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ABSTRACT   

This study models and forecasts volatility of three Baltic stock market indexes (Riga, 

Tallinn, Vilnius) using GARCH, EGARCH and GJR volatility models. In order to specify, 

estimate and test the volatility models Box-Jenkins methodology is used. Forecasting 

performance of the models is evaluated with four forecast error measurements. Period from 

2000 to 2012 is used for estimation of the models and period from 2013 to 2014 for testing out 

of sample. The aim of this study is to find the model for every stock market index that delivers 

the most accurate volatility forecast. The main results of this study is that GARCH(2,1) 

appeared to be the best performing model for volatility of stock market index of Riga, 

EGARCH(2,1) is the best model for volatility of stock market index of Tallinn and 

GARCH(2,2) works best for stock market index of Vilnius. It was also found that differences 

in error measurements are very small and largest differences in forecasts appear when large 

price shocks take place. 

 

Keywords: Baltic stock market indexes, volatility forecasting, GARCH models, leverage effect, 

emerging markets. 
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INTRODUCTION 

Typically, in financial markets, we are concerned with the variation of asset returns, 

which is defined as volatility in financial theory. As a proxy for market risk volatility has 

become one of the key variables in modern finance theory. It is used in such areas like 

derivatives pricing as a part of Black-Sholes model of valuation of option prices. In risk 

management area it is used in Value-at-Risk model to quantify the level of potential losses over 

a specific period of time. Worldwide adoption of Basel Accord lead to widespread application 

of this model in financial institutions around the globe. Modern portfolio theory assumes 

volatility is a measure of risk of particular security or portfolio. Portfolio managers have certain 

risk level over investment holding period, which is described by volatility. Investor may want 

to reduce his exposure to certain asset if volatility is going to rise, on the other hand option 

trader may employ volatility forecasts implementing trading strategy. Financial assets volatility 

appears in many cases to be time-varying, therefore in many cases previous period observation 

cannot be used as reliable source of information about volatility of the next period thus there is 

a need for forecasting method to estimate the risk accurately. 

The larger number of studies has been devoted to volatility modelling during last 

decades and many different approaches have been proposed. Perhaps the easiest way to forecast 

volatility is simply calculation of standard deviation or dispersion over some historical period 

of time. Obviously, this method will deliver poor forecast of next period volatility, but it can be 

used to find a long term benchmark level. As an extension of this method, exponentially 

weighted moving average (EWMA) model has been developed. The model has become a part 

of popular risk management software, so it is used widely. Another way of making volatility 

forecast is to derive it from option prices, or to find so called implied volatility (IV). The method 

is also widely used in practice as it provides anticipation of market participants about future 

volatility, thereby it reflects collective opinion about future volatility. The evidence of 

successful application of IV has been reported by many studies. Although, a lot of different 

model exists, the most widespread volatility model is autoregressive conditionally 

heteroscedastic (ARCH) model, and in particular generalized autoregressive conditionally 
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heteroscedastic (GARCH). This type of models allows user to capture such features of volatility 

like mean-reversion, clustering and asymmetric response to price shocks, so it has become very 

useful in many financial applications.  

Since the introduction of ARCH model in 1982, the model turn to be so popular that 

whole family of ARCH-type models has been developed to capture different properties of 

financial series. It is well documented that many stock markets demonstrate asymmetric 

volatility, so there is a trend in empirical literature to use asymmetric-type models. Yet some 

emerging markets studies show that asymmetry is not always the case for those markets. Since 

Baltic States stock markets refer to emerging markets, the choice of volatility model turn to be 

a hard task. More recent studies showed that there is no asymmetry in volatility of Tallinn stock 

exchange index returns for the period from 2004 to 2008. Analysis of literature showed that 

volatility the problem of volatility modeling in this region has not been studied widely so far. 

This circumstance inspired author to study Baltic stock markets volatility. 

The thesis is important because it provides comparison of performance of different 

ARCH-type volatility models on Baltic stock markets, thus helps to choose the appropriate 

model for forecasting the risk associated with investments in this market. This study results can 

be particularly useful for institutional risk management purposes where volatility forecast can 

be employed in Value-at-Risk model. Most of developed and some emerging stock markets are 

accompanied by well-functioning derivatives market, where the volatility expectation can be 

observed using by founding IV. The absence of derivative market in Baltic States limits variety 

of forecasting technics, making volatility forecasting issue more complex. This argument 

emphasizes contribution of this study to practice. 

The aim of current study is to analyze volatility of daily returns on stock market indexes 

of Riga (OMXR), Tallinn (OMXT), and Vilnius (OMXV) for the period from 4.01.2000 to 

30.12.2014, with three ARCH-type models: GARCH, EGARCH and GJR. Analyzed period 

covers almost whole time of existence of those markets. The time series is sufficiently long and 

consist of 3801 observations. The period from 4.01.2000 to 28.12.2012 is used for estimation 

of the models and period from 03.01.2013 to 30.12.2014 for testing out-of-sample. The data 

was obtained from the home page of Nasdaq Baltic stock exchanges. Author used statistical 

package EVievs 8 to make all necessary test in order to specify and estimate models, and 

evaluate forecasts delivered by those models. 



   8 

 

The study is divided into five chapters. The first chapter attended to problem of volatility 

measuring and main properties of volatility. This chapter discusses various approaches 

employed to measure volatility of financial assets and different properties of volatility that has 

been confirmed by many studies. The second chapter provides overview of various volatility 

models, which have been analyzed in academic literature. The third chapter describes 

methodology applied in order to specify and estimate volatility models, and to evaluate 

forecasting performance. The fourth chapter describes data series used in this study and the fifth 

comments results of empirical part of current study. 

The author would like to thanks his supervisor professor Karsten Staehr for valuable 

advices and recommendations.  
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1. VOLATILITY MEASURE AND PROPERTIES 

Statistically, volatility is often measured by the sample variance or standard deviation 

as it shown in equation 1.1. Since the variance is simply the square of standard deviation, it 

makes no difference which measure to use when comparing volatility of two assets (Poon 2005, 

1). 

∑
=

=

T

1t

2

t )μ-r(
1-T

1
σ      (1.1) 

where  

σ - standard deviation, 

tr - return on time t, 

μ - sample mean, 

 T - number of observations. 

Standard deviation σ  in equation 1.1 is unconditional measure of volatility, which imply that 

it is assumed to be constant over period T. Since volatility appears to be varying in time, the 

conditional standard deviation that changes during period T is more relevant reflection of risk 

(Poon 2005, 10).  

It was noted by Figlewski (1997) that the statistical properties of the sample mean make 

it very inaccurate estimate of the true mean especially for small samples. Taking deviations 

around zero instead of the sample mean as in equation 1.1 typically increase volatility forecast 

accuracy. For this reason different variants of volatility measure emerged. 

1.1. Various measures of volatility 

There are various ways to measure the volatility, which caused by aspiration to receive 

more predictable time-series within the framework of particular model. Volatility estimation 

procedure depends on how much information is available at each sub-interval and the length of 

volatility reference period. Depending on availability of data, volatility can be measured as 
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absolute or squared return, it can be also measured using daily highest and lowest prices in so 

called high-low method or using intraday returns. Before high-frequency data became widely 

available, many researchers used daily squared returns and absolute returns, calculated from 

market daily closing prices, to measure volatility. Due to rapid development of information 

technology industry in recent decade, high frequency data became easily obtainable, and thus 

bring more accurate measure of volatility. 

In the times when first volatility studies came out only closing prices were obtainable, 

even nowadays  many macroeconomic series are available only at the monthly interval, so the 

practice is to use absolute monthly value to proxy for macro volatility. This presumes taking 

absolute value of return to measure volatility (Poon 2005, 11). 

Another way of volatility measurement is proxy squared returns to volatility estimator. 

Producing a series of daily squared returns trivially involves taking a column of observed 

returns and squaring each observation. The squared return at each point in time, then becomes 

the daily volatility estimate (Brooks 2008, 386).  

Instead of absolute or squared returns a range estimator can be applied to proxy 

volatility. This method is also known as high-low or extreme-value based method. It is very 

convenient because nowadays high, low, opening and closing prices are easily obtainable. A 

range estimator can be calculated using the log of the ratio of the highest observed and the 

lowest observed price for trading day, which then becomes volatility estimate for the day. This 

approach is expressed in equation 1.2 (Brooks 2008, 386): 

  = )
low

high
(logσ

t

t2

t
                 (1.2) 

where 

2

tσ  - conditional variance, 

thigh - day t highest price, 

tlow - day t lowest price.  

There is also another way to proxy volatility using daily extremes. Applying the 

Parkinson (1980) high-low measure to a price process that follows a geometric Brownian 

motion results in the following volatility estimator exhibited in equation 1.3 (Bollen et al. 2002): 
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( )
4ln2

lnL-Hln
σ

tt2

t =      (1.3) 

where 

tH - highest price on day t, 

tL - lowest price on day t. 

The Garman and Klass (1980) estimator is an extension of Parkinson (1980), where information 

about opening and closing prices in incorporated in volatility estimation expressed in equation 

1.4: 

   
2

1-t

t2

t

t2

t )
p

p
0.39(ln-)

L

H
(ln5.0σ =      (1.4) 

 

where 

tp - price of asset in time t. 

As the high-low volatility measure is very sensitive to outliers, it will be useful to remove them 

from the series. The removal of outliers does not remove volatility persistence, described in the 

next chapter. In fact, that data trimming make long memory in volatility increase (Poon 2005, 

13-18).   

With the increase of availability of tick data in recent years, new approach called 

realized volatility came into use. Realized volatility involves calculating daily volatility with 

intraday squared returns. Estimating volatility with realized volatility involves calculations in 

equation 1.5 (McAleer et al. 2008):  

∑
=

=

T

0j

2

t,mt rRV       (1.5) 

where 

tRV - realized volatility, 

t,mr  – intraday return of day t.  

For a series, which has zero mean and does not contain jumps, realized volatility converges to 

the continuous time volatility (Poon 2005, 14). 
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1.2. Overview of various measures of volatility in literature 

There is a number of ways to measure volatility, many different opinions exist about 

how volatility should be estimated. Ding, Granger and Engle (1993) suggested measuring 

volatility directly from absolute returns, Davidian and Carroll (1987) show absolute returns 

volatility specification is more robust against asymmetry and non-normality. However there is 

some empirical evidence that absolute returns based models produce better volatility forecast 

than models that are based on squared returns, the majority of volatility models are squared 

return models. One of the main arguments against using squared return is that it leads to low 

coefficient of determination ( 2R ) and undermine the inference on forecast accuracy (Poon 2005, 

12). 

Provided that there are no destabilizing large values, high-low volatility estimator is 

very efficient and, unlike the realized volatility, it is least affected by market microstructure 

(Poon 2005, 13).  

Blair, Poon and Taylor (2001) reported an increase of 2R  by three to four times for the 

1-day-ahead forecast when intraday 5-minutes squared returns instead of daily squared returns 

are used to proxy actual volatility. The main disadvantage of this approach is that, intraday data 

is mostly available only for period of recent decade, although there is a trend in academic 

literature to use realized volatility.  

1.3. Stylized facts about volatility 

Before turning to volatility models it worth paying attention to common properties of 

financial time-series. A number of so called stylized facts about the volatility of financial asset 

prices has been found and confirmed in the last decades. 

1.3.1. Mean reversion  

It is well documented fact that stock market prices are mean-reverting, first evidence of 

mean-reversion in stock market was documented by DeBondt and Thaler (1985), later by Fama 

and French (1988) and others. In terms of volatility, mean reversion implies that periods of high 
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volatility will start to cease at some point thus turning to long-run average level, also when it 

approaches low levels it will then start to rise moving back to some historical average level.  

1.3.2. Clustering 

Financial time-series demonstrates clustering, the evidence was first reported by 

Mandelbrot (1963) and Fama (1965), who found that large price changes in both directions are 

often followed by large price changes and the same is valid for small price changes. Later this 

evidence was documented by other studies. Clustering effect can be seen from Figure 1, which 

displays daily returns on Dow Jones Industrial Index over period from 23 August 1988 to 22 

August 2000. It can be seen that there are periods of relatively high and low volatility. 

 

Figure 1. Returns on the Dow Jones Industrial Index, 23 August 1988 – 22 August 2000 

Source: Engle and Patton, 2001, 241. 

Clustering imply that volatility shocks today will influence the expectation of volatility 

many periods in the future. Volatility persistence can be measured as the time taken for 

volatility to move halfway back towards its unconditional mean following a deviation from it, 

which is described by equation 1.6 (Engle, Patton 2001, 239): 
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22

t σ-σ
2

1
τ =      (1.6) 

where 

τ - measure of volatility persistence, 
2σ -unconditional variance. 

It was shown by Engle and Patton (2001) that volatility persistence for Dow Jones Industrial 

Index time series mentioned above is 73 days. Existing of persistence in volatility series implies 

presence of autocorrelations. Unlike return series, the correlogram of squared return series 

indicates substantial dependence. Figure 2 reveals differences in autocorrelation functions of 

returns and squared returns. 

 

Figure 2. Correlograms of returns (a) and squared returns (b) of Dow Jones Industrial Index, 

23 August 1988 – 22 August 2000 

Source: Engle, Patton 2001, 241. 

Although correlagram of returns rarely demonstrate correlation coefficients more than 0.04, 

correlation of squared returns turn to be higher on the whole scale of lags presented in figure 2, 

thus volatility is more predictable than returns. It must be pointed out that correlation is the 

highest at the first lag, meaning there is the greatest dependence on previous day.     
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1.3.3. Asymmetric response to price shocks 

For stock market volatility it is likely to have greater response to negative shocks, than 

to positive, thus volatility is greater in bear market rather than in bull market. There is also a 

number of studies that provide evidence of asymmetry in stock market volatility. It was first 

documented by Black (1976) and later explained with leverage effect by Christie (1982). More 

recent studies proposed other explanations for asymmetry like positive feedback effect of 

volatility (Bekaert et al. 2000), short selling (Jayasuriya et al. 2005) and behavioral aspects 

(Hens et al. 2009). Latest studies show relation between volatility asymmetry and level of 

economic development of particular country, pointing out the behavior of non-professional 

investors as a reason of asymmetry (Talpsepp et al. 2009). Figure 3 is a good example of 

asymmetric relation between sign of return and volatility, it can be seen that in most cases at 

times of bear market volatility appears to be greater.   

 

Figure 3. Standard and Poor’s 500, daily, 1963 – 1987 

Source: Engle 2004, 335. 

Most of developed stock markets demonstrate asymmetric volatility. The evidence was 

documented by Ding, Granger and Engle (1993) in US stock market, by Bekaert and Wu (2000) 
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in stock market of Japan, Jayasuria, Shambora and Rossiter (2005) in a set of developed 

markets. Brooks (2007) found a set of emerging markets where asymmetry was not found, 

moreover in some cases higher volatility was associated with positive shocks. Dzielinski, 

Rieger and Talpsepp (2010) found no asymmetry in OMXT using data for period 2004 – 2008, 

which seems to be in line with conclusion about the reasons of asymmetry (young market, 

almost non-existing analyst coverage of listed companies). 

1.3.4. Departures from normal distribution 

Another well-known fact is that distribution of asset returns has heavy tails. Every 

financial market experiences one or more daily price moves of four standard deviations or more 

each year. In any year, there is usually at least one market that has a daily move greater than 10 

standard deviations (Jorion 2003, 361). Typical, kurtosis of financial asset series estimates 

range from 4 to 50 showing very extreme non-normality. (Engle, Patton 2001, 240) 

To deliver precise forecast the model should capture the properties of financial series 

and be able to reflect them. Next chapter discuss various models for volatility forecasting. 
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2. VOLATILITY MODELS 

As it was mentioned earlier, a number of different approaches to forecast volatility 

exists. The historical volatility (HIS) models will be considered first, after that IV and 

autoregressive models (AR) will be briefly discussed and in the end of the chapter the broadest 

class of volatility models – ARCH-type models will be described. 

2.1. Historical volatility models 

Compared with the other types of volatility models, the HIS models are the easiest to 

manipulate and construct. HIS may simply involve calculating the variance or standard 

deviation of returns over some historical period, and this then becomes the volatility forecast 

for all future periods (Brooks 2008, 383). In this case HIS can be easily found from equation 

1.1 in the first chapter. However there are other types of HIS models.  

All HIS models differ by the number of lag volatility terms included in the model and 

weights assigned to them. The simplest HIS model is the “random walk” model, where the 

difference between consecutive period volatility is modeled as random noise. The model can 

be expressed by equation 2.1:  

t1-tt υσσ +=       (2.1) 

 

where 

tυ   - random noise. 

Thus the best volatility forecast for the next period is the volatility of current period (Poon 2005, 

32). In contrast with random walk, the historical average method makes a forecast based on the 

series of historical observations. The model is shown in equation 2.2: 

)σ...σσ(
t

1
σ 11-tt1t +++=+

     (2.2) 
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Comparing with historical average, moving average discard older information. The model is 

shown in equation 2.3 (Poon 2005, 33): 

)σ...σσ(
τ

1
σ 1-τ-t1-tt1t +++=+

    (2.3) 

where 

τ - lag length to past information. 

There is also another version of this method, which assign different weights to series of 

historical observations.  

2.1.1. Exponentially weighted moving average 

The EWMA is an extension of the historical average model, which allows more recent 

observations to have a stronger impact on the forecast of volatility than older data points. Under 

EWMA specification, the latest observation carries the largest weight, and weights associated 

with previous observations decline exponentially over time. The EWMA model is expressed in 

equation 2.4: 

( ) ( )2

j-t

0j

j2

t r-rλλ-1σ ∑
∞

=

=     (2.4) 

where 

r - mean return, 

 - relative weight or “decay factor”, )10(   . 

The model has some clear advantages over simple historical models. Volatility is likely to be 

affected by recent events, which carry more weight, than events further in the past. As it was 

shown in previous section, volatility series is likely to have higher correlation on first lag, which 

means that assigning the largest weight to the last observation follows one of volatility 

properties. The influence of single given observation declines at an exponential rate as weights 

attached to recent events fall. In case of simple historical model, the influence of shock may be 

still included in the measurement sample, assigning equal weights to all observations in the 

sample, the forecast will remain at a high level even if the market is subsequently tranquil 

(Brooks 2008, 384-385).  
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On the other hand there are two limitations of EWMA model. First of them is that in 

case of finite sum of observable data, the weights from equation 2.4 will sum to less than one. 

In the case of small samples, this could make a large difference to the computed EWMA and 

thus a correction may be necessary. Second, many time-series models, like for example ARCH-

type models, will have forecasts that tend towards the unconditional variance of the series as 

the prediction horizon increases. This is a good property for volatility forecasting models, since 

mean-reversion is one of the properties of volatility series. This implies that if the volatility is 

currently at high level relative to its historical average level, it will have tendency to fall back 

towards its average level, and the same is true about low level. EWMA does not have such 

feature (Brooks 2008, 386). 

2.2. Implied volatility 

As volatility is one of the variables that option price depend on, all option pricing models 

require volatility estimate over a period of lifetime of particular option contract. Volatility 

appears to be the only unobservable variable in Black-Sholes-Merton option pricing model 

(Black & Sholes 1973, Merton 1973), since strike price and time to maturity are determined in 

contract specification, current underlying asset price, risk-free rate and option price can be taken 

from market data. When all necessary data is obtained, it is possible to find forecast of volatility 

made by market participants. IV cannot be found directly from Black-Sholes-Merton, but using 

such numerical procedures like method of bisections or Newton- Raphson (Watsham, 

Parramore 2004) IV can be derived. (Brooks 2008, 384)  

2.3. Autoregressive volatility models 

AR volatility model is a simple example of the class of stochastic volatility 

specifications. The idea is that a time-series of observations on some volatility proxy are 

obtained. If the object of forecast is day volatility, various volatility measures discussed in the 

first chapter can be employed to construct time series of observations. When data series is 

obtained standard procedures of Box-Jenkins approach for estimating models, described in the 
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third chapter, can then be applied. Given AR model can be then estimated using ordinary lest 

squares or maxim likelihood method (Brooks 2008, 386). 

As an example of this specific type of models first order AR model can be considered. 

The model is expressed in equation 2.5: 

∑
=

++=

p

1j

tj-tj0

2

t εσββσ  ( )2

t σ,0N~ε     (2.5) 

where 

0j β;β - parameters, 

tε - random error. 

The main disadvantage of this model is that it assumes variance of errors to be constant, thus 

the data series is homoscedastic, which is not the case of the most of financial time series. As 

it was shown in the first chapter volatility appears to be varying over time, thus the model can 

deliver very inaccurate forecast of volatility (Ibid). This limitation has been overcome in ARCH 

model.  

2.4. Autoregressive conditionally heteroskedastic models 

As it was mentioned earlier, ARCH type models are in widespread use in finance. The 

model was first introduced by Engle (1982), where it was applied on variation of inflation rate 

of United Kingdom. Soon it was applied on financial markets by other researchers. Domowitz 

and Hakkio (1985) studied foreign exchange market, Engle, Lilien and Robins (1987) studied 

risk premium variation. The reason of popularity of ARCH model hides in the ability of a model 

to correspond to main properties of volatility of financial asset returns discussed in the 

beginning of chapter. Unlike HIS models, ARCH models do not use past volatility observations 

to forecast volatility, but formulate conditional variance from residuals of the model (Poon 

2005, 36).   

In contrast with classical linear regression model, ARCH model imply that the variance 

of errors is not constant. It is unlikely for financial time-series that the variance of the errors 

will be constant over time, therefore the model, which let the variance of the errors evolve, 

captures one of the main properties of financial series, which is heteroskedasticity. To 
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understand the model, conditional variance of a random variable must be defined. Equation 2.6 

shows that conditional variance of error can be denoted as series variance: 

][ ,...u,uuE,...)u,uuvar(σ 2-t1-t

2

t2-t1-tt

2

t ==   ( )2

tt σ,0N~u    (2.6)  

where 

u – random error or residual of the model. 

Equation above states that conditional variance of zero mean normally distributed random error 

tu  is equal to the conditional expected value of the square tu . Under ARCH model, 

autocorrelation in volatility is modeled by allowing the conditional variance 2

tσ  to depend on 

previous values of squared errors (Brooks 2008, 387). Equation 2.7 express general case of 

ARCH model: 

2

q-tq

2

2-t2

2

1-t10

2

t ua...uauaaσ ++++=     (2.7) 

where 

q – numebr of lags. 

Condition mean equation in ARCH model is very flexible and can take many forms, in practice 

autoregressive moving average (ARMA) process is often used to model mean equation (Sauga 

2013). Since variance cannot be negative by definition, conditional variance in equation above 

must be positive. The variables in the right side of equation are all squares of lagged errors, 

thus they cannot be negative. In order to ensure that these always result in positive conditional 

variance estimates, all of the coefficients in the conditional variance are required to be non-

negative. If one or more coefficients takes negative value, then for a sufficiently large lagged 

squared innovation term attached to that coefficient, the fitted value from the model for the 

conditional variance could be negative. Therefore, all coefficients in the ARCH model must be 

non-negative (Brooks 2008, 388-389). 

However ARCH model have some clear advantages comparing with other models, there 

is a number of difficulties associated with this model: 

- How should be defined the number of lags of squared residuals? One of approaches 

could be likelihood test, however there is no best solution. 

- The number of lags of the squared error that are required to capture the dependence 

in the conditional variance might be very large, which results in a large model. 
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- Non-negativity constraint might be violated. As the number of parameters in 

conditional variance equation increase, the likeliness that any of parameters will 

have negative value increases too (Brooks 2008, 391-392). 

Those difficulties has been overcome in the extension of ARCH model or its generalized form. 

2.4.1. GARCH  model 

The GARCH model was developed independently by Bollerslev (1986) and Taylor 

(1986) to generalize ARCH model. The model can be expressed in the form of equation 2.8 

(Brooks 2008, 387): 
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where  

2

i-tu  - unconditional variance of previous period, 

2

j-tσ  - conditional variance from previous period, 

q  - lag of unconditional variance, 

p  – lag of conditional variance. 

It is possible to interpret the current fitted variance, as a function of a long-term average value 

(dependent on 0a ), information about variance during the previous periods ( 2

i-tiua ) and the fitted 

variance from the model during the previous periods (
2

j-tjσβ ) (Brooks 2008, 394). 

Since the time GARCH was introduced, a huge number of model extensions have been 

proposed. However GARCH captured some of main properties of financial time-series like 

volatility clustering, mean-reversion and leptokurtosis, the model still faced some difficulties. 

GARCH cannot deal with asymmetric response of volatility described in previous chapter, since 

it produces symmetric response of volatility disregarding the sign of shock. (Brooks 2008, 404) 

In next two sections two most popular asymmetric extensions of GARCH will be discussed.  
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2.4.2. EGARCH model  

  The model was proposed by Nelson (1991) to improve GARCH model response to 

negative shocks and illuminate non-negativity constraints discussed in the beginning of section. 

Examples of application of this model can be found in Pagan and Schwert (1990), where 

different GARCH-type models employed to forecast exchange rate volatility. Conditional 

variance of EGARCH can be expressed using equation 2.10 (Sauga 2013): 
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where 

γ - parameter of asymmetry. 

In case of EGARCH, variance is modelled in logarithmic form, so even if all the parameters 

are negative, conditional variance will be positive, thus no non-negativity constraints needed. 

If modelled time-series indicates relation between negative sign of the return and volatility, the 

parameter   will be negative, therefore allowing model to respond to leverage effect (Brooks 

2008, 406). Since γ  present volatility asymmetry in this model, it is possible to test data for 

asymmetry using this parameter. In this test null hypothesis means that   = 0, and alternative 

hypothesis states that  ≠ 0 (Sauga 2013).  

2.4.3. GJR model 

Another GARCH-type models that takes into account asymmetric effect, was GJR 

model, introduced by Glosten et al. (1993). Evidence of application of GJR can be found in 

Franses and van Dijk (1996) or Brailsford and Faff (1996) where different GARCH-type 

models are compared in modelling stock market volatility. The conditional variance in this 

model can be given by equation 2.11 (Sauga 2013): 
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where 
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-

tI - dummy variable. 

The dummy variable 
-

tI  is in charge for asymmetry in this model. When news cause negative 

shock in stock prices, tu < 0 and 
-

tI = 1, if there is a positive shock, tu > 0 and 
-

tI = 0. If negative 

shock causes increase in volatility, then   > 0. Again, it is possible to test data for asymmetry 

with GJR. Null hypothesis states that   = 0, and alternative hypothesis means that  ≠ 0. The 

non-negativity constraint remains, therefore, 0a0   , 0a j >  and 0 , but the model is still 

admissible, if  and .0γa j ≥+  (Ibid) 

2.5. Review of forecasting performance   

Analysis of literature showed no consensus between researchers about what model 

performs best. Nevertheless, there is a huge body of volatility studies and major share of it 

stresses supremacy of GARCH-type model, it is easy to find supporters for every type of 

volatility models described above. It should be mentioned that volatility models comparison 

based on these studies is very difficult task, as analyzed models applied on time-series of 

various assets, various data frequencies and various error distribution functions are used. Some 

examples of these studies are listed below.  

Unlike ARCH-type models, simpler methods like HIS and EWMA, do not separate 

volatility persistence from shocks and most of them do not incorporate mean reversion. These 

models tend to provide larger volatility forecast most of the time because there is no constraint 

on stationarity or convergence to the unconditional variance, and may result in larger forecast 

errors. (Poon 2005, 44) However such HIS models like random walk and historical average, 

seems to be too simple to provide reliable forecast, they work well for medium and long 

horizons. Models perform best with low frequency data, when longer than 6 month forecast 

horizons are considered. Although it is emphasized by many studies, that long period of data is 

required, to make good forecast. (Poon 2005, 35) HIS models have been shown to have a good 

forecasting performance comparing with other volatility models. Overview of 93 studies made 

by Poon and Granger (2003) showed there is more support to HIS models, than GARCH-type 
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models, as 22 studies suggested HIS model is best performer and 17 suggested that GARCH 

performs best. However such distribution of opinions might be caused by the choice of author. 

Bluhm and Yu (2000) compared different volatility models using German stock market 

returns, among which IV model, HIS model, EWMA, four GARCH-type models. They stated 

that it is difficult to decide, which method is better, however, they suggested to use IV for option 

pricing purposes only. 

The GARCH-type models have more supporters than any other type of model. Akgiray 

(1989) found that GARCH model outperforms EWMA and random walk in stock market 

volatility forecasting, West and Cho (1995) found that GARCH provide more accurate forecast 

of exchange rate volatility then five others. In the recent decades the trend to study asset return 

volatility with GARCH models emerged in financial literature. This is caused by the ability of 

these models to copy financial series properties, especially the ability to reflect negative relation 

of volatility and shocks in stock market prices (Poon 2005, 43).  

The evidence of superior performance of asymmetric GARCH-type models can be 

found in many studies. Pagan and Schwert (1990) compared GARCH, EGARCH, Markov 

switching regime and three non-parametric models for forecasting stock market volatility and 

found that EGARCH performed better than others. Mittnik and Paolella (2000) show that 

asymmetric GARCH outperformed regular GARCH model in modelling volatility of exchange 

rate of East Asian currencies against US dollar. Hansen and Lunde (2005) compared 330 ARCH 

family models in terms of their ability to describe conditional volatility of DM/USD exchange 

rate and IBM stock returns, they concluded that APARCH was the best model for stock and 

GARCH for exchange rate volatility. More recent study of Liu and Hung (2010) analyzed 

performance of distribution-type GARCH models and asymmetric GARCH models on time-

series of S&P 100 returns, authors found that best performer was GJR followed by EGARCH. 

Yet, there is no consensus about what model should be applied in practice, more evidence of 

successful ARCH-type models has been found.  

Next chapter discusses problem of specification, estimation and diagnostic of ARCH-

type models.    
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3. METHODOLOGY 

This chapter discusses methods for model building, estimating and evaluating 

forecasting performance. The first section is dedicated to model estimation technique, the 

second chapter covers complex solution for constructing and testing of the model, and the third 

discusses problem of forecast evaluation. 

3.1. Maximum likelihood method 

Before moving to Box-Jenkins methodology it is sensible to review method of 

estimation of ARCH-type models. ARCH-type models are not linear, thus ordinary least 

squares (OLS) cannot be employed. The main reason of why OLS cannot be used is that it 

minimizes the residual sum of squares (RSS), which is not the objective of GARCH modelling. 

In order to estimate GARCH-type models maximum likelihood method is used. Maximum 

likelihood method consist of three steps. On the first step model equations for mean and 

variance should be specified. As it was mentioned earlier, in order to specify mean equation for 

ARCH type models ARMA model can be applied. For example AR(1) can be used as a mean 

equation in GARCH (1,1) model, in this case GARCH model can be specified by  equations 

3.1 and 3.2 : 

t1-tt uyφμy ++=  ( )2

tt σ,0N~u     (3.1) 

where 

   - parameter of the model. 

2

1-t

2

1-t10

2

t βσuaaσ ++=      (3.2) 

After equations are specified, the log-likelihood (LLF) function must be defined. Example of 

LLF for GARCH (1,1) is shown in equation 3.3: 
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On the third step values of parameters of the function are sought to maximize the function 

(Brooks 2008, 395). When procedure of third step has been accomplished standard errors can 

be constructed to diagnostic checking of the model, which is a part of Box –Jenkins approach 

discussed above. 

3.2. Box-Jenkins methodology 

Initially developed for ARMA models Box-Jenkins methodology can be used in order 

to construct appropriate ARCH type model. Box and Jenkins (1976) were first to introduce 

complex solution for model estimation. The methodology can be divided into three steps: model 

identification, model estimation and diagnostic checking.  

On the first step data dynamics is studied. This stage involves plotting the data to the 

graph, analyzing descriptive statistic, checking for stationarity and studying autocorrelation 

function to determine order of volatility model. When many specifications of the model need 

to be compared information criteria can be employed to find best specification (Brooks 2008, 

230). 

Second step involves estimation of the parameters of the model specified on step one. 

On this step statistical significance and signs of the parameters should be assessed. When 

appropriate specification has been found, it should be decided whether the model specified and 

estimated adequately (Brooks 2008, 231). 

Third step involves analyzing the process generated by residuals of the model. If model 

managed to capture data dynamics of data, the residuals generate random stochastic process. In 

this sense residuals should be check for autocorrelation, heteroskedasticity and normal 

distribution (Ibid).  

The tests implied by Box-Jenkins methodology are discussed further in this chapter. 
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3.2.1. Testing stationarity 

Before specifying the model it is sensible to check data for stationarity. When time-

series behave with trend it generates non-stationary process. One of the disadvantages of non-

stationary series is the persistence of shocks. For stationary series, shocks will gradually die 

away, which means that if shock appears in time t, the impact of the shock will be smaller in 

time t+1 and even smaller in t+2. In case of non-stationary data, the influence of shock will be 

infinite and may lead to very inaccurate forecast (Brooks 2008, 319).  

White noise is a pure example of stationary process, however it is not the only stationary 

process. White noise can be characterized by constant mean and variance, and zero 

autocovariance, thus each observation is uncorrelated with other values of series. Under 

stationarity is often thought weak stationarity, which unlike white noise assumes constant 

autocovariance (Sauga 2013).  

Financial data series often represent trending process, which is non-stationary because 

its values are correlated. If one happened to deal with trending data, there are two different 

functions the trend can be described. One of them is deterministic trend, which can be described 

by equation 3.4: 

tt utβay ++=      (3.4) 

Deterministic trend process does not have constant mean, it exhibits random fluctuation around 

its trend. Figure 4 provide example of deterministic trend.  

 

Figure 4. Time series plot of deterministic trend process 

Source: Brooks 2008, 325. 
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The process is also called trend-stationary process, because it is stationary around linear trend 

(Brooks 2008, 322-323).  

Another type of trending process is random walk model with drift or difference-

stationary process, which can be described by equation 3.5 (Brooks 2008, 322): 

t1-tt uyμy ++=       (3.5) 

In figure 5 random walk and random walk with drift are compared, positive drift in model 

described above lead series to up trending dynamic.    

 

Figure 5. Time series plot of deterministic trend process 

Source: Brooks 2008, 324. 

The two models of trending behavior should be treated with different approaches in 

order to overcome non-stationarity. In first case, a model with linear trend should be estimated 

and residuals should be checked for stationarity. In second case, to achieve stationarity the data 

series should be differentiated (Sauga 2013).  

One of possibilities to check data for stationarity is augement Dickey-Fuller test for unit 

root. In current study this test is used to test data for stationarity. Dickey-Fuller test can be 

expressed by equation 3.6:  
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t1t1tt uy)1ρ(yy +-=- -   1ρδ -=    (3.6) 

where 

ty  - data point of time series, 

  - parameter of the model. 

If process is stationary  <0, thus 1 , otherwise non-stationary process, which is unit root 

process. According to Dickey-Fuller test, null hypothesis states that  = 0, which means that 

process is not stationary. Alternative hypothesis in opposite states that  <0, thus analyzed 

process is stationary (Sauga 2013).  

In this study Dickey-Fuller test is used on the first step of Box-Jenkins methodology. 

When stationarity is confirmed, one can take further steps of analyzing data dynamic. 

3.2.2. Testing normal distribution  

When data is obtained it is reasonable to study its distribution. Distribution is usually 

defined by two measures: skewness and kurtosis. Skewness is a measure of symmetry in 

distribution of series around its mean value. Financial series usually has skewed distribution. 

Normal distribution in contrast, has zero coefficient of skewness as it is symmetric to its mean 

(Brooks 2008, 161). Figure 6 reveals difference between normal and skewed distribution. 

 

Figure 6. Normal (left side) and skewed distribution (right side) 

Source: Brooks 2008, 162. 
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On the left side of the figure 6 values of series are distributed symmetrically around mean, in 

the left of figure 6 values are distributed asymmetrically as distribution is skewed to the right.  

Kurtosis measures how fat the tails of distributions are. A leptokurtic distribution is the 

case, when distribution has fat tails and it is more peaked at the mean value than normal 

distribution. In most cases financial series is leptokurtic. Normal distribution has kurtosis of 3, 

which is known as mesokurtic distribution (Brooks 2008, 162). In Figure 7, provide example 

of difference between leptokurtic and mesokurtic distribution. 

 

Figure 7. Mesokurtic (dashed line) and leptokurtic distribution (bold line) 

Source: Brooks 2008, 162. 

Figure 7 indicates that distribution marked with bold line (leptokurtic) is more peaked around 

mean comparing with distribution marked with dashed line (mesokurtic).  

Bera and Jarque (1981) proposed test, which is based on idea that if series is normally 

distributed, it has coefficient of skewness and coefficient of excess kurtosis equal to zero. The 

Bera-Jarque test statistic is described by equation 3.7 (Brooks 2008, 163): 
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T – is the size of sample, 

1b  - coefficient of skewness, 

2b  - coefficient of kurtosis. 

1b and 2b can be estimated using the residuals from the OLS regression. Under BJ test 

hypothesis are formulated as following: null hypothesis means series is normally distributed, 

and alternative hypothesis means series distribution is different from normal (Ibid). In current 

study author uses descriptive statistic to make inference about distribution of data and Bera-

Jarque statistic to check residuals of models for normal distribution in the third step of Box-

Jenkins methodology.  

 3.2.3. Testing autocorrelation 

In order to find appropriate specification of model dependence between values of time 

series should be analyzed. Temporal dependence in the series is usually studied with 

correlogram, which displays coefficients of autocorrelation (AC) function and partial 

autocorrelation (PAC) function. Correlogram represents series autocorrelation with column 

graph allowing to estimate structure of autocorrelation visually. In order to estimate 

significance of AC and PAC Ljung-Box (1978) Q-statistic can be used. Calculation that stands 

behind this test can be described by equation 3.8: 
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               (3.8)

  

where 

Q  - Q-statistic, 

T – sample size, 

m – maximum lag length, 

kτ̂ - autocorrelation coefficient at lag k. 

Under this method, joint hypothesis that all lags of correlation coefficients are simultaneously 

zero is tested and if any of autocorrelation coefficients is statistically significant, the hypothesis 

will be rejected. In this test null hypothesis states that all of coefficients of autocorrelation are 
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zero, therefore alternative hypothesis should be accepted if any of coefficients is statistically 

significant (Brooks 2008, 209-210).  

In current study this test is used on the first step of Box-Jenkins methodology, when 

model specifications are sought, and on the third step to check presence of autocorrelation in 

residuals of the models on the third step. 

3.2.4. Determining model specification  

Financial theory does not limit number of lags that should be specified in the model. 

Adding a large number of lags to the model can lead to insignificance of the parameters, while 

too small number of lags can be a reason of inappropriate specification, which cannot capture 

data process properly (Sauga 2013). In order to identify the appropriate form of the model 

correlorgam can be used, but this is subjective method, furthermore data may exhibit patterns, 

which makes it difficult to recognize process generated by data. This makes plots of 

autocorrelation function hard to interpret, and thus it is difficult to specify the model. 

Subjectivity associated with graphical analysis can be removed when information criteria is 

used (Brooks 2008, 232).  

Information criteria uses two factors: a term, which is a function of the residual sum of 

squares (RSS), and some penalty for loss of degree of freedom from adding extra parameters. 

Therefore, adding new variable or additional lag to a model will have to competing effects on 

the information criteria: RSS will fall and value of penalty term will increase. The main idea of 

this method is to choose a number of parameters, which minimizes the value of information 

criteria, thus best model specified will have lowest value of information criteria. To receive 

lower value, the fall in RSS should be sufficient to more than outweigh the increase of the value 

of penalty term (Ibid). 

There are several different criteria, the most popular are Akaike’s (1974) information 

criterion (AIC), Schwartz’s Bayesian (1978) information criterion (SBIC), and Hannan-Quinn 

criterion (HQIC). The adjusted 2R  can also be used as information criterion, but it typically 

selects only the largest models, for this reason it is not used here. Calculations of criterions 

listed above are expressed in equations 3.9 – 3.11 (Brooks 2008, 233): 

( )
T

k2
σ̂lnAIC 2 +=      (3.9) 



   34 

 

( ) Tln
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σ̂lnSBIC 2 +=               (3.10) 

( ) ( )( )Tlnln
T

k2
σ̂lnHQIC 2 +=              (3.11) 

where 

2̂  - residual variance, 

T - sample size, 

k – number of parameters.  

Since different criterion can deliver different result, and none of them is definitely superior, it 

was decided to use all three information criteria described above to avoid subjectivity on the 

first step of Box-Jenkins methodology. The model, which is suggested by more than one 

criterion will be chosen. In order to find best specification, combinations of volatility models 

with orders of p and q up to 2 are compared. 

When specifications of volatility models are found and parameters of the models are 

estimated, residuals of the models should be tested for autocorrelation, heteroskedasticity and 

normal distribution. Since autocorrelation and normal distribution test were discussed in 

previous subsections, next subsection discusses heteroskedasticity test. 

3.2.5. Testing heteroskedasticity 

In order to test residuals for heteroskedasticity ARCH LM test can be used. If model fits 

data correctly then it should not present ARCH effect, thus residuals should be homoscedastic. 

The test implies estimation of regression model, which is described by equation 3.12: 
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Under null hypothesis all lags (q) of the squared residuals have coefficient values that are not 

significantly different from zero, thus there is residuals are homoskedastic. If the value of test 

statistic is greater than the critical value from the 
2  distribution, then null hypothesis is 

rejected and alternative hypothesis should be accepted, meaning that residuals are 

heteroskedastic (Sauga 2013).  
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When all steps of Box-Jenkins methodology passed, ability of the models to forecast 

volatility of stock market indexes can be compared.  

3.3. Forecast evaluation 

The ability of a model to forecast future values of time-series usually involves 

comparing values forecasted by the model and actual values in some aggregated way. The 

measure of forecast error individually does not say a lot about model, but it allows researcher 

to compare different models, that were applied on the same time-series and forecast period. The 

model with lowest value of error measurement would be the most accurate (Brooks 2008, 252). 

There is no clearly best measurement of forecasting error, every function has its own advantages 

depending on feature of data series. Some of the most popular measurements of forecast 

accuracy will be given next. 

Mean square error (MSE) is one of the common loss functions. MSE is defined by 

equation 3.13 (Brooks 2008, 253): 
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where 

1T  - first out-of-sample forecast observation, 

sty   - actual value, 

s,tf - forecasted value.  

MSE provides a quadratic loss function, thus it can be useful if large forecast errors are more 

disproportionately serious than smaller ones. However, in straight opposite situation, this 

characteristic can be thought as disadvantage. (Brooks 2008, 252) In practice squared root of 

MSE or RMSE is used more widely. It has the same units of measurement as the data it applied 

on and can be explained as average distance between actual and forecast value. (Sauga 2013) 

RMSE is defined by equation 3.14 (Brooks 2008, 253): 
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If series represent outliers, it may be better to use mean absolute error (MAE), which 

measure average absolute forecast error. It was mentioned by Dielman (1986) that if series 

present outliers, least absolute value should be used to determine model parameters. MAE is 

shown in equation 3.15 (Ibid): 
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Some authors, like for example Makridakis (1993), suggest to use mean absolute 

percentage error (MAPE), stating that it includes best characteristics among various accuracy 

criteria. MAPE is expressed in equation 3.16 (Ibid): 
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Another popular criterion is Theil’s U-statistic. This method of estimation implies 

comparing analyzed model with some benchmark model, like naive or random walk. 

Calculation of U-statistic is shown in equation 3.17: 
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where 

s,tfb  - forecast obtained from benchmark model. 

U-statistic greater than one means that analyzed model is worse than benchmark, in opposite 

case analyzed model is superior to the benchmark, and U-statistic of one indicates that the 

model and benchmark are equal in accuracy (Brooks 2008, 254). 

Once the model has been estimated and checked for adequacy it can be employed to 

deliver forecasts. In order to generate forecasted values two types of forecasting can be used: 

dynamic and static. Dynamic forecast can be used to generate multi-step forecast and static is 
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used one-step ahead forecast. Since dynamic forecast imply taking forecasted values to generate 

new ones, the forecasts quickly converge upon the long-term unconditional value of series. 

Static analysis, in contrast, roll the sample forwards one observation after each forecast in order 

to use actual values for lagged dependent variables (Brooks 2008, 256). In current study static 

forecasting is used, since it allows model to respond to shocks quickly and deliver more precise 

forecast. To evaluate forecasts delivered by models four error statistics are applied: RMSE, 

MAE, MAPE and Theil’s U statistic.  

Next two chapters review data and discuss results of the tests assumed by methodology 

applied in this study. 
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4. DATA 

The daily closing prices of three Baltic stock market indexes were obtained from Nasdaq 

OMX web page. The time-series consist of 14 years of observations, which covers period from 

04.01.2000 to 30.12.2014. In order to transform prices into returns log differences of prices 

were taken, as it shown in equation 4.1: 

=
1-t

t

t p

p
logr      (4.1) 

Received values were multiplied by 100 to present index return in percentages of closing prices. 

4.1. Analyzing data graphs 

As it can be seen from figure 8, Baltic indexes grew rapidly for the period from 2000 to 

2007. In the period of Global Financial Crisis markets fell sharply to the lowest historical level.  

 

Figure 8. Baltic stock market indexes 04.01.2000 – 30.12.2014 

Source: NASDAQ… 
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The period can be described by sharpest downturn of economic growth over the time of 

existence of Baltic stock markets. In 2009 markets approached turning point and recovered 

substantially during next five years. Volatility of Baltic stock market indexes can be represented 

graphically in figure 9, where daily returns of indexes are plotted on the graphs against time. 

 

 

 

 

Figure 9. Returns of Baltic stock market indexes 04.01.2000 – 30.12.2014 

Source: author’s figure from Eviews. 
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All graphs presented in figure 9 indicate high volatility in the second half of 2008 and 2009. 

Both periods can be described by sharp changes in the value of indexes, however as it was 

mentioned above those were changes in opposite directions, thus increase in volatility was 

caused by both negative and positive shocks. 

However all Baltic markets experienced period of high volatility in 2008 and 2009, there 

are still substantial differences in volatilities whole span of time. OMXR and OMXT present 

more volatility clustering in 2010 when markets recovered than OMXV. It can be also seen that 

OMXR experienced high volatility in the middle of year 2001. This was caused by the action, 

during which government sold substantial amount of shares of Latvijas Gaze for the price three 

times higher than market price. (NASDAQ…) The event had a great impact to local stock 

market index and as a result of this action OMXV jumped up and bounces back, when the 

influence of shock eased. Nevertheless there are differences in previous periods, all markets 

remain relatively calm in terms of volatility during last three years. 

4.2. Analyzing descriptive statistic 

Table 1 shows that mean daily return for all Baltic indexes is very small and close to 

zero. Data present a bit different levels of standard deviations among markets, OMXR has 

largest and OMXT and OMXV have similar levels of standard deviation. Extremums of returns 

shown in table 1 indicate large fluctuations, largest negative return was observed in returns of 

OMXR, and largest positive in returns of OMXT. Minimum values of OMXR and OMXV can 

be described by approximately ten standard deviation of those seires, indicating higher risk 

comparing with OMXT. 

Table 1. Descriptive statistic of daily data 

Series Min (%) Max (%) Mean (%) SD (%) Kurtosis Skewness 

OMXR -13.68 10.72 0.05 1.46 17.34 -0.25 

OMXT -6.80 12.86 0.05 1.14 12.30 0.32 

OMXV -11.25 11.63 0.04 1.08 22.25 -0.17 

Source: author’s table. 
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All indexes have excess kurtosis, which is much greater than three, meaning leptokurtic 

distribution, thus there are fat tails. Distributions of OMXR and OMXV are negatively skewed 

and OMXT has positive skewness, thus the tail on the left side of probability density functions 

of OMXR and OMXV is longer, and OMXT distribution has longer right tail. Therefore all of 

data series indicate substantial departures from normal distribution.  

Graphs in figure 9 show, that none of data series generate deterministic trend process, 

since patterns in graphs look very different from the one shown in figure 4, thus model without 

trend should be used in unit root test for stationarity. The values of test statistic and probability 

values are given in table 2. 

Table 2. Unit root test results 

Series Obs*R-square P-value 

OMXR 834.4479 0.00 

OMXT 198.8276 0.00 

OMXV 524.2070 0.00 

Source: appendix 1. 

P-value indicates very high level of significance for all data series, thus null hypothesis can be 

rejected and it can be stated that all data series analyzed in current study are stationary. 
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5. RESULTS 

This chapter discuses results of procedures of specification, estimation and testing of 

volatility models, and also provides evidence of comparison of forecasting performance of 

those models. Since ARMA model is applied to specify mean equation for GARCH models, 

Box-Jenkins methodology is also used for ARMA modeling purposes. Chapter begins with 

discussion of results of estimation appropriate ARMA models and specification of GARCH 

models for every data series, next section discusses results of models diagnostics and last 

section reveals results of forecasting performance. 

5.1. Estimating mean equation of volatility models 

Returns of indexes analyzed in this study present different patterns of liner dependence. 

Correlograms in appendix 2 show, that the returns of OMXR have highest autocorrelation on 

the second lag, while returns of OMXT and OMXV have highest correlation on the first lag. In 

order to find best specification of ARMA model for conditional mean equation of volatility 

models, combinations of ARMA model with specification from AR(1) to ARMA(2,2) were 

compared with information criterions and checked for autocorrelation in model residuals. 

Models with lowest information criterion and less correlated residuals were chosen. Results 

presented in table 3.  

Table 3. ARMA models specifications 

Series Order AIC SBIC HQIC 

OMXR 2,2 3,6687 3,6724 3,6700 

OMXT 1,1 3,1888 3,1924 3,1900 

OMXV 2,1 3,0716 3,0753 3,0730 

Source: appendix 4. 

As it can be seen from table 4 all of data series have different specification of ARMA 

model, thus different mean equations will be applied in GARCH modeling. Results of testing 
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for autocorrelation in residuals presented in appendix 4 show that coefficients of AC and PAC 

function of OMXR and OMXV are very significant at all of lags considered in the test, thus 

null hypothesis about absence of correlation in residuals can be rejected, and it can be stated 

that there is autocorrelation in residuals, meaning that specification of mean equation is not 

correct. Coefficients of autocorrelation for residuals of ARMA model for OMXT are significant 

on the level of 1% at lags from 10 to 14, so, again, null hypothesis can be rejected, indicating 

that there is autocorrelation in residuals. However it should be mentioned that with ARMA 

model the major part of dependence in data series of OMXT was captured, since only a small 

number coefficients are statistically significant. 

5.2. Testing heteroskedasticity 

Before moving to volatility models, it is sensible to test residuals for heteroskedasticity 

to make sure that ARCH type models should be used here. Table 4 reveals results of test for 

heteroskedasticity in the residuals. The test statistic for all of data series is very significant, thus 

null hypothesis can be rejected and it can be stated that there is a heteroskedasticity in residuals 

of the models. 

Table 4. ARCH test results 

Series Obs. R-square P-value 

OMXR 648.3534 0.00 

OMXT 116.9457 0.00 

OMXV 405.3217 0.00 

Source: appendix 5. 

Since ARCH test points to heteroskedasticity in residuals ARCH type models can be applied 

on the data series analyzed in this study. Next sections reviews results of estimation of volatility 

models. 
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5.3. Estimating volatility models 

When mean equations for every data series was found author compared various 

specifications of volatility models with information criterions and best specifications were 

chosen from the models with all parameters significant on the level of 5%. The results of this 

procedure are presented in appendix 6. The chosen specification of volatility models is 

described in tables from 5 to 7 and commented in text below.  

Table 5 shows that all analysed models presented in the table has significant parameters 

on the level of statistical significance of one percent.  

Table 5. Parameters estimation results, OMXR 

Parameter GARCH(2,1) EGARCH(2,2) GJR(2,2) 

value p-value value p-value value p-value 

0a  0.0210 0.00 -0.0164 0.00 0.0819 0.00 

1a  0.2332 0.00 0.3664 0.00 0.0927 0.00 

2a  -0.1609 0.00 -0.3425 0.00 0.1167 0.00 

1β  0.9188 0.00 1.7959 0.00 -0.0629 0.00 

2β  - - -0.7977 0.00 0.7912 0.00 

γ  - - 0.0026 0.01 0.0696 0.00 

Source: appendix 7. 

Since EGARCH and GJR models have asymmetric parameter γ , volatility of OMXR can be 

checked for asymmetric response for negative price shocks. Asymmetric parameters of both 

models are very significant, thus null hypothesis about symmetric response of volatility to price 

shocks can be rejected on the level of significance of one percent. The value of asymmetric 

parameter in EGARCH is very small, so it has little impact on conditional variance, furthermore 

the parameter has positive sign, meaning that negative shocks reduce volatility. In opposite with 

previous model, asymmetric parameter of GJR has larger value and its sing indicates that 

negative shocks lead to increase in volatility. 

Table 6 shows that all parameters of volatility models for OMXT are statistically 

significant on the level of five percent.  
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Table 6. Parameters estimation results, OMXT 

Parameter GARCH(2,1) EGARCH(2,1) GJR(1,2) 

value p-value value p-value value p-value 

0a  0.0104 0.00 -0.1457 0.00 0.0192 0.00 

1a  0.2400 0.00 0.3987 0.00 0.1745 0.00 

2a  -0.1335 0.00 -0.1937 0.00 - - 

1β  0.8995 0.00 0.9809 0.00 0.3827 0.00 

2β  - - - - 0.4414 0.00 

γ  - - -0.0091 0.02 0.0263 0.02 

Source: appendix 8. 

It can be seen that parameter γ is less significant than others in both models which allows 

asymmetric response of volatility. In both models asymmetric parameter is significant and null 

hypothesis can be rejected on the level of significance of five percent. Unlike OMXR, volatility 

of OMXT increase when negative shocks take place, which is confirmed by the signs of 

parameters of both models, however the value of γ is again small, meaning very limited impact 

on conditional variance. 

Table 7 indicates that all parameters of models for volatility of OMXV are significant 

on the level of one percent. Since asymmetric parameters of EGARCH and GJR are significant, 

null hypothesis about asymmetric response of volatility to price shocks can be rejected. Sings 

of parameters of both models mean that volatility of OMXV increase in response to negative 

shock.  

Table 7. Parameters estimation results, OMXV 

Parameter  GARCH(2,2) EGARCH(1,2) GJR(2,2) 

value p-value value p-value value p-value 

0a  0.0034 0.00 -0.1749 0.00 0.1050 0.00 

1a  0.2081 0.00 0.2505 0.00 0.1052 0.00 

2a  -0.1905 0.00 - - 0.0516 0.00 

1β  1.4332 0.00 0.5307 0.00 -0.0428 0.00 

2β  -0.4521 0.00 0.4336 0.00 0.7383 0.00 

γ  - - -0.0275 0.00 0.1610 0.00 

Source: appendix 9. 
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The value of those parameters are highest for returns of OMXV, meaning there is greater 

asymmetry between volatility of index returns and negative shocks in returns. 

Since parameters are estimated, the models now should be tested for adequacy and then 

forecasts generated by those models can be evaluated.  

5.4. Diagnostics 

If volatility models have been specified correctly there should not be correlation in the series 

of squared residuals of the model, which can be tested with Q-statistics. 

5.4.1. Testing autocorrelation 

Q-statistics of squared residuals of models for OMXR shown in appendix 10 indicate 

that on significance level of one percent null hypothesis should be accepted for residuals of 

models GARCH and GJR, since all values of probability are higher than 0.01, thus models are 

correctly specified. For residuals from EGARCH null hypothesis should be rejected, since 

values of test statistic are very significant at lags from 16 to 30, indicating that model miss 

necessary variable. 

Test statistics of squared residuals for OMXT shown in appendix 11 indicate that for all 

models null hypothesis can be accepted up to lag 26 on significance level of five percent. It 

should be mentioned that p-values up to lag 26 are very high. From 27th lag coefficients of 

autocorrelations become very significant, thus on the whole length null hypothesis should be 

rejected, indicating problems in model specification. 

Q-statistics for squared residuals of OMXV presented in appendix 14 shows that null 

hypothesis can be accepted on significance level of five percent on the whole length of lags 

observed in this test. P-values are very high on the whole range of lags, thus no problems with 

specification of volatility models has been found for OMXV return series. 

In order to make sure that model conditional variance of the series ARCH test can be 

applied on squared residuals of volatility models. Next subsection discusses ARCH test results. 
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5.4.2. Testing heteroskedasticity 

Results of ARCH test for heteroskedasticity presented in the table 8.  All values of test 

statistic have p-value above one percent, thus null hypothesis cannot be rejected on significance 

level of one percent. On the level of five percent null hypothesis can be rejected for residuals 

from model GJR applied on series of returns OMXR, indicating that condition variance was 

incorrectly specified. 

Table 8. ARCH test results 

Series GARCH EGARCH GJR 

Obs*R-square p-value Obs*R-square p-value Obs*R-square p-value 

OMXR 0.0449 0.83 0.6796 0.41 0.5366 0.02 

OMXT 0.2028 0.65 0.0064 0.94 0.0098 0.92 

OMXV 0.0249 0.87 0.5752 0.45 0.0010 0.98 

Source: appendix 13-15. 

Next subsection reveals results of Bera-Jarque test for normal distribution of residuals 

of volatility models.  

5.4.3. Testing normal distribution 

It can be seen from table 9, where Bera-Jarque test statistic is calculated for residuals, 

that test statistic is very significant, thus null hypothesis about normal distribution of the 

residuals from models can be rejected, meaning none of series of residuals is normally 

distributed.  

Table 9. Residuals normality test results 

Series GARCH EGARCH GJR 

test statistic p-value test statistic p-value test statistic p-value 

OMXR 7 460.444 0.00 7 654.519 0.00 5 241.373 0.00 

OMXT 7 810.457 0.00 7 460.515 0.00 7 109.209 0.00 

OMXV 41 889.50 0.00 40 111.79 0.00 43 907.81 0.00 

Source: author’s table. 
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Departure from normal distribution means there are problems with models specification. 

However diagnostic of volatility models reveals some problem with specification, the models 

can still be used in forecasting. Next section discusses forecasting performance of volatility 

models.   

5.5. Forecast evaluation 

The common measures of forecasting performance of volatility models analyzed in this 

study are shown in table 10. The model that exhibits the lowest value of error measurements is 

considered to be the best. U-statistic for all models is lower than one indicating that forecasts 

delivered by the models is better than naive forecast. 

 Table 10. Volatility models forecast evaluation  

Data Model RMSE MAE MAPE U-statistic 

 

OMXR 

GARCH(2,1) 0.8951 0.6581 101.4485 0.9549 

EGARCH(2,2) 0.8956 0.6590 102.9004 0.9503 

GJR(2,2)  0.8953 0.6584 101.8902 0.9526 

 

OMXT 

GARCH(2,1) 0.5952 0.4372 115.2957 0.8575 

EGARCH(2,1) 0.5947 0.4370 114.9290 0.8596 

GJR(1,2) 0.5955 0.4374 115.8126 0.8553 

 

OMXV 

GARCH(2,2) 0.5473 0.3605 116.2928 0.8859 

EGARCH(1,2) 0.5478 0.3614 118.2238 0.8751 

GJR(2,2) 0.5499 0.3632 121.8809 0.8674 

Note: The lowest value of error statistics marked in bold. 

Source: author’s table. 

Results shown in table 9 indicate that the best model for OMXR is GARCH(2,1) since 

it received the minimum values of error measurements. GJR(2,2) performed a bit worse than 

GARCH(2,1) and EGARCH(2,2) is the worst performer among three models applied on returns 

of OMXR.  However it should be pointed out that the differences between models are extremely 

small in terms of RMSE and MAE. Appendix 16 exhibits graphs of variation forecast produced 

by the models plotted against time. It can be seen that EGARCH delivered the largest forecast 

of variance in response to negative shock in the beginning of first quarter of 2014. Comparing 

with other models influence of shock died more slowly in case of GJR, as forecast of variance 
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remains near maxim for longer time. GARCH delivered largest forecast to both negative and 

positive shocks in the second quarter of 2013, and to positive shocks in third quarter of 2014.  

Forecasts of EGARCH(2,1) appeared to be the most accurate for volatility of OMXT, 

as the model received the smallest values of error statistics. The model is followed by 

GARCH(2,1), which received slightly higher values of error measurements and GJR(1,2) is the 

worst performed. Again, differences in RMSE and MAE are extremely small. Graphs of OMXT 

variation forecast located in appendix 17 indicates that GARCH again tend to deliver larger 

forecasts of volatility when price shocks take place, comparing with to other models. 

  GARCH(2,2) is the performer for series of returns of OMXV, it is followed by 

EGARCH(1,2) with a bit higher values of error measurement and GJR(2,2) happened to be the 

worst. Differences between models are fairly small, however it can be seen that differences in 

error statistics of GARCH and EGARCH are smaller than ones of EGARCH and GJR. 

Appendix 18 displays differences of how the models responded to negative and positive shocks 

in the first quarter of 2014. When positive shock took place in first quarter of 2014 the GARCH 

model delivered the largest forecast, and in case of negative shocks later this quarter the GJR 

delivered the largest forecast. It can be seen that EGARCH delivered smallest forecasts when 

price shocks occurred. 

As graphs in appendixes 16 – 18 showed that serious differences in forecasts come out 

when large price shocks happens, in the periods of calm market, models tend to deliver 

relatively very similar forecasts, which is also confirmed by small differences in error statistics.  
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CONCLUSIONS 

The aim of this thesis was to perform analysis of volatility of three Baltic stock market 

indexes (Riga, Tallinn and Vilnius) with three ARCH-type models (GARCH, EGARCH and 

GJR) and find the model that delivers the most precise forecast. In order to perform the analysis 

daily closing price for the period from January 2000 to December 2014 were obtained and 

transformed into daily returns. Using those three data series nine volatility models were 

constructed, estimated, tested and forecasting performance of those models was compared using 

various loss functions. In order to specify, estimate and test the volatility models Box-Jenkins 

methodology was applied. 

All stock market indexes analyzed in this study exhibit significant departure from 

normal distribution in terms of skewness and excess kurtosis, which is line with stylized facts 

about financial asset returns. Analysis of dependence in returns reveals significant 

autocorrelation in case of every data series, which author could not capture with ARMA models 

on the stage of choosing mean equation for volatility models. Particularly significant 

autocorrelation remained in residuals of OMXR and OMXV. Test for heteroskedasticity of 

residuals confirmed appropriateness of ARCH-type models application in modelling volatility 

of those three stock market indexes. 

Testing for asymmetry in volatility provided evidence of leverage effect in all of Baltic 

stock market indexes, which is in line with Ding, Granger and Engle (1993), Bekaert and Wu 

(2000) and Jayasuria, Shambora & Rossiter (2005), who found evidence of leverage effect in 

developed markets, and does not confirm absence of leverage effect in volatility of OMXT 

documented by Dzielinski, Rieger and Talpsepp (2010). Moreover, one of the models indicated 

opposite asymmetry, the parameter of EGARCH indicated decrease in volatility of OMXR, 

when negative shocks appear. This is contrary to leverage effect documented by studies of 

developed markets, but somewhat similar to behavior that was found by Brooks (2007) for 

stock markets of Egypt, Nigeria and Zimbabwe, where higher volatility was associated with 

positive shocks. 
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On the stage of testing autocorrelation in residuals of volatility models problems with 

specification of the models was found for EGARCH model applied on series of returns on 

OMXR and for all volatility models applied on OMXT, although in this case autocorrelation 

arised on very high lags. Test for heteroskedasticity of residuals on level of statistical 

significance of five percent indicated problems with specification of GJR model applied on data 

series of OMXR. On the level of one percent, no heteroskedasticy was found. Test for normality 

of residuals showed that none of models have normally distributed residuals. Therefore, author 

conclude that he could not fully capture dependence in data series, thus it might have negative 

impact on forecasting performance. In order to overcome those disadvantages it may be helpful 

to divide analyzed period to smaller samples, which exclude periods of extremely high 

volatility. Another option can be data trimming, which involves excluding outliers from data 

series. 

All of models analyzed in this study generated better then naive forecast. Evaluation of 

ability of the models to forecast volatility of Baltic stock markets showed very small differences 

in forecast error measurements among three models. GARCH(2,1) appeared to be the best 

model for returns of OMXR, followed by GJR(2,2) and EGARCH(2,2). For OMXT asymmetric 

model delivered more precise forecasts. Best performer is EGARCH(2,1), followed by 

GARCH(2,1) and GJR(1,2). In case of OMXV, GARCH(2,2) worked best, a bit worse 

performance showed EGARCH(1,2) and GJR(2,2) respectively. Graphical analysis of forecasts 

indicated that in periods of calm market models tend to deliver very similar forecasts, which 

was confirmed by small differences in error statistic. Significant differences between forecasts 

can be found on extremums, although it should be pointed out that all models behave differently 

on various data series. For OMXR the EGARCH produced the largest forecast of volatility in 

response to large negative shock, in case of OMXT the GARCH model delivered large forecasts 

disregarding the sing of shocks, and for OMXV the GJR generated forecast larger than two 

other models, when substantial negative shock took place. 

 The results of current study are contrary to results of many studies about stock market 

volatility, which provide evidence of supremacy of asymmetric GARCH models to standard 

GARCH model. In current study standard GARCH outperformed asymmetric models in two of 

three cases. Although EGARCH appeared to deliver slightly more accurate forecasts of 

volatility of OMXT than GARCH, the difference between two models was fairly small. 
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RESÜMEE 

VOLATIILSUSE MODELLEERIMINE BALTI 

AKTSIATURGUDEL 

Sergei Guštšak 

Volatiilsus on üks põhimuutujatest paljudes finantsmudelites kaasaegses rahanduses.  

Seda kasutatakse tuletisväärtpaberite hinnastamises Black-Sholes mudelis optsiooni õiglase 

hinda leidmiseks. Volatiilsus on samuti osa Value-at-Risk mudelist, mida kasutavad 

finantsasutused ülemaailma võimaliku kahjumi rahaliseks mõtmiseks. Kaasaegne 

portfelliteooria kasutab volatiilsust väärtpaberi riskimõõdikuna. Fintsvara volatiilsus ei ole ajas 

konstantne, seega riski mõtmiseks on vaja meetodit, mis võimaldaks prognoosida volatiilsust 

võimalikult täpselt.  

Volatiilsuse modeleerimise probleemi on väga palju uuritud, selleks kasutatakse 

erinevaid meetodeid ja mudelied. Praktikas kasutatakse ajaloolised mudelid, mille hulka kuulub 

terve rida erinevaid mudeleid, samuti kasutatakse nii nimetud eeldatavat volatiilsust, mida 

leiakse turul kaubeldavate optsionide hinnadest, kuid kõige levinum mudeli tüüp on 

autoregresiivne tingliku heteroskedastivsusega mudel või ARCH mudel. Viimastel 

aastakümnetel kasutatakse volatiilsuse modeleerimiseks peamiselt ARCH mudeli 

edasiarendusi, mis võimaldavad modeleerida selleseid nähtusi, nagu näiteks volatiilsuse 

kuhjumine, teravatipuline jaotus ning volatiilsuse asümmeetriline reaktsioon erineva märgiga 

hinnašokidele. Kirjanduse analüüs näitas, et Balti aktsiaturgude volatiilsuse modeleerimine ei 

ole veel laialt uuritud. Seoses viimasega autor otsustas uurida volatiilsuse modeleerimise 

probleemi Balti turgude näitel. 

Käesoleva magistritöö teema on aktuaalne, kuna töös võrreldakse mittu ARCH tüüpi 

mudeleid, mille abil on võimalik prognoosida kohalikke aktsiaturgude volatiilsust. Töö 

tulemused võivad olla eriti kasulikud riskijuhtimise valdkonnas, kus saadud volatiilsuse 

prognoose võib kasutada Value-at-Risk mudelis.    
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Käesoleva töö eesmärgiks oli leida sellise ARCH tüüpi mudeli, mis annab kõige 

täpsema prognoosi Balti aktsiaturgudel. Selleks oli kogutud kolme börsiindeksi (Riia, Tallinn, 

Vilnius) päeva sulgemisehinnad perioodil 2000-2014 ja valitud kolm ARCH tüüpi mudelit 

(GARCH, EGARCH, GJR), mida tihiti kasutatakse volatiilsuse modeleerimiseks. Volatiilsuse 

mudelite ehitamiseks, hindamiseks ja testimiseks kasutati Box-Jenksi methoodikat. Mudeli 

prognoosimisvõime hindamiseks kasutati staatilist prognoosi, mille täpsust hinnati nelja 

prognoosivea järgi. 

Empirilise testide käigus leiti, et Balti aktsiaturgude indeksite volatiilsuses esineb 

asümmeetriat negatiivsete hinnašokkide suhtes. Oli samuti leitud, et Riia aktsiaturu indeksi 

volatiilsus väheneb negatiivsete hinnašokkide mõjul. Taoline tulemus oli leitud ka teise 

autoriga arenevatel aktsiaturgudel. Volatiilsuse mudelite testimisel selgus, et EGARCH mudeli 

kuju ei sobi selleks, et kirjeldada Riia aktsiaturu indeksi volatiilsus täiesti ning teatud 

probleemid mudeli kujuga tekkisid ka komle volatiilsuse mudelitega rakendatud Tallinna 

aktsiaturu indeksi suhtes. 

Mudelite prognoosimisvõime hindamise käigus leiti, et Riia aktsiaturu indeksi 

volatiilsuse prognoosimiseks sobib kolmest mudelist paremini GARCH(2,1), Tallinna  

aktsiaturu indeksi volatiilsuse prognoosimiseks sobib EGARCH(2,1) ja Vilniuse aktsiaturu 

indeksi volatiilsuse kõige täpsema prognoosi annab GARCH(2,2) mudel. Samas autor leidis, et 

prognoosiveade väärtuste erinevused kõige indeksite puhul olid väga väiksed, viidates sellel, et 

mudelid annavad väga sarnasi prognoose. Prognoositud volatiilsuse graafikute analüüs näitas, 

et aktsiaturu suhteliselt rahulikul ajal genereerivad mudelid enam-vähem sarnasi prognoose 

ning järskude hinnašokide puhul prognoosid võivad erineda märkimisväärselt. 

Käesoleva töö tulemused lähevad mõnevõrra lahku paljude teaduslikute tööde 

tulemustega, kuna akadeemilises kirjanduses reegline rõhutatakse nn. asümeetriliste GARCH 

mudelite eelisi aktsiaturgude volatiilsusse modeleerimisel. Antud töö näitas, et kahel juhul 

kolmest standartne GARCH mudel andis parema prognoosi kui selle mudeli asümmeetriline 

edasiarendus.   
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APPENDICES 

Appendix 1. Dickey-Fuller test results 

 

 

 

Source: author’s figure from Eviews. 
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Appendix 2. Correlograms of returns 
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OMXT 

 

OMXV 

 

Source: author’s figure from Eviews. 
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Appendix 3. ARMA models estimation output  
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Appendix 3 extension 

 

Source: author’s figure from Eviews. 
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Appendix 4. Autocorrelation test results for residuals of ARMA model  

Lag 

OMXR OMXT OMXV 

AC   PAC  Q-Stat  Prob AC   PAC  Q-Stat  Prob AC   PAC  Q-Stat  Prob 

1 0.036 0.036 4.4030 - 0.011 0.011 0.3908 - -0.002 -0.002 0.0127 - 

2 -0.005 -0.006 4.4738 - -0.025 -0.026 2.5322 - -0.004 -0.004 0.0583 - 

3 0.022 0.022 6.0211 0.01 -0.012 -0.012 3.0128 0.08 0.037 0.037 4.6238 0.03 

4 -0.030 -0.032 9.0923 0.01 -0.001 -0.002 3.0197 0.22 0.036 0.037 9.0055 0.01 

5 -0.022 -0.020 10.742 0.01 0.013 0.012 3.5538 0.31 -0.016 -0.015 9.8272 0.02 

6 -0.054 -0.053 20.382 0.00 0.016 0.016 4.4363 0.35 0.061 0.060 22.272 0.00 

7 -0.046 -0.041 27.412 0.00 0.028 0.028 6.9569 0.22 0.052 0.050 31.266 0.00 

8 0.014 0.017 28.095 0.00 0.018 0.018 7.9951 0.24 0.072 0.073 48.257 0.00 

9 0.044 0.044 34.440 0.00 0.047 0.048 15.178 0.03 0.035 0.034 52.314 0.00 

10 0.069 0.065 50.248 0.00 0.037 0.038 19.708 0.01 0.044 0.038 58.682 0.00 

11 0.050 0.041 58.505 0.00 0.026 0.028 21.986 0.01 0.019 0.014 59.878 0.00 

12 0.068 0.062 73.952 0.00 0.026 0.028 24.269 0.01 0.041 0.034 65.552 0.00 

13 0.069 0.062 89.751 0.00 0.013 0.014 24.832 0.01 0.071 0.065 82.307 0.00 

14 0.057 0.059 100.38 0.00 0.016 0.016 25.660 0.01 0.040 0.030 87.548 0.00 

15 -0.025 -0.019 102.50 0.00 -0.006 -0.008 25.770 0.02 0.019 0.009 88.734 0.00 

16 -0.053 -0.039 111.93 0.00 0.018 0.015 26.825 0.02 0.063 0.046 101.76 0.00 

17 -0.059 -0.047 123.64 0.00 -0.008 -0.013 27.015 0.03 0.006 -0.007 101.87 0.00 

18 0.004 0.017 123.68 0.00 -0.001 -0.006 27.018 0.04 0.021 0.010 103.29 0.00 

19 -0.032 -0.028 127.16 0.00 0.008 0.001 27.228 0.06 0.054 0.037 112.83 0.00 

20 -0.010 -0.009 127.49 0.00 -0.019 -0.026 28.490 0.06 0.006 -0.012 112.97 0.00 

21 -0.029 -0.046 130.23 0.00 0.003 -0.003 28.521 0.07 -0.019 -0.035 114.20 0.00 

22 -0.005 -0.028 130.32 0.00 0.007 0.002 28.706 0.09 0.018 -0.006 115.24 0.00 

23 -0.003 -0.032 130.34 0.00 -0.004 -0.009 28.754 0.12 0.023 0.005 116.94 0.00 

24 0.002 -0.015 130.35 0.00 0.024 0.022 30.679 0.10 0.003 -0.009 116.97 0.00 

25 -0.037 -0.047 135.03 0.00 0.011 0.009 31.108 0.12 -0.001 -0.017 116.98 0.00 

26 -0.012 -0.016 135.54 0.00 0.002 0.003 31.118 0.15 0.016 -0.004 117.88 0.00 

27 0.017 0.018 136.55 0.00 0.019 0.022 32.373 0.15 0.012 -0.000 118.36 0.00 

28 -0.027 -0.020 139.03 0.00 -0.026 -0.026 34.639 0.12 0.008 0.001 118.55 0.00 

29 0.008 0.026 139.21 0.00 0.015 0.019 35.401 0.13 0.015 0.005 119.29 0.00 

30 -0.035 -0.023 143.23 0.00 0.012 0.012 35.902 0.15 0.008 0.001 119.51 0.00 

31 0.018 0.033 144.28 0.00 0.043 0.043 41.990 0.06 0.028 0.023 122.15 0.00 

32 -0.014 -0.015 144.95 0.00 0.022 0.022 43.603 0.05 0.006 -0.002 122.28 0.00 

33 -0.020 -0.004 146.28 0.00 0.002 0.003 43.617 0.07 0.021 0.020 123.78 0.00 

34 -0.031 -0.023 149.50 0.00 -0.004 -0.004 43.676 0.08 0.042 0.042 129.59 0.00 

35 -0.023 -0.008 151.31 0.00 -0.020 -0.022 45.017 0.08 -0.025 -0.030 131.60 0.00 

36 -0.009 -0.007 151.60 0.00 -0.009 -0.014 45.297 0.09 -0.032 -0.035 134.96 0.00 

Note: p-values higher than 0.01 marked in bold. 

Source: author’s table base on calculation in Eviews. 
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Appendix 5. ARMA residuals ARCH test output 
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OMXT 
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Appendix 5 extension 

OMXV 

 

Source: author’s figure from Eviews. 
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Appendix 6. Information criterions for volatility models 

Note: Information criterions of models with insignificant parameters marked with grey, best 

combination of information criterions of models with all significant parameters marked with 

yellow. 

Source: author’s calculations. 

 

 

 

 

 

 

 

 

Model OMXR OMXT OMXV 

 AIC SBIC HQIC AIC SBIC HQIC AIC SBIC HQIC 

GARCH (1,0) 3.3703 3.3778 3.3729 3.0359 3.0433 3.0385 2.8499 2.8573 2.8526 

GARCH (2,0) 3.2904 3.2996 3.2937 3.0079 3.0172 3.0112 2.8172 2.8264 2.8205 

GARCH(1,1) 3.1437 3.1529 3.1470 2.8910 2.9002 2.8943 2.7588 2.7680 2.7621 

GARCH(1,2) 3.1393 3.1504 3.1433 2.8879 2.8990 2.8919 2.7540 2.7651 2.7580 

GARCH(2,1) 3.1321 3.1432 3.1361 2.8850 2.8961 2.8890 2.7429 2.7540 2.7469 

GARCH(2,2) 3.1445 3.1575 3.1492 2.8853 2.8982 2.8899 2.7364 2.7493 2.7410 

EGARCH(1,0) 3.4315 3.4408 3.4348 3.0646 3.0738 3.0679 2.8844 2.8936 2.8877 

EGARCH(2,0) 3.3634 3.3745 3.3674 3.0285 3.0396 3.0325 2.8533 2.8644 2.8572 

EGARCH(1,1) 3.1478 3.1589 3.1518 2.8801 2.8912 2.8840 2.7451 2.7561 2.7490 

EGARCH(1,2) 3.1430 3.1559 3.1476 2.8739 2.8868 2.8785 2.7403 2.7532 2.7449 

EGARCH(2,1) 3.1378 3.1508 3.1425 2.8716 2.8845 2.8762 2.7330 2.7459 2.7376 

EGARCH(2,2) 3.1370 3.1518 3.1423 2.8720 2.8868 2.8773 2.7259 2.7407 2.7312 

GJR(1,0) 3.3709 3.3801 3.3742 3.0314 3.0407 3.0347 2.8499 2.8573 2.8526 

GJR(2,0) 3.2908 3.3019 3.2947 3.0049 3.0160 3.0089 2.8172 2.8264 2.8205 

GJR(1,1) 3.1443 3.1554 3.1483 2.8912 2.9023 2.8952 2.7588 2.7680 2.7621 

GJR(1,2) 3.1406 3.1536 3.1453 2.8880 2.9010 2.8927 2.7540 2.7651 2.7580 

GJR(2,1) 3.1327 3.1456 3.1373 2.8853 2.8983 2.8899 2.7429 2.7540 2.7469 

GJR(2,2) 3.1411 3.1559 3.1464 2.8857 2.9004 2.8910 2.7395 2.7543 2.7448 
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Appendix 7. Volatility models estimation outputs for OMXR 

GARCH(2,1) 

 

 

EGARCH(2,2) 
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Appendix 7 extension 

GJR(2,2) 

  

Source: author’s figure from Eviews. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   68 

 

Appendix 8. Volatility models estimation outputs for OMXT 

GARCH(2,1) 

 

 

EGARCH(2,1) 
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Appendix 8 extension 

GJR(1,2) 

  

Source: author’s figure from Eviews. 
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Appendix 9. Volatility models estimation outputs for OMXV 

GARCH(2,2) 

 

EGARCH(1,2) 
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Appendix 9 extension 

GJR(2,2) 

  

Source: author’s figure from Eviews. 
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Appendix 10. Q-statistics for squared residuals of models for OMXR   

Lag GARCH(2,1) EGARCH(2,2) GJR(2,2) 

q-stat p-value q-stat p-value q-stat p-value 

1 0.0450 0.83 0.6804 0.41 5.3724 0.02 

2 0.0468 0.98 1.2092 0.55 5.8979 0.05 

3 6.1438 0.11 1.4816 0.69 6.4188 0.09 

4 7.3297 0.12 2.7592 0.60 7.0601 0.13 

5 7.3356 0.20 2.8486 0.72 7.0614 0.22 

6 7.5705 0.27 2.8740 0.82 7.9442 0.24 

7 7.6560 0.36 2.8743 0.90 8.4710 0.29 

8 7.7276 0.46 3.6904 0.88 8.5053 0.39 

9 8.7399 0.46 4.4701 0.88 9.8971 0.36 

10 9.3110 0.50 4.5359 0.92 11.934 0.29 

11 9.3147 0.59 4.7381 0.94 11.989 0.36 

12 10.160 0.60 5.4173 0.94 13.815 0.31 

13 10.291 0.67 6.5173 0.93 14.077 0.37 

14 10.552 0.72 9.9336 0.78 14.321 0.43 

15 10.693 0.77 9.9710 0.82 14.328 0.50 

16 23.948 0.09 33.677 0.01 23.431 0.10 

17 24.606 0.10 34.063 0.01 24.189 0.11 

18 27.290 0.07 36.619 0.01 25.247 0.12 

19 32.278 0.03 45.535 0.00 30.133 0.05 

20 32.529 0.04 46.551 0.00 30.599 0.06 

21 33.247 0.04 46.996 0.00 31.597 0.06 

22 33.520 0.06 47.226 0.00 31.771 0.08 

23 33.530 0.07 47.321 0.00 32.672 0.09 

24 33.833 0.09 47.360 0.00 32.971 0.11 

25 34.047 0.11 47.373 0.00 33.194 0.13 

26 34.705 0.12 47.584 0.01 33.708 0.14 

27 34.706 0.15 47.611 0.01 33.748 0.17 

28 34.706 0.18 48.033 0.01 33.794 0.21 

29 34.850 0.21 48.086 0.01 33.969 0.24 

30 35.570 0.22 49.500 0.01 34.407 0.27 

31 36.063 0.24 49.610 0.02 35.198 0.28 

32 36.095 0.28 49.655 0.02 35.221 0.32 

33 36.205 0.32 49.726 0.03 35.413 0.36 

34 36.273 0.36 49.938 0.04 35.425 0.40 

35 36.564 0.40 50.149 0.05 36.342 0.41 

36 38.862 0.34 51.704 0.04 42.083 0.22 

Note: p-values higher than 0.01 marked in bold. 

Source: author’s table base on calculation in Eviews. 
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Appendix 11. Q-statistics for squared residuals of models for OMXT   

Lag GARCH(2,1) EGARCH(2,1) GJR(1,2) 

q-stat p-value q-stat p-value q-stat p-value 

1 0.2030 0.65 0.0064 0.94 0.0098 0.92 

2 0.2217 0.90 0.7275 0.70 0.1807 0.91 

3 0.3838 0.94 0.8098 0.85 0.7069 0.87 

4 1.2373 0.87 1.1272 0.89 1.6475 0.80 

5 1.2497 0.94 1.1599 0.95 1.7111 0.89 

6 1.4670 0.96 1.2856 0.97 2.1356 0.91 

7 2.1922 0.95 2.2016 0.95 3.1954 0.87 

8 2.2811 0.97 2.3898 0.97 3.4171 0.91 

9 2.8907 0.97 2.8672 0.97 4.1619 0.90 

10 2.9329 0.98 2.9140 0.98 4.3499 0.93 

11 4.1770 0.96 3.8796 0.97 5.8047 0.89 

12 4.4976 0.97 4.0569 0.98 6.2407 0.90 

13 4.7078 0.98 4.3238 0.99 6.3629 0.93 

14 5.2975 0.98 4.9397 0.99 7.0340 0.93 

15 5.3057 0.99 4.9433 0.99 7.0380 0.96 

16 6.4685 0.98 5.7638 0.99 8.2788 0.94 

17 6.4729 0.99 5.8085 0.99 8.2886 0.96 

18 7.8726 0.98 6.7585 0.99 9.6478 0.94 

19 7.8729 0.99 6.9231 1.00 9.6498 0.96 

20 8.3718 0.99 7.4668 1.00 10.336 0.96 

21 10.046 0.98 9.0052 1.00 12.207 0.93 

22 10.355 0.98 9.0984 1.00 12.565 0.95 

23 10.714 0.99 9.2964 1.00 12.883 0.95 

24 10.796 0.99 9.4032 1.00 12.982 0.97 

25 11.468 0.99 10.174 1.00 13.598 0.97 

26 11.753 0.99 10.587 1.00 13.821 0.98 

27 64.918 0.00 104.05 0.000 78.668 0.000 

28 65.687 0.00 104.57 0.000 79.492 0.000 

29 66.116 0.00 104.79 0.000 79.931 0.000 

30 66.882 0.00 105.45 0.000 80.720 0.000 

31 66.930 0.00 105.46 0.000 80.749 0.000 

32 67.036 0.00 105.48 0.000 80.824 0.000 

33 67.230 0.00 105.68 0.000 80.951 0.000 

34 68.028 0.00 106.47 0.000 81.654 0.000 

35 68.478 0.00 106.98 0.000 82.074 0.000 

36 68.478 0.00 106.99 0.000 82.078 0.000 

Note: p-values higher than 0.01 marked in bold. 

Source: author’s table base on calculation in Eviews. 
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Appendix 12. Q-statistics for squared residuals of models for OMXV   

Lag GARCH(2,2) EGARCH(1,2) GJR(2,2) 

q-stat p-value q-stat p-value q-stat p-value 

1 0.0249 0.88 0.5759 0.45 0.0009 0.98 

2 0.0635 0.97 0.7911 0.67 0.0591 0.97 

3 0.0656 1.00 0.7963 0.85 0.2596 0.97 

4 0.2085 1.00 0.9605 0.92 0.3975 0.98 

5 0.4893 0.99 1.3859 0.93 0.9746 0.97 

6 0.4915 1.00 1.4343 0.96 0.9770 0.99 

7 0.5515 1.00 1.4578 0.98 1.1419 0.99 

8 0.7205 1.01 1.8116 0.99 1.3558 1.00 

9 0.8024 1.00 1.8196 0.99 1.3863 1.00 

10 0.8872 1.00 2.0187 1.00 1.5697 1.00 

11 0.9175 1.00 2.0211 1.00 1.5775 1.00 

12 0.9657 1.00 2.2203 1.00 1.6811 1.00 

13 0.9712 1.00 2.3851 1.00 1.8297 1.00 

14 1.3415 1.00 2.9765 1.00 1.9974 1.00 

15 2.8701 1.00 3.6700 1.00 2.7563 1.00 

16 2.8958 1.00 3.6854 1.00 3.4791 1.00 

17 3.1557 1.00 3.9883 1.00 3.7628 1.00 

18 3.2721 1.00 4.1679 1.00 3.7679 1.00 

19 3.3272 1.00 4.2395 1.00 3.8202 1.00 

20 3.4106 1.00 4.2742 1.00 3.8202 1.00 

21 3.5040 1.00 4.4249 1.00 3.9226 1.00 

22 3.5208 1.00 4.4635 1.00 4.0357 1.00 

23 3.8846 1.00 4.9685 1.00 4.3667 1.00 

24 4.1001 1.00 5.2043 1.00 4.4062 1.00 

25 4.2182 1.00 5.2529 1.00 4.4683 1.00 

26 4.2980 1.00 5.2744 1.00 4.4802 1.00 

27 4.5724 1.00 5.4079 1.00 4.5801 1.00 

28 4.7054 1.00 5.4728 1.00 4.5932 1.00 

29 4.7063 1.00 5.4824 1.00 4.5938 1.00 

30 4.8000 1.00 5.6669 1.00 4.9189 1.00 

31 4.9543 1.00 5.8312 1.00 5.0226 1.00 

32 5.0087 1.00 5.8407 1.00 5.0520 1.00 

33 5.2464 1.00 6.0207 1.00 5.1269 1.00 

34 5.5214 1.00 6.2478 1.00 5.2604 1.00 

35 5.6447 1.00 6.6356 1.00 5.6086 1.00 

36 5.8010 1.00 6.9657 1.00 6.0653 1.00 

Note: p-values higher than 0.01 marked in bold. 

Source: author’s table base on calculation in Eviews. 
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Appendix 13. Residuals ARCH test output for OMXR 

GARCH(2,1) 

 

EGARCH(2,2) 

 

GJR(2,2) 

 

Source: author’s table base on calculation in Eviews. 
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Appendix 14. Residuals ARCH test output for OMXT 

GARCH(2,1) 

 

EGARCH(2,1) 

 

GJR(1,2) 

 

Source: author’s table base on calculation in Eviews. 
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Appendix 15. Residuals ARCH test output for OMXV 

GARCH(2,2) 

 

EGARCH(1,2) 

 

GJR(2,2) 

 

Source: author’s table base on calculation in Eviews. 
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Appendix 16. OMXR variance forecast  

GARCH(2,1) 

 

EGARCH(2,2) 

 

GJR(2,2) 

 

Source: author’s figures from Eviews. 
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Appendix 17. OMXT variance forecast  

GARCH(2,1) 

 

EGARCH(2,1) 

 

GJR(1,2) 

 

Source: author’s figures from Eviews. 
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Appendix 18. OMXV variance forecast  

GARCH(2,2) 

 

EGARCH(2,1) 

 

GJR(2,2) 

 

Source: author’s figures from Eviews. 


