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Introduction

Around the world, the power generation portfolio has increased the share of renewable
energy resources in the total energy mix [1]. The factors behind this growth are increasing
demand, increasing fossil fuel prices, and the necessity of reducing greenhouse gas emis-
sions [2]. It is predicted that these reasons will not disappear in the forthcoming years
even with the best of intentions to increase energy efficiency and decrease fossil-based
energy production. Solar, wind, geothermal, and nuclear energy are among the highly
cultivated resources.

In the real world it is both cost-effective and time-saving to construct a model for a
complex concept. A model can be deemed as being a near-real-world symbolic represen-
tation of the eventual real-world concept. A model can be further classified into an ab-
stract or concrete. The difference is that the former is more generalized and is therefore
easier to adapt, while the latter is specific to the peculiarities of the concept. A mathemat-
ical optimization model, therefore, is a streamlined algebraic formulation which contains
parameters and variables expressing relations and concepts. Optimization models in turn
are a type of mathematical model. Note that the complexity of the models grows with
the volume of input information. Therefore, depending on the intended purpose behind
the models, the priorities are set a priori by means of assumptions.

The following sections introduce the power system planning process and the modelling
approach. Following that, the main contributions of the thesis are outlined.

Modern Power Distribution System Planning

Electrical power is typically transmitted from the point of generation to the point of con-
sumption. Note that this can involve one of the three processes: a) centralized b) decen-
tralised c) the transactive model of the flow. A power system in which the power flows
from a set of large-scale generator units in one location to the source of the demand, is
a termed as centralized. Opposed to this is the decentralized mode in which the power
flows from multiple large and/or small generation units, usually non-dispatchable genera-
tors which are situated in close proximity, to the source of the demand. Transactive energy
refers to the flow of energy among and across producers, with this being classed as being
a decentralized and distributed mode of supply. Power distribution can be understood as
the final stage in the delivery of electric power from the transmission system to individual
consumers. The modern power distribution system (PDS) can be referred to the distri-
bution system wherein the power is produced locally and consumer participation. The
objective of modern PDS planner is to optimally maintain the energy balance in the most
economical, reliable and secure manner. The contours of modern power distribution sys-
tem planning include intelligent distribution management system, coordinated planning,
consideration of uncertainties, decomposition, and advanced optimization methods [3].
Therefore, planning for modern power distribution network is an integrated and coordi-
nated decision-making process.

When considering a power network as shown in fig. 1, it can be observed that it has,
as an example, fifty nodes and seventeen load demands. The network has twelve non-
dispatchable power generation units (such as wind power) and four dispatchable gener-
ation units. It illustrates a section of a power distribution network with various transmis-
sion line capacities. PDS planning for the presented power network includes decisions in
relation to the following:

¢ the sizing and siting of generation units and energy storage units

e the capacity expansion of PDS
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¢ scheduling the non-dispatchable production units and maintenance
o flexibility in the PDS through demand side management
e the restructuring of the PDS

Optimal planning for such a network involves the challenge faced by the need for the
near-accurate prediction of variables such as load demand and wind power production.
Wind, being a form of local energy production, is crucial in order to avoid energy curtail-
ment and to better utilize the power production. For example, an accurate wind power
prediction would lead to optimal planning for the expansion of transmission capacity. Pre-
dicting natural phenomena is often more challenging than that of the dispatchable gen-
eration units. However, identifying significant events, such as events that involve high or
low power production levels, leads to the better control of the wind power plant. Subse-
quently, modelling PDS planning becomes highly complex owing to the variables, uncer-
tainties, scale (granularity) and context all having to be considered. For instance, the vari-
ability of wind energy production and the inherent uncertainty are examples of elements
in that complexity. In chapter 1 the variability of wind power production is characterized
and the developed model is presented. Solving a PDS planning model with hourly gran-
ularity becomes more computationally intensive with the volume of data that needs to
be processed. When consider the capacity expansion model, the context of a distribution
system planner can vary from that of a production system.

g
L,

(lin:ngth >0.7 km line length < 0.3 km dispatchable generator (kW)
line length > 0.3 km A load demand (kW) non-dispatchable generator (kW)

Figure 1 - A cross-section of power network

Note that the line capacities pose the problem of network congestion. The congestion
refers the hindering of power supply from the point of generation to the point of load de-
mand along the path of least resistance. However, the congestion as shown in the diagram
can happen both in terms of new non-dispatchable energy production units and dispatch-
able ones. In order to obtain optimal results, such a problem needs to be addressed with
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high degrees of resolution. In addition, the local energy production and line capacities
should also be considered when it comes to devising a both feasible and optimal power
system plan.

The Generation Expansion Planning (GEP) model deals with the investments into the
expansion and operation of power generation systems. The deteriorating power genera-
tion units and growing levels of demand are the two primary motivations for modelling
the GEP models with assumptions of the transmission capacity of the existing power net-
work. In particular, with an existing portfolio for the generation units from dispatchable
and non-dispatchable resources, the production planner can determine optimal and fea-
sible investments in terms of sizing, operational strategy (such as economic dispatch and
unit commitment), siting (involving the optimal selection of locations for the installation
of the generation units) and a resource mix of generation units which are able to meet the
future demand forecast, along with topological changes in the electrical energy system.
The Generation and Transmission Expansion Planning (GTEP) models are combination of
generation and transmission expansion planning models. Expansion planning can be a
decision for a long or short-term time horizons, depending upon the type of generation
units being used. For a dispatchable energy resource, a short-term planning horizon is
more relevant, whereas for a non-dispatchable a long term one is more suitable.

Transmission Expansion Planning (TEP) models are a subclass of the power system ca-
pacity expansion model with the objective of confirming the power transmission capacity
of the network in terms of supplying power to meet the demand at any point in time.
The objective is to ensure that demand will be met even in critical circumstances such
as: peak demand situations and a failure of any of the generation units. The TEP has two
dimensions in the model, namely the economical transaction of energy and the reliability
of the network. When considering the mathematical formulation from a central planner’s
perspective, the GEP is formulated either as a profit maximization model within a market
framework in which the trading of energy takes place among agents, or as a cost min-
imization model. The TEP is formulated either as a centralized or regulated competitive
planning model. The objective function for a TEP model considers optimal network expan-
sion in order to achieve economic objectives (such as a reduction in load shedding costs
and generation costs) and an increment in system reliability for demand mitigation. A long
term planning horizon is adopted for a TEP by considering the growth rate of demand, and
the existing generation portfolio.

Any inherent randomness in the natural phenomena and/or incomplete information
in terms of the systems give rise to uncertainty. For example, demand is dependent upon
weather patterns, as is wind and solar energy production. In the decision theory, GTEP
involves variables such as demand, prices and wind which all serve to introduces un-
certainty. Computational techniques that can be used to manage uncertainties can be
broadly characterized either as sensitive or less sensitive. The latter consists of a priory
assumption to restrain the variables and the former includes the quantification of pos-
sible scenarios. Essentially the model can be classified by basing it on a single scenario
and multiple scenarios. With uncertainty comes the dimension of risk in terms of deci-
sions. To elaborate, the optimal expansion plan which derives the highest levels of profit
for a given set of scenarios may, be prone to generating higher profit levels but may as
well change significantly in another set of scenarios. Conditional value-at-risk (CVar) and
chance-constrained techniques are one of the prominent risk management metrics when
it comes to hedging the risk that can be associated with uncertainties in the energy do-
main [4].

The energy market is an environment in which energy transactions can be carried out
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while ensuring the system’s balance and reliability. Energy markets can be regulated or
deregulated. The proposed GTEP model in chapter 2 has a nodal pricing scheme for mar-
ket cleaning, similar to [5]. The Nodal pricing scheme ensures a Nah-equilibrium for en-
ergy prices. The regulation ensures market equilibrium where no producer would change
their position given the information. Note that incomplete information leads to the pos-
sibility of the existence of multiple equilibrium. The emergence of intelligent and respon-
sive tools which are driven by techno-economical advancements with environmentally
conscious practices, has highlighted the distributed energy systems as the better solution
over the traditional hierarchical power network structures. This work considers a network
environment with distributed energy nodes, one which permits interactive energy and in-
formation transactions at all levels of generation and consumption. An example of this
is demand-side participation which refers to interactions between the price signals and
energy consumption. Value added energy transactions among agents within and across
power systems via economic and control signals is defined as transactive energy. Notice
that the complexity of such a transactive energy-based system grows exponentially due
to increase in control points in contrast to traditional ones. This in turn invokes decision-
making with the importance of considering detailed system information, granularity, and
actors becoming key to the process. In addition, partial information based energy trans-
actions in an energy market in which the energy prices are revealed following the sub-
mission of bids with quantity, gives rise to uncertainties. Similarly, the lapse between the
time frame involved in physical transactions and that for virtual transactions adds up to
uncertainty and complexity.

The context of a decision making model is central to the formulation and interpretation
of the model results. For example a market regulatory body with an intention of policy
making is more inclined towards avoiding market inflation by ensuring healthy compe-
tition and environmental concerns. At the national level in a developed economy (such
as in OECD countries) a central regulatory body, typically governments, determines the
adequate policies for optimal system welfare. The power infrastructure in a country con-
stitutes transmission system operators (TSO), distribution system operators (DSO), con-
sumers and prosumers. Although there is quite often only one major TSO, there are signif-
icantly more numbers of regional DSOs. The emergence of transactive energy platforms
and associated new actors (for instance prosumers, plug-in electric vehicles) is bringing
with it increased levels of attention to the distribution network. It is clear that the shifts
will have to take place in the power distribution network space. For instance one aspect is
peer-to-peer energy transactions among and across prosumers. One practical application
appeared as the first start-up on block-chain based peer-to-peer energy transaction by the
Brooklyn-MG initiative from the LO3 Energy in New York, USA [6]. Depending upon the
size and structure of the power network, the central power grid is followed by the micro,
nano and pico grids. One of the clear advantages at a central grid level is power system
stability. However the past few decades entails many stability improvements in terms of
decentralized control architectures that help to tackle the engineering issue. Note that
the history registers the economy as being the driver of technological advancements, for
example the communication industry.

The fig. 2 depicts a power distribution network. This distribution network is divided
into zones of various sizes and capacities of load demands and power productions. Split-
ting the network into zones has the following effects: a) reduces the total complexity of
the overall system, b) facilitates the tracking of minute changes and impacts, c) is compu-
tationally less expensive to solve smaller instances of the problem, d) the optimal solution
may be a local one rather than a global one, €) it is arguably more practical in terms of the
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Figure 2 - Power distribution network divided into multiple zones

local network and power system elements and f) makes it possible to consider in more
detail the properties of the network (e.g, adequacy and reliability).

In this scenario the problem is a decentralized and distributed one. The granularity of
the problem increases however more practical and applicable results. A generation and
transmission expansion problem in this case considers multiple zones in the region. The
DSO owns the network and facilitates both the energy flow and ancillary services such
as demand side participation and prosumers. Consequently an optimal solution that can
be obtained from such an approach is feasible on a local level. Considering the context
explained, the model proposed in chapter 2.1 focuses on the distributed and decentral-
ized energy infrastructure (DDEI) using transactive energy flow. Chapter 2.2 focuses on
employing a decision support system for interactive visualization of the results. In a DDEI
power distribution system, networks becomes more relevant with any significant increase
in the number of power generation entities, prosumers, community grids. A zone, in this
context, consists of modular energy production, dynamic load demand and smart con-
trol mechanisms which all serve to form a local power distribution system. Note that a
zone can both be grid integrated and isolated. In this context there are many zones and
therefore, even individual decisions are more interdependent or in other words there is
a tractable and cause-effect mechanism that is present. Be it a zone or microgrid (MG), a
community grid or a prosumer each actor has an individual profit maximization objective
that may overlap with those of its neighbours.

In this context a best-of-both-worlds decision would be to coordinate the decisions
so as to maintain the system stability. Note that each MG has controls and information
that are limited to its region. Getting a unanimous consensus among the actors in this
context is a somewhat perilous undertaking that could lead to ambiguity. This work is
an initial step towards understanding and therefore solving this multi-dimensional deci-
sion problems. A multi-dimensional model often requires an inter-disciplinary approach
to the solution. The coordinated information is limited to information that is of mutual
interest for instance, for non-dispatchable generation and any increase in load demand.
The internal system information can cover areas such as the remaining utilization lifetime
of power apparatus, power outages, and substation-wise power consumption which are
not shared or owned by the local distribution network operator. The acquisition of such
data has became more accurate owing to significant developments in information and
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communication techniques, such as smart energy meters. However, it is not within the
scope of this research to investigate the associated privacy issues that may be related to
the use of such data - that is something for future investigation. Furthering the coordi-
nated decision making in chapter 2, the system reliability and investment within the zone
is explored in chapter 3. Power system reliability refers to the operational state of a power
system. Power system adequacy is associated with static conditions and the facilities that
are needed in order to meet the load demand. Therefore an optimal system plan includes
(but not be limited to) the components that include: optimal power flow, remaining uti-
lization life span of power system apparatus and consumer satisfaction. A framework to
evaluate the reliability and adequacy and a mathematical optimization model formulation
which serves to address optimal investment in power network restructuring for the power
distribution network with alternating current optimal power flow (AC-OPF) are both pre-
sented in chapters 3.1 and 3.2 respectively.

Methodology Used for Modelling in the Thesis

This section provides a brief introduction to the methods, and mathematical program-
ming that are, used for modelling in the thesis. The objective is to provide a comprehen-
sive background on the following: Mixed Integer Linear Programming (MILP), Non-Linear
Programming (NLP) and stochastic programming.

Linear and Mixed Integer Linear Programming Models
LP is arguably the most widely used constrained optimization model. The reason being
efficient solution algorithms, applicability and presence of extensive theory [7-9].

A LP model can be expressed as

T M

mingnize ZZC,')C, (1a)
t=1 i

subject to:

T M
Zzaimzbi VieT,ieM (1b)
t=1 i=1

x>0 VieT (1c)

In (1) T,M,N are interpret as scalars within R and ¢;, x;, b; are vectors within R”. More-
over a;; is a matrix within R™!. Here x; is a decision variable. In LP decision variables are
continuous in nature. The above formulation has a linear objective function as in (1a) and
a set of inequality constraints as in (1b) and (1c). Consider that objective function can be
changed from minimize to maximize, in this case the inequalities become <. Standard
algebraic solution techniques are inapplicable in the presence of inequalities and thus
methods such as Simplex algorithm is utilized to solve.

Let us consider a change as x; € ZV € T; in this case the LP becomes an ILP (Integer
Linear Programming) formulation. Thereby a MILP is a combination of LP and ILP wherein
a subset of variables are integers. For instance x, € {0,1} V¢ € T restricts x; to be binary.
Note that the complexity of the model is increased with an integer variable as opposed
to continuous since the variable can only take an integer type value and not decimal. For
example it can not take a value of 1.1. This has a wide range of use in practice in case
of energy sector, such as scheduling of dispatchable generation units used in chapter 2.
Semi-continuous variables are those that can take the value zero or any value between its
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lower bound and its upper bound. Note that the semi-continuous upper bound need not
be finite but the lower bound need to be finite.

This is used in chapter-2 to restrict the power flows in the power transmission lines
within the line capacities. LP models are Polynomial models meaning 3 an ensured poly-
nomial time solution. While MILP are NP-hard models meaning 7 ensured polynomial
time solution. The objective function contours and boundaries of the feasible region are
necessarily straight lines that is y = mx+ b: where y is stating how far up, x how far along,
m = slope or gradient implying how steep is line and b is intercept stating where the line
intersects the y-axis.

The (1) is also a deterministic model because it satisfies the properties: proportion-
ality, additivity and certainty. Proportionality refers to the contribution of each decision
variable both in objective function and constraints. Additivity requires the sum of of the
individual contributions of each variable to be same as the contribution of all the variables
in the objective function. Certainty means that the formulation has known constants or
average value approximations of the probabilistic distributions. Note that it is usual prac-
tice to make such assumption under the criterion that the standard deviations of these
distributions are sufficiently small. If the standard deviation is large then a sensitivity anal-
ysis is performed to record the variations.

Non-Linear Programming
In chapter 1 and 2 the models developed are Non-Linear Programming (NLP) models. This
section introduces the fundamental concepts for a NLP.

A NLP model consists of an algebraic objective function and constraints. The algebraic
refers to operations of addition, subtraction, division, multiplication and exponentiation,
etc are applicable to the variables excluding differentiation and integration. The objective
function contours and constraint boundaries are need not be straight lines that make it
very difficult to solve. A NLP can be classified as convex or non-convex. A region of space
is deemed to be convex if the portion of the straight line between any two points in the
region also lies in the region. Convexity can be expressed as

f:w—R Vxi,x...€c ¥ (2)
Viel0,1]: flixi+ (1 —i)xy...) <if(x1)+(1—10)f(x) (3)

Thus any point x* € vy, satisfies f(x*) < f(x) Vx € y. A convex model maintains the
properties of a LP. The primary difference between convex and non-convex optimization
model is that

¢ A convex model has a unique solution that is the global optimal or 3 a feasible solu-
tion to the model. In addition, the local solution is both locally and globally optimal.

e A non-convex optimization might have multiple locally optimal solutions and it is
time consuming to distinguish if 3 no solution or global one.

e Convex models are easier to solve and very efficient solution algorithms exist to
solve it in linear times.

e If a convex problem is solved multiple times to the optimality using different solu-
tion algorithms or solvers the solution would always be the same. However for a
non-convex problem it is not guaranteed. In fact, it highly dependent on the algo-
rithm and initial guess.
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Consider the following formulation:

T M
) 2
minimize g E ; 4a
¥ s CiX; (4a)
= i
subject to:

T M
SN aixi > b VieT,ieM (4b)
t=1 i=1

x>0 VieT (4¢)

The change from x; to xt2 in (4a) turns it a NLP. A NLP is inherently more difficult to obtain
optimal solution. Because it is hard to distinguish between global and local optimal, opti-
mal points are not restricted to extreme points, there might exist multiple disconnected
feasible regions, different starting points may lead to different final solutions, difficulty to
identify feasible starting point, different algorithms can arrive at different solutions for a
given model. Vast literature exists on the NLP model and solution strategies as in [8, 10].
The heuristic technique is a process to reach a near optimal, feasible and practical solu-
tion. The heuristic begins with an educated guess to reduce the feasible region. The RBA
model presented in chapter 1is a heuristic technique to identify singnificant events in a
time-seris data.

Stochastic model

In real world uncertainty is more practical, even in daily life decisions. Stochastic program-
ming (SP) is a mathematical optimization structure that considers the underlying uncer-
tainty in the real world. Uncertainty in this context indicates the absence or incomplete
information. In general the uncertainty in future events. The cause of uncertainty can
be partial observations, stochastic environment. Stochastic scenarios are forecasts based
on past trend with probability of occurrence. In general, they are divided into three cat-
egories: most probable, least probable and remaining scenarios. The objective of SP is
to find a feasible solution that is optimal to the case (i.e, optimal for the considered sce-
narios). In many cases the probability distribution of the data is either known or can be
expected. This presents an advantage to generate scenarios with certain probabilities of
occurrence.

Consider a two-stage SP which is convex in nature as follows:

T M
min&mize E;Zc,-ZQS (%xes) (5)
1= 1 N

Where Q; is the probability distribution for scenario s. Note that SP maximizes the ex-
pectation of the objective function and the random variable. The advantage being the
recourse action in second stage as a response to compensate any bad decisions taken in
the first stage. Further literature available at [11].

In chapter 1 the heuristic technique based RBA model is presented. A novel stochastic
multi-variate scenario generation method using ARIMA and copula is presented in chapter
2. The CoMG model discussed in chapter 2 of the thesis is a two-stage stochastic, risk
neutral, MILP formulation to address generation and transmission expansion models for
power distribution network. In this case the uncertainty in power demand, energy utility
price and wind power production are considered as stochastic variables. In the chapter 3
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RNR model is a NLP model formulation that takes in to account the Alternating Current-
Optimal Power Flow (AC-OPF) model of the power system.

Tools, Software and Solvers for Modelling

Various mathematical optimization models are solved using mathematical algorithms. For
example, a branch-and-bound technique is a mathematical algorithm that is used to solve
the MILP model. The model is solved through iterations and continuous relaxation with
the suppression of integer constraints. When it comes to solving the MINLP model in
chapter 3, an outer approximation algorithm is utilized. The outer approximation tech-
nique utilizes the principles of decomposition, outer-approximation and relaxation. Then
the original MINLP model becomes relaxed MILP sub-problems. In this technique a so-
lution is reached through iterations. A detailed explanation of the outer approximation
technique is presented in [12-14].

AIMMS (Advanced Interactive Multidimensional Modeling System) is a tool which is
used to formulate and solve large scale mathematical optimization models. It provides
an easy interpret-able graphical user interface with an integrated development environ-
ment for mathematical optimization models. AIMMS provides a combination of declar-
ative and imperative programming styles. Not only it contains a range of pre-installed
solvers but also it automatically chooses best solver with additional model specific tac-
tics. It was primarily developed by Johannes J. Bisschop and currently available under
licence from Paragon Decision Technology [15]. AIMMS was selected with the objective
of being easy-to-use in development, primarily for prototyping both the CoMG and RNR
models discussed in chapter 2,3 respectively. GAMS (General Algebraic Modelling System)
is a mathematical programming tool. It is used to develop prototype of the RNR model
presented in chapter 3.

Guido van Rossum developed the open-source python programming language. It is
a high-level programming language for general-purpose programming. It is easy to read
with a clear syntax and is object oriented. A range of packages along with a large support
base are backing up the project. Pyomo is an open-source python package which was de-
veloped by William Hart, Jean-Paul Watson and David Woodruff as an algebraic language
for formulating optimization models [15-17]. The Python based Pyomo is used with an ob-
jective of enabling an open-resource and open research strategy for modelling the RBA,
CoMG, and RNR models.

Contributions by the Thesis

The primary research area of this thesis is optimal planning of modern power distribution
network. The planning issues addressed in this investigation concerns both technical and
economic aspects for making an optimal decision. An inter-disciplinary approach (math-
ematical optimization, data science, energy economics, electrical power system, multi
agent system) has been taken to formulate the models. This thesis contributes through
development of novel models and framework for the optimal planning of modern power
distribution systems. Specifically, the optimal network capacity expansion of decentral-
ized and distributed power system. The developed models are tested with real-life data
and scenarios for practical decision making. A selection of models are included in the
thesis. The chapter-wise contributions are outlined as follows:

Classification and Modelling of Wind Power Variations

e A novel concept to classify the Wind power swings into a series of significant
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events.

e A ramping behaviour analysis (RBA) algorithm is developed and applied to
wind power generation from a wind farm.

¢ An evolutionary genetic algorithm is used to combine the time-series data.
The extracted events are studied to practical implications for wind farm oper-
ator are outlined.

Modelling Generation and Transmission Expansion Planning
e A novel stochastic multi-variate scenario generation technique is developed
and applied to stochastic variables- wind, demand and price.

¢ A novel bottom-up two-stage chance constrained stochastic model is devel-
oped and presented for addressing GTEP (CoMG).

o Acoordinated decision making framework with multi-agent-systems for strate-
gic decision making is developed and applied to distribution network.

e Adecision support system is developed and presented that interactively presents
the results of the model for industrial applications.
Reliability Oriented Network Restructuring and Expansion Planning
e Power distribution system reliability and adequacy components for a power
distribution network are discussed.

e Anovelreliability oriented network restructuring (RNR) framework is proposed
considering power system adequacy and reliability aspects.

e A non-linear AC-OPF model (RNR) is developed with the objective of enabling
power distribution network restructuring taking into account any investment
into maintenance costs.
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1 Classification and Modelling of Wind Power Variations

"A scientist who learns one [field of]
science alone can not be sure of his
own science and, for this reason, the
scientist has to be versed in many
sciences."

Sushruta Sambhita [18]

Wind energy is stochastic in nature due to wind flow being the product of multiple nat-
ural phenomena. When the intermittent wind power is introduced to the power system,
the inherent uncertainty in the resource introduces challenges to maintain the demand-
supply balance. Moreover, the dispatchable power generation units or energy storage
units which cover this variability, require additional capacity to be able to do so. In addi-
tion, the optimal utilization of power produced from a non-disputable resource such as
wind is a key challenge. Forecasting is one of the many possible solutions to this prob-
lem, as well as an interconnected grid, energy storage technologies, demand-side man-
agement such as electric vehicles. Forecasting aims to model the uncertainties inherited
by the grid through wind power production and thus is a necessary and cost-effective ele-
ment for the optimal integration of wind power into energy systems. However, forecasting
is never accurate and literature suggests providing bounds for the forecasts or confidence
intervals [19-21].

A wind power ramp event can be termed as a sudden change in the output power
over a predetermined threshold. Mathematically, the absolute difference between power
produced P, in time t and (¢ + A t) that is above the set threshold P is a ramp event as in
(6). However the threshold value is subjective.

\Pyiary—PB|>P (6)

The system operator (SO) has to keep the system balanced meaning that power gen-
eration must meet the demand at each point in time. Wind ramp events can be either
positive or negative based on the generation swings. If it is positive, then the wind tur-
bine has to shut down to avoid accidents or damage to the system whereas if the swing
is negative the SO has to find a replacement to mitigate the demand. From the economic
point of view, both energy not used and energy from an alternative resource are crucial.

Wind farm planners predict the wind speed and power production levels by using his-
torical data over time, with an objective to determine potential investment and opera-
tions. In long-term forecasting, events become insignificant due to the stretch of time
being looked at, while the short-term forecasting of events is usually more accurate. Fur-
thermore, the time interval A ¢, is typically ten minutes for ramp events. The P is either
set to an absolute value for a wind park or a certain percentage of the quantity of power
produced depending on the installed capacity. The problem with this practice is that the
peak generation capacity varies through seasons, additionally being mitigated by factors
such as turbine maintenance or new installations. Although the threshold is subjective
to the peculiarities of a wind park, the methods being used to classify ramp events are
generic. This thesis places its focus on the procedure being used to detect ramp events.
In addition, it demonstrates the application when it comes to real-world data from a wind
park.
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1.1 Classification of Wind Power Variations

The wind power variations are classified by means of wind ramp events. To capture the
variations a mathematical model is developed. The RBA (Ramping Behaviour Analysis) is
model containing distinct and inter-related functions. Each function has a distinct objec-
tive and the model is sequential and linear time. The sequential means that the functions
must be executed in the same order as ramp events that are based on peak power. This
algorithm has four components: rise time, fall time, ramp-up rate and ramp-down rate.
The graphical representation in fig. 3 describes a ramp event and the associated compo-
nents. The angle (0) references the peak point for both ramp-up and ramp-down events.
The persistence presents the amount of time over which the peak event persists. The
Aw?p,Awf”W” refers to the change in amplitude during a significant event.

Power (kW)
Persistence
58
NE mean .........................
<
0 (AW?)
- AP A tdr)wn
< Time (t) >

Figure 3 - Wind ramp event classification

The data is procured from the wind park with a time resolution of ten minutes. All
of the data points coincide with each other date-wise and time-wise for each turbine.
Fig. 4 presents the power production levels from the wind park for the winter season. It
can be observed that the data has many power swings while preserving the a time-wise
correlation between turbine power generation.

Wind production of a turbine is expressed through capacity factor: the ratio between
the net power generation and the calibrated as in @ The data are registered with a

rated
time stamp, however the relation between two subsequent observation is not. Again, the

degree of noise content that is inherent in the data is substantial for event detection pur-
pose. For example one outlier could either be a significant event or a noise. Therefore the
raw data is smoothed out through various smoothing techniques so that any significant
events can be extracted.

Exponential moving average filter technique is used for smoothing the data as in (7).
Here f,c, p,w stands for exponential moving average, current value, previous value and
w =2/(N + 1) weight factor wherein N is number of periods respectively. The results are
presented in the subsequent publication [22].

fle)=[{e=r(p)}w]+f(p) (7)

A given function or signal can be transformed from the time to the frequency domain
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Figure 4 - Wind power generation from wind farm

and the other way round. The frequency domain transforms the linear differential to alge-
braic equations which are easy to solve. Furthermore, the latter provides the qualitative
behavior of the system: such as in terms of bandwidth, frequency response, gain, phase
shift, power spectral density, and eigenvalues to name but a few. The focus in this thesis
is limited to spectral density and (FFT) Fast Fourier transformation. The Fourier trans-
form of a function contains all of the information about the original signal, and with this
information, it is possible to reconstruct the function entirely by an inverse Fourier trans-
formation. This information includes the amplitude and phase of each frequency that is
present in the function.

The Fourier transformation of a discrete-time signal x[n],n = 0,...,N is called the
discrete-time Fourier transformation (DTFT), which provides a mathematical approxima-
tion of the full integral solution, and yields a periodic frequency spectrum. The DTFT of
the sequence x[n] denoted in (8a) is a function of a continuous frequency variable ® and
X(e/w) and is always periodic with period 2. And (8b) represents the inverse DTFT
of x[n]. DFT (Discrete Fourier Transform) can be obtained from the DTFT by evaluating
through a discrete set of equally spaced frequencies [23].

=

X(e/?) = Z x[n]e=/on (8a)
x[n] = ﬁ/ﬂ X(e/?)e 1 da (8b)

A finite number of samples are selected in order to determine the spectrum. Then a
window is generated by a multiplication of x[n] by another sequence w(n]. A Blackman
window is selected for the study. A time-domain representation of the same is presented
in (9) where N is the length of the Blackman window.
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The data processing or filtering is implemented to separate the noise content from the
data-set. The next section covers the detection of wind ramp events using RBA. The origi-
nal data in frequency domain is filtered using Blackman filter with 0.2 Hz cut-off frequency.
To demonstrate the relationship between the two variables, a linear regression model y x
is invoked with 95% confidence interval. Fig. 5 presents a joint plot where the variables
are drawn through a scatter plot, followed by a linear regression and the corresponding
distributions. It is evident from the picture that in frequency domain with 0.2 Hz cut-off
frequency the original property of the data is preserved. Moreover, in frequency domain
the data is filtered using Blackman window to separate the noise content and smooth
the data while reataining the original pattern. More investigation is required to explore
various other filtering methods such as low-pass and band-pass.

1.2 Model for Wind Power Ramp Events Detection

RBA (Ramping Behvaiour Analysis) is a model to detect wind ramp events. Consider the
wind power generation w; at discrete time ¢ and the consecutive measurement as w;
where the balance is wa,. A finite variation A w therefore denoted as a ramp. Positive
value of A w becomes a positive ramp and otherwise is denoted as a negative ramp. Thus
aramp event A wy is defined as an event where a significant change in power generation
takes place in a time period A ¢. The significance is determined through the parameter T
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that stands for an adjustable threshold to neglect A w values that are smaller than a set
threshold T asin Awys =Aw |Aw > T. A detailed explanation of RBA is presented in
the [22,24]. The mathematical expression for identification of peak points is presented in
(10a).
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Ramp-down events

0.20 Ramp-up events
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Figure 6 - Wind ramp detection with 10% threshold

The angle between the interval and the change in amplitude is denoted as 6. It can be
formulated as in (10). An algorithmic description of the RBAg is presented in algorithm
1. The algorithm takes the input of time varying wind data (vector), the total length of
the time period (scalar). Then the events are identified with respect to peak points and
event characteristics: ramp-up, ramp-down, rise-time, fall-time, angle of the peak with
respect to adjacent minima and persistence values are the results. The angle 6 between
two significant changes A wy and A ¢ is presented in (10b).

mean (Aw;) = <Ws’t +v;s’(’+A ’)> (10a)
0(Aw;) = arctan (Awg, A t) (10b)

The threshold T was set to 0.01 or 10% of the nominal capacity of the wind turbine.
Fig. 6 presents the resulting ramp event detection. The power production are marked
with x marks and ramp-up and ramp-down events are highlighted through blue and pur-
ple. Arrows present the scheme used to classify the events, for instance a long red arrow
describes a long ramp-up event wherein there are two peak points considered as one
significant up event. Note that the first ramp up event persisted for longer period in com-
parison to the second and third. Similarly the third ramp event persisted for longer period
than the other. Clearly persistence values explain the length of an event and thereby indi-
cates the severity. The frequency of occurrence is a measure to count these ramp events
in the time horizon of the wind power data. Since this method identifies local peaks in
the data with respect to the adjacent minimum point, the first ramp-up event ignores the
first peak (at 0.16) and considers the peak at 0.20 in y-axis. Consequently the adjacent
minimum point 0.13 is ignored and 0.12 is recorded. There is an overlap of the events
at the meeting point this is because the event length includes both the starting and end
point of the wind power data. In this way, events are aligned end-to-end. With that, RBAg
identifies and counts the events while recording the event details at all stages.
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Algorithm 1: RBAg algorithm pseudo code
Result: wy,, Wy (14ar), (£ + A1), Aws, 0 (Awy), mean(Awy)
function RBAg ;
Input :7T,w; €RT
AW =Wyt —Wr;
for i < 1 to length( Aw ) do
if sign( Aw[i] ) == sign(Aw[i+ 1] ) then
| concatenate( Aw )
end

-

end
or i + 1 to length( Aw) do
if Aw>T then
‘ Awg — Aw
end

-
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-
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=

end

for i < to length( Aw, ) do

if sign( Aw,[i] ) == sign (Aw,[i +1]) then
| concatenate( Aw; )

end
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A genetic algorithm (GA) is a local search optimization technique primarily applied to
optimization problems that are highly non-linear, non-differential or discontinuous. Con-
ceptually GA is based on the biological evolution process. The process randomly selects a
pair out of the total population and crossover takes place to produce successors for next
generation. This process of evolving toward an optimal solution classifies GA as an evo-
lutionary technique [25]. The fitness function ff of the GA is (11). The ff considers the
time horizon ¢, the turbine w, month m and y as the current data point.

1| )
EDPIE: (y‘}' —mj) )

w=1 j=1

Through application of GA the total volume of data to be processed is reduced to four
folds. The results are elaborated in the publication [24].

The K-means clustering algorithm, also known as Lloyd’s algorithm is used for classifi-
cation of objects into K number of groups based on attributes. In case of wind ramps, the
ramping behaviour analysis uses 7 attributes for each event, which can be used for clas-
sifying the wind ramps to groups. The algorithm is based on the minimization of squared
Euclidean distance between the objects and centers of the assigned clusters [26]:

K
min (E) = min ZZd()@z,’) (12)

i=1 xeC;

where z; is the center of cluster C; and d(x,z;) is the Euclidean squared distance between
point x and cluster center z;. Clustering is applied to group the events with an objective to
distinguish the significant attributes in ramp events. Optimal weight is allocated to RBA
attributes using optimal cluster formulation. Clustering of identified ramp events based
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on different combinations of RBA parameters was conducted are the results are described
in the publication [24].

Summary

Wind is an intermittent energy resource. The power system planner need to ensure the
power balance and system reliability. Better understanding of the wind ramp events in-
creases the preparedness for the power swings. The wind power ramp events are clas-
sified and significant events are extracted using developed ramping behaviour analysis
(RBA) model. RBA is modelled as a heuristic technique. When it comes to heuristic tech-
niques, an educated guess significantly increases accuracy and solution time. In case of
RBA, determining an optimal threshold value is the starting point. The events extracted
as further classified using clustering method to understand the significance of events.
An evolutionary technique is applied to combine the time-series data. In particular RBA
applications to wind power swings is discussed and presented in more details publica-
tions [22, 24]. During the investigation, the authors have used the nominal capacity of
wind turbine as the threshold value. The setting of threshold value for wind ramp event
extraction remains a challenge and more studies are needed in this direction. Prediction
of RBA events in place of time-series data is a future scope of the work. A good research
direction is to apply RBA in to identify events in current and voltage variations, rate of
charging and discharging with respect to heat generation on cables is to be explored. Apart
from that RBA can also be applied to other research disciplines such as growth of cancer
cells.
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2 Modelling Generation and Transmission Expansion Planning

"Power concedes nothing without
demand. It never did and it never will."

Frederick Douglass [27]

This chapter provides a broad and concise overview in order to address the main con-
cepts behind coordinated decision making that are thoroughly illustrated in a forthcom-
ing publication. Generation and transmission expansion planning models are inherently
intertwined. For example, the sizing of generation units or the siting of new units depends
upon the existing power network capacities for energy transmission. As a further exam-
ple, the renewable resources such as wind are located far from the point of consumption.
Moreover the decisions of aforementioned independent planning models are therefore
sub-optimal. Thus GTEP (otherwise referred as G&TEP) has attracted more research in
the literature. GTEP offers a significant advantage for optimal system control through con-
gestion management addressing the bottle-necks in the transmission infrastructure and
energy curtailment from non-dispatchable resources. For instance the unit commitment
for hydro power units for prolific usage in terms of wind power generation incurs signifi-
cant economic and environmental benefits. Typically this utilizes a node-arc formulation
with a mass balance constraint which concerns the total power generated being equal to
the energy being consumed. There are multiple versions of the model namely: consid-
ering the circuit theory (an Alternating Current (AC) version, Direct Current (DC)) version,
a higher granularity version which considers the hourly resolution and the details inher-
ent in the network topology, and a low granularity based version which considers a larger
network [28-30].

2.1 Model for Multivariate and Stochastic Scenario Generation

In mathematical optimization uncertainty is expressed through scenarios. The auto-regressive
integrated moving average (ARIMA) is one established practise when it comes to generate
scenarios.The ARIMA Model is a widely used model for modeling in stochastic program-
ming for generating scenarios for uncertain variables like wind, prices [31].

ARIMA(¢, @) a quasi-contemporaneous stochastic process price (y¢,), demand (yf’,)
and wind (y§,) as in 13(a-c). The residuals &', e, &, are statistically dependent. Thus the
dependency structure of the stochastic processes can be stated as e{¢f’; - stb_j)s & F
0. €4, €S are the series of errors simulated to produce residual cross-correlogram of
stochastic process. In 13(d) the error correlation between stochastic process a & b, a &
c are presented and finally reduced to a product of an orthogonal matrix B and iden-
tity matrix w(E[y - yT] =) . The cross correlation between & and 8[’75, can be repre-
sented through variance-covariance matrix G. G is essentially a positive semi-definite
and symmetric matrix. This matrix is further decomposed using Cholesky decomposition
(G = LLT) [32-34]. L is the upper triangular matrix that is also the orthogonal matrix
(B=L).

n“ T
Vo =D 0y e =D o (13a)
j=1 j=1

29



nb b
b b b b b b
Ysp = Z¢] Vi—js +£s7l - Z(pj : 8t7j,s (13b)
j=1 J=1

n(,' ,.L-L‘
Yia = D 05N — Y 05 E (13¢)
j=1 j=1
el €4 €l
1 5.t 2 Jt _ S5t _
&, = <£b ) &, = (gi ) = £= (82 ) = £¢=By (13d)
.t S5t S,t
G = cov(e,e’) = BB (13e)
G=LLT — BBT (13f)

The residuals of the ARIMA Model are fitted to a R-vine Copula Model in order to cap-
ture time varying dependence of the data.

The general theory for copulas is Skalars Theorem (1959), based on this Theorem,
Skalar shows that a every multivariate distribution can be written as a multivariate copula
function. Equation (2) shows Skalars Theorem applied to a three dimensional dataset.

Variables with joint density function:

fla;b,c) = f(a)-f(bla)- f(c|b,a)-...- f(alb,c) (14)

Following Skalar (1959) this density function is uniquely represented by the following
form, if it is continuous.

F(a,b,c) = C(Fy(a),F,(b),F.(c)) (15)

The R-vine (regular vine) model is chosen to model the multivariate dependence in
this empirical application. Fitting multivariate data to a copula is a challenging task, since
commonly used copula models, like the normal copula, the t copula or the gumbel copula
are either symmetric or have only one parameter to estimate the entire copula, which de-
creases the flexibility of the distribution. Bivariate copulas have a wider variety of choices.
Thus R-vine copula models that fit multiple bi-variate copulas to the multivariate dataset.
Subsequently able to capture the dependence structure of the multivariate dataset. R-
vine's are represented by a hierarchical tree structure, where the first tree is estimated by
n-1 bivariate copulae and the second by n-2 conditional on a single variable. For a three
dimensional dataset two copulae need to be estimated directly and one conditional cop-
ula. In order to estimate the R-vine a sequential search approach, they first estimate the
family and parameters of the first tree via the AIC criterion. Then they use this result to es-
timate the second tree. Additionally they employ a maximum spanning tree algorithm to
choose an appropriate edge weight. the proposed multivariate scenario generation tech-
nique ARIMA is used for forecasting and copula for adjusting the residuals. The model and
results are elaborated in the publication [35].

2.2 Coordinated Decision Making for strategic expansion planning

Microgrids (MG) are small geographical areas with self-sufficient local production to mit-
igate consumption of energy. MG are becoming smart, smart-Microgrid (SMG), due to
the integration of emerging smart information and communication technologies such as
smart metering, lighting and thermostats. Meanwhile, the one of the biggest retail util-
ity infrastructure, energy utility, is undergoing a reformation to accommodate alternative
energy sources.
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The coordinated microgrid (CoMG) is a novel GTEP formulation that is implemented
for investments under uncertainty in network capacity expansion decisions. In addition to
that, the value of coordination and interactive decision making is reported. The tests are
performed on data from islands near Trondheim (Norway) and illustrate that the CoMG is
a time efficient, tractable and scalable model for optimal grid expansion planning. CoOMG
is a math-heuristic based two-stage stochastic mixed integer linear programming (MILP)
model. The inter-operation of heuristic algorithms with mathematical programming can
be defined as a math-heuristic technique [36, 37]. The heuristic offers an advantage on
computational time by means of compromising the exact solution. Contrary to this, the
mathematical model offers an exact solution. Combining them results in "best of both
worlds". CoMG is a collaborative strategy based math-heuristic model: in a collaborative
strategy algorithms exchange information but are not part of each other (i.e, they can be
executed independently). The advantage is that both models can be executed sequentially
orin parallel At the top layer of COMG, a novel evolutionary heuristic algorithm called evo-
lutionary vertical sequencing algorithm (EVS) is implemented. Meanwhile, at the bottom
layer a two-stage multi-period stochastic investment model is developed.

Transmission and generation expansion problems are one of the fundamental yet in-
teresting research areas [38, 39]. The contemporary power system primarily operates in
a top-down hierarchy. This means that the power flows in a unidirectional way from the
producer to the consumer. Meanwhile, distributed energy resources (DER) are increas-
ingly gaining importance and changing the paradigm of top-down and unidirectional flow
of power. In fact when DER are involved, individual energy communities will feed in as
and when they produce creating a bottom-up system. DER and smart grid help balance
and enable the existing central grid. Stochastic optimization models for MG expansion
through investment decisions appear in literature [28,40-46]. A comprehensive analysis
of multi-MG system is performed and the permeability of the individual MG found to be
improved [47, 48]. However, the efficient and reliable co-ordination of the multi-MG is
expressed as a concern. In [49] a mesh of networked smart grids are presented to be the
future power system. Multi-Agent-System (MAS) is extensively studied as the solution to
automatize the grid operation [50, 51]. Furthermore MAS based control schemes for MG
are found to be effective [52, 53]. A real time framework for SMG control using MAS is
presented in [54]. These studies clearly outlines that the synchronization and coordina-
tion among agents are important issues in the shared and connected information power
infrastructure.

In the previous paragraph some of the existing GTEP formulations are discussed. Nev-
ertheless, distribution systems are different from transmission systems. For example in
one country there is one transmission network operator while there are several distribu-
tion system operators. While existing GTEP formulations can be applied to transmission
sector, they do not fit the contemporary distribution sector. The investment planning for
a distribution system operator very much depends on the surrounding environment and
thus MG coordination. Besides that, there is a growing interest in demand side participa-
tion (DSM) that increases the number of stakeholders. In contrast a centralized decision
making no longer serves such a problem with conflicting interests. The CoMG introduces
for the first time the CDM (coordinated decision making) approach in a GTEP context for
distribution systems under uncertainties. The proposed CDM is a methodology to take op-
timal decision considering the surrounding environment. The key contributions of this in-
vestigation on expansion planning is the inclusion of a two-stage stochastic math-heuristic
model within a CDM methodology. This results in a coordinated microgrid (CoOMG) expan-
sion planning formulation. Furthermore, the value of coordination and interactive deci-
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Figure 7 - An instance demonstrating the coordination protocol for four microgrids- k,h,i,j

sion making is reported. CoMG has been tested with real-world data from islands near
Trondheim (Norway) and turned out to be a tractable and scalable model for optimal grid
expansion planning. To the best of the knowledge of authors, this is the first time that the
MG GTEP problem is addressed by integrating a two-stage stochastic MILP model with
a heuristic CDM methodology. The inter-operation of heuristic algorithms with mathe-
matical programming can be defined as a math-heuristic technique [36, 37]. The heuristic
offers an advantage on computational time by means of compromising the exact solu-
tion. Contrary to this, the mathematical model offers an exact solution. Combining them
results in "best of both worlds". CoMG is a collaborative strategy based math-heuristic
model: in a collaborative strategy, algorithms exchange information but are not part of
each other (i.e, they can be executed independently). The advantage is that both models
can be executed sequentially or in parallel. At the top layer of COMG, a novel evolutionary
heuristic algorithm called evolutionary vertical sequencing protocol is implemented. At
the bottom layer a two-stage multi-period stochastic investment model is implemented.
In fig. 7 a coordination protocol is presented. The protocol follows sequential enumera-
tion meaning the models are ordered in a sequence and solved. The solutions are then
compared and the best solution is determined through comparison. There are four micro-
grids namely k,i,h,j with different capacities and demand are presented in fig. 7. Individual
microgrid is solved to optimality before the final decisions on capacities are passed on to
the subsequent microgrid in the order.

The manuscript describing the detailed mathematical model formulation and the re-
sults are presented in the manuscript that is currently under processing for publication.
In this section the expansion planning model for distribution network is discussed. The
following chapter introduces a decision support system (DSS) that facilitates the decision
making process.
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Decision Support System

The decision support system (DSS) is merged with cloud computing to avoid the barrier
of software installation and maintenance inside the companies computers. Moreover, a
cloud-based service can perform software updates seamlessly and can deliver a generic
product that can be used by everyone independently of the knowledge in data-science.
Therefore, the DSS proposed in this work is designed as a Software-as-a-Service (SAAS).
The client is the visual part of the application; where the decision-makers interact with
uploading the parameters, performing executions and exploring results. The client has
been implemented using a trendy technology, Angular 5 [55]. Then, the server or the
business logic is implemented using different technologies such as Node.js [56] to interact
with the client, Python 3 [57] scripts to automate the integration tasks, the resolution of
the model and also the interaction with the mathematical model.
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Figure 8 - Decision Support System architecture.

To begin with, the DSS has a data layer to integrate public and private data. These
data are merged and integrated to obtain a model very close to the real processes of the
company and also very similar to the current context. The data integration is made using
python scripts to extract data and adapt to the Pyomo mathematical model. Next, the
data processing stage is about data cleaning, filtering and data transformation to make
the prescriptions feasible. After that, a parallel framework runs the method and solve
the GTEP model. Fig. 8 depicts the main parts of the architecture described. To keep
the focus of the project, the application offers the main results obtained and required to
support decision making using charts and an interactive network to explore the solution.

This information is of great interest to power industry either power suppliers and cus-
tomers. The optimal network allows power suppliers to know which are the best clients to
satisfy. Otherwise, clients can evaluate if they want to make a connection to a supplier or
invest in installing new generators. This information has a clear strategical focus for both
companies and clients. Furthermore, knowing the status of the batteries and generators
can help distribution operator centre in their daily tasks in the maintenance of the mi-
crogrid. Finally, from a tactical point of view, the power supplier can evaluate how many
energy the should produce at each period to maintain the service available.

The main features of the decision support system designed can be summarized as fol-
lows:

e Dataintegration: The DSS proposed can be fed with public and private data coming
from sensors, databases, or indeed current software tool.
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e Optimal prescriptions: One of the novel features of the DSS presented in this work
is the capability of making recommendations. These recommendations are based
on the execution of a complex mathematical model that is able to obtain the optimal
network taking into account real conditions.

e Scenario Analysis: Another important contribution of this work is the capability of
simulating and analyzing different scenarios. The distribution system operator can
evaluate what is going to happen if new links or nodes are introduced to the system
and how the system evolves from this point. Besides, strategical decisions of choos-
ing the right place to build new generators can be evaluated using this function. This
feature helps to anticipate and mitigate the undesired effects of some decisions.
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Figure 9 - Decision support system work flow

Fig. 9 illustrates the three stages of the decision making process. The arrow marks
shows the sequence of actions in order. The preliminary step is pre-processing where
the input data is gathered from different sources and process to feed the mathematical
model. First of all, the information is collected to build the power network. Once the
power network is built, is time to smartly break-down to multiple sub-networks. At the
same time, public real-time data is obtained from APIs and Web Scrappers to model the
current context. For instance, weather data or data related to renewable production. Af-
ter that, all this data is integrated into the mathematical model. In addition, the data is
also transformed and manipulated.
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Summary

A novel multivariate scenario generation model using ARIMA and copula is developed
and applied to three uncertain variables: wind, demand and energy market prices. These
scenarios are used for uncertain variables in the stochastic programming expansion plan-
ning model discussed in this chapter. The generated scenarios are used as input for the
stochastic CoMG model. A novel math-heuristic model with a two-stage stochastic MILP
on bottom and heuristic coordination protocol on top, coordinated microgrid (CoMG),
is formulated. Evolutionary vertical sequencing protocol is developed and implemented
simulating the coordinated decision making process in a multi-agent environment. The
coordinated decision making process bears multiple advantages over conventional mod-
elling techniques as it enhances the power security and grid resiliency through:

a. improvement in minimization of cost for by avoiding an upfront investment cost
b. investment and operational synchronization through information exchange

c. reduced power generator and reserve requirements through nested generators
d. reduced power threats due to system status synchronization

e. optimal utilization of renewable power production (i.e, avoid curtailment)

f. A"bottom-up" approach considering higher autonomy of small scale power systems
(microgrids) with peer to peer interaction (local market clearing)

The presented CoMG formulation is employed to solve a future power distribution
network model in Norwegian islands. The data-set are procured in collaboration with the
local distribution company in Trondheim through NTNU. RBA, presented in chapter 1 of
the thesis, is used to generate the scenarios for the decision variables. With introduction
of the real data, the model grew in exponential scale, thus a high-power cluster computer
at NTNU is used to solve the instances and the results are illustrated in the manuscript
under review.

A further investigation about the value of coordination would follow based on the co-
operative game theory approach. A direction for future investigation could be to record
the energy transactions and facilitate smart contracts among agents in a blockchain mech-
anism. A possible improvement to CoMG can be synchronization of responsive loads and
power apparatus within a microgrid. Specifically, the information shared across is also
about the responsive load signals. EVS can be improved in a future work by incorporating
weather, geographical and network topology factors to be even more accurate in selec-
tion of permutations. A further investigation could to be lead to parallelize the CDM to
investigate the tractability.
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3 Power Distribution System Expansion planning and Network
Restructuring

"The task is, not so much to see what
no one has yet seen; but to think what
nobody has yet thought, about that
which everybody sees."

Erwin Schrédinger [58]

Power distribution system operator has to ensure the power flow on demand and
maintain stability of power system. To avoid interruptions or power quality issues, the
DSO monitors and plans maintenance of the network. The plan includes system reliabil-
ity and adequacy. Power system reliability refers to the state of network to sustain flow
of energy from point of generation to demand at any point in time. Power system ade-
quacy refers to the condition of a power network considering generation, transmission
and distribution units. In the modern power distribution network, an optimal investment
decision has to include both the reliability and adequacy aspects. An integrated decision
making process needs a framework to classify the network into zones based on operating
conditions from critical to normal. In this chapter the reliability framework and reliabil-
ity oriented network restructuring model are presented. The former generates inputs in
form of weights for the later model. The developed model utilizes the weights to derive
near optimal decisions for PDS expansion with reconfiguration.

The relationship between network reliability and cost is presented in fig. 10. The fig-
ure outlines that with increase in number of outages or otherwise power interruptions
the reliability reduces. Consequently, the investment increases along with total invest-
ment cost. The cross section of investment and outage is the optimal point of operation.
Moving left increases the cost, so does moving right. Moving left refers to post-outage
scenario and moving right refers to pre-outage scenario where a significant investment
is needed to avoid an outage. Considering the node-arc representation for the electrical
power distribution network where nodes represent substations and arcs represent trans-
mission lines the framework is formulated. The proposed reliability framework has five
categories of reliability parameters: life cycle of power apparatus, environmental and so-
ciological, node reliability, arc reliability and node reliability concerning losses. The table
1 presents the reliability parameters and the individual components or indicators that in-
dicate the condition of a given network. The reliability parameters directly or indirectly
influence the network performance. The network performance is directly related to the
cost of maintenance and new investments. For this investigation, the maintenance cost
values are derived from distribution company. Note that these values are specific to a
power network and therefore sensitive in nature. All the maintenance cost values pre-
sented in this work are normalized. The investment costs for new installations are subject
to the market price during the analysis.

Life cycle assessment (LCA) is a method which helps to determine the environmental
impacts that can be suffered due to the use of a product, a process, or an activity. It is
also used to assess remaining utilization life. Throughout the product’s lifetime any im-
pact should mainly originate from power losses suffered during the usage phase, although
installation, maintenance, and dismantling also contribute to it. Transmission and distri-
bution assets have comprised power lines, cables, transformers, substations, and other
electrical components in order to generate a wide range of environmental impacts, such
as equipment emissions and material weight value. The life cycle stages being viewed are
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Table 1 - RNR Parameters for power distribution network components

Parameters LCA Environmental & Node reliability ~ Arc reliability Node reliability
Sociological concerning losses

Components

1 Cable Terrain SAIFI AIT LOLE

2 OHL Weather SAIDI AIF LOEE

3 Transformer Consumption ENS AID EIR

4 Switchgear Generation Availability - -

5 Emissions - - - -

interpreted as the production or manufacturing phase of a product or its usage phase.
The usage life cycle inventory consists of material requirement for grid components and
their environmental impact. For all of the components, the functional unit is one piece of
equipment which is operational during the lifetime of that piece of equipment.

The supplied reliability indices combine factors that are related to outage duration or
response time, the frequency of any outage, the number of customers who are involved in
an interruption or the power and energy that has been lost. The system average interrup-
tion frequency index (SAIFI), system average interruption duration index (SAIDI), energy
not supplied (ENS), average service availability index (in terms of availability), average in-
terruption time (AIT), average interruption frequency (AIF), and average interruption du-
ration (AID) are among the various measures which hep in evaluating interruptions and
their potential impacts.

The formulation for any probability of failure Q,, for bus n can be presented as in (16).
In (17) frequency of failure Q{: is presented.

Q= [P(O))(P.gPri— PeiP)] (16)
Qf = Z[O;(Pi,gpl-,i — PpiP),i)] (17)

i

Where O; is the condition of outage in the power transmission network. P, is the
probability of occurrence of capacity outage beyond reserves. And probability of unin-
terrupted power supply. The availability (y) is calculated as y =1 — % where P; is
average power supplied by the total system and ENS (Energy not suppliea because of in-
terruption) and P; stands for power interruption for incident i. The total cost is a product
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of component capital cost times availability. The repair cost is calculated as a product of
repair time and the total cost. Similarly the maintenance cost is cost of the fault times the
repair costs.

3.1 Framework for Determining Power System Reliability and Adequacy

In this subsection, the power system reliability parameters and corresponding indicators
are listed and subsequently elaborated. These indicators are used to evaluate the con-
dition of power distribution network. The distribution network operator monitors the
condition and plans accordingly to ensure an uninterrupted power supply and maintain
power quality. The consumer satisfaction indicators are as follows: SAIDI, SAIFI, ENS and
availability. SAIDI depicts how often an average customer experiences a sustained inter-
ruption over defined period of time (year). SAIFI Shows the total duration of the inter-
ruption for the average customer during a predefined period of time. (per minute;hour).
ENS explains the total amount of energy that would have been supplied to the interrupted
customers if there would not have been any interruption. Availability refers to the time
period that a customer has received power during the defined reporting period (duration
of the interruption) AIT address the total time the supply is interrupted AIF explain the
number of times when the supply is interrupted annually. AID indicates the duration of
an interruption. LOLE is defined as the expected number of days in the specified period
in which the daily peak load will exceed the available capacity. LOEE represents the ratio
between the probable load energy curtailed due to deficiencies in available generating ca-
pacity and the total load energy required to serve the system demand. EIR represents the
time period that a customer has not received the energy load during a defined reporting
period (expected loss of energy). Terrain-type influence is assumed to have an impact on
the probability of a fault occurring. For this, nine terrain types are listed to give a weight
evaluation based on the land-use. The impact of weather to the probability of fault is
based on the annual normal and adverse weather conditions. Furthermore, probability
of fault due to weather effects are assumed to be based on the component failure rate,
repair rate and the forced outage rate due to weather.

1. Seaside

2. Hill
14 3. Forest

4. Sparse Residential
12 5. Dense residential
6. Business
7. Commercial

8. Port
9. Industrial

Figure 11 - Proportional evaluation of zones
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A coefficient or weight is assigned to each transmission line considering the reliabil-
ity factors: RUL, consumer satisfaction factors and terrain. In fig. 11 a bus-line diagram
for IEEE 14-bus system with zones for weight evaluation are demonstrated. These zones
or districts in a microgrid are evaluated based on the buses and transmission line types,
for instance residential, forest, dense residential. The zones account for failure rates, fre-
quency of faults and duration of faults. These factors are summarized as maintenance
and repair costs for the zones or districts in the existing network. If a new transmission
line is to be installed between two zones an average value for costs is considered. Thus
the total cost for capacity expansion of a transmission line becomes C'*' = (capital cost
of equipment * availability* reliability factor) + (maintenance cost*availability*LCA fac-
tor * reliability factor). Reliability factor is derived from the LCA, remaining utilization
time(efficiency of the equipment), terrain, consumer type, weather pattern, repair time.
The costs are assumed to be increasing linearly with respect to time. The ELNS (expected
load not served) measures the average amount of energy that is not supplied to loads as
a result of load-shedding events. As its name indicates, the expected load not served is
a weighted average energy value which accounts both for the probability of contingen-
cies and the damage that these contingencies cause to the system in terms of lost load.
The LOLP (loss-of-load probability) is computed as the probability that failure events will
lead to load-shedding. In opposition to the ELNS, however, is the fact that the loss-of-
load probability is a dimensionless number that does not provide any information on the
severity of the disturbance - on the energy not supplied. This lack of a clear physical mean-
ing makes the LOLP a less intuitive metric to work with on the part of system operators.
The LOLE (loss-of-load expectation) assesses the expected number of hours during which
loss-of-load events could happen. As with the LOLP, the loss-of-load expectation fails to
provide an estimation of the damage done to the system by contingencies. From a math-
ematical viewpoint, both the LOLE and the LOLP require the use of binary variables to be
considered within a mixed-integer linear programming problem.

This subsection has presented the RNR framework and various indicators for evaluating
the condition of the power distribution network. The evaluated weights segregates the
network into zones which are based on the parameter values as in fig. 11. The framework
is further explained by a case study on generation outage in the paper listed in appendix 4.
Subsequent chapter presents non-linear AC-OPF model with the objective of expanding
the power distribution network with reconfiguration.

3.2 Model for Power System Expansion with Reconfiguration

The traditional power network expansion problem is centralized, and it often pays no con-
sideration to network reconfiguration. In other words, any investment decisions often
come without considering network restructuring. However, distribution system expan-
sion or, in this case, MG expansion, is an optimum investment which considers both in-
ternal and external expansion. The work being presented here considers the reliability
aspects of a power network with some network planning insight being added. Reliability-
orientated network restructuring, abbreviated as RNR, considers the remaining utilization
life of power apparatus, the consumer satisfaction index, and environmental factors. In
this study the distribution network has been divided into five main components: aerial
lines, cables, transformers, and switches. For each component the main reason behind
permanent faults and auto re-closings are determined. Separate failure rates for each
component type are based on the reasons for any such failure, such as the transformer
overall failure rate being dependent upon lightning, animal interference, or other fault
causes. For all of those reasons, the main stress factors which affect the failure rate have
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been determined. All of the stress factors are classified into appropriate classes such as,
for instance the location being a forest location which is near a road or a field. For all
classes a weight has been deemed, one which represents the effect of a certain class on
the failure rate. For the total failure rate, permanent and temporary faults can be calcu-
lated. A practical approach in component modelling is to use the idea that it should be
possible to affect the parameters being used in failure rate modelling, with selected plan-
ning strategies being added to the process. The weather pattern is not considered directly
in failure rate evaluation, but is included in the apparatus condition such as, for instance,
in terms of stress tolerance. The age factor is included in condition weight information.
Voltage dip analysis is also used for examining short interruptions, where each component
is classified based on permanent or temporary short circuit failures. Dip rates are used to
define the number and depth of dips in the network. A voltage dip can be analyzed by
adding information regarding the total short circuit ratio to every separate failure rate.
Failure rate parameters must be determined before modelling methods can be used.

The general failure rate for components was calculated as a weighted mean from the
failure rates that had been logged by individual companies. The deemed parameter groups
are used to calculate the separate failure rates. The basic input data set is the compo-
nent information, specifically the type, failure rate, and network topology, as well as some
other areas of information which are needed and which can affect the results of the anal-
ysis, such as repair times and automation equipment that has been installed. In the en-
hanced radial reliability analysis, the network is analyzed in terms of feeders and zones,
where the use of 'zone’ refers to part of a feeder. In the given analysis, the expected num-
ber of permanent and temporary failures and voltage dips within a zone are calculated
as a sum of the individual network component failures. A determination of repair time
is made by analyzing the options when it comes to isolating load points from the faulted
component and then restoring the load points with dis-connectors. For a temporary fault,
the whole feeder will be experiencing the same short interruption. In the given analysis,
permanent and temporary faults that are experienced, along with voltage dips, are cal-
culated for each load point. Cost-related information is based on total interruption times
in certain area, permanent and temporary faults, and voltage dip occurrences which are
deemed to have taken place when using the radial network reliability analysis [59]. Utility
outage cost is based on the value of non-distributed energy and fault repair costs. Other
costs, such as losses in production, are considered from the point of view of defining in-
convenience costs for the customer. The expected annual costs for permanent outages
are the result of a fault occurring in the zone that is being studied. Therefore the RNR
framework can be expressed as an asset management model when considering the LCA
for power system equipment. When combined with OPF, this forms a complete one-stop
solution network management and planning platform. The reliability of reconfiguration
when replacing overhead lines and underground cables is evaluated by considering envi-
ronmental, consumer preference, n-1 contingency, and DSO objectives while minimizing
the investment cost.

The optimization models in power system can be broadly classified into operational
and planning. The optimal power flow is an example for operation problem, while capac-
ity expansion planning is a planning problem. The distribution system operator need to
ensure uninterrupted supply of power on demand while maintaining the quality of power.
Therefore, determining optimal capacity expansion considering network restructuring is
problem that corresponds to both the operation and planning. Power flow problems can
be either DC or AC. The optimal power flow models has an objective of minimizing the
operating costs while maintaining the operational variables voltage level and power gen-
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eration. The DC-OPF models are usually linear or MILP type, therefore can be solved us-
ing classic solution strategies. However, the AC-OPF models formulated as MINLP are
non-convex and therefore heuristic techniques are used to solve these models. The dis-
tribution network has a AC power flow. This leads to the modelling choice of a non-linear
AC-OPF model over a DC-OPF.

A) B)

Additional
capacity
requirement

Relax integer variables
Solve NLP subproblem

Solve the Master
Mixed-Integer problem

Power network
reliability and adquacy

indicators
(weights)

Classify the power network
into zones

l

0o Non-Linear AC-Optimal
Power Flow Model

s3|qelIeA Ja8a3ul X1y

g
|

Mixed-integer problem
infeasible?

Investment and
maintainance

costs for new and

existing apparatus

¥

Yes

Optimal network
reconfiguration
and expansion?

oG

Figure 12 - Flow chart demonstrating the process for (a) expansion planning considering reconfigu-
ration (b) Outer Approximation algorithm

The RNR model presented in appendix 5 is a MINLP formulation and an outer approx-
imation technique is used to solve the model. The work flow of the model is presented
through a flowchart in fig. 12(A). The RNR formulation considers both active and reactive
power flow and associated losses to ensure the power quality in the distribution network.
The MILP formulation is solved using Outer Approximation algorithm [12]. The steps taken
by the algorithm to solve the problem is presented in form of a flow-chart in fig. 12(B). The
outer approximation is a iterative method. The iteration limit is set as a termination cri-
teria in instances where the problem takes very long time to solve. The restructuring is
described by four terms: the cost of installation of new potential cables where a con-
nection still do not exist, the cost of replacing existing obsolete cables with new ones, a
representative cost of keeping existing cables as they are and the cost of installing SVC
devices in certain nodes. The cost of existing cables is a representative cost that incorpo-
rates all the costs that a company should face to keep a cable as it is: this cost is calculated
according to the history of the cable, its maintenance requirements, failures and issues
and represented by the parameter maintenance cost. The detailed mathematical model
is presented in the manuscript at appendix 5.
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Summary

In this chapter, A methodology has been presented for analyzing how the process of con-
necting emerging districts to existing microgrids can affect the reliability of the whole sys-
tem. The technical aspects of AC-OPF have been thoroughly taken into account and the
reliability-orientated Network Restructuring RNR framework has been developed and im-
plemented. The results showed that reliability aspects are crucial when evaluating new
investments in grid expansion: new connections should always be coupled with a more
holistic evaluation of the conditions of the existing networks as they may require further
investment in terms of upgrades so that they can properly fulfill their new requirements.
When the system operator is considering the required investment levels for a power net-
work expansion, it should also consider the restructuring of the existing network at the
same time. The RNR model being presented is able to address both decisions holistically
and, therefore, more investigation is required in this area. In summary the results are elab-
orated in the publication. Moreover, the RNR expands the dimension of decision making
for an power distribution network expansion model.
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Conclusions and Outlook for Further Exploration

This thesis is a collection of research works carried out in developing state-of-the-art mod-
els for improving modern power distribution system planning during the doctoral studies.
This work contributes to two areas- modern power distribution system planning, mathe-
matical optimization modelling. The motivation behind the formulation of research ob-
jectives and background for model building in mathematical modelling is presented in the
introductory chapter.

In introduction the modern power distribution system and associated planning prob-
lems are presented. A brief overview of power system planning problems and an intuitive
illustration is provided to better understand the problems. Following that optimal invest-
ment planning for capacity expansion in modern power distribution network is elabo-
rated. Anintroduction to mathematical model building is presented providing an overview
on different types of models. Next to that the tools used to develop the models are pre-
sented.

In first chapter a novel model for classification of power variations into significant
events is presented. The ramping behaviour analysis model is discussed in detail and the
results are elucidated. The model is tested with real world data from the wind farm. A
further detailed investigation of ramp events and implications are outlined in the associ-
ated publications [22, 24]. Identifying ramp events is an important issue specifically for
sudden power swings. A better understanding of these events would be an advantage
in planning capacity expansion. Further investigation is needed to determine an optimal
threshold value for ramp events identification. In a further investigation on prediction of
ramp events would be studied.

In second chapter a novel two-stage stochastic, chance constrained math-heuristic
model for generation and transmission expansion planning in power distribution network
with multiple network operators is presented. The strategic investment planning for ex-
pansion in modern power distribution network with multiple system operators can be
solved with the coordinated decision making protocol. Coordination among different en-
tities is essential to render an optimal decision. In this chapter a brief discussion about
coordinated decision making protocol with the model is discussed. For illustration an in-
stance demonstrating the coordination among four microgrids is presented. The detailed
model and the results are in the related manuscript is under review. The scenarios for the
stochastic model are generated through a novel stochastic multi-variate ARIMA and cop-
ula model. The scenario generation and the model is presented in details in the publica-
tion [35]. The correlation between the stochastic parameters- wind, demand and price is
captured. Inreal world these parameters influence each other, thus the correlation among
them is essential for optimal decision making. Following that, the decision support system
that translates the model results into an interactive visual platform is discussed. Further
investigation is required on the classification of microgrids from the power network.

In third chapter a framework for monitoring the condition of power network based
on five primary factors: life cycle, environmental and sociological, node reliability, arc re-
liability, node reliability with losses is presented. The framework is applied to modified
IEEE 14 bus network. The resulting weights leads to input parameter for the reliability ori-
ented restructuring model. This is a Non-Linear AC-optimal power flow formulation for
determining optimal expansion with reconfiguration. The reliability and adequacy frame-
work is presented in details in the publication [60]. The reliability oriented network re-
structuring (RNR) model formulation is presented with the analysis on modified IEEE 14
bus system is illustrated in publication [61]. For a distribution network planner determin-
ing optimal investment strategy considering the condition of the existing network is an
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important problem. Expansion in one part of the network may have a significant effect
in rest of the network. Such a scenario can arise when upgrading the capacity of one
transmission line would create a bottleneck if the adjacent capacities are not upgraded
accordingly. Thus expansion with reconfiguration is practical and optimal decision mak-
ing process. The model presented addresses this issue and further research is needed to
test the framework and the model in different network conditions to obtain a balance be-
tween reliable and adequate power supply in the modern power distribution network. In
addition whether an expansion is still optimal and practical considering both the current
condition and required additional capacity.
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Abbreviations

RES Renewable Energy Resources

PS Power system

PDS Power Distribution System

TSO Transmission System Operator

DSO Distribution system operator

PDN Power Distribution Network

GEP Generation Expansion Planning

TEP Transmission Expansion Planning

GTEP Generation and Transmission Expansion Planning
OR Operations Research

OPF Optimal Power Flow

AC Alternating Current

MG Microgrid(s)

LP Linear Programming

MILP Mixed Integer Linear Programming

NLP Non-Linear Programming

MINLP Mixed Integer Non-Linear Programming
SP Stochastic Programming

FFT Fast Fourier Transformation

GA Genetic Algorithm

RBA Ramping Behaviour Analysis

ARIMA Auto-Regressive Integrated Moving Average
CDM Coordinated Decision Making

CoMG Coordinated Microgrid

EVS Evolutionary Vertical Sequencing

DSS Decision Support System

RNR Reliability Oriented Network Restructuring
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Abstract
Models for Modern Power Distribution System Planning

With an objective of cleaner and sustainable power production the electrical power sector
is experiencing a shift from centralized power flow to a decentralized and distributed one.
Consequently Non-dispatchable (renewable) energy resources have gained an increased
share in the total energy mix. In addition, the grid ancillary services like demand side man-
agement where the consumer interacts with the energy network is reshaping the power
distribution system. This transition introduces many technical and economic challenges
in maintaining the balance between supply and demand of power. Apart from that the
challenges in reserve capacity allocation to meet the demand at all times. Moreover, the
strategic planning for power system security and balance is the focal point for a smooth
transition. The context therefore is from the distribution system planner’s strategic plan-
ning problem for expansion. Expansion refers to capacity expansion of existing power
production units and transmission lines to meet the growing demand or better utilize the
production from renewable (non-dispatchable) resources. This thesis presents a collec-
tion of research works focused on optimal power system expansion planning for modern
power distribution system. The key challenges addressed are ranging from classification of
wind power variations to optimal power network expansion and power system adequacy
and reliability. The mathematical models are developed and presented with applications
for each of the aforementioned challenges.

The significant contributions and practical implications of this thesis can be summa-
rized as follows: (a) Ramping behavior analysis (RBA) model for classification of wind
power variations (b) multi-variate scenario generation (c) Coordinated microgrid (CoMG)
model for optimal investment in power generation and transmission expansion planning
considering uncertainty (d) Reliability framework to evaluate condition of power network
using indicators (e) reliability oriented network restructuring (RNR) model to determine
optimal investment for power distribution system expansion and network reconfiguration.

The thesis has three chapters that discuss various aspects of the power network ex-
pansion problem. For strategic planning an accurate and precise classification of stochas-
tic variables such as wind is important. The thesis begins with the chapter on ramping
behaviour analysis (RBA) of wind power production. RBA is a novel algorithm that charac-
terizes the time-series wind data to a series of ramp events. RBA is applied to time-series
data from wind farms to extract the ramp events. Each ramp event has a peak and valley
that shows the trajectory of each event. RBA improves the operational planning of wind
farms with the mechanism of event detection. Successively a multi-variate scenario gener-
ation model is developed capturing the correlation between the uncertain variables. The
variables are wind, demand and price that are correlated to each other. These scenarios
are input to the stochastic programming model(CoMG) presented in chapter two.

The second chapter emphasizes on optimal investment decision making strategies for
generation and transmission expansion planning. An innovative coordinated decision mak-
ing process is introduced through a multi-agent-system on top level. And a stochastic
multi-period math-heuristic model at the bottom for optimal expansion under uncertainty
in demand, wind and prices. The novel math-heuristic model, coordinated microgrid ex-
pansion planning, is applied to real-world planning for expansion.

The third chapter further enhances the scope of planning problem by including power
system adequacy and reliability. A power system reliability framework is proposed con-
sidering the life-cycle of the power apparatus, consumer satisfaction index and geograph-
ical terrain. Subsequently, reliability oriented power system restructuring model is for-
mulated as a Non-Linear deterministic multi-period model. The model contains an AC-
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optimal power flow formulation with a grid reconfiguration based on the weights allo-
cated through the proposed framework. The model evidently improves the expansion
decision through consideration of existing network condition.

The models developed are applied to real-world planning problems for distribution
network operator. The models are validated with real data from industrial partners. As an
open-source initiative, a modified version of two models developed are made available
via Github repository.

keywords: wind power swings, mathematical optimization, generation and transmis-
sion expansion planning, decision support system, power system reliability and adequacy,
network restructuring, energy informatics
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Liihikokkuvote
Kaasaegsete jaotusvorkude planeerimise mudelid

Puhtama ning jatkusuutlikuma elektrienergia toomise eesmargi nimel toimub elektrisiis-
teemi tleminek tsentraliseeritud tootmiselt hajatootmisele. Eelnevast tulenevalt on taas-
tuvenergiaallikate kasutamine ning taastuvenergia osakaal |6pptarbimises kasvanud. Li-
saks on hakatud tegelema tarbimise juhtmisega ning see avaldab mdju elektrijaotusss-
teemi imberkujunemisele.

Hajatootmisele tGleminek toob endaga kaasa mitmeid tehnoloogilisi ja majanduslikke
valjakutseid, mis on seotud elektrienergia tarbimise ja tootmise tasakaaluga. Selleks, et
tagada sujuv tileminek hajatootmisele ning samas sailitada stisteemis tasakaal ja varustus-
kindlus, on vaga oluline tegeleda siisteemi strateegilise planeerimisega. Arvestada tuleb
nii tarbimise kasvu kui ka taastuvenergiaallikate kasutamise suurenemisega.

Kaesolevas t60s vaadeldakse optimaalset elektrististeemi laienemise planeerimist kaa-
saaegsetes jaotusvorkudes. Peamised valjakutsed on tuuleenergia muutlikkus, optimaal-
ne elektrivorgu laienemine ning elektrististeemi téokindlus ja piisavus. Iga eeltoodud val-
jakutse jaoks koostati matemaatiline mudel.

T606 olulised panused ja praktilised tulemused on jargnevad: (a) véimsusmuutuste ana-
lGusi (Ramping behavior analysis - RBA) mudel tuuleenergia muutuste klassifitseerimiseks
(b) mitmemooétmelise stsenaariumi koostamine (c) koordineeritud mikrovérgu (CoMG)
mudel optimaalsete investeeringute jaoks elektrienergia tootmises ja jaotamises vottes
arvesse ebamairasust (d) tookindluse raamistik elektrististeemi kasutamise indikaatorite
hindamiseks (e) Todkindlusele orienteeritud voérgu restruktureerimise (Reliability oriented
network restructuring - RNR) mudel jaotusvorgu rekonfigureerimise optimaalse inevstee-
ringu tegemiseks.

T606 on jaotatud kolmeks peattikiks, mis kasitlevad elektrististeemi laienemise problee-
mi erinevaid aspekte. T66 algab peatiikiga, mis kasitleb tuuleenergia tootmise voimsus-
muutuste analiilisi. RBA on uudne algoritm, mis teisendab tuuleandmete aegrea siind-
muste reaks. Igal siindmusel on tipp ja pohi, mis naitavad siindmuse trajektoori. RBA
parandab siindmuse tuvastamise abil tuuleparkide planeerimist. Mitmemaootmelise stse-
naariumi koostamise mudel on arendatud ebamdaaraste muutujate vahel seose maara-
miseks. Muutujad on tuule tugevus, néudlus ja hind ning kéik muutujad on omavahel
soetud. Need stsenaariumid on sisendiks stohhastilisele programmeerimise mudelile, mi-
da kasitletakse teises peatiikis.

Teine peatiikk keskendub tootmise ja lilekandmise edasiarenduse planeerimise opti-
maalse investeerimisotsuse tegemise strateegiatele. Innovatiivset koordineeritud otsu-
se tegemise protsessi tutvustatakse korrapirase korgema tasandi iseseisva arvutisiistee-
mi abil. Uudset matemaatilis-heuristilist mudelit ja koordineeritud mikrovorgu edasiaren-
duse planeerimist rakendatakse reaalsete arenduste planeerimiseks.

Kolmas peatiikk tostab esile planeerimisprobleemi ulatuse, mis keskendub energiastis-
teemi téokindlusele ja piisavusele. Pakutakse valja energiasiisteemi usaldusvaarsuse raa-
mistik, vottes arvesse energiaseadmete elutsiiklit, tarbija rahulolu indeksit ja geograafilist
maastikku. Jargnevalt on RNR mudel formuleeritud nagu mittelineaarne ette maaratud
mitmeperioodiline mudel. Mudel sisaldab optimaalset vahelduvvoolu energiavoo formu-
leerimist koos vorgu rekonfiguratsiooniga, mis pohineb kaalude jaotamisel |abi esitatud
raamistiku. Mudel taiustab silmnahtavalt edasiarenduse otsust olemasoleva vorgustiku
tingimuse abil.

Arendatud mudelid on kohaldatud reaalsete jaotuvorgu planeerimise probleemide la-
hendamiseks. Mudelid on valideeritud reaalsete partneritelt saadud andmetega. Kahe
mudeli muudetud versioonid on tehtud kattesaadavaks GitHub'i keskkonnas.
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Voétmesonad: tuuleenergia juhuslikus, matemaatiline optimeerimine, tootmise ja jao-
tamise laienemise planeerimine, otsuste toetamise stisteem, elektrististeemi téokindlus ja
piisavus, vérgu restruktueerimine, energia informaatika
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Abstract

Harvesting energy from renewable sources has become prominent since the use of fossil fuels became unsustainable. Traditional
practice for mitigating the energy demand around globe majorly consists of utilizing conventional sources and injection of
renewables as and when available. The continuous and exponential growth in consumption alongside the need to reduce the
carbon footprint and to counter the climate change has paved the way for Renewable Energy Sources (RES). Availability and
maturity in technology made wind and PV (photo-voltaic) the most prominent among others. Per contra, the inherent variations
in the weather in form of wind speed, solar irradiance act as a barrier in utilizing the full potential. The variations, ramp events, in
case of wind energy have adverse effects on determining the reliability, economical profitability, and flexibility. Accurate
recognition of the wind ramp events can improve energy management, forecasting and causality. This paper proposes a data
analysis oriented approach exploring the pre-processing technique of wind power variations using moving average filter,
followed by noise extraction and separating the power swings. Further clustering the power swings utilizing K-means clustering
technique. The proposed technique improves the power swings identification process by reducing the noise content.

© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the 4th International Conference on Power and Energy
Systems Engineering.

Keywords: Power swings; Renewable energy resources; data clustering; ramp event detection;

1. Introduction

The systems are static, quasi-static or dynamic with respect to time. An event in a system can be a continuous or
discrete time process. Ramp is used to explain an event where a sudden positive or negative swing occurs within a
period. Harvesting energy from every possible source before the conventional sources run out of reserve pushed us
for the change in regime. Now that the energy requirement is foreseeing a rapid growth over time, the challenge
became multi objective — manage consumption, increase production from alternative sources and ICT (Information
and Communication Technologies) integrated smart controlling of the overall system. Most renewable sources of
energy are non-deterministic owing to the factor of random availability as in wind speed, solar irradiance. This
unreliability acts as the major hindrance apart from the economic standpoint in wide scale implementation. Today’s
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practice consists of majority of production and reserve from conventional sources and penetrative renewable energy.
The ramp events in power conversion from RES have adverse effects on reliability, economical profitability and
flexibility. Characterizing the ramp behavior of renewable sources fosters the chances for better management and
thus improving the system operation. Inherently RES have multi-level time varying uncertainty. In wind energy,
ramp-ups are usually caused by intense low pressure systems, low level jets, thunder storms, wind gusts, climatic
variations [1]. Again, the statistical model presented providing insights to the ramping events- frequency of
occurrences and severity levels. The study of ramp events are utilized in system control and day-ahead forecast.
Sevlian and Rajgopal et. al. used a dynamic programming recursion to analyze ramp events by virtue of a statistical
model [2]. Wherein Florita et. al. used swinging door algorithm and indicated the fine tune required to improve the
ramping event analysis in solar and wind energy [3]. Ouyang et. al. illustrated the current forecast models based on
ramping events. Then extended suggestions in contrast with numerical weather prediction [4]. Bianco et al.
presented wind ramp detection, time forecast, observed ramp and impact of the up-down events on the grid operation
[5]. In [6] ramping behavior analysis technique was elaborated for the ramp detection in RES. In [7] a time series
simulation for the large wind farm in turbulent scenario was described. In [8] a spacio-temporal model for the short-
tern wind power forecast model was developed. However, the wind power variations are highly dependent on the
precise peaks identification and a setting a proper threshold. The noise in the dataset often lead to misclassification
or over-estimation of the ramp events. In this paper, the focus was on the pre-processing of wind power data that
give rise to precise time-series data removing the noise content and preserving the swing property of the original
data. Consecutively identifying the peaks and clustering the peaks into groups classified the variations accurately.
This article is divided into four sections- first the wind power variations explaining the ramp events, second wind
power data filtering method, followed by clustering the data sets to emphasize the significance and finally the
conclusion.

2. Wind power variations

The Ramping Behavior Analysis (RBA) is a relatively recent field of study in the domain of RES. The causality
of the ramp events are not clearly traced. In wind energy, sudden oscillation of output power from wind turbine and
high input power injection with notable pace is an identifier of ramping. Performing the ramping analysis on both the
input and output is a key point. There exists no particular increment in magnitude or oscillation ranges in literature
for the RES to characterize the events. As a result, there are multiple ramp events in various sets of thresholds. The
second fold of problem is based on reliability statement in agreement with magnitude and times of occurrences in the
period of analysis. Various levels of system with multiple time steps, intermediate delays, and the instantaneous
weather changes make the system highly random. Statistical model requires iterative investigations with multiple
thresholds, data sets and time stamps to make an inference, setting aside the Hybrid Renewable Energy Sources
(HRES). The traditional definitions for the wind ramp events are distinguished by the pre-determined threshold
values. The four equations of threshold values below are widely used definitions in literature. [4].

|P(t + Aty - P(1)| > B, M
|max(P[t, ¢+ At])-min(P[t,t + Ar]| > P, ()
Z’ZI(PHJ}V_ ])t+hﬂ’\") > th (3)

P(t+At)—P(t
W >P, 4

Where P, t, At, Py, stand for power generated, time, time interval and power threshold respectively. The yardstick
of the analysis depends on the threshold, and change in magnitude of wind power production over a period.
Considering only the ends or difference between maximum or minimum power productions including end approach
has a disadvantage in the form of special case inclusion or exclusion [3].

Setting up a threshold depends on multiple factors as in grid topology, size of turbine, placement and region.
Ramp refers to significant increase or decrease in wind power within a set time period. A swing can at times be a
special case, as in the wind speed drops below the limit or sudden increase due to untraceable factors. RBA consists
of a) ramp-up b) ramp-down c¢) rise-time d) fall-time e) ramp-up/down rate [6]. The objective is to identify the set of
significant ramps considering the time as a reference and the difference between two consecutive high and low
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values give rise to peak points in both ascending and descending order. It is to be considered that the minute changes
have to be ignored to catalogue only the significant variations. Fig. 1(a) explains the RBA in terms of a power swing
above threshold. A threshold value is often set, above which the ramp events are significant for the system
depending on the scenario. Ramp-up is an event of rise in positive number, where the ramp-down in opposite
direction. Rise and fall time are successive time steps taken to reach the corresponding peak. Ramp up rate goes
by (peak —lowest) | Timesteps .

Power
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Fig. 1.(a) ramp event (b) wind power swings

3. Wind Power data filtering

The data sets considered for this analysis have 10 min time step and were measured in a wind park consisting of
17 wind turbines, 2.5 MW each. The average wind speed in the region is 6 m/sec. Fig. 2 represents the wind park
power generation of four months. It was observed that the aggregated output for four months shows continuous
power swings and number of swings reduces upon stretching the data. Fig. 1(b) represents both power data from the
wind turbine and aggregated wind park data. It can be observed from fig. 2 that the individual turbine data is more
erratic than that of the wind park aggregated data that is causing the excess noise content. Exponential moving
average filter technique is used for smoothing the data and presented in fig. 3(a) and 3(b) along with the extracted
noise content. The equation 5 represents the calculation for moving average.

@ =[c-rpyal+ f(p) (5)

Where f, ¢, p, w stands for exponential moving average, current value, previous value and w=2/(N+1) weight
factor wherein N is number of periods respectively.

Filters are data processing techniques that can smooth out high-frequency fluctuations in data or remove periodic
trends of a specific frequency. Using the aforementioned filtering technique the noise is extracted from the original
data and presented in fig. 3(a) and 3(b). Wherein A- Original wind power, B- smoothed power curve and C - noise
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content in the data. Fig. 1(b) represent the wind power swing data evaluated from differentiation of the derived
smooth data that refers to the peak points or local maxima.
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Fig. 2. Wind park power data.
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Fig. 3. (a) wind turbine power data; (b) wind park aggregated data.
4. Clustering power swings

In this section, the derived data is clustered to categorize the power swings. Clustering the data indicates the
pattern in the swings by aggregating them into appropriate number of groups. K-means clustering technique was
selected to perform the analysis due to simplicity and reasonable computational time. To determine optimal number
of clusters, two different approaches have been combined. The number of clusters has been analyzed by the knee-
point of sum of distances and by using silhouette coefficient of the clustered data.

4.1. K-means clustering algorithm

The K-means clustering algorithm also known as Lloyd’s algorithm [9] is applied for classification of objects
into K number of groups based on attributes. The algorithm is based on the minimization of squared Euclidean
distance between the objects and centers of the assigned clusters [10]:
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min(E) = min(Z5, X e, d(x,2,)) (6)

where z;, is the center of cluster C; and d(x, z;) is the Euclidean squared distance between point x and cluster
center z;.

4.2. Data sets used for clustering

Two data-sets were used for clustering: data set 1 includes single wind turbine data and data set 2 wind park data.
Both data-sets include observations with four attributes, namely: original data, smoothed data, swing data, noise
content.

4.3. Optimal number of clusters

Fig. 4(a) displays the total sum of Euclidean square distances as a function of K, number of clusters. The figure
displays the results for both data-sets, which behave similarly. Based on the curve, the decrease rate of the sum of
distances decreases rapidly until around 10 clusters. Thus, it is possible to conclude that for clustering, values above
10 offer limited gains with respect to the sum of distances.
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Fig. 4. Number of clusters and (a) the sum of Euclidean squared distances; (b) silhouette coefficient.

A second way to analyze the suitability of the value of K is to use the values of silhouette coefficient [10] — [11]:
1 K
SC=TLS, (7
where S; is the local silhouette coefficient:

1 )
S, =—35, (®)
n.

J
and the silhouette values of points [11] S; are defined as:

R el ©)
max(a,,b,)

where S; is the silhouette value for point 7, b; is the minimum average distance from point i to points of other
clusters; a; is the distance of point i to the other points of the same cluster.

According to fig. 4(b), the silhouette coefficient value decreases with the increase of the number of clusters,
indicating that in case of larger number of clusters the dissimilarity between the clusters decreases. An interpretation
for the values of the silhouette coefficient was given in [12]. Values equal to and below 0.25 indicate that no
substantial structure was found. The found structure can be considered to be weak and possibly artificial if the value
of the silhouette coefficient is 0.50 or lower. Values above 0.50 and up to 0.70 indicate a reasonable structure. This
value range is also achievable with the used datasets by using 8 or lower value for K, number of clusters.
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Considering both aspects of the clustering, the sum of squared Euclidean distances and silhouette coefficient
value, 8 can be chosen as a suitable number of clusters. This value offers a compromise between achieving minimal
total distance of objects from cluster centers and describing a reasonable structure of the data. A lower value would
strengthen the structure of the clusters, but would also increase the sum of Euclidian distance squares between the
clustered objects and the centers of the clusters. This means that the ramps classified to the same clusters would
have higher variance.

4.4. Clustering Results

Previously, the number of clusters were selected to be eight. With this number of clusters, the first set of data,
wind turbine data was clustered according to the silhouette plot shown in fig. 5(a). The created clusters seem to be
close to each other, indicated by the negative silhouette values and silhouettes with sharp tips. For comparison, the
result of two clusters are presented in fig. 5(b). The clusters have flatter tips and lower number of objects have
negative values, thus two clusters offer in this case better separation of created clusters. The second set of data, wind
park data, clusters into two clusters according to fig. 5(c) and to eight according to fig. 5(d). Again, clustering the
dataset into two clusters leads to more distinguishable clusters.
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Fig. 5. Silhouette plots of aggregated data: (a) wind turbine data and 2 clusters (b) wind turbine data and 8 clusters (c) wind park data and 2
clusters (d) wind park data and 8 clusters.

5. Conclusion

The proposed analysis sheds light into identification of power swings from wind parks and individual turbines.
Extracting the noise content by exponential moving average from the data prior to applying RBA provides accurate
measure to the variations and computationally efficient. Clustering the variations to catalogue them provides
required order of filtering. Optimal number of cluster selection through the total Euclidean distance measure and
silhouette coefficients led to successful aggregation of the data. In continuation of the current work the event
classification in multiple orders with relations, causality and novel clustering methods are being prepared.
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Abstract—Wind power ramps are power swings induced by
the variations of wind speed. The ramp pattern of wind farms
and turbines differs. In this paper, the pseudo code of ramping
behaviour analysis with primary functionalities is presented. Ge-
netic algorithm is applied to aggregate turbine-wise wind power
data from the wind farm. This pre-processing is done to shrink
the volume of the data through a aggregated representative data.
The ramping behaviour analysis results are analysed by using K-
means clustering to identify patterns in the ramping behaviour
of the wind farm. The results indicate that for certain wind ramp
parameter combinations, the identified patterns are stronger. In
this paper, it is shown that the ramp energy values calculated
based on ramping behaviour analysis parameters provide a
strong cluster structure with low number of type events.

Keywords—wind energy; wind ramp; ramping behaviour anal-
ysis; genetic algorithm; clustering; renewable energy resources;

I. INTRODUCTION

Transition from conventional energy sources to renewable
energy sources (RES) has become one of the biggest tran-
sitions in the last decade. Climate change and utilization of
renewable resources are one of the primary reasons. Solar and
wind are by contrast the most prominent RES. Technologies to
extract energy from RES are mature enough and fast growth
in ICT has worked as the catalyst for the grid integration.
This transition of unidirectional flow of power from source to
demand is changing with distributed energy resources (DER).
DER in turn gives rise to micro and smart grids with small
and medium capacity of generation.

Wind, being a natural resource, is variable and unpredictable
by nature. As one goes further from the Mediterranean region,
the wind energy becomes more prevalent as the availability
of solar energy diminishes. A sudden wind power swing is
called a ramp. It could be up ramp or down ramp based on
the movement. Though the ramps are often swings that settle
down quite fast. Although near precise weather forecasts are
extremely helpful for operating the wind farms, frequent varia-
tions in the wind speed and intervals make the operation more
complex and motivate the use of energy storage technologies.
Nevertheless, battery banks are used as an intermittent source
to maintain uninterrupted energy supply.

A wind ramp of an individual wind turbine differs from the
ramp of the wind farm [1]. In [2] frequency regulation for the

This paper was funded by the European Union via the European Regional
Development Fund.
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Fig. 1. Layout of the analysed wind farm.

wind power variation are discussed. In [3] ramp event identi-
fication is presented. In [4] a tool to characterize ramp events
is presented. A smoothing technique is applied to reduce the
noise content in the data [5], [6]. However, processing big-data
from a wind farm and identifying ramp events require high
computing power. Averaging the wind time series data looses
the time significance. For instance a significant ramp event at a
small window gets lost while looking at a bigger time window.
In this paper, a wind farm consisting of 17 wind turbines is
considered for the analysis. The layout of wind turbines in the
farm are presented in Fig. 1. The genetic algorithm (GA) is
used to optimally aggregate the data from 17 wind turbines.
The granularity of the precise ramp event identification is
preserved across hourly time resolution. Wind ramp events are
identified with the aggregated data. In order to identify type
events of the wind farm, ramping behaviour analysis results
are clustered. Different combinations of ramping behaviour
analysis parameters are used for detecting patterns.

The rest of this paper is organized as follows. In section
II-A, a method for aggregation of power data is presented.
Section II-B provides an overview of ramping behaviour anal-
ysis (RBA) and presents an algorithm for identifying the values
of RBA parameters. Section II-C ends with a description of
K-means clustering, which is used in section III for identifying
patterns in RBA results. The clustering was done with different
parameter weights and combinations to detect the patterns. The
results of the paper are summarized in section IV.

978-1-5386-5186-5/18/$31.00 © 2018 IEEE
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Fig. 2. Histograms of normalized and aggregated wind farm data.

II. WIND DATA AGGREGATION AND RAMP EVENT
IDENTIFICATION

A. Data Aggregation

A genetic algorithm (GA) is a local search optimization
technique primarily applied to optimization problems that are
highly non-linear, non-differential or discontinuous. Concep-
tually GA is based on the biological evolution process. The
process randomly selects a pair out of the total population
and crossover takes place to produce successors for next gen-
eration. This process of evolving toward an optimal solution
classifies GA as an evolutionary technique [10]-[14].

The fitness function f f of the GA is (1). The ff considers
the time horizon ¢, the turbine w, month m and y as the current
data point. In the present context m is the winter period:
September through December. Also w is 17 and t is 2920
hours. The power data is normalized by using the maximum
value, to obtain normalised values between 0 and 1 p.u. Fig. 2
presents the histogram of the month wise power data from the
wind farm and the optimized data. Typical month-wise power
data from wind farm is combined and using GA one optimal
representative array is generated for each turbine.

[w] ¢

FE=300up s (yyf —my)? )

w=1j=1

The data aggregation is applicable to identify and forecast
significant ramp events. Specifically in long-term forecasting
of the wind ramp events or building an event matrix. Wherein

the volume of data can be reduced using GA. The average
number of peaks identified individually from the raw data is
566 for wind turbine. Processing through GA the number of
events identified is 618. Thus, the number of events identified
is close to the original data. It means the frequency of ramp
events in the data is preserved while the data is reduced four
folds.

B. Ramping Behaviour Analysis

In paper [3], ramping behaviour analysis (RBA) was de-
scribed to identify the ramp events. The Algorithm 1 depicts
the pseudo code for the RBA algorithm. RBA consist of four
functions: peakval, risetime, falltime and ramprate. Function
peakval identifies the peak point through index values and
stores them in iT. Successively the valley points are stored in
7~. An example of peak value identification process in a data
array is presented in Fig. 3. The x stands for the input array
and D stands for the difference. The arrow sign denotes the
peak values: 8 and 5. The rectangle outlines the pair of values
compared to find the peak values: (1, -6) and (4, -2).

x=5 7 8 2 1 5 3 7

Fig. 3. Example of peak value identification algorithm



Functions risetime and falltime evaluate the time taken to
reach the peak point and valley point and stores the values
in trise, tfall successively. P(x) refers to the index value x
of input power data P. Finally, ramprate function calculates
the power change rate at which the peak or valley points
were reached. The calculated ramp-up and ramp-down rates
are stored in rrate™ , rrate”, respectively.

Algorithm 1: Ramping Behaviour Analysis (RBA)

input wind power data array x ;

Function peakval

n =z

while i < n do
Di=xip1—x V i

if D; <0 V i then
‘ it =i € x [index value of D;1];
else
‘ 1~ =1 € z [index value of D;];
end
end

Result: peak points identified
Function risetime
Tmaz = i+; Tpeak = it 5
Tmin = ('Tm(m; - 1) 5
lf P(xmin) S P(xma:t) y
then
P(Imaz) = P(-Tmin);
P(xmin) = P(xmin -
else

1);

P(xmzn) = P(xmax) 5
trise = tscale * (P(Zpeak) — P(Tmin))

end
Result: rise time identified for each peak
Function falltime
if P(xmaw) < P(-rmin) ;
then

P(x7nzn) = P(Imaz);
‘ P(xmaz) = P(xmaz -
else

1);

P(Im,aw) = P(xmin) 5
tfall = tscale * (P(Zmaaz) — P(Tpeak))

end
Result: fall time identified for each peak
Function ramprate

rrate™ = [ P(Tmaz) — P(Tmin) | /trise ;
rrate” = P(:L'maw) - P(xm’in) /tfall 5
Result: ramp-up and ramp-down rate identified

for each peak

C. K-means Clustering Algorithm

The K-means clustering algorithm, also known as Lloyd’s
algorithm [15] is used for classification of objects into K
number of groups based on attributes. In case of wind ramps,

the ramping behaviour analysis uses 7 attributes for each
event, which can be used for classifying the wind ramps to
groups. The algorithm is based on the minimization of squared
Euclidean distance between the objects and centers of the
assigned clusters [7]:

K
min(E) = m7n(z Z d(z, z;)) (2)
i=1zeC;
where z; is the center of cluster C; and d(z,z;) is the
Euclidean squared distance between point = and cluster center
III. CLASSIFICATION OF WIND RAMPS
A. RBA Parameter Subsets and Normalization

In ramping behaviour analysis, the wind ramp events were
described by start Pp,in1, peak Ppq. and end P,,;,2 value
of power variation; rise speed and time; fall speed and time.
Thus, for every significant variation, 7 parameter values are
available. Start, peak and end value are in kW, rise and fall
speed in kW/min, rise and fall time in minutes.

The clustering was applied to combinations of ramping be-
haviour analysis (RBA) parameters to determine the attributes
of wind ramps that are suitable for event classification. Firstly,
the RBA parameters were divided by the physical quantity, this
led to formation of data subsets 1..3, shown in Table 1. These
subsets were not normalised, as within the subsets, the same
units were used for all values. Subsets 4 to 6 were formed to
test the impact of RBA parameter normalisation on clustering
results. Subset 4 was not normalised. The values in subset 5
were normalised using median value of P, ., w1, and median
value of rise and fall times w2. For subset 6, the maximum
value of P,,4., w3, and maximum value of time were used.
In case of subset 6, all values in the subset were in the range
of 0 to 1. The ramp energy parameters used for subset 7 are
explained in section III-B.

TABLE 1
NORMALISATION BASES USED FOR SUBSETS OF RAMPING BEHAVIOUR
ANALYSIS (RBA) ATTRIBUTES

RBA Attribute Data Subset
1 2 3 4 5 6 7
Pminl - 1 wl w3 -
Pmax 1 - - 1 wl w3 -
Pmin2 1 - - 1 wl w3 -
Rise time - 1 - 1 w2 w4 -
Fall time - 1 - 1 w2 w4 -
Rise speed - - 1 - - - -
Fall speed - - 1 - - - -
Ramp energy - - - - - - 1

B. Evaluating the Strength of Clusters

The clustering results were evaluated in this study based on
the value of silhouette coefficient SC' (3) [7], [8].

SC=1/KY KS; ©)

Jj=1



where S is the local silhouette coefficient
Sj = (1/n;) Y n;S; @)
i=1

and the silhouette values of points s; are defined as
Si = (bl — ai)/max(ai, bl) (5)

where s; is the silhouette value for point i, b; is the minimum
average distance from point ¢ to points of other clusters; a; is
the distance of point 7 to the other points of the same cluster.
The following interpretation of silhouette coefficient SC' val-
ues from [9] was used to evaluate the cluster strength and
choose the optimal number of clusters.

o < 0.25: No substantial structure has been found

e 0.26 — 0.50: The structure is weak and could be artificial;

please try additional methods on this data set
e 0.51 — 0.70: A reasonable structure has been found
e 0.71 — 1.0: A strong structure has been found

C. Clustering Based on Subsets of Ramping Behaviour Pa-
rameters

Clustering results in Fig. 4 indicate that the ramping time
parameters (subset 2) offer better clustering results than peak
and valley points (subset 1) and ramp rates (subset 3). A
strong structure is obtained for subset 2 with at least 15
clusters. The marginal decrease of sum of squared Euclidean
distances, Fig. 5, is largest for small number of clusters.
Thus, with the increase of number of clusters, the benefit of
additional clusters decreases. Subset 2, which displayed good
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Fig. 6. Subset 1, 2 & 4: silhouette coefficient.

clustering characteristics, describes only the ramping duration
of the wind ramps. The combination of subset 1 and subset 2
would describe the key points of the wind ramp (start, peak
and end power) and also the duration of the event. Thus, a
combination of the two subsets would have significantly higher
value than subset 2. If subset 1 and 2 are combined without any
normalisation of values, subset 4 is acquired. The clustering
characteristics of subset 4 are similar to subset 1, as shown
in Fig. 6. Reason is the data normalisation, which was not
applied and due to large subset 1 values, subset 2 parameter
values had small impact on clustering results.

Comparing the non-normalised subset 4 results with the
normalised subsets 5 and 6, in Fig. 7, it is clear that subset
5 has different clustering characteristic. Reason is again the
obtained set of values. In case of ramping times, the use of
median value (subset 5) leads to value range O to 225, while
the power values normalised with median of peak power are in
range 0 to 2. In case of normalisation with maximum values,
the power dimension has larger impact due to larger spread of
values. Ramping times are mostly near O if the maximum value
is used for normalisation, thus the ramping time differences
are mostly smaller than the differences of normalised power
values.

D. Clustering Based on Ramp Energy

During the rise ramp, additional power, with maximum
value Ppeqr — Ppin1, in comparison to the initial power Py;1
is generated. Using the ramp time ¢4, it is possible to derive
equation for rise ramp energy U,;s. (6). Similarly, during
the fall ramp, the wind turbine power output increases up to
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Fig. 7. Subset 4, 5 & 6: silhouette coefficient.
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Prrin2 — Ppeak, compared to the value of Pp.,. The energy
of the fall ramp can be described by (7).
trise : (Ppeak - sznl)

Urise = 2 (6)

tm’se . (Pm'L;LQ - Ppcak) (7)
Elements of subset 7 were calculated using (6) and (7). The
clustering results in Fig. 8 indicate that a strong structure can
be acquired with up to 17 clusters and with higher number of
clusters, the found structures have a reasonable strength.

Utan

IV. CONCLUSION

In this paper GA is applied to aggregate and shrink the
original data volume. Ramping behaviour analysis (RBA) is
used to identify the ramp events in the wind power data
from wind farm. The pseudo-code of RBA is presented with
individual functionalities. Optimal weight is allocated to RBA
attributes using optimal cluster formulation. Clustering of
identified ramp events based on different combinations of RBA
parameters was conducted.

It was shown that in case of the analysed data, the strongest
structure was found using the subset of ramping times. The
clustering of RBA parameters with different units is a chal-
lenging task due to the need of parameter normalisation. It
was shown in the paper, that one solution is to cluster the
wind ramps based on rise and fall energy.
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Abstract. In mathematical optimization uncertainty is expressed through scenarios. auto-regressive integrated
moving average (ARIMA) is one of the known practise to generate scenarios. This paper is about scenario
generation using multivariate data: electrical power demand, wind power generation and energy market price.
An ARIMA model along with Copula is implemented for scenario generation. The results are presented and

discussed.

1 Introduction

This work is about scenario generation using copula. Sce-
nario generation is an important part of stochastic pro-
gramming. The generated scenarios however should retain
the original statistical properties of the data. Auto regres-
sive inter grated moving average (ARIMA) has been used
extensively in literature [1] to generate scenarios. One of
the drawbacks of ARIMA is the applicability to multivari-
ate distributions. To overcome this Copula is used to gen-
erate scenarios as presented here [2, 3]. A regular vine
copula and the goodness of fit measures are discussed here
[4]. A Bayes theory based copula is presented here. [5]. A
comprehensive study of various copula models with real
world data is presented here [6]. A multivariate copula
based forecasting method is explained here [7].

Multivariate copula is gaining more importance due
to the nature and availability of data and relations among
them. In this paper wind, demand and price data are con-
sidered as the multivariate data. Copula is used to gen-
erate multivariate distributions. These are sampled using
ARIMA and the results are presented. The rest of the paper
is organized in four sections: scenario generation, compu-
tational experiments, discussion and conclusion.

2 scenario generation

This section describes the mathematical model for the sce-
nario generation using copula. This section is further di-
vided into two subsections: ARIMA model and copula.
The former presents a multivariate ARIMA formulation
considering three variables. The later states the copula to
sample the residuals.

*e-mail: sambeet.mishra@ttu.ee
**e-mail: wuersig@fmt.uni-hannover.de

2.1 ARIMA model

The ARIMA Model is a widely used model for modeling
[8]. We use the model, to capture the time series behavior
of the series.

The authors consider the statistically correlated scenar-
ios because the stochastic variables: wind, demand, and
price are co-related. Thus formulating the ARIMA(¢, )
a quasi-contemporaneous stochastic process price (y5,),
demand (yﬁ,,) and wind (yg,) as in 1(a-c). The residuals
&d,, el & are statistically dependent. Thus the depen-
dency structure of the stochastic processes can be stated as
elef el e ) # 0. &5, &), & are the series of errors sim-
ulated to produce residual cross-correlogram of stochastic
process. In 1(d) the error correlation between stochastic
process a & b, a & c are presented and finally reduced to
a product of an orthogonal matrix B and identity matrix
W(E[y - "] = I) . The cross correlation between &, and
&, can be represented through variance-covariance matrix
G. G is essentially a positive semi-definite and symmetric
matrix. This matrix is further decomposed using Cholesky
decomposition (G = LLT) [9-11]. L is the upper triangular
matrix that is also the orthogonal matrix (B = L).

- -
Y= )y = Y el (1a)
Jj=1 Jj=1
']h Tb
o= 8yl e =y el (1b)
= =1
n 7
Yo = D 05y e - Y el (Ic)
=1 =
&4 &4 el
T —
g.t,t ss,t 85,!
(1d)
G = cov(e, ") = BBT (le)



G=LL" =BB" (1f)

2.2 Copula

The residuals of the ARIMA Model are fitted to a Cop-
ula Model in order to capture time varying dependence of
the data. The authors use for this purpose R-vine copulas
introduced by Bedford and Cooke (2001b,2002).

The general theory for copulas is Skalars Theorem
(1959), based on this Theorem, Skalar shows that a ev-
ery multivariate distribution can be written as a multivari-
ate copula function. Equation (2) shows Skalars Theorem
applied to a three dimensional dataset.

Variables with joint density function:

fa.b.c)= f(a)- f(bla)- f(clb,a)- ... flalb.c) (D)

Following Skalar (1959) this density function is
uniquely represented by the following form, if it is con-
tinuous.

F(a,b,c) = C(Fu(a), Fyp(b), F(c)) 3

Joe (1996) makes this theorem usable for Vine Copu-
las, since he showed that Skalars Theorem can be decom-
posed to bivariate copulas. For a multivariate distribution
with three variables it thus follows that this decomposition
can uniquely identify the density function.

flalb,c) = cacp(Fap(alb), Fap(clb)) - flalb) — (4)

,where
Sfalb) = cap - (Fa(@), Fip(D)) - fal@)

The R-vine (regular vine) model is chosen to model
the multivariate dependence in this empirical application.
Fitting multivariate data to a copula is a challenging task,
since commonly used copula models, like the normal cop-
ula, the t copula or the gumbel copula are either symmetric
or have only one parameter to estimate the entire copula,
which decreases the flexibility of the distribution. Bivari-
ate copulas have a wider variety of choices, thus Kurow-
icka and Cooke (2006) developed the R-vine copula mod-
els that fit multiple bivariate copulas to the multivariate
dataset and are thus able to capture the dependence struc-
ture of the multivariate dataset. "The modeling scheme is
based on a decomposition of a multivariate density into
a cascade of pair copulae" (Aas et al. p.1). R-vine’s are
represented by a hierarchical tree structure, where the first
tree is estimated by n-1 bivariate copulae and the second
by n-2 conditional on a single variable. For a three dimen-
sional dataset two copulae need to be estimated directly
and one conditional copula. In order to estimate the R-
vine, Dissmann et al. (2012) developed a sequential search
approach, they first estimate the family and parameters of
the first tree via the AIC criterion. Then they use this re-
sult to estimate the second tree. Additionally they employ
a maximum spanning tree algorithm to choose an appro-
priate edge weight. This paper implements their method
and estimation technique, in order to take advantage of the
benefits of the diversity of bivariate copulae.

2.3 ARIMA forecasting using Copula

The approach used in this paper is reminiscent of the
Copula GARCH model, introduced by Jondenau and
Rockinger (2006). First the ARIMA model is estimated,
with the standardized residuals of the ARIMA model the
R-vine copula model is estimated. The R-vine Model is
then estimated using the remaining errors terms from the
ARIMA model to capture dependencies between the vari-
ables that the time series model ARIMA cannot capture.
The Copula model is fitted to uniform [0,1] margins. Af-
terwards following Dissmann et al. (2012) we simulate
from the copula model and transform the thereby obtained
data using the not standardized residuals from the empir-
ical ARIMA model as an empirical density function. To
model the time series behavior, the simulation result is ob-
tained using the sampled residuals and the fitted ARIMA
model.

3 Implementation

In the following we present the implementation of our
method, this simulation is conducted on the logarithm of
wind, price and demand variables for 100 times. The
scripts are written in R programming language.

We estimate missing data, via linear interpolation for sin-
gle missing values. For wind we estimate the last month
via an ARIMA forecast due to the unaccounted data for
December. The ARIMA model is fitted based on the con-
ditional sum of squares to find the starting values. Follow-
ing that maximum likelihood to find the optimal parameter
estimates with respect to the AIC criterion.

We use the residuals and standardize them in order to fit
an R-Vine Copula onto the residuals. The tree structure is
determined via pair-copula families and estimated sequen-
tially. For the model families the AIC criterion is used,
parameter values are estimated using maximum likelihood
estimation.

Following [12] methods we simulate the uniform esti-
mates from the R-Vine Copula model.

We transform the uniform values using the trimmed em-
pirical quantile distribution of our residuals into simulated
observations.

We enter the simulated estimates into the ARIMA model
and obtain the results after taking the exponential function
of the values.

4 Computational experiments

The provided sample is hourly data for the year 2017,
with the Price in €/ MWh, Wind in MWH and Demand
in MWH. The data contains two missing observations,
they are interpolated, additionally the last 263 observa-
tions for Wind data are missing, in order to model this
data an ARIMA model is fitted on the observed sample
and the 263 missing values are estimated. The approach



used is close to the GARCH Copula estimation, in place
for a ARMA(p,q)-GARCH model and ARIMA model is
used, since the data is unlikely heteroskedastic and it is
unnecessary to model GARCH effects for this time series.
This method enables us to fit the a copula approach easily
to the data and to model the time series behavior.

First the data is fitted to an ARIMA model, that is op-
timally chosen based on the AIC criterion. The ARIMA
process is required to be stationary and seasonal, this is
necessary because of the limited amount of data, we are
forecasting a year using only a year of data, trends cannot
be captured reliably. It might be a substantial increase in
wind production, but it is not clear if it is due to a windy
year or additional wind farms, that would increase next
year’s production as well. The seasonality is assumed be-
cause of the nature of the data, wind is seasonal, as well
as the demand, the price is seasonal as well. In order to
ensure positivity of the data, we are fitting the natural log-
arithm of the data and transform them for analysis later on.
In order to minimize extreme observations in our data set,
considering the large time frame we are trying to model,
we trim the residuals at 3% (we remove the 3% lowest and
the 3% highest values). With this value we have a near
normal kurtosis, before the kurtosis for the price and the
wind reached over 40. In order to ensure that our results
remain robust for different cutoff values, we used multiple
values, the results are not inconsistent, the variation of the
data increases as expected.

The estimated coefficients of the ARIMA model are
presented in table (2), the standard errors for the coeffi-
cients are low and the model fit seems to be reasonable.
In order to model serial dependence the innovations need
to be modeled, in order to model them we are standard-
izing the residuals and transforming them into uniform
[0,1] margins. The best R-Vine copula model is chosen
by optimizing the bi-variate copula models and choosing
the best fit with the AIC criterion. We sample the residu-
als from the trimmed series, we draw them based on their
assigned uniform [0,1] margins provided by the random
sampling from the copula. In the next step we find the best
R-Vine Copula using maximum likelihood estimation and
the AIC criterion. Simulations are conducted from this
R-Vine structure. The result are uniform [0,1] simulation
results of correlated seasonal innovations for wind, price
and demand. To transform the uniform margins into real-
istic values, we use the quantiles of the trimmed residual
series.

Using this series and the ARIMA model the simulation
is conducted using the simulated innovations. The expo-
nent of this result is combined with the new series to gen-
erate the plots (a)-(c), left from the red line is the original
series and right from it the simulated series. The model
clearly outperforms an ARIMA model with standard nor-
mal errors, that is not capturing any correlation between
demand, wind and price, that the copula innovations are
able to capture.

In table two the estimated ARIMA coeflicients are
shown, the best ARIMA Model is chosen according to its
Aikaike estimation criteria. The model is assumed to be
seasonal and we allow for models with non-zero mean. In

order to achieve a positive simulation, we add the absolute
minimum to the series, this does not change the character
of the time series modeled but ensures consistent positive
values.

5 Discussion

Table one shows the kendall correlation of the empirical
sample. Demand and price is positively correlated as well
as demand and wind, we see a small negative relationship
between wind and price, likely because the wind barely
has influence on the price, outside of extremely windy cir-
cumstances. From the correlations themselves we cannot
make conclusions about the endogeneity. Surprising is the
large correlation between demand and wind and the lack
thereof in terms of prices. But maybe when it is windy it
is more likely cloudy, thus more energy is consumed for
heat and light.

The proposed model with copulas can model depen-
dencies, this benefit can be seen in table one, this table
displays the range of the kendall correlation for all sim-
ulations. The range is wide but it is reasonably close to
the sample and is capturing a large portion of the observed
sample correlation. The coefficients cannot be the same,
because there is likely a higher correlation for extreme ob-
servations, which we omit for the simulation in order o
receive more realistic simulations.

Table 1: Data correlation

correlation sample

Demand Price Wind
Demand | 1
Price 0.4 1
Wind 0.2 -0.07 1
correlation simulation
Demand | 1
Price 0.14-0.31 1
Wind 0.08-0.30 0-0.14 1

Table two shows the estimated ARIMA coefficients,
since we required the model to be stationary, a mean is
always estimated. This is reasonable here, because we at-
tempt to forecast a year of data, because we just have a
sample of one year length, assuming there is a trend in the
wind production would be likely overfitting the model in
sample. The model is fitted on logarithms, in order to en-
sure positive values after the simulation. Below the values
the standard errors are displayed.

The fig. 1 shows each time series, on the left side of
the vertical line is the original time series, on the right
side the simulation. The time series is standardized to 1
and for the simulation we trim the values at 3%, this re-
duces the kurtosis of the residuals substantially and thus
produces more reliable simulations over such a long time
frame. We tried different ranges and it produces still rea-
sonable results. The histograms display that the sample
properties are conserved, we can see more outliers, be-
cause we have more observations in 100 simulations. The
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Table 2: ARIMA coefficients

ARIMA coefficient estimates Wind

arl ar2 mal mean
1.5544 -0.5705 0.1052 7.3758
0.0137 0.0136  0.0165 0.0558
ARIMA coefficient estimates Demand

arl ar2 mal mean
1.1107 -0.1455 -0.3716 6.9896
0.0681 0.0637  0.0652 0.0128
ARIMA estimates Price

arl ar2 mal ma2 ma3 mean
0.3117 0.493 1.1201  0.5782 0.2114 3.3671
0.0693 0.0624 0.0689 0.0381 0.0149 0.0073

histograms show that the distribution of the year in sample
and the simulations is reasonably close.

The model is able to capture correlation structures in
the data that traditional approaches, like an ARIMA simu-
lation with standard normal errors are not able to capture.

6 Conclusion

In this paper multivariate scenario generation based on
three variables: demand, wind and price is presented. In
the proposed multivariate scenario generation technique
ARIMA is used for forecasting and copula for adjusting
the residuals. The tail adjustment of the distribution and
the impact is also discussed. In future works a compar-
ative analysis of different statistical scenario generation
technique for multivariate data would be conducted.
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Abstract. Reliability of power system in terms of investments in network maintenance and restructuring for
power distribution network has gained importance due to increase in distributed generation. To determine the
reliability of the power distribution network, the state of power apparatus, losses in the network and consumer
satisfaction indices are key factors. Considering the aforementioned, this paper proposes a holistic reliability
framework for power distribution networks. The framework lists the following factors: life cycle of power
apparatus, environmental and sociological, node reliability, arc reliability. A case study for reliability evaluation
is performed on a modified IEEE 14 bus network. Furthermore, multiple scenarios of generation fault or outage
are studied and results are presented. The key contribution of this paper is to present a novel and holistic

reliability framework to model distribution network.

1 Introduction

The aim of this paper is to develop an evaluation frame-
work for reconfiguration of an electrical power system.
Given study is influenced by the economical aspect of a
network operator which implies to have the needed electri-
cal, environmental, and economical indicators of an elec-
trical power system to assess the optimal possibilities for
reconstructing it. Many power system management util-
ities try to rationalize their network and optimize the to-
tal life-cycle costs of the components, due to the regula-
tion of power quality and the reliability issues. For the
given problem, many methods of assessment modeling
have been introduced in the literature. System well-being
method for power networks adequacy assessment using
monte carlo simulation is presented, specifically for ca-
pacity reserve allocation [1]. This study expanded with
renewable energy resources in [2]. This subject is fur-
ther explored in the book series about reliable and sus-
tainable power systems management [3]. Role of outage
management and strategies are discussed here [4]. Reli-
ability evaluation of power systems establishes measures
to identify power interruptions and their implications [5].
However the approach is limited to power system events.
For instance the state of the power apparatus is an impor-
tant indicator to observe the system status. Detail concepts
of power system reliability are presented in [6]. Reliabil-
ity and connected parameters are introduced and and event
tree analysis for event prediction is described here [7].
Many regionally owned utilities have been privatized,
where the main concern are optimal investment planning
for expansion and maintenance while maintaining the sys-
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**e-mail: jmateo @diei.udl.cat

tem reliability. Therefore, to improve and maintain power
quality various regulation models have been introduced.
These models enforce network companies to optimize
their operations and schedule their maintenance activities
without having to compromise the reliability nor the safety
of the power system network. Reliability analysis is one
of the key ways to inspect optimal asset management. A
study has been conducted in [8-10] for evaluating the fail-
ure rates and reliability modeling for power distribution
network. The reliability analysis has been utilized for op-
timal dis-connector allocation. In the analysis, the failure
rates are constant for similar components, which are influ-
enced by many different mechanical, environmental and
electrical stresses. Usually for component failure mod-
els reliability calculations are based on the exponent dis-
tribution and failure rates are considered to be constant,
which may be an inadequate approach. In some scenarios
a scalar value is used for estimating the component fail-
ure rates while planning. Monte Carlo simulations are im-
plemented to take into account effects of the surrounding,
or enhanced component failure models which are based
on constant component failure rates, to evaluate compo-
nent related and the environmental aspects in reliability
analysis. Another modeling approach is proportional haz-
ard method, where age and other various additional infor-
mation have been considered. Further information may
include weather and environmental factors that affect the
components. These models require significant data to be
analyzed to investigate the essential dependencies affect-
ing the component failure and malfunction. At the same
time, Markov models are more commonly used, where the
component failure rates are modeled by estimating the ef-
fects of the component faults for the system. Moreover,
there are many factors that may lead to component failure



such as weather condition and power surges. Therefore,
predicting the component failure accurately is a challenge.
As a consequence, the readiness of the power distribution
network to optimally resolve the fault while ensuring un-
interrupted power supply is the research objective.

1.1 Motivation for Reliability-based Network
Decision-making

The main demand for reliability oriented network restruc-
turing (RNR) is to have the estimates of failure rates which
consider the main stress factors and the possibility to have
first estimates from incomplete data to update values when
more improved data is available. Components of distri-
bution networks (DN) are modeled separately since the
component failure rate is independent of factors that af-
fect the power network. In this study, DN has been di-
vided into four main components: overhead-lines (OHL),
cables, transformers, and groups of switch-gear. For each
component the main reasons for permanent faults and auto
re-closings is determined. Separate failure rates for each
component types are based on the reasons for a fault,
e.g. aerial line overall failure rate is dependent on light-
ning, different weather conditions, and other fault related
causes. The main stress factors that influence the failure
rate, have been determined for all the reasons mentioned
above. All the stress factors are classified into appropri-
ate classes, for instance, the location could be by the sea-
side, near the forest or on a field. For all these classes a
weight has been defined to represent the effects of a certain
class to failure rate. For a total failure rate, temporary and
permanent faults can be calculated. A practical approach
on component modeling is to use the idea that parame-
ters used in failure rate modeling should be possible to
be affected by the selected planning strategies. Therefore,
effects of the weather are included as an own parameter
to failure rate modeling, however they are still included
in condition information of the affect to the stress toler-
ance. Furthermore, the effects of component aging can be
explained with other component related factors, therefore,
life expectancy is included in condition weight informa-
tion. Failure rate parameters must be determined before
modeling methods can be used [11].

General failure rate of components were calculated as
a weighted mean from failure rates of separate companies.
Defined parameter groups are used to calculate the sepa-
rate failure rates. Basic input data is the component infor-
mation, i.e. component type, failure rate, and the network
topology. Additionally, other information are needed re-
garding those factors that affect the analyses results, such
as maintenance costs. In the enhanced radial reliability
analysis, the network is with feeders and zones, which re-
fer to a part of a feeder. In the given analysis, expected
amount of permanent and temporary failures in a zone is
calculated as an entirety of the individual network compo-
nent failures. For a temporary fault, the whole feeder is ex-
periencing the same short interruption. In the given analy-
sis, experienced faults are defined for each load point. De-
termination of maintenance costs is done by analyzing the
possible terrains where the components are located related

to the total interruptions in the certain area. Therefore,
the RNR framework can be expressed as an asset man-
agement model considering the Life-Cycle Assessment of
power system components. To replace OHL’s and under-
ground cables, reliability of its reconfiguration is based on
environmental and consumer preferences, N-1 criteria, and
the objectives for minimizing the investment costs. Re-
configuration of networks is primarily done to accommo-
date new consumers, which is achieved by extending the
existing node through a new arc, and to replace some ex-
isting out-of-date lines. Network operators can adjust the
failure rate and reliability parameters with their own net-
work data. Smart grid components can identify the fault
region of the feeder and update it with secure supply of
energy from the same power network. Reliability indica-
tors mainly include measures of outage duration and its
frequency, the amount of power or energy not supplied,
and the number of customers involved in outages. These
indicators are determined over predefined period of time,
such as SAIFI, SAIDI, CAIDI, ENS.

The rest of the paper is organized as the following sec-
tions: reliability framework, power network weight evalu-
ation. In reliability framework each element of the frame-
work concerning the power network is presented. An ex-
ample case of IEEE 14-bus network is presented and dis-
cussed. Subsequently we evaluate generation loss scenar-
ios and the results are presented in the power network eval-
uation section.

2 Power System Reliability and Adequacy

Power system adequacy refers to the condition of a power
network considering generation, transmission and distri-
bution units. Power system reliability refers to the state
of network to sustain flow of energy from point of gen-
eration to demand at any point in time. The relationship
between reliability and investment cost is presented in fig.
1. The figure signifies with outages or otherwise power
interruptions the reliability reduces and the investment in-
creases. Therefore, the planner need to pay attention so as
to optimally plan for the expansions or maintenance of the
distribution network. The indicators to determine the con-
dition of power system can be broadly classified in to five
categories: life cycle of power apparatus, environmental
and sociological, node reliability, arc reliability and node
reliability concerning losses. The table 1 outlines the asso-
ciated indicators. These parameters organize the indicators
taking into account the network as a node-arc formulation.

2.1 Life cycle assessment (LCA)

Life cycle assessment (LCA) is a method to determine the
environmental impacts from a product, a process, or an ac-
tivity. It is also used to assess the remaining utilization life.
Throughout the product lifetime the impacts mainly origi-
nate from the power losses during the use phase, although
installation, maintenance, and dismantling also contribute
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Table 1: Power system reliability and adequacy indicators

LCA Environmental Node reliability
& Sociological indicators

Cable Terrain SAIFI
value

OHL Weather SAIDI
value

Transformer Consumption ENS value

Switchgear Generation Availability

Emissions

Arc reliability | Node reliability

indicators indicators concerning losses

AIT LOLE

AIF LOEE

AID EIR

to it. Transmission and distribution assets have been com-
prised of power lines, cables, transformers, substations,
and other electrical components to generate wide range of
environmental impacts, such as the equipment emissions
and material weight value. The life cycle stages viewed are
interpreted as the production or the manufacturing phase
of a product or its use phase. The used life cycle inven-
tory consists of material requirement for grid components
and their environmental impact. For all the components,
the functional unit is one equipment operational during the
lifetime.

Given network is a high and medium voltage network,
with three distributed generation inputs. Biomass and oil
shale produce the distributed generated energy, with an
additional input from a submarine cable. The network
nodes are depicted as substations with each bus-line hav-
ing an ideal energy consumer as residential or commercial.
The transmission line is either an underground cable or an
overhead-line. The normalized weights are allocated to
arcs and nodes based on the historical data and expert’s
opinion. For instance, an indicator depicting transmission
line weight is valued at 4000.5 kg/km, although Switch-
gear emissions are valued at 185.38 kg CO, per trans-
former. Weights are normalized and translated to the cost
of maintenance for the distribution system operator. In this
method, dissimilar components can be compared based on
the cost of investment.

2.1.1 Cable

Medium voltage power cables are characterized in [12].
In this study we concentrate on three different voltage lev-
els, with each having one or two different types of cables,
therefore five different cables are evaluated. Cables are

chosen based on their suitable voltage level, cable diame-
ter and the conductor and the insulation type.

A transmission line of 6 or 10 kV spanning over 9 km,
a three-core cable is proposed with diameter of 370 mm?.
This cable weighs 5400 kg/km. Cable indicators in a net-
work reconstruction evaluation are the conductor and in-
sulation. In the example, conductor weight is calculated
as the diameter of the conductor (i.e. Al conductor diame-
ter = 9.8 mm) multiplied with conduction material density
(Al density = 2.7 kg/km). i.e. Cable, which weighs 5400
kg/km has an aluminum conductor which weighs 124.7
kg/km and insulation of 5275.3 kg/km [13]. Different
kinds of lines vary mainly in sizing of the cross section of
the conductor, however the mentioned cross section is not
the actual measurement of the wire, but rather the area of
the conductor gives the needed cross section, such as alu-
minum, copper or steel. Data from cable producers is used
to identify the correct amount of material input for each
of the line types. For the power system network, at three
different voltage levels, each voltage level is applied with
power lines with the following conductors: aluminum (2.7
£2), copper (8.89 £%) and steel (7.83 £%). The power
line data is derived from manufacturer’s data provided by
ABB [14]. From the catalogue, the most suitable power
lines are chosen, based on their voltage level and the con-
ductor material. Considering the length of a given power
line and the cross section provided by ABB, it is possible
to find the weight of a conductor [14].

Given the total length of underground cables and over-
head lines, and additionally it contains the calculated val-
ues of the power line conductor and insulation weight rel-
ative to their material. The insulation material composi-
tion is also derived from the manufacturer specifications
[14]. Typically, the installation of cables requires exten-
sive underground pathways. Due to insufficient data, these
parameters are not included. However, some general con-
struction processes are included, such as the weight differ-
ence and the relation to the actual line weight are applied.
These electrical masts are calculated by their tension and
sag related the length between each pole. Also, different
height of masts is assumed for each voltage level. Poles
are described by their suitable voltage level, material use,
height, span, tension, and sag.

Table 2: Reliability assessment of power conductor

Voltage level Cable length Cable diameter

(kV) (km) (mm?)

6+10 9 3%70

Cable line Conductor ‘Weight

weight (kg/km) diameter (mm) (kg/km)

5400 9.8 646.5

Conductor material Weight
Insulation type

(Aluminum (Al)) (kg/km)

Al XLPE 5275.3

2.1.2 Transformer and switch-gear

Transformers used in this study are assumed to be ideal,
without having to relate to the criterion N-1 (in case one



Node 1 2 3 4 5 6 7
(‘l’:’\',';‘ge level 110/10  110/35/10/6  110/35/6  110/35/6  110/10  35/6 110/35/6
Generation [0/1] 0 1 0 0 0 0 1
Generation, kWh 0 925 0 0 0 0 1000
Transformer

[0,1,2] 1 2 1 1 1 1 1
Transformer

typel1,2,3] 1 1+3 2 2 1 3 2
Life expectancy 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Conductor weight

(kg/Trfo) 0.61 1.00 0.57 0.57 0.61 0.00 0.57
Conductor weight

(kg/kVA) 1.00 1.00 0.001 0.001 1.00 0.00 0.001
Trfo_oil weight 5 5

(kg/Trfo) 0.56 1.00 0.22 0.22 0.56 0.00 0.22
Trfo_oil weight

(kg/kVA) 1.00 1.00 0.00 0.00 1.00 0.0002  0.00
Energy demand

(kWh) 250 275 275 325 300 350 350
Energy demand 0.00 0.25 0.25 0.75 0.50 1.00 1.00
SG type 1 4 2 2 1 3 2
Life expectancy 0 0 0 0 0 0 0
GWP 0.14 1.00 0.02 0.02 0.14 0.00 0.02
AP 0.22 1.00 0.03 0.03 0.22 0.00 0.03
NP 0.44 1.00 0.05 0.05 0.44 0.00 0.05
SF6 (% of all 0.00 1.00 0.11 011 0.00 0.02 011
emissions )

Total value: 0.15 1.00 0.05 0.05 0.15 0.01 0.05
Terrain 4.00 9.00 5.00 7.00 4.00 5.00 7.00
Terrain coefficients | 0.38 1.00 0.50 0.75 0.38 0.50 0.75

Table 3: Reliability indicators and weights for modified IEEE 14 bus network [1/2]

transformer is interrupted, the power flow will continue).
Therefore, a substation is only constructed with 1 trans-
former, with one exception of a substation with four dif-
ferent voltages. For that substation, the assumption of hav-
ing two transformers gives a more effective distribution.
The data for this table is provide by ABB [14]. Trans-
former weight is based on the conductor material (copper)
weight in the wiring and the profile during the manufac-
turing phase. Furthermore, the transformers under evalu-
ation are assumed to be almost equal to the ones from the
manufacturer, e.g. for a 110/10 kV substation, 220/15.6
kV transformer is used [110 —220]. For a network sub-
station, the different combinations of switch-gear are as-
sumed based on their operating voltage level. These com-
binations are needed for environmental impact assessment,
which will be talked about later on. Switch-gear values are
based on the environmental impact per transformer.

2.2 Node reliability indicators

Given reliability indicators combine the factors related to
outage duration or the response time, frequency of out-
age, number of customers involved in interruption or their
lost power and energy. System average interruption fre-
quency index (SAIFI), system average interruption dura-
tion index (SAIDI), energy not supplied (ENS), average
service availability index (Availability), average interrup-
tion time (AIT), average interruption frequency (AIF), av-
erage interruption duration (AID) are among the measures
to evaluate the interruptions and its impacts.

2.2.1 Terrain and weather effects

The failure rate of any component in a power system net-
work is assumed to be influenced by different internal

(quality and type of transmission line) and external factors
(terrain, topology and weather conditions). Nine differ-
ent terrain types are considered for this study that outlines
the network environments. For example, the hill-like lo-
cation has a lower failure rate compared to a commercial
location, because in the commercial surrounding, there are
more internal factors related to the consumption, and sea-
side has a lower failure rate than the forest, because forest
is prone to fail e.g, trees falling. For the outage of a gen-
eration unit a maintenance cost incurs for the system op-
erator. Factors like replacement or repair or maintenance
cost for a corridor or line segment of the power network
is considered. Additionally the environmental impact of
an outage in terms of fuel consumption during the servic-
ing and resulting environmental impact is also taken into
consideration [15].

3 Evaluation of Power Network Condition
under Outages

The fig. 2 presents the IEEE-14 bus network with zones.
Each zone presents a geographical location. Tables 3 and 4
presents the indicators and the corresponding values (nor-
malized) for measuring the system reliability based on
nodes under the proposed framework.

The formulation for probability of failure Q, for bus n
can be presented as in (1). In (2) frequency of failure Qf,
is presented [6].

Q, = Z[P(Oj)(Pi‘,gPI‘[ =Py iPp)l (1)

Q) = Y 10)(PiyPi; = PyiP1y)] @



Nodes 8 9 10 11 12 13 14
Voltage level (KV) 110/35/6  110/10/6 _ 110/35/10 _ 110/i0 __ 110/10 _ 110/35/6 _ 35/6
Generation [0/1] 0.00 0.00 1.00 1.00 0.00 0.00 0.00
Generation, kWh 0.00 0.00 2000.00 1000.00  0.00 0.00 0.00
Transformer
[0,1,2] 1.00 1.00 2.00 1.00 1.00 1.00 1.00
Transformer

. . 3 . . X 3.
typel1,2,3] 2.00 2.00 1+ 1.00 1.00 2.00 00
Life expectancy 0.20 0.20 0.20 0.20 0.20 0.20 0.20
Conductor weight
(kg/Trfo) 0.57 0.57 1.00 0.61 0.61 0.57 0.00
Conductor weight
(kg/kVA) 0.00 0.00 1.00 1.00 1.00 0.00 0.00
Trfo_oil weight
(kg/Trfo) 0.22 0.22 1.00 0.56 0.56 0.22 0.00
Trfo_oil weight
(kg/kVA) 0.00 0.00 1.00 1.00 1.00 0.00 0.00
ﬁ("vevrf)y demand 32500 35000  275.00 300.00 30000 32500 300.00
Energy demand 0.75 1.00 0.25 0.50 0.50 0.75 0.50
tsyvlv)‘;d"ge"“ 2.00 2.00 400 1.00 1.00 2.00 3.00
Life expectancy 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GWP 0.02 0.02 1.00 0.14 0.14 0.02 0.00
AP 0.03 0.03 1.00 0.22 0.22 0.03 0.00
NP 0.05 0.05 1.00 0.44 0.44 0.05 0.00
SF6 (% of all 0.11 0.11 1.00 0.00 0.00 0.11 0.02
emissions )
Total value: 0.05 0.05 1.00 0.15 0.15 0.05 0.01
Terrain 7.00 5.00 9.00 5.00 1.00 4.00 5.00
Terrain coefficients | 0.75 0.50 1.00 0.50 1.00 0.38 0.50

Table 4: Reliability indicators and values for modified IEEE 14 bus network [2/2]

1. Seaside.

2. it
14 3. Forest
4. Sparso Residential

Figure 2: Classification of modified IEEE-14 bus network
into zones based on weights

Where O; is the condition of outage in the power trans-
mission network. P;, is the probability of occurrence of
capacity outage beyond reserves. And probability of unin-
terrupted power supply. The availability (y) is calculated
asy = 1 — S&EIS where P; is average power supplied by
the total systerh and ENS (Energy not supplied because of
interruption) and P; stands for power interruption for in-
cident i. The total cost is product of component capital
cost times availability. And the repair cost is the cost of
repair times the total cost. Similarly the maintenance cost
is value of fault times the repair costs.

Considering the four generation units 15 generation
outage states are assessed. Figure 3 demonstrates the net-
work topology and number of consumers with respective
per unit energy consumption. There are 314 numbers of
consumers in the 14 bus network with total consumption

XX 115
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2
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s &\z/
3
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0 2 4 6 8§ 10 12 14 16

Nodes

Figure 3: Node wise number of consumers with respective
consumption in per unit

of 8.008. Table 5 states the power system indicators for
evaluating the faults and losses with respect to line for in-
terrupted load. The sum total SAIFI, SAIDI, ENS for the
network are 0.00426, 8.925 and 0.196 respectively. The
relative cost in € for investment, repair and maintenance
are presented in table 6. The net overall investment is
29.29215 followed by 0.124837 for repair and 0.0005320
for maintenance cost.

Power generation (per unit)



Line | Interrupted load SAIFI SAIDI ENS Availability CAIDI CAIFI
1 0.0002514 0.000231 0.48 0.001442673  0.999999849  0.226468312  0.000230734
2 0.0008140 0.000258 0.54 0.004670347 0.999999831 0.253111642 0.000257879
3 0.0011720 0.000244 0.51 0.006724321 0.99999984 0.239789977 0.000244307
4 0.0026381 0.000271 0.57 0.015135836 0.999999822 0.266433308 0.000271452
5 0.0013212 0.000271 0.57 0.007580144  0.999999822  0.266433308  0.000271452
6 0.0066484 0.000299 0.63 0.038145242  0.999999804  0.293076639  0.000298597
7 0.0026210 0.000299 0.63 0.015038028  0.999999804  0.293076639  0.000298597
8 0.0020925 0.000312 0.65 0.012005970 0.999999796 0.306398304 0.00031217
9 0.0035842 0.000312 0.65 0.020564198 0.999999796 0.306398304 0.00031217
10 0.0008140 0.000285 0.60 0.004670347 0.999999813 0.279754973 0.000285025
11 0.0021991 0.000299 0.63 0.012617272  0.999999804  0.293076639  0.000298597
12 0.0036907 0.000299 0.63 0.021175500  0.999999804  0.293076639  0.000298597
13 0.0036609 0.000285 0.60 0.021004335  0.999999813  0.279754973  0.000285025
14 0.0013425 0.000299 0.63 0.007702405 0.999999804 0.293076639 0.000298597
15 0.0012785 0.000299 0.63 0.007335623 0.999999804 0.293076639 0.000298597

Table 5: indicators regarding system interruptions and losses 1073

Line Loss Cost ]

LOLE LOEE EIR Investment Repair Maintenance
1 0.001051799 1.85256E-06  0.999998147 3.49999 0.014916260  0.000063570
2 0.003404977 1.94149E-05  0.999980585 3.49993 0.014915998  0.000063569
3 0.004902454 4.0247E-05 0.999959753 0.59998 0.002556975  0.000010897
4 0.011034979  0.000203915  0.999796085 0.59988 0.002556556  0.000010896
5 0.005526403  5.11437E-05  0.999948856 0.59997 0.002556947  0.000010897
6 0.027810287  0.001295143  0.998704857 3.49547 0.014896969  0.000063488
7 0.010963671  0.000201288  0.999798712 0.59988 0.002556563  0.000010896
8 0.00875311 0.000128301  0.999871699 3.49955 0.014914374  0.000063562
9 0.014992597 0.00037641 0.99962359 3.49868 0.014910673  0.000063546
10 0.003404977 1.94149E-05  0.999980585 0.59999 0.002557028  0.000010898
11 0.009198787  0.000141699  0.999858301 3.49950 0.014914174  0.000063561
12 0.015438275  0.000399121  0.999600879 0.59976 0.002556057  0.000010893
13 0.015313485  0.000392695  0.999607305 0.59976 0.002556074  0.000010893
14 0.005615539  5.28068E-05  0.999947193 0.59997 0.002556943  0.000010897
15 0.005348132  4.78973E-05  0.999952103 3.49983 0.014915573  0.000063567

Table 6: Relative costs for lines (€)

4 Conclusion
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Abstract—This paper is about an application of optimal
power flow calculation for considering how interconnections of
microgrids affect the reliability of the system and the need of
network reconfiguration. For this purpose reliability indicators
for power system restructuring are presented. A reliability ori-
ented network restructuring (RNR) mathematical optimization
model is proposed for solving power grid expansion decisions with
non-linear AC-OPF. The microgrid structures are derived from
the standard IEEE-14 bus system architecture. The proposed
reliability framework is implemented with the set of reliability
indicators for measuring the system performance. The model
was solved using outer approximation algorithm. The analysis
is conducted to investigate the importance of restructuring in
an investment decision for the expansion. The results with a
comparison between investment and investment with restructur-
ing are outlined. Consequently, the expansion considering the
restructuring is found to be practical and feasible.

Index Terms—power system expansion, reliability and vul-
nerability, optimal power flow, microgrids, non-linear system of
equations, outer approximation algorithm

I. INTRODUCTION

HERE is an energy transition from “top-to-bottom” to

“bottom-to-top” flow of energy. The conventional gen-
erator is at the top in the former and multiple renewable
energy based generators are at the bottom in the latter. The
increased share of renewable energy resources (RES) in the
power generation mix is one of the primary reasons for the
transition. With this transition the macro-grid is sub-divided in
to multiple micro-grids with distributed and renewable energy
technologies. However integrated, intermittent and distributed
generations have increased the risk of security of supply as
their utilization grows in distribution networks. Micro-grid
(MG) is more sensitive to power quality issues when it is
maintained on local resources. Voltage imbalance, voltage
drops, between generation and load are serious issues which
are caused by connection of single-phase loads and sources.
The objective of the modern network operator is to employ the
smart grid technologies to plan, operate and maintain a modern
power system economically stable and with an acceptable level
of reliability.

Optimal power flow (OPF) is a central operational tool for
power systems. The direct current (DC) version is mostly
used for the high-voltage networks for transmission of bulk
power. The alternating current (AC) version is primarily used
in case of distribution networks, especially in the distribution
grid problems such as grid planning, optimal controls, reactive

This article was partially funded by the European Union via the European
Regional Development Fund.

power dispatch and unit commitment. Primary objective of
OPF is to maintain the system stability while minimizing
the cost of operations and maintenance. Investment decisions
considering power system constraints are closer to practical.
OPF in its original form is a highly non-linear problem. The
non-linearity of the system of equation is usually solved using
iterative Gauss-Siedel or Newton-Rapson method. Moreover
OPF is a non-convex optimization problem. It is also a NP-
hard problem (see [1], [2]) to find a solution for radial
networks. To solve such a problem literature suggests a)
approximation- with relaxed physical properties of OPF b)
non-linear optimization methods c¢) heuristics/meta-heuristics
d) convexification. The power system mostly consists of radial
networks. In literature a lot of work is done to linearise and
relax the constraints. The models can be broadly classified
as a) original OPF (O-ACOPF), b) augmented OPF (A-
ACOPF), c¢) augmented-relaxed (AR-ACOPF) OPF [3]. In
literature there are exact numerical solutions provided through
distributed optimization based on alternative direction method
of multipliers and semi-definite relaxations for radial and non-
radial networks [3]-[8]. However, only numerical proofs for
specific grids are portrayed in place of generalized exact proof
of the relaxation of the problem. In this paper we use a feasible
and near-optimal outer approximation algorithm to solve the
non-li/near ACOPF problem. Keeping the physical properties
of the power distribution system intact we focus on the OPF
in IEEE 14 bus network with power injection of intermittent
and non-dispatch able generations at multiple edges of the
distribution network. The model considers the two-port pi
network for the transmission line representation. The model
is tested over three microgrids with an IEEE-14 bus radial
network configuration.

Distribution system expansion or in this case MG expansion is
often an optimal investment and operational decision. However
most of the investment models lack power system aspect of
expansion. Treated problem on a high level prospective. The
contribution of this paper is to investigate how expansion
decisions affect the reliability of the system, and therefore
the importance of restructuring in power network expansion.
A reliability oriented network restructuring (RNR) framework
is presented.

II. RELIABILITY ORIENTED NETWORK DECISION-MAKING

Due to power system regulation power quality and relia-
bility issues, concerning many management businesses, many
utilities try to rationalize their network and optimize the total
life cycles costs of the components [9]. Many municipality



owned utilities have been privatized, where the new owners are
mainly considering profitable investments, therefore to avoid
power quality’s reduction, various regulation models have been
issued. Given models enforce network utilities to optimize
their operations without compromising the reliability nor the
safety of the network. Reliability analysis are one of the ways
to inspect the optimal asset management. Similar analysis
has been developed in Tampere University of Technology, in
the 1980’s, where the reliability analysis has been utilized
to evaluate optimal dis-connector locations. In the analysis
[10], the failure rates are constant for similar components,
where those components are influenced by many different
mechanical, environmental and electrical stresses. Usually in
component failure model’s reliability calculations are based
on exponent distribution and failure rates are considered as
constants. However the constant failure rate is an inadequate
approach, therefore many models for estimating component
failure rates have to be used. In some cases, Monte Carlo
simulation is utilized to take into account effects of the
surrounding or enhanced component failure models, which
are based on constant component failure rates to evaluate
environmental and component related aspects in reliability
analysis. Another modelling approach is done as a propor-
tional hazard method, where it can consider age and various
additional information, such as weather and the information
surrounding the components. These models require lots of
data to find essential dependencies affecting the component
reliability to fail, therefore these models are not commonly
used. Sometimes Markov Models are also used, where the
component failure modelling is done by estimating the effects
of the component faults for the system [11], [12]. Usually
complex system models are needed, because there is a large
amount of possible transitions needed for each component,
such as for different weather conditions. Main requirement
for RNR is to have estimates of failure rates considering
main stress factors and the possibility to have first estimates
from incomplete data and update values when more improved
data are available. Components of distribution networks must
be modelled separately, therefore component failure rate is
dependent on different factors.

In this study the distribution network has been divided
into five main components: aerial lines, cables, transformers
and switches. For each component it has been determined
the main reasons for permanent faults and auto re-closings.
Separate failure rates for each component types are based on
the failure reasons, e.g. transformers overall failure rate is
dependent on lightning, animals and other fault causes. For
all the reasons, the main stress factors which affect the failure
rate have been determined. All the stress factors are classified
into appropriate classes, for instance the location can be a
forest a place near the road or a field. For all classes a weight
has been defined, which represents the effect of a certain
class to on the failure rate. For total failure rate, permanent
and temporary faults can be calculated. A practical approach
in component modelling is to use the idea that it should be
possible to affect the parameters used in failure rate modelling,

with selected planning strategies. The weather pattern is not
considered directly in failure rate evaluation but included in the
apparatus condition, for instance in the stress tolerance. The
age factor is included in condition weight information. Voltage
dip analysis is also used for examining short interruption,
where each component is defined based on permanent and
temporary short circuit failures. Dip rates are used to define
number and depth of dips in the network. Voltage dip can be
analyzed by adding information of total short circuit ratio to
every separate failure rate. Failure rate parameters must be
determined before modelling methods can be used.

The statistics, in this paper, have been collected by Finnish
network companies, where the used statistics are based on
population and outages. The analyzed data consists of 2400
faults, where about 60% of those were aerial line faults.
The population covers about 11,000 km of cables and aerial
lines and about 12,500 transformers for several years’ time
period. General failure rate of components were calculated as
a weighted mean from failure rates of separate companies.
Defined parameter groups are used to calculate the separate
failure rates. The basic input data set is the component
information, i.e. type, failure rate, and the network topology,
also some other information are needed which are affecting
results of the analysis, such as repair times and automation
devices installed. In the enhanced radial reliability analysis,
network is analyzed with feeders and zones, where zone refers
to a part of feeder. In the given analysis, the expected amount
of permanent and temporary failures and voltage dips in a zone
are calculated as a sum of the individual network component
failures. Determination of repair time is done by analyzing the
possibilities to isolate load points from the faulted component
and then restore the load points with dis-connectors. For a
temporary fault, the whole feeder is experiencing the same
short interruption. In given analysis, experienced permanent
and temporary faults and voltage dips are defined for each load
point. Cost information is based on total interruption times
in certain area, permanent and temporary fault and voltage
dip occurrences defined with the radial network reliability
analysis [13]. Utility outage costs is based on the value of non-
distributed energy and fault repair costs. Other costs, such as
losses in production are considered in defining inconvenience
costs for the customer. The expected permanent outage annual
costs are caused by a fault in the zone under study. Thus
RNR framework can be expressed as an asset management
model considering the Life Cycle Assessment (LCA) of power
system equipment. Combined with OPF, it is a complete one-
stop solution network management and planning platform.
Reliability of reconfiguration by replacing overhead lines and
underground cables, is evaluated considering environmental,
consumer preference, n-1 contingency and DSO objectives
while minimizing the investment cost.

The reconfiguration of networks is primarily done to ac-
commodate new consumers. This is achieved by extending the
connection of an existing node through a new arc. Secondly
it is done by replacing some existing lines. Network utilities
can adjust the failure rate and reliability parameters with their



own network information. A Switch Gear (SG) can identify
the fault region of the feeder and update it with secure supply
of energy from the same power network. Reliability indices
mainly include measures of outage duration and its frequency,
the amount of power or energy which is not supplied, and the
number of customers involved in outages. IEEE has defined
reliability indices, such as System Average Interruption Fre-
quency Index (SAIFI), System Average Interruption Duration
Index (SAIDI), Customer Average Interruption Duration Index
(CAIDI), Energy Not Supplied (ENS) [14]-[17]. Such index
are system and customer average interruption of frequency and
duration, and energy-based index, referred to as energy not
supplied. Indicators are determined over a predefined period
of time.

III. RELIABILITY INDICES

A. Node reliability indices

1) Expected load not served (ELNS): The ELNS measures
the average amount of energy not supplied to loads as a
result of load shedding events. As its own name indicates, the
expected load not served is a weighted average energy value
accounting for both the probability of contingencies and the
damage that these contingencies cause to the system in terms
of lost load.

2) Loss-of-load probability (LOLP): The LOLP is com-
puted as the probability that failure events lead to load
shedding. As opposed to the ELNS, however, the loss-of-load
probability is a dimensionless number that does not provide
any information on the severity of the disturbance, i.e., on
the energy not supplied. This lack of a clear physical meaning
makes the LOLP a less intuitive metric to work with by system
operators.

ENS = Z P.r. )

Where e interruption event, - restoration time for interrup-
tion event e, and P, average load interrupted by each event
e.

3) loss-of-load expectation (LOLE): The LOLE assesses
the expected number of hours during which loss-of-load events
could happen. As the LOLP, the loss-of-load expectation fails
to provide an estimation of the damage done to the system
by contingencies. From a mathematical viewpoint, both the
LOLE and the LOLP require the use of binary variables
to be considered within a mixed-integer linear programming
problem, [16, 57]. On the contrary, the ELNS can be expressed
linearly, without binary variables, as follows:

LOLE = Put, (@)

Where o is the capacity outage, p, is individual probability
of the capacity outage, t, is the time interval based on the
difference in the capacity outage magnitude due to loss of
load.

B. Arc reliability indices

The arc reliability indices are summarized in the table I.
This table presents the main properties of cables, overhead
lines, transformers, switch-gears, consumption, generation,
terrain, probability of fault and maintenance faults. In addition
product description with manufacturer references are provided.

IV. OPF WITH RESTRUCTURING MATHEMATICAL MODEL

This section will outline the mathematical model developed
for the reliability oriented network restructuring analyses
considering AC-OPF for a distribution network. The model
has been developed in AIMMS and solved using the Outer
Approximation Algorithm [27] that is suitable for solving non
linear non convex models like the OPF.

A. Objective Function
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The Objective function 3 minimises the total operational
costs and investment costs. Operational costs in 4 are related
to conventional generator costs due to fuel consumption. The
investment costs in 5 are described by four terms: the cost of
installation of new potential cables where a connection still do
not exist, the cost of replacing existing obsolete cables with
new ones, a representative cost of keeping existing cables as
they are and the cost of installing Static Var Compensator
(SVC) devices in certain nodes. The cost of existing cables
is a representative cost that incorporates all the costs that a
company should face to keep a cable as it is: this cost is
calculated according to the history of the cable, its mainte-
nance requirements, failures and issues and represented by the
parameter Maintenance cost listed in Table II.

B. Conventional Generators, Wind Plants and Batteries
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TABLE I: Explanation of relibility indicators in RNR

Cable

In this study we concentrate on three different voltage levels, with each having one or two different types of cables, therefore
five different cables are evaluated. Cables are picked based on their suitable voltage level, cable diameter, and the conductor and
the insulation type. In the [18], [19] cable line weight parameters are evaluated as normalized values between 0...1. The [18],
[19] gives the possibility to pick a certain transmission line type [18]—[23] with fixed parameters. There are proposed five types
of different cables and overhead-lines. For instance, for a transmission line of 6 kV or 10 kV with a length 9 km, a three-core
cable is proposed with diameter of 3 % 70 mm?. This cable weights 5400 kg/km and as tables has proposed we may choose a
given conductor and the insulation, although steel conductors do not have insulation in this thesis. Cable indices in a network
recuntroction evaluation are the cable’s conductor and insulation. In the example, conductor weight is calculated as the diameter of
the conductor (i.e, Al conductor diameter = 9.8 mm) multiplied with conduction material density (Al density = 8.89 kg/km). i.e,
Cable, which weighs 5400 kg/km has an aluminium conductor which weighs 567 kg/km and insulation of 3699 kg/km [18], [19].

Overhaed lines

As mentioned above, there are different types of transmission lines depicted and some of the named are overhead-lines (OHL).
The same evaluation planning in [18], [19] is used as in [18], [19] with the firstly mentioned being dependent also on [18], [19].
OHL indices as before mentioned line conductor and the insulation weight, with additional indices covering the OHL poles. The
poles are picked to be suitable for each voltage. For instance, 35 kV OHL usually uses poles which span across 80 m. The number
of poles needed are calculated by the tension and the sag of the line. After calculating the needed tension (tension at pole related
to tension at the maximum deflection) and sag (tension related to the span of the poles) the number of poles is found with relation
to line length (including the sag) and the span length of two poles.

Transformer

Transformers (Trfo) used in this study are ideal and listed in [18]-[23] , without having to relate to the criterium N-1 (in case
one transformer is interrupted, the energy flow continues on). Therefore, only one transformer is depicted for a substation, with an
exception of two substations which have two transformers because there are four voltage levels, which are distributed. Furthermore,
the transformers used in this study are assumed to be almost equal to the ones provided by the companies. i.e. for a 110/10 kV
substation, 220/15,6 kV transformer is used. Transformers are depicted as such with transmission line types. The needed indices
are conductor (copper wire + profile) and insulation (transformer oil) weight at manufacturing and use phase.

Switch-gear

Switch-gears (SG) used are described in [18]-[23] . In this network, in the node points combination of different switchgears are
used, based on their operating voltage levels. For this instance, 4 different combinations are made. SG indices are based on the
sum of their emissions per one transformer. Main emissions listed are Climate change (GWP, kg CO2/Trfo), Acidification (AP,
molh/Trfo), Eutrophication (NP, kg O2/Trfo), and SF6 % of all emissions. The needed indices’ values are calculated with the
minimum and the maximum emission values [18], [19].

Consumption

The evaluated network consists of two main types of consumers, residential (0-25 kWh), and commercial (25-50 kWh). It is
assumed that around a substation there are 5-10 residential buildings and 1-3 commercial buildings, because the evaluated network
is put together mainly by the residential areas, rather than commercial. The needed weight value is comprised the sum of the total
energy demand in a node related to the minimum and maximum energy consumption in a node.

Generation A single distributed generation source is assumed to generate 1000 kWh of electrical energy, although the submarine cable is
assumed to have a smaller value because of the losses in transmission.
Terrain To differentiate the nodes and the arcs, additionally to electrical aspects, environmental indices are used to evaluate a network.

Probability of fault
maintenance costs

&

As mentioned above not only electrical indices are used, also economical characteristics of a network are needed to be assessed.
For the total maintenance costs [24]-[26] , the repair costs and a probability of fault is needed to be assessed for the transmission
line and the substation. For this fault value is assumed based on the terrain influence on the probability of fault. Maintenance costs
= Cost of repair * Probability of fault value [24]-[26]

The traditional OPF equations are defined in this group

This group of constraints define the main properties of con-
ventional generators, wind plants and batteries. Upper limits
on active and reactive power from conventional generators and
wind plants are defined in constraints 6, 7, 8 and 9. While
constraints 10, 11, 12 and 13 control the battery operations in
terms of capacity, State of Charge (SOC), rating in and rating
out respectively.

C. Grid Restructuring
(14)

Piji < (PY=PP 4+ P9 VX =0;4;; =0

Piji <> (1= Rije)* (P —P% 4+ P9

+3 Rijex (PP =PP+P) Vi Xi;=1 (5
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of constraints in a way that incorporates the possibility to
reconfigure the network. Constraint 14 defines the active power
as the sum of three terms P4, PB and P€ that contains the
power flow equations as described in constraints 17, 18 and
19. Constraint 15 defines how reconfiguration can happen: if
an existing cable is not replaced with a new one of type c,
then the binary variable R; ;. will be equal to 0, therefore
the second term of constraint 15 will be equal to zero and the
active power will be defined as in 14. On the other hand, if
an existing cable is replaced with a new one of type ¢, then
the binary variable R; ; . will be equal to 1, therefore the first
term of constraint 15 will be equal to zero and the active power
equation will be equal to the second term of constraint 15. The
terms PP, PP and PF are formulas equal to P4, PP and
P respectively, where the parameters of existing cables ; ;i
and S, ; are replaced by the correspondent parameters of new
available new cables K. and S.. The model has therefore the
ability to choose if it is necessary to dismantle and replace an
existing cable by choosing a new one among a list of cables
with different properties and costs.

Constraint 16 defines how the installation of new cables
where no existing connections are available can happen. In



TABLE II: Reliability indices for RNR

Arc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Node x 1 2 3 3 6 6 12 7 9 7 9 10 13 4 4
Node y 2 4 4 5 11 12 13 9 14 8 10 11 14 7 9
Transmission length, km 2 3 2 5 4 8 3 3.00 5.00 6.00 3.00 3.00 3.00 2.00 2.00
Transmission voltage kV 10 110 35 110 110 110 110 10.00 10.00 110.00 110.00 110.00 110.00 110.00 | 35.00
Line type[1,2,3,4,5] 1 3 4 5 5 3 5 1 1 5 3 5 5 5 2
Life expectancy value 0.1 0.1 1 1 1 0.1 1 0.10 0.10 1.00 0.10 1.00 1.00 1.00 1.00
Conductor type [1,2,3.4,5] 1 1 3 3+5 345 1 345 1 1 345 1 3+5 3+5 3+5 2
Line weight value, kg/km 0.36 | 081 | 033 | 0.00 | 000 | 036 | 0.00 0.36 0.36 0.00 0.81 0.00 0.00 0.00 0.43
Conductor weight value kg/km 0.06 0.10 0.06 0.00 0.00 0.10 0.00 0.06 0.06 0.00 0.10 0.00 0.00 0.00 0.29
Insulation weight value kg/km 0.38 1.00 0.40 - - 1.00 - 0.38 0.38 - 1.00 - - - 0.00
OHL pole value, pcs - - 0.00 0.60 0.60 - 1.00 - - 0.60 - 1.00 1.00 1.00 -
Climate change value 0.01 1.00 0.09 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.12
Fossil depletion value 0.01 1.00 0.09 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.12
Freshwater ecotoxicity value 0.01 1.00 0.09 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.12
Freshwater eutrophication value 0.01 1.00 0.09 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.12
Human toxicity value 0.01 1.00 | 0.09 | 0.00 | 0.00 1.00 | 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.12
Marine eutrophication value 0.01 1.00 | 0.09 | 0.00 | 0.00 1.00 | 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.12
Metal depletion value 0.01 1.00 | 0.09 | 0.00 | 0.00 1.00 | 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.12
Ozone depletion value 0.01 1.00 | 0.09 | 0.00 | 0.00 | 1.00 | 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.12
Particulate matter formation value 0.01 1.00 | 0.09 | 0.00 | 0.00 1.00 | 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.12
Photo-chemical oxidatnd formation value | 0.01 1.00 | 0.09 | 0.00 | 0.00 1.00 | 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.12
Terrestrial acidification value 0.01 1.00 0.09 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.12
Terrestrial ecotoxicity value 0.01 1.00 0.09 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.12
Terrain 4 4 5 5 4 8 9 4 5 3 7 9 5 4 5
Terrain value 0.38 0.38 0.50 0.50 0.38 0.88 1.00 0.38 0.50 0.25 0.75 1.00 0.50 0.38 0.50
Fault value 0.75 0.75 0.88 0.88 0.75 0.25 1.00 0.75 0.88 0.63 0.50 1.00 0.88 0.38 0.88
AIT value 0.51 0.31 0.73 0.41 0.74 0.36 0.51 0.79 0.59 0.00 0.54 1.00 0.82 0.85 0.69
AIF Value 0.51 | 055 | 0.69 | 079 | 0.63 | 0.00 | 1.00 0.71 0.97 0.57 0.39 1.00 0.74 0.17 0.83
AID value 022 | 0.13 | 0.17 | 0.05 | 0.21 1.00 | 0.00 0.18 0.03 0.03 0.33 0.10 0.17 0.80 0.10
Availability value 0.78 | 0.87 | 083 | 095 | 0.79 | 0.00 1.00 0.82 0.97 0.97 0.67 0.90 0.83 0.20 0.90
Investment value 0.78 | 087 | 0.83 | 0.95 | 0.79 | 0.00 | 1.00 0.82 0.97 0.97 0.67 0.90 0.83 0.20 0.90
Repair costs value 025 | 028 | 093 | 0.98 | 091 | 0.00 | 1.00 0.26 0.31 0.99 0.22 0.96 0.93 0.66 0.29
Maintenance costs value 0.46 0.47 0.82 0.84 0.67 0.00 1.00 0.46 0.59 0.55 0.23 0.98 0.82 0.20 0.58

particular, if a new cable of type c is going to be installed
between two nodes, the binary variable Y; ; . will be equal to
1 and the active power will be equal to the terms P”, P¥ and
PT that have been explained above. On the other hand, if no
cables are going to be installed, the binary variable Y; ; . will
be equal to 0 and no power flow will be allowed between the
two nodes.

Similarly, for reactive power the same thoughts above can
be applied as shown in constraints 20, 21, 22, 23, 24, 25. In
this case QP, QF and QT are formulas equal to Q*, QF and
QC respectively, where the parameters of existing cables K j,
S;,; and Sf? are replaced by the correspondent parameters of
available new cables K., S. and S‘j,h'.

Qi < Q" —Q° +Q°  VijulXi;=04:;=0 (0
Qi < D_(1= Rige)* (-Q* = Q% + Q%)
-
D R (—QP =QF+Q")  VijXi;=1 @D
B
Qi <D Vijex(=Q° =Q%+ Q")  VijulAi;=1 @
Ssh A 2
A ~ i,j it
Q"= (5” + T) * (TZ{;) Vit @)
B Vit .
Q" = Tt * Vi * Ky j o+ sin(di,e — 0j,¢) Vit 24)
1,7
QF = Sij xcos(it —850) Vit (25)

It is straightforward that the above formulation allows also
the possibility to simply dismantle existing cables without

replacing them. In this case it is enough to provide a list of
cables that contains also a type ¢ with K, S. and S5" equal
to zero. If chosen, this will simply correspond to absence of
connection.

Reconfiguration and new potential connections can happen
only in those arcs that the operator is willing to check. Not all
the arcs of the grid will be subjected to such decision, therefore
binary parameters X;; and A;; are used to select which
arcs to reconfigure and which new connections to evaluate
respectively.

D. Grid General Management

Z Pyt + Z Pyit — Z P g+ Z Pjie
9 w J 3
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This set of constraints describe the main properties to take
into account for the grid management. In particular flow
balance for active and reactive power is defined in 26 and 27
respectively; the current is defined in 28; the flow direction is
described through constraints 29, 30, 31 and 32; constraints33
and 34 limit the choice of new cables to 1; finally constraints
35, 36 and 37 define limits on the voltage, phase angle and
current. Regarding constraint 36, the voltage upper limit is
linked to the decision of installing a SVC device. In particular,
when a SVC device is installed on a node 4, the binary variable
D; is equal to 1 and the voltage upper limit increases of a
value VSV, This can make a difference in the decision of
dismantling a cable or installing a SVC device.

V. COMPUTATIONAL EXPERIMENTS

Computational experiments have been performed on IEEE
14 bus system represented in fig. 1, using the data-set con-
tained in table II. It is assumed that the arcs 4 — 9,4 —
7,5 — 6,11 — 10,13 — 14 are non-existing and potential
connections should be evaluated. Therefore the system is now
split into three microgrids as highlighted in fig. 1. Microgrids
1 and 2 are equipped with conventional and renewable sources
respectively, while microgrid 3 is without any resource and can
be considered as an emerging district that has been created
and that needs to be connected to a neighbourhood area. The
microgrid 1 considers restructuring of the existing network
to accommodate the emerging district. It is straightforward
that restructuring is not considered for the emerging district,
because it is assumed that a new microgrid will have new
and up to date equipment. Hence the trade-off between the
maintenance cost of existing network and the replacement
costs to accommodate new emerging demand is analysed.
Moreover reconfiguration is allowed on arc 1 — 2,2 — 4,4 —
3,2 — 3,2 - 5,1 — 5,4 -5 in order to verify how the
establishment of new connections are affecting the reliability
of the system.

As a result, new cables installations are created on arcs 4 —
7,4—9 and a cable 1—2 is replaced with a new cable provided
with higher sustenance. Note that microgrid 2 remains isolated
because it already has enough power from the renewable plant.

VI. CONCLUSION

A methodology to analyse how connecting emerging dis-
tricts to existing microgrids can affect the reliability of the
whole system has been presented. The technical aspects of
AC-OPF have been thoroughly taken into account and the
reliability oriented Network Restructuring RNR framework
has been developed and implemented. The results showed that
reliability aspects are crucial when evaluating new investments
in grid expansion: new connections should always be coupled
with a more holistic evaluation of the conditions of the existing
networks as they may require further investments in upgrades
to fulfill the new requirements. When the system operator
considers investments for power network expansion, it should
also consider restructuring of the existing network at the
same time. The presented model RNR is able to address
both decisions holistically and therefore more investigation is
required in this area.

NOMENCLATURE

Indexes

t time step

i,7 nodes of the grid

c available new cables

g conventional generators
w wind plants

b batteries

Parameters

C°P  QOperational costs

C"™" Investment costs

Cy  Operational cost of conventional generator g

ngt Upper limit on active power from conventional generator g at time ¢

751_! Upper limit on reactive power from conventional generator g at time ¢

P,:,¢Upper limit on active power from wind plants w on node 4 at time ¢

a"”"Uppcr limit on reactive power from wind plants w on node % at time ¢

By“P" Capacity of battery b

Bgff Efficiency of battery b

B;‘”’C Rating of battery b

" Tap ratio of transformer placed between nodes i and j

Conductance of existing cables placed between nodes ¢ and j

susceptance of existing cables placed between nodes ¢ and j

shunt susceptance of existing cables placed between nodes ¢ and j

Susceptance of existing cables placed between nodes ¢ and j

Shunt suceptance of existing cables placed between nodes ¢ and j

Representative cost of existing cables due to their history of maintenance

operations

Binary parameter defining if a new potential cable can be installed between

nodes 7 and j

X,; Binary parameter defining if an existing cable between nodes i and j should
be checked for possible replacement

K.  Conductance of new cables of type ¢

Se Susceptance of new cables of type c

S:" Shunt susceptance of new cables of type ¢

C RF.Capital recovery factor of new cables of type ¢

C.  Investment cost of new cables of type c

VSZCPossible incremental voltage due to installation of a SVC device

V.,V Minimum and maximum limits for voltage

3,8 Minimum and maximum limits for phase angle

Z,Z Minimum and maximum limits for current

C*V CInvestment cost of an SVC device

Pft Active load in node 7 at time ¢

Qf‘.t Reactive load in node ¢ at time ¢

Variables

Py i+ Active power from conventional generator g in node ¢ at time ¢

Qg,i,t Reactive power from conventional generator g in node ¢ at time ¢

Wy, i,¢Binary variable equal to 1 if the conventional generator g in node 4 is working
at time ¢

Py it Active power from wind plants w in node 4 at time ¢

Qi tReactive power from wind plants w in node 4 at time ¢

Bi(i‘f?State of charge of battery b in node 7 at time ¢

PPY", Active power from battery b in node 4 at time ¢

Py}, Active power into battery b in node i at time ¢

ng‘ift Reactive power from battery b in node 4 at time ¢

Q}" , Reactive power into battery b in node i at time ¢
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¥
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Fig. 1: The microgrid structures: (a) expansion (b) expansion with reconfiguration

Vi,+  Voltage value in node 7 at time ¢

&i,¢ Phase angle value in node ¢ at time ¢

Z;,j,+ Current value between nodes i and j at time ¢

dir;, j Binary variable equal to 1 if the power flow is from node i to node j, 0

otherwise

Yi j,c Binary variable equal to 1 if a potential new cable of type c is installed

between nodes % and j, O otherwise

R; j,c Binary variable equal to 1 if an existing cable between nodes i and j is

replaced by a new cable of type ¢, 0 otherwise
D; Binary variable equal to 1 if an SVC device is installed on node 7, 0 otherwise
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