computation. We perform
65K combinations of input operands.

To represent the data in a standard format, we divide the dividend range into three sections with a low range
of dividend values in the first region named dividend range 00, suggesting that the dividend has half-filled four-
bit values or one-digit-lower hexadecimal values; a middle range of dividend values in the second region named
dividend range 80, suggesting a range of half-filled four-bit values to six-bit values or lower two-digit hexadecimal
values; and a high range of dividend values in the third region named dividend range FF, suggesting a range
from six-bit values or lower two-digit hexadecimal values to full eight-bit values or higher two-digit hexadecimal
values. The execution of the proposed divider is performed based on the USP-Awadhoot division algorithm by
considering different divisor values starting from half-filled four-bit values or lower values of single hexadecimal
digits to full eight-bit values or two-digit hexadecimal digit values. A relative presentation between the various
combinations of operands with their required clock cycles is provided to compute the results.

The results generated from this clock performance analysis state that the proposed divider circuit based on
the USP-Awadhoot algorithm requires a variable number of clock cycles to perform division operations on the
particular operands provided at specific times. This shows that the proposed divider circuit requires the fewest
clock cycles (0 clock cycles) when the operands exhibit invalid conditions. An invalid condition suggests that the
divisor value is zero, and division by zero yields an indefinite condition that causes the generation of the invalid
condition. An exception to the invalid condition exists with a dividend value of zero; when the input operand
value indicates that the dividend and divisor values are both zero, then the proposed divider circuit takes slightly
more clock cycles (17 clock cycles) to finish the execution process. The important reason behind this is that the
circuit first detects of dividend value to indicate it as a nonzero value. If it detects a dividend value of zero, it
sets the temporary output to zero and checks the divisor for a nonzero value. If it detects a nonzero value, then
the final answer is zero. In a case with zero, the result must be changed to an invalid result generating an error
signal, which requires extra clock cycles to execute the error signal generation process. The most clock cycles
required for computing operands are two hundred and seventy-five clock cycles for the combination of the low-
est divisor and the highest dividend value, indicating that more iterations must be completed before reaching
the final result. When the divisor value is closer to the dividend value, the number of clock cycles required to
execute the division step is lower.

Figure 8 illustrates the behaviour of the proposed divider, based on the difference between the dividend and
divisor values. It is clear that the performance of the proposed divider is data-dependent, the number of average
clock cycles required over more than half the range of the difference between the dividend and divisor falls into
an almost fixed range of clock cycles. The required values of the average maximum numbers of clock cycles stay
in the range of twenty-eight to sixty-three clock cycles. When the distance between the divisor value and dividend

Scientific Reports |

(2023) 13:3027 | https://doi.org/10.1038/s41598-023-28343-3 nature portfolio

www.nature.com/scientificreports/

70,00

Average Clock Cycles
58 8 & 8 8
8 8 8 8 8

5
8

T

00 01 02 03 04 05 06 07 08 09 OA OF 14 19 1E 23 28 2D 32 5A 64 6E 96 CB DC FO
Difference Between Dividend and Divisor

Figure 8. Clock performance analysis of the proposed USP-Awadhoot algorithm-based divider.

Idle Initialization Operation Next
CLK i AL AL e L) o M A0 S e
Dd X Dividend | Duta=Value)| Next_Data
Dr X Divisor | Data=Value I Next Data
Fd_Enanle —/)
Q_REsult X 00H X I Value
Rem_Residue X 00H X I Value
Valid_O/P \ f f | W
Ervor A i f \
RST { I T,

Figure 9. Waveform analysis of the proposed USP-Awadhoot algorithm-based divider.

value is less, the minimum required average number of clock cycles stays in the range of thirteen to twenty-four
clock cycles. The lowest number of clock cycles (7 clock cycles) is required when the divisor value is unity.

Because the dividend value was previously confirmed to be a nonzero value and no iteration is performed,
the final result value is calculated directly after confirming that the divisor value is unity. Midrange operand
combinations possess clock requirements in the range of fifteen to thirty-five clock cycles. The divider circuit
clock performance demonstrates the variable latency induced by the variable number of clock cycles required
for different operand combinations in the proposed divider implementation and execution.

Waveform analysis. This section discusses the functional waveform analysis of the proposed divider based
on the USP-Awadhoot division algorithm. We present the working conditions of the various signals used or
generated by implementations in different situations, such as idle/initial and off/on states. We consider vari-
ous combinations of dividends and divisors, giving better insight into different signals and data at the time of
a particular conversion process. A waveform analysis is used to study the nine signals data to provide a clear
idea regarding the proposed divider’s working conditions based on the USP-Awadhoot division algorithm. The
nine signals, such as the reference CLK, dividend (D), divisor (D;), enable (F;_enable), quotient (Q_Result),
remainder (Rem_Residue), Valid_O/P, Error and RST required for waveform analysis, are distributed into five
different groups depending on the nature of each signal: the reference group, I/P operand group, control group,
O/P results group and indicator group.

Different dividend and divisor combinations require different clock cycles to operate; the reference group
CLK signal provides the timing reference signal for computation execution. The reference clock signal’s period

Scientific Reports |

(2023) 13:3027 | https://doi.org/10.1038/s41598-023-28343-3 nature portfolio

www.nature.com/scientificreports/

value is dependent on the working frequency; thus, the higher the frequency is, the lower the clock period value.
The I/P operand group consists of the dividend (D) and the divisor (D,) signals, which indicate the dividend
and divisor values, respectively. The control group consists of F;_enable and RST signals to provide start and
end control for the computation process. The indicator group consists of Valid_O/P and Error signals, indicating
computation completion and alerting the system of any invalid working condition or incorrect execution. The
last and essential O/P results group consists of the Q_Result and Rem_Residue signals that provide the values of
the quotient and remainder, respectively, as results of the division operation performed by the proposed divider
based on the USP-Awadhoot algorithm. Figure 9 indicates a reference working waveform diagram concerning the
initial working condition. The initial working waveform is mainly sectorized into an idle state, an initialization
state, an operation state, and the next state. The idle state shows the proposed divider circuit’s nonworking or
stationary condition and beginning state when only a power supply is provided to the circuit after a shutdown.
In the idle state, the CLK signal continues generating the reference signal, and the values of the I/P operand
group’s dividend (Dy) and divisor (D,) signals are in the high-impedance tri-state condition. The control group
Faenavle and RST signals both possess low logic values, suggesting no operation. Similarly, the values of the
indicator group and O/P result group’s Q_Result and Rem_Residue signals are in a high-impedance tri-state
condition, suggesting a stationary work condition. The initialization state indicates the next stage after applying
the Fy_enable control signal to the proposed divider. In the initialization state, the proposed circuit resets the
signal value of the O/P results group to the initial value of 00H, suggesting no result at the start. Later, it fetches
the dividend (Dy) and divisor (D,) data values from the input data lines that are stored in the input operand
registers for further computation, as described in the previous sections. The indicator group’s Valid_O/P and
Error signals are set to logic low values, indicating that no computation operations have been performed yet.

The proposed divider circuit computes the Q_Result during the operation state, and the Rem_Residue signal
provides the absolute value. After completing the computation operation, the Valid_O/P and Error are updated,
and whether the computation and O/P result values are correct or incorrect is validated. At any instance, if a
high-logic signal activates an RST signal, then the proposed divider circuit suspends its current computation
operation state and resets it to the initialization state. The RST signal value is set to low logic, indicating an inac-
tive reset signal that allows the continuing computation process to execute the division operation and compute
the final O/P result values. Thus, depending on the control group signal values, the proposed divider circuit is
ready to execute the next state.

Comparative statistics. Due to strict conversion rules, the division is the most complex essential arith-
metic operation and is difficult to implement. As discussed in the division circuit block taxonomy section, many
ways to identify different divider circuits are available. Given the continued growth of industry and technological
improvements, there is a demand for achieving an efficient trade-off between the area, latency time, and critical-
ity of the conversion logic. Table 1 illustrates different dividers based on their mathematical formulations and
theoretical backgrounds. Digit recurrence-based dividers are the most commercially implemented divider cir-
cuits that provide many ideas, processes, and hardware architectures. However, much room remains to improve
digit recurrence algorithm-based divider circuits’ areas, frequencies, and power levels. We develop a new state-
of-the-art digit recurrence algorithm-based divider named the USP-Awadhoot algorithm divider.

During various simulations performed on the Vivado 2016 simulation tool, the results of different input
operand combinations are collected, forming a truth table for all possible combinations of input operands. The
collected simulation data are summarized into time values, current operand (dividend and divisor) values, the
present values of the control signals, and the outputs (quotient, remainder, error state, and valid output) obtained
by the computation of the algorithm. The data collected from the output of the Xilinxs simulation and hardware
implementation on Xilinxs FPGAs are compared with their known solutions from the reference truth table pre-
pared from theoretical calculations. Once the data obtained from the output of the hardware implementation are
successfully compared, the resources and execution speeds obtained with various divider implementations are
determined. However, the hardware resource utilization data presented in Fig. 7 of the proposed USP-Awadhoot
algorithm-based divider is considered further for comparative analysis.

Bailey' presented an article about statistical implementation data for restoring and nonrestoring algorithms
in 2006. He presented a comparative analysis of the FPGA and Handel-C software implementation of restoring
and nonrestoring division algorithms. These algorithms were implemented on RC-100 and RC-300 development
boards produced by Celoxica using Xilinx’s Spartan-IT and a Virtex-II FPGA. A statistical comparison between
the algorithms implemented as macro expressions with the Handel-C built-in integer divider is presented. For
comparison, only restoring and nonrestoring algorithms based on the basic equations expressed in an earlier
section are used without implementing the radix SRT algorithm.

The comparison presented in Table 2 concludes that Handel-C built-in divider is the slowest, as it can work
on frequencies near 10 MHz. The chip area required in the FPGA is approximately more than double the area
required by the proposed USP-Awadhoot algorithm-based divider. In Handel-C implementations, the use of
subtraction for performing comparisons, its reuse as an input to a multiplexer, and the utilization of separate
LUTs for addition and multiplexing requires extra hardware, limiting the speed improvement. The basic ideas
of restoring and nonrestoring division algorithms can be implemented in a sufficiently small chip area, but the
maximum working frequency is low. The number of LUTs may vary based on the hardware description languages
(HDLs) used to implement the above algorithms.

In°, Matthews et al. discussed integer divider designs for the ascendancy of FPGA-based soft-processor over
the adaptation of variable-latency execution units in their instruction pipeline. The implementation efforts were
focused on the Quick-Div divider, which exhibits data dependency and variable latency in integer division. This
divider was integrated into the FPGA-based Taiga RISC-V pipelined soft processor.

Scientific Reports |

(2023) 13:3027 | https://doi.org/10.1038/s41598-023-28343-3 nature portfolio

www.nature.com/scientificreports/

Sr. no.

Algorithm

Equations

Important points

1 Restoring divider

For Jth iteration

g =0if Rl <0

qj = 1if Rj’ >0
Rj=2Rj_; if g =0
Ry =R if ¢=1

R/ =2Rj; — D;

It is similar to the long division algorithm

Simple logic for implementation

No requirement for a LUT

Iterative subtraction is performed

The nonredundant number system is used to write a
quotient

If the partial remainder value is not positive or zero, then
the divisor is restored by the subtraction result performed
in that iteration

It requires a full-width comparator in each iteration, and
the subtractor, shift register, and multiplier provide the
approximate area requirement for algorithmic implemen-
tation

Checks for possible MSB losses and overflow are needed

Requires a full-width comparison at every iteration to
obtain one bit of a quotient

The quotient needs to be rearranged to obtain the actual
quotient

2 Nonrestoring divider

For Jth iteration

g =—1if Ri_1 <0

g =1if Ri_; >0

Rj =2Rj—1 + D, if q=—1
Rj =2Rj_1 — Dy if q=+1

Similar to the restoring algorithm, it does not require
restoring the partial remainder if the subtraction result is
negative

No requirement for a LUT

The operation in each iteration depends on the result of
the previous iteration

Only one addition or subtraction operation can be per-
formed in each iteration, so separate hardware is needed

The partial remainder is kept between — Dr and + Dr, and
the quotient digit is — 1 or 1

It requires a sign bit to decide whether to perform addi-
tion or subtraction; the adder, subtractor, and shift register
give the approximate area requirement for algorithmic
implementation

Requires an extra bit to be added with the partial remain-
der to have a track on a sign

Requires a separate adder and subtractor in each iteration

The area utilization of the implementation is approxi-
mately equal to the area required to implement the adder,
subtractor, and shift register

3 SRT divider

For Jth iteration
g =1 if 2Ri_; < —D;,
qj =0 if =Dy <2Rj_; <D,
g =1 if 2R > D,
Has one of the values -m, -m+1... =1, 0,+1... m—1, m,
where m is an integer comprising k digits of radix-n as
ln—1D<m=<n-1
n=2" and k=x/b
k —
Q= Ejzl gin”’
Quotient q is generated as a dividend through division
by a divisor with the x most significant bits to remove

b bits from the quotient in each iteration. Thus, radix-n
performs k iterations to obtain the desired quotient

It is a nonrestoring algorithm based on radix-n

Named after Dura W. Sweeney, James E. Robertson, and
Keith D. Tocher

For x bits, integer division requires k=x/b iterations,
where b= the number of bits detected in each iteration

n decides how many quotient bits are to be detected in
each iteration; if n=2, then one quotient bit is detected
per iteration, and radix-n is typically selected as a power
of base 2

Each quotient digit has a value from {-m, -m+1, ..., -1,
0,1, m-1, m

The algorithm implements 2’s complement value of D,
instead of D,. This enables shifting over zeros to eliminate
extra adders and subtractors

It needs an extra subtractor to determine the next partial
remainder

Error results are obtained due to few MSBs being used
to predict the quotient bits (as in the low radix case); the
error decreases with the increase in the radix

A quotient selection table plus a carry-saving adder (CSA)
gives the approximate area requirement for algorithmic
implementation. It requires a quotient selection LUT. This
shows the iteration time of accessing the quotient selection
table plus multiple additions and subtractions

Selecting higher quotient bits causes complexity in the
quotient selection logic, and higher radix implementations
are complex due to the impractical multiples of the divisor

It needs to convert the last remainder to a conventional
representation to find the sign bit, and the quotient correc-|
tion stage selection depends on the sign bit

Continued

Scientific Reports | (2023) 13:3027 |

https://doi.org/10.1038/s41598-023-28343-3

nature portfolio

www.nature.com/scientificreports/

Sr. no.

Algorithm

Equations

Important points

4 Very high radix

kA

It removes more than ten quotient bits in one iteration;
it requires a very large LUT with a large capacity for the
quotient selection logic. A LUT is required for obtaining
initial approximations of the reciprocal and the quotient
digit selection logic

It uses multiplication to form divisor multiples

It differs from the regular radix-n divider in terms of the
number and type of operations used in each iteration and
the quotient digit selection logic

A high radix makes quotient selection logic more complex
and impractical to implement

5 Taylor series

q=Dy/Dy and Xo = 1/D,

q=DygXo{1+ (1 —D;Xo) + (1 — D;Xo)*
+(1 =D Xo)'}

D, = Dividend and D, = Divisor

1/D, = Antidivisor

It is a multiplicative iteration-based algorithm that thus
requires a large area

The precision depends upon the closeness with the antidi-
visor (reciprocal) estimation

It provides a parallel powering section that computes
high-order terms faster, with a minimal extension of the
hardware overhead

A quotient digit selection logic LUT and a three-full-
word-length multiplier give the approximate area require-
ment for algorithmic implementation

6 Newton-Raphson

Q=Dy/Dy=px ()~

fX)=1/X-q"'=0
(Xi)

Xiy1 =X, — 132

L
Xipr=X =) =i x @ g7 x X))

€iv1 =€l
p = Dividend and (q)~' = Antidivisor

The accuracy can be improved by selecting a proper root
at the beginning

The latency and error during convergence are directly
dependent on the root selected at the beginning of the
convergence process, the iteration time is approximately
equal to the time required for two serial multiplications

A multiplier, a quotient selection LUT, and control logic
give the approximate area requirement for algorithmic
implementation

The final quotient is derived by multiplying the approxi-
mated reciprocal and dividend

Shows the error induced due to the inaccuracy of the
quotient digit prediction or estimation

It requires multiplication and addition or subtraction at
each iteration, and using 1’s complement induces more
error

7 Goldschmidt

Dy/D, = N/D = A/B
Xnp1 = %0 (2= yn) = Xatu
Y1 =yn(2 = yn) = yurn

It is a convergence-based functional iterative class divider
algorithm

It multiplies both the dividend and divisor by the antidivi-
sor or reciprocal

It originates from the Taylor-Maclaurin series of 1/(x + 1)

It does not provide a remainder

1’s complement can be used instead of (2 — y,,) to avoid
carry propagation delays, but this adds a new approxima-
tion error in each iteration

A quotient digit selection logic LUT, a one-full-word-
length multiplier, and a one-full-word-length adder/
subtractor logic give the approximate area requirement for
algorithmic implementation

8 Variable-latency

pr—

Its variable execution time thus results in different conver-
sion times for different sets of dividends and divisors

Self-timing, result caching, and quotient digit speculation
are some techniques used to provide variable latency

8 Variable latency

P

The DEC Alpha 21,164 is one of the best variable-latency
class algorithm implementation examples, based on the
concepts of the simple normalizing and nonrestoring
division algorithm

9 Svoboda algorithm and Svoboda-Tung algorithm

m—1)

{7m/n7 1 <Rj<m/n— 1}

Range = {0,=%1,... , tm}

Boundry limit ={n/2+1<m<n—1}
m = Range of SBD and n = Radix

The quotient digit is predicted based on the partial
remainder without considering the divisor; one or two
MSBs of the partial remainder are used for generating
quotient digit selection logic

It can select a quotient digit out of the radix range if an
overflow occurs due to compensation

It requires prescaled operands and can work on conven-
tional and signed digit ranges

It is also a radix-n based algorithm with signed binary
digit numbers, making it similar to the SRT algorithm

It is applicable more than radix 4, and Prescaled operands
are needed; it needs extra multipliers, resulting in more
hardware overhead

Continued

Scientific Reports | (2023) 13:3027 |

https://doi.org/10.1038/s41598-023-28343-3

nature portfolio

www.nature.com/scientificreports/

It is the simplest parallel computing algorithm

The basic phenomenon behind this algorithm is to con-
sider division as a fraction

Ny = 222()4 X2n+:22n+i It requires an actual dividend greater than the divisor, i.e.,
o1 o o1 . o .
10 Smaller dividend Ny =37 2! a dividend bit count of 4n and divisor bit counts of n
Dg=Ni +N; We can represent dividends in terms of fixed partitions
Dy/Dy = (N1 + N2)/Dy = N1/Dr + N2 /Dy based on their associated weights as per the dividers’ radix
values
The area is directly dependent on the number of dividend
partitions related to the dividers’ radix values
It is applied when complete division is performed on long
integer operands in digital computation, even after know-
ing that the remainder is zero
D,=d*Q It starts from the least significant digits of the operands
Dy = Ddupk”k + D Remarkable performance is observed when the radix is a
_ —k rime or power of 2
11 Jebelean exact division b= (’” de)modd P P

by — (—n_k D) It takes constant execution time to access a fixed-word-
k= modd ik) length LUT
modPower calls and ParallelPrefixSum call = O (logn)

It takes O(log n) execution time, and for short division,
O(n/p + logp), where n is the word length of the dividend
and p is the number of processors

It needs synchronization to execute calculations in parallel

Table 1. Summary of a comparative study on different division algorithm-based dividers.

Handel-C 747 721 10,965
Restoring 115 13,716 | 20,345
Nonrestoring 144 24,175 | 40,073
Nonrestoring with pipeline 66 37,806 | 63,558
Proposed USP-Awadhoot divider version V8.9 | 266 50 285

Table 2. Comparative analysis of the resource utilization of the proposed USP-Awadhoot algorithm-based
divider with those of the Handle-C and digit recurrence algorithm-based dividers.

Radix-2 1500 1100 375
Radix-4 1520 1200 350
Radix-8 1990 1000 350
Radix-16 2100 1200 300
Quick-Div initial 1600 1000 350
Quick-Div count leading zeros 1600 1150 375
Quick-Div CLZ-2BIT worst-case optimization 1700 1100 300
Proposed USP-Awadhoot divider—8 bits version V8.9 266 146 285
Proposed USP-Awadhoot divider—16 bits version V16.1 622 241 125

Table 3. Comparative analysis of the resource utilization of the proposed USP-Awadhoot algorithm-based
divider with variable-latency Quick-Div dividers and fixed-latency radix-n dividers.

Taiga is a RISC-V open-source soft processor. Experimental implementations are performed over the Xilinx
Virtex UltraScale + VCU118 board (XCVU9P-L2FLGA2104E) using Vivado 2018.3 synthesis. With ascendancy
over the variable-latency execution unit’s operation in the Taiga soft processor instruction pipeline, all dividers are
realized with the RISC-V Taiga soft processor. A comparative statistic is derived between the implementations of
the data-dependent variable-latency Quick-Div dividers and fixed- latency radix-n (n=2, 4, 8, 16) dividers with
the RISC-V Taiga soft processor. Quick-Div dividers are unsigned processes, so sign conversion is performed
before and after conversion; completion is required depending on the instruction operands and types. Therefore,

Scientific Reports | (2023) 13:3027 | https://doi.org/10.1038/s41598-023-28343-3 nature portfolio

www.nature.com/scientificreports/

2500

2000

&
8

Approx Number
§

IP core-pipelined divider 8-bit 2247 4020 1400 204.3
IP core-pipelined divider 16-bit 2742 4904 1680 201.6
IP core-pipelined divider 32-bit 3843 6864 2240 193.1
Proposed USP-Awadhoot divider—8 bits version V8.9 266 146 0 285
Proposed USP-Awadhoot divider—16 bits version V16.1 | 622 241 0 125

Table 4. Comparative analysis of the resource utilization of the proposed USP-Awadhoot algorithm-based
divider with that of the Xilinx IP core-pipelined divider.

i Slice Logic LUTs 1 Slice Register FFs

Radix-2 Radix-4 Radix-8 Radix-16 Proposed Divider
SRT Based Radix Dividers

Figure 10. Comparative analysis regarding the hardware resource utilization of the proposed USP-Awadhoot
algorithm-based divider and radix-n-based dividers.

Quick-Div requires an additional three cycles for sign conversion. Table 3 illustrates the comprehensive results of
the variable-latency Quick-Div dividers and the fixed-latency radix-n (n=2, 4, 8, 16) dividers with the RISC-V
Taiga soft processor compared with those of 8/16-bit USP-Awadhoot dividers. This indicates that the variable-
latency Quick-Div dividers and fixed-latency radix-n (n=2, 4, 8, 16) dividers require 5 to 7 times more chip
area than the proposed USP-Awadhoot divider; this is represented by the numbers of slice logic LUTs and slice
register flip-flops used for the implementation. In contrast, the maximum clock frequency is almost double the
maximum clock frequency of the proposed USP-Awadhoot divider.

In’, Sorokin discussed the implementations of fixed-point dividers based on different algorithms on Xilinx’s
common FPGA platform. Different divider modules have been compared with Xilinx’s 32-bit IP core-pipelined
divider. This indicates that a nonrestoring algorithm-based fixed-point divider module is much faster than the
32-bit Xilinx IP core-pipelined divider. This paper points out that the results are more approximations than
exact values and demonstrate more practical division operations than digital operations. These approximated
values can cause trouble in more critical applications, such as biomedical applications, sensor signal processing,
coordinate computation for an item, etc.’. As we have discussed earlier, even for integer division, we must use
a fractional divider, which includes a fixed-point or floating-point divider; thus, floating-point implementation
is critical and complex, making it sometimes impracticable. Out of many theoretical concepts, one practicable
solution was provided by Xilinx’s IP core-pipelined divider’®. 32-bit input operands produce 32-bit remainders
in many cases, making them impossible to implement in applications where high calculation precision is needed.
Another implementation-focused problem in this article concerns the chip area requirements of this solution. The
fixed-point algorithm follows the basic principles of the simple paper-and-pencil division algorithm. A fixed-bit-
length quotient is generated in every iteration of a fixed-point divider, similar to digit recurrence dividers. Much
attention is given to improving the addition and multiplication operations, as speeding up addition operations
reduces the computational time required in the actual division process. Replacing the divisor with its inverse
value can allow the use of multiplication by an antidivider to obtain division results.

Speeding up dividers has been achieved by developing fast adders, carry look-ahead adders, matrix- or array-
type adders, etc. Xilinx’s Ip core divider has certain properties, such as the availability of drop-in modules for

Scientific Reports |

(2023) 13:3027 | https://doi.org/10.1038/s41598-023-28343-3 nature portfolio

www.nature.com/scientificreports/

1600

1400

1200

1000

600

Resource Utilization

200

IP core from MegaWizard PST (DSP) PST (non DSP) Pre d divider Idschmidt's algorith Proposed Divider

Different Functional Iteration Division Algorithms

Figure 11. Comparative analysis regarding the hardware resource utilization of the proposed USP-Awadhoot
algorithm-based divider and different functional dividers.

Virtex, Virtex-II, Virtex-II Pro, Virtex-4, Spartan-3, etc. The dividend can be up to 32 bits and has a fully pipe-
lined structure. Table 4 compares 8/16/32-bit Xilinx IP core-pipelined dividers and the proposed USP-Awadhoot
divider. This indicates that Xilinx’s IP core-pipelined dividers are bulkier, with three to five times more chip area,
and the maximum clock frequency is almost the same as that of the proposed USP-Awadhoot dividers.

Many nonrestoring algorithms have been designed and implemented, but the SRT algorithm is the most
implemented approach. The basic SRT algorithm was implemented in>*!»!$20:25:4251.626876-83 for different appli-
cations utilizing different aspects of the algorithm. Figure 10 illustrates the comparative analysis regarding the
hardware resource utilization of the USP-Awadhoot division algorithm-based divider and other SRT-based
radix-n dividers. On average, the proposed USP-Awadhoot algorithm-based divider requires 266 slice logic
LUTS, 146 slice register flip-flops with a power dissipation estimation of 3.366 watts. In contrast, the radix-2 to
radix-16 divider implementations require 1500 to 2100 slice logic LUTs and 1100 to 1200 slice register flip-flops’.
This indicates that the concept of different prescaling factors for the input operands used in the proposed USP-
Awadhoot divider helps reduce its chip area requirements.

From the commercial and noncommercial implementation points of view, two classes of dividers are the main
focus. One is the famous digit recurrence class, and the other is the functional iteration class of dividers. In°,
Tatas et al. discussed different concepts involved in partitioning the main dividend into segments to represent
an actual division of a numerator by a denominator as a series of smaller divisions with necessary requirement
for numerator to meet (Numerator N= N1 + N2 +...). This concept of a series of divisions showcases a smaller-
dividend division algorithm, where we must perform shifting, partial division, and accumulation operations.
All intermediate operations are performed by considering the weights of the dividend bits.

N N1 N2 N3 N4
D_D+D+D+D+ (32)
This algorithm can be implemented in both series and parallel architecture®, but a higher-radix system is
critical and difficult to implement. The partitioned numerator’s partial division process can be performed seri-
ally or in parallel due to the trend between cost and time. This algorithm is implemented with a length of N, D
32-bit dividends and a parallel-array divider, a sequential divider with two partitions, or a parallel divider with
two partitions in the partial division stage. These implementations require 4316, 2136, and 3050 slices on a Xilinx
Virtex-E 1000. From the above data, it is clear that the sequential implementation of the proposed algorithm
is more area-efficient and moderate in terms of the time delay. If any corrective stage is required in a sequen-
tial divider, this will degrade the efficiency of serial dividers. In contrast, parallel implementation produces a
slight reduction in the delay but insufficient decreases in the area and latency. The array implementation of this
algorithm is inefficient as it increases the chip area by four times based on doubling the word length. Whereas
the proposed USP-Awadhoot algorithm-based divider does not partition the given Numerator (Dividend) into
smaller dividends like mentioned above (Numerator N = N1 + N2 +...). The USP-Awadhoot algorithm-based
divider converts the Numerator (Dividend) into group dividends, which are not required to add up to the main
Dividend value. The proposed USP-Awadhoot algorithm-based divider requires 266 slice logic LUTs, 146 slice
register flip-flops with a power dissipation estimation of 3.366 watts indicating better implementation area
performance.

Scientific Reports |

(2023) 13:3027 | https://doi.org/10.1038/s41598-023-28343-3 nature portfolio

www.nature.com/scientificreports/

Parameter/result Casel |Case2 |Case3 |Case4 Proposed divider version V8.9
Dividend width 8 8 8 8 8

Divisor width 8 8 8 8 8

Remainder and quotient width | 8 8 8 8 8

LUT6-FF pairs 223 218 217 215 000

Slice logic LUTs 203 205 203 197 266

Slice register flip-flops 288 288 288 288 146

IC name Virtex7 | Kintex7 | Virtex6 | Spartan6 | Xilinx Zynq XC7Z010

Table 5. Comparative analysis regarding the resource utilization of the proposed USP-Awadhoot algorithm-
based divider and Xilinx’s LogiCORE IP divider generator V4.0.

In?’, Kasim et al. discussed a divider block with precomputed values stored in ROM in terms of a LUT. This
divider operation is similar to the dividers based on functional iteration algorithms such as Goldschmidt’s algo-
rithm and Newton’s method?’. The result of this divider is also an approximate value, unlike those of iterative
subtraction class-based dividers. In*, Liu et al. discussed an algorithm that utilizes prescaling, series expansion,
and Taylor series expansion together; hence, it is sometimes called a phase stretch transform (PST) algorithm. At
the start, both operands are prescaled up to the suitable starting level. Operand prescaling is performed based on
a scaling factor EO, stored in a LUT. In the second stage of the PST algorithm, series expansion is applied to the
scaled operands to obtain an accurate antidivisor approximation. To calculate the partial quotient and the next
remainder in the iteration stage, it utilizes 0-order Taylor series expansion. The iterative process must continue
until a quotient is obtained with the required precision range of error. Three Taylor expansion iterations and a
LUTs are needed to finish one operation.

Figure 11 illustrates a comparative analysis regarding the hardware resource utilization of the proposed USP-
Awadhoot algorithm-based divider implementation and that of different functional iteration divider implemen-
tations, as discussed above. As per the performance comparison between the proposed USP-Awadhoot divider
and the Mega Wizard IP core, DSP, and non-DSP structures of the divider algorithm, the resource utilization
of the proposed USP-Awadhoot algorithm-based divider includes 266 slice logic LUTs, 146 slice register flip-
flops with a power dissipation estimation of 3.366 watts; whereas the PST algorithm-based divider requires 213
slice logic LUTs, 768 bytes of memory, and 28 DSP*, the PST algorithm-based divider without DSP needs 1437
slice logic LUTs and 768 bytes of memory. The precomputed divider and Goldschmidt’s algorithm-based divider
require 647 and 816 slice logic LUTS, respectively. The divider algorithm’s Mega Wizard IP core, DSP, and non-
DSP structures significantly delay the results, as their maximum clock frequencies are limited to 50 to 73 MHz.
This framework does not save sufficient area relative to the proposed USP-Awadhoot divider. Additionally, the
precomputed values introduce rounding errors in the calculation process. The proposed USP-Awadhoot divider
displays better implementation area requirements and maximum clock frequency performance.

Table 5 illustrates a comparative analysis regarding the resource utilization of the proposed USP-Awadhoot
division algorithm-based divider and the Xilinx LogiCORE IP Divider Generator V4.0°%. The proposed USP-
Awadhoot algorithm-based divider requires 266 slice logic LUTs, 146 slice register flip-flops, and a total of 37
bounded I/0’s for providing input operands and reading the quotient and remainder outputs. The operating
speed of the proposed divider is given in terms of its operating frequency, which is equal to 285 MHz, with a
power dissipation estimation of 3.366 watts. The implementation statistics are derived for the proposed divider
with a dividend width of eight bits, a divisor width of eight bits, a quotient width of eight bits, a remainder width
of eight bits, and Error and Valid_O/P signals. The Valid_O/P signal indicates the computation’s completion,
whereas the Error signal indicates an invalid condition caused by a divisor value of zero, i.e., the divide-by-zero
condition. The resource utilization analysis of the proposed divider implementation is conducted with Xilinx’s
LogiCORE IP Divider Generator V4.0. Xilinx is the leading candidate in the IC industry and has a wide range
of Intellectual property (IPs). We consider Virtex 6 and 7, Kintex 7, and the Spartan 6 FPGA from Xilinx during
the comparison. The number of slice register flip-flops used is constant at 288 for each FPGA IC, whereas the
number of slice logic LUTs used ranges from 197 to 205 and the number of input LUT-FF pairs used slightly
varies from 223 to 215 for Virtex 7, Kintex 7, Virtex 6 and Spartan 6. The document does not mention the power
consumption of the LogiCORE IP Divider Generator V4.0, whereas the proposed divider based on the USP-
Awadhoot division algorithm simulation estimates 3.366 Watts.

The proposed USP-Awadhoot algorithm-based divider implementation utilizes 64% less FPGA hardware
resources than the Handel-C built-in divider but, it requires 57% and 75% more FPGA hardware resources
than simple restoring and nonrestoring dividers. The proposed divider’s working frequency based on the USP-
Awadhoot algorithm implementation versions is approximatly 50% greater than other performances presented
in', indicating the FPGA resource utilization improvement achieved by the proposed USP-Awadhoot algorithm-
based divider implementation. Based on the statistics presented in’, the proposed USP-Awadhoot algorithm-
based divider implementation shows improvements in its FPGA resource utilization in terms of 86% to 88%
improvements in the number of required slice logic LUTs (depending on the use of 8-bit or 16-bit operands)
and 95% to 96% improvements in the number of slice register flip-flops required (depending on the use of 8-bit
or 16-bit operands). Based on the statistics presented in°, the proposed USP-Awadhoot algorithm-based 8-bit
divider implementation shows improvement in slice logic LUTs and slice register flip-flops requirement as the

Scientific Reports |

(2023) 13:3027 | https://doi.org/10.1038/s41598-023-28343-3 nature portfolio

www.nature.com/scientificreports/

proposed divider implementation do not require any six input LUT-FF pairs. As compared to the variable-latency
Quick-Div dividers and fixed-latency radix-n dividers but the results exhibit a comparatively lower working
frequency of 285 MHz for the proposed divider. The power required for variable-latency Quick-Div dividers
and fixed latency radix-n dividers is not mentioned, but the proposed divider simulation estimates 3.366 Watts.

As per the comparative statistics presented in?’, the proposed USP-Awadhoot algorithm-based divider imple-
mentation exhibits an FPGA resource utilization improvement in terms of a 58% improvement in the number
of required slice logic LUTs compared to that of the precomputed divider, a 67% improvement in the number of
required slice logic LUTs compared to that of Goldschmidt’s algorithm-based divider, a 76% improvement in the
number of required slice logic LUTs compared to that of the divider developed from Quartus Mega functions.
The proposed divider does not induce any errors in the computed results and simulations estimated required
power of 3.366 watts. As per the statistics presented in* It achieves a 82% improvement over the IP core from
MegaWizard’s operating frequency as it is upto 50.16 MHz and a 75% improvement over the PST-DSP and non-
DSP dividers as it is upto 73 MHz. The proposed divider requires no extended memory or DSP compared to the
IP core from the MegaWizard and the PST divider.

Conclusion

The evaluation of addition and multiplication implementations typically falls into the latency range from a
couple of clock cycles to less than ten clock cycles, while the performance evaluation of division operation
implementations typically falls into the latency range from tens to hundreds of clock cycles and requires a high
implementation area. The primary focus of the problem statement is to design and implement a reduced-area
divider circuit block, providing straightforward dialectics between divisors, dividends, and quotients to avoid
round-off errors. A design is developed by simulating the proposed technique and cross-verified by performing
regular sequential and pseudorandom sequential analyses of the implementation against standard result tables
generated by simulations and the theoretical study of the proposed idea. The main contributions highlighted in
the article are as follows.

e Significant efforts were taken toward developing the state-of-the-art novel USP-Awadhoot algorithm-based
divider circuit block implementation.

e The proposed USP-Awadhoot algorithm-based divider circuit block implementation substantially reduces
the required implementation resources, resulting in better area efficiency.

e Successful implementation of a dynamic separate scaling operation/factor for input operands to reduce the
conversion complexity.

e A novel divisor-dividend relationship is demonstrated with the proposed USP-Awadhoot algorithm-based
divider circuit block implementation to derive dividend groups, modified divisors (MD;,), and FD terms.
This proves that the hypothesis of utilizing different scaling operation/factors for dividends and divisors can
improve the area requirements by reducing resource utilization.

e A comparatively straightforward group quotient (GQ,,) value selection logic is developed based on the unique
relations derived between the dividend groups, modified divisors (MD,), and FD terms of the proposed
technique or algorithm of the divider circuit block implementation; this is termed the Awadhoot matrix.

e A comparatively straightforward process for selecting the final quotient based on the group quotient (GQ,,),
partial quotient (PQ,,), and additional quotient (AQ) values is developed.

The second-most significant contribution is the design and verification of complex division via the Baudhayan-
Pythagoras triplet method using the novel state-of-the-art USP-Awadhoot divider circuit block implementation.

Future work road map

e As the current implementation verifies the successful implementation of the proposed divider on different
FPGAs, the next target is to design a dedicated integrated-circuit IP. The first step is to design a physical
layout, starting from the floor plan, which determines which circuit component is placed in which area and
extracts the parasitic values to prepare the final layout for fabrication.

e Another future work target is to improve the working frequency and conversion time. To do so, we must fuse
some intermediate functional blocks such as separate addition, and multiplication can be performed in the
fused mode such as fused-multiply-add (FMA). We need to test the implementation and verify the resource
utilization of the proposed divider to validate these changes.

e The current implementation validates its successful implementation using combinational circuits. Thus,
reducing the area and hardware resource utilization is also a future target. Some processes involved in the
proposed divider can be represented as different hardware architectures, such as pipelined architectures,
parallel architectures, array structures, and cascade structures. Thus, it is necessary to validate the usage of
different architectures and compare their resource utilization levels to prove the usability of the proposed
divider in different working environments with different requirements. Detailed implementation results
will be utilized to choose the most suitable architecture implementation of the proposed divider in various
applications based on their time, area, and power requirements.

e We must verify the performance of the proposed divider in various applications, such as image processing,
particle detection, and signal processing. Complex number arithmetic is critical and requires a careful design
and more hardware resources. It is also very helpful in various essential engineering applications, such as

Scientific Reports |

(2023) 13:3027 | https://doi.org/10.1038/s41598-023-28343-3 nature portfolio

www.nature.com/scientificreports/

acoustic pulse reflectometry, astronomy, nonlinear radio frequency measurements, control theory applica-
tions such as finding root loci, Nyquist plots, and microwave system frequency responses.

Methods

Process of FPGA-based circuit integration. The circuit constructed based on the proposed USP-Awad-
hoot division algorithm is preliminarily implemented on an FPGA, and the computational results are studied
and analyzed with the help of FPGA design simulation suites. We utilize the Xilinx Vivado design suite and
the Altera Quartus II design suite for the proposed design. Before utilizing the design suites, we subdivide the
complete computation into different FSM states. VHDL is utilized for the implementation, making it easier in
design and performance simulations to analyze the resulting behavior. The tests and implementations of the
circuits using FPGAs are parts of the design process for application-specific integrated circuit (ASIC) design.
The manufacturing of the USP-Awadhoot division algorithm implemented in an ASIC is possible. We develop
the proposed circuit implementation with the algorithm’s established flow, which is tested in behavioral and
implementation timing simulations to verify its performance and results. The post-simulation circuit is tested in
the real world by implementing it in different FPGAs, especially those from Altera and Xilinx.

Data availability
All data generated or analyzed during this study are included in this published article [and its supplementary
information files].

Received: 5 February 2022; Accepted: 17 January 2023
Published online: 21 February 2023

References
. Bailey, D. G. Space-efficient division on FPGAs in Electronics New Zealand conference 206-211 (2006).
. Qasaimeh, M. et al. Comparing energy efficiency of CPU, GPU and FPGA implementations for vision kernels. In 2019 IEEE
International Conference on Embedded Software and Systems (ICESS) 1-8 (IEEE, 2019).
. Kumari, J. & Yasin, M. Y. Design and soft implementation of N-bit SRT divider on FPGA through VHDL. Int. J. Innov. Eng. Sci.
Manag. 3, 13-19 (2015).
Narendra, K., Ahmed, S., Kumar, S. & Asha, G. FPGA implementation of fixed point integer divider using iterative array structure.
Int. J. Eng. Tech. Res. 3,170-179 (2015).
. Matthews, E., Lu, A., Fang, Z. & Shannon, L. Rethinking integer divider design for FPGA-based soft-processors. In 2019 IEEE 27th
Annual International Symposium on Field-Progi ble Custom Computing Machines (FCCM) 289-297 (IEEE, 2019).
. Tatas, K., Soudris, D. J., Siomos, D., Dasygenis, M. & Thanailakis, A. A novel division algorithm for parallel and sequential process-
ing. In 9th International Conference on Electronics, Circuits and Systems 553-556 (IEEE, 2002).
Tocher, K. D. Techniques of multiplication and division for automatic binary computers. Q. J. Mech. Appl. Math. 11, 364-384
(1958).
. Asai, H. A recursive radix conversion formula and its application to multiplication and division. Comput. Math. Appl. 2, 255-265
(1976).
9. Sorokin, N. Implementation of high-speed fixed-point dividers on FPGA. J. Comput. Sci. Technol. 6, 8-11 (2006).
10. Huang, K. & Chen, Y. Improving performance of floating point division on GPU and MIC. In Algorithms and Architectures for
Parallel Processing (eds Wang, G. et al.) 691-703 (Springer International Publishing, 2015).
11. Fang, X. & Leeser, M. Vendor agnostic, high performance, double precision Floating Point division for FPGAs. In 2013 IEEE High
Performance Extreme Computing Conference (HPEC) 1-5 (IEEE, 2013).
12. Liu, W. & Nannarelli, A. Power dissipation challenges in multicore floating-point units. In ASAP 2010-21st IEEE International
Conference on Application-Specific Systems, Architectures and Processors 257-264 (IEEE, 2010).
13. Thall, A. Extended-Precision Floating-Point Numbers for GPU Computation in ACM SIGGRAPH 2006 Research Posters 52-es
(Association for Computing Machinery, 2006).
14. Sinha, P. Smart Sensors Use DSCs for Embedded Signal Processing (Microchip Technology Inc., 2021).
15. Trummer, R. K. L. A high-performance data-dependent hardware integer divider. Master thesis (Institute of Computer Science
and Systems Analysis, 2005).
16. Obermann, S. E. & Flynn, M. J. Division algorithms and implementations. IEEE Trans. Comput. 46, 833-854 (1997).
17. Pineiro, A., Bruguera, J. D., Lamberti, F. & Montuschi, P. A radix-2 digit-by-digit architecture for cube root. IEEE Trans. Comput.
57, 562-566 (2008).
18. Takagi, N., Kadowaki, S. & Takagi, K. A hardware algorithm for integer division. In 17th IEEE Symposium on Computer Arithmetic
(ARITH’05) 140-146 (IEEE, 2005).
19. Lee, B. R. & Burgess, N. Improved small multiplier based multiplication, squaring and division. In 11th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines, 2003. FCCM 2003, 91-97 (IEEE, 2003).
20. Nannarelli, A. & Lang, T. Low-power divider. IEEE Trans. Comput. 48, 2-14 (1999).
21. Nikmehr, H. Architectures for floating-point division. PhD thesis (School of Electrical and Electronic Engineering, The University
of Adelaide, 2005).
22. Soderquist, P. & Leeser, M. Division and square root: choosing the right implementation. IEEE Micro 17, 56-66 (1997).
23. Piso, D, Pineiro, J. A. & Bruguera, J. D. Analysis of the impact of different methods for division/square root computation in the
performance of a superscalar microprocessor. In Proceedings Euromicro Symposium on Digital System Design. Architectures, Methods
and Tools 218-225 (IEEE, 2002).
Detrey, J. & de Dinechin, E. A Tool for unbiased comparison between logarithmic and floating-point arithmetic. . VLSI Signal
Process. Syst. Signal Image Video Technol. 49, 161-175 (2007).
Sutter, G., Bioul, G. & Deschamps,].-P. Comparative study of SRT-dividers. In FPGA in Field Programmable Logic and Application
(eds Becker, J. et al.) 209-220 (Springer, 2004).
26. Dixit, S. & Nadeem, M. FPGA accomplishment of a 16-bit divider. Imp. J. Interdiscip. Res. 3, 140-143 (2017).
27. Kasim, M. E, Adiono, T., Fahreza, M. & Zakiy, M. F. FPGA implementation of fixed-point divider using pre-computed values.
Procedia Technol. 11, 206-211 (2013).
Oberman, S. E & Flynn, M. J. An Analysis of Division Algorithms and Implementations, Technical Report CSL-TR-95-675 (Stanford
University, 1995).
Hongal, R. S. & Anita, D. Comparative study of different division algorithms for fixed and floating point arithmetic unit for embed-
ded applications. Int. J. Comput. Sci. Eng. 4, 48-54 (2016).

[

w

~

v

=N

N

®

2

i

25.

a

2

®©

2

g

Scientific Reports |

(2023) 13:3027 | https://doi.org/10.1038/s41598-023-28343-3 nature portfolio

www.nature.com/scientificreports/

30.

S

31.

=

32.

]

33.

@

34.

35.

36.
37.

38.
39.
40.

41.

4

43.

4

4

62.

63.

64.
65.

66.

67.

68.

69.
70.

71.

-

72.

73.
74.

75.

76.

77.

~

IS

b

Schwarz, E. M. & Flynn, M. J. Using a Floating-Point Multiplier’s Internals for High-Radix Division and Square Root, Technical Report
CSL-TR-93-554 (Stanford University, 1993).

Anderson, S. E, Earle,]. G., Goldschmidt, R. E. & Powers, D. M. The IBM system/360 model 91: Floating-point execution unit.
IBM J. Res. Dev. 11, 34-53 (1967).

Fowler, D. L. & Smith, J. E. An accurate, high speed implementation of division by reciprocal approximation. In Proceedings of 9th
Symposium on Computer Arithmetic 60-67 (IEEE, 1989).

Liebig, B. & Koch, A. Low-latency double-precision floating-point division for FPGAs. In 2014 International Conference on Field-
Programmable Technology (FPT) 107-114 (IEEE, 2014).

Han, K.-N,, Tenca, A. F. & Tran, D. High-speed floating-point divider with reduced area. In Mathematics for Signal and Information
Processing 219-226 (SPIE, 2009).

Kong, I. & Swartzlander, E. E. A Goldschmidt division method with faster than quadratic convergence. IEEE Trans. Very Large
Scale Integr. Syst. 19, 696-700 (2011).

Goldschmidt, R. E. Applications of division by convergence. Masters Degree Thesis (Massachusetts Institute of Technology, 1964).
Kwon, T.-]., Sondeen, J. & Draper,]. Floating-point division and square root using a Taylor-series expansion algorithm. In 2007
50th Midwest Symposium on Circuits and Systems 305-308 (IEEE, 2007).

Liu, J., Chang, M. & Cheng, C.-K. An Iterative Division Algorithm for FPGAs (Association for Computing Machinery, 2006).
Kumar, A. & Sasamal, T. N. Design of divider using taylor series in QCA. Energy Procedia 117, 818-825 (2017).

Liddicoat, A. A. & Flynn, M. J. High-performance floating point divide. In Proceedings Euromicro Symposium on Digital Systems
Design 354-361 (IEEE, 2001).

Bannon, P. & Keller, . Internal architecture of Alpha 21164 microprocessor. In Digest of Papers. COMPCON’95. Technologies for
the Information Superhighway 79-87 (IEEE, 1995).

Cortadella, J. & Lang, T. High-radix division and square-root with speculation. IEEE Trans. Comput. 43, 919-931 (1994).

Lang, T. & Nannarelli, A. A radix-10 digit-recurrence division unit: algorithm and architecture. IEEE Trans. Comput. 56, 727-739
(2007).

Sarma, D. D. & Matula, D. W. Faithful bipartite ROM reciprocal tables. In Proceedings of the 12th Symposium on Computer Arith-
metic 17-28 (IEEE, 1995).

Tenca, A. E. & Ercegovac, M. D. On the design of high-radix on-line division for long precision. In Proceedings 14th IEEE Symposium
on Computer Arithmetic (Cat. No.99CB36336) 44-51 (IEEE, 1999).

. Ugurdag, H. F, Dinechin, E. D., Gener, Y. S., Géren, S. & Didier, L. Hardware division by small integer constants. IEEE Trans.

Comput. 66, 2097-2110 (2017).

. Mehta, B., Talukdar, J. & Gajjar, S. High speed SRT divider for intelligent embedded system. In 2017 International Conference on

Soft Computing and Its Engineering Applications (icSoftComp) 1-5 (IEEE, 2017).

. Boullis, N. & Tisserand, A. On digit-recurrence division algorithms for self-timed circuits. In Advanced Signal Processing Algo-

rithms, Architectures, and Implementations XI 115-125 (SPIE, 2001).

. Parhami, B. Computer Arithmetic: Algorithms and Hardware Designs (Oxford University Press, 2010).
. Ercegovac, M. D. & Lang, T. Digital Arithmetic a Volume in the Morgan Kaufmann Series in Computer Architecture and Design

(Morgan Kaufmann, 2004).

. Jun, K. Modified non-restoring division algorithm with improved delay profile. M.S. thesis (The University of Texas, 2011).

. Robertson, J. E. A new class of digital division methods. IRE Trans. Electron. Comput. EC-7, 218-222 (1958).

. Cocke, J. & Sweeney, D. W. High-Speed Arithmetic in a Parallel Device, Technical Report (IBM Corp., 1957).

. Nadler, M. A high-speed electronic arithmetic unit for automatic computing machines. Acta Tech. 6, 464-478 (1956).

. Macsorley, O. L. High-speed arithmetic in binary computers. Proc. IRE 49, 67-91 (1961).

. Wilson, J. B. & Ledley, R. S. An algorithm for rapid binary division. IRE Trans. Electron. Comput. EC-10, 662-670 (1961).

. Metze, G. A Class of binary divisions yielding minimally represented quotients. IRE Trans. Electron. Comput. EC-11, 761-764

(1962).

. Montuschi, P. & Ciminiera, L. Simple radix 2 division and square root with skipping of some addition steps. In [1991] Proceedings

10th IEEE Symposium on Computer Arithmetic 202-209 (IEEE, 1991).

. Mandelbaum, D. M. A systematic method for division with high average bit skipping. IEEE Trans. Comput. 39, 127-130 (1990).
. Atkins, D. E. The Theory and Implementation of SRT Division, Technical Report UIUCDCS-R-67-230 (The University of Illinois,

1967).

. Montuschi, P. & Ciminiera, L. Reducing iteration time when result digit is zero for radix 2 SRT division and square root with

redundant remainders. IEEE Trans. Comput. 42, 239-246 (1993).

Harris, D. L., Oberman, S. F. & Horowitz, M. A. SRT division architectures and implementations. In Proceedings 13th IEEE Sym-
posium on Computer Arithmetic 18-25 (IEEE, 1997).

Sumiksha, K. P. & Shetty, S. Computation of SRT and CORDIC division algorithms. IOSR J. Electron. Commun. Eng. 12, 53-56
(2017).

Clarke, E. M., German, S. M. & Zhao, X. Verifying the SRT Division Algorithm Using Theorem Proving Techniques (Springer, 1996).
Bryant, R. E. Bit-level analysis of an SRT divider circuit. In 33rd Design Automation Conference Proceedings, 1996 661-665 (IEEE,
1996).

MicroBlaze processor reference guide, Xilinx Inc, preprint at http://xilinx.com/support/documentation/swmanuals/xilinx20164/
ug984-vivado-microblaze-ref.pdf.

Jamil, T. An introduction to complex binary number system. In 2011 Fourth International Conference on Information and Comput-
ing 229-232 (IEEE, 2011).

Zaini, H. & Deshmukh, R. G. A novel method for arithmetic operations using complex binary number system and the reconver-
sion of the result to the decimal complex number system. In IEEE SoutheastCon, 2003. Proceedings 31-37 (IEEE, 2003).

Jamil, T. Complex binary associative dataflow processor—a tutorial. In SoutheastCon 2018 1-3 (IEEE, 2018).

Aoki, T., Ohki, Y. & Higuchi, T. Redundant complex number arithmetic for high-speed signal processing. In VLSI Signal Processing,
VIII 523-532 (IEEE, 1995).

Ohi, Y., Aoki, T. & Higuchi, T. Redundant complex number systems. In Proceedings 25th International Symposium on Multiple-
Valued Logic 14-19 (IEEE, 1995).

Ercegovac, M. D. & Muller, J.-M. Design of a complex divider. In Advanced Signal Processing Algorithms, Architectures, and Imple-
mentations XIV 51-59 (SPIE, 2004).

Priest, D. M. Efficient scaling for complex division. ACM Trans. Math. Softw. 30, 389-401 (2004).

Agrawala, V. S. & Maharaja, J. S. S. B. K. T. Vedic mathematics: sixteen simple mathematical formulae from the Vedas (Motilal
Banarsidass, 1988). ISBN-10: 8120801636, ISBN-13: 978-8120801639.

O’Connor, J. J. & Robertson, E. E. The Indian sulbasutras (MacTutor by the School of Mathematics and Statistics, University of St
Andrews). https://mathshistory.st-andrews.ac.uk/Hist Topics/Indian_sulbasutras/.

Vazquez, A., Antelo, E. & Montuschi, P. A radix-10 SRT divider based on alternative BCD codings. In 2007 25th International
Conference on Computer Design 280-287 (IEEE, 2007).

Richardson, S. E. Exploiting trivial and redundant computation. In Proceedings of IEEE 11th Symposium on Computer Arithmetic
220-227 (IEEE, 1993).

Scientific Reports |

(2023) 13:3027 | https://doi.org/10.1038/s41598-023-28343-3 nature portfolio

www.nature.com/scientificreports/

78. Product Specification. LogiCORE IP Divider Generator V4.0. Xilinx, Inc, DS819, 1-27 (2011).

79. Bruguera, J. D. Radix-64 floating-point divider. In 2018 IEEE 25th Symposium on Computer Arithmetic (ARITH) 84-91 (IEEE,
2018).

80. Nannarelli, A. Performance/power space exploration for binary64 division units. IEEE Trans. Comput. 65, 1671-1677 (2016).

81. Carter, T. M. & Robertson, J. E. Radix-16 signed-digit division. IEEE Trans. Comput. 39, 1424-1433 (1990).

82. Rust, I. & Noll, T. G. A digit-set-interleaved radix-8 division/square root kernel for double-precision floating point. In 2010 Inter-
national Symposium on System on Chip 150-153 (IEEE, 2010).

83. Sharangpani, H. P. & Barton, M. L. Statistical Analysis of Floating-Point Flaw in the PentiumTM Processo (Intel Corporation, 1994).

84. Srinivas, H. R. & Parhi, K. K. A fast radix-4 division algorithm and its architecture. IEEE Trans. Comput. 44, 826-831 (1995).

Acknowledgements

This project has received funding from the Estonian Research Council Institutional Research Projects IUT19-11,
PUT1435, PRG780, EAS—Enterprise Estonia under project number: EU60351 and partly from the European
Union’s Horizon 2020 Research and Innovation Program under Grant 668995 and a preliminary patent is applied
in Estonia based on the research work of developing a new state of the art USP-Awadhoot division algorithm.
Application no- 70390, dated- June 2020. We acknowledge the support from Mr. Sunil M. Patankar, researcher
& honorary lecturer at Kavi Kulguru Kalidas Sanskrit University, Ramtek, India, in finalizing the algorithm and
supporting for the patent application.

Author contributions

U.S.P. conceived and led the research and contributed to all aspects of the project: project idea, algorithm design,
circuit design and fabrication, testing, simulation and data analysis. A.K. advised on all parts of the project, patent
and legal documentation. M.E.E. contributed to simulations, circuit design and testing. All authors discussed the
results and contributed to the preparation of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1038/541598-023-28343-3.

Correspondence and requests for materials should be addressed to U.S.P.
Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

Scientific Reports |

(2023) 13:3027 | https://doi.org/10.1038/s41598-023-28343-3 nature portfolio

Appendix 5

Sample examples of the proposed novel USP-Awadhoot divider.

179

Example 1:-28 =7 =4

Step 1 Select Dividend (D) and Divisor (D,.)

Dy =28=028
D, =7

Step 2 New divisor (ND,) and Flag Digit
(FD)

ND,=7+3=10
FD =+3

Step 3 Modified Divisor (MD,.) and Number
of Zeros cancelled (NZC)

MD,=1
NZC=1

Step 4 Group Dividend

Group3 =0, Group2 =2, Groupl =8

Awadhoot Matrix processing

Iteration 1

MD,=1
FD =43

0 2 8 | Group Dividend

0 R,

Gross Dividend (G,Dg,,)

P-Term

Net Dividend (NDg,,)

S-Term

Group Quotient (GQ,,)

MD,=1
FD=+3

0 2 8 | Group Dividend

0 0 R,

Gross Dividend (G, Dg,,)

P-Term

Net Dividend (NDg,,)

S-Term

o O |0 |0 |Oo

Group Quotient (GQ,,)

MD,=1
FD=+3

0 2 8 | Group Dividend

0 0 R,

2 Gross Dividend (G, Dg,,)

3*0=0 P-Term

Net Dividend (NDg,,)

S-Term

o |O|Oo|o o

Group Quotient (GQ,,)

181

MD,=1 2 8 | Group Dividend
FD =+3
0 R,
0 2 Gross Dividend (G, Dg,,)
0 P-Term
0 2 Net Dividend (NDg,)
0 1*¥2=2 S-Term
0 Group Quotient (GQ,,)
MD,=1 2 8 | Group Dividend
FD =+3
0 0 R,
0 2 Gross Dividend (G, Dg,,)
0 P-Term
0 2 Net Dividend (NDg,)
0 1*¥2=2 S-Term
0 2 Group Quotient (GQ,)
Iteration 2
MD,=1 2 8 | Group Dividend
FD =43
0 0 R,
0 2 8 Gross Dividend (G, Dg,,)
0 P-Term
0 2 Net Dividend (NDg,)
0 1*2=2 S-Term
0 2 Group Quotient (GQ,)
MD,=1 2 8 | Group Dividend
FD =43
0 0 R,
0 2 8 Gross Dividend (G, Dg,,)
0 6 P-Term
0 2 Net Dividend (NDg,)
0 1*2=2 S-Term
0 2 Group Quotient (GQ,)

182

MD,=1 0 2 8 | Group Dividend
FD =+3
0 0 0 R,
0 2 8 Gross Dividend (G, Dg,,)
0 6 P-Term
0 2 14 Net Dividend (NDg,)
0 1*2=2 S-Term
0 2 Group Quotient (GQ,,)

In the last iteration net dividend (ND;) must always be less than the divisor or zero.
Last Net dividend (NDg,) is 14, which is greater than Divisor (D,.). The Remainder is
initialized to zero, i.e., (R) = Ryq . The final Ry, value is obtained during the calculation
of the additional quotient (AQ), and Quotient (Q) = Partial Quotient (PQ,,) + Additional
Quotient (AQ), where the Additional Quotient (AQ) is derived by initializing the count to
zero and subtracting the Divisor (D,.) from the last iteration of Net Dividend (ND;) and
incrementing the count by one. We continue the same process until we get a subtraction
result of zero or less than the divisor (D,.).

Count 1 2
Last Iteration Net dividend (LNDd) or copy Sub result

for next subtraction 14 7
Divisor (Dr) 7 7
Subtraction result 14-7=7 7-7=0
Is Sub Result > Divisor (Dr) 7=7 0<7

Last count Sub result=0 Count=2
.. Final Quotient=2+2=4 and Remainder=0
Answer-28/7=4

183

Example 2: - 3657 + 69 =53

Step 1 Select Dividend (D) and Divisor (D,.) | D; =3657 = 03657
D, =69

Step 2 New divisor (ND,) and Flag Digit | ND, =69+ 1=70

(FD) FD =+1

Step 3 Modified Divisor (MD,.) and Number | MD,=7

of Zeros cancelled (NZC) NZC=1

Step 4 Group Dividend Group5 =0, Group4 = 3, group3 = 6,
Group?2 =5, Groupl =7

Awadhoot Matrix processing

Iteration 1
MD,=7 0 3 6 5 7
FD = +1
0 0
0
(+1)*0=0
0
0
0
Iteration 2
MD,=7 0 3 6 5 2
FD = +1 As MD,>3
0 0
0 So, the
(+1)*0=0 Quotient
0 is zero,
and the
remainder
0 is 3
0
MD,=7 3
FD=+1 0 As MD, >3 6 > 7
0 0
0 So, the
(+1)*0=0 Quotient
0 is zero,
and the
remainder
0 is 3
0 0

184

Iteration 3

MD,=7 o 3]
FD=+1 As MD,>3
0 3
0 So, the
Quotient is
(+1)70=0 zero, and
0 the
remainder
0 is 3
0 0
MD,=7 0 3]
FD =+1 As MD,>3
0 3
0 So, the 36
(+1)*0=0 Quotient is
0 zero, and
the
0 remainder
is3
0 0
MD,=7 0 3]
FD =+1 As MD,>3
0 3
0 So, the 36
(+1)*0=0 Quotient is (+1)*0=0
0 zero, and
the
0 remainder
is 3
0 0
MD,=7 0 3]
FD=+1 As MD,>3
0 3
0 So, the 36
(+1)*0=0 Quotient is (+1)*0=0
0 zero, and 36
the
0 remainder 7%5-35
is 3
0 0

185

Iteration 4

MD,=7 3
0 6 5
FD=+1 As MD,>3
0 3 1
0 So, the 36 15
(+1)*0=0 Quotientis | (,1)x0=0 (+1)*5=5
zero, and
0 the 36 20
0 remainder | 74535 7%2-14
is3
0 0 5
MD,=7
s 0 3 6 5
FD=+1 As MD,>3
0 3 1
0 So, the 36 15
(+1)*0=0 Quotient is (+1)*0=0 (+1)*5=5
0 zero, and 36 20
the
0 remainder 7%5=35 7*%2=14
is 3
0 0 5 2
Iteration 5
MD,=7
- 0 3 6 5
FD = +1 As MD,>3
0 3 1
0 So, the 36 15 67
(+1)*0=0 Quotientis | (4+1)*0=0 (+1)*5=5
0 zero, and 36 20
the
0 remainder 7*%5=35 7*2=14
is3
0 0 5 2

186

MD,=7 3
0 6 5 7
ED=+1 As MD,>3
0 3 1 6
0 So, the 36 15 67
Quotient is
(+1)*0=0 zero, and (+1)*0=0 (+1)*5=5 (+1)*2=2
0 the 36 20
remainder
0 is 3 7*5=35 7*¥2=14
0 0 5 2
MD=7 0 3 6 5 7
ED = +1 As MD,>3
0 3 1 6
0 So, the 36 15 67
(+1) * Quotient is (+1) *
0=0 zero, and (+1) *0=0 (+1) * 5=5 2=2
the
0 remainder 36 20 69
0 is3 7*5=35 7*2=14
0 0 5 2

Number in Quotient Row — 052 =52 and
Net dividend = 69, which is equal to the divisor, so we add 1 to the quotient.
Final Quotient = 52+1 = 53 and remainder =0

Answer - 3657 - 69 =53

187

Appendix 6

Sample example of the proposed complex division by the Baudhayan-Pythagorean
Triplet Method.

189

Example 3: - (1+18i) + (3+4i) = (3+2i)

Step 1 Select Dividend (C_D,) and Divisor
(C_Dy)

CDy=xy +yi= 1+18i
C_D,=x, +y,i=3+4i

Step 2 Cartesian coordinates of Dividend

xDg = x; =1

(C_D,) and Divisor (C_D,) yDg =y, =18
xDyg = x4, xDp = x; =3
¥Da = y1, YDy =y, =4
xD, = x, and

yD, = y,

Step 3 Derive the triplet product term
(TP_Term) value.

TP_Term1 = (xDy X xD,.)
TP_Term2 = (yDy X yD,.)
TP_Term3 = (xD, X yD,)
TP_Term4 = (xDy X yD,)

TP_Terml=(xD,; X xD,.) = (1X3)
3

TP_Term2 = (yD,; X yD,.) = (18X4)
72

TP_Term3 = (xD,. X yD;) = (3X18)
54

TP_Term4 = (xDy X yD,.) = (1X4)
4

Step 4 Derive the triplet term (T_Term)
value, where T_Term = (xD,.)? + (yD,.)?

T Term=32% + 42=25

Step 5 Derive the triplet matrix term
(Mat_Term) value.

Mat_Term1 =TP_Terml + TP_Term?2
Mat_Term2 =TP_Term3 - TP_Term4

Mat_Term1=3+72=75
Mat_Term2 =54 -4 =50

Step 6 Provide Mat_Term1, Mat_Term2, and T_Term values to the USP-Awadhoot

divider for the final division sub-process.

Step 7 USP-Awadhoot divider-1
C_D41 =Mat_Terml1l =75
C D,y =T_Term=25

Perform the division as explained by the
USP-Awadhoot divider 1 and get the value
for theresult C_Q,, and C_Rem,.

After processing USP-Awadhoot divider 1,
we get,

CQ,.=3

C_Rem, =0

Step 8 USP-Awadhoot divider-2
C_Dg4, = Mat_Term2 =50
C D,y =T_Term =25

Perform the division as explained by
the USP-Awadhoot divider 2 and get
the value for the result C_Q; and
C_Rem;.

After processing USP-Awadhoot
divider 1, we get,

C—Qi =2

C_Rem; =0

Step 9 Concatenate the computational results from step 7 and step 8 to restructure
Cartesian coordinates, to get the final quotient and remainder of a complex division.

Final Quotient=C_Q=(C_Q, + C_Q;) = (3 + 2i)
Final Remainder = C_Rem = (C_Rem, + C_Rem;) = (0 + 0/)

191

Appendix 7

USP-Awadhoot divider functional waveforms.

193

ok \ / \ / \ [\ / \ / \ / \

% Dd Z% Dividend /| Data = Value {__ Dividend Data
&
oL Dr m Divisor // Data = 00H X Divisor Data
%[Fd_Enable ___/ i
(6]
£ QResut 777K Q_Resull = Iniial Value Set1o 001 I Q_Result= 00H
lid
% Rem_Residue Z% Rem_Residue = Initial Value Setto 00H X /i Rem_Residue = 00H
o vaidor I
= Emar // / \
%[RST I
o
Waveform for divide by zero working condition.

ck Ji
e Dd Dividend)| Data = Valie
&
. Dr Divisor | Data = Value
%[Fd_Enable [
(8]
£ aResut 777 Q Result] =00H
li4
5 Rem_Residue m Rem_Residue]/ = 00H
o[vaigor |
E Emor //
%[RST I
(6]

Waveform for inactive F;_enable working condition.

ck Ji
b od 700N Dividend | Data = 081
&
[Dr m Divisor]/ Data = 02H
g[Fd_Enable Ji
o
2 Q_Resut 00 Q Result set [/to 00H X Q_resul=04H
I3
% Rem_Residue 20 Rem_residue [/ previous valus X Rem_Residue = 00H
s Valid_O/P // /
E Ermor //
%[RST [
o

Waveform for a 4-bit operand, resulting in zero remainder.

195

fP Cperands

Control

O/P Results

Indicator

Control

I/P Operands

Control

(

OfP Results

Indicator

Control

/P Operands

Control

O/P Results

Indicator

Control

ck \ /

\ / \ [\

d 72 Dividend //Data = 09H

o Y000 Divisor| Data= 02H
Q_Result Q_Resultset][o 00H X Q_resuf=04H
Rem_ Rescue e, residue | pevovs vloe X Rem_ Residie =0T

Valid_O/P //
Eror //
RST //

Waveform for a 4-bit operand, resulting in a non-zero remainder.

ke J
o0 72K Diiend [e =
o 720 Divisor]/ Data = 04
Fo_Enable 7
Q_Resut 0 Resultsel 10 00H X Q resut208
Rem_Residue Rem_residue || previous value) Rem_Residue = 00H
Valid_O/P // ﬁ
Eror I
RST I

Waveform for an 8-bit dividend and 4-bit divisor, resulting in zero remainder.

ok \ / \ / \ [\ / \ / \ / \
od 770 Dividend | Data = AEH
or 700N Divisor | Data= 0P
Fd_Enable /[Ji
QLReaut st [%) e
Rem_ Residue Rem_esidus]| previous vaiue 0 Rem Resaie =09

Valid_OfP // ﬁ
Emor //
RST //

Waveform for an 8-bit dividend and 4-bit divisor, resulting in a non-zero remainder.

196

ck \ / \ / \ [\ / \ \ / \
ﬁ 0d 7 Dividend /| Data = BOH
g Dr m Dlvwsor// Data = 16H
%[Fd_ Enable T
(6]
L aResut 0777 Q_Result st]/to 00H Q_resuit=08H
i
% Rem_Residue 7 Rem_residue || previous value) Rem_Residue = 00H
o[vaior [
E Ermor //
E[RST I
(&)

Waveform for an 8-bit operand, resulting in zero remainder.

ck Ji
b od 700N Dividend]| Data = C7H
E Dr m Divisor [/ Data = 2AH
g[Fd_Enable Ji
o
% Q_Resut 00 Q_Result set J['to 00H G, Q_result=04H
% Rem_Residue WMWM Rem_residue // previous value %{ Rem_Residue = 1FH

Indicator

Control

/P Operands
S perenes

Contro\

O/P Results

Indicator

—_——

Contro\

[

Valid_O/P // ﬁ
Eror I
RST I
Waveform for an 8-bit operand, resulting in a non-zero remainder.
dlkc \ / \ / \ / \ / \ / \ /
od 70 Dividend Data = AGH
or T Divisor Data = 071H
FdEnable /
o_resut 720007 O Resultsetto 00F Yo7 QresuiA6H
Rem_Residue 707100770 Rem resiue previous value 2 Rem Resiue =001
Valid_o/P /S
Error
RST

Waveform for divider by unity.

197

Curriculum Vitae

1 Personal Data

Name
Citizenship
Language Competence

Contact Information
Address

Contact number
E-mail

Education

2017-2025

2012-2014

2008-2011

Professional Experience

2017-2021
2015-2017

2014-2014

2013-2014

2012-2013

2011-2012

Udayan Sunil Patankar
India
English, Hindi, Marathi

Energia 5-17, Tallinn, Estonia, 13415.
+372-58791581
Udayan.patankar45@gmail.com

Tallinn University of Technology

Thomas Johann Seebeck Department of
Electronics

Ph.D. Studies

G.H.Raisoni College of Engineering, Nagpur
Affiliated to RTM Nagpur University, India

M. Tech- Electronics

Shree Ramdeobaba Kamla Nehru Engineering
College

Affiliated to RTM Nagpur University, India

B.E. in Electronic Design Technology

Tallinn University of Technology, Estonia, Early
Stage Researcher

Shri Ramdeobaba College of Engineering and
Management, India, Assistant Professor

Brick and Byte Innovative Products Limited
Mumbai, India, Hardware Design Engineer

Linyi InfoTop Network, Linyi CHINA (Industrial
Project) Embedded Hardware Design
Engineering

SM Wireless Solutions, Pvt. Ltd, India, Trainee
Analog Layout Engineer

Ambuja Cements Limited, India, Senior
Executive

198

5

6

Professional Training

05/2010-06/2021

06/2018

02/2019-03/2019

Awards/Achievements
2010

2010

2009

2009

1998-1999

1996

Expert lectures

2015

Trainee, Airport Authority of India(AOl),
Mumbai, India

Short course on “IC Processing Technology,” at
College of Engineering, Rochester Institute of
Technology, Rochester, USA

Winter school “Chip fab of the future!” Infineon
Technologies Austria AG

IIT KHARAGPUR finalist in Project Competition
POLARIS - Project Competition, 3™ prize
National Level Circuit Design Competition
(NYSS), 15t prize

OPEN HARDWARE Techno Vision, SRKNEC,
1%t prize.

1%t prize in the International Karate
Championship, Nepal

Gold Medal, 4th National Martial Arts
championship organized by Martial Arts
Association of India

Delivered Expert Lecture on “Energy Efficient
Technology” MSME Gov. Of India on July 24,
2015

199

Elulookirjeldus

1

Isikuandmed

Nimi
Kodakondsus
Keelteoskus

Kontaktandmed

Address
Contact number
E-post

Haridus

2017-2025

2012-2014

2008-2011

Teenistuskaik

2017-2021
2015-2017

2014-2014

2013-2014

2012-2013

2011-2012

Udayan Sunil Patankar
India
Inglise keel, Hindi keel, Marathi keel

Energia 5-17, Tallinn, Eesti, 13415.
+372-58791581
Udayan.patankar45@gmail.com

Tallinna Tehnikadlikool

Thomas Johann Seebecki elektroonikainstituut
doktoridpe

G.H.Raisoni College of Engineering, Nagpur
Affiliated to RTM Nagpur University, India

M. Tech- Electronics

Shree Ramdeobaba Kamla Nehru Engineering
College

Affiliated to RTM Nagpur University, India

B.E. in Electronic Design Technology

Tallinna Tehnikaulikool, Eesti, nooremteadur
Shri Ramdeobaba College of Engineering and
Management, India, Assistant Professor

Brick and Byte Innovative Products Limited
Mumbai, India, Hardware Design Engineer

Linyi InfoTop Network, Linyi CHINA (Industrial
Project) Embedded Hardware Design
Engineering

SM Wireless Solutions, Pvt. Ltd, India, Trainee
Analog Layout Engineer

Ambuja Cements Limited, India, Senior
Executive

200

5

6

Tdiendkoolitus

05/2010-06/2021

06/2018

02/2019-03/2019

Tunnustused

2010
2010
2009
2009
1998-1999

1996

Erialaloengud

2015

Trainee, Airport Authority of India(AOl),
Mumbai, India

Short course on “IC Processing Technology,” at
College of Engineering, Rochester Institute of
Technology, Rochester, USA

Winter school “Chip fab of the future!” Infineon
Technologies Austria AG

IIT KHARAGPUR finalist in Project Competition
POLARIS - Project Competition, 3™ prize
National Level Circuit Design Competition
(NYSS), 15t prize

OPEN HARDWARE Techno Vision, SRKNEC,
1t prize

1%t prize in the International Karate
Championship, Nepal

Gold Medal, 4th National Martial Arts
championship organized by Martial Arts
Association of India

Delivered Expert Lecture on “Energy Efficient
Technology” MSME Gov. Of India on July 24,
2015.

201

ISSN 2585-6901 (PDF)
ISBN 978-9916-80-298-4 (PDF)

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

