
Tallinn 2019

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Daniel El Basania 177266 IASM

DANFOSS DRIVE SOFTWARE UPGRADER

AS A COMMAND LINE TOOL

Master’s thesis

Supervisor: Margarita Spitšakova

PhD

Co-Supervisor: Rui Miguel Martins

Costa

 MSc

Tallinn 2019

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Daniel El Basania 177266 IASM

DANFOSSI SAGEDUSMUUNDURI

UUENDAJA KÄSUREA TÖÖRIISTANA

Magistritöö

Juhendaja: Margarita Spitšakova

PhD

Kaasjuhendaja: Rui Miguel Martins

Costa

MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Daniel El Basania

03.05.2019

4

Abstract

This thesis is written in English and is 48 pages long, including four chapters, 22 figures

and 12 tables.

Nowadays automation has an important role in terms of technical process management

and allows doing more with less effort. The Danfoss Group is a leading manufacturer of

energy-efficient automation solutions for enterprises that also includes manufacturing of

variable frequency converters (drives).

The master’s thesis deals with a considerate extension of features of a software tool called

Automation Production Setup Tool (APST). Currently, the tool has the functionality to

write binary files and set pre-defined setup parameters values, however, it lacks features

that allow upgrading of Danfoss variable-frequency drives firmware.

The purpose of APST is to avoid manual work of dealing with Motion Control Tool (MCT

10) for upgrading the firmware of Danfoss drives. Furthermore, APST ensures error-free

usage in the production by using pre-defined setups and absence of user interactions.

5

Annotatsioon

Danfossi sagedusmuunduri uuendaja käsurea tööriistana

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 48 leheküljel, 4 peatükki, 22

joonist, 12 tabelit.

6

List of abbreviations and terms

APST Automation Production Setup Tool

MCT 10 Motion Control Tool 10

FC Frequency Converter

OEM Original Equipment Manufacturer

ERP Enterprise Resource Planning

COM Communication port

DDComm

PC

CRC

PLC

CSV

XML

GUI

OSE

USB

Danfoss Drives Communication Module

Personal Computer

Cyclic Redundancy Check

Programmable Logic Controller

Comma-Separated Values

Extensible Markup Language

Graphical User Interface

Operation Support Engineering

Universal Serial Bus

7

Table of contents

Author’s declaration of originality .. 3

Abstract .. 4

Annotatsioon ... 5

List of abbreviations and terms ... 6

Table of contents ... 7

List of figures.. 9

List of tables ... 10

1 Introduction ... 11

1.1 Motivation ... 12

1.2 Technologies used in the development... 13

2 Automation Production Setup Tool .. 15

2.1 Firmware file ... 17

2.2 APST algorithm .. 15

2.2.1 Scanning a barcode ... 17

2.2.2 Drive identification ... 20

2.2.3 Boot mode .. 22

2.2.4 Firmware file validation .. 22

2.2.5 Firmware file scripts execution ... 23

2.2.6 Data transfer ... 24

2.3 Test scenarios .. 26

2.4 Future work ... 28

3 Operating with APST ... 29

3.1 Installation .. 29

3.2 APST Configuration .. 29

3.3 APST commands ... 31

3.3.1 The write command .. 32

3.3.2 The flash command .. 33

3.3.3 The help command ... 33

8

3.3.4 The version command... 33

3.3.5 Using APST from the console ... 33

3.3.6 Using APST from a scripting language ... 33

3.4 Configuring APST... 34

3.5 Master file ... 35

3.6 DriveInfo XML file ... 36

3.7 ParametersInfo CSV file .. 37

3.7.1 Using ParametersInfo file ... 37

3.7.2 Logging .. 38

3.8 Use cases ... 39

4 Summary ... 42

References .. 43

Appendix 1 Date-time formats .. 44

Appendix 2 Log file example .. 46

9

List of figures

Figure 1. MCT 10 interface. .. 12

Figure 2. Abstract content of an OSE file. ... 18

Figure 3. Example of a firmware file content. .. 19

Figure 4. APST algorithm of the flash command. .. 16

Figure 5. APST GUI interface. The tool is in the ready mode. 19

Figure 6. Visual representation of parameters for drive identification in MCT 10. 20

Figure 7. Example of a successful drive identification in APST................................... 22

Figure 8. Communication log of drive flashing initialization 25

Figure 9. Communication log after drive flashing. ... 25

Figure 10. Testing APST on a P600 drive. .. 26

Figure 11. Testing APST on an incorrect firmware file.. 27

Figure 12. Testing APST on an in-use serial bus. .. 27

Figure 13. Serial fieldbus configuration. .. 30

Figure 14. Example of the config.xml file. .. 31

Figure 15. APST command line interface. ... 31

Figure 16. Using APST from a scripting language. .. 33

Figure 17. Example of the configuration error. .. 34

Figure 18. The configuration file example. .. 35

Figure 19. Master file example. ... 36

Figure 20. Example of DriveInfo.xml file. ... 37

Figure 21. Example of the ParametersInfo.xml file. ... 38

Figure 22. An example of a P400 drive that can be upgraded over APST. 41

10

List of tables

Table 1. Drive identification values ... 21

Table 2. Drive responses during identification ... 21

Table 3. Packet structure for data transfer using Ymodem in APST. 24

Table 4. Notations used in the protocol implementation. ... 24

Table 5. List of arguments that APST supports.. 32

Table 6. Configuration file XML tags description. .. 34

Table 7. Master file XML tags description. ... 35

Table 8. DriveInfo file description. ... 36

Table 9. ParameterInfo file description. ... 37

Table 10. Date-time formats in APST. .. 44

Table 11. Date-time formats in APST. .. 44

Table 12. Example formats. .. 45

11

1 Introduction

Nowadays in the age of automation, it is crucial for worldwide manufacturers of industrial

electronics and automatics, like Danfoss, to handle new trends and needs. As production

volumes on manufacturing plants grow, new challenges of preserving high standards of

quality and reducing production time may become a bottleneck of the production line.

The thesis provides one of the solutions on how to increase the quality of the

manufacturing department, reduce time overheads and costs.

Danfoss aims to provide energy-efficient solutions for these challenges using variable

frequency converters (or frequency drives) designed to control the variable speed of

rotation of all types of asynchronous motors and permanent magnet motors [1], therefore,

the master’s thesis deals with the frequency drives workflow optimization.

To provide the peak production capacity, frequency converters must be properly setup for

the tasks to be completed. The setup involves setting the optimal parameters and flashing

(upgrading) a frequency converter (FC). The current setup process of frequency

converters on an assembly line requires an operator to manually flash a FC to the needed

firmware using MCT 10 software tool (Figure 1) that causes time overhead with possible

mistakes.

12

Aim of the thesis is to extend the functionality of the automation tool to solve the problem

of wasting valuable time using MCT 10 and doing extra manual work that eventually may

lead to human factor errors.

The thesis is composed of four chapters.

Chapter 2 provides justification of used technologies, description of the APST algorithm

used for flashing drives and ends discussing planned features for the future work.

Chapter 3 provides an overview of the tool features, shows how to configure and use

APST with the actual use cases.

Chapter 4 summarizes the thesis work.

The thesis contains two appendixes providing additional insight on used date-time

formats in APST and an example of a log file using the upgrade feature.

1.1 Motivation

MCT 10 has been out on the market for over 15 years now and it enables a full system

configuration and control of a frequency converter. With MCT 10 Set-up Software, it is

possible to monitor the entire system more effectively for faster diagnosis and better

Figure 1. MCT 10 interface.

13

preventive maintenance and it is designed as an interactive commissioning tool for quick

and easy commissioning of various frequency converter series [2]. With its broad feature

possibilities, it has become obvious that some features like drive upgrader may not be the

best to use on a production line due to time overheads, redundant cautions of cases that

never happen on a production line and a probability of making a mistake by an operator.

These factors ensue higher costs and lower quality of the end product.

As a solution to the above-described problem, the student working at Proekspert AS [3]

was proposed to develop an upgrade feature for APST as a master’s thesis project that

could automate some of the MCT 10 features, which for the time being are done manually.

The following questions were raised in terms of functional requirements to consider the

solution fulfilling the stated problem:

Question I. Is it possible to upgrade a frequency drive with no user interactions or minimal

user assistance?

Question II. Is it possible to minimize a possibility of a human-factor error from a factory

technician point of view?

Question III. Can APST support both Mark I and Mark II (the first and the second

generations) P400 drive family drives?

1.2 Technologies used in the development

Throughout the development of APST, the following technologies had been used:

1. C++ 03/11 standards as Danfoss Drives Communication Module (DDComm) is

written in C++ and it is a crucial component for the physical communication with

drives. The role of the communication module in the connectivity platform is to

encapsulate Fieldbus knowledge, i.e. the knowledge about physical buses and

protocols that are used to transfer data between a personal computer (PC) and any

physical Danfoss drives [4].

2. C++ Qt Framework [5]. The Qt Framework provides an extensive system of

classes. The framework was mostly used for a convenient file handling, serializing

and deserializing XML files, building the graphical user interface and for date-

time formats (see Appendix 1).

14

3. C++ Boost [6]. Boost represents a set of libraries for the C++ programming

language with a wide variety of applications. The library has been used for a more

convenient parsing of regular expressions comparing to approaches of the

standard library and for cyclic redundancy check (CRC) calculations in the

firmware files.

15

2 Automation Production Setup Tool

Automation Production Setup Tool represents an instrument for Danfoss meant to replace

MCT 10 with its problems and overheads. The solution is to build an automated firmware

upgrader programming tool for the drives, which makes it easier for original equipment

manufacturers (OEM) to program the drives on the production floor so that it will reduce

production time and increase quality. By increasing quality, it is meant that easy selection

(automated via barcode scanning) of a correct file to download to the drive, saves time

compared to the look up operation today in MCT 10 and eliminates the risk that the

operator is selecting the wrong file to download into the drive.

Planned usage of APST on the production line includes a few steps, specifically, using

the MCT 10 tool, an engineer must create project files with specific settings needed for a

particular installation. Having done that, MCT 10 compiles it together to a one master file

that is linked to the current production system (e.g. enterprise resource planning (ERP)

system). The next step is that the engineer on the production line scans the barcode of the

drive and that way the correct files are retrieved with the further upgrading of the drive

and writing files’ content (configurations). At the end of the process, the tool indicates to

the engineer whether the operation has been successful [7]. More information about the

master file and the tool usage can be found in Chapter 3.

2.1 APST algorithm

This subchapter discusses the way APST works in case it is used for flashing, i.e. -f

argument is used, or a targeted master file contains FirmwareFile tag with a valid path to

OSE file. The subchapter also provides an insight into the firmware file itself and

discusses its handling. Figure 4 shows the simplified version of the APST algorithm as a

block scheme diagram. Some details have been omitted due to the signed non-disclosure

agreement between the student and Proekspert AS.

16

Figure 2. APST algorithm of the flash command.

17

2.1.1 Firmware file

A firmware represents a file of an OSE extension (Operation Support Engineering, named

after a Danfoss homonymous department name) that contains scripts to be executed and

during processing is extracted in a binary file(s), which are used to flash drives [8].

On an abstract level, every OSE file consists of a number of firmware sections. Each of

those sections contains a script and optional firmware data. When using an OSE file all

of those sections are used and flashed sequentially. There is no mechanism to choose

whether to use a particular section or not [8].

For each section, first, the script is executed and then the firmware data, if any, is sent to

the drive. Most drive types, e.g. all of the P400 family, use OSE files with a single section.

Drives which require multiple separate firmware files, e.g., FC101, use multiple sections

though [8].

The scripts used in OSE files are basically lists of commands sent to the Danfoss drives

in the boot mode. They can, however, also contain special meta-commands to allow some

simple logic. Those meta-commands include IF statements, commands to display

messages to users and to abort the flashing process [8].

In MCT 10, the firmware data is sent to the drive using either Xmodem or Ymodem

protocol, though APST always forces Ymodem protocol since Mark II P400 drives do

not support Xmodem protocol. If firmware data is present in an OSE section then the

script of that section must end with a corresponding “load” command which initiates the

data transfer, informing the drive of e.g., the address where the firmware data should be

written to.

18

;--
; AOC software update (Advanced CC) OSE command file.
;--

; Check control card type
; Read from OTP address 0x1FFF7800:
; 0: Basic
; 1: Extended
; 0xff: Advanced
; Note: readmem will fail in mkI cards and abort script.
;
dtm readmem -a 0x1fff7800 -b
IF!= 0xFF
WARN CC Type check - mkII ACC required !
dtm write_ee -a 0 -d 0101 ;added by OssCreator at 2019-03-06T14:29:48
dtm mode_change ;added by OssCreator at 2019-03-06T14:29:48
ABORT
END

ECHO CC Type check - OK

;--
; Check Flash size and that it is a mkII card
; Note: TM returns "8192 kB" on mkII and "4 MB" on mkI cards
; so it will fail on mkI cards.
;

Figure 3. Abstract content of an OSE file.

19

dtm flash_size -d 2
IF!= 0x2000
WARN CC Flash check - 8MB required !
dtm write_ee -a 0 -d 0101 ;added by OssCreator at 2019-03-06T14:29:48
dtm mode_change ;added by OssCreator at 2019-03-06T14:29:48
ABORT
END

ECHO CC Flash check - OK

;--
; AOC software update (Advanced CC) OSE command file.
;--

ECHO CC Flash erase - started...
dtm field_flash_erase -d 2
ECHO CC Flash erase - OK

;--
; Flash the drive
load -r -b 0x60020000 -m y
ECHO CC Flash update - OK

2.1.2 Scanning a barcode

For drive firmware upgrade using a barcode scanner, a graphical user interface (GUI)

must be launched using a --gui/-g argument. Before using GUI, a configuration file

config.xml must be configured and present in the folder with installed APST (see chapter

3 for configuring APST). If APST is configured correctly, the user will see an image very

similar to Figure 5.

Figure 4. Example of a firmware file content.

Figure 5. APST GUI interface. The tool is in the ready mode.

20

Upon successful launch of APST GUI, the tool is in the ready mode targeting master files

in a folder specified in the configuration file config.xml and waiting for a barcode to be

scanned. Once the barcode is scanned, APST starts deserialization of the master file with

further execution depending on the master file content. Throughout the development

process, the “Opticon” barcode scanner had been used.

2.1.3 Drive identification

To be able to work with a drive, the drive must be identified and in case of APST, it

obliges usage of a serial bus.

The current identification procedure is split into 4 drive family categories: P400, P600,

MCD5xx (Soft Starter) and VLT [9].

The division is based on the “F” value of the response and obtained by reading parameter

1598.

Figure 6. Visual representation of parameters for drive identification in MCT 10.

21

Table 1. Drive identification values

Value of F Drive Family

0 P600

1 P400

2 MCD5xx

F does not exist VLT

The first thing to do when trying to identify a drive is to read the parameter number 1598.

Its response is a string containing a series of information about the drive [9].

Table 2. Drive responses during identification

Drive Information string

P400 Mark I FC-102 “F=1;D=FC-102;B=FC-102;L=FC-102”

P400 Mark II FC-302 “F=1;D=FC-302;B=FC-302;L=FC-302;K=2”

FC-051 “F=0;D=FC-051;B=FC-

051;R=0270;W=37;V=220;P=1”

VLT 5000 No string is retrieved because parameter 1598

does not exist.

Old P400 drives do not have parameter 1598. In this way, the success of the identification

procedure is not affected if the parameter reading fails. The response of parameter 1598

for P400 drive family does not contain as much information as, for example, for FC-051.

After reading parameter 1598, parameter group 1599 with array index 22 is also read [9].

22

Currently, APST only supports drives of P400 drive family (both Mark I and Mark II).

2.1.4 Boot mode

In order to be able to upgrade the firmware of a drive, it must be sent into the boot mode

(for example, using MCT 10) if it was in the normal mode. In the normal mode, it is

impossible to erase and flash the drive flash memory. Besides that, the firmware upgrade

can be performed only in the boot mode for safety reasons (e.g., not to damage running

motors).

2.1.5 Firmware file validation

In addition to what was described in the subchapter 2.1.1, OSE file can also contain

validation sections. Validation data is used to ensure that the selected file is compatible

with the drive that the user is trying to flash. There can be several validation sections in a

single OSE file, all of which must match. Although the user can force flashing in MCT

10, given sufficient permissions, APST was designed that way that there are no user

interactions, thus forcing cannot be performed. MCT 10 and APST support two types of

validation sections – mask validators and token validators [8].

Mask validators read string parameter with a given number from the drive. They then

match the parameter’s value to a reference mask (also given in the OSE file), skipping ’*’

Figure 7. Example of a successful drive identification in APST.

23

characters in the mask. In practice, they are used to compare the drive’s type code against

a given mask to ensure that e.g. drive type matches [8].

Token validators use drive parameter 1598 and the value of that parameter is a semicolon-

separated list of tokens, each token being in the format “Key=Value”. E.g. the value of

parameter 1598 on FC-102 drive could be „F=1;D=FC-102;B=FC-102;L=FC-102“.

Token validator checks if the value of a specific token equals to a reference value stored

within the OSE file. The main purpose of the token validator was to differentiate between

P618 and P619 variants of the FC-101 drive [8].

2.1.6 Firmware file scripts execution

The OSE file handling in APST is very similar to the one used in MCT 10 (it is crucial

that APST and MCT 10 should essentially upgrade drives in the same way) and consists

of three main classes.

First, the “DriveFlasher” class that handles the common functionality and is subclassed

for specific drive families such as P400. Second, the “OsxScriptParser” class that parses

and executes the scripts within OSE files. And third, the “DDCommWrapper” class that

is used for communicating with the drive [8].

When flashing a drive, DriveFlasher and its subclass load the firmware OSE file, validate

it and then proceed to execute each of the firmware sections. For every firmware section,

first, the script is executed and then the firmware, if any, is sent to the drive [8].

The main responsibility of the DriveFlasher subclasses is logic for flashing binary files.

DDCommWrapper is the class used to send arbitrary data to the drive in the boot mode.

It contains utility methods, e.g. to switch the drive to the boot or normal mode,

nevertheless the two most important methods are the ones used to send an arbitrary

command to the drive and the ones used to transfer data to the drive over Xmodem and

Ymodem protocols [8].

To send an arbitrary command to the drive, the higher-level code supplies the command

as well as optional prompt and timeout. The command is sent to the drive and then we

wait for the drive’s reply. The reply is read until the prompt text is encountered or until a

timeout occurs. The prompt text defaults to Redboot> but can be customized by the higher-

level code and the reply is different from Redboot> when a drive’s reply is expected

during data transfer [8].

24

2.1.7 Data transfer

To transfer packets of data to a drive APST uses the Ymodem protocol, which is

essentially Xmodem-1K (i.e. Xmodem CRC with 1024-byte packets [10]), however, it is

very similar to the conventional Xmodem/Ymodem implementation and uses the same

notations (table 4), for example provided by Massachusetts Institute of Technology [11].

Table 3. Packet structure for data transfer using Ymodem in APST.

Byte 1 Byte 2 Byte 3

Bytes 4 - 1027 Bytes 1028 -

1029

Header Packet number Number of

packets left

Payload (packet

data)

16-bit CRC

Table 4. Notations used in the protocol implementation.

Symbol Description Value

SOH Start of Header 0x01

EOT End of Transmission 0x04

ACK Acknowledge 0x06

NAK Not Acknowledge 0x15

ETB End of Transmission Block 0x17

CAN Cancel (Force receiver to

start sending C's)

0x18

C ASCII “C” 0x43

The receiver starts by sending an ASCII “C” (0x43) character to the sender indicating it

wishes to use the CRC method of block validating. After sending the initial “C” the

receiver waits for either a 3 second time out or until a buffer full flag is set. If the receiver

is timed out, then another “C” is sent to the sender and the 3 second time out starts again

[11]. This process continues until the receiver receives a complete 1029-byte packet.

25

Indeed, using Log Visualizer (internal proprietary tool) it is possible to observe that after

running a command dtm field_flash_erase -d 2 to erase the previous content on a

drive, drive sends Redboot> and then APST initiates the data transfer. The drive

acknowledges that and sends an ASCII symbol “C”. The data transmission starts and once

the packet is sent, the drive sends ACK (0x06) notifying readiness to receive the next one.

When the flashing process is completed, APST sends the dtm mode_change command to

switch the drive to the normal mode. After that, baud rate, parity bit and stop bits are set

to default values since during flashing the set up is different (e.g., the baud rate is set to

115200 bd/s).

Figure 8. Communication log of drive flashing initialization

Figure 9. Communication log after drive flashing.

26

2.2 Test scenarios

The subchapter provides some of the test cases on which the APST flashing feature has

been tested.

1. Trying to flash an unsupported drive family (e.g., P600)

In such a case, the drive is still correctly identified, however, APST simply aborts the

execution as the drive family is not supported just yet.

2. Invalid firmware file content

Figure 10. Testing APST on a P600 drive.

27

The given firmware file does not pass the validation stage. APST aborts the execution.

3. Trying to access the serial bus that is being used

In such a case, APST does not access the busy bus, since it most probably will lead to

synchronization and access violation errors.

Figure 11. Testing APST on an incorrect firmware file.

Figure 12. Testing APST on an in-use serial bus.

28

2.3 Future work

The main part of APST development for drive firmware upgrade has been successfully

implemented and, in the future, it is planned to include such features and improvements

in APST:

1. Add support of Universal Serial Bus (USB) for speed enhancing (the difference can

be up to 10 times compared to drive upgrade using a serial port through RS-232/485

converter (e.g., ADAM-4561 converter).

2. Implementation of the progress bar. Currently, the progress bar in GUI is not

implemented, thus the end user can only predict when the flashing will be completed

(in average, it takes around 9-10 minutes over the serial port and Ymodem protocol)

by looking at the flash log.

3. Currently, APST is used for automation of Danfoss drives setup (e.g., specific

parameters values for controlling motors) in manufacturing companies located in

Europe that use P400 drives, though as APST will progress, support of the P600 drive

family most probably will be relevant.

The P600 product line started as a shortened version of P400 drives which was meant

to be sold only in China. Each P600 drive has to some extent a major deficiency

compared to P400 drives so that P600 would not compete with P400 drives.

4. Presently, it still happens that sometimes the drive’s port settings upon flashing are not

restored correctly (parity bit and baud rate) making it not possible to immediately write

binary files and setup settings (parameters values) after flashing. This case needs to be

thoroughly investigated and fixed before being released into production.

29

3 Operating with APST

The chapter represents an overview of APST overall, in particular, its features and

discusses the main points to remember while using APST (including its configuration).

The flashing feature in APST is a one step forward towards facilitating work of

technicians on the production line to not use MCT 10 for such use cases. Furthermore, at

the end of the chapter, we present the actual use cases of APST and means for debugging

in case errors take place.

3.1 Installation

For the tool to work properly, the latest version of MCT 10 must be installed on the

computer. MCT 10 will install a communication module that is required for

communicating with the drives [7].

APST installer is provided as a self-extracting executable. After running

APST_Installer.exe, it will ask for a location where to extract the needed files.

Upon the installation, a new folder called “APST” will be created in the chosen location

with the installed software.

3.2 APST Configuration

First, the serial bus must be correctly configured. This must be performed from MCT 10

user interface.

Typical settings are related to a communication port (COM) and baud rate [7]:

30

Figure 13. Serial fieldbus configuration.

After the serial bus has been configured, MCT 10 must be closed as any other application

that might keep the COM port locked. The next step is to configure the serial bus name

that APST shall use.

In the same directory where APST is installed, there must also be present a configuration

file called config.xml. The file contains three settings [7]:

1. <DbDirectoryPath> is meant for the Desktop version of APST. It specifies the

location where APST should search for master files. This setting can be ignored

when APST is used as a command line tool.

2. <SerialBusName> is a mandatory configuration. The name defined in here must

match with the name defined in MCT 10 for the serial bus that APST shall use.

3. <P400DriveGarbageCollectionEnabled> is an optional configuration. The default

value is “True”, which means that MCT 10 will perform garbage collection before

writing binary files. With a value “False” set, garbage-collection is skipped. It is

recommended to use “False” only for testing purposes.

31

3.3 APST commands

The tool can run as a command line. For a list of supported commands, a help command

must be called: apst.exe --help:

Figure 14. Example of the config.xml file.

Figure 15. APST command line interface.

32

The following command line parameters are supported [7]:

Table 5. List of arguments that APST supports.

Parameter Description

--write, -w
<path>

Specify the <path> of a master file to write. The <path> must be

absolute or relative to the current working directory from which the

application is invoked.

--flash, -f
<path>

Specify the <path> of a master file to flash. The <path> must be

absolute or relative to the current working directory from which the

application is invoked. After flashing is completed, parameters are

written to the drive (identical to --write/-w) if there are any to be

written.

--help, -h, -? Displays help.

--version, -v Displays tool and communication module version number.

--gui, -g Initiates GUI to be shown. Can be used for scanning a barcode.

3.3.1 The write command

The write command is used to perform a commissioning operation to the drive,

commissioning operation that consists in writing parameter values to drive and files. The

write command takes as input a so-called Masterfile. A Masterfile is a file that tells APST

where to find all the information needed to perform commissioning to a drive.

The information needed by APST is collected in a series of files (in UTF-8 encoding),

and the Masterfile simply points APST to the directory where those information files are

located. Masterfile format is XML [7].

The information files that the Masterfile points to consist of [7]:

- Information about writing sequence (in what order parameters shall be written),

parameters number, datatype and eventually scaling factor. This information is

collected in an XML file in a format specified in the Masterfile subchapter.

- Information about parameter value to be written, and what setup number to write.

This information is collected in a CSV file in a format specified in the Drive

Information subchapter.

33

3.3.2 The flash command

The flash command is used to perform an upgrade of firmware that is currently installed

in the target drive. A detailed description of the flash command algorithm is outlined in

APST algorithm subchapter.

3.3.3 The help command

The help command simply prints out in the console possible commands with a respective

syntax to operate with APST.

3.3.4 The version command

The version command outputs the version and build number of APST and the version of

the communication module that is installed.

3.3.5 Using APST from the console

From a console window, APST commands can be called as the following example shows:

apst.exe --write "C:\masterfiles\mydrive.xml"

In case of the write command, APST logs to the console window (and to the log file as

well) the progress and the information about the current operation. If the operation

succeeds, the tool returns 0 (zero). In case of any failure, the tool returns 1 (one).

The return code can be read by typing:

Echo %ERRORLEVEL%

3.3.6 Using APST from a scripting language

APST commands can be executed from a scripting language [7]. If the operation

succeeds, the tool returns 0 (zero). In case of any failure, the tool returns 1 (one).

Example of usage from a .bat file:

Figure 16. Using APST from a scripting language.

34

3.4 Configuring APST

The tool loads configuration from the config.xml file, If the file is missing, APST gives

the following error:

The configuration file and the executable must be in the same directory. See table 6 for

XML tags description [7].

Table 6. Configuration file XML tags description.

XML tag Description Default

value

DbDirectoryPath

Masterfile database path when

the tool is launched with a

-g/--gui argument

-

SerialBusName

Name of the serial bus

Serial

P400DriveGarbageCollectionEnabled

With value False garbage-

collection before writing the

binary files is skipped. It is

recommended to use skipping

only for testing purposes.

True

Figure 17. Example of the configuration error.

35

3.5 Master file

To use APST, it is crucial to understand the content of master files and what XML tag

corresponds to what setting. The master file itself is the file that connects information

from ERP systems to Danfoss Drives project information. In this way it contains

information about parameters and files to be written to a drive. The master file has an

XML format (UTF-8 encoding) [7].

Table 7. Master file XML tags description.

XML tag Description

DriveInfoFileName

Path to the DriveInfo XML file. This file is needed for

the tool to recognize a correct write order and

parameter information (id, datatype and scale factor). If

a full path is not used, then the specified path will be

considered relative to the master file location.

ParameterFileName

Path to the ParametersInfo CSV file. The file where

parameters to be written are described. If a full path is

not used, then the specified path will be considered

relative to the master file location.

Barcode

Barcode ID. Links the Masterfile to the production

system.

Customer Information about the customer. Optional.

Order Number Information about the order. Optional.

IdentificationParameters Contains information about the drive.

BinaryFiles Contains paths to binary files.

BinaryFile

Binary file path. If a full path is not used, the file must

be located at the same root as the Masterfile. Optional.

FirmwareFile Firmware file (.OSE) path. Optional.

<?xml version="1.0" encoding="UTF-8"?>

<Configuration>

<DbDirectoryPath>C:\Temp\masterfiles</DbDirectoryPath>

<SerialBusName>Serial_2</SerialBusName>

<P400DriveGarbageCollectionEnabled>False</P400DriveGarbageCollec
tionEnabled>

</Configuration>

Figure 18. The configuration file example.

36

3.6 DriveInfo XML file

The DriveInfo XML file is used as a drive descriptor. It contains information about MCT

10 write order of parameters (some parameters depend on other) and necessary

information about parameters (ID, scaling factor and data type) [7].

Table 8. DriveInfo file description.

Field Name Description

ParameterUpdateSequence Information about MCT 10 write order: order

on how Parameters will have to be written.

Parameters Information about parameters to be written.

Parameter Parameter information: Must contain

ParamNumber, ScalingFactor and

DataType.

Tag Name Description

ReadAndCompareTimeOutMSec

Upon writing the value, APST has to wait up

for a specific timeout until the value is

changed in the drive.

DataType Data type of parameter.

<?xml version="1.0" encoding="UTF-8"?>

<MasterFile>

<Barcode>1925177829</Barcode>

<DriveInfoFileName>masterfile_name\DriveInfo.xml</DriveInfoFileName>

<ParametersFileName>masterfile_name\ParametersInfo.csv</ParametersFileName>

<BinaryFiles>

<BinaryFile>masterfile_name\pump0068.bin</BinaryFile>

<BinaryFile>masterfile_name\my.splash</BinaryFile>

<BinaryFile>masterfile_name\vigala.sas</BinaryFile>

<BinaryFile>masterfile_name\english.lng</BinaryFile>

</BinaryFiles>

<FirmwareFile>C:\FC202_2_63.ose</FirmwareFile>

</MasterFile>

Figure 19. Master file example.

37

<?xml version="1.0" encoding="UTF-8"?>

<DriveInfoFile>

 <ParameterUpdateSequence>

 <Item ParamNumber="12" Setup="1"/>

 <Item ParamNumber="1459" Setup="1"/>

 <Item ParamNumber="847" Setup="4"/>

 <Item ParamNumber="847" Setup="3"/>

 <Item ParamNumber="847" Setup="2"/>

 <Item ParamNumber="847" Setup="1"/>

 </ParameterUpdateSequence>

 <Parameters>

 <Parameter ParamNumber="12" ScalingFactor="0" DataType="DT_UNSIGNED8"
ReadAndCompareTimeOutMSec="20000"/>

 <Parameter ParamNumber="847" ScalingFactor="0"
DataType="DT_UNSIGNED16"/>

 <Parameter ParamNumber="1559" ScalingFactor="0"
DataType="DT_VISIBLE_STRING"/>

 </Parameters>

</DriveInfoFile>

3.7 ParametersInfo CSV file

The ParametersInfo file contains information about parameters as they are presented in

MCT 10. Parameters are in CSV format. The CSV file is in UTF-8 encoding [7].

Table 9. ParameterInfo file description.

Meaning Additional info Char Example

Comment # field_1;field_2

#this line is commented

Decimal

delimiter

 . or ,

1.1 or 1,1 to support

different locales. Typically

.(dot) or ,(comma)

Empty field_1;;field_3

Field delimiter

The user must specify delimiter using

separator specifications as described

below. Delimiter specified by the

user must not exceed one character in

length.

; field_1;field_2;field_3

3.7.1 Using ParametersInfo file

For using the content of the ParametersInfo file, separator and date-time format fields

need to be present. More information about date-time formats is available in Appendix 1.

Figure 20. Example of DriveInfo.xml file.

38

Separator and date-time format fields must be placed at the beginning of the CSV file.

Supported fields (all fields are mandatory) [7]:

$FIELD_SEPARATOR

$DECIMAL_SEPARATOR

$THOUSANDS_SEPARATOR

$DATETIME_FORMAT

$TIME_FORMAT

$DATETIME_LANGUAGE

The field must be followed by = (equal) char and a proper value. Parameter values must

be in the same format as in MCT 10 parameters grid, except choice-list parameters which

must have raw value. For example, for writing the language to be English value "0" is

used.

If the used month representation in the date-time format is MMM or MMM, then

$DATETIME_LANGUAGE field is used by APST to determine the language [7].

Example:

English/United States 1

Danish 29

English 31

German 42

Qt documentation was used as a reference to define the $DATETIME_LANGUAGE

values for the enumeration.

3.7.2 Logging

APST commands were developed that way that they are featured with a logging

mechanism that simply outputs the information in the corresponding console window,

Figure 21. Example of the ParametersInfo.xml file.

39

which is extremely helpful for an operator on a production line and for the development

purposes (e.g. debugging). All the information that is seen in the window logs also

appears in a text file. The text file is named "log_currentdate.txt", where the current date

is represented using the format YYYY-MM-DD. For example, a log file can be named as

follows [7]:

log_2019-04-06.txt

A new log file is created once a day. Otherwise, it is appended during that day. Every line

in the log file starts with a timestamp represented using the format HH:MM:SS, for

example:

12:24:37.027 State >> Parameter 413.0 is written successfully, duration: 16 msec. Value

is changed to 0

The log file is saved to the folder named app_name which is placed to the TEMP folder.

For example, a saved log file path could look like this (Windows 7 operating system):

C:\Users\myUserName\AppData\Local\Temp\APST\log_2019-04-06.txt

An example log file after flashing a drive can be seen in Appendix 2.

3.8 Use cases

Before proceeding to the use cases, technical details need to be defined:

1. Production file represents two files: Master file (CSV or XML) and

ParametersInfo file (CSV). See 3.5 and 3.7 subchapters for their content

description.

2. User must install APST with a CD key and license. If MCT 10 is already installed,

the tool will automatically use this information.

The provided use cases assume next prerequisites [7]:

- The customer must use the serial fieldbus between a production PC and the drive.

- The production PC can be either a Programmable Logic Controller (PLC) or a PC,

nonetheless, it must be Windows based and as a minimum have DDComm

40

(optionally MCT 10) and the Automation Production Setup Tool installed and

running.

- The production PC must either have access to the local network (to access the

production file: CSV/XML and the ERP system of the customer) or the files must

be stored locally on the production PC.

Once the prerequisites are fulfilled, the engineer must do the following [7]:

1. Create a project in MCT 10 (or use an existing), which contains the specific drive

and parameters (one project for each drive) or alternatively, the engineer can

create the Master file (CSV or XML) from a template and then must add, for

example, the link to the firmware file.

2. Via MCT 10 the engineer converts the project file to the production file and stores

it on the local network.

3. The engineer opens the Master File (CSV or XML) in a text editor and adds the

customer’s specific barcode in the corresponding tag. This is done to link the

Master file to the production system. Finally, the engineer stores the production

file on the local network or on the production PC.

4. On the production line, the technician scans the barcode of the drive (see figure

22 for a drive example) using a barcode scanner, which is connected to a

production PC and that way connects the specific drive to the production PC.

5. The technician powers up the drive (APST is in the ready mode), and when the

drive is ready and can be identified, APST validates and starts flashing and/or

writing the files immediately (see chapter 2 for the exact algorithm details).

6. APST selects the correct Master file and validates that all linked files are available

and starts to flash and/or write the files to the drive.

7. If somehow the drive is in a non-working state (e.g. the drive is in the boot mode,

not started up and etc.), then APST displays an error message and stores the fault

information in a log .txt file.

41

8. The technician acknowledges the error and program goes into the ready mode.

The technician removes the drive from the production line and together with the

fault log it is sent to the engineer.

9. The technician connects a new drive and performs the same steps described above.

10. When finished and drive is up and running again, APST validates the files by

checking the parameters settings.

Figure 22. An example of a P400 drive that can be upgraded over APST.

42

4 Summary

In this thesis, the problem of the automatic drive upgrade process on a production line

was addressed by developing software focusing on a human factor error-free usage with

minimal user interaction by using a barcode scanner, so that the solution can substitute

utilization of MCT 10.

The solution is going to be tested by quality engineers on all drives of the P400 drive

family before the actual release of APST. If the solution passes all the test scenarios,

APST can be used in production despite the limitation on only the P400 drive family

(Mark I and Mark II).

In the “Future work” subchapter it is discussed what features are going to be implemented

in the nearest future.

Thus, the aim of the thesis has been fulfilled and the questions from the motivation

subchapter are considered to be positively answered.

43

References

[1] Danfoss A/S, “VLT® AutomationDrive FC 301 / FC 302 documentation” (in Russian),

http://drives.danfoss.ru/products/vlt/low-voltage-drives/vlt-automation-drive-fc-301-302/#/

(accessed 29.04.2019)

[2] Danfoss A/S, “Operating Guide VLT® Motion Control Tools MCT 10 Set-up Software”

[3] Proekspert company, https://proekspert.ee/ (accessed 30.04.2019)

[4] Internal documentation, “DDComm Architecture overview”,

https://intra.proekspert.ee/wiki/display/DPCT/Architecture+Overview, 2010 (accessed

30.04.2019)

[5] The Qt company, “About Qt”, https://wiki.qt.io/About_Qt (accessed 29.04.2019)

[6] C++ boost libraries, https://www.boost.org/ (accessed 29.04.2019)

[7] Danfoss A/S, “Automation Production Setup Tool. Practical Guide and User Manual”, 2015

[8] Internal documentation, “DSU and OSE format”,

https://intra.proekspert.ee/wiki/display/DPCT/DSU+and+OSE+format, 2011 (acessed

30.04.2019)

[9] Internal documentation “Drive identification”,

https://intra.proekspert.ee/wiki/display/DPCT/Drive+Identification, 2018 (accessed 30.04.2019)

[10] Portland State University, “The Guide”, 1993,

http://web.cecs.pdx.edu/~rootd/catdoc/guide/TheGuide_226.html (accessed 29.04.2019)

[11] Massachusetts Institute of Technology, “Xmodem protocol with CRC”,

http://web.mit.edu/6.115/www/amulet/xmodem.htm (accessed 29.04.2019)

[12] The Qt company, “Locale class. Date-time formats in Qt”, https://doc.qt.io/archives/qt-

4.8/qlocale.html#Language-enum (accessed 29.04.2019)

http://drives.danfoss.ru/products/vlt/low-voltage-drives/vlt-automation-drive-fc-301-302/#/
https://proekspert.ee/
https://intra.proekspert.ee/wiki/display/DPCT/Architecture+Overview
https://wiki.qt.io/About_Qt
https://www.boost.org/
https://intra.proekspert.ee/wiki/display/DPCT/DSU+and+OSE+format
https://intra.proekspert.ee/wiki/display/DPCT/Drive+Identification
http://web.cecs.pdx.edu/~rootd/catdoc/guide/TheGuide_226.html
http://web.mit.edu/6.115/www/amulet/xmodem.htm
https://doc.qt.io/archives/qt-4.8/qlocale.html#Language-enum
https://doc.qt.io/archives/qt-4.8/qlocale.html#Language-enum

44

Appendix 1 Date-time formats

Qt documentation was used as a reference to define the date-time formats (see table 10,

11) [12].

Table 10. Date-time formats in APST.

Expression Output

d The day as number without a leading zero (1 to 31)

dd The day as number with a leading zero (01 to 31)

M The month as number without a leading zero (1-12)

MM The month as number with a leading zero (01-12)

MMM The abbreviated localized month name (e.g. 'Jan' to 'Dec') in the

$DATETIME_LANGUAGE defined language

MMMM The long-localized month name (e.g. 'January' to 'December') in the

$DATETIME_LANGUAGE defined language.

yy The year as a two-digit number (00-99):

69 = 2069,

70 = 1970,

71 = 1971

yyyy The year as a four-digit number.

Table 11. Date-time formats in APST.

Expression Output

h The hour without a leading zero (0 to 23 or 1 to 12 if AM/PM display)

hh The hour with a leading zero (00 to 23 or 01 to 12 if AM/PM display)

m The minute without a leading zero (0 to 59)

mm The minute with a leading zero (00 to 59)

s The second without a leading zero (0 to 59)

ss The second with a leading zero (00 to 59)

zzz The milliseconds with leading zeroes (000 to 999)

AP Use AM/PM display. AP will be replaced by either "AM" or "PM"

ap Use am/pm display. ap will be replaced by either "am" or "pm

45

Table 12. Example formats.

Format Result

dd.MM.yyyy MMMM d yy 21.05.2001 May 21 01

hh:mm:ss.zzz 14:13:09.042

h:m:s ap 2:13:9 pm

46

Appendix 2 Log file example

11:49:03.230 INF 37340 GUI application started

11:49:03.256 DBG 37340 APST version : v2.0 Build 200 | DDComm version :
1.0.1902.101

11:49:03.382 INF 37340 GUI application initialized successfully

11:49:03.382 INF 37340 Database directory set to C:\Masterfiles

11:52:40.494 INF 37340 Operation started

11:52:40.501 INF 31980 Received barcode 9326598264

11:52:40.504 INF 31980 Targeted master file
C:\Masterfiles\masterfile_111123.xml

11:52:40.603 INF 31980 Targeted parameters file
C:\Masterfiles\masterfile_111123\ParametersInfo.csv

11:52:40.606 INF 31980 Master file information successfully read from the
database

11:52:40.624 INF 31980 Drive identified as F=1;D=FC-302;B=FC-302;L=FC-302;K=2

11:52:40.639 INF 31980 Meta-parameter 1599.13 value is 1540

11:52:40.654 INF 31980 Meta-parameter 1599.22 value is 1549

11:52:40.669 INF 31980 Meta-parameter 1599.1 value is 1541

11:52:40.684 INF 31980 Meta-parameter 1599.12 value is 1542

11:52:40.699 INF 31980 Meta-parameter 1599.3 value is 1570

11:52:40.714 INF 31980 Meta-parameter 1599.5 value is 1572

11:52:40.729 INF 31980 Meta-parameter 1599.7 value is 1574

11:52:40.744 INF 31980 Meta-parameter 1599.26 value is 1576

11:52:40.758 INF 31980 Parameter 1540.0 value is FC-302

11:52:40.775 INF 31980 Parameter 1549.0 value is A74.87 M74.87 D74.81

11:52:40.790 INF 31980 Parameter 1541.0 value is P1K1: 1.10kW

11:52:40.806 INF 31980 Parameter 1542.0 value is T2: 3 X 200-240VAC

11:52:40.821 INF 31980 Parameter 1570.0 value is AX: No option

11:52:40.837 INF 31980 Parameter 1572.0 value is BX: No option

11:52:40.852 INF 31980 Parameter 1574.0 value is C0X: No option

11:52:40.867 INF 31980 Parameter 1576.0 value is C1X: No option

11:52:40.868 INF 31980 Targeted firmware file C:\FC302_CC_MKII_53_00.ose

11:52:41.126 INF 31980 OSS script should contain commands for switching drive
to normal mode.The commands have been added for the current OSE file.

11:52:41.134 INF 31980 Firmwares loaded from the file have been saved into a
temporary location. They will be automatically deleted after the program
execution.

11:52:41.134 INF 31980 Firmware file C:\FC302_CC_MKII_53_00.ose has been
processed

11:52:41.134 DBG 31980 Send drive to boot mode

11:52:41.257 DBG 31980 Apply boot mode configuration for the bus

11:52:41.783 DBG 31980 Send command: \r

11:52:43.566 DBG 31980 Received RedBoot

11:52:43.566 INF 31980 DTM version 2.5

11:52:43.566 INF 31980 Starting software upgrade

11:52:43.566 INF 31980 Initializing

11:52:43.566 INF 31980 Flashing from file C:\FC302_CC_MKII_53_00.ose

11:52:43.816 INF 31980 Read DTM version

11:52:43.820 INF 31980 DTM version: 2.05

11:52:43.820 INF 31980 Validate software file

47

11:52:43.820 INF 31980 Executing script #1

11:52:43.820 INF 31980 Sending command to the drive: 'dtm readmem -a
0x1fff7800 -b'

11:52:43.820 DBG 31980 Send command: dtm readmem -a 0x1fff7800 -b

11:52:43.821 DBG 31980 Send command: \r

11:52:43.830 DBG 31980 Received the command

11:52:43.830 DBG 31980 Response from drive: 0xff

RedBoot>

11:52:43.830 DBG 31980 Response from drive: '0xff

'

11:52:43.830 INF 31980 CC Type check - OK

11:52:43.830 INF 31980 Sending command to the drive: 'dtm flash_size -d 2'

11:52:43.830 DBG 31980 Send command: dtm flash_size -d 2

11:52:43.831 DBG 31980 Send command: \r

11:52:43.840 DBG 31980 Received the command

11:52:43.840 DBG 31980 Response from drive: 8192 kB

RedBoot>

11:52:43.840 DBG 31980 Response from drive: ' 8192 kB

'

11:52:43.840 INF 31980 CC Flash check - OK

11:52:43.840 INF 31980 CC Flash erase - started...

11:52:43.840 INF 31980 Sending command to the drive: 'dtm field_flash_erase -
d 2'

11:52:43.840 DBG 31980 Send command: dtm field_flash_erase -d 2

11:52:43.840 DBG 31980 Send command: \r

11:53:05.310 DBG 31980 Received the command

11:53:05.311 DBG 31980 Response from drive: RedBoot>

11:53:05.311 DBG 31980 Response from drive: ' '

11:53:05.311 INF 31980 CC Flash erase - OK

11:53:05.311 INF 31980 Sending command to the drive: 'load -r -b 0x60020000 -
m y'

11:53:05.311 DBG 31980 Send command: load -r -b 0x60020000 -m y

11:53:05.312 DBG 31980 Send command: \r

11:53:05.319 INF 31980 Sending 2950144 bytes of data to the drive using y-
modem

11:53:05.320 DBG 31980 Drive response: 67

11:53:05.421 DBG 31980 Sending header:

11:53:10.175 DBG 31980 Drive response: 67

11:53:10.276 DBG 31980 Initiating transmission:

11:53:10.276 DBG 31980 Packet 1

11:53:10.371 DBG 31980 Packet 2

…

…

Packet n

…

11:58:06.595 INF 31980 Executing script #2

11:58:06.596 INF 31980 Sending command to the drive: 'load -r -b 0x60764400 -
m y'

11:58:06.596 DBG 31980 Send command: load -r -b 0x60764400 -m y

11:58:06.596 DBG 31980 Send command: \r

11:58:06.603 INF 31980 Sending 637952 bytes of data to the drive using y-
modem

48

11:58:11.760 DBG 31980 Drive response: 67

11:58:11.862 DBG 31980 Sending header:

11:58:16.614 DBG 31980 Drive response: 67

11:58:16.715 DBG 31980 Initiating transmission:

11:58:16.715 DBG 31980 Packet 1

11:58:16.810 DBG 31980 Packet 2

…

…

Packet n

…

11:59:21.562 INF 31980 CC Flash update - OK

11:59:21.563 INF 31980 Switching drive to normal mode

11:59:21.563 DBG 31980 Send drive to normal mode

11:59:21.563 DBG 31980 Send command: \r

11:59:21.570 DBG 31980 Received the command

11:59:21.570 DBG 31980 Response from drive: RedBoot>

11:59:21.570 DBG 31980 Send command: dtm write_ee -a 0 -d 0101\r

11:59:21.582 DBG 31980 Received the command

11:59:21.582 DBG 31980 Response from drive: RedBoot>

11:59:21.582 DBG 31980 Send command: dtm mode_change\r

11:59:21.594 DBG 31980 Received the command

11:59:21.594 DBG 31980 Response from drive: Jumping to normal mode

11:59:21.594 DBG 31980 Apply normal mode configuration for the bus

11:59:25.470 INF 31980 Flashing has been completed

11:59:25.473 INF 31980 Operation succeeded!

11:59:25.477 INF 37340 Log is saved to
C:\Users\danielb\AppData\Local\Temp\APST\log_2019-04-09.txt

