
Tallinn 2023

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Anton Nikiforov 179852IADB

Development of Vehicle Sales Web Application

Bachelor's thesis

Supervisor: Aleksei Talisainen

 Master’s Degree

Tallinn 2023

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Anton Nikiforov 179852IADB

Automüügi veebirakenduse arendamine

Bakalaureusetöö

Juhendaja: Aleksei Talisainen

 Magistrikraad

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Anton Nikiforov

07.05.2022

4

Abstract

The goal of the thesis is to create a web application, which would allow to quickly put

any vehicle registered in Estonia for sale by entering just numberplate. The rest of the

data related to vehicle should be loaded directly from Estonian Transport Administration

and saved into database.

Thesis includes analysis of data openly provided by Transport Administration to confirm

existence of problem that vehicles do not get utilized in a proper and safe way and are not

being used, thus staying somewhere and provoking vandalism and damage to

environment.

An overview of used technology stack is provided as well as reasons for selection. Author

describes functional requirements of application and continues with development using

chosen technologies. Part of thesis is dedicated to deployment of application into the

cloud service. All parts related to development include examples of program code and

commands that were used to give overview of used patterns and techniques.

Final part of thesis summarizes the results and describes possible future development to

make application better fit for live environment.

This thesis is written in English and is 54 pages long, including 9 chapters, 36 figures and

13 tables.

5

Annotatsioon

Käesoleva töö eesmärgiks on luua lihtsa veebiportaali, mille abiga saaks kiirelt panna

müügile Eesti Maanteeametis arvel olevaid sõidukeid, sisestades vaid sõiduki

registreerimisnumbri. Portaal suhtleb otse Maanteeameti süsteemiga ning kõik autoga

seotud andmed laetakse sealt automaatselt ning neid salvestatakse andmebaasi.

Töös on teostatud ametlike andmete analüüs, mis kinnitab et umbes neljandik arvel

olevaid autodest ei saa ametlikult liikluses osaleda, kuna nende registreerimine on

peatatud aga samas neid ei ole lammutatud või täielikult registrist kustutatud. See

tähendaks seda, et nemad seisavad mõnes kohas, kus võivad provotseerida vandalismi või

looduse reostamist. Veebiportaali peamine eesmärk ja eelis konkurentide eest on pakkuda

tasuta ja kiiret lahendust nendele kes ei soovi kaua aega tegeleda vana auto müügiga.

Töös on olemas ülevaade arendamiseks kasutatud tehnoloogiatest ning on välja toodud

peamised põhjused miks nemad olid välja valitud. Lõputöö autor kirjeldab rakenduse

kasutaja nõuded ning arendab lahendused välja valitud tehnoloogiate abiga. Iga

tehnoloogia kohta on välja kirjutatud olulised näidised, mis näitavad kuidas

veebirakendus oli koostatud.

Lahti kirjutatud on ka rakenduse taristu koosseis ning kuidas esi rakendus on ühendatud

taga rakendusega. Eraldi peatükk on kirjutatud et näidata peamised käsud mis on seotud

rakenduse veebi ülespanemisega.

Viimases osas kirjeldab autor võimalikud edasiarendused mida tuleb teha et saaks

rakenduse live-keskkonnas kasutada.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 54 leheküljel, 9 peatükki, 36

joonist, 13 tabelit.

6

Acknowledgements

I would like to express gratitude to my family for their unconditional, endless love and

support in everything that I am doing, without it I would not have gone that far.

I am thankful to my motivational colleagues at work for being patient with my studies

and allowing me concentrate on university when it was needed.

Huge thank you goes to Aliis Udras and Joel Jesse from Estonian Transport Department

for making this thesis possible from the beginning by confirming and coordinating usage

of department’s system.

I express my acknowledgement to Riina Tallo and Dagmar Tamme, who endlessly

assisted me in organizational questions and guided me throughout this journey.

Last but not least, I say thanks to my supervisor, Aleksei Talisainen, for giving invaluable

advice required for completing this work in first place, and to pre-defence commission

for their great feedback to polish it into final version.

7

List of abbreviations and terms

ACID Atomicity, Consistency, Isolation, Durability

API Application Programming Interface

AVP Andmevahetusplatvorm

CI/CD Continuous Integration / Continuous Delivery

CRUD Create, Read, Update, Delete

CSV Comma-separated values

DOM Document Object Model

DTO Data Transfer Object

ER Entity Relationship

ETA Estonian Transport Administration

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

JPA Jakarta Persistence API

JSON JavaScript Object Notation

JWT JSON Web Token

kW Kilowatt

LKF Liikluskindlustusfond

MTR Majandustegevuse register

ORM Object Relational Mapping

OS Operational System

POJO Plain Old Java Object

SaaS Software as a Service

SQL Structured Query Language

SSH Secure Shell Protocol

SUV Sport Utility Vehicle

UI User Interface

URL Uniform Resource Locator

VIN Vehicle Identification Number

VSP Vehicle Sales Platform

XML Extensible Markup Language

8

Table of contents

1 Introduction .. 14

2 Problem background and analysis .. 16

2.1 Goal ... 16

2.2 Data source analysis .. 17

2.3 Market analysis ... 23

2.4 Practical scope ... 24

3 Analysis of chosen technology stack ... 25

3.1 Backend - Spring Boot .. 25

3.2 Frontend – React, Bootstrap .. 26

3.3 Database – PostgreSQL ... 26

3.4 Infrastructure ... 27

3.4.1 Shared web hosting .. 27

3.4.2 Cloud platform ... 28

3.5 Data Exchange Platform (AVP) .. 28

4 Application requirements ... 32

4.1.1 Advertisement creation process ... 34

4.1.2 Limitations of administrator role ... 35

4.1.3 Assigning badges to vehicles ... 36

5 Development of application and features ... 37

5.1 Design of database .. 37

5.2 Implementation of application domain ... 40

5.2.1 One-To-Many relationship set-up .. 41

5.2.2 Many-To-Many relationship set-up ... 42

5.3 Implementation of database connectivity .. 43

5.3.1 Repository pattern .. 43

5.3.2 Implementation of service .. 44

5.4 Implementation of API controllers .. 44

5.4.1 List of endpoints ... 45

5.4.2 Data Transfer Objects .. 46

9

5.4.3 Security .. 48

5.5 Implementation of Frontend using Bootstrap and ReactJS 49

5.5.1 Bootstrap design ... 50

5.5.2 Implementation of React functional components .. 50

5.5.3 Usage of ReactJS hooks ... 50

5.5.4 Usage of React Router for URL mapping .. 51

5.5.5 Usage of Axios to perform calls against API ... 51

5.5.6 Application structure .. 52

6 Infrastructure and deployment of application .. 53

6.1 Google Cloud SQL .. 53

6.2 Google Cloud Run ... 53

6.3 Google Cloud Storage ... 55

6.4 Cloud services-related setup in Spring Boot “application.properties” file 56

6.5 Frontend deployment ... 57

7 Testing of application ... 58

7.1 API testing during development using Postman ... 58

7.2 System testing of ready product .. 60

8 Results and possible future improvements ... 62

8.1 Future improvements to be considered ... 62

8.1.1 Captcha ... 62

8.1.2 Protection of customer data .. 63

8.1.3 Multilingual support ... 63

8.1.4 Login via existing services ... 63

8.1.5 Messaging between parties .. 63

8.1.6 Support for paid advertisements by 3rd parties ... 63

8.1.7 Mobile app for Android and iOS ... 63

8.1.8 More details for advertisement page .. 64

8.1.9 Uptime monitoring ... 64

8.1.10 Automatic tests ... 64

8.1.11 Code refactoring ... 65

9 Summary .. 66

10 References .. 68

Appendix 1 – Screenshots of VSP interface ... 73

10

Appendix 2 – Non-exclusive licence for reproduction and publication of a graduation

thesis .. 77

11

List of figures

Figure 1. Data example from dataset "Vehicle statuses in Estonia". 19

Figure 2. SQL script to retrieve total amount of vehicles from dataset. 20

Figure 3. SQL script to retrieve number of registered vehicles from dataset. 20

Figure 4. SQL script to retrieve number of vehicles with problematic registration. 21

Figure 5. Distribution of vehicles per status. .. 22

Figure 6. Average age of cars in Estonian registry by their status. 22

Figure 7. Distribution of cars on sale on auto24.ee by price span. 24

Figure 8. Flowchart of advertisement creation process. .. 35

Figure 9. Entity Relationship Diagram for VSP database. .. 38

Figure 10. Example of OneToMany mapping in Spring Boot. 41

Figure 11. Example of ManyToOne mapping in Spring Boot. 42

Figure 12. Example of ManyToMany mapping in Spring Boot. 42

Figure 13. Example of connecting table between Vehicle and Badge entities. 43

Figure 14. Example of Repository implementation in SpringBoot. 43

Figure 15. Example of service implementation in Spring Boot. 44

Figure 16. Visual example of data transfer object composition. 47

Figure 17. Visual representation of data transfer object creation. 48

Figure 18. Example of JWT communication between client and server. 49

Figure 19. Example of “useState” hook usage. Variable is created, setter method

attached, initial value (empty array) is set. .. 50

Figure 20. Example of “useEffect” hook usage. Service to get user advertisement is

called only once when page is loaded, response is being set to state variable

“advertisements”. In case of possible error, error details are also saved to variable

“content”. .. 51

Figure 21. Example of React route setup. Router maps URL to specific React

component. .. 51

Figure 22. Example of method that utilizes Axios HTTP client to return data from API

endpoint. .. 52

Figure 23. Example of Jib setup in “build.gradle” file. ... 54

12

Figure 24. Selection of container image to be deployed in Google Cloud Run. 55

Figure 25. Example of application image storing in Spring Boot using Google Cloud

Storage. .. 56

Figure 26. Images uploaded from VSP as seen in bucket (directory) hosted in Google

Cloud Storage. ... 56

Figure 27. Postman response received from /api/advertisement/:id endpoint with

detailed vehicle information. ... 59

Figure 28. Example of Postman collections with sample saved requests to various

endpoints. .. 60

Figure 29. Example of VSP interface - Home page with latest advertisements. 73

Figure 30. VSP interface - Top selection tab which displays badges assigned to vehicles.

 ... 73

Figure 31. VSP interface - Search page. ... 74

Figure 32. VSP interface - Open advertisement with photos and vehicle details. 74

Figure 33. VSP interface - Second row of open advertisement. Shows price, vehicle

details, owner contacts and technical data on the right. .. 75

Figure 34. VSP interface - Third row of open advertisement. Shows details about

technical inspections, registry actions and restrictions. .. 75

Figure 35. VSP interface - Administrator profile. Administrator sees every

advertisement and is able to edit or remove it. .. 76

Figure 36. VSP interface - edit screen of existing advertisement. 76

13

List of tables

Table 1. Dataset columns with explanation. ... 17

Table 2. Explanation of vehicle category abbreviations. .. 18

Table 3. Explanation of vehicle statuses. .. 19

Table 4. Number of cars on sale per price range. .. 23

Table 5. Overview of packages provided by AVP. ... 29

Table 6. Description of groups provided by AVP with list of returned parameters. 29

Table 7. List of required functionality to be developed. ... 32

Table 8. Description of badges that could be assigned to vehicle. 36

Table 9. List of database tables with descriptions and relationship details. 38

Table 10. List of supported API endpoints. .. 45

Table 11. ReactJS application directory list. ... 52

Table 12. Contents of “src” directory in ReactJS application. .. 52

Table 13. Google Cloud-specific setup in Spring Boot application.properties file. 57

14

1 Introduction

More than 135 years have passed since Karl Benz’s Benz Patent-Motorwagen was

unveiled for the public. Despite not being the first attempt at automobile creation, the

invention of this vehicle was patented in 1886 and it is regarded as world’s first car with

internal combustion engine that was put into series production [1].

However, cars were not widely available until Henry Ford brought Ford Model T into the

spotlight of mass attention back in 1908. The car was affordable not only for the rich but

for middle class as well, and was being assembled using the production line, which made

it possible to produce cars on massive scale, and at the same time to decrease their price

[2]. Since then, number of cars in the world have started to grow significantly. In the

Unites States alone, number of registered vehicles was 8000 in 1900 which grew into

458,377 in 1910 [3]. This is an incredible 5629,71% increase for just 10 years.

The general number of vehicles in the world keeps growing nowadays. Already in 2015

there were almost 1 billion personal vehicles in use [4]. On top of that, vehicles are being

produced massively every year. There was a continuous growth of number of

manufactured vehicles from 2010 up until Q4 2018, where a slight decline happened, but

still year ended with 95 706 293 new vehicles produced [5].

With growing number of existing vehicles and new ones being produced every year, a

question of utilization and recycling comes into play, as with any other type of consumer

goods. Owners use their vehicles every day, sometimes during harsh winter conditions,

sometimes during hot summer. The behavior of typical modern busy person also does not

help to preserve vehicle in proper condition through the years, as people tend to neglect

owner’s manual, skip maintenance, use car in a non-intended way, which all speeds up

the decline of mechanisms.

After the years, oil starts to leak, gearbox does not change gears as smooth as in year the

car left dealership, additional equipment stops working and gives more problems than

15

assistance. The rust is making its way through the metal, and it gets more difficult every

year to pass the inspection and keep car on the road.

It’s not easy to understand, when is the right moment to utilize the car. It may have a

small issue that can be fixed in the yard in spare time, like a burned-out bulb or broken

door handle. It might be some issue that requires professional knowledge to be fixed, but

still be affordable. But sometimes it happens that car is not anymore a safe place to be,

for example when rust has destroyed the chassis. It may also happen that spending on old

car exceeds forecasted spending on new one.

Some car owners do not have enough knowledge to see the whole picture, or do not have

time or interest in this matter, and just buy another vehicle, sometimes letting the old one

sit for months and years.

The author of this thesis strongly believes that life is movement and car should drive, and

mechanisms work. Every vehicle should be used until logical end of its lifecycle, until

full exhaustion of planned resource. If one does not need the vehicle anymore – it’s time

to think about giving it away to next owner. There are a lot of people out there who fancy

old cars as a hobby, fixing them to be able to drive an old, electronic-free vehicle on sunny

weekends, enjoying this very special experience, especially during modern times, when

cars tend to look like gadgets – keeping driver in his lane, beeping to warn about not-

always-very-important information. The car might be worthy of restoration in the hands

of enthusiast, who will give it a new life as a garage relic. There are also people, who just

want to have a cheap mean of transport for various reasons, be it for learning how to drive,

for work appliance or as a temporary vehicle.

The problem is that it’s not easy to connect these people - for owners, it’s not easy to

understand the real value of their vehicle, find time to analyze this and put advertisement

online. Sometimes they are convinced that their car cost nothing at all and nobody will

come for it. For potential buyers, searching for a proper low-budget vehicle in Internet is

like searching for a needle in the stack - there are not much to choose from, most offers

are from wholesalers and not owners, who do not know anything about car, the price is

often too high, and history is shady. The problem exists in any country of the world,

however, in the scope of this thesis we will focus on Estonia.

16

2 Problem background and analysis

According to Estonian Transport Administration statistics, as of 01.03.2022 there are

approximately 1 227 000 vehicles registered in Estonia [6].

Out of this number, around 283 500 have either temporarily or permanently suspended

registration, thus rendering them road illegal. Average age of these vehicles is 28,3 years.

These vehicles are either illegally dismantled or are sitting in yards and fields, provoking

vandalism and damage to environment. A more detailed analysis of official dataset

provided by Estonian Transport Administration is conducted in sub-chapter “Data source

analysis”.

As stated in introductory part, some of these vehicles can be historically valued and a true

finding for restoration enthusiasts, others can be fixed with minor investments and used

further until complete utilization.

The real objective is to find right hands which will take vehicle over. As recycling and

reusage is very popular, an attempt must be made to use vehicle to full extent until end of

lifecycle, thus ways to keep older cars on the road as much as possible should be

promoted.

2.1 Goal

The goal of thesis is to create a simple, yet productive web application – VSP (Vehicle

Sales Platform), which will allow owner of vehicle to quickly put it on sale by just

providing numberplate and some photos. This functionality is not available in any other

existing platform in Estonia. The application will be connected to Transport

Administration API (Application Programming Interface) and will fetch all vehicle

details just by supplying numberplate.

Buying side will also receive benefits in form of transparent and correct vehicle details in

one place. The full overview of vehicle provided by the app will help to mitigate unfair

vehicle sale practices, as some owners or resellers tend to hide real history of car.

17

Web application will focus on older and cheaper vehicles and will be free to use, in

contrast to leaders of Estonian market [7] [8].

To reach the goal, an analysis will be performed based on data from official dataset, to

understand how many vehicles are out there which need to be either re-used or recycled.

By analyzing the data, it is planned to confirm the presence of problem and strengthen

reason for implementation of practical part.

2.2 Data source analysis

This section describes the official dataset about vehicle statuses in Estonia and how the

data was analyzed.

Author of thesis uses full dataset “Vehicle statuses in Estonia” that is issued every month

by Estonian Transport Administration, which contains data about all vehicles registered

in Estonia [6]. Some basic visual data is available on Transport Administration website

[9] however this data is not sufficient for deeper analysis.

All data is actual as of 23.03.2022, while used dataset was created on 02.03.2022. Due to

large size of dataset (158,73 MB) CSV (Comma-separated values) file was imported into

MySQL database using application Sequel Pro into table “data”.

The available columns (names are in Estonian language) are described in Table 1.

Table 1. Dataset columns with explanation.

Name Translation / Description

Soiduki_vanus Age of vehicle

Maakond County

Andmed_seisuga Date when dataset
information was acquired

ESMANE_REG_KP Date of first registration

KYTUSEKOMBINATSIOON Fuel combination

Kategooria Category of vehicle1

1 Explanation of possible abbreviations is available in Table 2. Data is based on Estonian Transport
Administration official website [70].

18

Name Translation / Description

Keretyyp Style of car body

Kytuse_tyyp Type of fuel used

MOOTORI_TYYP Type of engine

Mark Manufacturer

Mudel Model

SOIDUK_ID_ID Unique vehicle identifier

Staatus Status of vehicle1

VARV Colour

Other point of interest that would help our analysis are value in column ‘Kategooria’ – it

helps to understand vehicle type. Table 2 provides description of abbreviations below.

Table 2. Explanation of vehicle category abbreviations.

Category abbreviation Description

M vehicles intended for carriage of passengers

N vehicles intended for carriage of goods

L two-, three- and four-wheel vehicles

T, R, C agricultural and forestry vehicles

O trailers

Last and main interest is column ‘Staatus’ – it provides overview of possible statuses

vehicle can own in Transport Administration database. As of 01.03.2022 they are 9

unique statuses. Unfortunately, there is no official description available for each of them,

however statuses were analyzed by author of the thesis and comments added as part of

this analysis. It was not possible to verify meaning of 5 out of 9 statuses, as they do not

have clear explanation based on their name. An attempt was made to contact author of

dataset to receive official confirmation, but it was unsuccessful.

1 Explanation of possible vehicle statuses is available in Table 3.

19

Table 3. Explanation of vehicle statuses.

Status Description

REGISTRIS_OLEV_SOIDUK Registered vehicle (Active registration)

VOORANDATUD Expropriated but not registered again

KANNE_PEATATUD Stopped registration

AJUTISELT_REGISTRIST_KUSTUT Suspended registration

REG_YLEVAATUSE_LABINUD_REGISTR Unverified status, assigned to 1988
vehicles

AJUTISELT_REGISTREERITUD Unverified status, assigned to 88
vehicles (temporarily registered)

EKSPERTIISI_KONTROLLIMINE Unverified status, assigned to 91
vehicles

REGMUUDATUS_TYYBIKINNITUS Unverified status, assigned to 2 vehicles

VOORANDATUD_RM_LABINUD Unverified status, assigned to 1 vehicle

Figure 1 shows example of how data looks like in dataset after being imported into

MySQL database.

Figure 1. Data example from dataset "Vehicle statuses in Estonia".

20

In the scope of this thesis, author focuses on four-wheel vehicles intended for carriage of

passengers, therefore only entries with category = M% will be analyzed.

Statuses of vehicle like REG_YLEVAATUSE_LABINUD_REGISTR,

AJUTISELT_REGISTREERITUD, EKSPERTIISI_KONTROLLIMINE,

REGMUUDATUS_TYYBIKINNITUS, VOORANDATUD_RM_LABINUD are

unverified and quite specific as described above and are applied only to marginal number

of vehicles, thus will be excluded from the results.

To perform calculations, some simple queries have been created to be run against contents

of dataset. These queries are available on figures below.

SQL (Structured Query Language) script to get total number of vehicles is shown on

Figure 2.

select count(*)
FROM data
WHERE
1 = 1
AND Kategooria like 'M%'
AND staatus NOT IN ('REG_YLEVAATUSE_LABINUD_REGISTR',
'AJUTISELT_REGISTREERITUD', 'EKSPERTIISI_KONTROLLIMINE',
'REGMUUDATUS_TYYBIKINNITUS', 'VOORANDATUD_RM_LABINUD');

Figure 2. SQL script to retrieve total amount of vehicles from dataset.

Total amount of such vehicles is: 839 104

As next step, it was required to find number of registered vehicles, example script is

provided on Figure 3.

select count (*)
FROM data
WHERE
1 = 1
AND Categories like 'M%'
AND staatus = 'REGISTRIS_OLEV_SOIDUK';

Figure 3. SQL script to retrieve number of registered vehicles from dataset.

Which results in 615 507.

21

This means, that there are 223 597 (839 104 – 615 507) vehicles with possibly

problematic registration.

To recheck the numbers another query was used, which is displayed on Figure 4.

select count(*)
FROM data
WHERE
1 = 1
AND Kategooria like 'M%'
AND staatus IN ('VOORANDATUD', 'KANNE_PEATATUD',
'AJUTISELT_REGISTRIST_KUSTUT');

Figure 4. SQL script to retrieve number of vehicles with problematic registration.

Which has returned same number : 223 597.

This means that 26,65% (223 597) of all vehicles (839 104) have either stopped

registration (168 531), are expropriated (30 742), or have suspended registration

(24 324)1. While there is some hope that minor part of them is still in road-worthy

condition and they can be still brought easily back to registry, it shows the general number

of vehicles that are not used and not recycled.

Figure 5 shows distribution of vehicles per status.

1 Further queries are omitted for brevity.

22

Figure 5. Distribution of vehicles per status.

The average age of these vehicles also cannot be compared to the ones in permanent

usage. The average age of car with active registration is 13,14 years, while for cars with

stopped, expropriated, and suspended registration the numbers are 29,64; 24; 21,09

respectively. Figure 6 below shows this difference graphically.

Figure 6. Average age of cars in Estonian registry by their status.

615507

168531

30742 24324

Number of M% category vehicles in Estonia

Active registration Stopped registration Expropriated Suspended registration

13,14

29,64

24
21,09

0

5

10

15

20

25

30

35

Active registration Stopped registration Expropriated Suspended registration

Average age of cars in Estonian registry by their
registration status

Average age of cars in Estonian registry by their registration status

23

2.3 Market analysis

This chapter analyzes the current market state in Estonia using largest advertisement

portal Auto24. Analysis helps to understand what pricing focus group is.

Passenger and SUV (Sport Utility Vehicle) category as of 25.03.2022 contains 16 077

vehicles (number excludes advertisements without proper pricing, for example auctions

or ads with missing price) [10]. Out of this amount the car advertisements are spread as

shown in Table 4 below.

Table 4. Number of cars on sale per price range.

Price range Number of cars on sale

Under €1000 161

€1000 – €1999 689

€2000 - €2999 944

€3000 - €3999 944

€4000 – €4999 967

€5000 – €9999 3632

€10000+ 8740

Thus, total sum of cars priced up to €9999 is 7337, and total sum of cars costing over €10

000 is 8740. Graphically this data can be represented as shown on Figure 7 below.

24

Figure 7. Distribution of cars on sale on auto24.ee by price span.

The graph shows that vehicles under €10 000 take 45,64% of market (7337 out of 16

077). Out of these 7337, 50,5% are in €1 - €4999 pricing range. (3705). This confirms the

fact that number of cheaper cars is quite large and focus group of vehicles up to €10 000

can be taken.

2.4 Practical scope

Practical part of the thesis deals with development of basic version of application only.

Practical outcome is not meant for immediate Production usage. Marketing, real-life

usage and monetization of application fall out of current scope.

161

689
944

944

967

3632

8740

Cars for sale on auto24.ee as of 25.03.2022

Under €1000 €1000 - €1999 €2000 - €2999 €3000 - €3999

€4000 - €4999 €5000 - €9999 €10000+

25

3 Analysis of chosen technology stack

Current chapter provides overview of technologies that were selected to create VSP.

Main reason for their selection is general actuality at the moment of thesis writing. While

comparison of frameworks and programming languages is not in scope of this thesis,

some detailed reasons are provided along with short historical reference.

Chapter also includes short overview of AVP (Andmevahetusplatvorm) - Data Exchange

Platform provided by Estonian Transport Administration – explaining data output and

costs of usage.

3.1 Backend - Spring Boot

According to 2021 questionnaire by JetBrains, the developer behind IDE (Integrated

Development Environment) IntelliJ IDEA, about 65% of developers are using Spring

Boot to develop Java web applications [11].

Spring Boot is a back-end framework for rapid development - it provides base application

and services that can be easily set up with minimum effort [12]. For the start it provides

default configuration to be used out of the box, that can be customized as per specific

application needs, thus allowing to write less repetitive code by just following known

conventions [13].

The framework is flexible and easily extendable by using third-party libraries allowing to

create apps with wide range of features. Security issues are usually dealt with quickly and

patches provided once vulnerabilities are discovered. Last, but not least – there is huge

community of developers around Spring Boot. This makes it easy to find tutorials, guides

or help from open resources and fix any problem that arises when application is being

developed.

All these reasons also contribute to fact that Spring is trusted by developers all over the

world including the ones who work in big tech companies like Alibaba, Amazon, Google,

and Microsoft [14].

Fast setup, availability of third-party libraries and extensive documentation are the main

reasons behind framework selection for development of VSP – as development timeframe

26

is very limited, it is crucial to start development in fast pace and be able to find

information on any possible problem that could arise.

3.2 Frontend – React, Bootstrap

Same questionnaire performed by JetBrains in 2021 for JavaScript shows that React is

being number one most used framework to develop JavaScript applications, with second

being Vue.js [15].

React allows to develop frontend applications quickly as it uses declarative views which

make written code predictable and easy to debug. It’s quite simple to build separate

components that manage their state, then compose them to make a more complex user

interface. State is kept out of the DOM (Document Object Model), allowing to pass data

back and forth, thus updating UI (User Interface) effectively.

React also shares syntax with Node.js and React Native, which allow to use code on

server-side and on mobile devices respectively [16].

Requirement for fast development of application meant that frameworks with steep

learning curve could not be used on this occasion. React was selected mainly because of

its high performance and component structure that will make code easier to maintain in

longer run [17].

3.3 Database – PostgreSQL

PostgreSQL is a fully ACID (Atomicity, Consistency, Isolation, Durability) -

compliant relational database that can run on every operating system, including Linux,

Mac OS X and Microsoft Windows [18]. The initial project called POSTGRES (POST-

Ingres) started back in 1986 but gained momentum in 1996 once initial QUEL query

language was replaced with SQL and code began to be maintained by specific group of

focused developers, who acquired a public server to host the code. The name was changed

to PostgreSQL and since then the project is frequently updated and kept in good shape

[19]. The project is solid and is being used for more than 25 years straight, during which

a community has grown up, making it possible to find solutions to problems quickly.

27

According to recent survey of professional developers that was performed by

StackOverflow, 44,08% of developers are using PostgreSQL for their projects, making it

just a bit behind of MySQL (result 48,19%) [20]. The trend, however, is changing towards

Postgre, as previous survey of 2020 showed numbers of 53,5% and 38,5% of MySQL and

PostgreSQL usage respectively [21].

MySQL was considered as an option for database for VSP, but research showed that not

only PostgreSQL uses less system resources, which is very important when running in

the cloud, but also handles concurrent usage better and generally works faster in

environments that require many heavy write operations [22]. As large data objects

containing full vehicle history will be pushed into multiple tables at the same time and

possibly by many users concurrently, it was decided to go for PostgreSQL. Moreover,

development pace and bug fixing time has been slowed down since MySQL acquisition

by Oracle in 2009, which slows issue reporting and bug fixing process, while PostgreSQL

large and devoted community contribute often [23].

3.4 Infrastructure

This chapter briefly describes infrastructure around VSP – where frontend and backend

applications are hosted, analysis of Cloud platform providers and selection reasoning.

3.4.1 Shared web hosting

Zone.ee is Estonian web hosting service provider since 1999 [24]. The pricing of shared

web hosting service is competitive on local market and author of thesis uses Plan I for

development which costs €6,55 monthly if billed annually. For this amount it provides

SSH (Secure Shell Protocol) access and support for Node.js web applications [25].

As per comparison of web hosting providers, Zone.ee is best known provider in Estonia

with great technical support and the only one which had an uptime of 100% during

monthly test [26]. Also, author of thesis already had account there for hosting various

other projects, so as a method to reduce costs of development and hosting, Zone.ee was

selected to accommodate application frontend written in ReactJS.

28

3.4.2 Cloud platform

Backend of application in form of API and database will be stored in cloud platform.

Biggest players on cloud market are AWS, developed by Amazon, Azure, developed by

Microsoft and Google Cloud, developed by Google. While Google Cloud is not market

leader and has some drawbacks, it provides best prices for hosting small instances [27].

Moreover, it provides 300$ in free credits for any signed-up account and has extensive

documentation for setting up required services.

Google Cloud Run is one of Google Cloud services, that allows to deploy a containerized

application written in Go, Python, Java, NodeJS or .NET and quickly make it available

for incoming requests [28]. What is more important, it allows to build container from

source Git1 repository whenever updated code is pushed there.

Other Google services that will be used are Google Cloud SQL and Google Cloud

Storage. More details are described in Chapter 6.

3.5 Data Exchange Platform (AVP)

The service is provided by Estonian Transport Administration. The purpose of it is to give

access to public data by providing XML (Extensible Markup Language) response to

queries.

The access to service must be requested beforehand and justified reason should be

provided why data needs to be received and used. The service is paid.

ETA (Estonian Transport Administration) provides four options to choose from –

Package 1 to 4. Packages 3 and 4 are for bulk queries to get details about various ETA

operations with vehicles and are not suitable for development of application planned in

the thesis, thus we will exclude them from overview and summarize possibilities only for

packages 1 and 2. They mostly differ by number of allowed queries within specific

timeframe. Summary of packages is provided in Table 5 below.

1 Open-source distributed version control system for tracking changes in any set of files [69].

29

Table 5. Overview of packages provided by AVP.

Package 1

Allowed queries in 1 minute 5

Allowed queries in 1 hour 15

Allowed queries in 24 hours 50

Monthly cost €15

Package 2

Allowed queries in 1 minute 10

Allowed queries in 1 hour 100

Allowed queries in 24 hours 300

Monthly cost €80

As second package implies more intense usage, the price is higher (€80 monthly for

package 2 and just €15 for package 1).

The query is created with one of 3 inputs (vehicle numberplate, vehicle VIN (Vehicle

Identification Number) code, number of vehicle technical passport) and output can be

constructed out of 5 possible groups (for brevity only most important details are provided

in Table 6 below).

Table 6. Description of groups provided by AVP with list of returned parameters.

Group Included parameters

1 - General details of vehicle Manufacturer

 Model name

 Type of vehicle

 Modification

 Color

 Date of registration

 Date of registration in Estonia

 Country of initial registration

 Date of next technical inspection

2 – Technical details of vehicle Engine type

 Engine capacity

30

Group Included parameters

 Engine power

 Type of gearbox

 Number of doors

 Number of seats

 Weight

 Height

 Width

 Max load

 CO2 emissions

3 – Technical inspection details Date of technical inspection

 Type of inspection

 Detailed list of faults discovered during
inspection

 Odometer reading

 Performer of technical inspection (company
name)

 Decision

 Date of next technical inspection

4 – Restriction data1 Type of restriction (loan, arrest)

 Setter of restriction

 Date of imposing

 Deposit sum (if vehicle used as deposit)

 Ranking (if restrictions are queued)

5 – Operation data2 Type of operation

 Date

Each group is added to base package price at the cost of €15 per group [29].

1 Section includes information about restrictions. Example of restriction is when a car is being used as
deposit for loan or is arrested by law enforcement. If car is officially subject to any restrictions, it means
that owner may not have rights to sell it. This information is used to provide more transparency.
2 Section includes data about vehicle operations. Example of operation is change of ownership or issuing
a duplicate numberplate.

31

For the development of application for the thesis, author have selected Package 1 and all

5 returnable groups. This would mean, that the service would cost €15 for package itself,

plus 5 * €15, totaling to €90 per month.

Before writing of the thesis, author has contacted Estonian Transport Administration and

asked to provide free access for 3 months in order to write and defend thesis and received

a positive reply. After signing an agreement between ETA and physical entity the access

was provided.

32

4 Application requirements

Following part describes the basic functionality required to be developed during alpha

stage. For simplicity, there are just 3 roles, buyer (visitor), seller and administrator. Buyer

does not have to register an account to see active advertisements, so it’s not required to

be logged in to use website as visitor.

Table 7 shows list of requirements for each type of user and is used later-on for manual

testing of ready product.

Table 7. List of required functionality to be developed.

Role Functionality Comment

Seller Sign-up In order to store
advertisements, application
needs to know, to whom they
belong. Sign-up process is
easy and requires just
username, email, and a
password.

 Login Registered user should be
able to login into system with
his username and password.

 Create advertisement1 This is the most important
and complex process in the
whole application. It is
divided into multiple steps to
simplify and streamline the
process.

 View list of his
advertisements

Seller must be able to see all
his active advertisements.

 Update details of his
advertisements

Seller must be able to update
details of his advertisements.

1 Due to complexity of process, full overview is provided in sub-chapter “Advertisement creation
process”.

33

Role Functionality Comment

 Delete advertisement Seller must be able to
remove advertisements.

Buyer View list of all active
advertisements

Buyer should be able to see
all advertisements.

 Visit unique advertisement to
check its details

Buyer should be able to visit
specific advertisement to see
full vehicle details.

 Search for vehicles1 Search should be possible by
generic vehicle
characteristics –
manufacturer, body type, fuel
type, gearbox type, drive
type, years of manufacture,
engine power, mileage, price.
It should be also possible to
select only vehicles with
valid technical inspection.

 Search for vehicles based on
assigned badges2

It should be possible to
receive advertisements sorted
by amount of issued badges
to make search easier.

Administrator3 View all advertisements by
any user

Should have access to any
advertisement.

 Edit any advertisement It should be possible to
impose corrective measures.

 Delete any advertisement It should be possible to
impose blocking measures.

 Create announcement Announcements are visible
in “Announcement” tab of
website, used mainly for
news and updates.

 Update announcement It should be possible to make
a correction.

1 There is no pre-loaded information in search form, but rather search form is generated on the fly based
on current advertisement list. For example, if only BMW and Toyota cars are saved in database, then only
these selections are available in the form, or if weakest car engine power is 55 kW (Kilowatt) and
toughest is 200 kW, there will be no options to select cars under 55 kW and over 200. This would help
client to choose from what’s really available throughout the portal.
2 Description of badging system of VSP is available in sub-chapter “Assigning badges to vehicles”.
3 In VSP, administrator can edit only user-entered data. Data coming from AVP is not available for
changing. More details and reasoning are available in sub-chapter “Limitations of administrator role”.

34

4.1.1 Advertisement creation process

Registered user visits VSP and enters vehicle numberplate. Then, request is sent to AVP.

Once reply with vehicle details is received, short summary of vehicle is displayed, and

user is asked if correct vehicle details were loaded. Next step is to enter basic

advertisement details, such as vehicle’s odometer reading, price, contacts of owner and

short description. Next and last step is to upload photo(s). Afterwards advertisement is

saved and becomes available for visitors of website.

Saving an advertisement in backend is itself a complex process. Before saving, database

is required to do pre-checks, for example it should check for availability of provided

model and manufacturer data. It should be stressed out that VSP database by design

should not initially have pre-loaded information on all manufacturers and models, and it

is meant to be populated once an advertisement is created, based on data from AVP. If

unknown model or manufacturer is included in incoming request, respective tables will

need to be populated with new data.

The whole process can be graphically displayed using flowchart as shown on Figure 8.

Oval represents start or end point. Arrows represent relationship between entities,

parallelogram represents input or output. Process is marked as a rectangle, while diamond

shape is used to indicate decision [30].

35

Figure 8. Flowchart of advertisement creation process.

4.1.2 Limitations of administrator role

Due to the nature of the application and its initial idea of receiving data from AVP,

administrator has no means of updating list of manufacturers, models, vehicles, technical

inspections, actions, restrictions. This data is originating from a trusted government

source and is not meant to be changed or manipulated in any way.

Badges (this functionality is described in next chapter) and their links to vehicles are also

not to be changed because they are assigned automatically by backend controller at the

time of advertisement creation.

36

4.1.3 Assigning badges to vehicles

In order to help final users find best vehicle suitable for their needs, it is required to

introduce automatic system of vehicle badging. Once information is fetched from AVP

and entered by user it should be automatically analyzed and some of badges from Table

8 may be assigned.

Table 8. Description of badges that could be assigned to vehicle.

Shortcut Full name Description Icon

LD Long Description Vehicle has
description of over
200 symbols

LTI Long Technical
Inspection

Vehicle has over 6
months until next
technical inspection

NR No Restrictions Vehicle has no
restrictions (Not
arrested by law
enforcement and not
used as loan deposit)

LO Long Ownership Vehicle did not switch
owners for over 3
years

ATIS All Technical
Inspections Successful

Vehicle has passed all
technical inspections
successfully and never
failed

37

5 Development of application and features

In this chapter author of thesis describes all steps that were taken to develop the

application. The codebase that was written as a result turned out to be relatively large,

and below parts do not include full details of implementation, but rather short excerpts to

display general concepts.

Moreover, some implementation details cannot be shared due to nature of agreement

between the author of the thesis and Estonian Transport Administration.

5.1 Design of database

Despite using code-first approach for this project, which does not require real physical

database structure to be present before writing application [31] it was decided to design

database using web tool Lucidchart. It is a paid cloud-based service, which is considered

one of best tools to create ER (Entity Relationship) diagrams [32]. It offers free package

with limit of 3 created documents [33].

The database structure for this project is quite simple. It includes just 131 interconnected

tables, as shown on Figure 9 below.

1 Table “Announcement” is not included on ER diagram as it’s not related to anything and does not play
significant role in structure.

38

Figure 9. Entity Relationship Diagram for VSP database.

Database tables are described in more detail in Table 9.

Table 9. List of database tables with descriptions and relationship details.

Table name Purpose Relationship details

MANUFACTURER Contains
manufacturer data

One-To-Many relationship to Model
– Manufacturer can have many
models.

MODEL Contains model
data

Many-To-One relationship to
Manufacturer – Model always
belongs to specific manufacturer.
One-To-Many relationship to
Vehicle – Model can have many
vehicles.

VEHICLE Contains detailed
vehicle data

Many-To-One relationship to Model
– Vehicle always belongs to specific
model.
One-To-Many relationship to
Technical Inspections, Actions,
Restrictions. Vehicle can have many

39

Table name Purpose Relationship details
technical inspections, actions and
restrictions.
Many-To-Many relationship to
Badges through connecting table.
Vehicle can have many badges.
One-To-Many relationship to
Advertisement – Vehicle can have
many advertisements.

TECHNICAL_INSPECTION Contains data
about technical
inspections

Many-To-One relationship to
Vehicle. Technical inspection
belongs to specific Vehicle.

ACTION Contains data
about vehicle-
related registry
actions

Many-To-One relationship to
Vehicle. Action belongs to specific
Vehicle.

RESTRICTION Contains data
about restrictions

Many-To-One relationship to
Vehicle. Restriction belongs to
specific Vehicle.

BADGE Contains data
about generic
available badges

Many-To-Many relationship to
Vehicle. Badge can belong to many
vehicles.

VEHICLE_BADGE_X Connecting table
between Vehicle
and Badge entities

ADVERTISEMENT Contains ad data Many-To-One relationship to
Vehicle – Advertisement always
belongs to specific vehicle.

IMAGE Contains locations
of images

Many-To-One relationship to
Advertisement – Image always
belongs to specific Advertisement.

USER Contains registered
user data

One-To-Many relationship to
Advertisement – User can have
many advertisements.
Many-To-Many relationship to Role
through connecting table
USER_ROLE_X. User can have
many roles.

ROLE Contains possible
roles

Many-To-Many relationship to User
through connecting table
USER_ROLE_X. Role can belong
to many users.

40

Table name Purpose Relationship details

USER_ROLE_X Connecting table
between User and
Role entities

ANNOUNCEMENT Contains data
about
announcements

Has no relationship and does not
play significant role in application
inner structure.

5.2 Implementation of application domain

As next step, it was required to set up models in Java application. The number of models

is almost1 same as number of tables in above chapter. All of models extend Base class,

which automatically provides time of entity creation and time of entity update.

In order to allow rapid development of application, author of thesis heavily uses

annotations, especially Lombok annotation processor. Lombok is a special Java library,

which allows to minimize amount of boilerplate and repetitive code by annotating classes

or variables [34].

All domain classes are annotated with @Data annotation. This annotation automatically

generates all getters and setters for non-final variables, as well as readable toString

method [35] [36].

In addition to that, models are also annotated by @Entity and @Table, which are

annotations provided by JPA (Jakarta Persistence API), previously known as Java

Persistence API. As website will save user data as well as vehicle data, JPA

implementation will provide ORM (Object Relational Mapping) layer to application,

which will manage conversion of Java objects with tables and columns in relational

database [37].

1 With exception of connecting tables because they are generated automatically and setup of separate
entity is not required.

41

@Entity annotation instructs that given POJO (Plain Old Java Object) needs to be

persisted in database, which means that a table for it must be created. @Table annotation

together with required name parameter instructs what should be the name of table [38].

All of models have unique identifier, which is saved in field “id”, with annotations @Id

and @GeneratedValue (strategy = GenerationType.IDENTITY). These annotations

advise JPA to use given field as unique identifier, and what should be its generation

strategy. IDENTITY is one of easiest options which will make column use auto-

incremented values [39].

The rest of primitive one-value fields are annotated with @Column – this annotation is

used to map POJO field to database column. It can be created with parameters, such as

name, nullability, maximum length [40].

Most importantly, it is required to map relationships between entities. Application mostly

uses One-To-Many relationships, and also two Many-To-Many relationships. An

example of each relationship will be provided below, other ones are omitted for brevity.

5.2.1 One-To-Many relationship set-up

As an example, below is a relationship between Vehicle and Technical Inspection. Each

vehicle can have data regarding multiple Technical Inspections throughout years. Each

separate technical inspection entity always belongs to some specific vehicle. Because of

that, in Vehicle model relationship is set up as shown on Figure 10.

@OneToMany(mappedBy = “vehicle”, cascade = CascadeType.ALL)
@JsonManagedReference
private List<TechnicalInspection> technicalInspections = new
ArrayList<>();

Figure 10. Example of OneToMany mapping in Spring Boot.

@OneToMany annotation explains cardinality of relationship. Parameter mappedBy is

used to show which variable is used to represent parent class in child class, as mapping

in Technical Inspection class is also created to make entity relationship bidirectional. This

means that information about connected entities is available from both sides of

relationship (Technical Inspection data available from Vehicle side, and Vehicle data is

42

available from Technical inspection side) [41]. Parameter cascade makes sure that all

operations on parent entity Vehicle are propagated on child entity [42].

@JsonManagedReference is an annotation provided by Jackson library, which is used to

serialize and deserialize POJOs. Such annotation is placed on parent, while

@JsonBackReference is placed on child entity in order for Jackson to be able to

understand relationship and not allow circular referencing and endless loop as a result

during serialization process [43].

The other side of relationship, Technical Inspection entity has linkage set up as shown

below on Figure 11.

@ManyToOne
@JoinColumn(name = "vehicle_id")
@JsonBackReference
private Vehicle vehicle;

Figure 11. Example of ManyToOne mapping in Spring Boot.

Here JoinColumn is set up in order to specify which column contains reference (foreign

key) to parent object [44].

5.2.2 Many-To-Many relationship set-up

Example Many-To-Many reference is between vehicle and badges.

Each vehicle could have many badges, and badges may belong to many vehicles, as they

do not hold any unique values, and are used rather to show similarities between vehicles.

From Vehicle side set up is made as shown on Figure 12.

@ManyToMany
@JoinTable(
 name = "vehicle_badge_x",
 joinColumns = @JoinColumn(name = "vehicle_id"),
 inverseJoinColumns = @JoinColumn(name = "badge_id"))
private List<Badge> badges;

Figure 12. Example of ManyToMany mapping in Spring Boot.

@JoinTable provides information how connecting table should be named, what is name

of column that links to Vehicle entity and what is name of column that links to Badge

entity [45]. The result of such setup with example data looks on database level as shown

on Figure 13 below.

43

Figure 13. Example of connecting table between Vehicle and Badge entities.

5.3 Implementation of database connectivity

Following chapter describes how database connectivity is implemented and what

techniques were used.

5.3.1 Repository pattern

Most of models require to be saved in database, and process of synchronization needs to

be simple and straightforward. One of the options to make it possible is to implement

repository pattern. This design pattern is useful where there are high number of domain

classes and a lot of querying is utilized. Thus, repository layer was added between the

domain entities and data mapping layers to isolate domain objects from details of the

database implementation and to minimize duplication of query code [46].

Spring Boot and JPA provide a convenient way to do this out of the box – even an empty

interface that extends JpaRepository can be created and basic CRUD (Create, Read,

Update, Delete) functionality will become available [47]. Example of this functionality

is provided on Figure 14.

@Repository
public interface BadgeRepository extends JpaRepository<Badge,
Long> {}

Figure 14. Example of Repository implementation in SpringBoot.

As interfaces cannot implement real logic, application should access data through several

services, which are created for all repositories.

44

5.3.2 Implementation of service

The service provides a connectivity bridge to database through repository to be utilized

by controller. Repository is injected into service upon loading automatically by Spring

Boot and implements methods that our controller uses. For Manufacturer, there are 3

methods in use - save(), findByName() and findAll(), as shown on Figure 15.

@Service
public class ManufacturerService {

 private ManufacturerRepository manufacturerRepository;

 public ManufacturerService(ManufacturerRepository
manufacturerRepository) {
 this.manufacturerRepository = manufacturerRepository;
 }

 public Manufacturer createManufacturer(Manufacturer
manufacturer) {
 return manufacturerRepository.save(manufacturer);
 }

 public Manufacturer findByName(String name) {
 return manufacturerRepository.findByName(name);
 }

 public List<Manufacturer> findAll() {
 return manufacturerRepository.findAll();
 }

}

Figure 15. Example of service implementation in Spring Boot.

Service is directly called in controllers when communication with database is required.

5.4 Implementation of API controllers

As database connectivity was set up with the use of repositories and services, next step

was to create controllers that would process client requests and utilize services. This

chapter provides a list of endpoints that backend provides and explains how Data Transfer

Objects are used to reduce data complexity and data quantity between client and REST

service. Due to the nature of application, some routes should be protected from

unauthorized requests and security topic is also covered in last sub-chapter.

45

5.4.1 List of endpoints

Application supports requests to several API endpoints. List of endpoints is shown in

Table 10.

Table 10. List of supported API endpoints.

HTTP Method API endpoint Secured Usage

POST /api/auth/signin No Authorization in
system

POST /api/auth/signup No Registration in
system

GET /api/advertisements No Viewing list of all
advertisements

GET /api/advertisements/:id No Viewing one specific
advertisement

GET /api/advertisements/top No Viewing best offers
(sorted by number of
assigned badges)

GET /api/advertisements/search No Viewing offers by
specified GET
parameters

GET /api/advertisements/search-
fields

No Used internally to
calculate possible
selections on
‘Search’ page

POST /api/advertisements Yes Creation of
advertisement

POST /api/advertisements/:id/images Yes Addition of images to
advertisement

GET /api/user-advertisements/ Yes Viewing of
advertisements
created by current
user

GET /api/user-advertisements/:id Yes Viewing of single
advertisement created
by current user (for
editing)

PATCH /api/user-advertisements/:id Yes Allows partial update
of advertisement

DELETE /api/user-advertisements/:id Yes Allows deletion

46

5.4.2 Data Transfer Objects

Because application contains a large amount of logic and often exchanges information

with frontend, it is relying heavily on usage of DTO (Data Transfer Object) pattern. DTO

is an object that carries data between processes to reduce the number of method calls [48].

The idea behind Data Transfer Object was first introduced by Martin Fowler, who

explained that the pattern's main purpose is to reduce roundtrips to the server by batching

up multiple parameters in a single call [49]. This reduces the network overhead in such

remote operations, moreover it can be used to hide domain implementation details that

are not required in any way by sending or receiving party.

One of the largest DTOs used by VSP is AdvertisementGetDTO, which is returned by

endpoint /advertisements/:id and consumed by React frontend to display full details about

single advertisement. The schema of this DTO is visualized on Figure 16.

47

Figure 16. Visual example of data transfer object composition.

As DTOs are flat data structures that contain no business logic, they are constructed using

a specially written mapper that assigns all required values. Because inside of

AdvertisementGetDTO are more DTOs – VehicleGetDTO which sums up all important

vehicle data and ImageGetDTO which contains URLs (Uniform Resource Locator) of

vehicle uploaded images, the data is being processed via other mappers before

assignment. The whole procedure schematically is represented on Figure 17.

48

Figure 17. Visual representation of data transfer object creation.

5.4.3 Security

As described in endpoint table, access to most of API endpoints is permitted for all users,

which makes it possible for anyone without account to view advertisements, respective

vehicles, and all related data.

However, for those endpoints that deal with advertisement saving, it’s crucial to

understand who is creating the ad and who is going to have control over it in future.

49

To allow this functionality, app utilizes JWT-based (JSON Web Token) authorization.

JWT is currently an industry standard method of representing claims security between

two parties, in our case client and server [50].

Once user successfully authenticates in website, he receives JWT authorization token.

This token can be used to further access resources he has rights to if authorization token

is sent along in request header. In short, the schema of JWT communication looks as

displayed on Figure 18 below.

Figure 18. Example of JWT communication between client and server.

5.5 Implementation of Frontend using Bootstrap and ReactJS

Following chapter briefly describes how frontend application was constructed using

Bootstrap and ReactJS and showcases structure of application and used techniques.

50

5.5.1 Bootstrap design

Bootstrap is world’s most popular front-end open-source toolkit, which allows to develop

fast and responsive web sites [51]. It provides pre-made styles for all frequently used

components that are used in the web, such as form controls, buttons, navigation bars. Grid

system allows to easily arrange elements, and pre-made classes allow to set up paddings

and indents [52].

Using Bootstrap basic graphical user interface was assembled. Screenshots showcasing

different pages are available in Appendix 1.

5.5.2 Implementation of React functional components

React provides two options to develop application – one is to use class components and

another one to use functional components. Upon introduction of React Hooks in React

16.8, it was no longer required to write class components to use state [53]. Moreover,

functional components are shorter and simpler to write, making code more readable [54].

As a result, functional components are more modern and easier approach. In VSP, most

of self-written components are written as functions.

5.5.3 Usage of ReactJS hooks

Application has 35 components in total. To allow data flow between them, React hooks

are heavily used to pass data around. One of utilized hooks is “useState”, which allows to

assign state to function component to be preserved between re-renders. Another hook

used is “useEffect”, which is usually used for actions such as data fetching upon page

load [55]. Examples of hook usage are provided on Figure 19 and Figure 20 below.

const [advertisements, setAdvertisements] = useState([]);

Figure 19. Example of “useState” hook usage. Variable is created, setter method attached, initial value
(empty array) is set.

51

 useEffect(() => {
 UserService.getUserAdvertisements().then(
 response => {
 setAdvertisements(response.data.advertisements)
 },
 error => {
 this.setState({
 content:
 (error.response && error.response.data) ||
 error.message ||
 error.toString()
 });
 }
);
 }, []);

Figure 20. Example of “useEffect” hook usage. Service to get user advertisement is called only once when
page is loaded, response is being set to state variable “advertisements”. In case of possible error, error
details are also saved to variable “content”.

5.5.4 Usage of React Router for URL mapping

React Router is a very powerful tool that is used to match specific URL to function

component. Using it makes possible to build full user’s interface [56]. Figure 21

demonstrates setup used in VSP.

 <Routes>
 <Route exact path="/" element={<Home />} />
 <Route exact path="/login" element={<Login />} />
 <Route exact path="/register" element={<Register />} />
 <Route exact path="/profile" element={<Profile />} />
 <Route path="/about" element={<About />} />
 <Route path="/top" element={<AdTop />} />
 <Route path="/search" element={<AdSearch />} />
 <Route path="/announcements" element={<Announcements />} />
 <Route path="/advertisements" element={<Advertisements />} />
 <Route path="/advertisements/:id" element={<AdFull />}/>
 <Route path="/create" element={<CreateAd />}/>
 <Route path="/details/:id" element={<ChangeExistingDetails />}/>
 </Routes>

 Figure 21. Example of React route setup. Router maps URL to specific React component.

5.5.5 Usage of Axios to perform calls against API

As a modern distributed application, VSP is constantly sending requests to backend and

receiving response to display. To handle vast number of requests, a client library is

needed.

52

Axios is a promise-based HTTP (Hypertext Transfer Protocol) client which allows to

make requests from browser and receive response, which is easy to set up and start to use

[57]. Axios supports all possible types of requests and most importantly allows sending

of headers, which is crucial as application needs to send JSON (JavaScript Object

Notation). Backend, to understand that request is sent in JSON, needs to receive correct

header. As parts of application require authorization, it’s also very important that Axios

supports sending authorization tokens. Figure 22 shows method that uses Axios

functionality to perform a network request.

 getAdvertisements() {
 return axios.get(API_URL + 'advertisements');
 }

Figure 22. Example of method that utilizes Axios HTTP client to return data from API endpoint.

5.5.6 Application structure

Application structure of ReactJS frontend application is quite straightforward. Structure

of main folder consist of 3 directories and is reflected in Table 11.

Table 11. ReactJS application directory list.

Directory name Purpose

node_modules Contains all required
libraries to run application

public Contains entry point of
application (index.html)

src Contains implementation
data

Folder “src” has more important directories inside which mostly contain implementation

details written in React and design implementation with Bootstrap. The contents of

mentioned folder are reflected in Table 12 below.

Table 12. Contents of “src” directory in ReactJS application.

Directory name Purpose

services Contains generic service implementations

components Contains functional components

css Contains Cascading Style Sheet styles

img Contains images used throughout the app

53

6 Infrastructure and deployment of application

This chapter provides a short overview of application infrastructure. Backend of VSP uses

several services provided by Google Cloud, set up and shared under single project –

Google Cloud Run for hosting Java API, Google Cloud SQL for hosting persisted

PostgreSQL database and Google Cloud Storage for hosting uploaded images. All

services are hosted in North Europe (Finland) to decrease load times from target market

(Estonia). Frontend is set up on shared web hosting based in Estonia.

6.1 Google Cloud SQL

Google Cloud SQL instance is running PostgreSQL 9.6 and was set up according to

official codelab [58]. Inside instance, database “vsp-prod” was created and IAM (Identity

and Access Management) service account assigned to have access to it.

Google Cloud SQL and Spring Boot application can be conveniently interconnected by

using dependency “spring-cloud-gcp-starter-sql-postgresql”. Once this is added to Spring

Boot application, database credentials can be updated by setting three more variables in

“application.properties” file. Full list of required application variables is shown in Table

12 in sub-chapter 6.4.

6.2 Google Cloud Run

To minimize amount of required setup and omit step with configuring and writing

Dockerfile1, it was decided to use Google Container Tool Jib. Jib allows to build

optimized Docker image for Java applications without deep setup and is available as

Maven or Gradle plugin [59].

1 Setup file required to create Docker container out of application. Docker allows to package software into
standardized units for deployment - containers. Container hosts all code with all dependencies, all settings
and system tools that are required to run the code - it ensures that application will run in the same way on
any machine running Docker Engine. Docker containers are lightweight and use machine’s OS
(Operational System) kernel and do not require separate operating system for each application, making it
a very efficient solution and reducing costs spent on servers and hosting. Docker is known to have created
an industry standard for containers [68].

54

Its setup is quick as only few things need to be added to “build.gradle” file:

id 'com.google.cloud.tools.jib' version '3.2.1' into list of plugins and jib overall setup as

shown on Figure 23.

jib {
 to {
 image 'eu.gcr.io/vsp-cloud-db/vsp'
 credHelper = 'gcr'
 }
}

Figure 23. Example of Jib setup in “build.gradle” file.

Setup points to location of Cloud Image Repository where image should be pushed to and

credential helper to use1. After these changes command “gradle jib” becomes available

and it automatically creates image out of Java application and pushes it to repository.

Then in Google Cloud Run it is possible to deploy application from image easily, as

shown on Figure 24.

1 Credential helper needs to be set up separately to link to actual “credentials.json“ file and this setup is
omitted for brevity.

55

Figure 24. Selection of container image to be deployed in Google Cloud Run.

6.3 Google Cloud Storage

Google Cloud Run is a stateless container and cannot persist files that can be uploaded

by user. Therefore, Google Cloud Storage is used for storing such data. A bucket1 was

created and then used in Java code to upload files to. In Spring Boot, setup requires just

usage of “spring-cloud-gcp-storage” dependency, and after its addition, Cloud Storage

functionality is ready to be used. Sample connection and image storing example is shown

on Figure 25.

1 Directory in context of Google Cloud Storage.

56

ClassPathResource resource = new
ClassPathResource("credentials.json");
InputStream inputStream = resource.getInputStream();

GoogleCredentials credentials =
GoogleCredentials.fromStream(inputStream);
Storage storage =
StorageOptions.newBuilder().setCredentials(credentials)
 .setProjectId("vsp-cloud-db").build().getService();

Bucket bucket = storage.get("vsp-images");
Timestamp timestamp = new Timestamp(System.currentTimeMillis());
fileName = timestamp + file.getOriginalFilename();

storage.create(
 BlobInfo.newBuilder(bucket, fileName).build(),
 file.getBytes());

Figure 25. Example of application image storing in Spring Boot using Google Cloud Storage.

After uploading, images can be seen in bucket as shown on Figure 26 and accessed via
public internet1.

Figure 26. Images uploaded from VSP as seen in bucket (directory) hosted in Google Cloud Storage.

6.4 Cloud services-related setup in Spring Boot

“application.properties” file

Table 13 shows application variables that need to be set in Spring Boot to connect to all

3 used services in Google Cloud.

1 Additional setup is required to make images from bucket visible publicly.

57

Table 13. Google Cloud-specific setup in Spring Boot application.properties file.

Variable Value Usage

Spring.cloud.gcp.project_id Vsp-cloud-db Name of the
project in Google
Cloud where all
services are set up.

Spring.cloud.gcp.credentials.location Classpath:credentials.json File with
credentials
generated for IAM
account [60].

Spring.cloud.gcp.sql.enableIamAuth true Enable
connectivity to
database via IAM
service account.

Spring.cloud.gcp.sql.database-name Vsp-prod Name of Postgre
database running in
Cloud SQL
instance.

Spring.cloud.gcp.sql.instance-
connection-name

PROJECT_ID:LOCATION:
INSTANCE_NAME1

Connection name
consisting of
project identifier,
datacenter location
and Cloud SQL
instance name.

6.5 Frontend deployment

Frontend is hosted on Zone.ee hosting provider. After development with ReactJS is

finished on local machine and changes need to be published, a command “npm run build”

needs to be executed in application main directory to create build directory with

production build of the application [61]. Contents of this directory need to be uploaded to

hosting server and that step finishes deployment of frontend.

1 Omitted here as security precaution as it exposes possibly sensitive data.

58

7 Testing of application

Testing of various parts of application was performed during development and product

was also tested after deployment in live environment. This chapter provides more details

about testing process and used tools.

7.1 API testing during development using Postman

Due to nature of VSP and distributed web applications in general, communication

between client and server is happening via API calls. To test outcomes with different

inputs, Postman tool was used.

Postman in general is an application used for API testing. It is an HTTP client which

utilizes graphical user interface and allows to create collections and save groups of

requests for future usage. Conveniently, it displays returned response code, type of

response, returned content and time taken for request round-trip [62].

Figure 27 shows example output as seen in Postman.

59

Figure 27. Postman response received from /api/advertisement/:id endpoint with detailed vehicle
information.

During testing 9 collections were created to verify processes such as authorization,

advertisement creation and advertisement retrieval, some of them are demonstrated on

Figure 28.

60

Figure 28. Example of Postman collections with sample saved requests to various endpoints.

7.2 System testing of ready product

Ready application was widely tested with manual testing techniques. Manual testing

refers to testing process in which application is manually tested according to written test

plan to identify bugs [63]. Due to an early development stage of application, a number of

scenarios tested is limited and strongly tied to requirements described in “Application

requirements” chapter.

Apart from that, it was required to analyze performance and usability of application from

perspective of end user.

According to results of testing, there were no bugs found. Small issues that were found

during system and UI testing cannot be considered as bugs because there was no concrete

specification written how certain components should ideally behave or look like.

To optimize application for Production usage and allow further in-depth testing,

application requirements will be refactored to be more detailed. Once this is done, more

61

detailed test plan will be written to cover all requirements. Then whole application will

be tested again to detect any bugs.

As application is planned to expand and grow functionality, it is planned to introduce

automatic tests as with every new feature it will be more difficult to test application

manually1.

1 More details about automatic testing are available in next chapter, “Results and possible future
improvements”.

62

8 Results and possible future improvements

During the initial analysis of dataset, it was found that there are over 26% of vehicles that

cannot take part in traffic due to either stopped or suspended registration, or because they

were expropriated but never properly registered again. The data analyzed was only for

passenger vehicles, but it can be said that similar situation is present for two-wheel means

of transport and for commercial transport. These facts altogether confirm the need for a

solution. Proposed solution was a website, where it would be easy to put vehicle on sale

by just supplying numberplate and photos. All further details are meant to be loaded

directly from Transport Administration API, allowing to create a transparent and honest

advertisement.

In second part of theoretical analysis, author described the technology used to implement

such website. Short overview of technology stack was provided together with reasons

why these choices were made.

In the practical part, author described most important points how the application was

developed and why certain design decisions were made. All the initially proposed features

were implemented and tested. The application was successfully deployed to planned

infrastructure and can be accessed from public internet.

As with everything in life, no software product can be ideal. Therefore, already during

development author found room for future improvements.

8.1 Future improvements to be considered

Author of thesis plans to proceed working on website and move it into Production stage

at some point in future.

However, to make website more convenient, secure, and future proof, it would be great

to add following features.

8.1.1 Captcha

As agreement with Transport Administration has some limitations on number of queries

that can be performed daily, it is very important to protect the system from excessive

63

querying. Captcha should be introduced for any numberplate pre-checks to have

excessive or machine-generated requests blocked.

8.1.2 Protection of customer data

To save customer’s data from malicious web spiders that would steal phone number and

email, additional measures to hide this sensitive data on advertisement page should be

introduced.

8.1.3 Multilingual support

Currently website has only one language – English. However, as data is queried against

Estonian Transport Administration, a lot of data is coming in Estonian language, making

interface bilingual. A mechanism to translate generic strings that are coming into the

system and saved should be introduced to bring interface to consistent state. Also,

application should be slightly modernized to allow translation into other languages.

8.1.4 Login via existing services

Currently seller can only create a new account and use it to store his advertisements. It

would be convenient if login would be possible by using Google account.

8.1.5 Messaging between parties

Currently potential buyer can contact seller only via contacts that seller supplied during

creation of advertisement. It would be convenient if internal messaging system could be

developed, making it possible to chat within website.

8.1.6 Support for paid advertisements by 3rd parties

At moment, there are no possible ways to monetize the application. A mechanism for

controlling 3rd party advertisements should be introduced so that places and periods when

they show up could be controlled via Admin panel.

8.1.7 Mobile app for Android and iOS

It would be even more convenient and quick to add sale advertisement directly from

mobile phone. The mobile app can be easily developed against the existing API using

shared codebase with React Native.

64

8.1.8 More details for advertisement page

The data coming from Road Administration is having some limitations as well. For

example, there is no indication whether insurance is valid, or whether the car is being

used or was used for taxi services. This data can be received from other, 3rd party

resources like LKF (Liikluskindlustusfond) and MTR (Majandustegevuse register). To

allow this behavior, analysis should be performed whether these resources provide API

endpoints for fetching such data.

8.1.9 Uptime monitoring

Currently there is no website availability monitoring set up. In case application goes down

for some reason, it will not be anyhow discovered.

For Production usage it is a must to set up uptime monitoring. Uptime is critical crux of

any web experience that can break reputation and drive potential customers away [64].

As website is intended for local usage in Estonia at this point, it should be constantly

monitored from various Estonian locations for availability. Such monitoring could be set

up through services such as Site24x7. It is a full-stack performance monitoring tool

provided in a form of SaaS (Software as a Service). Requests may be setup to check

availability of different endpoints, provide response times, responses themselves, all of

which will help to react on faults early.

8.1.10 Automatic tests

As it was pointed out before, during manual testing it became evident that with every new

feature it will be more and more complicated to test application’s functionality. Even with

short test plan, process of manual testing is extremely time-consuming and repetitive and

requires physical time and effort.

At some point automatic tests should be introduced. Initial time investment into writing

automatic tests will pay off as application grows and more time will become available

that could be spent on developing new features and not testing old ones from scratch and

fixing found bugs [65].

65

Currently automatic deployment for the app is set up but application is not tested before

being deployed. In order to set up full CI/CD (Continuous Integration / Continuous

Delivery) cycle, it is required to introduce testing step before deployment [66].

8.1.11 Code refactoring

Due to essence of alpha application with imposed time limitations, it is built quickly and

more in style of bazaar than a cathedral [67]. Code needs to be refactored to remove

possible duplications, structure should be optimized, overall coding style and practices

should be made more consistent to make it easier to read.

66

9 Summary

To summarize the result, the initial goal of thesis is fulfilled. Author has developed a

working web application that allows to put any vehicle that is registered in Estonian

Transport Administration quickly for sale. The seller just needs to provide numberplate

and photos, the rest of information is fetched from AVP. This makes selling an easy and

headache-free process which does not take more than 1 minute. The portal is making

buying process easy and convenient for interested parties also, as all possible information

about vehicle is available in one place, which adds transparency to process and helps to

mitigate unfair vehicle sale practices.

However, current version is not yet fully suitable for usage in Production environment.

Big list of tasks lies in front of author of the thesis waiting to be done. Before handing

application down to real users, overall usability should be improved. Introducing captcha,

possibility to hide sensitive user data in advertisements for web crawlers, adding

convenience features like multilingual support and messaging are an absolute must to

increase user confidence and trust in the website. To assure maintainability of product in

the long run, code needs to be refactored as well.

When it is up and running and available for many users, it’s crucial to have full overview

of situation. Even minor outages or performance issues might quickly drive users away

to competition. To prevent bugs from reaching Production environment, automatic tests

must be introduced to ensure quality of current build – author believes that it is always

easier to double check instead of finding issues later and reverting everything back. To

react quickly on possible issues, it’s important to set up proper monitoring that would

notify author if anything goes wrong, for example if main page becomes inaccessible or

response times have lingered.

Taking everything written into account, it can be said that product is usable, but far from

ideal. Author plans to proceed working on VSP in his free time, making small steps

further towards going to Production. As service provided by ETA is not free and costs

considerable amount of money per month while still imposing heavy usage restrictions,

67

everything must be precisely analyzed and planned to ensure smooth operation.

Moreover, it would be more convenient to operate through a legal entity, thus a company

should be set up before stepping up to a new level.

Described flaws were expected before development and writing of the thesis and it was

known that it would not be possible to cover everything in scope of provided work. Initial

goals were fulfilled, and author has gained incredible experience, not only in writing code

but in communication as well as making contracts with government entities was not

something he had previous practice with.

As author has high motivation to develop his programming skills and deep personal

interest in topic, work on the project will be continued until it’s in shape for Production

usage.

68

10 References

[1] "Deutsches Patent- und Markenamt (German Patent and Trademark Office)," 2 Jan

2017. [Online]. Available:
https://web.archive.org/web/20170102082130/https://www.dpma.de/service/klassifi
kationen/ipc/ipcprojekt/einekurzegeschichtedesautomobils/geburtstagdesautos/index
.html. [Accessed 22 March 2022].

[2] R. Price, "Division of Labor, Assembly Line Thought - The Paradox of Democratic
Capitalism," 29 January 2004. [Online]. Available:
http://www.rationalrevolution.net/articles/division_of_labor.htm. [Accessed 22
March 2022].

[3] "U.S. Department of Transportation - Federal Highway Administration - State motor
vehicle registration by years 1900-1995," April 1997. [Online]. Available:
https://www.fhwa.dot.gov/ohim/summary95/mv200.pdf. [Accessed 22 March 2022].

[4] OICA - International Organization of Motor Vehicle Manufacturers, "Personal
World Vehicles in Use," 2015. [Online]. Available: https://www.oica.net/wp-
content/uploads//PC_Vehicles-in-use.pdf. [Accessed 22 March 2022].

[5] OICA - International Organization of Motor Vehicle Manufacturers, "World Motor
Vehicle Production by Country and Type," 2018. [Online]. Available:
https://www.oica.net/wp-content/uploads/By-country-2018.pdf. [Accessed 22 March
2022].

[6] "Eesti avaandmed - Sõidukite staatused Eestis," Transpordiamet, 1 March 2022.
[Online]. Available: https://avaandmed.eesti.ee/datasets/soidukite-staatused-eestis.
[Accessed 23 March 2022].

[7] "Olulisemad välismaised kasutatud autode müügiportaalid, kust oma unistuste autot
otsida," Geenius, 18 May 2018. [Online]. Available:
https://auto.geenius.ee/blogi/inbanki-blogi/olulisemad-valismaised-kasutatud-
autode-muugiportaalid-kust-oma-unistuste-autot-otsida/. [Accessed 23 March 2022].

[8] "Auto24.ee Pricelist," 2022. [Online]. Available:
https://eng.auto24.ee/main/pricelist.php. [Accessed 23 March 2022].

[9] "Sõidukite statistika," Estonian Road Administration, 2022. [Online]. Available:
https://www.mnt.ee/et/ametist/statistika/soidukite-statistika. [Accessed 23 March
2022].

[10] "Auto24 Search," 25 March 2022. [Online]. Available:
https://eng.auto24.ee/kasutatud/nimekiri.php?bn=2&a=101102&aj=&ssid=5115802
8&g1=1&ae=8&af=50&by=2&otsi=search. [Accessed 25 March 2022].

[11] "JetBrains Dev EcoSystem Java," 2021. [Online]. Available:
https://www.jetbrains.com/lp/devecosystem-2021/java/.

[12] R. K. Soni and N. Soni, "Deploy a Spring Boot Application as a REST API in
AWS," in Spring Boot with React and AWS: Learn to Deploy a Full Stack Spring
Boot React Application to AWS, Apress, 2021.

[13] L. Spilca, "Projects from the Spring ecosystem," in Spring Start Here, Manning
Publications, 2021.

[14] "Spring.IO official documentation," [Online]. Available: https://spring.io/why-
spring. [Accessed 22 03 2022].

69

[15] "JetBrains Dev Ecosystem JavaScript," 2021. [Online]. Available:
https://www.jetbrains.com/lp/devecosystem-2021/javascript/.

[16] "ReactJS Official Website," 2022. [Online]. Available: https://reactjs.org. [Accessed
22 March 2022].

[17] B. Williamson, "Which JavaScript Frameworks Should I Learn," 15 June 2021.
[Online]. Available: https://flatironschool.com/blog/which-javascript-frameworks-
should-i-learn/. [Accessed 5 May 2022].

[18] L. Ferrari and E. Pirozzi, "PostgreSQL at a glance," in Learn PostgreSQL, Packt
Publishing, 2020.

[19] L. Ferrari and E. Pirozzi, "A brief history of PostgreSQL," in Learn PostgreSQL,
Packt Publishing, 2020.

[20] "StackOverflow Professional Developer Survey 2021," 2021. [Online]. Available:
https://insights.stackoverflow.com/survey/2021/#most-popular-technologies-
database-prof. [Accessed 22 March 2022].

[21] "StackOverflow Professional Developer Survey 2020," 2020. [Online]. Available:
https://insights.stackoverflow.com/survey/2020/#technology-databases-professional-
developers4. [Accessed 22 March 2022].

[22] P. Jahoda, "Benchmark databases in Docker: MySQL, PostgreSQL, SQL Server," 7
January 2021. [Online]. Available: https://itnext.io/benchmark-databases-in-docker-
mysql-postgresql-sql-server-7b129368eed7. [Accessed 5 May 2022].

[23] "SQLite vs MySQL vs PostgreSQL: A Comparison Of Relational Database
Management Systems," DigitalOcean, 9 March 2022. [Online]. Available:
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-
comparison-of-relational-database-management-systems. [Accessed 5 May 2022].

[24] "About," [Online]. Available: https://www.zone.ee/en/about/. [Accessed 22 April
2022].

[25] "Web Hosting Prices," [Online]. Available: https://www.zone.ee/en/web-
hosting/prices/. [Accessed 22 April 2022].

[26] I. Saar, "KIIRUSTEST: milline veebimajutus on Eesti parim?," Wixter, 31 August
2019. [Online]. Available: https://wixter.ee/parim-veebimajutus/. [Accessed 4 May
2022].

[27] "AWS vs Azure vs Google Cloud: Choosing the Right Cloud Platform," IntelliPaat,
15 December 2021. [Online]. Available: https://intellipaat.com/blog/aws-vs-azure-
vs-google-cloud/. [Accessed 4 May 2022].

[28] "Cloud Run," Google, [Online]. Available: https://cloud.google.com/run/. [Accessed
22 April 2022].

[29] "Estonian Transport Administration Data Exchange Platform," 2022. [Online].
Available: https://www.mnt.ee/et/soiduk/liiklusregistri-andmetele-juurdepaasu-
andmise-protsessi-kirjeldus. [Accessed 22 March 2022].

[30] "Flowchart Symbols," SmartDraw, [Online]. Available:
https://www.smartdraw.com/flowchart/flowchart-symbols.htm. [Accessed 23 March
2022].

[31] "Entity Framework Tutorial - Code First Approach," [Online]. Available:
https://www.entityframeworktutorial.net/code-first/what-is-code-first.aspx.
[Accessed 23 April 2022].

70

[32] S. Cooper, "7 Best ER Diagram Tools," 30 January 2021. [Online]. Available:
https://www.comparitech.com/net-admin/er-diagram-tools/. [Accessed 25 March
2022].

[33] "Lucidchart Pricing," [Online]. Available:
https://lucid.app/pricing/lucidchart#/pricing. [Accessed 25 March 2022].

[34] "Project Lombok official website," [Online]. Available: https://projectlombok.org/.
[Accessed 21 April 2022].

[35] "Lombok documentation," [Online]. Available:
https://projectlombok.org/api/lombok/Data.html. [Accessed 21 April 2022].

[36] "Lombok annotation 'Data'," [Online]. Available:
https://projectlombok.org/features/Data. [Accessed 21 April 2022].

[37] M. Tyson, "What is JPA? Introduction to the Java Persistence API," 2 April 2019.
[Online]. Available: https://www.infoworld.com/article/3379043/what-is-jpa-
introduction-to-the-java-persistence-api.html. [Accessed 21 April 2022].

[38] "Accessing Data JPA," [Online]. Available: https://spring.io/guides/gs/accessing-
data-jpa/. [Accessed 21 April 2022].

[39] T. Janssen, "JPA Generate Primary Keys," [Online]. Available: https://thorben-
janssen.com/jpa-generate-primary-keys/. [Accessed 21 April 2022].

[40] "JPA Annotation - Column," [Online]. Available:
https://www.objectdb.com/api/java/jpa/Column. [Accessed 21 April 2022].

[41] "Hibernate One to Many Annotation Tutorial," 15 April 2022. [Online]. Available:
https://www.baeldung.com/hibernate-one-to-many. [Accessed 21 April 2022].

[42] "Overview of JPA/Hibernate Cascade Types," 11 May 2021. [Online]. Available:
https://www.baeldung.com/jpa-cascade-types. [Accessed 21 April 2022].

[43] "Jackson JSON - Using @JsonManagedReference and @JsonBackReference for
circular references," 11 August 2020. [Online]. Available:
https://www.logicbig.com/tutorials/misc/jackson/json-managed-reference.html.
[Accessed 21 April 2022].

[44] "@JoinColumn Annotation Explained," 24 November 2021. [Online]. Available:
https://www.baeldung.com/jpa-join-column. [Accessed 21 April 2022].

[45] V. Mihalcea, "Best way to map the JPA and Hibernate ManyToMany relationship,"
19 November 2020. [Online]. Available: https://vladmihalcea.com/the-best-way-to-
use-the-manytomany-annotation-with-jpa-and-hibernate/. [Accessed 21 April 2022].

[46] "Java Design Patterns - Repository," [Online]. Available: https://java-design-
patterns.com/patterns/repository/. [Accessed 21 April 2022].

[47] "Spring.io JPA documentation," [Online]. Available: https://docs.spring.io/spring-
data/jpa/docs/current/api/org/springframework/data/jpa/repository/JpaRepository.ht
ml. [Accessed 23 April 2022].

[48] "The DTO Pattern (Data Transfer Object)," 31 March 2022. [Online]. Available:
https://www.baeldung.com/java-dto-pattern. [Accessed 21 April 2022].

[49] M. Fowler, "Data Transfer Object," [Online]. Available:
https://martinfowler.com/eaaCatalog/dataTransferObject.html. [Accessed 21 April
2022].

[50] "JSON Web Tokens official website," [Online]. Available: https://jwt.io/. [Accessed
21 April 2022].

71

[51] "Bootstrap Official Page," [Online]. Available: https://getbootstrap.com/. [Accessed
22 April 2022].

[52] "Bootstrap Documents," [Online]. Available:
https://getbootstrap.com/docs/5.1/getting-started/introduction/. [Accessed 22 April
2022].

[53] "Introducing Hooks," [Online]. Available: https://reactjs.org/docs/hooks-intro.html.
[Accessed 22 April 2022].

[54] S. Yamazaki, 18 August 2020. [Online]. Available:
https://www.twilio.com/blog/react-choose-functional-components. [Accessed 22
April 2022].

[55] "Hooks at a Glance," [Online]. Available: https://reactjs.org/docs/hooks-
overview.html. [Accessed 22 April 2022].

[56] "React Router Main Concepts," [Online]. Available:
https://reactrouter.com/docs/en/v6/getting-started/concepts. [Accessed 22 April
2022].

[57] "What is Axios?," [Online]. Available: https://axios-http.com/docs/intro. [Accessed
22 April 2022].

[58] "Connect a Spring Boot app to Cloud SQL," Google, 19 July 2021. [Online].
Available: https://codelabs.developers.google.com/codelabs/cloud-spring-petclinic-
cloudsql#0. [Accessed 4 May 2022].

[59] "Jib GitHub page," [Online]. Available:
https://github.com/GoogleContainerTools/jib. [Accessed 4 May 2022].

[60] "Getting started with authentication," [Online]. Available:
https://cloud.google.com/docs/authentication/getting-started. [Accessed 4 May
2022].

[61] A. Rai, "How To deploy React App on Shared Hosting(Cpanel)," 12 June 2019.
[Online]. Available: https://medium.com/@aforamitrai/how-to-deploy-react-app-on-
shared-hosting-cpanel-d682b0342424. [Accessed 4 May 2022].

[62] G. Romero, "What is Postman API Test," Encora, 29 June 2021. [Online].
Available: https://www.encora.com/insights/what-is-postman-api-test. [Accessed 22
April 2022].

[63] J. Unadkat, "Manual Testing for Beginners," BrowserStack, 11 December 2021.
[Online]. Available: https://www.browserstack.com/guide/manual-testing-tutorial.
[Accessed 22 April 2022].

[64] "Site24x7 Website availability," [Online]. Available:
https://www.site24x7.com/web-site-availability.html. [Accessed 22 April 2022].

[65] "What is Automated Testing?," SmartBear, [Online]. Available:
https://smartbear.com/learn/automated-testing/what-is-automated-testing/.
[Accessed 22 April 2022].

[66] "What is CI/CD?," 31 Jan 2018. [Online]. Available:
https://www.redhat.com/en/topics/devops/what-is-ci-cd. [Accessed 22 April 2022].

[67] E. S. Raymod, "The Cathedral and the Bazaar," 2000. [Online]. Available:
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/. [Accessed 23
April 2022].

[68] "Docker Documentation - What is Container," [Online]. Available:
https://www.docker.com/resources/what-container/. [Accessed 22 April 2022].

72

[69] "Git Official Website," [Online]. Available: https://git-scm.com/. [Accessed 23
April 2022].

[70] "Estonian Transport Administration," 2022. [Online]. Available:
https://www.mnt.ee/et/soiduk/soidukite-ja-masinate-kategooriad. [Accessed 23
March 2022].

73

Appendix 1 – Screenshots of VSP interface

Figure 29. Example of VSP interface - Home page with latest advertisements.

Figure 30. VSP interface - Top selection tab which displays badges assigned to vehicles.

74

Figure 31. VSP interface - Search page.

Figure 32. VSP interface - Open advertisement with photos and vehicle details.

75

Figure 33. VSP interface - Second row of open advertisement. Shows price, vehicle details, owner contacts
and technical data on the right.

Figure 34. VSP interface - Third row of open advertisement. Shows details about technical inspections,
registry actions and restrictions.

76

Figure 35. VSP interface - Administrator profile. Administrator sees every advertisement and is able to edit
or remove it.

Figure 36. VSP interface - edit screen of existing advertisement.

77

Appendix 2 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Anton Nikiforov

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Development of Vehicle Sales Web Application” supervised by Aleksei

Talisainen:

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

04.12.2022

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

78

