

TALLINNA TEHNIKAÜLIKOOL

INSENERITEADUSKOND

Elektroenergeetika ja mehhatroonika instituut

KLIIMATESTERI EHITAMINE JA

ESMASE KATSE LÄBIVIIMINE

CONSTRUCTION OF CLIMATE TESTER

AND CONDUCTING THE INITIAL TEST

BAKALAUREUSETÖÖ

Üliõpilane: Voldemar Balder

Üliõpilaskood: 123713MAHB

Juhendaja: Leo Teder

Juhendaja: Risto Rosin

Tallinn 2021

AUTORIDEKLARATSIOON

Olen koostanud lõputöö iseseisvalt.

Lõputöö alusel ei ole varem kutse- või teaduskraadi või inseneridiplomit taotletud.

Kõik töö koostamisel kasutatud teiste autorite tööd, olulised seisukohad,

kirjandusallikatest ja mujalt pärinevad andmed on viidatud.

“.......” 2021

Autor:

/ allkiri /

Töö vastab bakalaureusetöö/magistritööle esitatud nõuetele

“.......” 2021

Juhendaja:

/ allkiri /

Kaitsmisele lubatud

“.......”....................2021 .

Kaitsmiskomisjoni esimees ...

/ nimi ja allkiri /

Lihtlitsents lõputöö reprodutseerimiseks ja lõputöö üldsusele

kättesaadavaks tegemiseks¹

Mina, Voldemar Balder sündinud 01.10.1992

1. Annan Tallinna Tehnikaülikoolile tasuta loa (lihtlitsentsi) enda loodud teose

KLIIMATESTERI EHITAMINE JA ESMASE KATSE LÄBIVIIMINE, mille juhendaja on Leo Teder.

1.1 reprodutseerimiseks lõputöö säilitamise ja elektroonse avaldamise eesmärgil, sh

Tallinna Tehnikaülikooli raamatukogu digikogusse lisamise eesmärgil kuni autoriõiguse

kehtivuse tähtaja lõppemiseni;

1.2 üldsusele kättesaadavaks tegemiseks Tallinna Tehnikaülikooli veebikeskkonna kaudu,

sealhulgas Tallinna Tehnikaülikooli raamatukogu digikogu kaudu kuni autoriõiguse

kehtivuse tähtaja lõppemiseni.

2. Olen teadlik, et käesoleva lihtlitsentsi punktis 1 nimetatud õigused jäävad alles ka

autorile.

3. Kinnitan, et lihtlitsentsi andmisega ei rikuta teiste isikute intellektuaalomandi ega

isikuandmete kaitse seadusest ning muudest õigusaktidest tulenevaid õigusi.

--

¹Lihtlitsents ei kehti juurdepääsupiirangu kehtivuse ajal, välja arvatud ülikooli õigus

lõputööd reprodutseerida üksnes säilitamise eesmärgil.

______________ (allkiri)

______________ (kuupäev)

Elektroenergeetika ja mehhatroonika instituut

Kliimatesteri ehitamine ja esmase katse läbiviimine

Üliõpilane: Voldemar Balder, 123713MAHB

Õppekava, peaeriala: MAHB02/13 - Mehhatroonika

Juhendaja(d): Leo Teder, lektor

Risto Rosin, kvaliteedi ja töökindluse juhataja

Lõputöö teema:
Kliimatesteri ehitamine ja esmase katse läbiviimine

Construction of climate tester and conducting the initial test

Lõputöö põhieesmärgid:
1. Ehitada töötav ja kasutatav kliimatester trükkplaatide testimiseks.
2. Läbi viia esimene katse.

Lõputöö etapid ja ajakava:

Nr Ülesande kirjeldus Tähtaeg

1. Testeri kirjeldus 18.03

2. Katse kirjeldus 25.03

3. Andmebaasi ja sinna kirjutamise kirjeldus 01.04

4. Katse tulemuste analüüs 08.04

Töö keel: Inglise keel Lõputöö esitamise tähtaeg: “18”mai 2021a

Üliõpilane: Voldemar Balder…….............. “.......”....................2021a

/allkiri/

Juhendaja: Leo Teder……........... “.......”....................2021a

/allkiri/

Juhendaja: Risto Rosin……........... “.......”....................2021a

/allkiri/

5

TABLE OF CONTENTS

PREFACE ... 6

ABBREVIATIONS .. 7

INTRODUCTION .. 8

1 BUILDING OCALA .. 9

1.1 Used equipment ... 9

1.2 Design .. 13

1.3 Equipment under test ... 15

1.4 Bringing the pieces together .. 16

2 TESTING ... 21

2.1 Ambient condition .. 22

2.2 Test Cycles.. 22

3 PROGRAMMING AND DATA SAVING ... 26

3.1 AC500 programming .. 26

3.2 Data saving ... 29

4 TEST RESULTS .. 34

SUMMARY .. 37

KOKKUVÕTE .. 39

LIST OF REFERENCES ... 41

APPENDICES .. 42

Appendix 1 Ocala data and control flow chart ... 43

Appendix 2 PLC in circuit diagram ... 44

Appendix 3 Circuit diagram .. 45

Appendix 4 chamber graphs... 51

Appendix 5 PLC visualization and code .. 55

Appendix 6 General tester programming structure .. 58

Appendix 7 MSSQL_Execute .. 59

Appendix 8 Server code structure ... 60

Appendix 9 SQL code .. 61

6

PREFACE

Climate tester Ocala is built by the request of an unnamed electronics company. Purpose

of the tester is to verify printed circuit board assembly quality through on-going reliability

testing with higher humidity and temperature than the printed circuit board assemblies

would see in the field. Environmental testing should also pinpoint weakness in the design

and used components or manufacturing process.

The following people helped building climate test Ocala and analyzing the results: Juri

Matin, Priit Reim, Hamad Aziz, Martin Onton, Andres Võsa, Risto Rosin, Erkki-Siim Lind,

Mark Toomis, Ossi Myllyniemi, Jaan Sarap, Stanislovas Krisciunas.

Climate testing, Programmable Logic Controller, SQL, Printed Circuit Board Assembly,

Bachelor's thesis

7

ABBREVIATIONS

EUT Equipment under test

PLC Programmable logic controller

PCBA Printed Circuit Board Assembly

AC Alternating current

DC Direct current

ALT Accelerated lifetime test

THB Temperature humidity bias

ORT Ongoing Reliability Test

DT Developers Tool

DRC Drives reliability center

MS Microsoft

SQL Structured Query Language

IGBT Insulated Gate Bipolar Transistor

ORT Ongoing reliability test

RH Relative humidity

PID Proportional–integral–derivative

8

INTRODUCTION

Purpose of the thesis is to build an automatic climate tester which temperature and

humidity is controllable and conduct the initial accelerated lifetime test. Purpose of the

automatic climate tester is to conduct product reliability demonstration tests on frequency

converter PCBAs with accelerated lifetime testing to verify that there are no faulty

components used or problems in manufacturing process and to find weaknesses in the

design. This is needed to find problems in product and to reduce the number of faulty

components reaching customers. PCBAs are put into higher ambient and humid conditions

then they would see in the field and therefore their lifetime is accelerated. 24V DC, 230V

AC and 1050V DC power is also cycled to simulate real life conditions and self-heating of

the PCBAs.

Purpose of the test is to monitor PCBA quality and long-term reliability. Tester planning

began in mid-2018, building started in the beginning of 2019, initial test started in May

2019, initial test ended in August 2020. Analysis of the PCBAs finished 26.03.2021.

Ocala tester is built around Arctest climate chamber and uses AC500 PM590 PLC to control

and monitor both EUTs and test equipment. PLC also saves data to MS SQL server located

in the local computer.

End user of tester Ocala must be able to:

• easily monitor and adjust ambient conditions

• level of allowed current and voltage to EUTs

• control what parameters and sensor readings are monitored and saved to database

• get notifications when faults occur

• get minimum and maximum values of each cycle

• get a fault log.

MS SQL server is used to:

• pull data from local computer

• store data

• calculate minimum and maximum values

• create a fault log table

• summary of the tests

• notify user of faults.

9

1 BUILDING OCALA

Tester building starts with a list of needs from internal customer and then needed

equipment is selected and agreed upon to fulfill those needs. As we already had the climate

chamber, we were a bit limited by its capability but not too much.

• ALT booking template – short general description of what, when, how and how long

will be tested.

o Test specification – in detail document describing how the test must be

carried out

o Tester specification - in detail document of how the tester will be built and

must be able to do, this is also the start point for electrical engineer

▪ PLC specification – document describing what the PLC must do,

usually given to outside contractor

Ocala tester is built around Arctest climate chamber and uses AC500 PM590 PLC to control

and monitor both EUTs and test equipment. PLC also saves data to MS SQL server located

in the local computer.

1.1 Used equipment

• Climate chamber: ARC-1500/-40+125/RH, with JUMO IMAGO controller

• PLC: AC500 PM590-ETH with AI523, DC532, AX522, CM572-DP

• Computer: ThinkPad P50

• DC power supply Programmable DC-Power Supply | 8 kW, 1250 V" Magna Power

XR1250-6.4-380

• MUX: Keysight 34970A Data Acquisition Unit, with 3 34901A 20-

Channel Armature Multiplexer

• Chiller: CLIVET WSAN-XIN 21-141

• Circulation pump: Grundfos alpha1 l 25-40

• Power meter: WM30-96 AV53HE2

• Additional humidity sensor: HTM2500LF

• Various other smaller components in control cabinet

10

Figure 1.1 Cabinet and panel placement, top view

Climate chamber ARC-1500/-40+125/RH is designed and manufactured especially for

controlled environmental testing. The chamber is constructed of three modules. Machine

module, chamber module and electronic and electricity module. Controlled by a small JUMO

controller. Could work independently supplied with coolant, distilled water, and drainage.

[2]

Figure A1.1 Ocala data and control flow chart shows all data connections.

11

Figure 1.2 Inside view into Arctest climate chamber filled with EUTs

12

Programmable logic controller AC500 PM590-ETH is a programmable logic controller with

2MB of internal memory, 2 serial connections and 1 ethernet connection. It is

programmable form Automation builder program that uses Codesys V2. In this project three

I/O modules are used. Figure A2.1 PLC in circuit diagram.

AI523 analog input module with 16 programmable analog inputs is used to monitor

temperature inside the chamber with 3 PT100 thermal sensors and one PT100 for both the

control cabinet and load cabinet. Coolant liquid pressure levels are also monitored.

DC532 digital input output module has 16 digital inputs and 16 configurable digital

inputs/outputs. Digital inputs are mostly used to monitor hard overtemperature faults,

statuses of more important relays and chillers and test chambers alarms. The other 16

channels are configured as outputs to control relays providing voltage to EUTs, DC power

supply, load cabinet relays, climate chamber and some not important lights.

AX522 Analog Input/Output Module has 8 configurable analog inputs and 8 configurable

analog outputs. Inputs were used to read HTM2500LF humidity sensor, outputs to control

DC power supply’s current and voltage output levels.

CM572-DP PROFIBUS DP Master is used to connect to and control EUTs and climate

chamber.

Computer ThinkPad P50 is a regular computer running windows 10. Its job is to run SQL

local server, display PLC visualization, Drive Composer and DT.

DC power supply is a programmable DC-Power Supply capable of up to 1250V voltage and

6.4A of current. Controlled by PLC analog outputs and interlock using JS1 connection.

MUX Keysight 34970A Data Acquisition Unit is used to record BDPS output voltage and

current and control board input current and voltage. It has 20*3 voltage measuring

channels that are needed to configure from the machines display and then tasked to scan

the list. 34970A saves the results into its memory where from PLC is asking the data

through 34970As RS-232 port 9 PIN D-Sub connector.

Chiller CLIVET WSAN-XIN 21-141 is used to cool down the coolant exiting the climate

chamber.

Circulation pump Grundfos alpha1 l 25-40 is used to pump coolant into the climate chamber

and is set in underfloor heating mode.

13

1.2 Design

As you start designing anything new you try to predict as much as possible. Calculate how

much power do you need and what control connections and feedbacks are required. The

more you design the better you become at it and usually you do not have to start from

complete scratch. But as this was the first ever climate tester built in Estonia’s testing

center we did not have that much to start with. Comparing figure A3.1 first revision of

Ocala Main Supply to figure A3.2 latest revision of Ocala Main Supply, quite a few changes

can be noticed. We knew that we need power to supply:

• 1000V DC power supply. We calculated that each EUT should require about 500W

of power so 4kW in total was needed. Magna XR1250/6.4kW sufficed. [7]

• 230V AC programmable power supply as initially it was requested that AC voltage

to supply EUTs power supply boards with 230V AC would also be adjustable.

• 4 24V DC power supplies to supply power to control boards (MCS-B 5-110-240/24)

Additional power from another circuit that would not trip if undervoltage relay would trip

was needed to supply PC, MUX and PLC with power. All in all it was not bad at all, we had

our power supplies, controls, feedbacks, PLC with AI523 for additional temperature and

humidity readings, DC532 for tester control and feedbacks, safety’s, components,

temperature triggered fans and even some indicator lights. A few more minor details to

polish over and we were ready for production. Turns out there are a lot of minor details.

Wire markings: colors, cross sections, isolation type, how to control our programmable

power supplies, layout of the components in control cabinet, how to connect all the control

cabinet wiring to EUTs. We threw away K1 and K2 contactors as there were no actual need

for them, added AX522 to control Magna power supply, added fire alarm schematics and

connections and marked PLC connection such as they would be the same on the circuit

diagrams and in the PLC, something not done before. Most of it we got done before

production but many problems still game out during the production such as small wire color

mistakes and missing terminals and worst of all some components like 1000V 2A fuses and

fuse holders and AC power supply not arriving on time. Because the problems were needed

to be solved quickly usually right there on the production, we now have terminals with

names “K1 buttons” and XT66. Magna power supply terminal and connections with PLC

logic was added as can be seen from figure A3.5 First revision of 1000V DC Supply and

figure A3.6 latest revision of 1000V DC Supply. With some more minor changes the control

cabinet was finished.

14

Figure 1.3 Half-finished control cabinet in production

15

1.3 Equipment under test

8 sets of a frequency converter PCBAs. One set consists of: Control board, Safety option

module, Memory unit, Profibus adapter module, Fieldbus kit, Interface board, Gate driver

board, Adapter board (x3), Power supply board, Fan power supply board, Communication

option module. Figure 1.4

• Control board communicates with interface board, PLC, control panel, safety option

module and whatever else is necessary

• Communication option module is optical option module on control board

• PROFIBUS adapter module enables us to create PROFIBUS network between all EUTs

and is located on control board.

• Fieldbus kit is a branching unit allowing chain connections through control boards

enabling us to control them through 1 control panel

• Memory unit holding drives parameters and program.

• Interface board is communicating with control board and gate driver board.

• Power supply board is supplying PCBAs with 24V. Can be transform either 230V AC

or up to 1100V DC into 24V DC.

• Adapter boards are controlled by gate driver board and are responsible for opening

and closing IGBTs on IGBT-Module.

• Fan supply board transforms 1000V DC into 48V to supply power to DC fans

responsible of cooling the drive.

Most critical of the components are power supply boards as they will be most loaded during

the test and have capacitors on them that might not do well in high temperature and high

humidity environment.

Figure 1.4 3D model of one out of 8 EUT sets.

16

1.4 Bringing the pieces together

Control cabinet, climate chamber, EUTs and load cabinet – until now they have been in

three separate corners and connections between them are only on paper. New requirement

of needing to control and measure 24V DC supply to EUTs and measure voltage and current

output of power supply boards were requested. It turned out quite soon that we had too

many wires to route from control cabinet to EUTs in climate chamber. Difference between

initial design can be seen in figure A3.3 and latest design with relay control and shunt

measurements in figure A3.4. An additional auxiliary cabinet was added behind the control

cabinet to add additional terminals and to ease wiring between control cabinet and EUTs

inside climate chamber. Additions can be seen in figures 1.5. and 1.6

Figure 1.5 Unplanned auxiliary cabinet behind control cabinet

17

Figure 1.6 Shunt and voltage measurements connected to Keysight 34970A Data Acquisition Unit

multiplexer cassette.

We discovered that we cannot start fan supply boards with resistor load as simulated fan

loads because there is no feedback and with “always on” setting we cannot stop them

from outputting power. Easiest option seemed to add relays to connect and disconnect

fan supply boards output to resistive load. This would have been troublesome to do inside

the load cabinet because of room restrictions and might have caused us additional

problems in the future as with total power output of 3.2kW even with sufficient cooling it

might get hot. As each fan supply board has 2*200W at 48V output it meant 2*8 = 16

relay contacts. Initial idea was just to screw few DIN rails to Load cabinet wall and attach

some relays and terminals. As this would have been esthetically not pleasing and not the

safest solution an additional small electrical box was bought. Because the wiring in the

box turned out very pretty, we decided to call it “BERTA”. Figure 1.7

18

Figure 1.7 BERTA fan supply board load relays

Unfortunately, pretty has little meaning and the relays (Weidmüller RCM370024) chosen

into BERTA to connect and more importantly disconnect the 48V DC of 4A current were not

up for the job and burned. Figure 1.9. Even though they are rated to switch 250V AC and

operate at continues current of 10A, one should remember that disconnecting AC and DC

are different things as the author will remember for as long as he may live. Because no

automatic control whether fan supply boards were working was implemented it was not

noticed that the relays are not able to open under voltage. Because of this fan supply boards

that were meant to operate 2min every 24h operated 2min to 12h as long as 1000V DC

was supplied to them. We cannot for sure determine how long each EUTs fan supply

operated. We can only trace that something was wrong from the 1000V Magna power

supply’s current feedback that should be 0.5A when fan supply boards are not outputting

power and 3.5-4A when they are. In addition to ruining their own test, fan supply boards

gave off considerable amount of heat that the climate chamber had to get rid of by cooling

its walls and water condensed on the walls causing relative humidity to fluctuate. This only

stopped at 18.03.2020 when ambient conditions of the test were rose from 65°C to 80°C

19

causing fans supply boards internal NTC to stop them from operating witch was also not

relay to control board because of the controlling method. This means that for the first part

of the test they were almost constantly running and for the second part they were not

running at all. Figure 1.9 Broken fan supply board load relay [4]

For the second test voltage measurements were added and RCM370024 relays were

switched to much stronger AF09-30-10-11 contactors, that are still not strong enough

according to their datasheet. BERTA is not as pretty as she used to be but maybe she will

cause less trouble. Figure 1.8

Figure 1.8 BERTA upgraded with AF09-30-10-11 contactors and voltage measurements

20

Figure 1.9 Broken fan supply board load relay

21

2 TESTING

With Ocala tester we are trying to accelerate wear out failures using thermal, electrical,

and chemical stressors to find weakness in components, manufacturing, or design. Figure

2.1. As this is the first kind of this test done in Estonia’s testing center, we are not sure

what results to expect. Therefore, test is being run until failure. In the future this initial test

should help us more accurately set ambient conditions and lifetime expectations.

Figure 2.1 Stressor matrix

Described in PCBA ORT Specification. [3]

22

2.1 Ambient condition

Most popular ALT test done with temperature and humidity is done with 85°C and 85% RH

as this is an old standard. Recent studies/experimentation have shown that higher than

50°C ambient temperature can even reduce dendrite growth and corrosion. Studies have

also shown that the relative humidity levels are critical, with orders of magnitude changes

in time to failure with relatively minor changes in relative humidity. As dendrite growth was

something, we were interested in initial ambient conditions were set 50°C and 93% RH.

Initial test had 2 parts - soak test and application test. [1] [Internal document: “Humidity

Test Specification”]

2.2 Test Cycles

Soak test was a test to simulate and accelerate the drive starting from end control in the

production to customer starting the drive. Test was quite straight forward - turn the drive

on, make sure everything is working, turn the drive off, let it soak in 50°C, 93% RH for

30 days. Turn the drive back on and see if everything is still working and a quick visual

inspection. Initial parameters for the test:

• Temperature: 50°C

• RH: 93%

• Ttest: 720h

• Trun: 1h, Running time to verify everything is operating correctly before and after

tests

23

Figure 2.2 SOAK test profile [3]

Soak test started on 25.05.2019, ended 26.06.2019 drives worked and showed no signs of

damage - nothing interesting happened.

At this point the tester was still lacking data saving that had previously been done through

a “LAC” program in other testers that almost no one understood or was able to fix or change

if needed and it had given us considerable amount of problems and downtime. As another

department was experimenting with getting rid of this link in the chain and letting the PLC

write directly to the local MS SQL database, we did not want to start using LAC in Ocala.

More about data saving in data saving chapter. As planned after soak we were supposed to

start application test but there was no database and test was stopped to wait for the data

recording solution that was promised to us already in May.

Initial parameters for the application test:

• Temperature: 50°C

• RH: 93%

• Tcycle: 24h

• Ton: 12h

• Tmod: 60s

• T230: 15min, power supply board only supplied with 230V to ensure 230V input

works

• T1000: 15min, power supply board only supplied with 1000V to ensure 1000V

input works

• Voltage UDC: 1050V, maximum without warning/fault

• Voltage U24: 28V, increase stress

• Voltage U230: 250V, transformer

24

Figure 2.3 Application test profile

Application test started at 5.08.2019 but looking back I would say that commissioning

continued then. Because the data saving solution did not seem to arrive any time soon, we

stared application test without it and the first 34 cycles were not recorded to database. We

could still record parameters from PLC to text files, but this could not be a permanent

solution. We got our own measurements system running in Ocala at 25.09.2019. We were

also struggling to eliminate climate chambers fluctuating humidity levels. Figure A4.1

humidity fluctuation. It now seems that there were three reason for this kind of behavior:

too much heat produced during Ton, too aggressive cooling, and bad sealing of wiring holes.

We had some trouble with accessing JUMOs PID control parameters to limit cooling and

heating power of the chamber because they were password protected.

25

We managed to crack the mighty password because it turned out to be “1”. At the start of

testing, difference between humidity minimum and maximum during 24h was about 10-

13%, by the end of the test we got it to 2-3%.

Test went on with 50°C, 93% RH for over 4 months quite smoothly only stopping because

of running out of water was soon as I went on vacation, still nothing interesting happened

to EUTs (nothing broke). We had other troubles with our test setup like MUX and PLC not

wanting to communicate and being stuck on last value read due to bad coding. Safety relay

tripping for unknown reason we believed to be caused by cooling fan for some mystical

reason. Turned out to be the way safety relays channels were connected. We ran out of

water another time causing the chamber to overheat and stop. Because it was believed

that temperatures over 50°C might kill off dendrite growth and our PCBAs were running at

about 65°C with normal 50°C ambient. These 90°C and 80°C spikes could have ruined the

test. It was decided to increase temperature from 50°C to 65°C. This small 15°C rise in

temperature increased the water consumption of the chamber remarkably. Figures A4.4

Nothing still broke during the month and it was decided to go to the golden standard of

85°C/85%RH test. Because the chamber can only control humidity up to 80°C we continued

with 80°C/85%RH. After a few months testing power supply boards finally started to break.

Test was stopped at 27.08.2020 15:16:38 after being run for 460 days. Figures A4.1, A

4.2, A 4.3

Figure 2.4 Faults table

26

3 PROGRAMMING AND DATA SAVING

3.1 AC500 programming

General diagram of how tester PLC should be programmed and what it must do. AC500 PLC

is configured in Automation builder and programmed in Codesys that is built into

Automation Builder. Figure A6.1 General tester programming structure

Variable languages possible in Codesys

• LD - Ladder Diagram

• IL - Instruction List

• FBD – Function Block Diagram

• SFC – Sequential Function Chart

• ST - Structured text

• CFC - Continuous Function Chart

Ocala PLC is programmed in ST and FBD.

Controlling and monitoring EUTs is done through PROFIBUS with cyclic communication.

Control word and frequency reference values are sent to all drives to simulate running a

motor. This is called “modulation” in this test. In normal application the drives job would

be to create a sine output to drive a motor. This is done with pulse width modulation of DC

voltage. In Ocala tester however IGBTs and power electronics are not tested and special

PCBAs were designed to simulate an IGBTs gate load on the adapter boards. Drive is

modulating only twice a cycle at the beginning and end of the power on part of the cycle

for 1 minute to make sure they work. Rest of the cycle control word is still being sent but

with the missing RUN bit. 11 process data values are read from the drive plus some current

and voltage readings from MUX.

27

Table 3.1 List of parameters saved for each EUT

1 Status word

2 INT board temperature

3 PU power supply temperature

4 Fan on-time counter

5 Inverter temperature

6 Warning word 1

7 Tripping fault

8 Active warning

9 Control board temperature

10 DC voltage

11 Switching frequency

12 Power supply output current

13 Power supply output voltage

14 Control board input current

15 Control board input voltage

This data is saved to local MS SQL database with variable time intervals set by the user in

the rightmost column in figure A5.2 cycle settings table. PLC has no control over MUX (not

programmed so). At the start of the test, configuration is sent to the MUX describing how

data is needed and after that the internal memory of the device is being asked continuously

for read channel values. PLC scales the values before displaying them to user and saving

them to local database. Scaling values are set by user. This turned useful and necessary

as currents measured are under 1A and recording them in mA was needed. Climate

chamber itself is also being controlled through PROFIBUS. Only temperature and humidity

setpoints are wrote and their actual value read and recorded. JUMO can control the two

independently. After numerous overheating due to running out of distilled water an

additional control method of cutting control signal to chamber was added and bit of code

wrote to disconnect it if temperature in the chamber exceeds setpoint by user set limit.

Digital alarm outputs for coolant pressure inside climate chamber are monitored. There are

many digital inputs and outputs and it is not reasonable to save them all as a separate

Parameter. Do reduce database size and noise they are grouped into tester status word

(SW) and tester alarm word (AW). Figure 3.1. Status and alarm words should seldomly

come into use, but it was already confirmed that control cabinet fan had not been working

for some time causing problems for the PC inside thanks to status word bit 1. Mostly they

should help the engineer in tester fault tracing.

28

Table 3.2 List of parameters saved for the tester

1 Jumo humidity sensor

2 Jumo temperature Sensor

3 PT100 TC High

4 PT100 TC Mid

5 PT100 TC Low

6 PT100 CC

7 PT100 LC

8 TC input coolant pressure

9 TC output coolant pressure

10 Magna voltage SetPoint

11 Magna voltage Feedback

12 Magna current Feedback

13 Chiller input coolant temperature

14 Chiller output coolant temperature

15 AW

16 SW

Figure 3.1 Tester status and alarm word

29

3.2 Data saving

Starting from using AC500 MSSQL Library for writing into local database to redesigning

calculations on data to be done in server (still problems with it after 2 years).

Mostly using the MSSQL_execute function from AC500 MSSQL Library that itself was only

created in 2015 and major bug fixes done in 2017. This means there are little to no

information about it found in the internet and many e-mails had to be exchanged with

AC500 support team.

“LAC” was the program we had before to get data from PLC to server. LAC used OPC server

and it worked most of the time somehow. But it crashed a lot and was only supported by a

guy in Riga who sometimes had time for our problems - a different way was needed.

Another team in the company had started to implement MSSQL_AC500_V24.lib on one of

the testers and solution was promised to us as well. Unfortunately, their efforts mounted

to not much. PLC was constantly crashing and the whole code was unreadable not to even

talk about a universal solution. Ocala was our newest and cleanest tester and in need of

data saving protocol, testing begun. One of the problems in both previous solutions in my

mind was that PLC had to also save minimum and maximus values and create the fault log.

Because all the needed info was already present in the measurements table. This was

something that could be calculated by the server. It also allowed to change only one table

in case of user or machine mistakes instead of 3. There were also cases when users had to

copy data from server to their computers excel table to do some simple calculations. This

took about an hour a week per tester and information sharing was manual. The new logic

would have PLC only record measurements data. Raw measurements data would be pulled

from global server and calculation be performed on it constantly and easily be shared with

whomever needed it. There were some problems, however.

Too much data – calculation times are too long. End user tables inaccessible when pulling

and calculating new rows. Still quite annoying to fix data.

Figure 3.1 Local SQL tables out of which only Summary and Measurements are truly needed.

30

PCBA_serials table is just a table where to store Serial numbers of EUT PCBAs and takes

part in no further logic. Measurements_Volli is a duplicate structure of Measurements and

is used for testing. Measurements_Volli data is not pulled to server nor shared.

Measurements_Volli table evolved into Measurements_commissioning table into all testers

to be used as testing and setting up tests so as not to record invalid data into main tables.

Figure 3.2 Server-side end user sees schemas dbo-s 4 tables

• Measurements which is only a copy of the measurements table from the local server

• Min_max table where server has calculated minimum and maximus values for each

cycle

• Faults table where server has calculated the fault log

• Summary

It gets a bit more complicated on the server side to pull and calculate the data. Because

there are up to hundreds of millions of lines of data in each tester it not practical to copy it

all and do all the calculations for all the data each time local data is pulled into server. For

the initial test in Ocala 47 million lines were recorded. To cut time and server resource

different shortcuts are implemented and 4 schemas created to pull and calculate the data:

• Raw – Before each data pull, schema tables are truncated, raw data from local

database is pulled into, Measurements, Summary

• Stage – tables that are used to aid calculations

• Dev – additional aid tables

• Dbo – final tables seen by users

31

Local measurements table data is first pulled into [Raw].[Measurements]. Only chosen

amount of data is pulled each time. For hourly pulls past 48h data is chosen. From

[Raw].[Measurements] in server [stage].[Measurements] and [dbo.][Measurements] are

updated with a MERGE command.

For minimum and maximum values calculations [Stage].[Min_Max] is first truncated and

then filled with stages of grouping and sorting the values. After [Stage].[Min_Max] is

calculated, [dbo].[Min_Max] is updated with merging.

Faults table. We had most troubles with faults table and still do. We wanted to get 8 columns

+ Id:

 [Id]

,[Serial_number]

,[EUT_place]

,[Cycle]

,[FaultOccurrence_Cycle_step]

,[FaultDisappearance_Cycle_step]

,[Active_faults]

,[FaultStart]

,[FaultEnd]

Id is the primary key and self-incrementing, no problems. Serial_number is the base of

calculation or owner of data. EUT_place is actually nonrelevant info and could be looked up

from Summary table, but since end users will be using the dbo directly without any user

interface it was added for ease of use and could be useful if EUTs swapped places during

testing, also could come handy if you notice that different EUTs keep failing to same faults

in the same test place. Might be that something is wrong with the wiring of the test setup.

Most relevant is the moment when the fault appeared, after how much testing (cycles) it

failed and what was going on at the time of fault in the test cycle (cycle_step).

This information is obtainable when comparing Active_faults from the previous recording

and the next recording. If on the previous line Active_faults = 0 and on the next line it is

something different than 0 then this must be the moment when the fault occurred. For

comparing lines there is a LAG function in SQL that allows access to previous row without

joining tables, which we tried as well. LAG function is slow, and it was needed to speed it

up somehow or find another solution. What we did was look for only 1 Parameter_name

that would be present in all tester. We came close enough with “Status word”. As parameter

names were entered into PLC user interfaces by users, we saw 6 different ways you can

spell “Status word”. So even after it was changed the same in all testers, we knew that

making calculation logic dependent on some name users can change is a slippery slope

where I have slipped many times already. It was also requested that fault end time would

be recorded. Here lies the real problem. There is a logic error where server inserts the

32

found fault into [Stage].[Faults] only after it has ended, because it does not know otherwise

as what to mark FaultDisappearance_Cycle_step and FaultEnd. There snowballs another

error of user not being notified of the fault because notification procedure is called out

before [Stage].[Faults] is merged into [dbo].[Faults]. Notification procedure sends out

notification mail if there are new faults in Stage that are not yet in dbo. But if the fault has

not ended it never reaches [Stage].[Faults]. It also means that if an EUT dies and is never

put back to work its fault never ends and its final, often most crucial fault, is never recorded

to database.

Figure 3.3 Faults saving problem

Figure 3.4 Faults table.dbo

Summary table is a combination of user inserted info about EUT and some summarized

data about how the EUT survived or is surviving the test. Most interesting would be

Bad_cycles and Simulated_lifetime columns. Bad_cycles keep track of cycles where EUT

did not perform as expected. Mostly it checks if any output was generated during a cycle

as no direct fault code might not be generated in these kinds of “bad cycles” they might

slip by unnoticed. Simulated_lifetime calculates how much each test cycle aged the EUT

and then sums them up. Calculations behind it are different because accelerating factor in

the test is calculated against some mission profile in what environment and with what load

the drive is expected to operate for the next 10-30 years. Visual dashboard was created in

Microsoft Power BI to display how testers and EUTs are doing from Summary and Faults

table.

33

Figure 3.5 All server tables

34

4 TEST RESULTS

Plastic on all the option modules was destroyed but it did not affect the working of the

PCBAs enclosed in them. Turns out plastics absorb too much water in humid environments

that are over 70°C thus losing their tensile strength and becoming brittle. This corresponds

what was seen from the test. During the first 5 months when temperature was kept at 50C

and humidity at 93% RH nothing remarkable happened to the plastics but after only 6

weeks in environment of 80°C/85% RH, plastics became brittle and deformed. Although

unlikely that drives are installed in such harsh environments, deformation and study of

these plastics might imply strong discard of required installment conditions.[6]

Main failure was film capacitors casings being cracked and eventually destroyed.

Capacitance loss was measured on many of capacitors. Metallic contact layer escaped and

caused short-circuits on the delaminated parts of the circuit.

Figure 4.1 Broken capacitors on PCBA

35

Figure 4.2 Conductive dust from capacitors

Some problems were found in MOSFETs that are responsible for 1000V DC to 24V

conversion. But main failure in all EUTs was due to broken film capacitors.

Possible future actions: different type capacitors and better coating of PCBAs.

𝐴𝐹 = ((
𝐻𝑈𝑀𝑓𝑖𝑒𝑙𝑑

𝐻𝑈𝑀𝑡𝑒𝑠𝑡
)
−2.66

) ∗ 𝑒
(
𝐸𝑎

𝐾
)∗(

1

𝑇1
−

1

𝑇2
)
 (4.1)

where,

AF – Acceleration factor

𝐻𝑈𝑀𝑓𝑖𝑒𝑙𝑑 - field humidity level, % RH

𝐻𝑈𝑀𝑡𝑒𝑠𝑡 - test humidity level, % RH

Ea - activation energy in electron-volts, eV

K - Boltzmann’s constant (8.617385 x10-5 eV/K)

T1 - Field maximum temperature (K)

T2 - Test maximum temperature (K)

[5,6,8]

36

Figure 4.3 Authors accelerated lifetime calculations, Ea = 0,8eV

Dependent on the ambient conditions of the drive in field and whether ambient or

component temperature is taken into calculation the 250 days in test gives the accelerated

lifetime of around 15-100 years which gives the author confidence to say the PCBAs did

pretty good and failed due to wear-out.

37

SUMMARY

We set out to build an automatic climate tester, conduct the initial climate test in it and to

control the data saving process. It was a project of many firsts. All three goals were never

attempted in our testing facility and they were all achieved. Many obstacles were needed

to be overcome in the process.

Tester design and build: I would like to think that we thought of almost everything and did

not overdo it. Some slip ups naturally happened, and it might not even be practical to try

to be flawless with initial proto design. On the downside we hurried going to production and

should have waited for all the components to arrive first. Apart from underestimating the

amount of connections needed to be done between equipment under test and control

cabinet and choosing wrong relays for fan supply boards output, I will say the result is near

superb. Especially considered that it was authors first tester build. I am especially happy

that at least during the initial test all hardware changes were also updated on the circuit

diagrams. Something often forgotten after commissioning is over. Quite many

improvements can and should be still done but mostly to the PLC code.

Testing: Could have been better. Most notable failure was failure to see that fan supply

boards were not working as meant to therefore ruing their own intended test and causing

problems with chamber humidity due to dissipation of heat into testing chamber. Job of

filling the tester with distilled water was forgot several times causing unwanted ambient

conditions and lost testing time. This temporary system of filling the tester manually has

now been fixed with a permanent water supply. Considerable amount of data was lost

because of bad programming connecting PLC and Data Acquisition Unit. Mostly

programming issue but was still unnoticed by the engineer. As the author was in both roles

it is hard to blame anyone else. All serial numbers were saved to database that should also

become a standard in PCBA tests.

PLC programming: I had not done it before, and the responsibility became mine out of

necessity. Looking back at the code changes and improvements I did I cannot say they are

the best or that I would do it similarly again. Even so tester parameters and status word

were created that had not been done before. Luckily the code I started with was relatively

clean and understandable and I was walked through all the processes and had all the help

I asked for. Now that I have become expert at AC500 programming I should really find the

38

time and add some additional safety features so events such as the fan supply fiasco are

less likely to repeat.

Database recording: Idea was simple and clean. Record only measurements table and let

the server calculate the rest. Implementing AC500 MSSQL Library seemed tricky at first

but was quite easy once we got it rolling. Some mistakes with the architecture were made

both in PLC and in databases that are still causing problems today. Since all testers in our

facility are impacted by any change they should really be thought out and tested before

any bigger update on the whole system can be attempted. We were surprised how

complicated our simple minimum and maximum and fault calculations got when we tried

to implement them in the server just not in our local computers.

Most important fix still lacking in data saving system is in fault calculation so that faults are

recorded as soon as they appear, not only when they disappear.

Test results were satisfying: Unfortunately, no PCBA faults were found yet but a few weak

points were found and in next tests they can be focused on earlier. Wear-out failures in 5

out of 8 PCBAs in relatively narrow timespan at least confirms that the stressors are

working, and more precise lifetime calculations can be made in the future.

In conclusion all goals were achieved well, but in the light of lessons learned many

improvements can still be done to Ocala and to future testers either based on Ocala or not.

I am sure that Ocala will be ageing and braking PCBAs for years to come finding

manufacturing, component, and design flaws.

39

KOKKUVÕTE

Me seadsime eesmärgiks ehitada automaatne kliimatester, teostada esmane katse ja

saavutada kontroll info salvestamise üle. See oli paljude esimeste projekt. Ühtegi kolmest

eesmärgist ei ole oldud meie testimiskeskuses varem üritatud ja nad kõik said saavutatud.

Selleks tuli ületada hulgaliselt takistusi.

Testeri disain ja ehitus: Ma tahaksin arvata, et me mõtlesime peaaegu kõige peale ja ei

teinud liiga palju. Loomulikult oli möödaminekuid ja mõtlematusi, aga ma arvan, et esmase

prototüübi disainimisel ei peagi täiuslikkust jahtima. Miinuspoolelt me kiirustasime

tootmisesse minekuga ja oleksime pidanud ootama kuni kõik komponendid kohale jõuavad.

Väljaarvatud ühenduste ja juhtmete hulga alahindamise ja valede ventilaatoritoiteplaadi

väljundi releede valikule, sai tulemus suurepärane. Eriti arvestades, et tegemist oli autori

esimese testeri ehitusega. Ma olen eriti rahul, et kogu ehitamise ja esmase testimise käigus

sai riistvara täiendused ja muudatused ka skeemidele märgitud. Midagi, mis tihti pärast

esmast käivitust ununeb. Jätkuvalt saab ja peaks testrile tegema palju täiendusi, aga

üldiselt kontrolleri programmeerimisel.

Esmane katse: Oleks võinud minna paremini. Kõige märkimisväärsem viga oli

ventilaatoritoiteplaadi mitte korrektne töötamine, mis rikkus nende endi katse ja põhjustas

probleeme sest nad kiirgasid palju soojust kliimakambrisse. Mitmeid kordi unustati täita

testrit destilleeritud veega, mis põhjustas soovimatuid kekskonnatingimusi ja põhjustas

testi mitte töötamist. See ajutine süsteem on nüüdseks parandatud pideva vee toitega

testimiskeskuses. Arvestatav hulk infot läks kaduma halva programmeerimise tõttu, mis

tõttu side kontrolleri ja andmete hankimise masinaga katkes. Suuresti programmeerimise

probleem, mis jäi siiski inseneri poolt märkamata. Kuna autor on mõlemas rollis siis on

kedagi teist süüdistada raske. Kõik trükkplaatide seerianumbrid salvestati andmebaasi, mis

peaks muutuma trükkplaatide testimise standardiks.

Loogikakontrolleri programmeerimine: Ma ei olnud seda varem teinud ja vastutus langes

minule vajadusest. Tagasi vaadates koodi muudatustele ja täiendustele ei saa ma öelda,

et nad oleks kõige paremad olnud või et ma nii sarnaselt uuesti teeksin. Siiski said tekitatud

testeri parameetrid ja staatussõna, midagi mida varajasemates testrites ei olnud olnud.

Õnneks kood millega ma alustasin oli üsnagi puhas ja arusaadav ning mind aidati läbi kõigi

protsesside ja sain nii palju abi kui ma küsisin. Nüüd kui ma olen muutunud AC500

40

eksperdiks peaksin ma leidma aega, et lisada turvafunktsioone, et ventilaatori

toiteplaadifiasko ei korduks.

Andmebaasi salvestamine: Idee oli puhas ja lihtne. Salvestame ainult mõõtetulemusi ja

server arvutab ülejäänu. AC500 MSSQL raamatukogu kasutuselevõtt tundus alguses

keeruline, kuid kui me algusega hakkama saime läks edasi lihtsalt. Andmebaasi ja

kontrolleri arhitektuuris sai tehtud mõned vead, mis siiani tüli põhjustavad. Kuna

muudatused andmebaasi loogikas mõjutavad kõiki meie testreid tuleb iga muudatus enne

põhjalikult läbi mõelda ja katsetada, enne kui teda saab kasutusele võtta. Me olime

üllatunud kui keeruliseks meie lihtsad miinimumi ja maksimumi tabeli ja vigade tabeli

arvutused muutusid võrreldes sellega, mida me endi arvutites proovisime.

Kõige tähtsam parandus on endiselt puudu. Selleks on loogikaviga serveris, kus viga

salvestatakse alles tema kustumisel, mitte tekkimisel.

Testitulemused olid rahuldavad: Kahjuks ühtegi trükkplaadi viga ei leitud, kuid mõned

nõrgemad kohad avaldusid ja neile saab järgmises testis juba alustades rohkem tähelepanu

pöörata. Kulumisvead viiel kahekast katsetavast üsnagi väikeses ajavahemikus kinnitavad,

et stressorid töötavad ja tulevikus saab sooritada täpsemaid eluea arvutusi.

Kokkuvõttes said kõik eesmärgid edukalt saavutatud, kuid õpitutu valguses tuleks

hulgaliselt täiendusi teha Ocalale ja tulevastele testeritele. Ma olen kindel, et Ocala

vanandab ja lõhub trükkplaate veel aastaid leides tootmise, komponentide ja disainivigu.

41

LIST OF REFERENCES

1. https://www.dfrsolutions.com/hubfs/Resources/services/Qualifying-for-Moisture-

Containing-Environments.pdf?t=1503583170559

2. Climate chamber manual [2]

3. ORT specification xxx PCBAs (Internal document)

4. https://catalog.weidmueller.com/catalog/Start.do?localeId=en&ObjectID=869004

0000

5. https://www.desolutions.com/blog/2017/09/accelerated-temperature-humidity-

testing-using-the-arrhenius-peck-relationship/ [5]

6. MECHANICAL PERFORMANCE OF POLYAMIDES WITH INFLUENCEOF MOISTURE

AND TEMPERATURE – ACCURATE EVALUATIONAND BETTER UNDERSTANDING

https://www.researchgate.net/publication/284257135_Mechanical_Performance_o

f_Polyamides_with_Influence_of_Moisture_and_Temperature_-

_Accurate_Evaluation_and_Better_Understanding [6]

7. Magna power supply https://magna-

power.com/assets/files/manuals/manual_xr_1.3.pdf

8. COMPREHENSIVE MODEL FOR HUMIDITY TESTING CORRELATION by D. S. Peck

(1986)

http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary%20Papers/1986%2

0Peck%20Comprehensive%20Model%20for%20Humidity%20Testing%20Correlati

on%20IRPS%2004208640.pdf

https://www.dfrsolutions.com/hubfs/Resources/services/Qualifying-for-Moisture-Containing-Environments.pdf?t=1503583170559
https://www.dfrsolutions.com/hubfs/Resources/services/Qualifying-for-Moisture-Containing-Environments.pdf?t=1503583170559
https://catalog.weidmueller.com/catalog/Start.do?localeId=en&ObjectID=8690040000
https://catalog.weidmueller.com/catalog/Start.do?localeId=en&ObjectID=8690040000
https://www.desolutions.com/blog/2017/09/accelerated-temperature-humidity-testing-using-the-arrhenius-peck-relationship/
https://www.desolutions.com/blog/2017/09/accelerated-temperature-humidity-testing-using-the-arrhenius-peck-relationship/
https://www.researchgate.net/publication/284257135_Mechanical_Performance_of_Polyamides_with_Influence_of_Moisture_and_Temperature_-_Accurate_Evaluation_and_Better_Understanding
https://www.researchgate.net/publication/284257135_Mechanical_Performance_of_Polyamides_with_Influence_of_Moisture_and_Temperature_-_Accurate_Evaluation_and_Better_Understanding
https://www.researchgate.net/publication/284257135_Mechanical_Performance_of_Polyamides_with_Influence_of_Moisture_and_Temperature_-_Accurate_Evaluation_and_Better_Understanding
https://magna-power.com/assets/files/manuals/manual_xr_1.3.pdf
https://magna-power.com/assets/files/manuals/manual_xr_1.3.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary%20Papers/1986%20Peck%20Comprehensive%20Model%20for%20Humidity%20Testing%20Correlation%20IRPS%2004208640.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary%20Papers/1986%20Peck%20Comprehensive%20Model%20for%20Humidity%20Testing%20Correlation%20IRPS%2004208640.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary%20Papers/1986%20Peck%20Comprehensive%20Model%20for%20Humidity%20Testing%20Correlation%20IRPS%2004208640.pdf

42

APPENDICES

43

Appendix 1 Ocala data and control flow chart

Figure A1.1 Ocala data and control flow chart

44

Appendix 2 PLC in circuit diagram

Figure A2.1 PLC in circuit diagram

45

Appendix 3 Circuit diagram

Figure A3.1 First revision of Ocala Main Supply

46

Figure A3.2 Latest revision of Ocala Main Supply

47

Figure A3.3 First revision of EUT 24V DC supply

48

Figure A3.4 Latest revision of EUT 24V DC supply

49

Figure A3.5 First revision of 1000V DC Supply

50

Figure A3.6 Latest revision of 1000V DC Supply

51

Appendix 4 chamber graphs

Figure A4.1 humidity fluctuation

52

Figure A4.2 Chamber ambient test setpoints

53

Figure A4.3 Ambient test conditions measured

54

Figure A4.4 Changing from 50°C to 65°C ambient and running out of water

55

Appendix 5 PLC visualization and code

Figure A5.1 PLC MAIN visualization

56

Figure A5.2 cycle settings table

57

Figure A5.3 PLC Code example

58

Appendix 6 General tester programming structure

Figure A6.1 General tester programming structure

59

Appendix 7 MSSQL_Execute

Figure A7.1 MSSQL_Execute

60

Appendix 8 Server code structure

Figure A8.1 Server code structure

61

Appendix 9 SQL code

TRUNCATE TABLE [Ocala_2020].[Raw].[Measurements]

SELECT [Id]
 ,[Serial_number] COLLATE Latin1_General_CI_AS [Serial_number]
 ,[EUT_place]
 ,[Cycle]
 ,[Cycle_step]
 ,[Cycle_saving]
 ,[Parameter_name] COLLATE Latin1_General_CI_AS [Parameter_name]
 ,[Parameter_value] COLLATE Latin1_General_CI_AS [Parameter_value]
 ,[Time_stamp]
 ,[Active_faults] COLLATE Latin1_General_CI_AS [Active_faults]
 ,[User_modified] COLLATE Latin1_General_CI_AS [User_modified]
 FROM [Ocala].[dbo].[Measurements]
 WHERE Time_stamp > ?

MERGE [Ocala_2020].[dbo].[Measurements] AS TARGET
USING [Ocala_2020].[Raw].[Measurements] AS SOURCE
ON TARGET.[Id] = SOURCE.[Id]
WHEN NOT MATCHED BY TARGET
THEN INSERT ([Id], [Serial_number], [EUT_place], [Cycle], [Cycle_step], [Cycle_saving],
[Parameter_name], [Parameter_value],[Time_stamp],[Active_faults],[User_modified])
VALUES (SOURCE.[Id], SOURCE.[Serial_number], SOURCE.[EUT_place], SOURCE.[Cycle],
SOURCE.[Cycle_step], SOURCE.[Cycle_saving], SOURCE.[Parameter_name],
SOURCE.[Parameter_value],
SOURCE.[Time_stamp], SOURCE.[Active_faults], SOURCE.[User_modified]);

MERGE [Ocala_2020].[Stage].[Measurements] AS TARGET
USING [Ocala_2020].[Raw].[Measurements] AS SOURCE
ON TARGET.[Id] = SOURCE.[Id]
WHEN NOT MATCHED BY TARGET
THEN INSERT ([Id], [Serial_number], [EUT_place], [Cycle], [Cycle_step], [Cycle_saving],
[Parameter_name], [Parameter_value],[Time_stamp],[Active_faults],[User_modified])
VALUES (SOURCE.[Id], SOURCE.[Serial_number], SOURCE.[EUT_place], SOURCE.[Cycle],
SOURCE.[Cycle_step], SOURCE.[Cycle_saving], SOURCE.[Parameter_name],
SOURCE.[Parameter_value],
SOURCE.[Time_stamp], SOURCE.[Active_faults], SOURCE.[User_modified]);

**

TRUNCATE TABLE [Ocala_2020].[Stage].[Min_Max]

IF OBJECT_ID('tempdb..#Min_Max_1_Ocala') IS NOT NULL DROP TABLE #Min_Max_1_Ocala
IF OBJECT_ID('tempdb..#Min_Max_2_Ocala') IS NOT NULL DROP TABLE #Min_Max_2_Ocala

-- Stage 1
SELECT [Serial_number],
 [Cycle],
 [Parameter_name]

62

 INTO #Min_Max_1_Ocala
FROM [Ocala_2020].[Stage].[Measurements]
WHERE [Serial_number] <> ''
AND [Time_stamp] > ?
GROUP BY Cycle, Parameter_name, Serial_number

-- Stage 2
SELECT [MM1].[Serial_number],
 MAX([M1].[EUT_place]) [EUT_place],
 [MM1].[Cycle],
 [MM1].[Parameter_name],
 MIN([M1].[Time_stamp]) [Start],
 MAX([M1].[Time_stamp]) [End]
 INTO #Min_Max_2_Ocala
FROM #Min_Max_1_Ocala [MM1]
INNER JOIN [Ocala_2020].[Stage].[Measurements] [M1] ON [MM1].[Serial_number] =
[M1].[Serial_number]
AND [MM1].[Cycle] = [M1].[Cycle] AND [MM1].[Parameter_name] = [M1].[Parameter_name]
GROUP BY [MM1].[Serial_number], [MM1].[Cycle], [MM1].[Parameter_name]

-- Stage 3
INSERT INTO [Ocala_2020].[Stage].[Min_Max]
SELECT [MM2].[Serial_number]
 ,[MM2].[EUT_place]
 ,[MM2].[Cycle]
 ,[MM2].[Parameter_name]
 ,(
 SELECT MIN(CAST([Parameter_value] AS DECIMAL(18,1)))
 FROM [Ocala_2020].[Stage].[Measurements]
 where Serial_number = [MM2].[Serial_number] and Parameter_name =
[MM2].[Parameter_name] and Cycle = [MM2].Cycle
 AND TRY_CAST([Parameter_value] AS DECIMAL(18,1)) IS NOT NULL
) [CalculatedMinAbsolute]
 ,(
 SELECT MAX(CAST([Parameter_value] AS DECIMAL(18,1)))
 FROM [Ocala_2020].[Stage].[Measurements]
 where Serial_number = [MM2].[Serial_number] and Parameter_name =
[MM2].[Parameter_name] and Cycle = [MM2].Cycle
 AND TRY_CAST([Parameter_value] AS DECIMAL(18,1)) IS NOT NULL
) [CalculatedMaxAbsolute]
 ,CAST([MM2].[Start] AS DATETIME2(0)) [Cycle_start_time]
 ,CAST([MM2].[End] AS DATETIME2(0)) [Cycle_end_time]
 ,CAST([MM2].[Start] AS DATETIME2) [Cycle_start_time_Sort]
FROM #Min_Max_2_Ocala [MM2]
ORDER BY [MM2].[Start] DESC

IF OBJECT_ID('tempdb..#Min_Max_1') IS NOT NULL DROP TABLE #Min_Max_1_Ocala
IF OBJECT_ID('tempdb..#Min_Max_2') IS NOT NULL DROP TABLE #Min_Max_2_Ocala

MERGE [Ocala_2020].[dbo].[Min_Max] AS TARGET
USING
(SELECT TOP (100) PERCENT [Serial_number]
 ,[EUT_place]
 ,[Cycle]
 ,[Parameter_name]
 ,[Cycle_start_time]

63

 ,[Cycle_end_time]
 ,[Min_value]
 ,[Max_value]
FROM [Ocala_2020].[Stage].[Min_Max] ORDER BY [Cycle_start_time_Sort] ASC) AS SOURCE
ON (TARGET.[Serial_number] = SOURCE.[Serial_number] AND TARGET.[EUT_place] =
SOURCE.[EUT_place] AND TARGET.[Cycle] = SOURCE.[Cycle] AND TARGET.[Parameter_name] =
SOURCE.[Parameter_name])
--When records are matched, update the records if there is any change
WHEN MATCHED AND TARGET.[Min_value] <> SOURCE.[Min_value] OR TARGET.[Max_value] <>
SOURCE.[Max_value]
OR TARGET.[Cycle_start_time] <> SOURCE.[Cycle_start_time] OR TARGET.[Cycle_end_time] <>
SOURCE.[Cycle_end_time]
THEN UPDATE SET TARGET.[Min_value] = SOURCE.[Min_value], TARGET.[Max_value] =
SOURCE.[Max_value] ,
TARGET.[Cycle_start_time] = SOURCE.[Cycle_start_time] , TARGET.[Cycle_end_time] =
SOURCE.[Cycle_end_time]

--When no records are matched, insert the incoming records from source table to target
table
WHEN NOT MATCHED BY TARGET
THEN INSERT ([Serial_number], [EUT_place], [Cycle], [Parameter_name],
[Cycle_start_time], [Cycle_end_time], [Min_value], [Max_value])
VALUES (SOURCE.[Serial_number], SOURCE.[EUT_place], SOURCE.[Cycle],
SOURCE.[Parameter_name], SOURCE.[Cycle_start_time], SOURCE.[Cycle_end_time],
SOURCE.[Min_value], SOURCE.[Max_value]);

**

TRUNCATE TABLE [Ocala_2020].[Stage].[Faults]
--There should now somewhere be a TRUNCATE TABLE [Ocala_2020].[Stage].[ActiveSn] sql
line after Stage truncate

INSERT INTO [Ocala_2020].[Stage].[ActiveSn]
SELECT DISTINCT [Serial_number]
FROM [Ocala_2020].[dbo].[Measurements]
WHERE [Serial_number] <> 'Global' AND [Serial_number] <> ''
AND CAST([Time_stamp] AS DATE) >= ?

INSERT INTO [Ocala_2020].[Stage].[FaultsSourceData]
SELECT [Id], [Serial_number], [EUT_place], [Active_faults], [Cycle], [Cycle_step],
[Time_stamp],
[Previous_fault] = LAG([Active_faults]) OVER (ORDER BY [Serial_number], [Id])
FROM [Ocala_2020].[dbo].[Measurements]
WHERE [Serial_number] IN (
 SELECT [Serial_number] FROM [Ocala_2020].[Stage].[ActiveSn]
) AND [Parameter_name] LIKE 'Status word%'

INSERT INTO [Ocala_2020].[Stage].[Faults]
select A.Serial_number, A.EUT_place, A.Cycle, A.Cycle_step as
FaultOccurrence_Cycle_step, MIN(B.Cycle_step) as FaultDisappearance_Cycle_step,
A.Active_faults, A.Time_stamp as FaultStart, MIN(B.Time_stamp) as FaultEnd
from [Stage].[FaultsSourceData] A, [Stage].[FaultsSourceData] B
where A.Active_faults <> A.Previous_fault and A.Active_faults <> '0'
and B.Active_faults <> B.Previous_fault and B.Active_faults = '0'
and A.Serial_number = B.Serial_number
and A.Time_stamp < B.Time_stamp
group by A.Time_stamp, A.Id, A.Serial_number, A.EUT_place, A.Active_faults, A.Cycle,
A.Cycle_step

64

ORDER BY A.Time_stamp ASC

EXEC [dbo].[Ocala_New_Fault_Notification]

--Notification procedure
USE [Ocala_2020]
GO
/****** Object: StoredProcedure [dbo].[Ocala_New_Fault_Notification]
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO

ALTER PROCEDURE [dbo].[Ocala_New_Fault_Notification]
AS
BEGIN
 -- SET NOCOUNT ON added to prevent extra result sets from
 -- interfering with SELECT statements.
 SET NOCOUNT ON;

 -- Insert statements for procedure here
 IF (SELECT IIF((SELECT COUNT([Serial_number]) FROM
[Ocala_2020].[Stage].[Faults]) = (SELECT COUNT([Serial_number]) FROM
[Ocala_2020].[dbo].[Faults]
 WHERE
CHECKSUM([Serial_number],[EUT_place],[FaultOccurrence_Cycle_step],[Active_faults],[Faul
tStart]) IN
 (SELECT
CHECKSUM([Serial_number],[EUT_place],[FaultOccurrence_Cycle_step],[Active_faults],[Faul
tStart]) FROM [Ocala_2020].[Stage].[Faults])), 0, 1) [IsNewFault]) = 1
 BEGIN
 DECLARE @xml NVARCHAR(MAX)
 DECLARE @body NVARCHAR(MAX)

 SET @xml = CAST ((Select td = [Serial_number],'',
 td = [EUT_Place],'',
 td = [Cycle],'',
 td = [FaultOccurrence_Cycle_step],'',
 td = [Active_faults], '',
 td = [FaultStart]
 FROM [Ocala_2020].[Stage].[Faults]
 where
CONCAT([Serial_number],[EUT_place],[FaultOccurrence_Cycle_step],[Active_faults],[FaultS
tart]) NOT IN
 (SELECT
CONCAT([Serial_number],[EUT_place],[FaultOccurrence_Cycle_step],[Active_faults],[FaultS
tart]) FROM [Ocala_2020].[dbo].[Faults])
 ORDER BY [FaultStart] DESC
 FOR XML PATH('tr'), TYPE
) AS NVARCHAR(MAX))

 SET @body ='<html><body><H3>Ocala - New fault found</H3>
 <table border = 1>
 <tr>

65

 <th>Serial_number</th><th>EUT_Place</th><th>Cycle</th><th>FaultOccurrence_Cycle_
step</th><th>Active_faults</th><th>FaultStart</th></tr>'

 SET @body = @body + @xml +'</table></body></html>'

 EXEC msdb.dbo.sp_send_dbmail
 @profile_name = 'V15_LVDTESTER_SQL@xxx',
 @recipients = 'martin.onton@xxx',
 @copy_recipients = 'voldemar.balder@xxx',
 @Execute_query_database = 'Ocala_2020',
 @subject = 'New fault row found in [Ocala_2020].[dbo].[Faults]',
 @body = @body,
 @body_format ='HTML'
 END
END

MERGE [Ocala_2020].[dbo].[Faults] AS TARGET
USING (SELECT TOP 100 PERCENT [Serial_number]
 ,[EUT_place]
 ,[Cycle]
 ,[FaultOccurrence_Cycle_step]
 ,[FaultDisappearance_Cycle_step]
 ,[Active_faults]
 ,[FaultStart]
 ,[FaultEnd]
 FROM [Ocala_2020].[Stage].[Faults]
 ORDER BY [FaultStart] ASC) AS SOURCE
ON (TARGET.[Serial_number] = SOURCE.[Serial_number] AND TARGET.[Active_faults] =
SOURCE.[Active_faults] AND TARGET.[Cycle] = SOURCE.[Cycle]
AND TARGET.[FaultOccurrence_Cycle_step] = SOURCE.[FaultOccurrence_Cycle_step] AND
TARGET.[FaultStart] = SOURCE.[FaultStart])
--When records are matched, update the records if there is any change
WHEN MATCHED AND TARGET.[FaultStart] <> SOURCE.[FaultStart] OR TARGET.[FaultEnd] <>
SOURCE.[FaultEnd]
THEN UPDATE SET TARGET.[FaultStart] = SOURCE.[FaultStart], TARGET.[FaultEnd] =
SOURCE.[FaultEnd]
--When no records are matched, insert the incoming records from source table to target
table
WHEN NOT MATCHED BY TARGET
THEN INSERT ([Serial_number], EUT_place, [Cycle], [FaultOccurrence_Cycle_step],
[FaultDisappearance_Cycle_step], [Active_faults], [FaultStart], [FaultEnd])
VALUES (SOURCE.[Serial_number], SOURCE.[EUT_place], SOURCE.[Cycle],
source.[FaultOccurrence_Cycle_step], SOURCE.[FaultDisappearance_Cycle_step],
SOURCE.[Active_faults], SOURCE.[FaultStart], SOURCE.[FaultEnd]);

**

TRUNCATE TABLE [Ocala_2020].[Raw].[Summary]

MERGE [Ocala_2020].[Stage].[Summary] AS TARGET
USING (SELECT TOP 100 PERCENT [Id]
 ,[Serial_number]
 ,[EUT_place]
 ,[Type]

66

 ,[Frame_size]
 ,[Project]
 ,[Target_cycles]
 ,[Added_on]
 FROM [Ocala_2020].[Raw].[Summary]) AS SOURCE
ON (TARGET.[Id] = SOURCE.[Id] AND TARGET.[Serial_number] = SOURCE.[Serial_number] AND
TARGET.[EUT_place] = SOURCE.[EUT_place])
--When records are matched, update the records if there is any change
WHEN MATCHED AND TARGET.[Type] <> SOURCE.[Type] OR TARGET.[Frame_size] <>
SOURCE.[Frame_size] OR TARGET.[Project] <> SOURCE.[Project] OR TARGET.[Target_cycles]
<> SOURCE.[Target_cycles] OR TARGET.[Added_on] <> SOURCE.[Added_on]
THEN UPDATE SET TARGET.[Type] = SOURCE.[Type], TARGET.[Frame_size] =
SOURCE.[Frame_size] , TARGET.[Project] = SOURCE.[Project] , TARGET.[Target_cycles] =
SOURCE.[Target_cycles] , TARGET.[Added_on] = SOURCE.[Added_on]
--When no records are matched, insert the incoming records from source table to target
table
WHEN NOT MATCHED BY TARGET
THEN INSERT ([Id], [Serial_number], [EUT_place], [Type], [Frame_size], [Project],
[Target_cycles], [Added_on]) VALUES (SOURCE.[Id], SOURCE.[Serial_number],
SOURCE.[EUT_place], source.[Type], SOURCE.[Frame_size], SOURCE.[Project],
SOURCE.[Target_cycles], SOURCE.[Added_on]);

MERGE [Ocala_2020].[dbo].[Summary] AS TARGET
USING (SELECT TOP 100 PERCENT [Id]
 ,[Serial_number]
 ,[EUT_place]
 ,[Type]
 ,[Frame_size]
 ,[Project]
 ,[Target_cycles]
 ,[Added_on]
 FROM [Ocala_2020].[Raw].[Summary]) AS SOURCE
ON (TARGET.[Id] = SOURCE.[Id] AND TARGET.[Serial_number] = SOURCE.[Serial_number] AND
TARGET.[EUT_place] = SOURCE.[EUT_place])
--When records are matched, update the records if there is any change
WHEN MATCHED AND TARGET.[Type] <> SOURCE.[Type] OR TARGET.[Frame_size] <>
SOURCE.[Frame_size] OR TARGET.[Project] <> SOURCE.[Project] OR TARGET.[Target_cycles]
<> SOURCE.[Target_cycles] OR TARGET.[Added_on] <> SOURCE.[Added_on]
THEN UPDATE SET TARGET.[Type] = SOURCE.[Type], TARGET.[Frame_size] =
SOURCE.[Frame_size] , TARGET.[Project] = SOURCE.[Project] , TARGET.[Target_cycles] =
SOURCE.[Target_cycles] , TARGET.[Added_on] = SOURCE.[Added_on]
--When no records are matched, insert the incoming records from source table to target
table
WHEN NOT MATCHED BY TARGET
THEN INSERT ([Id], [Serial_number], [EUT_place], [Type], [Frame_size], [Project],
[Target_cycles], [Added_on]) VALUES (SOURCE.[Id], SOURCE.[Serial_number],
SOURCE.[EUT_place], source.[Type], SOURCE.[Frame_size], SOURCE.[Project],
SOURCE.[Target_cycles], SOURCE.[Added_on]);

IF OBJECT_ID('tempdb..#Summary_Latest_SN') IS NOT NULL DROP TABLE #Summary_Latest_SN
IF OBJECT_ID('tempdb..#Measurement_Latest_SN_ID') IS NOT NULL DROP TABLE
#Measurement_Latest_SN_ID
IF OBJECT_ID('tempdb..#Summary_Update') IS NOT NULL DROP TABLE #Summary_Update

TRUNCATE TABLE [Stage].[Summary_Latest_SN]

INSERT INTO [Stage].[Summary_Latest_SN]
SELECT DISTINCT (

67

 SELECT TOP 1 [Serial_number] FROM [Stage].[Summary] [S2] WHERE [S].[EUT_place] =
[S2].[EUT_place]
 ORDER BY [Id] DESC
) [Serial_number]
FROM [Ocala_2020].[Stage].[Summary] [S]

SELECT [M2].Serial_number, MAX([M2].Id) [LastId]
into #Measurement_Latest_SN_ID
FROM [Ocala_2020].[dbo].[Measurements] [M2]
group by [M2].Serial_number

SELECT [SLSN].[Serial_number]
,(SELECT MAX([Cycle]) FROM [Ocala_2020].[dbo].[Measurements] [M1] WHERE
[SLSN].[Serial_number] = [M1].[Serial_number]) [Cycles_done]
,(SELECT [M2].[Active_faults] FROM [Ocala_2020].[dbo].[Measurements] [M2] WHERE
[M2].[Id] = (select [mid].[LastId] from #Measurement_Latest_SN_ID [MID] where
[SLSN].[Serial_number] = [MID].Serial_number)) [Active_Fault]
,IIF((SELECT CONVERT(int, convert(real, (SELECT TOP 1 [Active_faults] FROM
[Ocala_2020].[dbo].[Faults] [F1] where [SLSN].[Serial_number] = [F1].[Serial_number]
ORDER BY [Id] DESC)))) IS NULL, 0, (SELECT CONVERT(int, convert(real, (SELECT TOP 1
[Active_faults] FROM [Ocala_2020].[dbo].[Faults] [F1] where [SLSN].[Serial_number] =
[F1].[Serial_number] ORDER BY [Id] DESC))))) [Last_Fault],
[TestStart].[Test_start],
[TestEnd].[Test_end],
[FaultCount].[Number_of_faults],
[BadCycleCount].[Bad_cycles],
[Simulated_lifetime] = --CODE removed, it is a secret
INTO #Summary_Update
FROM [Stage].[Summary_Latest_SN] [SLSN]
CROSS APPLY [dbo].[TestStart]([SLSN].[Serial_number]) [TestStart]
CROSS APPLY [dbo].[TestEnd]([SLSN].[Serial_number]) [TestEnd]
CROSS APPLY [dbo].[FaultCount]([SLSN].[Serial_number]) [FaultCount]
CROSS APPLY [dbo].[BadCycleCount]([SLSN].[Serial_number]) [BadCycleCount]

UPDATE #Summary_Update SET [Cycles_done] = IIF([Cycles_done] IS NULL, 0,
[Cycles_done]),
[Active_Fault] = IIF([Active_Fault] IS NULL, 0, [Active_Fault]),
[Simulated_lifetime] = IIF([Simulated_lifetime] IS NULL, 0, [Simulated_lifetime])

MERGE [Ocala_2020].[dbo].[Summary] AS TARGET
USING
(SELECT TOP (100) PERCENT [Serial_number]
 ,[Cycles_done]
 ,[Active_Fault]
 ,[Last_Fault]
 ,[Test_start]
 ,[Test_end]
 --,[EUT_in_use] [EUT_Active]
 ,[Number_of_faults]
 ,[Bad_cycles]
 --,[Good_cycles]
 ,[Simulated_lifetime]
FROM #Summary_Update) AS SOURCE
ON (SOURCE.[Serial_number] LIKE TARGET.[Serial_number])
--When records are matched, update the records if there is any change
WHEN MATCHED

68

THEN UPDATE SET TARGET.[Cycles_done] = SOURCE.[Cycles_done], TARGET.[Active_Fault] =
SOURCE.[Active_Fault] , TARGET.[Last_Fault] = SOURCE.[Last_Fault] , TARGET.[Test_start]
= SOURCE.[Test_start] , TARGET.[Test_end] = SOURCE.[Test_end] ,
TARGET.[Number_of_faults] = SOURCE.[Number_of_faults] , TARGET.[Bad_cycles] =
SOURCE.[Bad_cycles], TARGET.[Simulated_years] = SOURCE.[Simulated_lifetime];

MERGE [Ocala_2020].[Stage].[Summary] AS TARGET
USING
(SELECT TOP (100) PERCENT [Serial_number]
 ,[Cycles_done]
 ,[Active_Fault]
 ,[Last_Fault]
 ,[Test_start]
 ,[Test_end]
 --,[EUT_in_use] [EUT_Active]
 ,[Number_of_faults]
 ,[Bad_cycles]
 --,[Good_cycles]
 ,[Simulated_lifetime]
FROM #Summary_Update) AS SOURCE
ON (SOURCE.[Serial_number] LIKE TARGET.[Serial_number])
--When records are matched, update the records if there is any change
WHEN MATCHED
THEN UPDATE SET TARGET.[Cycles_done] = SOURCE.[Cycles_done], TARGET.[Active_Fault] =
SOURCE.[Active_Fault] , TARGET.[Last_Fault] = SOURCE.[Last_Fault] , TARGET.[Test_start]
= SOURCE.[Test_start] , TARGET.[Test_end] = SOURCE.[Test_end] ,
TARGET.[Number_of_faults] = SOURCE.[Number_of_faults] , TARGET.[Bad_cycles] =
SOURCE.[Bad_cycles] , TARGET.[Simulated_years] = SOURCE.[Simulated_lifetime];

IF OBJECT_ID('tempdb..#Summary_Latest_SN') IS NOT NULL DROP TABLE #Summary_Latest_SN
IF OBJECT_ID('tempdb..#Summary_Update') IS NOT NULL DROP TABLE #Summary_Update

