
School of Information Technologies

Department of Computer Systems

Mark Chernyaev

Digital Twin for ABS control models

Master’s Thesis

Aleksei Tepljakov
Ph.D.

Professor

Saleh Alsaleh
MSc

Early Stage Researcher

TALLINN 2021

Infotehnoloogia teaduskond

Arvutisüsteemide instituut

Mark Chernyaev

Digitaalne kaksik ABS-i juhtimismudelitele

Magistritöö

Aleksei Tepljakov
Ph.D.

Professor

Saleh Alsaleh
MSc

Early Stage Researcher

TALLINN 2021

2

Declaration of Originality

Declaration: I hereby declare that this thesis, my original investigation and achieve-
ment, submitted for the Master’s degree at Tallinn University of Technology, has not
been submitted for any degree or examination.

Deklareerin, et käesolev diplomitöö, mis on minu iseseisva töö tulemus, on esita-
tud Tallinna Tehnikaülikooli magistrikraadi taotlemiseks ja selle alusel ei ole varem
taotletud akadeemilist kraadi.

Mark Chernyaev

Date: May 9, 2021

Signature: .

Abstract

The anti-lock braking system (ABS) is an extremely important part of the car
systems. It guarantees preventing of the wheel-lock, when driver presses the brake.
Moreover, this system must provide a controllable behaviour of the car on different
surfaces. Hence, it requires additional development of the control systems, which
will automatically be applied for specific model of braking depending on the type of
road.

Another common problem is the cost of operations in the industrial field. Since
technologies are continuously evolving and becoming more available, now it is possible
to combine them into one complex system to solve field specific tasks. For example,
Digital Twin (DT) is a combination of modelling, data transmission and software
development. It makes possible to explore consequences that was caused by changing
parameters of the digital object before working with a real one.

In addition, this paper will explain the importance of using Virtual Reality (VR) in
the modern technologies development process. This paper outlines the principles of
using Digital twin with Virtual Reality and future opportunities for studying and
industrial fields. Finally, the paper will provide a project description and current
results related to this topic.

The thesis is in English and contains 47 pages of text, 4 chapters, 26 figures.

4

Annotatsioon

ABS-pidurid on väga oluline osa igal autol. Süsteemi eesmärk on mitte blokeerima
autoratas, millal autojuht vajutab pidureid. Lisaks, selline süsteem peab pakkuda
autode juhtimise stabiilsus erinevatel pinnal. Seetõttu on vaja teha rohkem uuringud
kontrollsüsteemidele, missugused saavad valida kindel pidurdusmuudel automaatselt.

Teise probleem on operatsioonide maksumus tööstusvaldkonnas. Kuna tehnoloogiaid
arenevad pidevalt ja muutuvad kättesaadavamaks, praegu on võimalik need kombi-
neerida ühele keerulise süsteemisse, et lahendada valdkonnaspetsiifilised ülesanded.
Näiteks, digitaalne kaksik on kombineeritud modeleerimisest, andmeedastusest ja
tarkvaraarendusest. See süsteem aitab uurida tagajärjed, mis võivad toimuda pärast
parameetride muutumist reaalsel objektil.

See uuring selgitab vajalikuks kasutamiseks virtuaalne reaalsus tänapäeva tehnoloogiate
arendamise protsessis. Lisaks, see töö visandab digitaalse kaksiku koos virtuaalse
reaalsusega kasutamine põhimõtted ning tuleviku võimalusi õppimise ja tööstuslik
valdkonnas. Lõpuks, autor kirjeldab oma projekt seotud lõputöö teemaga ning
saadud tulemusi.

Antud lõputöö on inglese keeles ning sisaldab teksti 47 leheküljel, 4 peatükki ja 26
joonist.

5

Nomenclature

2D 2-dimensional

3D 3-dimensional

ABS Anti-lock Braking System

AR Augmented Reality

BP Blueprint

CPU Central Processing Unit

DT Digital Twin

GPU Graphics Processing Unit

HDD Hard Disk Drive

HDMI High Definition Multimedia Interface

HMD Head Mounted Display

IDE Integrated Development Environment

MR Mixed Reality

OLED Organic Light-Emitting Diode

OS Operating System

PC Personal Computer

RAM Random Access Memory

RPM Revolutions per minute

SSD Solid-State Drive

TCP Transmission Control Protocol

UDP User Datagram Protocol

UE4 Unreal Engine 4

UMG Unreal Motion Graphics

6

USB Universal Serial Bus

VR Virtual Reality

VS Visual Studio

7

Contents

1 Introduction 10

2 Literature Review 11

3 Project description 13
3.1 Development tools . 13

3.1.1 Personal computers . 14
3.1.2 INTECO ABS . 15
3.1.3 Logitech G29 Driver’s seat . 16
3.1.4 Oculus Rift . 17
3.1.5 Unreal Engine 4 . 19
3.1.6 Visual Studio 2019 . 20
3.1.7 Matlab/Simulink . 20

3.2 Phase one . 21
3.2.1 Initial preparations . 21
3.2.2 First real-time application . 22
3.2.3 ABS Device in a digital environment 23
3.2.4 UDP Connection . 24
3.2.5 Results of the initial setup . 25

3.3 Phase two . 26
3.3.1 Adding plots . 26
3.3.2 Immersive environment . 27
3.3.3 User Inteface . 28
3.3.4 Testground . 31
3.3.5 Physics of the wheeled vehicle 31
3.3.6 Acceleration and braking of the car 33
3.3.7 Logitech G29 control . 34
3.3.8 Additional car features . 36
3.3.9 VR support . 40
3.3.10 Second step results . 41

4 Conclusion 42

References 43

A Non-exclusive licence 46

B Project repository and control keys 47

8

List of Figures

1 ABS device by INTECO . 16
2 Logitech G29 setup . 17
3 Oculus Rift setup . 19
4 First version of communication setup between hardware and software

components . 21
5 Chart flow of processing the signal from pedals 22
6 3D model of ABS in Unreal Engine 4 Editor 24
7 UDP configuration block in UE4 . 25
8 Acceleration input plot . 26
9 Visualization of the acceleration input with brake signals using a

modified version of the KantanCharts plugin 27
10 Testground with a space to test car dynamics 28
11 Main menu of the application . 29
12 IP and port setup menu . 29
13 Port number checking logic in BP . 30
14 Save Data function structure in BP 30
15 Graph selection menu . 31
16 Car mechanical setup . 32
17 Acceleration and brake input behaviour in BP 33
18 Speed limit in BP . 34
19 Handbrake intial control setup . 34
20 Flowchart of processing pedal signals 35
21 Flowchart of processing pedal signals without ABS object 36
22 Flowchart of processing camera X-axis rotation 37
23 Flowchart of processing camera Y-axis rotation 38
24 Light setup parameters in UE4 . 39
25 Speedometer and tachometer of the car 40
26 VR camera behaviour . 41

9

1. Introduction

ABS in cars was implemented in late 70’s. Nevertheless, car manufacturers still
cannot provide an ideal model of the system. The main problem for the system is a
ground environment, where small changes of the surface may have a massive impact
on the control. Furthermore, ABS should be able to respond rapidly, which might
restrict some possible solutions. Fortunately, some companies provides an ABS for
laboratory works and tests. In particularly, it became possible to control the system by
transmitting the data between PC and the board in ABS via MATLAB/Simulink. [1]

Since advanced technologies in Industry 4.0 have quite accurate sensors and transmits
a numerous of data, it is important to avoid the damage of devices. [2] In this case,
Digital twin is a perfect solution, which provides engineers with an exact same object
in digital environment, where destruction of the whole setup will not cost much
resources. Moreover, it might help with achieving a specific goals. As a result, DT
could be used in both educational and industrial fields.

Nowadays, game engines are becoming more popular and usable in industrial fields. [3]
Additionally, it has a considerable support of different devices such as Android/iOS
smartphones, game consoles, Virtual Reality (VR) headsets, Augmented Reality (AR)
and Mixed Reality (MR) devices. Also, high resolution graphics plays a significant
role in a virtual world and allows to see small details in a good quality. In order to
create an VR application, developer should choose the engine. Today, two of the
most popular are Unreal Engine 4 (UE4) and Unity. Further, UE4 will be used as a
main game engine.

The paper is organized as follows. In Section 2, the literature review is presented
and describes basic information about topic related researches. Then, Section 3 is
dedicated to the ABS Digital Twin development process. Finally, current progress
and future possibilities discussion will be provided in Section 4.

10

2. Literature Review

Digital Twin

Digital twins was introduced more than 15 years ago. However, the definition of it
has been changed through the period. In [4], authors describe the history of DT.
Moreover, it explains the importance of using Digital twins in industrial fields, how it
is connected with different types of modelling. Also, numerous examples of the real
researches in DT was presented. As a result, it is an extremely informative paper for
everyone, who is interested in the topic of DT.

A basic description of Digital Twin principles covered in numerous references to
different articles that are all related to DT is presented in [5]. Moreover, it outlines
challenges, which are a common for every DT project. It also provides a list of
enabling technologies that usually play a key role.

More detailed description of DT foundational properties was published in [6]. It
expands DT state-of-the-art and makes several points about the value of the Digital
Twins concept. In addition, the article gives several examples highlighting the
importance of having DT concept.

Virtual Reality

In [7], authors were aimed on using Virtual Reality in Industry 4.0. It based on
current VR technologies, which may be used for different purposes such as medicine,
learning, safety, training and industry-manufacturing. Moreover, it lists development
platforms for certain use cases. For example, OpenSim and Second Life are mostly
used for education and learning. On the other hand, the paper outlines disadvantages
of using VR headsets, which could cause health problems.

In addition, Bellalouna [8] goes into more details of using VR in industrial training.
First of all, it is evident that the difference between games and industrial application
is crucial due to the number of transmitted data. While the game object can only

11

appear on the surface, in industrial every object should includes type of the material,
weight and other parameters. In order to use CAD data in VR, it usually requires
additional conversions and loss of data. Otherwise, the application will not be stable.
The article also approves the importance of programming efforts to achieve real case
scenarios in VR.

Yao et al. [9] describes autonomous driving based on VR and the information can be
successfully used for a future development of the project. Since autonomous driving
has to work with different algorithms, the functionality of ABS’s DT might play one
of the most important roles.

Oprea et al. [10] provided a paper related to VR, which is aimed on realistic grasping
system. The information could be extremely useful especially in VR driving, where
driver must interact with several objects at the same time such as driver’s wheel and
shifter.

Lastly, Sportillo et al. [11] has presented an actual investigation of using autonomous
driving in a virtual environment. It creates an idea of improving Automated Driving
System with a Digital Twin of ABS that will significantly increase the safety.

Modeling of vehicle dynamics

In order to build own system of the vehicle dynamics, Hlavaty et al. [12] published
a research paper about the fuzzy control model for laboratory ABS created by
INTECO. It is focused on designing of two controllers - PD and Fuzzy. As a result,
PD controller has been unstable during lower speeds. Moreover, PID controller is not
feasible for highly nonlinear models such as laboratory ABS. Hence, it was decided
to use Fuzzy controller of Mamdami type, which is well suited for nonlinear systems.
However, the final tests on real ABS have not been significantly improved compared
with PD controller.

Also, Taixiong and Yage [13] had a closely related topic to the project, which might
help with vehicle dynamics model development. Unfortunately, the article does not
have a detailed enough description, but the main concept is understandable.

12

Challa et al. [14] introduced a relatively modern research, where can be found useful
information regarding Rule-Based ABS algorithms. Moreover, it outlines the major
difference between Model-Based Algorithms (MBAs) and Rule-Based Algorithms
(RBAs).

To sum up reviewed literature, it becomes clear that there is a lack of papers related to
ABS Digital Twin. Therefore, it outlines the importance of the project. Fortunately,
there are numerous literature describing different control algorithms for car ABS
that might be tested in the Digital Twin.

3. Project description

3.1. Development tools

This project is extremely depends on the equipment and a workspace. Fortunately, a
laboratory was already equipped with necessary tools and required a few connections
between devices before using them for tests. The list of used equipment in the project
includes:

• Two personal computers (PCs);

• INTECO ABS object;

• Logitech G29 Driver’s seat;

• Oculus Rift.

The major part of the work is related to software. The laboratory is aimed and
prepared for using Unreal Engine 4 as a main game engine. Therefore, it will be basic
tool in the further development. Moreover, Visual Studio 2019 is fully supported by
UE4 in order to write a custom C++ code for additional functionality that might
be missing in Blueprints. The last important software component of the project is
Matlab/Simulink 2012b that provides powerful mathematical and physical functions,
which are used to control a system in a real-time application.

13

Finally, the project description will be separated into several subsections, so it may
possible to track the logical order of the finished work. Subsections 3.1.1–3.1.7
will include an equipment and software tools basic description, the purpose and
other important features that were used in the project. The last subsections will be
dedicated to the main workflow description.

3.1.1. Personal computers

Personal computers are widely used in industrial field and become a base for almost
every type of application development. This project is not an exception and requires
two-PC setup. One of the reason to use a second PC is caused by an ABS object
constraints that will be explained in the subsection 3.1.2.

Unfortunately, this approach will create a more complex system, where additional
network setup must be done. On the other hand, numerous manufacturers are
using remote controls of the system by having more than two computers connected
with each other. It is a common practice in autonomous vehicles to be able to
send and receive the data remotely. [15] This type of communication provide more
safety environment for testing new algorithms and devices. Therefore, the support
of configurable network becomes crucial for the project.

Also, there are more limitations that should be considered such as operating system
(OS) support and minimal requirements for using Unreal Engine 4 with Virtual
Reality. In the case of OS, both PCs are running on Windows, but the versions
are different. First computer is connected to INTECO ABS object and requires
old drivers that are stable only on Windows 7. Second computer requires modern
software and hardware that are used by UE4 with VR support, which includes
Windows 10, fast processor, graphic card and memory.

The first PC specifications with installed UE4 that connected to Logitech G29 and
VR:

• Central Processing Unit (CPU): Intel(R) Core(TM) i7-6700K 4.00GHz;

• Random Access Memory (RAM): 32 GB;

• Graphics Processing Unit (GPU): NVIDIA GeForce GTX 980 Ti;

14

• Hard Disk: 512 GB Solid-State Drive (SSD) and 2 TB Hard Disk Drive (HDD);

• Operating System: Windows 10 64-bit.

The second PC specifications with installed Matlab 2012b:

• CPU: Intel(R) Core(TM) i7-7700 3.60GHz;

• RAM: 16 GB;

• Display adapter: Intel(R) HD Graphics 630;

• Hard Disk: 256 GB SSD;

• Operating System: Windows 7 64-bit.

3.1.2. INTECO ABS

The model is created for research purposes in order to optimize braking effectiveness
by implementing own control algorithms. [16] It is a simplified model and has several
limitations. The first significant problem is the number of controlled wheels that is
only one, while usually cars have at least 4 of them. Another problem might become
a case of testing the system on different “road” surfaces. Since one of the wheels in
the model replaces behaviour of the road, ABS object does not provide possibility to
change it during tests. The last constraint is a lack of some real parameters such as
tires friction, car mass and others.

However, those limitations are not critical for the project, because the main goal is
to get a basic knowledge of the vehicle dynamics and create a realistic model based
on the real parameters of the ABS object. Nevertheless, one of the possible solutions
for illustrating four-wheeled car with INTECO ABS will be described further in
details. Also, Section 3.1.7 will provide more information about the software that is
able to process input/output signals of ABS.

The following features are ready-to-use in INTECO ABS (Fig. 1 [17]):

• Double-wheel (car wheel and “road” surface wheel) setup equipped with DC
flat motor;

15

• Mount frame that provides support of the system;

• Two high-resolution measuring encoders;

• Testing cases with the car velocity range from 0 to 50 km/h;

• Observing the slip control under different “road” conditions (cannot be changed
in real-time);

• ABS Control/Simulation Toolbox for Matlab/Simulink with basic control
blocks;

• Two simple examples of the control algorithms based on relay controller.

Figure 1. ABS device by INTECO

3.1.3. Logitech G29 Driver’s seat

Today’s cars usually consist of different complex control systems. However, from a
driver perspective, every car movement is controlled via pedals, shifter, handbrake
and steering wheel. In order to achieve a more immersive experience, modern market
provides device setups for driving virtual car. One of those devices will be used
in the project since the laboratory already have it. Moreover, it will significantly
improves the way of testing ABS Digital Twin. Also, no papers was found related to
using Logitech G29 for industrial tests such as movement control.

Unfortunately, this setup does not include any algorithm for realistic pedal and
steering wheel behaviour. In this case, brake pedal has no force feedback, which

16

happens during hard braking. It lacks of handbrake and ready-to-use steering wheel
force feedback control. Hence, additional development is required to get a proper
feedback, which will not be in the scope of current project.

On the other hand, the full setup of Logitech G29 (Fig. 2) is supporting PlayStation
consoles and Windows 10. The common features of the device:

• Steering wheel:

– 900 degrees lock-to-lock rotation;

– Hall-effect steering sensor;

– Dual-Motor Force Feedback;

– Overheat safeguard.

• Pedals:

– Nonlinear brake pedal;

– Self-calibrating.

• Shifter:

– Six speeds push-down reverse gear.

Figure 2. Logitech G29 setup

3.1.4. Oculus Rift

During the last decade, Virtual Reality has made a huge impact on almost every field
including gaming industry, military, manufacturers and medicine. It becomes more

17

available for everyone and expands human the possibilities. There are numerous
researches and development projects related to VR. The market provide different
setups for Virtual Reality including Oculus Rift, HTC Vive, Playstation VR and
Samsung Gear VR.

Fortunately, laboratory had Oculus Rift CV1, which was released in 2016. It has
been the first commercially released device in the Oculus Rift lineup. Moreover, it is
perfectly suits to the goals of the project since it is widely supported by different
platforms and game engines. The basic Oculus Rift setup (Fig. 3 [18]) includes:

• Virtual Reality headset;

• Two touch controllers;

• Two sensors.

Oculus Rift CV1 headset specifications:

• Display: PenTile Organic Light-Emitting Diode (OLED) 2160x1200 (1080x1200
per eye) @ 90Hz;

• Sound: Integrated 3D audio headphones;

• Input: Six degrees of freedom through USB-connected IR LED sensor;

• Controller input: Xbox One game controller or Oculus Touch motion tracked
controllers;

• Connectivity: High Definition Multimedia Interface (HDMI) 1.3, Universal
Serial Bus (USB) 3.0, USB 2.0;

• Mass: 470 g.

18

Figure 3. Oculus Rift setup

It is important to notice that touch controllers are not going to be used in the
project. The reason is an inconvenience of using them during steering wheel rotation.
Two sensors are usually used for moving around in a specific area with VR headset.
However, such movement will not be supported in a current version of the project.
Hence, in-game camera will have fixed position, but a free rotation angles.

3.1.5. Unreal Engine 4

Todays game engines are widely used not only in a gaming industry, but in man-
ufacturing [19] and filming. The aim of those engines is to simplify development
process in order to achieve more realistic picture and objects behaviour in a digital
environment. It is closely related to a physics, 3D modelling and programming.
Fortunately, modern game engine tools are focused on allowing developer to rapidly
implement a complex systems. Those tools are saving a lot of time and provide some
basic flexibility. Moreover, it is possible to implement own complex system from a
scratch, which might be integrated later in the game engine.

Unreal Engine 4 is a free to use game engine that includes a numerous functionality
for almost every field. In order to work with it, developer should have a basic
undertanding of tools and C++, which is a main programming language for UE4.
One of the UE4 features is a built-in physics for a wheeled vehicle. [20] Therefore, it
becomes a base for the project. More details about used tools will be provided in

19

the following chapters.

3.1.6. Visual Studio 2019

Visual Studio (VS) is one of the most popular Integrated Development Environment
(IDE) for various programming languages. It supports such languages as C, C++,
C#, Visual Basic and more. As an IDE, it plays different roles in a programming.
First of all, it is a text editor, where programmer can write a code and save the
output in a specific file format. Secondly, it provides an interface for compilers, which
would not require to write a numerous commands into the console to get a final
program file. Lastly, VS might be used an environment for a program debugging.
There are more functionality in IDE, but it will not be used in the case of this
project.

Since UE4 is able to process C++ programs as an additional functionality, they will
be first written and compiled in VS. As an example, TCP/UDP connection would
require an explicit programming code, because UE4 does not have tools for it. The
most of built-in UE4 functionality is written in a different program files, which can
be seen and modified by a developer.

3.1.7. Matlab/Simulink

Matlab is a development environment for a technical field that consists of a numerous
program packages in order to produce a mathematical or physical calculations.
Simulink is a graphical extension for Matlab, which mostly focused on modeling and
analyzing different systems. [21] Also, ABS is a real-time system that is perfectly fits
to Simulink modeling. [22] Hence, it becomes a crucial for INTECO ABS object and
the project.

In addition, Simulink supports signal processing for ABS object using INTECO
drivers. Unfortunately, the latest drivers available drivers are stable on Matlab
2012b. Therefore, Simulink model will be based on the old version that might not
be supported on a newer one. Moreover, Simulink has an ability to establish UDP
connection between devices using standard block elements that represents a program
functions mostly implemented in C language. This feature will play a key role in a

20

communication between devices that is actively used in the project.

3.2. Phase one

The initial goal of the project was to research and setup basic components that will
be used later in a real-time application. Therefore, it was decided to provide a basic
wheel control movement for ABS object. Subsections 3.2.1–3.2.4 will outline each
component that is a crucial for the entire system. Also, subsection 3.2.5 lists the
results that were achieved during development.

3.2.1. Initial preparations

Since there are no existing public papers related to the topic, it was decided to start
with a simple model of ABS control system. The idea was to make a system that
allow user to control ABS device via a real-time application, where control comes
from Logitech G29 Driver’s pedals. The application itself is based on Unreal Engine
4, which supports Logitech G29 and Virtual Reality environment for a further work.
Unfortunately, ABS device requires an elder operating system while UE4 has to be
run on a newer one, which leads to use of a two personal computer setup. Hence,
the connection for the data transmission must be additionally installed. Figure 4
shows basic elements of an initial setup.

PC 1 PC 2

ABS device Logitech G29

UDP connection
Matlab/Simulink Unreal Engine 4

Figure 4. First version of communication setup between hardware and software
components

21

3.2.2. First real-time application

After the first preparations, the next step was establishing a logical behaviour for the
application that gathering signals from the pedals. There were two different ways of
completing this task. First option is a development of a Blueprint in Unreal Engine
4, which behaves similar to scripts with elements of programming. Second option
is writing a pure code in C++. The first approach was chosen, because it is more
convenient, faster and allows developer to see execution nodes during debugging.
Finally, the application had a functionality that is illustrated in Figure 5.

Wait for a signal
from pedals

Process received
signal

Decrease the speed
and update widget text

info

Increase the speed and
update widget text info

Is it brake signal?

Is it gas signal?

No

Yes

YesNo

Figure 5. Chart flow of processing the signal from pedals

22

3.2.3. ABS Device in a digital environment

The major objective of current project is a Digital Twin of ABS provided by INTECO
for studying purposes. There are several benefits of having DT for this model. First
of all, the construction of the device is quite heavy and large for a small room.
Secondly, it grants no protection from a hazardous behaviour such as breaking down
mechanisms during experiments. Thirdly, the device is not easy replaceable due to
taking a lot of time to fix or getting a new one. Lastly, the model is limited by
a single wheel, which almost makes impossible to create and test ABS algorithms
simultaneously for a car with four wheels.

On the other hand, laboratory ABS has numerous advantages such as double-wheel
model, where one wheel represents a road surface and another is a representation
of a car wheel. Moreover, it is equipped with DC flat motor, which may be used
in the car velocity range from 0 to 50 km/h. Also, two high-resolution measuring
encoders allow to observe an important data. For example, car, wheel and bump
positions with a velocity of the car and the wheel. In addition, INTECO provides
ABS Control/Simulation Toolbox for Matlab/Simulink environment that significantly
increase a speed and flexibility of creating new algorithms for ABS. (Official web-page
link)

At this point, the project task was to learn the basic functionality of ABS device,
which later will be used in a more complex system. Since the main goal is DT, it also
requires 3D model of the device. In this case, it was created in Unreal Engine 4 from
several basic objects and textures. The final combination of those objects represents
ABS 3D model with a ratio 1 to 1 (Fig. 6).

23

http://www.inteco.com.pl/products/abs-antilock-braking-system/
http://www.inteco.com.pl/products/abs-antilock-braking-system/

Figure 6. 3D model of ABS in Unreal Engine 4 Editor

3.2.4. UDP Connection

The data transmission between the real-time application and ABS device using two
PC setup requires establishing of a network communication. There can be used
two types of connection: User Datagram Protocol (UDP) and Transmission Control
Protocol (TCP). The choice has fell on UDP, because the real-time application
depends on a high speed. Moreover, since the workflow takes place locally in a
laboratory, there is no need in additional packages control. [23]

The connection itself based on plugins for Matlab/Simulink and Unreal Engine 4. It
is written in C++ and uses Windows Sockets API. The plugin consists of a class with
different data types and functions. Class variables are used for containing an actual
data that is received by specified function and sending as a formed data package.
Also, plugin allows to configure IP addresses and ports inside the programs (Fig. 7),
which makes it more flexible.

24

Figure 7. UDP configuration block in UE4

3.2.5. Results of the initial setup

Now, it was a time to connect all parts into a single complex system. The following
functionality was achieved in the final version of UE4 application:

• In addition to gas/brake control from pedals was added keyboard support in
order to test and debug the project without using an actual Driver’s seat;

• Gas signal now obtaining more accurate data that shows the position of pressed
pedal based on its angle. For example, 0 — pedal is released, 0.5 — half pressed
pedal, 1 — pedal is fully pressed;

• Established UDP connection;

• Extended text information. For example, now it gathering actual data from
ABS device such as brake’s value and wheel velocity in RPM via network
communication;

• Pedals from Logitech G29 Driver’s seat are able to accelerate ABS device’s
wheel and send brake signal;

• Added 3D model of ABS to the project and expanded by a visual animation of
rotational wheels that show a realistic behaviour of ABS device.

Moreover, several changes were made in Matlab/Simulink model:

• Established UDP connection;

25

• Added relay controller for braking system that is provided by INTECO;

• Processing received signals for relay controller from Unreal Engine 4 application;

• Sending feedback data to UE4 such as ABS device brake statement and current
wheel’s velocity.

3.3. Phase two

The first step showed and opened the possibility to use basic controls for ABS object.
However, it does not give much information about the “real” system behaviour.
Currently, the only way of observing data output is to watch graphs in Simulink
model or text data on the screen. Therefore, it was decided to make a more immersive
testing environment. This step is mostly focused on making the application more
friendly to any user and flexible for further researches. [24]

3.3.1. Adding plots

To improve system’s output observation, it is better to have all important information
on a single screen. Hence, all the plots from Simulink model must be transfered to
UE4 application interface. Unfortunately, game engine does not have tools for making
charts, but there are existing free to use plugins shared by other developers. One of
those called Kartan Charts, which is based on Unreal Motion Graphics (UMG). It is
able to print out a real-time data as an UI element (Fig. 8).

Figure 8. Acceleration input plot

26

Another feature of this plugin is an ability to change line color in a run time, so it
will outline the moment, when the car received a brake pedal signal. Figure 9 [25]
shows incoming brake signal as a green line, while red line is a released brakes state.
This plugin is a powerful tool for the most developers needs since it is almost fully
customizable including the values range for each axis, font, size, color of elements and
more. Finally, the plugin eliminates the need of moving to another PC to observe
the plots output during debugging.

Figure 9. Visualization of the acceleration input with brake signals using a modified
version of the KantanCharts plugin

3.3.2. Immersive environment

Previously, it was discovered that current INTECO ABS object has a wheel number
constraint. However, normally ABS cannot be tested without a car. At this point,
there is an option to recreate a car, which would use a single braking signal for
all wheels. In reality, it is absolutely wrong approach, but a single INTECO ABS
setup leaves no alternatives. Therefore, the car will be added to the application
using default physical control parameters provided by UE4. Also, some changes
to the default parameters must be done in order to get a realistic behaviour. It is
important to mention that the project will simulate behaviour of ABS object, so
in-game car movement might not look like in a real car. The reason of divergence is
in the implementation of ABS object, which is not allowing to make any change in
the force generated by the upper wheel.

In addition to the car, a new testground must be created. For current goals, it would
be enough to have a straight road surface with walls around. Figure 10 shows the

27

final version of the testground.

Figure 10. Testground with a space to test car dynamics

3.3.3. User Inteface

Another important aspect of the user friendly environment is a User Interface. First
of all, a common element of each application is a main menu that gives a basic
understanding of what user can get inside the app. Currently, project application
has 2 different working sections that are related to step one and two respectively
(Fig. 11). It was done in this way due to having a massive rework between initial
application and a final version. This menu is working in a dedicated game level scene,
so it would not load extra objects that are activly used only on a specific scene. Also,
the common principle of implementing UI is to switch between several widgets. This
is done by changing a visibility for a specific widget, which is usually triggered by
some event.

28

Figure 11. Main menu of the application

Secondly, the first version of the app required changing IP address and port number
for UDP connection manually inside a Blueprint. Now, it is possible to do in the main
menu as well (Fig. 12). Moreover, every element of the menu is fully controllable
using only keyboard keys. In contrast to default input lines, UDP plugin helps with
checking the data for errors such as wrong IP structure input.

Figure 12. IP and port setup menu

However, it does not check port number for correctness, so additional check was
implemented using BP elements. The logic is to get an actual string from the widget,
which later becomes converted to the integer (Fig. 13). If the value was not numeric

29

then conditional blocks will never give a “true”. Also, the number has a limited range
of values (9900-9999) in order to prevent using ports that are already occupied by
different communication networks.

Figure 13. Port number checking logic in BP

Unfortunately, it might become inconvenient for a user to enter IP and port every
time, when application is launched. Therefore, UE4 provides additional tool that
creates a slot with saved game data. It is based on the object that inherits a base
class from selected Blueprint (BP). In this case, the object has own function, which
gets three input signals: IP as a string, Port as an integer and Save Game Instance
as an object itself (Fig. 14). Those slots should also have a personal slot name and
user index to get uniqueness. As an output, the function provide a boolean that tells
if the operation was succeed or not.

Figure 14. Save Data function structure in BP

Lastly, the project has different plots that might be used by the end user, but there
was no option to enable them in a run time. Hence, UI easily helps in this situation
and makes things more understandable. Figure 15 shows one of the latest versions of
graph selection menu. Also, it shows numerous plots that Simulink model provides
as an output.

30

Figure 15. Graph selection menu

3.3.4. Testground

The initial goal for the testground was to have a track with different road surfaces
that would affect on ABS object behaviour. Unfortunately, practice showed that
INTECO ABS is not able to safely process road surface changes in a real time. On
the other hand, UE4 has an option to change the tires friction on a specific surface.
Therefore, it might be useful for researchers with another ABS object. Nevertheless,
the testground is an extremely important element for the project.

Even if INTECO ABS object cannot change road surface in the real time, it still
shows a wheel behaviour that is close to the real one. Hence, user may observe
approximate braking distance and acceleration that is happens with a fixed to place
ABS object. In this case, the only way to get an output using different “road” surface
is to replace the object’s wheel manually.

3.3.5. Physics of the wheeled vehicle

As it was previously mentioned, UE4 provides its own version of car physics. Since
the complexity of such systems is extremely high and requires a good knowledge
of physics, it was more convenient to rework already existing system than create a
new one. Moreover, ABS model is not a perfect, so there will be some inaccuracies

31

in calculations. In contrast to UE4 car, INTECO ABS does not count vehicle
transmission setup. Therefore, the first major change of the car behaviour was
making a vehicle with a one gear. Another change happened in engine setup
(Fig. 16), where maximum velocity was increased via experiments in order to achieve
a similar acceleration to ABS object. The final goal of UE4 car acceleration was to
make it faster than in the object, so it became possible to add a real time speed
limitation, which depends on the current ABS object speed.

Figure 16. Car mechanical setup

32

3.3.6. Acceleration and braking of the car

In a real physical model the process of acceleration and braking might be too
complicated for a casual driver. To avoid the whole complexity of the system, UE4
provides a control of the car via different functions such as throttle and brake inputs.
It is important to notice that default wheeled vehicle movement class does not allow
to change car parameters in a real time, which is closer to the reality. Therefore, it
makes debugging more complicated, because every changed paremeter will require a
full restart of the application. Nevertheless, it is possible to reach a close to ABS
object acceleration and braking behaviour. For debugging purposes, the project
supports two versions of vehicle movement. The first is automaticaly activated,
when UDP pluging receives the data from Simulink model. Hence, UE4 car will use
acceleration and braking output signals from INTECO object (Fig. 17). The idea
of using a branch block is to synchronize acceleration process of the car with ABS
object.

Figure 17. Acceleration and brake input behaviour in BP

Otherwise, the second version of the control system will be activated, which uses
a straight input signals from the keyboard or Logitech G29 pedals. Moreover, it
does not provide any stability of the car, because UE4 default model does not have
an ABS. Unless the project has the data transmission between UE4 and Simulink,
it would be useful to have a conditional block to set a maximum speed of the car.
This is done by using engine velocity output in RPM, which make a control more
accurate. Figure 18 shows that current engine speed is limited to 2000 RPM.

33

Figure 18. Speed limit in BP

The car can use a handbrake as well, but in the case of current project it will not
play a key role. However, the application might be used for further researches with
a different car control model, where handbrake become a crucial for the system.
Figure 19 shows the basic input control setup for the handbrake that is based on
project settings key bindings.

Figure 19. Handbrake intial control setup

3.3.7. Logitech G29 control

INTECO ABS object is capable of processing floating numbers, but the keyboard
does not support analog output. At this point, Logitech G29 provide a good option
to make a testing enviroment more immersive. Furthermore, it has a steering wheel,
which produces analog output as well. Previously, it was mentioned that acceleration
and brake inputs are getting their values from ABS object, but the object itself
must receive an input signal. Hence, the initial signal for acceleration or braking
must come from pedals. Figure 20 demostrates the sequence of processing control

34

data input for Logitech G29 pedals. To understand how does system works without
connected ABS object, Figure 21 provides a flowchart of the system.

Update signal from
pedals

Send pedals signal from
UE4 to Simulink model

Process input signal

Send an actual data from
ABS object to UE4

Pass the data to the car
control input

Figure 20. Flowchart of processing pedal signals

35

Update signal from
pedals

Pass the data to the car
control input

Figure 21. Flowchart of processing pedal signals without ABS object

In addition, steering wheel rotation control is not implemented in UE4. It requires
additional efforts from developer to construct a realistic behaviour for the wheel.
There are several points that should be considered during implementation. First of
all, a real steering wheel is not just rotating, it has a limited rotation angle range. In
a regular car this range is from -450° to 450°, which might be done by using default
function called Clamp Angle. Secondly, rotation speed must be simulated due to
using keyboard input as well. It is a common practice to slow down the rotation by a
constant number, so it would avoid sharp wheel rotation. Finally, Logitech steering
wheel rotation will look smooth in the application.

3.3.8. Additional car features

Since the project supports both VR and desktop versions of display, more functionality
must be added to the camera view. VR features will be outlined in the following
subsection. Firstly, camera must follow the car all the time. It is easy to implement,
because UE4 has built-in camera objects that are crucial for almost every type of
application and adding it to the car mesh already make it “stick” to the object.
Camera behaviour for both X and Y axis is demonstrated in figures 22 and 23

36

respectively. Furthermore, the project provides two different camera positions: inside
and outside the car.

Mouse received X-axis
input

Add relative rotation
angle to the current state

Set a new relative
rotation angle to the

camera

Figure 22. Flowchart of processing camera X-axis rotation

37

Mouse received Y-axis
input

Add relative rotation
angle to the current state

Relative rotation is in
range -60° ...15°?

Set a new relative
rotation angle to the

camera

Yes

Set a minimal/maximal
rotation value

No

Figure 23. Flowchart of processing camera Y-axis rotation

Another important update was adding the lights, which are connected to the events
such as stop-signal and reverse gear. The light object is a default tool in UE4
development environment and it has a numerous options that might be individually
customised. Figure 24 shows a base options for the light.

38

Figure 24. Light setup parameters in UE4

One of the latest features in the project were speedometer and tachometer (Fig. 25).
This part is a crucial for every car system and in order to make digital environment
more interactive to the user, it will provide a real information about the current
speed and engine velocity.

39

Figure 25. Speedometer and tachometer of the car

3.3.9. VR support

The latest development of the project was Virtual Reality. The first problem that
developer might notice is the fact, where user cannot use controllers and steering
wheel simultaneously. Hence, it was decided to exclude using VR controllers from
the project. Furthermore, VR cameras are not playing any role in the application,
because user will always sit in a driver’s seat. However, Head Mounted Display
(HMD) in combination with Logitech Driver’s seat is able to increase immersiveness
to the next level. The only restriction for the VR camera is the position, which is
locked to the car’s seat. In contrast to the desktop display camera, user can rotate
freely in every direction (Fig. 26).

40

Figure 26. VR camera behaviour

3.3.10. Second step results

To sum up the second step of the project, the following features were implemented:

• Plots that include the data about acceleration/brake input from pedals, ABS
object’s wheel/car velocity in RPM, passed distance by the “car”, slip coefficient,
ABS object’s brake/speed output and UE4 car’s speed. Furthermore, the
application supports displaying of two plots simultaneously;

• Testground with two types of road surfaces. For the current project version
they would not affect on INTECO ABS object;

• Two additional game level scenes: main menu and ABS simulator level;

• Interactive user interface in main menu with the ability to save data and graphs
selection menu in a run time;

• Fully functional car in two different control modes: using connected ABS
Simulink model and default car control;

• Full support of Logitech G29 pedals and steering wheel with realistic rotation
behaviour;

• Car lights, speedometer, tachometer and different car cameras;

• Support of VR HMD that simulates driver’s position field of view.

41

4. Conclusion

To conclude the finished work, it has a potential to become a base for further
researches. Also, some changes might be done in a setup including ABS object that
should be improved in order to support a control of four-wheeled car. Unfortunately,
INTECO ABS does not support modern operating systems and Matlab versions, so
it is less practical to use in manufacturing. Nevertheless, it is still provides an ability
to create own slippage control systems that would work in a modern systems. As
an alternative to the using real ABS object, INTECO has a simulation model for
Simulink, but it would not be a real Digital Twin.

In addition, there are still several missing points in UE4 application. First of all,
Virtual Reality HMD has a problem with displaying a 2-dimensional (2D) widgets.
Therefore, it will require to replace 2D elements with 3-dimensional (3D). Another
problem related to both UE4 application and ABS object side is the lack of real
slippage behaviour. It means the user cannot observe realistic skid of the car. The
reason is ABS object’s movement constraint, because it cannot make a side turn.
Fortunately, UE4 has an option to demonstrate such behaviour, but with a current
ABS object it is hard to predict skid trajectory.

Also, more features to the car might be added such as tire tracks during braking. Then,
testground should be updated in order to provide a more interactive environment,
where the user can test the brakes with and without enabled ABS. Unfortunately,
the application has a lack of several UI elements, so it creates difficulties for those,
who is not familiar with a key controls. Lastly, displaying plots could be reworked
since currently they are not movable in a run time.

Finally, ABS is an extremely important topic and the cost of testing such system is
too high. Therefore, creating of a Digital Twin is an unique project for each object.
However, new researches and published projects will definitely help developers, who
is interested or going to work on a creating ABS simulation environment. Therefore,
this project is able to help in a choosing of tools for connection establishment, system
modelling and debugging.

42

References

[1] Z. Wei and G. Xuexun, “An ABS control strategy for commercial vehicle,”
IEEE/ASME Transactions on Mechatronics, vol. 20, no. 1, pp. 384–392, feb
2015.

[2] J. Sinay and Z. Kotianová, “Automotive industry in the context of industry
4.0 strategy,” TRANSACTIONS of the VŠB – Technical University of Ostrava,
Safety Engineering Series, vol. 13, no. 2, pp. 61–65, sep 2018.

[3] J. Radianti, T. A. Majchrzak, J. Fromm, and I. Wohlgenannt, “A systematic
review of immersive virtual reality applications for higher education: Design
elements, lessons learned, and research agenda,” Computers & Education, vol.
147, p. 103778, apr 2020.

[4] F. Tao, H. Zhang, A. Liu, and A. Y. C. Nee, “Digital twin in industry: State-
of-the-art,” IEEE Transactions on Industrial Informatics, vol. 15, no. 4, pp.
2405–2415, apr 2019.

[5] A. Rasheed, O. San, and T. Kvamsdal, “Digital twin: Values, challenges and
enablers from a modeling perspective,” IEEE Access, vol. 8, pp. 21 980–22 012,
2020.

[6] R. Minerva, G. M. Lee, and N. Crespi, “Digital twin in the IoT context: A
survey on technical features, scenarios, and architectural models,” Proceedings
of the IEEE, vol. 108, no. 10, pp. 1785–1824, oct 2020.

[7] V. Liagkou, D. Salmas, and C. Stylios, “Realizing virtual reality learning envi-
ronment for industry 4.0,” Procedia CIRP, vol. 79, pp. 712–717, 2019.

[8] F. Bellalouna, “New approach for industrial training using virtual reality tech-
nology,” Procedia CIRP, vol. 93, pp. 262–267, 2020.

[9] S. Yao, J. Zhang, Z. Hu, Y. Wang, and X. Zhou, “Autonomous-driving vehicle
test technology based on virtual reality,” The Journal of Engineering, vol. 2018,
no. 16, pp. 1768–1771, nov 2018.

[10] S. Oprea, P. Martinez-Gonzalez, A. Garcia-Garcia, J. A. Castro-Vargas, S. Orts-
Escolano, and J. Garcia-Rodriguez, “A visually realistic grasping system for
object manipulation and interaction in virtual reality environments,” Computers
& Graphics, vol. 83, pp. 77–86, oct 2019.

43

[11] D. Sportillo, A. Paljic, and L. Ojeda, “Get ready for automated driving using
virtual reality,” Accident Analysis & Prevention, vol. 118, pp. 102–113, sep 2018.

[12] M. Hlavaty, A. Kozakova, and D. Rosinova, “Efficient fuzzy control of a laboratory
ABS,” in 2018 Cybernetics & Informatics (K&I). IEEE, jan 2018.

[13] Z. Taixiong and Z. Yage, “Development of hardware-in-loop and virtual reality
co-simulation platform for automotive anti-lock braking system,” in IET In-
ternational Conference on Information Science and Control Engineering 2012
(ICISCE 2012). Institution of Engineering and Technology, 2012.

[14] A. Challa, K. Ramakrushnan, S. C. Subramanian, G. Vivekanandan, and
S. Sivaram, “Analysis of thresholds in rule-based antilock braking control algo-
rithms,” IFAC-PapersOnLine, vol. 53, no. 1, pp. 404–409, 2020.

[15] A. Gohar and S. Lee, “A cost efficient multi remote driver selection for remote
operated vehicles,” Computer Networks, vol. 168, p. 107029, feb 2020.

[16] M. Martinez-Gardea, C. Acosta-Lua, I. Vazquez-Alvarez, and S. di Gennaro,
“Event-triggered linear control design for an antilock braking system,” in 2015
IEEE International Autumn Meeting on Power, Electronics and Computing
(ROPEC). IEEE, nov 2015.

[17] INTECO. (2021) Abs antilock braking system. [Last access: 04.05.2021]. [Online].
Available: http://www.inteco.com.pl/products/abs-antilock-braking-system/

[18] M. Goadrich. (2018) Oculus rift vr space setup. [Last access: 04.05.2021].
[Online]. Available: http://mgoadric.github.io/oculus/unity/2018/10/16/
oculus-setup.html

[19] B. Nash, A. Walker, and T. Chambers, “A simulator based on virtual reality to
dismantle a research reactor assembly using master-slave manipulators,” Annals
of Nuclear Energy, vol. 120, pp. 1–7, oct 2018.

[20] D. Michalik, O. Mihalik, M. Jirgl, and P. Fiedler, “Driver behaviour modeling
with vehicle driving simulator,” IFAC-PapersOnLine, vol. 52, no. 27, pp. 180–185,
2019.

[21] A. Martyanov, E. Solomin, and D. Korobatov, “Development of control al-
gorithms in matlab/simulink,” Procedia Engineering, vol. 129, pp. 922–926,
2015.

44

http://www.inteco.com.pl/products/abs-antilock-braking-system/
http://mgoadric.github.io/oculus/unity/2018/10/16/oculus-setup.html
http://mgoadric.github.io/oculus/unity/2018/10/16/oculus-setup.html

[22] A. Digrase and A. Wayse, “Model following control for anti-lock braking system
with inertial delay observer,” in 2017 International Conference on Intelligent
Computing and Control Systems (ICICCS). IEEE, jun 2017.

[23] P. Bisták, M. Halás, and M. Huba, “Modern control systems via virtual and
remote laboratory based on matlab,” IFAC-PapersOnLine, vol. 50, no. 1, pp.
13 498–13 503, jul 2017.

[24] H. W. Alomari, V. Ramasamy, J. D. Kiper, and G. Potvin, “A user interface (UI)
and user eXperience (UX) evaluation framework for cyberlearning environments
in computer science and software engineering education,” Heliyon, vol. 6, no. 5,
p. e03917, may 2020.

[25] C. Angus. (2021) Kantan charts. [Last access: 04.05.2021]. [Online]. Available:
https://github.com/kamrann/KantanCharts/tree/feature/per-point-colors

45

https://github.com/kamrann/KantanCharts/tree/feature/per-point-colors

A. Non-exclusive licence

I Mark Chernyaev

1. Grant Tallinn University of Technology free licence (non-exclusive licence)
for my thesis "Digital Twin for ABS control models" , supervised by Aleksei
Tepljakov and Saleh Alsaleh

(a) to be reproduced for the purposes of preservation and electronic publication
of the graduation thesis, incl. to be entered in the digital collection of
the library of Tallinn University of Technology until expiry of the term of
copyright;

(b) to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the
non-exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection
Act or rights arising from other legislation.

46

B. Project repository and control keys

The latest version that was used during writing the document: https://drive.

google.com/file/d/1dkfW5Fr89JFjkt2BZHG1hCzs1p-F_mq5/view?usp=sharing

Control keys in the application:

1 - Outside camera of the car (works only if VR HMD is off)

2 - Inside camera of the car (works only if VR HMD is off)

W - Gas input

S - Brake input

A - Turn left

D - Turn right

Spacebar - Handbrake

R - Reverse gear

P - Graph selection menu

47

https://drive.google.com/file/d/1dkfW5Fr89JFjkt2BZHG1hCzs1p-F_mq5/view?usp=sharing
https://drive.google.com/file/d/1dkfW5Fr89JFjkt2BZHG1hCzs1p-F_mq5/view?usp=sharing

	Introduction
	Literature Review
	Project description
	Development tools
	Personal computers
	INTECO ABS
	Logitech G29 Driver's seat
	Oculus Rift
	Unreal Engine 4
	Visual Studio 2019
	Matlab/Simulink

	Phase one
	Initial preparations
	First real-time application
	ABS Device in a digital environment
	UDP Connection
	Results of the initial setup

	Phase two
	Adding plots
	Immersive environment
	User Inteface
	Testground
	Physics of the wheeled vehicle
	Acceleration and braking of the car
	Logitech G29 control
	Additional car features
	VR support
	Second step results

	Conclusion
	References
	Non-exclusive licence
	Project repository and control keys

