TALLINNA TEHNIKAULIKOOL
TALLINN UNIVERSITY OF TECHNOLOGY

School of Engineering
Department of Materials and Environmental Technology
Materials and Processes of Sustainable Energetics

UTILITY OF OPEN SOURCE COMPUTATIONAL TOOLS FOR
AERODYNAMIC AND STRUCTURAL BEHAVIOUR ANALYSIS OF SMALL
WIND TURBINES IN ACCORDANCE TO RELATED STANDARD

Avatud Lahtekoodiga Arvutusvahendite Kasulikkus Vaikeste Tuuleturbiinide
Aerodunaamiliseks ja Struktuuriliseks Kaitumiseks Vastavalt Valdkonnaga Seotud

Standardile

MASTER’S THESIS

Student: Michael Keumatio Lontsie

Student code: 177347KAYM

Supervisor: Ivo Palu, Professor

Co-Supervisor: Drew Gertz, MASc

Tallinn, 2019

AUTHOR'’S DECLARATION

Hereby | declare that this master thesis, my original investigation and achievement, submitted for

the master degree at Tallinn University of Technology has not been submitted for any degree or

examination.

e e eeees 2019

AUthOr: ..o,
/signature /

Thesis is in accordance with terms and requirements

SUPEIVISOr: cvevvveeeviieeeeeeeeniiiineeen
/signature/

CO-SUPErVISOr: cccvvvvvvrriviiirieeeen,
/signature/

Accepted for defence

Chairman of theses defence COMMISSION:ovviiiiiiiiiiiiiiiiieee e e e e e e eeeeeeeereeeeeeeeeees
/name and signature/

Student:

Study programme,

Department of Materials and Environmental Technology

THESIS TASK

Michael Keumatio Lontsie, 177347KAYM

main speciality: Processes for Sustainable Energetics.

Supervisors: Professor Ivo Palu, +3726203752

Drew Gertz, MASc, CEO NorthWind Engineerin

Thesis Topic:

Utility of Open Source Computational Tools for Aerodynamic and Structural Behaviour Analysis of

Small Wind Turbines in Accordance to Related Standard

Avatud Lahtekoodiga Arvutusvahendite Kasulikkus Vaikeste Tuuleturbiinide Aerodiinaamiliseks ja

KAYMO09/09 - Materials and Processes for Sustainable Energetics.

g 0U, +37255650147

Struktuuriliseks Kaitumiseks Vastavalt Valdkonnaga Seotud Standardile

Thesis main objectives:

1. The use of freely available simulation tools for analysis of aerodynamic and structural response of
wind turbines to wind loading for quality assurance and operation safety of the machine assembly in

accordance to the IEC-61400-2 standard for small wind turbines;

2. Demonstration of the importance of standard’s load calculation methodologies for turbine integrity.

3. Importance of integrating open source trending programming languages for optimization of

simulation processes.

Thesis tasks and time schedule:

No Task description Deadline
1. Internship, data collection, simulation analysis and result processing 26.10.2018
2. Compilation of literature review 28.02.2019
3. Compilation of main thesis body and submission 27.05.2019
Language:ccceeeeveveevecierinnens Deadline for submission of thesis: “....... Y e 2019
STUAENT: ..o et e e R SRR 2019
/signature/
SUPEIVISOL:ooveiiicece e secieiicieces reeeeeitteeeeeeteeeeeesressesntaeaeenns e e 2019
/signature/
CO-SUPEIVISOL:ocviiiiciieiciciiiiies creeeeeiteeeeessseeeeeeeteeeareeaeas e Y e 2019
/signature/
CoNSUIANt: ..o e R e 2019
/signature/

Table of Contents

ABBREVIATIONS, SYMBOLS USED AND SUBSCRIPTS.......cccceerttiiiiiieieeniieniee sttt sree e s 6
INTRODUGCTION ...ttt ettt ettt et s b e s h et et e e bt e s bt e sb e e saeesabe s bt e bt e beeabeesmeesatesabeeabeenbeesnnenas 9
1. OVERVIEW OF SMALL WIND TURBINE AERODYNAMICS AND STRUCTURAL BEHAVIOUR TO
WIND LOADING......cooiiiiiiiiiititee e e ettt e e e s e s surtrteeeeessssaabeaeeeeesssasssbaaeeeeesssasassbaaaeeeesssassssaaaeesssssannsnns 11
1.1. Aerodynamics of Horizontal Axis Wind-Turbines..............c..cccccovviiiiiiiiieeiiieec e, 11
1.2, SEructUral DYNAMICoooiiiiiei ettt e et e e et e e e et e e e s eat e e e e e aareeeeannreeeean 12
1.3. IEC-64100-2 Standard for Small Wind Turbines..............cccceviiniiniiininiieeeeeeeeeeeeen 13
1.3.1. Simplified Load Methodology (SLM) for load calculation.................cccoecvveieeeneenee. 14
1.3.2. Aeroelastic model for load computation............ccccceiviiiiiinii e, 22
2. WIND TURBINE DESIGN AND ANALYSIS SIMULATION TOOLScoooemiiiiieieenieenie e 28
2.1. General Overview of Predominant Wind Turbine Simulation Toolsc.cccocceenee.e. 28
2.2. NREL FAST SIMulation Codecooiiiiiiiiiiiieieeeie ettt ettt s s 30
2.2.1. INtroduction tO FASTooiiiiie ettt et et e s re e sbae e sbeeenes 30
2.2.2, FAST 0perating MOMEoooiiiiiiiiiice ettt e e st e e e s bee e e s sbaeeeeennes 32
2.2.3. Description of FAST module input files............c..ooooiiii i, 33
2.3, SIMulation ENVIFONMENTScoceiiiiiiiiiieiieiie ettt ettt st st st b e 37

3. AERODYNAMIC AND STRUCTURAL BEHAVIOUR OF SMALL WIND TURBINES: SIMULATION

MODELLING OF A 25 KW WIND TURBINE ... 39
3.1. Implementation of Simplified Load Methodologycccccviiiiiiiiiiiie e, 39
3.1.1. Computation of loads and equivalent stresses on components................ccccceecuvneenn. 40
3.1.2. Turbine quality assurance — model conclusion..............ccocccvvvieiiiiiiniiiiieeee e 41

3.2. Implementation of Aeroelastic Model in Python 2.7coooviiiiiiiiiiiciiieeee e 45
3.2.1. Constituents of one simulation Process.............cccceeveeiiiiecciiie e 46
3.2.2. Auto-generation process of all required simulation for the DLCsc.c..cc.......... 47
3.2.3. Python scripting for execution of auto-generation process and simulations 51
3.2.4. FAST OQUEPUL FIl@S ...ttt ettt et e e e e sbee e 52
3.2.5. FAST output files post-processing..........ccceeeiriiiiiiiiiiie e 53

4. COMPARISON BETWEEN SIMPLE LOAD METHODOLOGY AND AEROELASTIC MODEL 61
5. COMPARISON BETWEEN FAST AND ALTERNATIVE CODE HAWRGC2..........cccooiiiiiiieeeee e, 63
6. COMPARISON OF PYTHON TO IMATLAB..........eiiiiieieeeeeeetete ettt e et e e e e e e s nneeeeeeas 66
SUMIMARY ...ttt ettt st ettt e bt e s bt e sae e st e et e e bt e eb e e saeesase e b e e bt e beesbeesaeeenneenbeesreesanenas 67
REFERENCE ...ttt sttt b e b e s bt sae e st e et e e bt e s beesaeesabesab e e bt eneenbeesneeeneeenneen 69
APPENDIX 1 SLIM ...ttt e e ettt et e e e s ettt e e e e e e annbeeteeeeeeaaassbeeeeeeeeeaannsneeeeeeeeasannnnnes 71
A 1.1. Simple Load Model SCriPt ... e e e e e r e e e e e e 71

A 1.2. Loads results calculated USINg SLIVI..............cooooiiiiiiiiie et 76

APPENDIX 2 SLM equivalent stress plottingcccocciiiiiiiiiiiiiiiiicee e 77

APPENDIX 3 FAST IMAStr Filescoouiiiiiiiieeeee ettt st 78
A 3.1 InflowWind input master file...............ooooiiii s 78
A 3.2 AeroDyn input Master file............coooiiiii e 79
A 3.3 ElastoDyn input master file............ooooiiiiiiiiii e 80
A 3.4 ServoDyn input Master file ..o s 82
A 3.5 TurbSiminput Master fileooo o e 84
A 3.6 IECWINd input Master fileooooiiiii i e e 85
A 3.7 FAST INPUEMASEEr file ... e 86
APPENDIX 4 Python Auto-generation SCript..........ccociiiiiiiiiiice e 87
APPENDIX 5 Statistical computation Python script...........c..ccooooiiiiiiiie e 91
A 5.1 Statistical computation Python script 1ccoooiiiiiiiii e 91
A 5.2 Statistical computation Python script 2ccooooiiii e 93
A 5.3 Statistical computation Python script 3ccco i 95
A 5.4 DLC Aeroelastic model sample page in PDF report File.ccccooiveiiiiiiiiiccee e, 98
A 5.5 DLC Aeroelastic model results — Extreme Table..............ccocoiiriiniiiiineeeeeeee 99

ABBREVIATIONS, SYMBOLS USED AND SUBSCRIPTS

SWT — Small Wind Turbine

HAWT — Horizontal Axis Wind Turbine

VAWT — Vertical Axis Wind Turbine

NREL — National Renewable Energy Laboratory

FAST — Fatigue, Aerodynamics, Structural, Turbulence
HAWC2 — Horizontal Axis Wind turbine simulation Code 2nd generation
DLC — Design Load Case

ECD — Extreme Coherent Gust with Direction Change

ECG — Extreme Coherent Gust

EDC — Extreme Wind Direction Change

EOG — Extreme Operating Gust

EWC — Extreme Wind Conditions

EWM — Extreme Wind Speed Model

F — Fatigue

NTM — Normal Turbulence Model

NWC — Normal Wind Conditions

NWP — Normal Wind Profile Model

U — Ultimate

A —rotor swept area [m2]

Aproj— component area projected on to a plane perpendicular to the wind direction [m2]
B — number of blades [-]

¢ —blade chord [m]

Cq— drag coefficient [-]

Cs— force coefficient [-]

G — lift coefficient [-]

C, — power coefficient [-]

Cr— thrust coefficient [-]

D —rotor diameter [m]

e, — distance from the centre of gravity of the rotor to the rotation axis [m]
F —force [N]

F,s — force in z direction on the blade at the blade root [N]
Fx— shaft axial shaft load [N]

G — acceleration due to gravity: 9,81 [m/s2]

G — multiplier for generator short circuit [-]

L — Lift force [N]

D — Drag force [N]

Is— blade moment of inertia [kgm2]

Ly — distance between the rotor centre and the yaw axis [m]

Ly — distance between rotor centre and first bearing [m]

mg — blade mass [kg]

m,— rotor mass being the mass of the blades plus the mass of the hub [kg]
Mz, Mys — blade root bending moments [Nm]

Mbrake— torque on the low speed shaft caused by the brake [Nm]

Mshase — torsion moment on the rotor shaft at the first bearing [Nm]
Mihart— shaft bending moment at the first bearing [Nm]

n — rotor speed [r/min]

P —electrical power [W]

P, —rotor power [W]

Q —rotor torque [Nm]

r —radial coordinate [m]

R — radius of the rotor [m]

Reog — distance between the centre of gravity of a blade and the rotor centre [m]
V — wind speed [m/s]

Vave— annual average wind speed at hub height [m/s]

Vyesign— design wind speed defined as 1,4 Vave [m/s]

Ven — expected extreme wind speed (averaged over 3 s), with a recurrence time interval of N years.
Vezand Veso for 1 year and 50 years, respectively [m/s]

Vhup — wind speed at hub height averaged over 10 min [m/s]

Viip — speed of the blade tip [m/s]

W — relative wind speed [m/s]

A —range [-]

n — efficiency of the components between the electric output and the rotor (typically generator,
gearbox and conversion system) [-]

A —tip speed ratio [-]

Aeso— tip speed ratio at Ve50 [-]

p — air density, here assumed 1,225 [kg/m3]

Y — Azimuth angle of the rotor (0° is blade vertically up) [°]

wn— rotational speed of the rotor [rad/s]

Wyew — Yaw rate [rad/s]
vi — Partial safety factor
Subscripts:

ave — average

B —blade

design — input parameter for the simplified design equations
hub — hub height
max — maximum

min — minimum

proj — projected
r—rotor

shaft — shaft

INTRODUCTION

Wind power production is currently one of the most promising electricity generation method among
renewable energy sources for reduction of fossil fuel dependence. Its current capacity is estimated to
be around 539 GW in 2017 following hydropower production leading with a capacity of 1114 GW,
REN21 Report, 2018 [1]. From the first electricity-generating 17 m height wind turbine built in 1888
(Cleveland, United States) with a capacity of 12 kW, the wind industry has noticed a considerable
growth in technology to its current world largest GE Renewable Haliade-X 12 MW wind turbine
standing 260 m high [2]. This evolution in wind industry has been characterized by the strong desire
for optimization of turbine performance through implementation of cutting edge technology to
improve the efficiency of turbine electric drive train, the structural design of the rotor enabling the
harness of more power from the wind as well as the structural design of the rotor-tower-foundation

ensuring turbine stability and integrity.

Wind turbine rotor has faced a tremendous improvement in terms of design and efficiency in the last
two decades. This has been made possible through the development of diverse sophisticated
computational tools that provide a better understanding of the interaction between environmental
conditions and structural design of rotor components. Experience has shown that the understanding
of this interaction leads to proper design of blades and tower, capable of not only effectively capturing
power from wind but also withstanding harshly fluctuating wind loading. Developed computational
tools are therefore actively used in the industry for turbine performance analysis as well as electrical
and dynamic load forecasting through numerical simulation analysis. However, the cost of licenses for
most of these tools generally constitutes a non-negligible additional financial investment in wind
development projects which can appear to be too expensive for small wind turbine manufacturers and

interested parties in wind turbine computational analysis.

Consequently, this work investigates on two main subjects: firstly, the use of freely available simulation
tools for analysis of aerodynamic and structural response of wind turbines to wind loading for quality
assurance and operation safety of the machine assembly in accordance to the IEC-61400-2 standard
for small wind turbines; Secondly, the importance of integrating open source trending programming
languages for optimization of simulation processes. The work will therefore be structured starting with
overview of turbine dynamic and its connection to rotor performance, followed by representation of
the standard requirement for load analysis. The second part will be the illustration of major existing
simulation tools used in the industry, with a focus on main tools considered in this work. In the
following part, will be implemented methods proscribed by the standard for calculation of loads

applied on a small wind turbine using open source tools. The fourth part will provide a comparison

between those simulation methods in terms of resulting load from simulations. Lastly will be provided
a comparative analysis of both open source solutions and available license-based computational tools
serving the same purposes. All evidences of conducted investigation, simulation results, generates

graphs and written scripts will be given in appendixes.

10

1. OVERVIEW OF SMALL WIND TURBINE AERODYNAMICS AND
STRUCTURAL BEHAVIOUR TO WIND LOADING

1.1. Aerodynamics of Horizontal Axis Wind-Turbines

An exposed wind turbine rotor is subjected to the power of the wind flowing from different direction
with diverse turbulence intensities. The kinetic energy of the wind, by and interaction with the rotor-
blades, is transferred by the wind turbine drive train to the generator and converted to useful electrical
energy. Practical experience has demonstrated that the mean power output and mean loads
generated during wind-rotor interaction mainly characterize wind turbine performance and are
dependent on the generated aerodynamic forces. Recurrent aerodynamic forces generated by wind
shear, angular winds, and rotor revolution as well as randomly fluctuating forces provoked by
turbulence and dynamic effects are the source of turbine fatigue and ultimate loads [3]. The
conservation of linear momentum theory for an incompressible, one-dimensional, steady flow
presented in [3], defines the thrust, F, as the force of the wind on an ideal rotor inversely proportional

to the change in momentum of air stream and being the key acting element in turbine aerodynamic.

The performance of a wind turbine can be characterized by the way power, torque and thrust vary
with wind speed. The power represents the amount of energy captured by the rotor in a given. The
torque developed determines the size of the gear box. The rotor thrust has great influence on the
structural design of the tower [4]. These performance parameters are highly dependent of blade shape
and airfoil characteristics and are determined by the aerodynamic forces generated by the mean wind
Ve.. With wind flow, two resulting forces are created around the blade element airfoil: the lift force L,
perpendicular to the direction of an effective, or relative, wind W, and the drag force D, parallel to the

direction of W. See Figure 1.1 for airfoil velocities and forces (lift and drag).

v ¥y Qr(1+a")

relatiye'win
W :

wind
Voo(1-a)

Figure 1.1 Blade element velocities (a) and forces (b) [4].

11

Where ¢ - angle between the rotation plane and the relative wind vector, a-and a,” - are the axial and
angular inductor factors at a radius r defined in [2], a - the angle of attack representing the angle

between the chord line and the relative wind W.

The angle of attack is a major factor in pressure distribution across the both top and bottom blade
surface. It is considered as one of the two mechanism used in lift generation [5]. The aerodynamic lift

and drag forces are then responsible for the rate of change of axial and angular momentum originating
the kinematic of blade motion. The blade element momentum theory (BEM) with the use of the
conservation of linear momentum provides a detailed demonstration of the relation between lift and

drag forces with the blade aerodynamic [3]. The thrust not only influences the rotor aerodynamic but

also the structural dynamic of turbine exposed components.
1.2. Structural Dynamic

The wind turbine structural dynamic generally refers to blade and tower deflections due wind loading.
The rotor thrust has great influence on the structural dynamic of turbine blades and tower [4]. The
figure 1.2 below represents the main turbine top structural dynamic parameters reflecting the degree

of freedom of the assembly.

Flapwise
(flatwise)

‘ Lateral 3
R C (sidewards) i
Longitudinal

(fore-aft)

Roll

Edgewise
— (lead-lag)

Torsion
(twist)

Figure 1.2 Wind turbine top degree of freedom representing blade aero-elasticity [6].

The pitch, yaw, tilt and roll are the main structural parameters considered when defining turbine
degree of freedom hugely important for turbine multibody analysis. The pitch is defined as blade
rotation about the axis perpendicular to airfoil cross-section. Whereas the yaw is the rotation of the

rotor-nacelle assembly around tower vertical axis. On the other hand, the tilt is the rotation of the

12

rotor-nacelle assembly about axis perpendicular to the tower vertical axis. And the roll is denoted as
the rotation of the rotor-nacelle assembly about rotor axis. These rotations induce moments

considered in turbine design analysis.

The flapwise (flatwise) deflection accounts for the blade flapwise bending moment generated by the
thrust force, that causes the blades to bend upwind or downwind. Flapwise deflection is an important
design parameter carefully studied during blade design as an over-deflection backward can cause the
blades to hit the tower leading to rotor damage [3]. The edgewise (lead-lag) deflection accounts for
the blade edgewise bending moment towards the direction parallel to the rotor plane. It is a non-

negligible turbine design parameter as it increases the power-producing torque [3].

The torsion (twist) is the torsional deflection of blades about the pitch axis. Torsional deflections are
generally not considered for a fixed pitch wind turbine. Whereas for variable pitch wind turbine, they

can cause fluctuating loads in the active pitch control mechanism [3].

The lateral (side-to-side) deflection generally accounts for the tower sideward bending moment. This
deflection is mostly caused by the constant change in wind direction. Whereas the longitudinal (fore-
aft) deflection generally accounts for the tower frontward and backward bending moment mainly

induced by the thrust force.

All the above mentioned forces, rotation moments and bending moments characterizing wind turbine
structural dynamic have been deeply studied by many researchers in the field of wind energy [6, 8 and
9] for load calculation and turbine safety in operation enabling the limitation of component damages.
The safety concern of wind turbines has pushed the International Electrotechnical Commission (IEC)
to developed a general standards regularizing turbine load calculations for quality assurance, the
implementation of which is demonstrated in this work on a SWT using open source computational

tools.
1.3. IEC-64100-2 Standard for Small Wind Turbines

International Electrotechnical Commission (IEC) standard 61400 Part 2 is a version of the IEC-61400
standards that provides engineering design requirements for small wind turbine (SWT) to ensure safety
and reliability of operation throughout projected lifetime, withstanding environmental and electrical
hazards capable of originating component failure. The standard describes external condition in terms
of wind field model to be considered in design depending on the wind farm type. The latest is classified
according to wind speed and turbulence parameters used to determine wind fluctuations and extreme
wind events that can serve as input into Aeroelastic models allowing to engineers the prediction of the

performance and structural loading on turbines for a given site wind condition. The standard describes

13

a SWT as wind machine with a swept rotor area of 200 m? or less and classifies on SWT classes basis

in terms of wind speed and turbulence parameters [7]. See table 1.1 below for SWT classification.

Table 1.1 Parameters for standard SWT classification [7]

SWT class | |]| v S
Vrer, M/s 50 425 37.5 30 Values to be
specified by
Vave, m/s 10 8.5 7.5 0 the designer
l1s 0.18 0.18 0.18 0.18
a 2 2 2 2

Where /35 is the dimensionless characteristic value of the turbulence intensity at 15 m/s and a is the

dimensionless slope parameter. All presented values apply at hub height.

The turbine class is chosen by the manufacturer based on the wind characteristics of the sites they are
to be installed. The corresponding basic parameters from the table are then used, together with other

secondary parameter which will be presented afterwards, for load calculation.

The standard proposes 3 methods for wind turbine loads assessment for structural integrity and

reliability of SWT:

o Simplified load methodology SLM;
e Aeroelastic model;

e Full scale load measurements.

The thesis focuses exclusively on the two first design methods. As for the third method, it is used when
the design loads are obtained through direct load measurements, which is not considered in this work.
In the following sections will be described the simulation methodology of the first and second methods

followed by their implementation on 25 kW sample wind turbine for load calculation.
1.3.1. Simplified Load Methodology (SLM) for load calculation

Design load representation

The model uses a set of developed conservative equations physically explainable for assessment of
essential load applied on SWT during normal operation, extreme condition and stand-still conditions.
Depending on the external conditions, the standard predefined a set of situations where loads are
generated on machine component throughout operation lifecycles. These situations are named Load

Cases. The latest are subdivided in groups of design situations and into two main categories depending

14

on the type of analysis to be conducted - Fatigue or Ultimate analysis. Table 1.2 from [7] shows

classification of design load cases for SLM according to design situations.

Tablel.2. Design Load cases for SLM calculation [7]

Design situation Load cases Wind inflow | Type of Remarks
analysis
Power production | A | Normal operation F
B Yawing Vhub = Vdesign u
C Yaw error Vhub = Videsign U
D | Maximum thrust | Vhuw =2,5 Ve U Rotor spinning but
could be furling or
fluttering
Power production E Maximum U
plus, occurrence of rotational speed
fault F Short at load Vhub = Vdesign u Maximum short-circuit
connection generator torque
Shutdown G Shutdown Vhub = Vdesign u
(Braking)
Extreme wind H Extreme wind Vihub = Veso U The turbine may be
Loading loading parked (idling or
standstill) or governing.
No manual intervention
has occurred.
Parked and fault I Parked wind Vihub = Vet U Turbine is loaded with
conditions loading, most unfavourable
maximum exposure
exposure
Transport J To be stated by u
assembly, manufacturer
maintenance and
repair

Where F — Fatigue analysis,

U — Ultimate analysis.

For a better description of each design load cases in connection with our particular case studied, some

specificities related to the turbine on which the model will be implemented on will be given.
Input Data

Exist 6 main parameters so called first order parameters that describe the turbine and constitute the
foundation of the SLM model, all formulas are taken from [7]:
e Design rotational speed or angular velocity

o, =2—7m:@;[rad/5], (1.1)
60 30

where n is the rotor rotational speed [r/min];

15

e Design wind speed

Vesion =14V, ,.;m/ s, (1.2)

esign ave;
where V.. —is the average wind speed defined by the wind class in Table 9.2 of [7];
e Tip speed ratio

_Vtip _COnR_ R 7n

= = (1.3)
V

hub thb thb 30

Where Vi, — the speed of the blade tip [m/s],
Vhu — the wind speed at hub height [m/s],
R —the radius of the rotor [m].
e Design shaft torque
PP 30P
Q esion _;n_n—wn_n—ﬂn,[Nm] (1.4)
Where P, — the rotor power [W],

P — the electrical power [W].

* Maximum yaw rate, €0, max

e Maximum rotational speed 0, ax -

Description of load cases

e Load Case A- Fatigue loads on blades and shaft

The main consideration here is the assessment of loads as peak-to-peak values around the design
parameters (wind speed, torque and rotor speed). Fatigue analysis are then evaluated at a range of
rotor rpm from 0.5 - 1.5 ngesign for centrifugal force and from 0.5 - 1.5 Qqesign for bending moments. In
our specific case, loads are quantified between the range of 32.5-97.5 rom and 1901 N - 5703 N. This
enables a sufficient coverage of possible fatigue occurrence situation as the maximum rotational speed

of the turbine set by the manufacturer is equal to @

. max = 70TrpmM.
Blade fatigues are generated by both the centrifugal force and the bending moment components.
Centrifugal force at blade root-hub junction is determined using the following equation:

AF,y = 2mg R, @F N

n, design ? (1 5)

Where R__,m - the distance from the blade centre of mass to the rotor axis, mg, kg - blade mass,

cog’

Lead-lag or edgewise moment in the direction of rotation and the flapwise moment in the direction of
the wind apply to the part of the blade root having the lowest ultimate material strength and are

determined using the following conservative equation.

16

AM , = Qeaesion & +2MggR gy, NM (1.6)

cog’

AM . = ﬁ’designQdesign B Nm. (1.7)

yB
Where B —the number of blades.

Rotor shaft are subjected to thrust and moments which are generated at the first shaft bearing

adjacent to the rotor and are calculated using the following equations:

34, esi nQ esign
AI:xfshaft = destg desig 2R’ N (1.8)
AM x=shaft — Qdesign + 2mr ger' Nm (1.9)
AM shaft — 2mrgl‘rb + %AFxfshan Nm. (1.10)

Where m,— is rotor mass (blades + hub), kg,
er— rotor eccentricity,
L., — distance between rotor centre and first bearing.
e Load Case B- Blade and Rotor Shaft Loads during Yaw
For turbines equipped with an active yaw system enabling automatic positioning the turbine parallel
to wind direction. This mechanism created additional loading due to effect of cyclic gyroscopic forces

and moments at blade’s root and shaft. Blade root bending moment is found by the equitation:

x—shaft yaw, max

M = mBa)2 Lrb Rcog + 2a)yaw,max I Ba)n + % AI:x—shaft ' Nm (1-11)

where L — the distance between rotor centre and yaw (tower) axis,

Is — blade second moment of inertia.
Paragraph 9.2.2 of [8] defines the physics behind each term in this equation.

Shaft bending moment for a 2 bladed SWT is calculated using the next equation:

M x—shaft — 2a)yaw,max I Ba)n,design + mrgLrb + % AI:x—shaft ' Nm (1-12)

For a 3 or more bladed turbine:

M x—shaft — Ba)yaw,max I Ba)n,design + mr gLrb + RAAI:x—shaft ’ Nm (1-13)

The logical “if/else” statement shall be used in the model considering whether the tested turbine is a

2 or more bladed type.

In both equations the gyroscopic effect creates more than 2/3 of the moment

17

e Load Case C- Yaw Error Load on Blades
Due to yaw error existing in every operating wind turbine, additional flapwise bending moments are
created at blade root. The standard proposes a general yaw error of 30° for evaluation of moments in

this load case. Flapwise bending moments are determined by the equation:

2

1 4 [1

Mg ==pA . .C .. R’ . |1+ TS - Nm
yB 8 P prof ,B 1, max n,design 3)~design 2 [/ﬁtdesign J

(1.14)
Where C max — maximum lift coefficient, value 2 will be used for no data availability as specified in the
standard,

Aprojs — platform area of blades projected on to a plane perpendicular to wind direction.
e Load Case D- Maximum Thrust on Shaft
During operation, turbines are subjected to thrust loads parallel to rotor shaft with a maximum value
expressed by the equation:

Fxfshaft = C:T O15p(25 -V,

ave

)* 2R N (1.15)

where Cr— the thrust coefficient equal to 0,5 for turbines operating at less than 2,5V,ye.

e Load Case E- Maximum Rotational Speed
During turbine operation at maximum rpm, unbalance rotor as well as centrifugal loads generates
additional centrifugal load in blade root and bending moment determined using the following

expressions:

2
I:ZB = mBa)n,max Rcog ’ N (116)

2
M shaft — mrgLrb + mrera)n,max Lrb’ Nm

(1.17)

e Load Case F- Short at Load Connection

Possibility of occurrence of short circuit event are considered as ultimate loading factors. Significantly
High moments are created at rotor shaft caused by short circuit torque of the alternator during
occurrence of direct electrical short at the output of the turbine or internal short in the generator.

These moments can be calculated using the equations:

M x—shaft — GQdesign’ Nm (1.18)

Where G — short circuit torque factor. Value 2 should be taken in absence of any accurate data as

specified by the standard.

M x—shaft Nm

Mg = ,
xB cog) (119)

B +mggR

e Load Case G- Shutdown Braking

18

Shutdown events occasionally occur during turbine operation, caused by multitude reasons like high
turbulence wind speed above rated, low wind speed below cut-in, system failure and scheduled
maintenance. [10] describes wind turbine shutdown cases and provides a comparative study of

shutdown procedure with the turbine dynamic response.

Loads created during this event are highly dependent on the brake moment, for turbine equipped
with an electrical or mechanical braking system within the drive-strain. The generated moment on the
shaft depends not only on brake moment but also on whether the braking system is applied on high-
speed or low-speed shaft. If brake is positioned on the high speed side of the gearbox, brake moment
will have to be multiplied by gearbox ratio provided by manufacturer to account for the drive train
dynamic, forming the gearbox efficiency:

M x—shaft — Gear -M brake+ Qdesign' Nm (120)

Where Mprqke — brake moment,
Gear — gearbox ratio, strictly dependent on the existence of gear and the position of the
braking system.
The logical “if/else” statement is used in the script to calculate moment on shaft considering existence
of the gearbox and the location of brake system on the drive train. In case of the turbine that will be
considered as sample for this work, gearbox exist and positioned at the high-speed side of the gearbox,

Msrake Will then be multiply gearbox ratio.
The blade loading due to shutdown is determined by the equation:

M x—shaft
Mg = B +MagR g, NM (1.21)
e Load Case H- Extreme Wind Loads during stand still or idling
A parked wind turbine is generally exposed to severe wind loading especially during extreme wind
conditions though not producing power. Loads applied to exposed machine components in this

situation are calculated with use of Vesp — the 50-year occurrence extreme wind speed. The following

equations give the main wind loading on a turbine exposed components caused by drag.

For parked wind turbine, the blade root bending moment is expressed by the equation:

1
M yB — _Cd pVEZSOAproj,BR’ Nm

4 (1.22)
Where Cy— drag coefficient, a value of 1,5 to be used according to the standard.
In case of idling, spinning blades without production, the following formula is used:

1 2
M yB — gcl,maxpVeEOAproj,BR’ Nm

(1.23)

19

Where C max — maximum lift coefficient of blades, if no value is available for the turbine, then 2 should
be taken.

In our specific case, brake is applied prior parking, meaning the rotor is at a stand-still position. The
logical “if/else” statement will be used in the script to refer to the equation defining specificity of our
model. Equation 1.22 will be used in occurrence. The same goes for the maximum thrust on blades

determined by equation 1.24 below.

For a rotor in revolution, the thrust loading on blades is obtained by the equation:

Fx—shaft = 0'1YB/I§SOIOV6250’ N

(1.24)
Where Aeso — is the 50-year extreme tip speed ratio at Veso.
yi — a)n,maxﬂy
= 3WVeso (1.25)
Whereas for a stationary rotor, thrust loading is fund by:
1 2
Fx—shaft = E BCd pVeSO Aproj,B’ N (1.26)

The standard requires as well the calculation of the maximum tower bending moment in this case using
the parked rotor shaft force equation 1.26. The thrust force on tower should be evaluated using the
following equation:

1

F :chpvef.,OA N (1.27)

proj !

Where Cs— force coefficient which is equal to 1.5. See table 3 of [7],
Aprojr — TOwer projection area on the plane perpendicular to wind direction. The projection
area at component most unfavourable position is considered.
e Load case | — Parked wind loading, maximum exposure
The load considers a possible occurrence of failure in yaw mechanism which will lead to exposure of
turbine to extreme wind speed in turbine coming from all possible directions. Turbine will then
undergo severe loading if it is at its most vulnerable position at maximum Ap.;s. This load case is not
considered in our case due to very low probably of occurrence of such failure. However, paragraph

7.4.10 of [7] describes in details this load case.

e Load case J - Transportation, assembly, maintenance and repair.

Stresses faced by turbine during the operations should be considered by the manufacturer. These
stresses are characterised by gravity loads, loads caused by special installation tools, wind loads during
installation or maintenance as well as load on a tilt up tower during erection and putting to foundation.
These loads being too specific with extremely low effect on general component stress are not

considered in this simulation.

20

The next step consists of evaluating the equivalent stresses according to material strength in order to
be able to later determine the strength limit of each component compare to the fatigue load lifecycle
and ultimate stress faced by the turbine rotating components in normal operation as well as in

described above special load cases.
Determining equivalent stresses on components

For stress calculation, most important load carriers are considered, generally blade roots and main
shaft. Equivalent Stresses on these components are a combination of individual forces and moments
calculated in each load cases. The resulting stress values are compared to with the allowable limit for

material stress. Table 1.3 from [7] gives general formulas for equivalent stress calculation.

Table 1.3 Equivalent stress [7]

Circular blade Rectangular Root shaft
root blade root
Axial F F F
O = B O, = B _ x—shalft

Ag
Bending IMZ +M 58 M MyB _ M ghan

O-MB =] GMB = +— O-M —shaft
WB WXB WyB Wshaft
Shear Negligible Negligible M,
TM—shaft =
2Vvshaft
Combined (axial O .=0Cn+0 ()2 2
eqB B MB O-eq—shaft = \/ O x—shatt + O'M—shaft + 3TM =shaft

+ bending)

Stress level calculation takes into consideration several important factors [8]:
e Stress variation within the component
e Stress concentrations
e The direction and size of the resulting load or stress
e Variations in component dimensions and thickness
e Component surface treatment
e The type of loading on the component
e Any manufacturing effects on the components such as welding, machining etc.
Additional input data is required for this equivalent stresses on material components:
e Cross section area of shaft A and blade root Ag in m?. Values obtained from component

physical characteristics.

21

Second moment of inertia |, ey = 7 - Qg sy / 64, M* (1.28)

Where dshass) — diameter shaft or blade.

e Section modulus of shaft and blades,
W =21, g /Ao, Mand W, = 1, /C,, m?, (1.29)

where Cg — distance from blade centroid to maximum stress point. Its values depending on x

or y- axis are obtained from blade’s CAD model.

The values of above mentioned parameters for fatigue and equivalent stress calculation are displayed
in Appendix 1.1. Using this data and formula from table 1.3, equivalent stresses where computed in

accordance with the load cases.
1.3.2. Aeroelastic model for load computation

The design model implies analysis of turbine loads from aeroelastic simulation modelling at different
operating conditions prescribed by the standard. These operating conditions also called design load
cases (DLC) describe environmental and electrical conditions to which are exposed wind machine
during life cycles. The model proposes a more realistic turbine dynamic analysis method describing in
details all possible real-time scenarios occurring during turbine exposure. It recommends analysis to
be conducted in a wide range of wind speed, generally from cut-in to cut-out with a wind speed step

varying from 1-3 m/s this to ensure all possible loads are located.

Each design situations are subdivided into design load cases as described in table 1.4 below taken from
the standard. Like in the previous model, the type of analysis remains similar depending on load cases
they are applied to, fatigue loads analysis for evaluation of fatigue stresses and ultimate load analysis
for evaluation of loads that can exceed maximum material strength, cause tip deflection or threaten

turbine stability.

Table 1.4. Aero-elastic simulation design load cases (DLC) [7]

Design situation DLC Wind condition Other Type of
conditions analysis
Power production 1.1 NTM Vin <thb <VOut or3.Vave F, U
1.2 ECD V,,, <Vdesign U
1.3 EOGso u
Vi, <V <V Or3-V,,.
14 EDCso u
V., <V <V 0r3-V,,.
1.5 ECG Vo = Viesign u

22

Power production plus 2.1 NWP Control U
occurrence of fault Viub :Vdesignorvout or25 V. | system fault
2.2 NTM V,, <V, <Vou Control or F,U
protection
system fault
2.3 EOG:1 V,, <V ,0r2.5-V,, Loss of u
electrical
connection
Normal shutdown 3.1 NTM V,, <V, <Vou F
3.2 EOGl thb :Vout Orvmax, shutdown
Emergency or manual 4.1 NTM to be stated by
shutdown manufacturer
Extreme wind loading 5.1 EWM V,,, =V, Possible of u
(standing still or idling; electrical
or spinning) power
network
5.2 NTM V,, < 0.7V,
Parked and fault 6.1 EWM YV, =V, U
condition
Transport, assembly 7.1 To be stated by manufacturer U
and repair

Where F — fatigue load analysis,

U — ultimate load analysis.

Power production: DLC 1.1-1.5

Power production assumes the turbine is in availability status and connected to the electrical grid load.
Aerodynamic and structural loads are then evaluated taken into consideration several factors specified
by the turbine manufacturer like rotor imbalance, yaw misalignment, maximum mass, blade pitch

deviations, blade twist deviations as well as control system tracking errors.

In power production status the probability of occurrence of critical conditions generating severe loads
are non-negligible. They are therefore taking into consideration in load evaluations. Such conditions

are described in chapter 7.5 of [7] as:

e Atmospheric turbulence generating loads in DLC 1.1
Here, loads are evaluated in a wind profile denoted as Normal Turbulence Model — NTM. It
expresses the stochastic variations in wind speed and wind direction in a set average of 10 minutes
according to the characteristic of the value of the standard deviation o; and the turbulence scale
parameter A;. The latest parameters are obtained using the following equations:

o, =1:(15+aV,,)/(a+1) (1.33)

Where a — the dimensionless slope parameter for the expression.

23

115 —is the dimensionless characteristic value of the turbulence intensity at 15 m/s, where 0,18
is the minimum value that shall be used.
0.7z, forz,, <30m
! ={Zlm forz,, >30m (1.34)
The design requirement implies that load should be evaluated within the wind speed range as
stated in table 1.4. In the aeroelastic model the range considered in this case is from 3 m/s to 25
m/s.
e Potentially critical transient cases with extreme conditions are considered DLC 1.2-1.5
Extreme conditions are generally related to the variation of wind speed in terms of gusting, drastic
direction change, wind turbulence intensity generating extreme wind loading on SWTs. In this
design situation, these extreme conditions are taken into consideration and briefed below.
ECD — Extreme coherent gust with direction change: A gust is a sudden increase in wind speed.
According to U.S. weather observing practice, gusts are observed when peak in wind speed grows up
to 8.5 m/s and the variation between high peaks and low peak is at least 5 m/s. The duration gust event

is most often lower than 20 seconds.

DLC 1.2 considers the increase in wind speed occurring simultaneously with the change of a direction
0., defined by the relation:

180" forV,, <4m/s

ecg ={720° (1.35)

fordm/s <V,, <V,
hub

This change in direction of the wind or yaw error generates specific load which have to be inserted in
the design increasing the efficiency of the model. Wind turbines are recommended to be tested at Vi

lower than Viesign = 10.5 m/s. In the model Vi, of 9 m/s and 11 m/s were considered for more accuracy.

EOG — Extreme operating gust: This wind condition characterises DLC 1.3 accounting the recurrence
period of N for such event. This implies the consideration of a transient extreme event that usually
occur once in N years. Therefore, the gust wind Vyusv will depend on the recurrence period N and giving

by the formula:

(1.36)
\V4

(o
gustN :/8 1 D
1+ O.
Al

Where o; — the standard deviation described above,

A1 —the turbulence scale parameter according to equation 2.34,

D — the diameter of the rotor,

24

61 =4.8 for N=1 year and 14.0 for N=50 years.

The wind speed in this case is defined for the same recurrence of N years by the equation:

V()= V(z)—0.37V SiN(B7t / T)(A—cos(27t/T)) forO<t<T (1.37)
lv(2) fort <Oandt>T

Where V(z) — defined in equation 1.41,
T=10.5 for N=1 year and 14.0 for N=50 years.
In the model the V4, range considered in this case is from 3 m/s to 25 m/s at a gust wind speed of

Vgustn With a recurrence period of 50 years.

The term one-year and 50-years extreme wind is described in the Wind Energy Handbook by David
Sharpe [9] as the expected one-time occurrence of the considered severe wind transient in a period of
one year or 50 years. Subsequently, this event has and unknown occurrence time that needs to be

considered during design of wind machine for quality assurance.

ECG - Extreme coherent gust: considered as wind condition in DLC 1.5 implies a change in wind speed

with a magnitude of V; = 15 m/sin a rise time T = 10 s as described in the formula below:

V (2) fort <O
V(t,2) =4V (2)+0.5-V, (1—cos(zt /T) forO<t<T (1.38)
V(2) +Vg, fort>T

Such high increase in wind velocity incontestably generates extreme loads on machine component
which therefore needs to be considered in the design, increasing the efficiency and accuracy of the

model. In the model Vi = 11 m/s was considered for load evaluation at this condition.

EDC — Extreme direction change: This condition considers the change in wind direction with yaw
misalignment considered in DLC 1.4 in terms of magnitude J.n for a recurrence period of N years using

the following relation:

o, (1.39)

wfoef3)

Where J.y — angle of direction change limited to the range of +180’,

6., (t) =xParctan

/N1 —the turbulence scale parameter according to equation 1.34,
D — the diameter of the rotor,

6 = 4.8 for N=1 year and 6.4 for N=50 years

25

The direction change is characterized by a transient for a recurrence period of N years, 9x(t). The
transient is the angle by which the wing velocity changes direction in a time t. Equation 1.40 from [7]

defines its dependence over time t as:

0 fort<0
Oy (t)=:05-6,, (1—cos(#t/T)) for0 <t<T (1.40)
O fort >T

Where T = 6 s is the duration transient at this case condition.
A graphical representation of wind behaviour characterising EOG and ECG are displayed in figure 3.11
and figure 3.13 respectively. Other characteristic graphs describing wind direction change for other
transient events are illustrated in [7].
Power production plus occurrence of fault: DLC 2.1-2.3
During power production, the probability of occurence of fault in the control system and in electrical
system is existant with a frequency depending on turbine quality and wind farm characteristics. The

design load case is subdivided into 3 different cases according to wind conditions:

e DLC 2.1, where loads generated during fault in control system considered as normal event are
analyzed. The wind condition is characterized as Normal Wind Profile — NWP. The turbine
operates at an average wind speed that depends on the height, z, above the ground level. The
wind profile is then defined by the power law:

V(z) =V,(2/2,,,)" (1.41)
Where a —is the power law or the wind shear coeffitient generally assumed to be 0.2.

The turbine here is recommended to be tested at wind speed Viu = Viesign = 10.5 m/s or at Vi =
2.5Vae = 18.7 m/s. In the model Vi of 18.7 m/s is considered as it gives more probability of
occurrence of such fault compare to Viesign.

e DLC 2.2, where loads generated due to faults in protection or internal electrical systems not
significant to cause turbine quick shutdown are studied. In the model the load case will be
analysed upon NTM at a wind speed standard range of cut-in to cut-out, 3 m/s to 25 m/s.

e DLC 2.3, where the loads generated during shutdown due to loss of electrical connection
combined with one-year extreme operating gust EOG; is evaluated. In the model, this load cases
considers the existence of 3 fault control systems for passively controlled turbines, the furling
system where the nacelle of the turbine is turned off the wind direction, blade pitch system and
the tip-brake system to reduce wind loading. The 25 kW burbine’s blades are equiped with tip-
brake system cut-off of rotational motion of the rotor during turbine shutdown. Therefore, the

model considered the existence of such braking system.

26

Normal Shutdown DLC 3.1 and 3.2

Normal generator shutdowns are usually applied during experience of extreme wind loading described
by the transient situations above causing severe component loading. The load case DLC3.1 analysed
generated loads at a NTM wind condition at wind velocity range similar to load case using the same

turbulence model.

As for DLC 3.1, the shutdown is consdered to occur in combination with one-year extreme operating
gust EOG;. Considering the fact that this case normally occur at high wind speed, it is required by the
standard to evalute loads at a Vhus = Vimax, shutdown = 25 m/s which correspond to the rated wind speed at
which begins the overheating of the generator. Therefore, it is been used as wind speed for laods

evalution in the model.

Emergency or manual shutdown DLC 4.1

During emergency or manual shutdown, brakes are applied to the high speed shaft generally between
the gearbox and the generator generating additional stress to rotating components. This situation is
considered in the model for loads evalution within the NTM wind condition. Here, the standard gives
the choice to manufacturer to choose the wind velocity range at which the turbine should be tested.

In the built model wind speed range of cut-in to cut-out, 3 m/s to 25 m/s is considered.

Extreme wind loading during rotor stand-still or rotation DLC 5.1 and DLC5.2
In this design situation, loads applied to turbine components during stand still or idling or spinning are

evaluted similar to the previous model. It incloses 2 different load cases:

e DLC 5.1 which combines the stantionary or rotational non-power production status with the
existence of Extreme Wind speed Model - EWM described in the standard.
According to EWM wind condition, load calculation in this case should be examined at a wind
speed Vi, equal to the 50 year extreme wind speed Vesp depending on the reference wind speed
Vs and given by the equation:
V. (2) =14V, (z/2,,)"", (1.42)

ref
Where 1.4 — is the gust factor at hub height zpus

e DLC5.2, where loads are evaluated according to NTM wind profile described above.

Parked plus fault conditions DLC 6.1

In this situation, the turbine is parked due to some electrical network fault yet exposed to wind loading

that can create fatigue damage considered in the model.

27

The standards requires the wind condition to be an EWM, load calculation in this case are within a
wind speed Vi equal to the one year extreme wind speed, Ve;, depending on the reference wind

speed, Vi, and given by the equation:
V,, =0.75-V,, (1.43)

Like the SLM, the aeroelastic model also comprises the design load cases which takes into account
loads generated during transportation, assembly, maintenance and repair- DLC 7.1. These loads are to
be considered by the manufacturer during load determination. However, in our specific case, this was

not included into the modelling as it requires datas from these operations.

All the above described design situations characterised by illustrated formulas together with related

wind conditions are intergated into a model simulator that will be presented in the following part.

2. WIND TURBINE DESIGN AND ANALYSIS SIMULATION TOOLS

Nowadays, the use of software and computer based tools for design purposes at research and
development stage of any engineering concepts as well as during their implementation has become
unavoidable. The main aim being to provide to designer with the possibility to model a concept in a
virtual or real environment through prototyping, integrating all possible parameters partly or fully
characterizing the concept so for it to be close enough to reality. Faults, defects, dysfunctions in
concept system and many other undesirable outputs can be foreseen and easily adjusted prior to final

release to end users.

2.1. General Overview of Predominant Wind Turbine Simulation Tools

Design and manufacturing of small wind turbines requires the use of multitude computer integrated
software and tools. They differ from each other depending on the type of analysis to be conducted and

also on turbine components considered.

For structural analysis on robustness and performance of machine components and assemblies,
computer-aided engineering (CAE) tools are generally used. They enable conduction of stress analysis
using Finite Element Analysis (FEA), thermal and fluid flow analysis with Computational Fluid Dynamics
(CFD), Multibody dynamic (MBD) and Optimizations [11]. Furthermore, CAE tools encompass
Computer-Aided Design (CAD) software that enables the geometrical representation of machine
components and assemblies that can be used as object for the analysis mentioned above. Solidworks
by Dassault Systemes known to be one of the best for 3D CAD modelling, AutoCAD, Kompas 3D

(software good for managing project of thousands of sub-assemblies, parts, and standard library

28

products), Fusion 360 (3D CAD/CAM tool from AutoDesk) and CATIA are the most popular CAD

software used in the wind industry [12].

Analysis of wind turbine structural and aerodynamic response to wind loading generally includes CFD,
MBD and FEA analysis. With the increase in necessity of better analysis results with sufficiently high
reliability, many sophisticated and highly performant analysis tools have been developed so far.
Depending on the type of analysis, here are presented and briefly described some of the most popular

simulation software and tools:

e (QBlade—an open source HAWT and VAWT wind turbine rotor design and performance simulation
software that gives the possibility to users to design custom airfoils and compute their
performance directly integrating them into a rotor. It is a recommended software for teaching, as
it provides a comprehensive design and simulation capabilities for turbine rotor, exposing all the
fundamental relationships of design concepts and turbine performance in a simplified user
friendly interface [13].

e Ashes — a software that executes integrated analysis of onshore and offshore wind turbines. It is
a suitable tool for students and teachers providing them with an insight on design processes using
a user friendly interface, real-time 3D visualization wind and wave loads and the resulting
response of the wind turbine, wind turbine model templates with customisable commonly used
airfoils data characterizing turbine blades as well as advance integrated analysis for wind loads,
sea waves gravity, buoyancy and generator loads assessment [14].

e HAWC2 - (Horizontal Axis Wind turbine simulation Code 2nd generation) is an aeroelastic code
intended for calculating wind turbine loading response in time domain.

e FAST—NREL's is a primary CAE tool for simulating the coupled dynamic response of wind turbines
that joins aerodynamics models, structural (elastic) dynamics models, control and electrical
system (servo) dynamics models and hydrodynamics models for offshore structures to enable
coupled nonlinear aero-hydro-servo-elastic simulation in the time domain.

Both FAST and HAWC2 were developed by researchers and developers in the wind industry for the

computation of aerodynamic and structural behavour of onshore and offshore wind turbines to wind

loading. As noted from definition, FAST and HAWC2 possess similar objectives though developed by
distinct parties, Oregon State University and Technical University of Denmark DTU respectively. Both
codes were developed to overcome the complexity of the aeroelastic model, incorporating a large
variaty of wind field and turbine parameters to be taken into consideration for design purposes.

However, this work emphasizes on the use of FAST for development of the aeroelastic model for wind

turbine load calculation for quality assurance. A comparative analysis on the choice of FAST over

HAWC2 will be developed subsequently following the model implementation.

29

2.2. NREL FAST Simulation Code

2.2.1. Introduction to FAST

FAST — defined as Fatigue, Aerodynamics, Structures and Turbulence is a comprehensive aeroelastic
simulator built to predict both extreme and fatigue loads generated on a two or three-bladed
horizontal axis wind turbine during operation lifecycle. It is a code developed and funded by U.S.
Department of Energy under the National Renewable Energy Laboratory (NREL). See FAST 7 User’s
Guide [15] for more detailled information about the Code. Developped since from 2003, it has noticed
several improvements to the 3 current versions used nowadays for simulations: FAST Version 7; FAST

Version 8 and OpenFAST (the latest).

The code built-in has the capacity to model the dynamic reponse of horizontal axis conventional wind
turbines taking into consideration different configurations like rotor-furling, tail-furling, tail
aerodynamics and passive/active blade pitch control system, features which are fundamental during
analysis of wind turbines response. It was tested and evaluated by the Germanisher Lloyd WindEnergie
, see Germanisher Lloyd — Guideline for the Certification of Wind Turbines [16] for more information,
who concluded on the code suitability for calculation of onshore wind turbine loads for design and

certification purposes.

The FAST model is a combination of modal and multibody dynamics formulation. It relates for two-
bladed turbines nine rigid bodies (support platform, nacelle, armature, gears, hub...) and four flexible
bodies (tower, two blades, and drive shaft) through 22 degrees of freedom (DOFs). Whereas for three-
bladed HAWT, it relates 24 DOFs from which six DOFs related to the translational (surge, sway, and
heave), rotational (roll, pitch, and yaw) motions of the support platform relative to the inertia frame,
four DOFs accounting for tower motion, one DOF accounting for yawing motion of the nacelle... More
information about turbine DOFs considered in the code can be found in FAST version 7 user guide [15].
A combination of the available DOFs and features are integrated in wind turbine analysis model
depending on the configuration of the machine.

The described DOFs indicates the detail consideration, into the load analysis, of main components of
a machine exposed to the power of the wind. This approach aims to provide a more realistic
representation of the turbine in virtual environment with the combination of created wind events,

close enough to reality predefined by a set of paramerters and factors.

These parameters and factors describing turbine components and environmental conditions are

integrated into FAST in form of modules. Modules are sub-parts of FAST code structure corresponding

30

to different physical domains of coupled aero-hydro-servo-elastic solution, most of which are

separated by spatial boundaries hence interconnected.

The figure 2.4 below shows the main difference between the latest versions of the model in terms of
built-in modules stating the spatial dynamic boundaries related to each modules. These modules refer
to the integration into the code of specific environmental conditions and wind turbine structural

properties as indicated by their denominations.

» ElastoDyn
- | Sfructural Dynamics
BeamDyn
- » Finite Element Blade
Structural Dynamics
Aerodyn/berodynl4d
B Aerodynamics
Aerodyn
Aerodynamics | | | | | InflowWind
I n - Wind Inflow
FAST 7 OpenFAST ServoDyn
Servo-Elastics | s < Control and Electrical
and Driver Driver Drive Dynamic
A
L _ HydroDyn
HydroDyn - Hydrodynamics
Hydrodynamics
SubDyn
- = Substructural
Dynamics
—|] MoorDyn
Mooring Dynamics
- _ lceDyn
= = [ce Dynamics

Figure 2.4. Architecture of FAST 7 and OpenFAST

The designation of these modules reveales that FAST is designed to intergrate analysis of not only
onshore but also offshore wind turbines taking into account substructural configurations and water

conditions with modules like hydrodyn, Subdyn, Icefloe, Moordyn, Icedyn. Each single module is

31

attached to a specific control entity depending on the wind turbine type. Figure 2.5 presents an

example of FAST control entities for floating systems.

External Applied | Wind Turbine
Conditions Loads I
Control System & Actuators
InflowWind AeroDyn

Ag I Rotor Drivetrain Power
dynamics Dynamics Dynamics Generation

4+ ———_ = — —

ﬁ , HydroDyn
Waves & Hydro-
Currents dynamics ElastoDyn
Mooring Dynamics MAP++, MoorDyn,

or FEAMoaoring

Figure 2.5. FAST control entities for floating wind turbine [7].

25 kW Turbine being an onshore machine, hydrodyn, MoorDyn as well as the platform dynamics in

Elastodyn won’t be used in the model. The control entities for such system is as represented in figure

below.
External | Applied | Wind Turbine
Conditions | Loads I
Control System & Actuators
InflowWind | AeroDyn I
AL - Rotor Drivetrain Power
W, " 1
2 J,;_,;ﬁ-'rﬁx_?._. I Dynamics Dynamics Generation
l I ServoDyn
. Tower Dynamics
=4 | | ElastoDyn
| ==

Figure 2.6. FAST control entities for onshore wind turbine [7].

2.2.2. FAST operating mode

FAST operates in a simulation mode defined as the time-matching of non-linear equations of motion.
Aerodynamic and structural response of wind turbine to wind conditions are evaluated in time domain.

The characteristic of this analysis mode is the output of the simulation which is time-series numerical

32

data points representing the aerodynamic loads as well as loads behind the deflections of structural
components of the machine. These outputs are then used for prediction of both fatigue and extreme
loads for HATWs.

FAST simulation analysis are run using the open source distributed executable program file from
Windows operation system command lines. All modules’ paramerters are then introduced into the
simulation through inputs files, with each module input files containing information related to each
control volumes. The following figure represents the schematic setup of FAST simulation analysis

mode of operation.

System

Properties

Turbine Data

Blade
Aerodynamic
Files

TurbSim
Output Files

InflowWind ServoDyn ElastoDyn AeroDyn
Input Files Input Files Input Files Input Files
IECWind \ // Tower

Output Files Aeroelastic

FAST Files
Input Files Setup

Simulation Environment
.......................... R it
FAST Simulation Run
i Windows(.exe)

Time-5eries

Data Output Files

Figure 2.7. FAST mode of Operation

2.2.3. Description of FAST module input files

At system properties level as presented in figure above, are gathered all data related to turbine
configuration and wind profile. This data is used for setup of simulation environment according to

various modules input files.

33

InflowWind — here are included wind distribution parameters characterising the wind profile. Its main
feature is the wind type or wind condition. FAST proposes through this modules, different wind type,
three of which are communly, the steady wind conditions (where only wind speed and reference height
to horizontal wind speed values are needed for simulations), the uniform wind (used for analysis of
extreme wind conditions requiring the use of a specific wind file generated by IECWind auxilliary to
FAST program) and the full-field turbulence wind flow used for analysis of NTM wind condition with

the use of specific wind file generated by TurbSim.

IECWind is a utility program used to create wind files for AeroDyn-based programs. It creates wind files
that model the extreme conditions (ECD, ECG, EDC, EOG, NWP and EWM) described above, giving the
ability to wind turbine designer to run design code simulations of advanced turbine design with
simulated transient events in wind propagation, intergrating crucial fluid dynamic features known to

unfavorably affect turbine aeroelastic response and loading.

The TurbSim is a stochastic inflow turbulence code developed to provide numarical simulation of a full-
field flow containing burst of coherent turbulence reflecting the proper spatiotemporal turbulent
velocity field. Its aims is to provide the wind turbine designer with the possibility to run design code
simulations of advanced turbine designs with simulated inflow turbulence environments that associate
many of the essential fluid dynamic features known to adversely affect turbine aeroelastic response

and loading. See Overview of the TurbSim Stochastic Inflow Turbulence Simulator in [17].

The Aeroelastic model in this work includes the latest wind type. For each simulation run, InflowWind
modules will require the generation of corresponding wind file from either IECWind or TurbSim. Detail

view on InflowWind input file with assisgned feautures for simulation can be seen in Appendix 3.1.

AeroDyn (Aerodynamics) — it takes in features and parameters defining the machine aerodynimics.
The main features considered here are environmental condtions (air density, kenematic air velocity,
speed of sound, atmospheric pressure values), blade parameters, proberties and airfoils data and
tower influence and dynamic. The modules here requires detailled blade data, mainly pre-generated
by the designer blade airfloil files containing aerodynamic parameters of each airfloil and blade
aerodynamic files containing distributed blade aerodynamic properties. These blade data files are
specific to each wind turbine and therefore used in each simulation run as constant parameters. Detail
view on Aerodyn input file with assigned features for simulation can be seen in Appendix 3.2.

ElastoDyn — takes in general turbine configuration features and simulation output parameters, the
main of which are Turbine DOFs as described in above, turbine configuration (number of blades and
rotor dimensions), Blade structural poperties (number of blade nodes and file containing structural

properties), rotor properties (rotor teeter spring/damper model, damper position, damping constant

34

...), drivetrain parameters (gearbox efficiency, gearbox ratio...), tower structural poperties (number of
tower nodes and file containing structural properties) and output parameters. The latest gives the
possibility to the designer to setup the representation of the simulation output files specifically. Output
parameters are nothing else than turbine evaluated parameters (rotor torque, power...) and the
calculated loads resulting from simulation generally forces and moments.

The Elastodyn files for both blade and tower are pre-generated file providing the module with a
detailled blade structural parameters necesserary for simultion. Detail view on Elastodyn input file

with assigned features for Aeroelastic model can be seen in Appendix 3.3.

ServoDyn — is the simulation control module that encompasses all turbine control systems and
features essential for high simulation accuracy. It therefore includes features related to Pitch control
(blade angle of attack control system, can be unexistant or any user-defined routine), generator and
torque control (where parameters like variable-speed control mode, generator efficiency, generator
model, generator speed and torque control and many orther generator control parameters are set),
simple induction generator features (for control of turbines with simple generator mode type
depending also on wether it is a variable-speed or a constant speed), high-speed shaft brake (HSS-
brake) (for the control of virtual turbine braking system), tuned mass damper (to initate computation
of nacelle and tower mass damping by the device is applicable to the turbine). Detail view on Servodyn

input file with assigned features for Aeroelastic model can be seen in Appendix 3.4.

FAST input File and simulation Run

All the aboved presented module with allocated features are called-in in one single input file
representing the main FAST input file. This file was built with a specific extension (.fst) indicating it
functionality. It contains features related to Simulation control (gives the designer the ability to set-up
parameters like total simulation run time and time step of simulation run), features switches and flags
(to enable or disable the computation of some modules), input files (where the different generated
modules input files are called-in to intergrate the simulation run bringing required parameters values
for FAST code execution), output (for setting parameters related to generation the output file like the
time step for tabular output in second, time to begin printing in text tabular output file in seconds,
format for tabular output file which can be either text file with an exetension of “.out” or a binary file
“.outb” and others. Detail view on FAST input with assigned features for the Aeroelastic model can be
seen in Appendix 3.7. FAST input file contains also features for control of the Linearization operation

mode which is not in our line of concern.

Using available turbine data, the designer sets up the simulation environment by building up the

described aboved inputs files in accordance with the simulation to be ran. After building up the final

35

“FAST.fst” input file, the simulation is ready to be ran from Windows command line through FAST
executable program FAST.exe for FAST 7, FAST_x64.exe for FAST 8 or OpenFAST_x64.exe for OpenFAST

versions.

For a proper simulation ran FAST should be install in such a way that it can be ran from any folder in
the computer. To run the executable, a command prompt window in opened, navigated to the

directory where is saved the executable and the following command-line syntax is inserted:
fast [<input file>]

where fast — can be either FAST.exe, FAST_x64.exe or OpenFAST_x64.exe,
<input file> — the name of the primary input file name with “.exe” extension. The designer has
the choice to decide on the rootname preceding the extension.

At the end of each simulation, FAST prints out some run-time statistics as shown in figure below.

OpenFAST-vl.0.@
Compile Info:
- Architecture: 64 bit
- Precision: single
Execution Info:
- Date: @8/21/20818
- Time: 18:44:07+08300

OpenFAST input file heading:
Viking Wind 25kW turbine @@: asynchronous generator, fixed pitch

Running ElastoDyn.
Running AeroDyn.
Running Airfoillnfo.
Running BEM.
Running InflowWind.

Reading a 3x3 grid (3@ m wide, 3 m to 33 m above ground) with a characteristic wind speed of 3
m/s. This full-field file was generated by TurbSim (v1.86.88, 21-Sep-2812) on 21-Aug-2818 at
18:44:07.

Processed 12788 time steps of 28-Hz full-field data (634.95 seconds).
Running SerwoDyn.
Timestep: @ of 15 seconds. Timestep: 2 of 15 seconds. Estimated final completion at 18:44:29.

Total Real Time: 22.248 seconds
Total CPU Time: 22.283 seconds
Simulation CPU Time: 22.125 seconds
Simulated Time: 15 seconds

Time Ratie (Sim/CPU): @.67797

OpenFAST terminated normally.

(base) C:\Users\User\Documents\NORTHWINDENGINEERING\Projects\@l BLACwind\prototype 81 wiking2SkW\mo

Figure 2.8. Example of simulation run display output

The Simulation Time accounts for the amount of time simulated. The Simulation CPU Time accounts
for time the computer uses for time-marching part of the simulation. The Simulation Time Ratio is the
ratio between the amount of time simulated and the simulation CPU time. The bigger its value, the
faster the computer is. In case this value is greater than 1, then FAST can simulate an event in less time
than it would take in real life. A value smaller than 1 will mean that the computer might need some

performance upgrade.

36

2.3. Simulation Environments

The SLM and Aeroelastic model for Wind turbine load assessment discussed in this work require
specific simulation environment and tools for processing. The SLM, based on simple conservative
equations can be build-up in any arithmetical processing tools. Well-known software like Microsoft
Excel, Libre Office as well as some programming tools like MatLab, C++ and Python can be used to

serve the purpose.

In the wind industry, SLM model is generally built using Spreadsheet for Simple Load Model developed
and described in [8]. The latest provides an Excel format (.xls) spreadsheet designed to be adopted to
all SWTs following the recommendation prescribed by the standard. However, the thesis investigates
on the use of trending programing languages for development of Aeroelastic model for turbine load

assessment, emphasising on Python programming package. Reason of this choice will be given further.

Whereas the setup and execution of the Aeroelastic model require generally the integration of both
developed code-based simulation tools as FAST and HAWC2 and a simulation environment depending
on the voluminous complexity of the model. Both programs are developed to be executable in a
Windows or Linux command lines as standard simulation environment. Each single simulation can
therefore be directly launch in a command line for load assessment. For multiple simulations run, the
need of specific general purposes simulation environment become unavoidable. Developers of both
codes considered the use of existing programming languages as simulation environment as the provide
the possibility to setup complex schemes enabling and efficient loads computation with the

methodology proscribed by the standard.

In the wind industry, MatLab programming language is generally used for its popularity, efficiency,
multi-functionality and handiness though cost expensive. Due to the increasing popularity of Python
together with its availability as open source programming language, its usability as scientific computing

tool for the Aeroelastic model constitutes one of the main objectives in this work.

Python is an open source programming language that provides to users fully supported object-oriented
and structured programming. It offers execution of wide range of operation going from simple
arithmetical and logical algorithm to complex module integrated scripts using pre-existing standard
libraries, logical statements and mathematical expressions. The language was chosen for its simplicity
and its handiness compare to other alternative simulator for SLM analysis like Excel and for DLC model
analysis like MatLab. One of the predominant advantage of this language is the fact that it can be open
in many notebook interface like Jupiter notebook, Sublime IPython notebook, Spyder notebook etc.

These notebooks offer different user-definable programming interfaces and functionalities. Spyder

37

notebook was decided as the most suitable programming notebook for the simplicity it offers
regarding graphical representation of interface, script management, file management, readability of

written codes as well as proper representation of variables and generated coding result.

In addition to the usability study of potential use of Python as scientific computing tool compared to
MatLab, the thesis also focuses of the use of freely available tools to build the models in consideration.
LibreOffice mentioned is therefore highlighted as alternative to Microsoft Excel. LibreOffice is a freely
available office suite that contains programs for word processing, creation and edition of spreadsheets,
diagrams, slideshows and drawing. It makes use of the international ISO/IEC standard OpenDocument

file format (ODF) as its native file format for documents saving.

Next chapter will be exposing the use of the described above software and tools for load calculation
using prerogatives integrating both models as required by the standard together with implementation

on a real SWT, parameters and features given.

38

3. AERODYNAMIC AND STRUCTURAL BEHAVIOUR OF SMALL WIND
TURBINES: SIMULATION MODELLING OF A 25 KW WIND TURBINE

3.1. Implementation of Simplified Load Methodology

The model for implementation of SLM for quality assurance through evaluation of aerodynamic and
operational loads applied on a SWT was built in Python 2.7 programming language. From the step by
step load calculation methodology described in part 1.3.1, a Python script was written to serve the
purpose. As the SLM model takes into consideration all varieties of SWTs, to generalize the application
of model, the code was written in a way to be used for all type of horizontal axis SWTs, more specifically

for two or three-bladed SWTs.

In the specific case of this thesis work, models were built and tested for a 25 kW turbine using available
turbine rotor, tower and drive train data from Manufacturer. The turbine in consideration is a 3 bladed
HAWT with a rated power of 25 kW with a cut-in and cut-out wind speeds of 4,0 m/s and 25,0 m/s
respectively. It possesses a rotor diameter of 13 m making a projected area of 132,66 m? and a hub
height of 18 m above ground level. The blades are 6.3 m long made of fibres glass and equipped with
a tip brake mechanism. The rotor stainless steel shaft spins at maximum rotor speed of 65,0 rpm,
transmitting its moment through the gearbox to the high speed shaft that turns a douply fed
asynchronous induction generator spinning at a maximum rpm of 1525,0. The tower is made of
galvanized steel tube, which stands on a concrete foundation stabilized by 8 guyed wires. Below is

representative drawing of the actual turbine.

| T < Ca ‘

Figure 3.1. Structural representation of the 25 kW wind turbine studied in this work

39

The code integrates several blocks sequentially inserted, representing parts of the methodology. The
first command block comprises of general turbine structural parameters presented above as input
data, values of which are from the machine passport provided by manufacturer or designer. These
input data inserted into the code as variables, are mainly related to moving components of the

machine like rotor and shaft as well as to their inter-connections.

The second block of the script integrates calculated parameters from input data which are generally
related to geometry and functionality of turbine components. SLM simulation parameters are inserted
in Python in terms of variables. Unlike other programming languages, python possesses no command
for variable declaration. They are created the moment a value is assigned to them. These values can
be integers, floats or strings representing an arithmetical expression characterising the variable. Every
command block in the script is headed by comments informing on the action undertaken in the block.
Meanwhile command lines are followed by a comment describing the variable initiated. All these
mentioned visual configuration of code ease its readability for a proper understanding and following
of the algorithm behind the code. Appendix 1.1 represents a copy of the written code for SLM load

evaluation, serving as evidence to the task accomplished.

3.1.1. Computation of loads and equivalent stresses on components

The third block of code represents the computation of fatigue and ultimate loads as required in each
load cases. Loads on machine components are expressed in terms of forces, thrusts and moments.
Using conservative equations presented in part 1.3.1, joined with the available turbine data, the script
here determines the actual value of those loads. The equation being generalised mostly for all types
of two or three-bladed SWTs specifically, the logical “if/else” statement is being used for referral the
sample turbine. The load calculation part of the script for the 25 kW Turbine is illustrated in Appendix

1.1. Whereas the computed values of loads from simulation are presented in Appendix 1.2.

The fourth command block of the script represent the computation of the equivalent stresses for both
analysis types as described in part 1.3.1. Table 3.1 below, displays obtained equivalent stresses on
components during normal operation with power production as well as during occurrence of specific
transient events. Equivalent stress formulas for circular section geometry in table 1.3 were used, as

turbine blade roots and shaft possess a circular cross section geometry.

40

Table 3.1. Computed equivalent stress on The 25 kW Turbine from SLM python.

Load case Equivalent Results Description
stress
A - Fatigue o MPa 9.04 Stress quantified from the peak-to-peak
variation in the fatigue load as the standard
Oeg-satt: MPa 48.28 considers turbine cycling at 0,5 — 1,5 the
design speed
B - load during yaw o MPa 0.022 | Straightforward calculations with no
= MPa | 38.655 assumption.
C-—yaw error load on Toqe MPa 0.087 | Only the bending moment on blades are
blade considered.
D — maximum thrust Coqoshatts MPa 1.263 | Only the thrust loading on shaft is
of shaft considered.
E — maximum rpm o MPa 0.075 | The centrifugal force at blade root generates
stress
o MPa | 15.206 | Bending moment of shaft creates highest

eg-shaft? K
stress on component at maximum rpm

F — short at load o .. MPa 4.431 | Single load for both components are

eqB?
connection considered with a straightforward
Oeqsharr MP2 38.822 | calculation using moments created due to
shorts.
G — shutdown o MPa 8.935 Stress here depends on existence of brake
system. “if/else” statement is used in the
Oeq shatts MPa | 0.006 script to express to condition.
H — parked wind o MPa 0.135 Load both components are considered.
loading Oeq shatts MPa | 1.679

Evidence of the displayed results is table can be seen in figure 3.1 below, which is a screenshot of the

all-together quantified parameters in the python SLM model.

3.1.2. Turbine quality assurance — model conclusion

The fifth and last part corresponds to the conclusion on the safety of considered components. In order
to conclude on safety of the machine, the calculated equivalent stresses are compared to the ultimate
material stress limit. The latest is a partial safety factor dependent variable. The partial safety factors
for fatigue and ultimate loads are given in table 3.2 for the SLM and Aeroelastic model and are
presented below.

Table 3.2 Partial safety factors for loads [7].

Fatigue loads, y; Ultimate loads, ys
Simplified load model 1.0 3.0
Aeroelastic model 1.0 1.35

41

The standard implies that material properties should be estimated at 95% of confidence limits, defining
an amount of factors to be considered during evaluation of material properties. These factors are as

follow:

e full-scale structure material configuration representation;

e test samples manufacturing method representing the full-scale structure;

e fatigue, static and spectrum loading assessment;

e geometry effect on material properties;

e environmental effects on samples like humidity, UV degradation, temperature, corrosion.
Material partial safety factor value to be used depends on material characterization factors mentioned
above. So, if during determination of material properties of a component like generator shaft of the
specific case of 25 kW Turbine, all the above factors where considered, it means the component is fully
characterised. Therefore, partial safety factors for fully and partly characterized materials given in
table 3.3 below and represented below will be used. For a component like blade where the material
properties evaluation is based just on coupon testing, the minimal characterisation material safety

factors are used.

Table 3.3. Partial safety factors for materials [7].

Material characterisation Fatigue strength, ynm Ultimate strength, yn,
Full characterisation 1.25 1.1
Minimal characterisation 10 3.0

For a generalization of the python script with the aim of it to be used with wind turbines of different

material characterization, the “if/else” statement is used for proper selection of the safety factor.

Fatigue failure are evaluated with the combination of all fatigue load on component. Safety

requirement in this case is stated by equation 47 of [1] below:

Damagezzm}/fr];/—s)sl.o (3.1)

Where n; — counted number of fatigue cycles in bin j of the characteristic load spectrum, including all
relevant load cases,

si- stress (or strain) level associated with the counted cycles in bin i, including the effects of
both mean and cyclic range,

N(.) is the number of cycles to failure as a function of the stress (or strain) indicated by the
argument (i.e. the characteristic S-N curve) and appropriate safety factor for loads and materials
respectively. The value of N for blades are taken for fatigue analysis S-N at load case A fatigue curves,

N=9.15e™. As for shaft, number of cycles of failure is infinite at load case A stress level.

42

The number of fatigue cycles n of turbine is obtained using the following formula:

B-Ngp, T
n=__ deion d. (3.2)
60

Where Ty — design life time of turbine, s.

In general, the fatigue damage limit of main load carrier is equals to 1. Therefore, if the ratio between
the number of fatigue cycles and the number of cycles to failure of a component will be lower than 1

then it will be considered to be safe.
The ultimate strength for limit state analysis is expressed by the design requirement is given by

Equation 46 in [1]:

fk
oy < .
Vm Ve

(3.3)

Where o4 — calculated equivalent stress on component,
fk—is the characteristic material strength,
ym — is the partial safety factor for materials,

ys— is the partial safety factor for loads.

The 25 kW turbine blades are made of fibre glass reinforced polyester with a characteristic material
strength of fisiade = 200 MPa and generator shaft is made of stainless steel with a characteristic material

strength of fi.shape = 635 MPa. These values are generally provided by component.

Using equations 3.1 and 3.3 together with the partial safety factors and corresponding characteristic
material strength values, the ultimate material strength where computed in the script and results

presented in the table below.

Table 3.4. Calculated result of ultimate material strength for blades and shaft.

Component Ultimate material strength
Blade 22.2 MPa
Shaft 192.4 MPa

For fatigue limit analysis, if the calculated fatigue load is lower than fatigue damage limit, then the
fatigue damage will be set as “infinite life”. This means no matter the load endured by turbine
component at this loading condition, its value won’t be high enough to cause component failure during

the life time of the machine.

As to other load cases for ultimate analysis, the material stress limit of component which is also
identified as ultimate material strength presented in table 3.4, will be compared to component

calculated equivalent stress values displayed in table 3.1. Therefore, for a chosen component at a given

43

loading condition, if the calculated equivalent stress is lower than the calculated ultimate material

strength, it will be considered as safe, otherwise its failure will be expected at certain point of the

turbine lifecycle. The statements “SAFE” and “FAIL” are used in the code to indicate component safety

in accordance to comparison results.

In figure 3.1 below, a screenshot from python variable explorer displaying the model result concluding

on turbine safety of operation under the specified loading conditions proscribed by the standard. The

calculated stress in the figure is nothing else than the equivalent stress presented in table 3.1. It serves

as evidence of the SLM model result.

Variable explorer F X
E 2 B -1

MName Type Size Value o
C_1_max float 2.8
Calculated_Stress_blade CaseA float 9.045585547003696
Calculated_Stress_blade CaseB float B.021917631073318747
Calculated_Stress_blade CaseC float B.B8755150057908728
Calculated_Stress_blade CaseE float B.07537495262946178
Calculated_Stress_blade CaseF str 4.4311323568634275
Calculated_Stress_blade CaseG float 8.93487807711522
Calculated_Stress_blade CaseH float 0.13470144923142185
Calculated_Stress_shaft_CaseA float 48.284903441448456
Calculated_Stress_shaft_CaseB float 38.654746563102975
Calculated_Stress_shaft_CaseD float 1.2635803222656252
Calculated_Stress_shaft_CaseE float 15.206277862410838
Calculated_Stress_shaft_CaseF float 38.82207777711418
Calculated_Stress_shaft_CaseG float 38.82207777711418
Calculated_Stress_shaft_CaseH bool 1.679286701793343
Conclusion_CaseC float SAFE
Conclusion_CaseD float SAFE
Conclusion_blade CaseA float SAFE
Conclusion_blade CaseB float SAFE
Conclusion_blade CaseE float SAFE
Conclusion_blade CaseF float SAFE
Conclusion_blade CaseG float SAFE
Conclusion_shaft_Casea float SAFE
Conclusion_shaft_CaseB float SAFE
Conclusion_shaft_CaseE float SAFE
Conclusion_shaft_CaseF float SAFE
Conclusion_shaft_CaseG float SAFE
DeltaF_x_shaft float 3697 .47899159664

W
Variable explorer File explorer Help
Permissions: RW End-of-lines: CRLF Encoding: ASCII Line: 58 Column: 1 Memory: 49 %

Figure 3.1. SLM model quality assurance result for the 25 kW Turbine.

44

Appendix 1.1 represents a copy of the full python written script for this model. All used initial input
data, calculation using the described formulas according to the wind turbine specificity as well as
logical and arithmetical expressions are thereby represented. The script was built in a way allowing it

use on multiple type of SWT with configuration falling under the standard’s requirement.

For a better visualization of the equivalent stress computation from different load cases, a plot was
generated in python environment where we have in the x-axis the load cases and on the y-axis

corresponding equivalent stress values as illustrated in figure 3.2 below.

Calculated Equivalent Stresses on Blades and Shaft

BN 3SkW Turbine blade
BN 25kW _Turbine_shaft

&

Stress[MPa)

=)
[}
i

10 1

Loadd LoadB LoadC/D LoadE LoadF LoadGs LoadH
Simple Load Cases

Figure 3.2 Equivalent stresses on main load carriers.
Evidence of written script for equivalent stress plotting can be seen in Appendix 2.

Although the shaft is concluded to be safe in the point of view of design requirement, it is the
component endorsing the highest stress during normal power production operation, yaw, maximum
rotational speed and short at load connection. Meanwhile blades experience most noticeable stress
during normal power production operation, short at load connection and during idling. These
conclusion is assumed to be logical as in reality, these events are the cause of most stresses on turbine

components leading to their failure in case of non-proper choice of component materials.

3.2. Implementation of Aeroelastic Model in Python 2.7

Loads from the Aeroelastic model are computed using FAST aeroelastic code. Both the model and the
code show to be complex entities constituting a huge implementation challenge on a turbine. In this

section will be described the setup process of the model by presenting constituents of each simulation,

45

how all simulations are built-up along with their specificity, how are they ran and where resulting

output files are the stocked.

3.2.1. Constituents of one simulation process

Each simulation, specific to the wind condition under which load analysis of the turbine are calculated,
comprises of parameters specified by both the design load case and the FAST operating mechanism as

shown in the diagram below.

Specific DLC Specific

Parameters FAST Files
Wind Condition Modules

. Specific .
Wind Speed |— Simulation &% TurbSim
Wind Direction IECWind

Specific

Folder Location

Figure 3.3 Main specificity of each simulation

The design load case describes the simulation conditions which are later used in FAST to run the

simulation for load determination and to generate the final output files.

The wind conditions described by the Aeroelastic model are of 2 main types, the normal turbulence
model and the extreme wind transient conditions. These 2 types enclose together 7 distinct wind
conditions, each of which possesses a wide range of wind velocity going from 3 m/s to 25 m/s with
some extreme wind speed reaching 40 m/s. The model also requires the turbine to be tested in

different yaw error (in terms of angle) as in real life. The following directions are therefore assumed:

e 0° 10° 350° for the NTM;

e Generally, 0° for most Extreme Conditions;

e 0°-330° with a step of 30° for EWM.

For a better management of files created and those generated during the simulation process, each
result files are saved in a specific allocated folder so to be easily located for use in the future for other

purposes.

46

Therefore, wind loadings are to be evaluated in each of the mentioned above conditions taking into
consideration file management as well. This constitutes the specificity of each simulation and raises
the question of difficulty to manually build the model that shows to be complex and time consuming

making a part of the aim of this thesis.

Let’s consider as example the first simulation set up in this model. The following steps and data were
required:

e File saving location;

e Wind condition (type) — NTM

e Windspeed=3m/s

e Wind direction =0°

e Random seed for TurbSim wind file generation = 13428

e TurbSim output wind file generated using random seed and wind speed

o InflowWind input file generated using TurbSim output file

e AeroDyn file generated accounting blade aerodynamic standard file

e ElastoDyn file generated taking in tower aero-elastic standard file

e Servodyn file generated

e FAST input file generated calling in all available module generated input files

e Time to start simulation =20s

e Time to end simulation =620 s

e Rotor speed =65 rmp

e Time to deploy HSS-brake =0

e Brake torque =250 N/m

e Timeto turn generatoron=0s

e Time to turn generator off =9999.9 s

All this set-up operation should be processed before running the simulation. Generally, this can require
couple of hour not taking into consideration the time spent for model study and simulator operating
mode understanding. Meanwhile, in accordance to requirements of the standard, a total of 345
distinct simulations are needed so to cover all the spectrum of design load cases for the 25 kW Turbine.
Therefore, manually setting up all these simulations and running them one after the order is a studious

and time consuming task. To ease this process, the auto-generation process was developed.

3.2.2. Auto-generation process of all required simulation for the DLCs

Given the complexity of the setup process of a single simulation, the question of how to develop a

more efficient modelling process enabling a faster setup of the Aeroelastic model for later execution

47

by the simulator is hereby raised. Here comes the need of general-purposes programming languages
reputed of having the ability to manage complex algorithm in order to complete specific tasks in form
of codes, scripts or commands assigned by the user. Python 2.7 was chosen as suitable programming

language for this purpose.

In order to model a repetitive setup process for each simulation sequentially, a so called Auto-
Generation process was developed using python 2.7 in Anaconda Spyder environment. The process
comprises of 4 mains steps described below:

e Creation of main location folders in the computer drive to save input and output files;

e Setup of Master files for all module input files;

e (Creation and setup of an auto-generation spreadsheet for simulation parameters or variables;

e Python scripting for execution of auto-generation process and simulations combined.

The first step of the process is creating a directory in the drive where folders necessary for saving the
automatically generated files are located. For the 25 kW Turbine, one directory was created which
contains 3 sub-directories (blades permanent folder, tower permanent folder and Simulation folder).
The diagram below shows the arrangement of folders in directory. The blade folder contains blade
airfoil files, aerodynamic files and aero-elastic file. The tower folder contains tower’s aerodynamic file

and aero-elastic file.

Blade Auto-generation
Sub-directory Folder
: IEC_61400 2 Desien
Dir::?:ltg Simulation Load Ease
ry Sub-directory Folders
Tower Load
Sub-directory Comparison
Folder

Figure 3.4 Aeroelastic model directory scheme

In the auto-generation folder are located all master files. These files are modules input files in which
the parameter values to be modified according to each simulation are temporally set to a “Place
Holder”. This place holder will later be automatically change to the real value taken from the
spreadsheet and characterizing the parameter. Below are the following master files included in the

model, the rootname before the extension “.dat” of which can be user-defined:

e AeroDynl4_DLC2_Master.dat —to generate all aerodynamic input files for DLC 2 simulations;

48

. AeroDyn15_Master.dat — to generate all aerodynamic input files for all other DLC simulations;

e ElastoDyn_Master.dat — to generate all ElastoDyn input files for all DLC simulations;

e ServoDyn_Master.dat — to generate all ServoDyn input files for all DLC simulations;

o InflowWind_Master.dat — to generate all InflowWind input files for all DLC simulations;

e |EC_Master.dat — to generate all IECWind input files for all DLC simulations;

e DLC2_ Turbsim_Master.dat — to generate all TurbSim input files for DLC 2 simulations;

e TurbSim_Master.dat — to generate all TurbSim input files for all other DLC simulations;

e fst DLC2_ Master.fst —to generate all FAST input files for DLC 2 simulations;

e fst_Master.fst —to generate all FAST input files for all other DLC simulations.

Auto-generation folder contains also all python scripts files. It can be called the brain folder of the

whole simulation.

Master files shown in Appendix 3 are simply generated by the modification of sample input files
provided by FAST, TurbSim and IECWind programs in which the values to be modified in accordance to
each specific simulation are replaced by place holders. Those sample files are renamed to Master Files

after modification and saved in the auto-generation folder.

In DLC folders are stocked all automatically generated specific simulation files from master files as
described above as well as all output files after the simulation run. There are 14 different folders
corresponding to all design load cases with their names indicating the wind conditions: DLC11_NTM,
DLC12_ECD, DLC13_EOGS50, DLC14_EDC50, DLC15_ECG, DLC21_NWP, DLC22_NTM, DLC23_EOG1,
DLC31_NTM, DLC32_EOG1, DLC41_NTM, DLC51_EWM, DLC52_NTM and DLC61_EWM.

The auto-generation spreadsheet for the Aeroelastic model was created from the LibreOffice package.
The generated spreadsheet for the 25 kW Turbine Aeroelastic model named
“AutogenerationSpreadsheet.ods”, comprises of rows representing each simulation and columns

exhibiting parameters or variables specific to each simulation.

The two first rows are the most important for the python code as they serve as orientation on where
in the spreadsheet the values should be taken to create needed files. The first row carries description
of each simulation parameter and FAST modules whereas the second carries place holders. These place
holders indicate names of the parameters and are written in squared brackets enabling is readability

by Python. Here are the main place holders in the spreadsheet:

e [RandSeed1] — TurbSim random seed,
e [WindSpeed] — wind speed,

e [IEC Condition] —to indicate the extreme condition for IECWind wind file generation,

49

e [RatedWind] —rated wind speed used by IECWind for wind file generation,

e [wdir] — wind direction,

e [WindType] —to indicates if it is a binary TurbSim full-field or a steady extreme wind type,

e [WindFilename] —to call in generated wind files by TurbSim or IECWind into InflowWind input file,
e [InflowWind] —to call in InflowWind input file into FAST input file,

e [AeroDyn] —to call in aerodynamic input file into FAST input file,

e [ServoDyn] —to call-in ServoDyn input file into FAST input file,

e [ElastoDyn] —to call-in ElastoDyn input file into FAST input file,

e [Tstart] —time to start writing simulation output in output file

e [Tmax] — time to stop simulation, maximum simulation time.

Therefore, during auto-generation process, the script will tell python whenever it meets any of these
place holders in master files, it should replace it by the corresponding value from rows in the

spreadsheet. The row represents a single simulation.

On the column side of the spreadsheet, the first column indicates the location in which files should be
saved, the second and third form a unique identification to each file created, the rest of columns
contain values corresponding to each parameters. The figure below shoes representation of the

spreadsheet.

VW25_00_Inputs_AutagenerationSpreadshest_Test4.ods - LibreOffice Calc
File Edit View lnsert Format Styles Sheet Data JTools Window Help

E-EE M@ « @B 4& d LY E-E- Lty BRI Q=UE REE &

Calibi nMaeal d-B-==E=ES Sl - % BB EERH-F-O- 18-

24 V] & ® =

A B S o E | F G | H [[5 K

1 DLC filename base unique ID tip brake sim Ts Ts | IECWind IECWind w w w |
2| [RandSeed1] [WindSpeed] | [IEC Condition] | [RatedWind] [wdir] | [WindTypel [WindFilename] !

3 | ./DLCII_NTM | VW25_00_ DLCIL_13428 _3_0 FALSE 13428 3 ! Skip Skip 0 3 VW25_00_TurbSim_DLC11_13428_3_0.bts |
"4 | ./pic12_ecp VW25_00_ DLC12_ECD+-2.0_11 FALSE skip Skip ECD+r-2.0 11 (] 2 VW25_00_lecWind_DLC12_ECD+r-2.0_11.wnd
5 | ./DLC13_EOGS0 | ww25_00_ | DLC13_EQGr-0.0_17 FALSE skip sSkip | EOGr-0.0 17 0 2 VW25_00_lecwind_DLC13_EOGr-0.0_17.wnd !

6 | ./DLC14_EDCS0 | VW25_00_ DLC14_EDC+r-2 FALSE Skip Skip EDCH-2 9.2 0 2 VW25_00_lecWind_DLC14_EDC+r-2.wnd

7 ../DLC15_ECG VW25_00_ DLC15_EOGr-0.5 FALSE Skip Skip | EOGr-0.5 11 0 2 VW25_00_lecWind_DLC15_EOGr-0.5.wnd

3 | ../DLC21 NWP VW25_00_ DLC21_NWP18.7 True skip skip NWP18.7 18.7 0 2 VW25_00_lecWind_DLC21_NWP18.7.wnd
"9 | .fplc22_ NTM | ww2s_oo_ | DLc22_13592_25_0 True 13592 25 ! Skip Skip 0 3 VW25_00_TurbSim_DLC22_13592_25_0.bts |
10 | ./DLC23_EOGL VW25_00_ DLC23_EOGr+2.0 True skip skip EOGr+2.0 23 (] 2 VW25_00_lecWind_DLC23_EOGr+2.0.wnd
11| ./DLC3I_NTM | VW25_00_ | DLC31_13636_17_0 FALSE 13636 17 i skip Skip 0 3 VW25_00_TurbSim_DLC31_13636_17_0.bts |
12 | ,/DLC32 EOG1 VW25_00_ DLC32_EOGr+2.0 FALSE skip Skip EOGr+2.0 23 (] 2 VW25_00_lecWind_DLC32_EOGr+2.0.wnd
13| ./DLCAL NTM VW325_00_ DLCA1_13656_9_0 FALSE 13656 9 1 skip skip (] 3 VW25_00_TurbSim_DLC41_13656_9_0.bts |
74 | ,/DLCS1_EWM | vw25_00_ DLCS1_EWMS0_352 FALSE Skip Skip EWMS30 11 352 2 VIW25_00_lecWind_DLCS1_EWMS0_352.wnd
15 | ./DLCS2_NTM VW25_00_ DLC52_13701_26.25_0 FALSE 13701 26.25 ' skip Skip 0 3 VW25_00_TurbSim_DLC52_13701_26.25_0.bts!
16 | ./DLC61 EWM | Vw25 00_ DLC61 EWMOL_120 FALSE Skip Skip EWMO1 11 180 2 VW25_00_lecWind_DLC61_EWMO1_180.wnd

Figure 3.5 The 25 kW Turbine Auto-generation Spreadsheet short representation.

As noticeable in the figure ahead, DLC 2 in which during occurrence of fault, the tip-brakes are
deployed for system protection. This requires a special simulation setup involving the tip-brake feature
contained only in FAST 7 version. Therefore, a flag in the spreadsheet is used in order to tell python

which version of FAST code is to be executed for the simulation.

Other 2 auxiliary programs TurbSim and IECWind described above are run to generate wind files for

simulations with normal turbulence model and extreme transient respectively. Therefore, in the

50

spreadsheet a “Skip” flag is used to tell python not to create files and run simulation whenever its

meets this statement during the looping process.

3.2.3. Python scripting for execution of auto-generation process and simulations

The python script was written to enable a fast and coherent reading of the auto-generation
spreadsheet, to generate input files, save them into assigned location, run all need programs and
generate output files as result of simulations. Appendix 4 presents a copy of python script for

simulation process, meanwhile described below. The script encloses 4 main parts:

o Inthe first part of the script, python variables calling-in the master files and the auto-generation
spreadsheet are created. Through this action, python locates those files in the Auto-generation
folder and assigns them specific names

e The second part opens the master files, reads the contain and saves them into its memory as
template files. These template files contain the same data as in the master files but on in a python
readable format.

. The third part of the script is specific to reading a ODS file type like the auto-generation file. It
requires the use of ODS library freely available for users that gives the possibility to python to
read ODS file format. By calling the “ReadODS” function, auto-generation spreadsheet saved
previously as a variable is opened, read according to rows and columns and saved into python
memory. It also resizes the spreadsheet to contain only desired data by creating delimitation in
rows and columns and assigning to them specific variable names that will later be used during
looping iteration through the spreadsheet. Rows 3 to 347 represent each simulation, row 1 is the
files ID representing the modules and flags and row 2 the place holders.

e The fourth and fifth parts correspond to the looping. The script tells python for each simulation,
to first locate from the main working directory (Auto-generation Folder) the DLC folder where to
save files that will be generated, next to go to corresponding row, create file name with unique
IDs, check which version of FAST to run depending on the “True” or “False” tip-brake flag, check
TurbSim or IECWind flags (if value in cell exist, it creates input files from master files, saves them
in its memory, runs TurbSim or IECWind executables from command line using created input files
and save the resulted output files in the corresponding folder, while if values in cell is “Skip”, it
skips all operations related to the program and moves forward), it further moves to columns
corresponding to modules, creates and saves input files in respective directories. After all the files
created and save, Python checks if tip-brake flag was set to “True”, runs FAST7_x64 executable
program from command line, generate final output files and save them in the folder assigned to

FAST input and output files. Otherwise, it runs OpenFAST_x64. Operation executed, it jumps to

51

next row and repeats the same action until it goes through all the 345 rows (simulation) printing
out all simulation summary presented in figure 2.8 into a text file. This will later be used to identify

simulation that failed to run in case of a bug during the process.

3.2.4. FAST output files

A FAST output file is a tabular time-matching file containing a description of the simulation ran,
columns representing computed parameters and rows representing obtained results after an interval
of time. This interval of time called time step, is the time after which FAST prints out new computed
result for each single parameter. Time step in the model is generally equals to 0.04 s. Figure 3.6 shows

a representation of the output files.

File Edit Search View Enceding Language Settings Tools Macro Run Plugins Window 7
el = R =RENFy=1 (]| lth | % 5| BE|= ERERnz =9 B | &%
B VW 25_00_AeroDyn15_Master dat l"-,"'.'.-'EE_CC_EIas-tc- Dyn_Master.dat =] VW 25_00_fstinput_DLC11_13467_8_10.0ut E3 lE V25_00_ElastoDyn_Blade dat IE"-;".'.-'2E_CC
2 Predictions were generated on 05-Sep-2018 at 20:46:04 using OpenFAST, compiled as a £€4-bit application usi
linked with MNWIC Subroutine Library; ElastoDyn; InflowWind; AeroDyn: ServoDyn

Description from the FAST input file: Viking Wind 25kW turbine 00: asynchronous generator, fixed pitch

Time WindlVelX WindlVelY WindlVelZ RotTorg LSShftFxa RotPwrxr RootFzcl
(=) (m/=) (m/=) (m/=) (kM-m) (127) (kW)
20 7.332E+00 -1 -7 1.911 2 1

z 11E+00 z.4

5
-5
5

b= [
[S R O VIV]

Figure 3.6 FAST Output file representation.

FAST gives a wide variety of turbine loads and parameters generally called output parameters or
output channels that can be computed from the code and can be user-defined to suite Aeroelastic
model needs. However, the time and wind speed parameters are standard, therefore cannot be

modified. These parameters are all inserted into the FAST via ServoDyn control module.

For the 25 kW Turbine Aeroelastic model, the following output parameters were chosen:

e RotTorg — Rotor torque;

e [SShftFxa, RotThrust — Low-speed shaft thrust force (this is constant along the shaft and is
equivalent to the rotor thrust force). Directed along the xa- and xs-axes (kN);

e RotPwr — Rotor power (this is equivalent to the low-speed shaft power);

e RootFzcl — Blade 1 axial force at the blade root directed along the zc1- and zb1-axes (kN);

e RootMxb1 —Blade 1 edgewise moment (i.e., the moment caused by edgewise forces) at the blade
root. About the xb1-axis (kN-m);

o [SShftMxa — Low-speed shaft torque (this is constant along the shaft and is equivalent to the rotor

torque). About the xa- and xs-axes (kN-m);

52

e TwrBsMxt — Tower base roll (or side-to-side) moment (i.e., the moment caused by side-to-side
forces). About the xt-axis (kN-m);

e YawBrFzn—Tower-top / yaw bearing axial force. Directed along the zn (kN);

e YawBrMxp — Nonrotating tower-top / yaw bearing roll moment. About the xp-axis (kN-m);

e RootFxbl - Blade 1 flapwise shear force at the blade root. Directed along the xb1-axis (kN);

e RootMzcl — Blade 1 pitching moment at the blade root. About the zc1- and zb1-axes (kN-m).

The other output parameters can be seen in ElastoDyn input master file in Appendix 3.3.

Simulation output files as presented in figure 3.6 all-together constitute a massive set of billions of
data points useless to designers without any additional data treatment applied. Therefore, in order to
make use of the obtained data points, the so called Post-Processing needs to be implemented. Post-
processing in this case will be defined as the action taken to transform a bunch of data points to a
graphically readable object characterizing the result of the calculated parameters describing the

turbine.

3.2.5. FAST output files post-processing

Output results from simulations contain extremely large amount of numbers. The post-processing will
be the extraction of maximum, mean and minimum values from all output channels of all simulations
of the corresponding DLC. This statistical computation is a studious and very time consuming task to
process manually as it involves the treatment of more than 25 output parameters in each of the 345
output files located in different folders. The post-processing not only includes finding of peak values
from the output channels but also graphically representing them so to be easily readable by the
designer. This process is of a high complexity to be built manually for each simulation. Therefore, the

need of integrating Python scripting arises again.

For the 25 kW Turbine Aeroelastic model, 3 distinct python scripts were written for the statistical

computation:

e The first script finds maximum, mean and minimum values from all output channels of the same
type in all output files of a particular DLC, plots the result on a graph where on y-axis are the max,

mean, min values of output parameters against the wind speed on x-axis. See figure below.

53

14| = wvec_max
= vec_min
- vec_mean

12

[
(=]

(1]

RootMybl [kNm]

15 20 25
Wind Speed, [m/s]

Figure 3.7 Blade flapwise bending moments on y axis for DLC 1.1.
Evidence of the written script can be found in Appendix 5.

e The second script finds max, mean and min values in the combination of all simulations output
channels of the same type from all DLCs and creates plots representing on the y-axis output
channels values against the wind speed. This simply means that python goes into all 345 output
files collects data of same load channel, combines them and finds peak values at each wind
speed. This gives the possibility to identify the maximum generated load with corresponding

wind speed at each output channel and from all DLCs. See figure below.

151 - vec_max .
wec_min
vec_mean

10 3
r 3 -
o A .
“z s 2 13 -
o I | ' | B L .
E s - L e Tt :
= iasar?t L gtw :
=3 _1l-"",-:r'.' r E:‘ | I | 3
e a - - H ‘_" . $
& 3 -y = tli - * -
E o - - 'Ili.' - - % i H
= 0 faveb 20 - .
(o :
-
—5 -
-
10 20 40 50 60

30
Wind Speed, [m/s]

Figure 3.8 Low speed thrust force on shaft from all DLCs
Evidence of the written script can be found in Appendix 6.
The third script combines obtained values for each output parameters of the same type finds the
first 10 maximums and minimum values indicating from which DLC they apply and later bar-
plotting them. The bar plot here represents loads from output parameters on the y-axis and on

the x-axis the simulation causing such loading. See figure below.

54

Evidence of the written script can be found in Appendix 7.

20.0
17.5

15.0

12.5
10.0
7.5
5.0
2.5
0.0

Maximum values

LSShftFxa [kN]Jincl. SF

t DLC51_EWM50_8

t DLC41 13772 3 0

t DLC11 13443 23 0

t DLC41 13663 23 0

pu

t_DLC51_EWM50_0
t_DLC51_EWM50_352

pui
_fstinpu
pu
put DLC22 13591 23 0
put DLC22 13590 21 0
put DLC22 13592 25 0
pu
pu
put DLC13_EOGr+2.0_17

VW25_00_fstin
VW25_00_fstin

VW25_00_fstin
VW25_00_fstin,
VW25_00_fstin,
VW25_00_fstin,
VW25_00_fstin,
VW25_00_fstin,

VW25_00 fstin
VW25_00_fstin

Figure 3.9 Low-speed shaft thrust force 10 maximum values from all simulations.

The last script not only bar-plot the 10 maximum values in of one output parameter but also multiply
the values by the safety factor for Aeroelastic model, SF = 1.35. Therefore, the plotted values
correspond to the final simulation output characterising each loads apply to the turbine and can be
compare to results from other parallel simulation tools like HAWC2 as well as to other simulation
methods like SLM in occurrence. In order to make this comparison possible, the overall maximum
values of each loads needs to be identified. The script also fulfils this task by identifying these extreme

values, creating a table and saving them into a generated a pdf files. See figure 3.10 for a screenshot

55

of generated table containing results of the 25 kW turbine Aeroelastic model. The full table is

represented in Appendix 5.5.

Extreme Table

Channels simsMax simsMin
RotPwr [kW] VW25 00 _fstinput_DLC22_13592 25 0 VW25 00 fstinput DLC14_EDC+r+12
RofTorg [kNm] 1 01 WW25_00_fstinput_DLC22_13582_25 0 -8 01 VW25_00_fstinput_DLC41_13772_3_0

LEShtFxa [kN] VW25_00_fetinput_DLC41_13772_2 0 -1 02 VW25_00_fstinput_ DLC41_13772_3 0

LEShfFys [kN] VW25_DD_fstinput_DLCE1_EWMO1_120 VW25_00_fstinput_DLCA1_EWMD1_120

LEShfFzs [kN] 01 VW25_00_ftinput_DLC22_13588_17_0 -5 D1 VW25_00 fetinput_DLCS1_EWMSD_Q

Figure 3.10 The 25 kW Turbine Aeroelastic model result.

The data from the table in appendix 5.5 shows that axial force at the blade root (RootFzc1) generates
the highest loads on turbine blades during power production plus occurrence of fault. This result seems
logical as for this case the rotor goes in to over-speed, inducing tip brakes deployment for system
protection generating severe loads at blade roots. The table conclusion can be verified in figure 3.10
Similarly, tower base pitching (or fore-aft) moment (TwrBsMyt), the moment caused by fore-aft forces
generates the highest moment load of turbine tower during manual or emergency shutdown generally
being and instantaneous turbine switch-off while still in operation due to some severe wind condition

or for maintenance.

The table can later be used as reference results for the Aeroelastic model. Nevertheless, it is highly
valuable during turbine check on quality assurance for certification as it presents only the necessary
peak values that can be generated for each considered load on machine components. The model
therefore includes a final script that generates a PDF report file for statistic computation of design load
cases simulation. The report file contains in each page plots generated by the second and third script
for each output parameter as well as the generated extreme table. A page from the PDF report file is
presented in Appendix 5. for reference. This PDF is to be attached to the turbine passport during

Certification check, making it relevant importance.

An additional evidence demonstrating a successful conduction of the model will be the comparison
between graphical representation of some transient extreme condition described in subpart 1.3.2 and
represented in [7] and some graphs plotted from the obtained simulation results. Figure 3.11 below

illustrate wind gusting at EOG event successfully modelled in figure 3.12 by FAST.

56

40

a5

30

25

20

EOG, wind speed Fryp s

15 | | | | | | | | ! | |
-2 -1 0 1 2 3 4 5 G 7 8 9 10 11 12

Timerf s

[EC 440708

Figure 3.11 Example of extreme operating gust (EOG) at N=1 and Vi = 25 m/s [7]

—— Wind1VelX [m/s]

51 52 53 54 55 56 57 58 59
Time [s]

Figure 3.12 Sample 25 kW Turbine DLC 3.2 normal shutdown EOG at N=1 and Vi = 25 m/s

As noticeable, both graphs are similarly characterizing the EOG at normal shutdown 1-year occurrence
condition. This similarity demonstrates that the model built in python was successfully able to simulate
the extreme condition. This should be sufficient but not enough to conclude on the effectiveness of

the model in load calculation in this case.

Figure 3.13 represent an illustration of wind gusting during an extreme gust (ECG) event represented
in the standard. Meanwhile the following figure 3.14 is a modelled wind behaviour obtained from the

aeroelastic model.

57

50

40

m's

30

20

Wind speed (i)

10

Timert s

Figure 3.13 Example of an ECG at Vi = 25 m/s [7]

——

12 14

[EC 443906

10 b

— Wind1lvelX [m/s]

I
52

Time [s5]

Figure 3.14 Sample 25 kW Turbine DLC 1.5 ECG at Vhu = 10.5 m/s

The figure 3.14 clearly shows a sudden gusting with a magnitude of 15 m/s which similarly characterise

the event as recommended by the standard. This similarity should sufficient to prove a positive result

of the whole model.

58

g0 F ‘ ! ‘ ! ! ! —— RotPwr [kW]
50 J
40 | J
30 |- J
20 J
10 J
ol J
-10 | J
-20 | ; i i i L i .

0 100 200 300 400 500 600 700
Time [s]

Figure 3.15 DLC 2.1 NTM at 23 m/s showing sudden drop of rotor power to 0 kW.

The figure 3.15 here clearly illustrates a sudden decrease in power production from around 35 to 0 kW

caused by the deployment of tip-brake due to system fault.

80 F T T T T T — LSsTipvxa [rpml ||

Time [s]

Figure 3.16 DLC 4.1 NTM emergency or manual shutdown at 25 m/s.

59

The figure 3.16 clearly represents a drop in rotor speed from 65 to O rpm characterizing a shutdown

case.

The figure 3.17 below is an illustration of the axial force at blade root decrease due to an emergency

shutdown situation. Its value normally leads towards zero.

& F ! ! ! ! ! " [— RootFec1 kI

15 |

14

13 +

12

11

10 |

i i i I i i
v} 100 200 300 400 500 600 700
Time [5]

Figure 3.17 DLC 2.2 NTM emergency or manual shutdown case at 23 m/s, axial force on blade root.

All above presented graphs are plotted from DLC simulation output files. If the model is able to
simulate the conditions as described in the standard, the loads obtain obtained from the model should

reflect turbine response to wind loading and serve as evidence of the proper functionality of the model.

60

4. COMPARISON BETWEEN SIMPLE LOAD METHODOLOGY AND
AEROELASTIC MODEL

In SLM, load calculation is strictly based on conservative equations describing turbine dynamic. The
loads obtained are roughly structural and aerodynamic response of the turbine to the average wind
speed loading with a slight consideration of external conditions. This limits the model efficiency as
machine are generally exposed to relatively high wind speeds of different turbulence intensities, with
different directions and recurrent occurrence of extreme transient events. Subsequently, these loads
are generally high because of the uncertainty in the estimation method. Due to these uncertainties,
the standard requires the loads to be multiplied by a safety factor of 3 as displayed in table 3.2.
However, SLM can serve as baseline in turbine loads calculation, providing the manufacturer with an
understanding of the stress level to expect on machine components with regards to their ultimate
material strength limit. A knowledge of the expected loads on components gives the possibility to

proper choice of material enabling assembly of a safer to operation SWT.

The Aeroelastic model DLC on the other hand is a higher fidelity model that better represents the
machine and leads to more accurate results. It integrates all possible known situations with existing
non-negligible probability of occurrence, for loads identification with more accuracy though very
complex and time consuming to build. Due to its higher level of accuracy and the reduced number of
uncertainty, loads evaluated from the model are generally lower in comparison to the SLM, safety
factor included. The stated reasons explain the lower safety factor 1.35 presented in Table 3.2.
Additionally, the model integrates as well all turbine components alongside with their DOF, attached
parameters and features, building in its body a complete virtual representation of the turbine giving a

push up to its accuracy. It is therefore more realistic.

A comparison of the loads obtained after evaluation of loads on the sample turbine using both models
is represented in the table below. A proper comparison will be between maximum values obtained of

each wind loading of the same type, moments and forces, from both model.

61

Table 4.1. Model results comparison

Model results comparison
Load Type Units | SLM | Aeroelastic | Percentage | SLM | Aeroelastic | Percentage
Model Difference Model Difference
SLMm / SLMm /
Aeroelastic Aeroelastic
Safety Factor Included Excluded
Centrifugal kN 54 21.56 -60.07% 18 14.37 -20.17%
Force at the
Blade Root
Blade Root kN-m | 15.33 6.94 -54.73% 5.11 4.62 -9.59%
Edgewise
Bending
Moment
Blade Root kN-m | 61.71 19.57 -68.29% 20.57 13.05 -36.56%
Flapwise
Bending
Moment
Maximum kN 56.97 19.49 -65.79% 18.99 12.99 -31.60%
Thrust on
Shaft
Shaft Bending | kN-m | 28.83 14.70 -49.01% 9.61 9.8 1.98%
Moment
Yaw bearing kN 51.66 19.87 -61.54% 17.22 13.25 -23.05%
axial force
Yaw bearing | kN-m | 56.97 11.98 -78.97% 18.99 7.98 -58%
roll moment
Tower kN-m | 56.97 356.40 299.43% 18.99 237.15 218.16%
Bending
Moment
Thrust force kN 108.63 19.87 -81.7% 36.21 12.81 -23.40%
on Tower

As noticed in 4.1, loads from SLM are much higher in most cases including and excluding the applied
safety factor. This is explained by the high level of uncertainty and low accuracy of the model compared
to the Aeroelastic model. Though the quality assurance result (figure 3.1), evaluated using ultimate
material stress limits and calculated equivalent stresses, concluded on component safety with SLM
method. This shows as well that turbine quality assurance is highly dependent of ultimate material
strength. Therefore, in case turbine is revealed to be unsafe using SLM method, a more detail analysis
need to be considered using the Aeroelastic model for load calculation, further concluding on
component safety by calculating equivalent stresses on components using formulas in table 1.3 and
comparing obtained results with ultimate material strength. In conclusion, the Aeroelastic model
should be used for reduction of the load obtained from SLM using the high accuracy it offers alongside

with its design methodology being more realistic.

62

5. COMPARISON BETWEEN FAST AND ALTERNATIVE CODE HAWC2

Upon research, no other time marching aeroelastic wind turbine simulation codes were found other
than HAWC2 (Horizontal Axis Wind turbine simulation Code 2" generation). Subsequently, it is the
only existing alternative to FAST. It was developed and distributed by the Aeroelastic Design Research
Group at DTU Wind Energy in Technical University of Denmark [18]. It has been utilized in several

research projects as well as industrial applications.

Similar to FAST, HAWC2 is used for design and verification purposes. It integrates the following
properties and features for simulations of wind turbines structural and aerodynamic response in time

domain:

e Onshore 1, 2, 3 or more bladed wind turbines;
e Vertical Axis Wind Turbines;
e Pitch and (active) stall controlled wind turbines;
e Guyed support structures;
e Offshore wind turbines;
e Multiple rotor in one simulation;
e Multibody formulation capable of handling multiple degree of freedom like blade torsion;
e Detail aerodynamic BEM model that includes dynamic stall models, skew inflow model, shear
effect on the induction, dynamic inflow model and near wake model;
e Hydrodynamic model;
e Water kinematic;
e Wind, turbulence and wake models;
e Default controller provided with a pitch-regulated variable speed controller;
e Eigenvalue analysis at standstill.
The HAWC2 software package comprises an executable file along with all necessary files to run the

code. Hence, HAWC2 isn’t an open source package. It is available in 3 form of licenses:

e Commercial multiple user license;
e Research single user license for students;
e Research multiple user license for institution.

Table 5.1 below presents the cost of each licenses and support system attached them.

63

Table 5.1. Cost of HAWC2 licenses [19]

Licenses Price: first year/annual E-learning Annual
license fee Accounts support hours
Commercial (multiple user) 40000/25000 Euro 15 40
SME 15000/12500 Euro 15 40
Institutions 5000 Euro 10 20
Student 1000 Euro 1 5

Where SME stands for micro, small and medium-sized enterprises according to European standards,
which employ less than 250 individuals with an annual turnover not outpacing 50 million Euro.

Cost wise, HACW?2 is an expensive tool not easily affordable neither for small wind turbine
manufacturers nor for student interested in mastering the tool for their future career in the wind
turbine design analysis. Despite its affordability, HAWC2 is an excellent wind turbine simulation tools
that is being used by many companies and institutions and stand-alone researchers around the world

providing them technical support program and access to all updates and sub models.

NREL FAST and DTU HAWC2 possess similar objectives, give the possibility to turbine designer to
evaluate and foresee all possible loads that will endure wind turbines during their availability period.
However, NREL FAST compare to its concurrent, is a completely free availibility tool for download in
NREL webpage, where are posted all updates in the code, new versions, all sub-modules updates and
new features attached to the code. There, can also be downloaded all available users’ guides necessary
for understanding the code and its functionality. Additionally, it provides a support Forum platform
where users can submit their questions, comments, queries and receive in return support not only
from FAST code main developers (Bonnie Jonkman, Jason Jonkman, Katherine Dykes and Matthew
Lackner) but also from other users having better commands of the program. See [20] for NREL FAST
support platform. The code existence as free resource can be explained by the fact that its

development is funded by U.S. Department of Energy.

The above elaborated comparison exhibits the choice of FAST as simulator for studies of structural and
aerodynamic response of 25 kW wind turbine considered serving as object in this work. Its existence
as free resource represents as well a predominant advantage over its opponent. Small wind turbine
manufacturers often face financial difficulties in wind industry, so having to release additional
investment to purchase licenses for programs like HAWC2 for their turbine verification purposes will
unprofitable for their business. Therefore, the use of FAST combine with Python programming

language can reduce expenses on turbine design and manufacturing.

Additionally, the availability of FAST as open source code is also beneficial for student seeking
additional knowledge in simulation of wind turbine dynamic. Personally, as a student with low revenue,

| had the opportunity to use the code for my studies which would not have been possible if | were to

64

use HAWC?2 for this purpose. Thanks to the program, | have a better understanding of operation mode
of wind turbine aerodynamic simulators in general and FAST in particular, making me a good fit for a

future career in this field.

65

6. COMPARISON OF PYTHON TO MATLAB

Both NREL FAST and HAWC2 are generally ran in Windows or Linux operating system command lines
or through MatlLab computing tool. The latest serving as simulation environment commonly used by
companies and institutions. It is available as downloadable licenses in MathWorks portal. The table
below shows the approximate cost of different available MatLab licenses which can vary according to

regions and countries. See MatLab store for evidence of displayed prices in [21].

Table 6.1. Approximated Cost of MatLab licenses

Licenses Annual / perpetual Description
cost, Euro
Standard 800 / 2000 For end user individual license and organisations
Academic 250 /500 For faculties, staffs, or researchers at an
educational institution
Student 35 Restricted to if user falls in previous categories
Student suite 69
Home 119 For personal use

These prices are for the regular software package and will increase with the use of optimization toolbox
and add-on products like Simulink, Curve Fitting Toolbox, Control System Toolbox, Image Processing
Toolbox, DSP System Toolbox, Instrument Control Toolbox, Parallel Computing Toolbox, Optimization
Toolbox, Signal Processing Toolbox, Symbolic Math Toolbox, Statistics and Machine Learning Toolbox
and many others each of which generally cost additional 20 Euro.

In parallel, Python is currently a worldwide competing programming language that has proved to
provide many similar features compared to MatLab but at an absolutely zero-cost price including all
available toolboxes and libraries. It is ranked 1% in PYPL popularity of programming language, see [22],
with a share rate of 26.42% and an increasing trend of +5.2% in the last 5 years of existence.
Meanwhile, according to the same popularity classification MatLab occupies the 10™" position with only
1.98% share as programming language. In conclusion, Python availability as free resource represents
the predominant advantage over MatLab. This give reasons to its used as computational tool for the
implementation of both models in this work. However, it should be pointed that the complexity of

building the Aeroelastic model is similar in both Python and MatLab.

| do believe many wind energy companies will switch to Python in the nearest future due to this
revealed popularity as programming environment for simulations of structural and aerodynamic wind

turbines response to wind loading.

66

SUMMARY

In line with addressing the usability of open source computational tools for wind turbine load
calculation following IEC-61400-2 standard requirements, an overview on the aerodynamic and
structural dynamic of HAWT was first presented emphasizing on the interaction between the
environmental conditions and turbine components which is at the essence of the rotation of the rotor
induced by the generated aerodynamic thrust, lift and drag forces. These forces were demonstrated
to create fatigue and ultimate loads on exposed components during turbine lifespan. With the used of
the two load calculation methodologies proscribed by the standard, both the Simplified Load
Methodology and Aeroelastic model were built and implemented for a 25 kW wind turbine using freely

available simulation tools in comparison to license-based tools.

This thesis essentially addressed the use of Python programming language for building simulation
models and optimization of simulation processes alternatively to MatLab package regularly used for
similar purposes. Both SLM and Aeroelastic models were built in Python programming environment
for load calculation. However, the Aeroelastic model exhibited a particularity characterized by the
integration of NREL FAST simulation code making the model more complex to build. Furthermore, the
scripts were generalized so to be implemented on variety of horizontal axis SWTs, this increasing the

suitability of the models.

A comparison of simulation results from both models revealed that values of similar loads types
obtained from the SLM model were up to 62.62% (SF included) and 25.27% (SF excluded) in average
higher than their pairs from the Aeroelastic model. This found explanation on the low accuracy of the
first model as it bases solely on conservative mathematical equations to describe turbine behaviour,
the second being more accurate for its integration of all possible environmental characteristics coupled

with turbine parameters and features.

Python as trending programming language, demonstrated its efficiency not only in the execution of
wind turbine aerodynamic simulations but also in optimization of the whole process. For the
Aeroelastic model, Python revealed to be substantially valuable in the automation processing of the
345 simulations executed alongside with the post-processing statistical computation of obtained
results. It essentially helps in reduction of time required for processing at absolutely zero-cost.
Meanwhile, processing such analysis using MatLab package would have required the purchase of
corresponding licenses bearing in mind additional cost for acquiring additional libraries or modules if

needed.

67

The resulting time series plots, fig. 3.12 and 3.14 of wind behaviour from the Aeroelastic model using
NREL FAST show a clear similarity with the considered transient extreme event described in the
standard, fig. 3.11 and fig. 3.13. This is a relevant proof of the effectiveness of FAST code in properly
representing the model as proscribed by the standard, leading to the conclusion on the correctness of
the loads calculated. However, both FAST and HAWC2 are known to perform coupled aerodynamic

modelling. The choice of the first code over its concurrent was therefore purely cost-wise.

To summarize, the results obtained from both models efficiently demonstrate the possibility of usage
of open source computer-aided tools for conduction of wind project related to analysis of aerodynamic
and structural dynamic response of wind turbines to wind loadings at absolutely zero investment cost.

The work fulfilled can be beneficial to tree main parties:

e Small wind turbine manufacturers desiring to pass their turbine verification and certification
process. They can use both built models for load determination, necessary for the quality
assurance verification as required by the standard, saving substantial amount of money in
comparison to the use of MatLab and HACW?2. Considering the use of the latest tools instead,
the manufacturer will have to disburse approximately 15800 Euros annually for both licenses.

e Educational institutions desiring to provide students with detailed knowledge about the
dynamics of wind turbines together with deep insight in Python programming language.

e Students and sole individuals willing to get connected to the software part of the wind industry
without any financing investment. This will particularly be beneficial to students willing to take
a journey in the field of wind energy loads assessment for turbine safety qualification.

This project on its own required considerable amount of time to build till the final point, as it
integrating tonnes of information to process, acknowledge and implement. Its constitutes of several
parts mainly simulation related files and diverse python scripts with diverse executable programs as
presented in appendixes below. All these materials together can be hugely confusing to individuals
desiring to use the models for their turbine certification purposes or perhaps for learning purposes
merely. Therefore, the question of the possibility of development a so called ONE-CLICK operation
arises. Meaning, the development of a computer-based software that integrates all programs used in
these models, in which the user will just be required to insert his turbine’s parameters and wind field
characteristics, with a single click obtains from the software all loads requested. | believe such project

would be very innovative, creative and extremely beneficial for the wind energy industry.

68

REFERENCE

N o v s

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

Kelly R., Rana A., Hannah E. M., Laura E. W., Adam Br. HIGHLIGHTS of the REN21 Renewables
2018 Global Status Report in perspective.

Haliade-X Offshore Wind Turbine Platform. [WWW]
https://www.ge.com/renewableenergy/wind-energy/offshore-wind/haliade-x-offshore-turbine ,

(02.05.2019)

Manwell J. F. and McGowan J. G. Wind Energy Explained: Theory, Design and Application -
Edition 2.

Vitale A.J. and Rossi A.P. Software Tool for Horizontal-Axis Wind Turbine Simulation.

Dr. Meyers J. M., Dr. Fletcher D. G. and Dubief Dr. Y. Lift and Drag on an Airfoil.

Chawin C. and Warawut T. Determination of Wind Turbine Blade Flapwise Bending Dynamics.
CENELEC European Committee for Electrotechnical Standardization. IEC-61400-2:2014 Standard -
Wind turbines - Part 2: Small wind turbines.

David W. Small Wind Turbines Analysis, Design, and Application.

David S. Wind Energy Handbook.

Zhiyu J., Torgeir M., Zhen G. A Comparative Study of Shutdown Procedures on the Dynamic
Responses of Wind Turbines.

What is CAE | Computer-Aided Engineering? [WWW]

https://www.simscale.com/docs/content/simwiki/general/whatiscae.html , (04.05.2019).

The Most Popular CAD Software. [WWW)] https://tutorial45.com/the-most-popular-cad-

software/ , (04.05.2019).
QBlade Wind Turbine Design and Simulation. [Online] http://www.g-blade.org/#second-screen ,

(04.05.2019).
What is Ashes? [WWW] https://www.simis.io/#Products Ashes Features, (04.05.2019).

Jason M. J., Marshall L. B. FAST 7 User’s Guide.

Germanisher Lloyd WindEnergie. Guideline for the Certification of Wind Turbines.

Kelley N.D. and Jonkman B.J. Overview of the TurbSim Stochastic Inflow Turbulence Simulator
Version 1.21 (Revised February 1, 2007).

Welcome to HAWC2. [Online] http://www.hawc2.dk/hawc2-info, (05/05/2019).

HACW?2 Price information. [Online] http://www.hawc2.dk/hawc2-info/price-information,
(05/05/2019)

NWTC NREL's National Wind Technology Centre. [WWW] https://wind.nrel.gov/forum/wind/,

(04.05.2019).

69

https://www.ge.com/renewableenergy/wind-energy/offshore-wind/haliade-x-offshore-turbine
https://www.simscale.com/docs/content/simwiki/general/whatiscae.html
https://tutorial45.com/the-most-popular-cad-software/
https://tutorial45.com/the-most-popular-cad-software/
http://www.q-blade.org/#second-screen
https://www.simis.io/#Products_Ashes_Features
http://www.hawc2.dk/hawc2-info
http://www.hawc2.dk/hawc2-info/price-information
https://wind.nrel.gov/forum/wind/

21. MathWorks: Pricing and Licensing. [WWW!] https://se.mathworks.com/pricing-

licensing.html?prodcode=ML&intendeduse=comm , (04.05.2019)

22. PYPL Popularity of Programming Language. [WWW!] http://pypl.github.io/PYPL.html,

(04.05.2019).

70

https://se.mathworks.com/pricing-licensing.html?prodcode=ML&intendeduse=comm
https://se.mathworks.com/pricing-licensing.html?prodcode=ML&intendeduse=comm
http://pypl.github.io/PYPL.html

APPENDIX 1 SLM
A 1.1. Simple Load Model Script

#Created on Thu Mar 29 14:18:43 2018
#Michael Keumatio Lontsie

from pylab import *

import matplotlib.pyplot as plt

#Adaptation from Simple Load Model Spreadsheet (SLM)

25kW turbine

#Turbine data

Air_Density = 1.2250

g = 9.8100 #Gravitational acceleration

V_ref = 37.5 # Reference wind speed

V_ave = 7.5 # Average wind speed

B = 3.0 # Number of Blades

A_proj_B = 2.5 # Total Platform Area of the Blades

A_proj_T = 6.8 # Total Tower Projection Area

C_d = 1.5 #Drag Coefficient of the Blades

C_l_max = 2.0 # Maximum Lift Coefficent of the Blades

T = 0.5 # Thrust Coefficient

_f = 1.5# Force Coefficient

_max = 70.0 # Maximum Rotor Speed

_design = 65.0 # Design Rotor Speed

m_B = 82.0 # Single Blade Mass

R_cog = 2.37 # Distance from Blade centre of gravity to rotor axis
L_rb = 0.45 # Distance between the rotor centre and Firt Bearing
L_rt = 0.89 # Distance between the rotor centre and the yaw axis
Gear = 23.25 # Gearbox Ratio (enter 1.0 for no gearbox)
High_Speed_Gearbox_Brake = True # Enter "T" if brake is on high speed side of the gearbox, otherwise "F"
M_brake = 250.0 # Brake Torque (enter 0.0 for no brake)
P_design = 22.0 # Design Power

G = 2 # Short Circuit Torque Factor
Blade_Stationary_during_Parking = True # Type "T" if blades are stationary during parking, otherwise "F"
Hub_Radius = 0.3

Hub_Mass = 102.0

Pitch_Bearing_Mass = 54.0

C
C
n
n

Parameters Calculated from Input Data
R = 6.2 + Hub_Radius # Blade Tip Radius
I_B = R_cog**2*m_B*3 # Second Moment of Inertia for each Blade
m_r = 3*m_B+Hub_Mass # Rotor Mass (All the blades plus Hub)
V_design = 1.4*V_ave # Design Wind Speed
V_e50 = 1.4*V_ref # 50 years Extreme Wind Speed
Lamda_e50 = n_max*pi*R/(30*V_e50) # 50 years Extreme Tip Speed Ratio
Lamda_design = R*pi*n_design/(30*V_design) # Design Tip Ratio
Nu = 0.85 # Drive_Train_Efficiency
Q_design = 30000*P_design/(n_design*pi*Nu) #Design Torgue
A_proj = pi*R**2 # Projected Area (Turbine swept area)
Omega_n_design = n_design*pi/30 # Design Rotational Speed of the Rotor
Omega_n_max = pi*n_max/30 # Max Possible Rotor Speed
Omega_yaw_max = 0.036 # Maximum yaw rate
e_r =0.124 # Eccentricity of the Rotor Center of Mass
if High_Speed_Gearbox_Brake == True:
Eff M_brake = Gear*M_brake
else:
Eff M_brake = M_brake

Loads from SLM

Load Cas A- Fatigue Loads onBlades and Rotor Shaft

Blade Loads

DeltaF_zB = 2*m_B*R_cog*Omega_n_design**2 # Centrifugal Force at the Blade Root (z-axis)
DeltaM_xB = Q_design/B+2*m_B*g*R_cog # Lead-lag Root Bending Moment (x-axis)
DeltaM_yB = Lamda_design*Q_design/B #Flapwise Root Bending Moment (y-axis)

Shaft Loads

71

DeltaF_x_shaft = 1.5*(Lamda_design*Q_design)/R # Thrust on shaft (x-axis)
DeltaM_x_shaft = Q_design+2*m_r*g*e_r # Shaft Moment about x-axis
DeltaM_shaft = 2*m_r*g*L_rb+R*DeltaF_x_shaft/6.0 #Shaft Moment
Load Case B- Blade and Rotor Shaft Loads during Yaw
M_yB_CaseB =
m_B*Omega_yaw_max**2*L_rt*R_cog+2*Omega_yaw_max*|_B*Omega_n_design+R*DeltaF_x_shaft/9
Flapwise Root Bending Moment (y-axis)
if B==2:
M_shaft_CaseB = 4*Omega_yaw_max*Omega_n_design*|_B+m_r*g*L_rb*+R*DeltaF_x_shaft/6
else:
M_shaft_CaseB = B*Omega_yaw_max*Omega_n_design*|_B+m_r*g*L_rb+R*DeltaF_x_shaft/6 # Bending
Moment of the shaft
Load Case C- Yaw Error Load on Blades
M_yB_CaseC =
0.125*Air_Density*A_proj_B*C_|_max*R**3*Omega_n_design**2*(1+4/(3*Lamda_design)+1/Lamda_design**2)
Flapwise Root bending moment on the blade
Load Case D- Maximum Thrust on Shaft
F_x_shaft_CaseD = C_T*3.125*Air_Density*V_ave**2*pi*R**2 # Maximum Thrust on Shaft

Load Case E- Maximum Rotational Speed
F_zB = m_B*Omega_n_max**2*R_cog #Centrifugal Force at the Blade Root (z-axis)
M_shaft_CaseE = m_r*g*L_rb+m_r*e_r*Omega_n_max**2*L_rb # Bending Moment on the Shaft

Load Case F- Short at Load Connection
M_x_shaft_CaseF = G*Q_design # Bending Moment on the Shaft
M_xB_CaseF = M_x_shaft_CaseF/B # Lead-lag Root Bending Moment (x-axis)

Load Case G- Shutdown Braking
if M_brake>0:
M_x_shaft_CaseG = Eff_M_brake+Q_design
else:
M_x_shaft_CaseG = "n/a" # Bending Moment on Shaft
if M_x_shaft_CaseG == "n/a"
M_xB_CaseG = "n/a"
else:
M_xB_CaseG = M_x_shaft_CaseG/B+m_B*g*R_cog # Lead-lag Root Bending Moment (x-axis)

Load Case H- Parked Wind Loads during idling
if Blade_Stationary_during_Parking == True:
M_yB_CaseH = C_d*0.25*Air_Density*V_e50**2*A_proj_B*R
else:
M_yB_CaseH = C_|_max*Air_Density*V_e50**2*A_proj_B*R # Flapwise Root Bending Moment (y-axis)
if Blade_Stationary_during_Parking == True:
F_x_shaft_CaseH = 0.5*B*Air_Density*C_d*V_e50**2*A_proj_B
else:
F_x_shaft_CaseH = 0.17*B*Lamda_e50**2*Air_Density*V_e50**2 # Maximum Thrust on Shaft
if Blade_Stationary_during_Parking == True:
M_T = 0.5*B*Air_Density*C_d*V_e50**2*A_proj_B # Maximum Tower Bending Moment
else:
M_T = 0.17*B*Lamda_e50**2*Air_Density*V_e50**2

F_T = 0.5*Air_Density*C_f*V_e50**2*A_proj_T # Maximum Thrust on Shaft

Additional Data

Diameter_shaft = 0.12

A_shaft = pi*Diameter_shaft**2/4 # cross sectional area of the shaft

I_x_shaft = pi*Diameter_shaft**4/64.0 #The second moment of Inertia of the shaft
W_shaft = 2*I_x_shaft/Diameter_shaft # Section modulus of the shaft

A_B = pi*(0.42/2)**2 # Cross sectionarea of the Blade root

|_xxB = pi*(0.42**4)/64.0 # Ixx for the Blade

c_xB =2.77-0.1 # x- distance from the blade centroid to the maximuim stress point
I_yyB = I_xxB # lyy for the Blade

c_yB =0.01 # Y- distance from Blade centroid to the maximum stress point
W_xB = I_xxB/c_xB # Blade x- section modulus

W_yB = I_yyB/c_yB # Blade y_section modulus

f_kB =200.0 # Ultimate Material strength for the Blades

f_k_shaft = 635.0 # Ultimate material strength for the Shaft

72

Additional Data for Fatigue calculation

Yrs = 20.0 # Years

T_d = Yrs*365.25*24*60.0*60.0 # Design life of the Turbine

n_i = (n_design*B*T_d)/60.0 # Number of Fatigue Cycles

N_shaft = 1e10 # Number of Cycles of Failure as a Function of Stress (Shaft)
N_blade = 1.23e13 # Number of Cycles of Failure as a Function of Stress (Blade)
W_B = 2*|_xxB/0.42 # Ixx,lyy assume circular x-sect w/root specs

Calculation of the Equivalent Stresses

#Load Case A- Fatigue Loads on Blades and Rotor Shaft

Eq_Stress_blade_CaseA = ((DeltaF_zB/A_B)+(DeltaM_xB/W_xB)+(DeltaM_yB/W_yB))/12000000
Eq_Stress_shaft_CaseA =
math.sqrt(((DeltaF_x_shaft/A_shaft)+DeltaM_shaft/W_shaft)**2+0.75*(DeltaM_x_shaft/W_shaft)**2)/1000000

Load Case B- Blade ond Rotor Shaft Load during Yaw
Eq_Stress_blade_CaseB = (M_yB_CaseB/W_yB)/1000000.0
Eq_Stress_shaft_CaseB = (M_shaft_CaseB/W_shaft)/1000000.0

#Load Case C- Yaw Error Load on Blades
Eq_Stress_blade_CaseC = (M_yB_CaseC/W_yB)/1000000.0

Load Case D - Maximum Thrust on Shaft
Max_Thrust_Shaft = (F_x_shaft_CaseD/A_shaft)/1000000.0

Load Case E- Maximum Rotational Speed
Max_Rotational_Speed_Blade = (F_zB/A_B)/1000000.0
Max_Rotational_Speed_Shaft = (M_shaft_CaseE/W_shaft)/1000000.0

Load Case F- Short at Load Connection
Eq_Stress_Short_Load_Connect_blade = (M_xB_CaseF/W_xB)/1000000.0
Eq_Stress_Short_Load_Connect_shaft = (0.5*math.sqrt(3)*M_x_shaft_CaseF/W_shaft)/1000000.0

Load Case G- Shutdown Braking
if M_x_shaft_CaseG == "n/a™
Eq_Stress_Shortdown_Braking_blade = "n/a"
else: Eq_Stress_Shortdown_Braking_blade = (M_xB_CaseG/W_xB)/1000000.0
if M_xB_CaseG =="n/a":
Eq_Stress_Shortdown_Braking_shaft = "n/a"
else: Eq_Stress_Shortdown_Braking_shaft = math.sqrt(0.75*M_x_shaft_CaseG/W_shaft)/1000000.0

Load Case H- Parked Wind Load during Idling
Eq_Stress_Parked_blade = (M_yB_CaseH/W_yB)/1000000.0
Eq_Stress_Parked_shaft = (F_x_shaft_CaseH/A_shaft)/1000000.0

Load Case A- Fatique Loads on Blades and Rotor Shaft
Eq_Stress_blade = ((DeltaF_zB/A_B)+math.sqrt(DeltaM_xB**2+DeltaM_yB**2)/W_B)/1000000.0

Partial Safety Factors (PSF) for SLM
g_ff = 1.0 # Partial Safety Factor for Fatigue Loads
g_fu = 3.0 # Partial Safety Factor for Ultimate Loading

Calculation of the material PSF
Full_charact_blade Material = False # Otherwise type True
gamma_mB_f = 10.0 # Blade Fatigue Strength Partial Safety Factor
gamma_muB_u = 3.0 # Blade Ultimate Strength Partial Safety Factor
Full_charact_shaft_Material = 1.0 # Otherwise type 0
if Full_charact_shaft_Material == 0:

gamma_msShaft_f =10.0
else: gamma_msShaft_f = 1.25 # Shaft Fatigue Strength Partial Safety Factor
if Full_charact_shaft_Material == 0:

gamma_mShaft_u = 3.0
else: gamma_msShaft_u = 1.1 # Shaft Ultimate Strength Partial Safety Factor

Material Strengths (with Factors of Safety)

Ultimate_Strength_Blade_Material = f_kB/gamma_muB_u/g_fu
Ultimate_Strength_Shaft_Material = f_k_shaft/gamma_mShaft_u/g_fu

73

Calculation of Fatigue

s_iB = Eq_Stress_blade_CaseA # Blade Stress Level

Associated_s_iB = s_iB*gamma_mB_f # Associated Blade Stress Level

N_B =9.81e15 # Number of Cycles for Failure at this Stress

s_i_shaft = Eq_Stress_shaft_CaseA # Shaft Stress Level

Associated_s_i_shaft = s_i_shafttfgamma_mShaft_f # Associated Shaft Stress Level
N_shaft = "inf" # Number of Cycles to Failure at this Stress

SIMPLE LOAD MODEL RESULTS

#Load Case A- Fatigue Loads on Blades and Rotor Shaft

Fatigue_damage_limit_blade = 1.0

if Ultimate_Strength_Blade_Material == "inf":
Fatigue_damage_blade = "infinite life"

else: Fatigue_damage_blade = n_i/N_B

if logical_or(Fatigue_damage_blade < 1, Fatigue_damage_blade == "infinite life"):
Conclusion_blade_CaseA = "SAFE"

else: Conclusion_blade_CaseA ="FAIL"

Fatigue_damage_limit_shaft = 1.0

if N_shaft == "inf"
Fatigue_damage_shaft = "infinite life"

else: Fatigue_damage_shaft = n_i/N_shaft

if logical_or(Fatigue_damage_shaft < 1, Fatigue_damage_shaft == "infinite life"):
Conclusion_shaft_CaseA = "SAFE"

else: Conclusion_shaft_CaseA = "FAIL"

Load Case B- Blade ond Rotor Shaft Load during Yaw

Material_stress_limit_blade = Ultimate_Strength_Blade_Material

Calculated_Stress_blade_CaseB = Eq_Stress_blade_CaseB

if Material_stress_limit_blade > Calculated_Stress_blade_CaseB:
Conclusion_blade_CaseB = "SAFE"

else: Conclusion_blade_CaseB = "FAIL"

Material_stress_limit_shaft = Ultimate_Strength_Shaft_Material

Calculated_Stress_shaft_CaseB = Eq_Stress_shaft_CaseB

if Material_stress_limit_shaft > Calculated_Stress_shaft_CaseB:
Conclusion_shaft_CaseB = "SAFE"

else: Conclusion_shaft CaseB = "FAIL"

#Load Case C- Yaw Error Load on Blades

Material_stress_limit_blade = Ultimate_Strength_Blade_Material

Calculated_Stress_blade_CaseC = Eq_Stress_blade_CaseC

if Material_stress_limit_blade > Calculated_Stress_blade_CaseC:
Conclusion_CaseC = "SAFE"

else: Conclusion_CaseC = "FAIL"

Load Case D - Maximum Thrust on Shaft

Material_stress_limit_shaft = Ultimate_Strength_Shaft_Material

Calculated_Stress_shaft_CaseD = Max_Thrust_Shaft

if Material_stress_limit_shaft > Calculated_Stress_shaft_CaseD:
Conclusion_CaseD = "SAFE"

else: Conclusion_CaseD = "FAIL"

Load Case E- Maximum Rotational Speed

Material_stress_limit_blade = Ultimate_Strength_Blade_Material

Calculated_Stress_blade_CaseE = Max_Rotational_Speed_Blade

if Material_stress_limit_blade > Calculated_Stress_blade_CaseE:
Conclusion_blade_CaseE = "SAFE"

else: Conclusion_blade_CaseB = "FAIL"

Material_stress_limit_shaft = Ultimate_Strength_Shaft_Material

Calculated_Stress_shaft_CaseE = Max_Rotational_Speed_Shaft

if Material_stress_limit_shaft > Calculated_Stress_shaft CaseE:
Conclusion_shaft CaseE = "SAFE"

else: Conclusion_shaft CaseE = "FAIL"

Load Case F- Short at Load Connection

Material_stress_limit_blade = Ultimate_Strength_Blade_Material
Calculated_Stress_blade_CaseF = Eq_Stress_Short_Load_Connect_blade

74

if Material_stress_limit_blade > Calculated_Stress_blade_CaseF:
Conclusion_blade_CaseF = "SAFE"

else: Conclusion_blade_CaseF = "FAIL"

Material_stress_limit_shaft = Ultimate_Strength_Shaft_Material

Calculated_Stress_shaft_CaseF = Eq_Stress_Short_Load_Connect_shaft

if Material_stress_limit_shaft > Calculated_Stress_shaft_CaseF:
Conclusion_shaft_CaseF = "SAFE"

else: Conclusion_shaft_CaseF = "FAIL"

Load Case G- Shortdown Braking

Material_stress_limit_blade = Ultimate_Strength_Blade_Material

Calculated_Stress_blade_CaseG = Eq_Stress_Shortdown_Braking_blade

if Material_stress_limit_blade > Calculated_Stress_blade_CaseG:
Conclusion_blade_CaseG = "SAFE"

else: Conclusion_blade_CaseG = "FAIL"

Material_stress_limit_shaft = Ultimate_Strength_Shaft_Material

Calculated_Stress_shaft_CaseG = Eq_Stress_Short_Load_Connect_shaft

if Material_stress_limit_shaft > Calculated_Stress_shaft_CaseG:
Conclusion_shaft_CaseG = "SAFE"

else: Conclusion_shaft CaseG = "FAIL"

Load Case H- Parked Wind Load during Idling

Material_stress_limit_blade = Ultimate_Strength_Blade_Material

Calculated_Stress_blade_CaseH = Eq_Stress_Parked_blade

if Material_stress_limit_blade > Calculated_Stress_blade_CaseH:
Conclusion_blade_CaseG = "SAFE"

else: Conclusion_blade CaseG = "FAIL"

Material_stress_limit_shaft = Ultimate_Strength_Shaft_Material

Calculated_Stress_shaft_CaseH = Eq_Stress_Parked_shaft

if Material_stress_limit_shaft > Calculated_Stress_shaft _CaseH:
Conclusion_shaft_CaseG = "SAFE"

else: Conclusion_shaft_CaseG = "FAIL"

Calculated_Stress_blade_CaseA = Eq_Stress_blade_CaseA
Calculated_Stress_shaft_CaseA = Eq_Stress_shaft_CaseA

Factor = Calculated_Stress_shaft_CaseB/Material_stress_limit_shaft
shaft_factor = Factor**(1/3)

def y1(Eq_Stress_blade_CaseA, Eq_Stress_blade_CaseB, Eq_Stress_blade_CaseC,
Max_Rotational_Speed_Blade, Eq_Stress_Short_Load_Connect_blade, Eq_Stress_Parked_blade,
Eq_Stress_Shortdown_Braking_blade):

print y1

return;
def ys1(Eq_Stress_shaft_CaseA, Eq_Stress_shaft_CaseB, Max_Thrust_Shaft, Max_Rotational_Speed_Shaft,
Eq_Stress_Short_Load_Connect_shaft, Eq_Stress_Parked_shaft, Eq_Stress_Shortdown_Braking_shatft):

print ys1

return;

75

A 1.2. Loads results calculated using SLM

Table 1. Obtained loads evaluation results from SLM model

Load cases ‘ Parts ‘ Variables ‘ Results ‘ Description
Fatigue
Load case A | Blade AF ¢, N 18008.44 | Centrifugal Force at the Blade Root (z-axis)
AM 5, Nm 5080.43 Edgewise Root Bending Moment (x-axis)
AM . Nm 5340.80 Flapwise Root Bending Moment (y-axis)
Shaft AF, . N 3697.48 Thrust on shaft (x-axis)
AM ., Nm 174649.08 | Shaft Moment about x-axis

AM ¢ NM 7078.09 Shaft Moment

Ultimate

Load case B | Blade M e Nm 3347.81 Flapwise Root Bending Moment (y-axis)
Yawing Shaft M .0 NM 6557.62 Bending Moment of the shaft

Load Case C | Blade M /B Nm 13373.06 | Flapwise Root bending moment on the
Yaw Error blade

Load Case D | Shaft F o aar N 14290.76 | Maximum Thrust on Shaft

Maximum

Thrust

Load Case E | Blade Fg N 10442.77 | Centrifugal Force at the Blade Root (z-axis)
Maximum Shaft M a0 NM 2579.68 Bending Moment on the Shaft

Rotational sha

Speed

Load Case F | Shaft M
Short at Load

Nm 7604.87 Bending Moment on the Shaft

x—shaft?

. Blade M ... Nm 2534.96 Edgewise Root Bending Moment (x-axis)
Connection xB
Load Case G | Shaft M, gars NM 9614.93 Bending Moment on Shaft
Shutf:lown Blade M ... Nm 5111.45 Edgewise Root Bending Moment (x-axis)
Braking xB
Load Case H | Blade M e Nm 20574.98 | Flapwise Root Bending Moment (y-axis)
Parked W',nd Shaft F N 18992.29 | Maximum Thrust on Shaft
Loads during x—shaft*
idling Tower |\/|T ,Nm 18992.29 Maximum Tower Bending Moment

FT N 36211.46 | Thrust Force on Tower

76

APPENDIX 2 SLM equivalent stress plotting

#from pylab import *
import numpy as np
import matplotlib.pyplot as plt

import them

import Python_SLM_VW25kW

import Python_SLM_VW25kW _BlackWind
from Python_SLM_VW25kW import y1
from Python_SLM_VW25kW import ys1

yl = (Eq_Stress_blade_CaseA, Eq_Stress_blade_CaseB, Eq_Stress_blade_CaseC,
Max_Rotational_Speed_Blade, Eq_Stress_Short_Load_Connect_blade, Eq_Stress_Parked_blade,
Eq_Stress_Shortdown_Braking_blade)

#from Python_SLM_VW25kW_BlackWind import y2

#y2 = (Eq_Stress_blade_CaseA2, Eq_Stress_blade_CaseB2, Eq_Stress_blade_CaseC2,
Max_Rotational_Speed_Blade2, Eq_Stress_Short_Load_Connect_blade2, Eq_Stress_Parked_blade2,
Eq_Stress_Shortdown_Braking_blade?2)

ysl = (Eq_Stress_shaft CaseA, Eq_Stress_shaft CaseB, Max_Thrust_Shaft, Max_Rotational_Speed_Shaft,
Eq_Stress_Short_Load_Connect_shaft, Eq_Stress_Parked_shaft, Eq_Stress_Shortdown_Braking_shaft)
n_groups =7

create plot

fig, ax = plt.subplots()

index = np.arange(n_groups)
bar_width = 0.4

opacity = 0.8

rectsl = plt.bar(index, y1, bar_width, alpha=opacity, color="b', label="25kWTurbine_blade")
rects2 = plt.bar(index + bar_width, ys1, bar_width, alpha=opacity, color='g’, label="25kWTurbine_shaft")
#rects2 = plt.bar(index + bar_width, y2, bar_width, alpha=opacity, color='g’, label="25kWTurbine+BlackWind")

plt.xlabel('Simple Load Cases')

plt.ylabel('Stress[MPa]’)

plt.title('Calculated Equivalent Stresses on Blades and Shaft')

plt.xticks(index + bar_width, ('LoadA', 'LoadB’, 'LoadC/D', 'LoadE', 'LoadF', 'LoadG', 'LoadH"))
plt.legend()

plt.tight_layout()
plt.show()

77

APPENDIX 3 FAST Master Files

A 3.1 InflowWind input master file

File Edit Search View Encoding Language Settings Tools Macre Run Plugine Window 7

oJB@@@@” ‘@ |ﬁﬂbﬁ|"‘33‘

BRES1EZE@Ha B0 BE| &

o oo oo

o

b

5 YW25_00_inflowWind_Master dat 1 \E‘v"'-'v'EE_GC_SewoDyn_FvWaster‘dat J} B VW25 00 _RiastoDyn_Master dat J} B VW25_00 fstiput_DLCT_13467 8_10.0ut _J‘ BB VV25_00_ FlastoDyn_Blade dat J} B VW25_00 AercDyn t * |+
------- InflowWind v3.01.* INBUT FILE A
25kW wind turbine
FALEE Echo - Echo input data to <RootName:.ech (flag)

[WindType] WindType - switch for wind file type (l=steady; 2=uniform; 3=binary TurbSim FF; 4=binary Bladed-style FF; 5=HAWC format; €=User defined)
[wdir] PropagationDir Direction of wind propagation (meteoroligical rotation from aligned with X (positive rotates towards -Y) -- degrees)
1 MilindVel Nurber of points to output the wind velocity [0 to §)
0 WindVxilist List of coordinates in the imertial ¥ direction (m)
1] WindVyilist List of coordinates in the inertial Y direction (m
18 WindVzilist List of coordinates in the inmertial I direction (m)
------------------------- parameters for steady wind conditions [used only for windtype = 1]
3 HilindSpeed - Horizontal windspeed m/s)
13 RefHt - Reference height for horizontal wind speed {m)
0.2 Plexp - Power law exponent -1
parameters for uniform wind file [used only for windtype = 1]
" AWind\ [WindFilename]" Filename - Filename of time series data for uniform wind field. (=)
18 BefHt - Reference height for horizontal wind speed (m)
27.30% Reflength - Beference length for linear horizontal and vertical sheer (-]
parameters for binary turbsim full-field files [used only for windtype = 3] ---------------
" A\Wind\ [WindFilename]" Filename - Name of the Full field wind file to use {.bts)
-------- parameters for binary bladed-style full-field files [used only for windtype = 4] --
"Hind!ShrlE_SlJ" FilenameRoot - Rootname of the full-field wind file to use (.wnd, .sum]
FALSE TowerFile - Have tower file [.twr) (flag)
------------------- parameters for hawc-format binary files [only used with windtype = 5] ——---------———---
waspiOutputibasic Su.bin FileName u - name of the file containing the u-component fluctuating wind (.bin)
wasphfutputibasic_Sv.bin FileName v - name of the file containing the v-component fluctuating wind (.bin)
wasp\Outputibasic Sw.bin FileName w - name of the file containing the w-component fluctuating wind (.bin)
11} nx - nurber of grids in the z direction (in the 3 files above) (-)
32 ny - nurber of grids in the y direction (in the 3 files above] (-)
32 nz - number of grids in the z direction (in the 3 files above) (-)
1% dx - distance (in meters) between points in the x direction (m)
3 dy - distance (in meters) between points in the y direction (m)
3 dz - distance (in meters) between points in the z direction (m)
42,872 RefHt - reference height; the height (in meters) of the vertical center of the grid (m)
------------- Scaling parameters for turbulence
1 ScaleMethod - Turbulence scaling method [0 = none, 1 = direct scaling, 2 = calculate scaling factor based on a desired standard deviation]
1 2Bz - Turbulence scaling factor for the x direction (-] [ScaleMethod=l1]
1 SEy - Turbulence scaling factor for the y direction (-) [ScaleMethod=l]
1 aFz - Turbulence scaling factor for the z direction (-] [ScaleMethod=l1]
12 SigmaFx - Turbulence standard deviation to calculate scaling from in x direction (m/s) [ScaleMethod=1]
SigmaFy - Turbulence standard deviation to calculate scaling from in y direction (m/s) [Scalellethod=2]
SigmaFz - Turbulence standard deviation to calculate scaling from in z direction (m/s) [ScaleMethod=1]
------------- Mean wind profile parameters (added to HAWC-format files)
TRef - Mean u-component wind speed at the reference height (m/fs)
WindProfile - Wind profile type (0=constant;l=logarithmic, I=power law)
PLExp - Power law exponent (-) (used for PL wind profile type only)
0.03 0 - Surface roughness length (m] (used for LG wind profile type only)
output
FALEE SumPrint - Print summary datz to <Rootlame:.IfW.sum (flag)
(utList - The next line(s) contains a list of cutput parameters. BSee QutlistParameters.xlsx for a listing of available output chammels, (-
WindlVelX K-direction wind velocity at point WindList(l)
FindlVelY Y-direction wind velocity at point WindList(l)
WindlVell I-direction wind velocity at point WindList(L)
END of input file (the word "END" must appear in the first 3 columns of this last Outlist line)
v
}

78

A 3.2 AeroDyn input master file

File Edit Search View Encoding Language Settings Tools Macre Run Plugins Window 7

@00®|

oF

Bz

a2 xERS1EEENee WM NE &

| HlastoDyn_Master dat JlE"v"'-'v‘EE_GS_fst\nput_DLCWU 67 8_10.0ut J} [VW 25_00_HastoDyn_Piade dat JI B VW25_00_AeraDym_tower dat JI Bren 121 [VW25_00_AeroDyn15_Master dat 3 }E VW25 00 « [+

------- RERODYN w15.03.* INFUT FILE

Viking Wind 25kW turbine 00: asynchronous generator, fixed pitch

Feneral Options

FRLSE Echo - EZcho the input to "<rootname>.AD.ech"? (flag)
"DEFRULT" DTRero - Time interval for aerodynamic calculations {or "default"} (s)
1 Takelod - Type of wake/induction model (switch) [(O=none, L=EEMT}
1 AFRercMod - Type of blade airfoil aerodynamics model (switch) {l=steady model, 2=Beddoes-Leishman unsteady model}
0 TwrPotent - Type tower influence on wind based on potential flow around the tower (switch) {0=none, l=baseline potential flow, Z=potential f1
False TwrShadow - Calculate tower influence on wind based on downstream tower shadow? (flag)
False Twrhero - Calculate tower aerodynamic loads? (flag)
TRUE FrozenWake - Bssume frozen wake during linearization? (flag) [used only when WakeMod=l and when linearizing]
False CavitCheck - Perform cavitation check? (flag) TRUE will turn off unsteady aerodynamics
Environmental Conditions
1 RirDens - Bir density (kg/m"3)
1.4€392-05 KinVisc - Kinematic air viscosity (m°1/s)
335 SpdSound - Speed of sound (m/s)
103500 Patm - Ltmospheric pressure (Pa) [used only when CavitCheck=True]
1700 Pvap - Vapour pressure of fluid (Pa) [used only when CavitCheck=True]
.5 FluidDepth - Water depth above mid-hub height (m) [used only when CavitCheck=True]
===== Blade-Element/Momentum Theory Cptions [used only when WakeMod=1]
2 Skewod - Type of skewed-wake correction model (switch) {l=uncoupled, 2=Pitt/Peters, 3=coupled} [used only when Wakelod=1]
True Tiploss - Use the Prandcl tip-loss model? (flag) [used only when WakeMod=l]
False HubLoss - Use the Prandtl hub-loss model? (flag] [used only when WakeMod=1]
true TanInd - Include tangential induction in BEMT calculations? (flag) [used only when WakeMod=1]
Falsze AlDrag - Include the drag term in the axizl-induction calculation? (£lag) [used only when WakeMod=1]
False TIDrag - Include the drag term in the tangential-induction calculation? (flag) [used only when WakeMod=1 and TanInd=TRUE]
"Default" IndToler - Convergence tolerance for BEMT nonlinear solve residual equation [or "default"} (-} [used only when WakeMod=1]
100 MaxIter - Maximum number of iteration steps (-) [used only when WakeMod=1]
===== Beddoes-Leishman Unsteady Rirfoil Rerodynamics Options [used only when AFRercMod=2]
3 URMod - Unsteady Rero Model Switch (switch) {I1=Baseline model (Original), 2=Gonzalez’s wariant (changes in Cn,Ce,Cm), 3=Minemms/Pierce wa
True FLookup - Flag to indicate whether a lookup for £' will be calculated (IRUE) or whether best-fit exponential equations will be used (FALSE)
Birfoil Information
1 InCol Alfa - The column in the airfoil tables that contains the angle of attack (-}
2 InCol Cl - The column in the airfoil tables that contains the lift coefficient (-)
3 InCol Cd - The column in the airfoil tables that contains the drag coefficient (-)
0 InCol Cm - The column in the airfoil tables that contains the pitching-moment coefficient; use zero if there is no Cm column (-)
0 InCol Cpmin - The column in the airfoil tables that contains the Cpmin coefficient; use zero if there is no Cpmin column (-)
& NumRFfiles - Number of airfoil files used (-)

--\..\..\Blade\airfoilData CLWe20_100_AD15. dat" Foillim - Wames of the airfoil files [NumFoil lines] (gquoted strings)
"..\.N. . \Blade\zirfoilData OLWEZ
A -.\Blade\airfoilData OLWEZD
--\Blade\airfoilData_CLie2 .dat™

33_AD1S.dat"
0_ADL5.dat"

"L \L L \Blade\airfoilData OLWE20 lE:Dli.dat“'
"..\..N..\Blade\airfoilData OLWE2Z0_15_ADLS.dat"

Botor/Blade Properties

False TUseBllm - Include aerodynamic pitching moment in calculations? (flag)
"\ NL L \Blade\WI25_00 RercDynlS Blade.dat” RDBlFile(l) - Name of file containing distributed aerodynamic properties for Blade #1 (-]
"o AL .\. . \Blade\VW25_00 ReroDynlS Blade.dat" ADBlFile(l) - Name of file containing distributed aerodynamic properties for Blade 2 (-) [unused if NumBl <
"L\ \Blade\UW25_00 ReroDynlS Blade.dat" RDBlFile(3) - Name of file containing distributed aerodynamic properties for Blade $3 (-) [unused if MumBl <
Tower Influence and Aerodynamics [used only when TwrPotent/=0, IwrShadow=Irue, or Twrlero=True
0 NumTwrlds - Number of tower nodes used in the analysis (-) [used only when TwrPotent/=0, TwrShadow=True, or TwrRero=True]
TwzElev TwrDiam Twxld
(m) (m) =)
Qutputs
True SumPrint - Generate a summary file listing input options and interpolated properties to "<rootname>.AD.sum"? (flag)
0 NBElCuts - Wumber of blade node outputs [0 - 3] (-}
1, 7, 12 BlOutNd - Blade nodes whose walues will be output (-}
0 NTwluts - lumber of tower node outputs [0 - 8] (-}
1, 2, 3, 4, 8 TwCutid - Tower nodes whose values will be output (-}
Qutlist - The next linels) contains a list of output parameters. See OutlistParameters.xzlsx for a listing of available output channels, |

END of input file (the word

"END" must appear im the first 3 columns of this last QutList line)

79

A 3.3 ElastoDyn input master file

File Edit Search View Encoding Language Settings Toels Macro Run Plugins Window 7

cHfHBR LAl i DRipe|ny %% BE|
B AWT_Biades cat (3| B oLW

Hee® @

20_16.da: (3| B VW25_00_AeroDyn14_DLC2 Master dat 3| Bl VW25_00_fst_DLC2_ Mesterst (3 | B Vw5

L

00_fst_Masterfot £3 | B VIV25_00_inlonWind_Waster dat £3 | Bl v25._00

|_ServoDyn_Mz|

r

[

I ELASTODYN vl1.03.* INPUT FILE

25kW turbine 00: asynchronous genezator, fized pitch

—---- SIMULATION CONTROL

4 FALSE Echo - Echo input data to "<RootName>.ech"™ (£flag)
5 3 Method - Integration method: {l1: RE4, 2: AB4, or 3: ABM4} (-)
€ 0.0004 DT - Integration time step [s)

w @

FlapDOFL
FlapDOFZ
EdgeDOF
TeetDOF
DrTrDOF
GenDOF
YawDOF
TWwFADOF1
TwFADOF2
TwSSDOF1
TwS5DOF2
PLEmSgDOF
PrimSwDOF
PtEmHvDOF
PtEfmADOF
PtfmPDOF

BlPitch(l)

---- INITIAL CONDITIONS
CoPDefl Initial cut-ci-plane blade-tip displacement (meters)
IPDesl Initial in-plane blade-tip deflection (meters)

ENVIRONMENTAL CONDITICH

Gravity - Gravitational acceleratiom (m/s~2)

DEGREES OF FREEDCM
First flapwise blade mode DOF (flag)
Second flapwise blade mode DOF lag)
First edgewise blade mode DOF (flag)
Rotor-teeter DOF (flag) [unused for 2 klades]
Drivetrain rotational-flexibility DOF (£lag)
Generator DOF (flag)
Yaw DOF (flag)
First fore-aft tower bending-mode DOF (£lag)
Second fore-aft tower bending-mode DOF (flag)
First side-to-side tower bending-mode DOF (£lag)
Second side-to-side tower bending-mode DOF (flag)
Platform horizontal surge translation DOF (flag)
Platform horizontal sway translation DOF (flag)
Platform vertical heave translation DOF (£flag)
Platform roll tilt rotation DOF [flag)
Platform pitch tilt rotation DOF (flag)
Platform yaw rotation DOF (flag)

Blade 1 initial pitch [degzees)

B1Pitch(2) Blade 2 initial pitch (degrees)

BlPitch(3) Blade 3 initial pitch (degrees) [unused for 2 blades]
TeetDefl Initial or fixed teeter angle (degrees) [unused for 3 blades]
imuth Initial imuth angle for blade 1 (degrees)

[RotSpeed] RotSpeed Initial or fixed rotor speed (rpm)

-} NacYaw Initial or fixed nacelle-yaw angle (degrees)
1] TIDspFR Initial fore-aft tower-top displacement (meters)
1] ITDspSS Initial side-to-side tower-top displacement (meters)
0 PtfmSurge Initial or fixed horizontal surge translational displacement of platform (meters)
0 DtfmSway Initial xed horizontal sway translational displacement of platform (meters)
a PtimHeave Initial xed vertical heave translational displacement of platform (meters)
a PtfmRoll Initial xed roll tilt rotational displacement of platform (degrees)
1] PtfmPitch Initial or fixed pitch tilt rotational displacement of platform (degrees)
0 PtfmYaw Initial or fixed yaw rotational displacement of platform (degrees)

0.153 UndSling

S€ -0.83 OverHang
E7 .45 ShftGagl

0.05% HacCxn
0.000 NacCMyn
€L 0.314 HacCHzn

0.00 NeIMUxn
HeIMUyn
NeIMUzn
Twr2Shit
TowerHt
TowerBsHt

—--- TURBINE CONFIGURATION
2 HumBl HNumber of blades (-}

€.5 TipRad The distance from the rotor apex to the blade tip (meters)
0.3 HubRad The distance from the rotor apex to the blade root (meters)
-3 PreCone(l) Blade 1 cone angle (degrees)

-2 DreCone(2) Blade 2 cone angle (degrees)

PtfmCMzt Vertical distance
PtfmBefzt Vertical distance
—————————————————————— MRS5S AND INERTIZ
TipMass(l) Tip-brake mass, blade 1 (kg)

TipMass(2) Tip-brake mass, blade 2 (kg)

TipMass(3) Tip-brake mass, blade 3 (kg) [unused for Z blades]
HubMass Hub mass (kg)

-3 PreCone (2) Blade 2 cone angle (degrees] [unused for 2 blades]
0.04 HubCH Distance from rotor apex to hub mass [positive downwind] (meters)

Undersling length [distance from teeter pin to the rotor apex] (meters) [unused for 3 blades]

1] Delta3 Delta-3 angle for teetering rotors (degrees) [unused for 3 blades]
0 BzimBlUp Azimuth value to use for I/0 when blade 1 points up (degrees)

Distance from yaw axis to rotor apex [3 blades] or teeter pin [2 blades] (meters)

Distance from rotor apex [2 blades] or teeter pin [2 blades] to shaft straim

5 ShftTilt Rotor shaft tilt angle (degrees)

Downwind distance from the tower-top to the nacelle CM ters)
Lateral distance from the tower-top to the nacelle CM (meters)
Vertical distance from the tower-top to the nacelle CH

ters)

Downwind distance
Lateral distance

tower-top to th
tower-top to th

o

nacelle IMU (meters)
nacelle IMU (meters)
tower-top to the nacelle IMU (meters)
Vertical distance from the tower-top to the rotor shaft (meters)
Height of tower above ground level [onshore] or MSL [offshore] (meters)

Height of tower base abowve ground level [onshore] or MSL [offshore] (meters)

m

Vertical distance

HubIner Hub inertia about rotor axis [3 blades] or teeter axis [2 blades] (kg m"2)
Genlner Generator inertia about HSS (kg m"Z)
HacMass NWacelle mass (kg

Wac¥Iner MNacelle inertia about yaw axis (kg m~Z)
a YawBrMass Yaw bearing mass (kg)
[1} PtfmMass Platform mass (kg)
a PtfmRIner Platform inertia for roll tilt rotation about the platform CM (kg m~2)
a PtfmPIner Platform inertia for pitch tilt rotation about the platform CM (kg m~2)
a PtfmYIner Platform inertia for yaw rotation about the platform CH (kg m"2)

ELADE
12 BldNodes Number of blade nodes (per blade) used for amalysis (-)
. \..\..\Blade\Vi25_00_ElastoDyn_Blade.dat" BldFile(l) - Name of file containing properties
"% AL \Blade\VW25_00 ElastoDyn Blade.dat" BldFile(Z) - Name of file containing properties
"..\..\..\Blade\VW25_00_ElastoDyn_Blade.dat" BldFile(3) =- Name of file containing properties
g —— ROTOR-TEETER

80

gages [positive for upwind rotors] (meters)

for blade
for blade
for blade

W e

PefmCMxt Downwind distance from the ground level [onshore] or MSL [offshore] to the platform CH (meters)
PtfmCMyt Lateral distance from the ground level [onshore] or MSL [offshore] to the platform CM (meters)
from the ground level [onshore] or MSL [offshore] to the platform CM (meters)
from the ground level [onshore] or MSL [offshore] to the platform reference point (meters)

(quoted string)
(quoted string)

(quoted string) [unused for 2 blades]

~

0 TeetMod Rotor-teeter spring/damper model {0: nome, 1: standard, 2: user-defined from routine UserTeet} (switch) [unused for 3 blades]
0 TeetDmpP Rotor-teeter damper position (degrees) [used only for 2 blades and when Teetlod=1]

40000 TeetImp Rotor-teeter damping constant (N-m/(rad/s)) [used only for 2 blades and when TeetMod=1]

0 TeetCDmp Rotor-teeter rate-independent Coulomb-damping moment (N-m) [used only for 2 blades and when TeetMod=l1]

0 TeetSStP Hotor-teeter soft-stop position (degrees) [used only for I blades and when TeetMod=l]

180 TeetHStP Rotor-teeter hard-stop position (degrees) [used only for I blades and when TeetMod=l]

1 TeetS85p Rotor-teeter soft-stop linear-spring constant (N-m/rad) [used only for 2 blades and when TeetMod=l]

5.00E+0€ TeetHSSp Rotor-teeter hard-stop linear-spring constant (N-m/rad) [used only for 2 blades and when TeetMod=1]
—————————————————————— DRIVETRAIN
100 GBoxEff Gearbox efficiency (%)

23.25 FBRatio Gearbox ratio (-)
5.00E+07 DTTorSpr Drivetrain torsional spring (N-m/rad)
1.00E4+0€ DITorlmp Drivetrain torsional damper (W-m/(rad/s))

FURLING
FALSE Furling Read in additional model properties for furling turbine (flag) [must currently be FALSE)
unused FurlFile WName of file containing furling properties (guoted string) [unused when Furling=False]

TOWER
10 Twrlodes Nurber of tower nodes used for analysis (-]
".AL AL A Tower\VARZS_00 ElastoDyn Tower.dat” TwrFile Name of file containing tower properties (gquoted string)

QUTRUT
TRUE SumPrint Print summary datz to "<RootName>.sum" (flag)
1 CutFile Switch to determine where output will be placed: {1: in module output file only; 2: in glue code output file only; 3: both} (currently unused)
TRUE TabDelim TUse tab delimiters in text tabular output file? (flag) (currently unused)
ES10.3E2 QutFmt Format used for text tabular output (except time). Resulting field should be 10 characters. (guoted string) (currently unused)
10 TStart Time to begin tabular output (s) (currently unused)
5 DecFact Decimation factor for tabular output {1: output every time step} (-] [currently unused)
0 NIwGages Nurber of tower nodes that have strain gages for output [0 to 9] (-]
0 TwrGaghd List of tower nodes that have strain gages [l to Twrlodes] (-) [unused if NIwGages=0]
3 MNBlGages Number of blade nodes that have strain gages for output [0 to 8] [-)
3, 5, 7 BldGaghd List of blade nodes that have strain gages [l to BldNodes] (-) [unused if NBlGages=0]

Cutlist The next line(s) contains a list of output parameters. See OutlistParameters.xlsx for a listing of available output channels, (-}

BotTorg Rotor torque
L35hitFxa RotThrust Low-speed shaft thrust force (this is constant along the shaft and is eguivalent to the rotor thrust force) Directed along the xa- am
RotBwr Rotor power (this is equivalent to the low-speed shaft power)
RootFzel RootFzhbl Blade 1 anial force at the blade root Directed along the zel- and zbl-axes (kN)
Bootixbl RootMEdgl Blade 1 edgewise moment (i.e., the moment caused by edgewise forces) at the blade root BRbout the xbl-axis (M -m)
BootMybl RootMFlpl Blade 1 flapwise moment (i.e., the moment csused by flapwise forces) at the blade root About the ybl-axis (kN -m)
L35hftMxa L55hftMxs, L53GagMxa, LSSGagMxzs, RotTorg, L85ShftTg Low-speed shaft torgue (this is constant along the shaft and is equivalent to the rotor torgue
L35Gagya Rotating low-speed shaft bending moment at the shaft's strain gage (shaft strain gage located by inmput ShftGagl) Ebout the ya-azis (kN m)
L35Cagza Rotating low-speed shaft bending moment at the shaft's strain gage (shaft strain gage located by input ShftCagL) Ebout the za-axis (kN m)
TwrBsMxt Tower base roll (or side-to-side) moment (i.e., the moment caused by side-to-side forces) Rbout the xt-axis (kN -m)
TwrBsMyt Tower base pitching (or fore-aft) moment (i.e., the moment caused by fore-aft forces) About the yt-axis (kN -m)
TwrBsMxt Tower base roll (or side-to-side) moment (i.e., the moment caused by side-to-side forces) Rbout the xt-axis (K -m
TwrBsMyt Tower base pitching (or fore-afs) moment (i.e., the moment caused by fore-aft forces) RAbous the yt-axis (KN -m
YawBrFzn YawBrFzp Tower-top / yaw bearing axial force Directed along the zn- and zp-axes (kN)
YawBrFxp Tower-top / yaw bearing fore-aft (nonrotating) shear force Directed along the xp-axis (kN)
YawBrFyp Tower-top / yaw bearing side-to-side (nonrotating) shear force Directed along the yp-axis (kN)
YawBrizn YawBrizp Tower-top / yaw bearing vaw moment ZAbout the zn- and zp-azes (kN 'm)
YawBrMxp Nonrotating tower-top / yaw bearing roll moment About the xp-axis (H-m)
YawBriyp Nonrotating tower-top / yaw bearing pitch moment Ebout the yp-axis (kN -m)
RootFxbl Blade 1 flapwise shear force at the blade root Directed along the zbl-axis (kN)
RootFybl Blade 1 edgewise shear force at the blade root Directed zlong the ybl-axis (kN)
Bootdzcel RootHzbl Blade 1 pitching moment at the blade root About the zcl- and zbl-axes (kN -m)
L55hftFys L55GagFys Nonrotating low-speed shaft shear force (this is constant along the shaft) Directed along the ys-axis (XN)
L35hitFzs L55GagFzs Nonrotating low-speed shaft shear force (this is constant along the shaft) Directed along the zs-axis (kN)
@ Drlr Displacement of drivetrain rotational-flexibility DOF (rad)
QD _DrTr Velocity of drivetrain rotational-flexibility DOF (zadfs)
L55TipTxa - Botor azimuth angular speed Zbout the xa- and xs-axes (rpm)

END of input file (the word "END" must appear in the first 3 columns of this last Cutlist line)

81

A 3.4 ServoDyn input master file

File Edit Search View Encoding language Settings Tools Macre Run Plugins Window !
o;]E]@ 8 0@|

= VW25_00_ServoDyn_Master dat E1 ‘E"v"'-’u'EE_EE_Hastyn_Master.da _JlE"v‘"-’u'EE_CE_fstlanﬂ_DLCT1_1ME?_E_TE.UUI _Jl B VW25_00_FlastoDyn_Plads dat _JlE"\1"-"4'25_3C_.—"\eroDyn_tower dat _JI Bnew1 _J} B w250«

L]Bu"“ﬂ

Y2 x|EE L

E

3

SERVODYN vl.05.% INFUT FILE

25kW turbine 00: asynchronous generator, fixed pitch

oo o

100
TRUE
TRUE
9959.5

[TimGenCn]
[Timen0f]

3555.5
3555.5
9955.5
9955.5

0.80
1523
187
3.3

0.0185
0.017
480
0.034
0.005

0.77%

[HSSBrHode]
[THSSBxDp]

[HS8BzDT]

[HS5BrTgF]

____________ s
Echo

OT

------- PITCH
BlHode

TECCn

TPitMan3 (1)
TPitMan3(2)
TPitMan3(3)

PitManRat(l)
PitManRat(l)
PitManRat(3)
BlRitchF(l)
BlPitchF(2)
BlPitchF(3)
............ E_
VsContrl
Gentodel
GenEff
GenTiftr
GenTiltp
SpdBenin
TimGenOn
TimBen0f
____________ S
VS_ReGnSp
Vs_Relg
VS_Rgn2K
Vs_Slkc
5
SIG SlPe
SIG SySp
SIG Rtlg
SIG PORt
TEC Freq
TEC_NPol
TEC SRes
TEC RRes
TEC_VLL
TEC_SIR
TEC RIR
TEC MR
____________ H
HS5Brlode
THSSBrDp
HS5BzDT
HSSBrTIgF

YCMode
T¥COn
Yawlleut
Yawipr
YawDamp
TYawtan3
YawManRat
Nac¥awF

THEVENIN-EQUIVALENT INDUCTICH GENERATCR

NACELLE-YAW CCNTROL

IMULATION CONTROL
- Echo input data to <RootName>.ech (flag)

- Communication interval for controllers (s)
CONTROL
- Pitch control mode {0: none, 3: user-defined from routine PitchCntrl, 4: user-defined from Simulink/Labwiew, 5:
- Time to enable active pitch control (s] [unused when PCMode=0]

- Time to start override pitch maneuver for blade 1 and end standard pitch control (s)

override pitch maneuver for blade 2 and end standard pitch control (s)

override pitch maneuver for blade 3 and end standard pitch control (s) [unused for 2 blades]
which override pitch maneuver heads toward final pitch angle for blade 1 (deg/s)

which override pitch maneuver heads toward final pitch angle for blade 2 (deg/s)

which override pitch maneuver heads toward final pitch angle for blade 3 (deg/s] [unused for 2 blades]
pitch for pitch maneuvers (degrees)
- Blade 2 pitch for pitch maneuvers (degrees)
- Blade 3 final pitch for pitch maneuvers (degrees)
ENZRATOR AND TORQUE CONTROL
- Variable-speed control mode {0: nome, 1:
- Generator model [l: simple, 2: Thewenin, 3: user-defined from routine Userfen} (switch) [used only when VSContrl=(]
- Generator efficiency [ignored by the Thevenin and user-defined generator models] (%)

- Method to
- Method to
- Cenerator

{or "default")

user-defined from Bladet

- Time to start
- Time to start
- Pitch rate at
- Pitch rate at
- Pitch rate at
- Blade 1 final
final

[unused for I blades]

simple V8, 3: user-defined from routine UserVSCont, 4: user-defined from Simalink/Labwiew, 5:

start the generator [T: timed using TimBenOn, F: generator speed using Spdfenln} (flag)
stop the generator {T: timed using TimFenOf, F: when generator power = 0} (flag)
speed to turn on the generator for a startup (H3S speed) (rpm) [used only when GenTiStr=False]
- Time to turn on the generator for a startup (s) [used only when GenTiStr=True]
- Time to turn off the generator (s) [used only when GenTiStp=True]
IMPLE VARIRBLE-SPEED TORQUE CONTROL
- Rated generator speed for simple variable-speed generator control (HSS side) (rpml [used only when VSContrl=l]
- Rated generator torgque/constant generator torque in Region 3 for simple variable-speed generator control (H3S side) (N-m) [used only whe
- Generator torque constant in Region 2 for simple variable-speed generator control (HSS side) (N-m/rpm*2) [used only when VSContrl=l]
- Rated generator slip percentage in Region 2 1/2 for simple variable-speed generator control (%) [used only when VSContrl=l]
IMPLE INDUCTICN GENERATOR
- Rated generator slip percentage (%) [used only when ViContrl=0 and GenModel=l]
- Synchronous (zeroc-torque) generator speed (zpm) [used only when VSContrl=0 and GenModel=l]
- Rated torque (N-m) [used only when VSContrl=(and GenModel=l1]
= Pull-out ratio (Tpullout/Trated) (=) [used only when VEContrl=0 and GenModel=l]

- Line frequency (50 or €0] (Hz) [used only when V3Contrl=0 and GenModel=2]
- Nurber of poles [even integer > 0] (-) [used only when VSContrl=0 and GenModel=2]
- Stator resistance (ohms) [used only when V3Contrl=0 and GenModel=2]
- Botor resistance (ohms) [used only when V3Contrl=0 and GenModel=2]
- Line-to-line RBM5 voltage (volts) [used only when VSContrl=0 and GenModel=2]
- Stator leakage reactance (ohms) [used only when V3Contrl=0 and FenModel=l
- Rotor leakage reactance (chms) [used only when VSContrl=0 and GenlMode
- Magnetizing reactance (ochms) [used only when VSContrl=0 and GenlModel=2]
IGH-SPEED SHAFT BRAKE
- HSS brake model {0: none, l: simple, 3: user-defined from routine UserHS5Br, 4: user-defined from Simulink/Labview, 5: user-def:
- Time to initiate deployment of the HSS brake (s)
- Time for H35-brake to reach full deployment once initiated (sec) [used only when HSSBrMode=l1]
- Fully deployed HS5-brake torgue (N-m

- Yaw control mode {0: none, 3: user-defined from routine UserYawCont, 4: user-defined from Simulink/Labview, 5: user-defined from Bladed-
- Time to enable active yaw control (s) [unused when YCMode=0]

- Neutral yaw position--yaw spring force is zerc at this yaw (degrees)

Nacelle-yaw spring constant (N-m/rad)

Nacelle-yaw damping constant (N-m/(rad/s))

- Time to start override yaw maneuver and end standard yaw control (s)

- Yaw maneuver rate (in zbsolute value) (deg/s)

- Final yaw angle for override yaw mansuvers [degrees)

82

A

TUNED MASS DAMPER

FALSE CompNTMD - Compute nacelle tuned mass damper {true/false} (flag)
umused NIMDfile - Name of the file for nacelle tuned mass damper (gquoted string) [unused when CompNIMD is false]
g3 FALSE CompTTMD - Compute tower tuned mass damper {true/false} (flag)
£4 umsed TIMDEile - Name of the file for tower tuned mass damper (quoted string) [unused when CompTIMD is false]
g5 - BLADED INTERFACE [used only with Bladed Interface]
86 unused DLL FileWame - Name/location of the dynamic library {.dll [Windows] or .so [Limu]} in the Bladed-DLL format (-) [used only with Bladed Interface]
&7 DISCON.IN DLL InFile - Name of input file sent to the DLL (-) [used only with Bladed Interface]
&2 DISCON DLL ProcWame - Name of procedure in DLL to be called (-] [case sensitive; used only with DLL Interface]
89 default [LL DT - Comminication interval for dynamic library (s} (or "default”] [used only with Bladed Interface]
70 FALSE DLL Ramp - Whether a linear ramp should be used between DLL DT time steps [introduces time shift when true] (flag) [used only with Bladed Interface
71 5935.9 BRCutoff - Cuttoff frequency for low-pass filter on blade pitch from DLL (Hz) [used only with Bladed Interface]
20 WacYaw North - Reference yaw angle of the nacelle when the upwind end points due North (deg) [used only with Bladed Interface]
20 Ptch Cntrl - Record 28: Use individual pitch control {0: collective pitch; l: individual pitch control} (switch) [used only with Bladed Interface]
40 Ptch SetPnt - Record 5: Below-rated pitch angle set-point (deg) [used only with Bladed Interface]
7m0 Prch Min - Record €: Minimm pitch angle (deg) [used only with Bladed Interface]
76 0 Ptch_Ha}: - Becord 7: Maximm pitch angle (deg] [used only with Bladed Interface]
7 0 PrchRate Min - Record &: Minimum pitch rate (most negative value allowed] (deg/s) [used only with Bladed Interface]
7 0 PtchRate Max - Record 9: Maximm pitch rate (deg/s) [used only with Bladed Interface]
% 0 Cain OM - Record 1€: Cptimal mode gain (Nm/(rad/s)*2) [used only with Bladed Interface]
B0 0 Genbpd Min0M - Record 17: Minimm generator speed (rpm) [used only with Bladed Interface]
Bl 0 GenSpd Max(M - Record 13: Optimal mode maximm speed (rpm) [used only with Bladed Interface]
g2 0 GenSpd Dem - Record 19: Demanded generator speed above rated (rpm) [used only with Bladed Interface]
g2 0 Genlrg Dem - Record 22: Demanded generator torque above rated (Nm) [used only with Bladed Interface]
84 0 Cenlwr Dem - Record 13: Demanded power (W) [used only with Bladed Interface]
B - BLADED INTERFACE TORQUE-SPEED LOOE-UP TRBLE -----------——-
8 DLL WMumTrg - Record Z€: No. of points in torque-speed look-up table {0 = none and use the optimal mode parameters; nonzero = ignore the optimal mode
87 GenSpd TLU GenTrg TLO
82 (rpm (Km]
4] QUTEUT
50 TRUE SumPrint - Print surmary data to <RootNames.sum (flag) (currently unused)
5 1 (utFile - Switch to determine where ocutput will be placed: {1: in module output file only; 2: in glue code output file only; 3: both} (currently u
52 TRIE TabDelim - Use tab delimiters in text tabular output file? (flag) (currently umised)
ES10.3E2 CutFmt - Format used for text tabular output (except time). Resulting field should be 10 characters. (quoted string) (currently unused)
30 TStart - Time to begin tabular output (s] (currently unused)
55 (utlist - The next line(s) contains a list of output parameters. See (utlistParameters.xlsx for a listing of available output channels, (-]

56 END of input file (the word "END" must appear in the first 3 columns of this last Cutlist line)

83

A 3.5 TurbSim input master file

file Edit Search View Encoding language Settings Tools Macro Run Plugins Window ?

BHBRGA[4hE(PC/ % (EE(S1ERRHE DO IR X

B VW25 00 BastoDyn_Blade dat .JliV‘NEE_DD_AemDyn fowerdat .Jl Brew 1 JliV’J‘«'ES_DD_AemDyn15_Masler.dat .Jl {5 V25,00 JEC _Masterdst (3 (=] VW25_00_TuhSim_Masterdat £J |H [ECipt Jl q
L TurbSim Input File. Valid for TurbSim vl.50; 22-Mar-2018; Wii2S pre-validation simulations A
:3 Runtime Options
4 [RandSeedl] RandSeedl - First random seed (-21147433€43 to I147433€47)

Ranlux

FALSE WrBHHTP - Qutput hub-height turbulence parameters in binary form? (Generates RootName.bin)

FALSE WrFHHTP - Qutput hub-height turbulence parameters in formatted form? (Generates RootName.dat)

FALSE WrADHH - Qutput hub-height time-series data in ZeroDyn form? (Benerates RootName.hh)

TRUE WrADFF - Cutput full-field time-series data in Turb3im/ReroDyn form? (Generates RootName.bts)

FALSE WrBLFF - Cutput full-field time-series data in BLADED/ReroDyn form? (Generates RootName.wnd)

TRUE WrADTWR - Cutput tower time-series data? (Generates Rootlame.twr)

FALAE WrEMIFF - Cutput full-field time-series data in formasted (readable) form? (Generates RootName.u, RootName.w, RootlName.w)
FALAE WrACT - Cutput coherent turbulence time steps in ReroDyn form? (Fenerates Rootlame.ects)

TRUZ Clockwise - Clockwise rotation looking downwind? (used only for full-field binary files - not necessary for ReroDyn)

0 Seal

3 Num:
3 Numf:

0.05 TimeStep - Time step [seconds]

€30 Anal
€25 Usab.
13 HubH

30 GridHeight - Grid height [m]

30 CGridiidth - Grid width [m] (should be »= 2*(RotorRadiustShaftlength))
0 Vilowing - Vertical mean flow (uptilt) angle [degrees]

0 Hflowhng - Horizontal mean flow (skew) angle [degrees]

IECERT TurbModel Turbulence model ("IECKRAI"=Kaimal, "IECVEM"=von Karman, "GP_LLJ", "NWICUD", "SMOOTH", "WF_UPW", "WF_07D", "WF_L4D", or "NONE")

"2 IECs

"a" IECturbe IEC turbulence characteristic ("A", "B", "C" or the turbulence intensity in percent) ("KHTEST" option with NWICUP, not used for other models)
NTY IEC WindType IEC turbulence type ("WIM"=normal, "zETM"=extreme turbulence, "xEWM1"=extreme l-year wind, "xEWM50"=extreme 50-year wind, where x=wind turbine
default ETHe IEC Extreme turbulence model "c" parameter [m/s]

default WindProfileType Wind profile type ("JET"=Low-level jet,"LOG"=Logarithmic, "PL"=Power law, or "default", or "USR"=User-defined)
13 RefHt Height of the reference wind speed [m]

[WindSpeed] Uref Mean (total) wind speed at the reference height [m/s]

default ZjetMax Jet height [m) [used only for JET wind profile, wvalid 70-4%0 m)

default FLExp FPower law expoment [-] [or "default")

default I0 Surface roughmess length [m] [or "default")

default
0.05

default Ustar Friction or shear velocity [m/s] (or "default")

default
default
default
default
defauls
defauls
defauls

default CohZxp Coherence exponent [(or "default")

"M:\eoh_
"Random”
TRIE

1 Dist
0.5 CTLy
0.5 CTLz
10 CT5t

RandSeed? - Second random seed (-2147483¢43 to 2147483€47) for intrinsic pBNG, or an alternative pBNG: "RanLux" or "RNSNLE"

elEC - Seale IEC turbulence models to exact target standard deviation? [0=no additional scaling; l=use hub scale uniformly; 2=use individual scales]

rid 2 - Vertical grid-point matrix dimension
rid ¥ - Horizental grid-point matrix dimension

ysisTime - Length of analysis time series [seconds]
leTime - Usable length of output time series [seconds] (program will add GridWideh/MeanHHWS seconds) [bjj: was €30]
t - Hub height [m] (should be » 0.5*GridHeight)

tandard Murber of IEC £1400-x standard (2=1,2, or 3 with optional €1400-1 edition number (i.e. "1-Ed2"))

Latitude Site latitude [degrees] (or "default”)
RICH NO Gradient Richardson mumber

II Mixing layer depth [m] (or "default")

BC_UW Hub mean u'v' Reynolds stress [{m/s)"2] (or "defauls")

BC UV Hub mean u'v' Reynolds stress [(m/s)"2] (or "defauls")

BC_VW Hub mean v'v' Reynolds stress [{m/s)"2] lor "defauls")

IncDecl u-component coherence parameters (e.g. "10.0 0.3e-3" in quotes) (or "defauls”)
IncDec? v-component coherence parameters (e.g. "10.0 0.3e-3" in quotes) (or "defauls”)
IncDec3 w-component coherence parameters (e.g. "10.0 0.3e-3" in quotes) (or "defauls”)

eventsieventdata” CTEventPath Name of the path vhere event data files are located
CTEventFile Type of event files ("random", "les" or "dns")

Randomize Randomize disturbance scale and location? (true/false)

Scl Disturbance scale (ratio of dataset height to rotor disk).
Fractional location of tower centerline from right (locking downwind) to left side of the dataset.
Fractional location of hub height from the bottom of the dataset.

artTime Minimm start time for ccherent structures in RootName.cts [seconds]

84

File Edit Search View Encoding Language Settings Tools Macro Ru

HHB LB BRI (a2 |BE|S1E

IBV125.00 Dol Bace et | B VW25 0 A tower ot (3| B 13

A 3.6 IECWind input master file

n Pluging Window 7

ERRE® BN EEB| &
[V125 00 AcroDyn15 Masterdat (3 [VW25 00, IEC_Master dat B3 |lV\'t‘25_M_TurbSim_Master.dat ::1| B a|

[:]

1 |!HEM)EE: Sample input file for IECWind version 5.01.01

I IQutput file parameters

i True SI UNITS (True=SI or False=ENGLISH)

4 80, Time for start of IEC transient condition, sec
5 I!Wind Site parameters

£ 3 IEC WIND TURBINE CLASS (1, 2 or 3)

7 a WIND TURBULENCE CATEGCRY (R, B or C)

g8 0.0 Slope of the wind inflow (IEC specifies between -8 and +8), deq
8 3 IEC standard used for wind shear exponent

10 !'Turbine parameters

11 13.0 Wind turbine hub-height, m or ft

12 13.0 Wind turbine rotor diameter, m or ft

12 3.0 Cut-in wind speed, m/s or ft/s

14 [RatedWind] Bated wind speed, m/s or ft/s

15 250 Cut-out wind speed, m/s or ft/s

1€ IList of Conditions to generate [one per line)

17 [IEC Condition]

85

A 3.7 FAST input master file

file Edit Search View Encoding Language Settings Tools Maco Run Pluging Window 7

HHBR LA

‘3 |ﬁﬂbﬂ|%%|u1tjg 31 E?L]Du'“ﬂ "ﬁ

B AT s] B LG22] B V80 e D Moot 3| BV 005 DLC2 Vot £ IS [0 Mt B ‘E\ﬁ."u'EB_DD_Irﬂow‘."u'ind_Maﬂer.dal 1 W25 0 S < [

L FLST v@.1¢.* INBUT FILE

2 15kW turbine 00: asynchronous gemerator, fized pitch

3 - SIMULATION CONTROL

4 FALSE Echo - Echo input data to <Rootlame>.ech (flag)

5 FATAL Ihortlevel - Error level when simulation should abort (string) {"WRRNING", "SEVERE", "FATAL"}
[Tmax] TMax - Total run time (s)

7 0.004 DT - Recommended module time step (s)

3 1 InterpOrder - Interpolation order for input/output time history (-} {l=linear, 2=guadratic}

) 0 YumCrctn - Number of correction iterations (-) {0=ezplicit calculation, i.e., no corrections}

10 55555 DT WJac - Time between calls to get Jacobians (s)

11 1.00E+0¢ TUJacSclFact - Scaling factor used in Jacobians (-)

12 e FERTURE SWITCHES AND FLAGS

13 1 CompElast - Compute structural dynamics (switch) {l=ElastoDyn; 2=ElastoDyn + BeamDyn for blades}

14 1 CompInflow - Compute inflow wind velocities (switch) {0=still air; 1=Inflowfind; 2=external from OpenFORM}

15 [Complero] Complero - Compute aerodynamic loads (switch) {0=Nome; l=ReroDyn vl4; I=ReroDyn v1S}

16 1 CompServo - Compute control and electrical-drive dynamics (switch) {0=None; l=ServoDyn}

17 0 CompHydro - Compute hydrodynamic loads (switch) {0=Nome; l=HydroDyn}

18 0 CompSub - Compute sub-structural dynamics (switch) {0=None; 1=SubDyn}

15 0 CompMooring - Compute mooring system (switch) {0=Nome; 1=MAP4+4; 2=FERMooring; 3=MoorDyn; 4=DrcaFlex}

20 0 CompIce - Compute ice loads (switch) {0=None; 1=IceFloe; 2=IceDyn}

2l e INPUT FILES

22 "..\ElastoDyn\[ElastoDyn]" EDFile - Name of file containing ElastoDyn input parameters {quoted string)

23 "unused" BDBldFile(l) - lame of file containing BeamDyn input parameters for blade 1 (guoted string)

24 "unused" BDBldFile(2) - Name of file containing BeamDyn imput parameters for blade I (quoted string)

25 "unused" BDBldFile(3) - lame of file containing BeamDyn input parameters for blade 3 (guoted string)

26 " \InflowWind\[InflowWind]"™ InflowFile - Name of file containing inflow wind input parameters {quoted string)

27 "..\ReroDyn\ [ReroDyn]" LeroFile - Name of file containing zerodynamic input parameters (quoted string)

28 "..\BervoDyn\ [ServoDyn]"

ServoFile - Name of file containing control and electrical-drive input parameters (quoted string)

"unused" HydroFile - Name of file containing hydrodynamic input parameters {quoted string)

"umused” SubFile - Name of file containing sub-structural imput parameters (quoted string)

"unused" MooringFile - Name of file containing mooring system input parameters (quoted string)
37 "unused" Ircefile - Name of file containing ice imput parameters |quoted string)
EE] QUTET
34 TRUE SumPrint - Print summary datz to "<Rootlame>.sum" (flag)
2 SttsTime - Emount of time between screen status messages (s)

99955 ChkptTime - Impunt of time between creating checkpoint files for potential restart (s)
37 0.04 D'I_Out - Time step for tabular output (s) (or "default")
[Tstart] TStart - Time to begin tabular output (s)
g 2 OutFileFmt - Format for tabular |time-marching) output file {switch) {l: text file [<RootName».out], 2: binary file [<RootName:. outb], 3: both}

40 TRIE TabDelim - Use tab delimiters in text tabular output file? (flag) {uses spaces if false}
41 EB10.3E1 OQutFmt - Format used for text tabular output, ezcluding the time channel. Resulting field should be 10 characters. (quoted string)
42 mmmmmmmmmmmmmmoeees LINERRIZATION
43 FALSE Linearize - Linearization analysis (flag)
44 1 YlinTimes - Number of times to linearize (-) [»=l] [unused if Linearize=False]
45 30, ¢l LinTimes - List of times at which to linearize (s) [l to NlinTimes] [unused if Linearize=False]
g 1 LinInputs - Inputs included in linearization (switch) {U=nonme; l=standard; 2=all module inputs (debug)} [unused if Linearize=False]
47 1 LinQutputs - Outputs included in linearization (switch) {0=nome; l=from Outlist(s); 2=all module outputs (debug)} [unused if Linearize=False]
4% PALSE LinQutJac - Include full Jacobians in linearization output (for debug) (flag) [unused if Linearize=False; used only if LinInputs=Lin(utputs=2]
43 FALSE LinQutMod - Write module-level linearization output files in addition to output for full system? (flag) [unused if Linearize=False]
S0 mmmmmmmmmmememmeeeee VISURLIZATION
5l 0 WCVIE - VIE visualization data output: (switch) {0=nome; l=initialization data only; 2=animation}
52 2 W‘TK_type - Type of VIK visualization data: (switch) {l=surfaces; 2=basic meshes (lines/points); 3=all meshes (debug)} [unused if WrUTE=0]
53 FALSE VIE fields - Write mesh fields to VIE data files? (flag) {true/false} [unused if WrVIE=]]
B 15 VIE fps - Frame rate for VIK output |frames per second){will use closest integer multiple of DT} [used only if WrVIE=I]
55
{ H

86

APPENDIX 4 Python Auto-generation Script

#Created on Thu May 15 12:30:29 2018
#Michael Keumatio Lontsie

from pylab import *
from ReadODS import *
from execute import *
import sys

import subprocess
import 0s

import ECD_ECG

#Set the masterfiles as variables
#The python script needs to be set to the directory where the files are saved

TurbSimMasterFile = "VW25_00_TurbSim_Master.dat"
InflowWindMasterFile = "VW25_00_InflowWind_Master.dat"
fstMasterFile = "VW25_00_fst_Master.fst"

fstMasterFile_DLC2 = "VW25_00_fst_ DLC2_Master.fst"
ServoDyn = "VW25_00_ServoDyn_Master.dat"

ElastoDyn = "VW25_00_ElastoDyn_Master.dat"

AeroDyn14 = "VW25_00_AeroDyn14_Master.dat"
AeroDyn14_DLC2 ="VW25_00_AeroDynl14 DLC2_Master.dat"
AeroDyn15 = "VW25_00_AeroDyn15_Master.dat"

IECWind = "VW25_00_IEC_Master.dat"

VW25_00_AutoGSpeadsheet = "VW25_00_Inputs_AutogenerationSpreadsheet_Test04.0ds"

runTurbSim = True
runOpenFAST = True
runleC = True

Open the masterfiles

f = open(TurbSimMasterFile,'r")
TurbSimTemplate = f.read()
f.close()

f = open(InflowWindMasterFile,'r")
InflowWindTemplate = f.read()
f.close()

f = open(fstMasterFile,'r")
fstTemplate = f.read()
f.close()

f = open(fstMasterFile_DLC2,'r")
fstTemplate_DLC2 = f.read()
f.close()

f = open(ServoDyn,'r')
ServoDynTemplate = f.read()
f.close()

f = open(ElastoDyn,'r’)
ElastoDynTemplate = f.read()
f.close()

f = open(AeroDyn14,'r")
AeroDynl14Template = f.read()
f.close()

f = open(AeroDyn14 DLC2,'r")
AeroDynl14Template_DLC2 = f.read()
f.close()

f = open(AeroDyn15,'r")

87

AeroDyn15Template = f.read()
f.close()

f = open(IECWind,'r")
IECWindTemplate = f.read()
f.close()

This commands open and read odf files
"conda install -c conda-forge odfpy"- to install the odfpy package in anaconda
This script also requires the ODSReader.py and ReadODS.py files

a = np.array(ReadODS(VW25_00_AutoGSpeadsheet, "Sheetl", cutEmpty=True), dtype='str')
elems = a.nonzero()

noRows= max(elems[0])

noColumns= max(elems[1])

ExchangeSheetData = a[:noRows+1, :noColumns+1]

noSims = noRows-2
FilelD = ExchangeSheetData[0,:]
PlaceHolder = ExchangeSheetData[1,:]

To generate each input files and looping
for i in range(0,noSims+1) :

H oH oH

dicFolder=ExchangeSheetDatai+2,0]
filenameBase=ExchangeSheetData[i+2,1]
uniqueld=ExchangeSheetDatali+2,2]
tipBrakeFlag=ExchangeSheetData[i+2,3]

TurbSimTemplatetemp = TurbSimTemplate
InflowWindTemplatetemp = InflowWindTemplate
if tipBrakeFlag=="True":

fstTemplatetemp = fstTemplate_DLC2
AeroDyn14Templatetemp = AeroDyn14Template_DLC2

else:

fstTemplatetemp = fstTemplate
AeroDyn14Templatetemp = AeroDyn14Template

ServoDynTemplatetemp = ServoDynTemplate
ElastoDynTemplatetemp = ElastoDynTemplate
AeroDyn15Templatetemp = AeroDyn15Template
IECWindTemplatetemp = IECWindTemplate

Skip_TurbSim = False
Skip_IECWind = False
ecgCase=False

for j in range(0, noColumns+1):

if FileID[j] =="TS™"
if ExchangeSheetData[i+2,j] == "Skip":
Skip_TurbSim = True
else:
TurbSimTemplatetemp = TurbSimTemplatetemp.replace(PlaceHolder[j],ExchangeSheetData[i+2,j])
elif FileID[j] == "IwW™:
InflowWindTemplatetemp = InflowWindTemplatetemp.replace(PlaceHolder[j],ExchangeSheetData[i+2,j])
elif FileID[j] == "FST":
fstTemplatetemp = fstTemplatetemp.replace(PlaceHolder[j],ExchangeSheetData[i+2,j])
elif FileID[j] == "SD":
ServoDynTemplatetemp = ServoDynTemplatetemp.replace(PlaceHolder[j],ExchangeSheetData[i+2,j])
elif FileID[j] == "ED":
ElastoDynTemplatetemp = ElastoDynTemplatetemp.replace(PlaceHolder[j],ExchangeSheetData[i+2,j])
elif FileID[j] == "AD14":
AeroDynl1l4Templatetemp = AeroDyn14Templatetemp.replace(PlaceHolder[j],ExchangeSheetData[i+2,j])
elif FileID[j] == "AD15":
AeroDyn15Templatetemp = AeroDyn15Templatetemp.replace(PlaceHolder[j],ExchangeSheetDatali+2,j])
elif FileID[j] == "IECWind":
if ExchangeSheetData[i+2,j] == "Skip":
Skip_IECWind = True

88

else:
check if uniqueld contains ECG, if so run IECWind for ECD case
then alter resulting .wnd file for ECG conditions
if "ECG" in ExchangeSheetData]i+2,j]:
ecgCase=True
ExchangeSheetData[i+2,j]=ExchangeSheetData[i+2,j].replace("ECG","ECD")
IECWindTemplatetemp = IECWindTemplatetemp.replace(PlaceHolder[j],ExchangeSheetData[i+2,]])
elif FileID[j] == "AD14F7":
if logical_not(ExchangeSheetData[i+2,j] =="Skip"):
AeroDyn14Templatetemp =
AeroDyn14Templatetemp.replace(PlaceHolder[j],Exchange SheetData[i+2,j])

HHHHHHHEH##TO generate each input file with specific name and save in attached directories####HHHH

if Skip_TurbSim == False:
TurbSimfilename = ".join(np.array([filenameBase, TurbSim_",uniqueld,'.datT))
TurbSimfilepath = ".join(np.array([dIcFolder,'/Wind/', TurbSimfilename]))
with open(TurbSimfilepath, "w") as f:
f.write(TurbSimTemplatetemp)
f.close()
if runTurbSim == True:
To run TurbSim64.exe and generate TurbSim.bts files
args = [TurbSim64', TurbSimfilepath]
subprocess.call(args, shell=True)

if Skip_IECWind == False:
lecWindInputFileName = "IEC.ipt"
IECWindInputFilepath = ".join(np.array([dicFolder,'/Wind/', lecWindInputFileName]))
with open(IECWindInputFilepath, "w") as f:
f.write(IECWindTemplatetemp)
f.close()
if runlEC == True:
windDir=".join(np.array([dIcFolder,'/Wind1))
wd = os.getcwd()
0s.chdir(windDir)
p=subprocess.Popen("IECWind", shell=True)
p_status = p.wait()
with open(lecWindInputFileName, 'r') as f:
read_data = f.readlines()
f.close()
IECWindfilename_std = ".join(np.array([read_data[-1],".wnd"]))
if ecgCase:
convert from ECD to ECG
ECD_ECG.ECD_ECG(IECWindfilename_std) # do whatever is in ECD_ECG.py
IECWindfilename = ".join(np.array([flenameBase,'lecWind_',uniqueld,'.wnd'))
args= ["ren", IECWindfilename_std, IECWindfilename]
p=subprocess.Popen(args, shell=True)
os.chdir(wd)

AeroDyn14filename = ".join(np.array(['VW25_00_AeroDyn14.dat"))
AeroDyn14filepath = ".join(np.array([dIcFolder,'/AeroDyn/', AeroDynl4filename]))
with open(AeroDyn14filepath, "w") as f:

f.write(AeroDyn14Templatetemp)

f.close()

if tipBrakeFlag!="True":
Inflowfilename = ".join(np.array([filenameBase,'InflowWind_',uniqueld,'.dat]))
Inflowfilepath = ".join(np.array([dIcFolder,/InflonWind/', Inflowfilename]))
with open(Inflowfilepath, "w") as f:
f.write(InflowWindTemplatetemp)
f.close()

ElastoDynfilename = ".join(np.array([filenameBase, ElastoDyn_',uniqueld,".dat))
ElastoDynfilepath = ".join(np.array([dicFolder,'/ElastoDyn/', ElastoDynfilename]))
with open(ElastoDynfilepath, "w") as f:

f.write(ElastoDynTemplatetemp)

f.close()

89

ServoDynfilename = ".join(np.array([filenameBase,'ServoDyn_',uniqueld,".dat]))
ServoDynfilepath = ".join(np.array([dIcFolder,'/ServoDyn/', ServoDynfilename]))
with open(ServoDynfilepath, "w") as f:

f.write(ServoDynTemplatetemp)

f.close()
AeroDyn15filename = ".join(np.array(['VW25_00_AeroDyn15.dat"]))
AeroDyn15filepath = ".join(np.array([dIcFolder,'/AeroDyn/', AeroDyn15filename]))
with open(AeroDyn15filepath, "w") as f:

f.write(AeroDyn15Templatetemp)

f.close()

fstfilename = ".join(np.array([filenameBase, fstinput_',uniqueld,’.fst))
FASTfilepath = ".join(np.array([dIcFolder,'/fst/', fstfilename]))
with open(FASTfilepath, "w") as f:

f.write(fstTemplatetemp)

f.close()

sys.stdout=open("25kWTurbine_FAST_ConsoleOut.txt","w")
if runOpenFAST == True:
sys.stdout=open("../25kWTurbine_FAST_ConsoleOut.txt","a")
if tipBrakeFlag=="True":
args = [FAST7_x64', FASTfilepath]
else:
args = ['OpenFAST_x64', FASTfilepath]
#subprocess.call(args, shell=True)
execute(args)

#sys.stdout.close()

90

APPENDIX 5 Statistical computation Python script
A 5.1 Statistical computation Python script 1

-*- coding: utf-8 -*-

Created on Mon Aug 4 16:25:08 2018

@author: Michael Keumatio Lontsie

import glob, os

import numpy as np

import matplotlib.pyplot as plt

from wetb.dlc import high_level

from wetb.fast.fast_io import load_output

from wetb.fatigue_tools.fatigue import eq_load, rainflow_astm, rainflow_windap, cycle_matrix

Specific of DLCs
my_path = os.getcwd()

for dir in os.listdir(my_path):
#print(dir)
if dir.startswith('DLC') and os.path.isdir(os.path.join(my_path, dir)):
if dir.startswith('DLC31_NTM’):
continue
elif dir.startswith('DLC52"):
continue
for fin os.listdir(my_path +'/'+ dir):
#print(dir + "' + f)
if f.startswith('f"):
os.chdir(my_path+'/'+ dir +'/'+ f)

#os.chdir('../fst")
turbineModel=25kWTurbine'
statName= dir
initialization of variables
vec = np.zeros([600001,1])
vec_max = np.zeros([600001,31])
vec_min = np.zeros([600001,31])
vec_mean = np.zeros([600001,31])
vec_abs = np.zeros([600001,31])
windspeed = np.zeros([600001,1])
windspeedl = np.zeros([600001,1])
i=0
for file in glob.glob(*.out'):
data, info = load_output(file)
#short_Eq = eq_load(data[:,info['attribute_names'].index('RootMyb1")], m=12,
neg=1e7, rainflow_func=rainflow_astm)
#vecli] = short_Eq[0]
Statistics computation (including mean, max, min values)
vec_max1 = [np.max(datal[:,[K]]) for k in range(0,len(data[1,:]))]
vec_minl = [np.min(data[:,[k]]) for k in range(0,len(data[1,:]))]
vec_meanl = [np.mean(data[:,[K]]) for k in range(0,len(data[1,:]))]
vec_absl = [np.max(np.abs([vec_max1[k],vec_min1[K]])) for k in range(0,len(data[1,:]))]
windspeed[i] = np.mean(np.sqrt(data[:,[1]]**2 + data[:,[2]]**2 + data][:,[3]]**2))
vec_max[i] = vec_max1[:]
vec_min[i] = vec_min1[:]
vec_mean(i] = vec_meanl[:]
vec_abs[i] = vec_absl[]
windspeed1l[i] = np.sqrt(vec_meanl[1]**2 + vec_meanl[2]**2 + vec_meanl[3]**2)
windspeedl[i] = vec_meanl[1]
i+=1
print("\nEquivalent load for the Blade Root Flapwise Moment of the DTU 10MW (FAST):\n")
print(short_Eq)
print("\n")

91

plot figures:
plt.close("all")
plt.rcParams['font.size'] = 23
idxFig=[4,5,6,7,8,9,10,11,12,13,14,17,18,19,20,21,22,23,24,25,26,27]
axisName=['RotTorq [KNm]','LSShftFxa [kN]','RotPwr [KW]','RootFzc1l [KN]','RootMxb1 [KNm]','RootMyb1
[KNm]','LSShftMxa [KNm]','LSSGagMya [kNm]','LSSGagMza [KNm]', TwrBsMxt [kKNm]'," TwrBsMyt
[KNm]',"'YawBrFzn [kN]',"YawBrFxp [KN]',"YawBrFyp [KN]',"YawBrMzn [KNm]',"YawBrMxp [kKNm]',"YawBrMyp
[KNm]','RootFxb1 [KN]','RootFybl [KN]','RootMzcl [kKNm]','LSShftFys [KN]','LSShftFzs [KN]','Q_DrTr
[rad]’,'QD_DrTr [rad/s]]
for i in range(0,len(idxFig)):
fig = plt.figure(figsize=(25,15))
plt.plot(windspeed,vec_max[:,idxFig[i]],'rs")
plt.plot(windspeed,vec_min[:,idxFig[i]],'bs")
plt.plot(windspeed,vec_mean[:,idxFig[i]],’ks")
if dir.startswith('DLC6"):
plt.axis([40, 50, np.min(vec_min[:,idxFig[i]]), 1.1*np.max(vec_max[:,idxFig[i]])])
elif dir.startswith('DLC51"):
plt.axis([40, 60, np.min(vec_min[:,idxFig[i]]), 1.1*np.max(vec_max[:,idxFig[i]]])
else:
plt.axis([2, 27, np.min(vec_min[:,idxFig[i]]), 1.1*np.max(vec_max[:,idxFig[i]])])
plt.grid(True)
plt.ylabel(axisNameli])
plt.xlabel('Wind Speed, [m/s]’)
plt.title(turbineModel)
plt.legend((‘'vec_max’, 'vec_min', 'vec_mean’),
loc="best', shadow=None)
plt.show()
fig.savefig(my_path + '/'+ dir + '/'+ axisName[i]+ ".png’, dpi=fig.dpi)
save variables
#os.chdir(my_path)
os.chdir('../../Load_Comparison')
vec_abs_s = [np.max(vec_abs[:,[K]]) for k in range(0,len(vec_abs[1,:]))]
np.savetxt(statName + '_max.txt', vec_abs_s, delimiter=',")

92

A 5.2 Statistical computation Python script 2

Created on Wed Aug 01 10:32:53 2018

@author: Michael Keumatio Lontsie

import glob, os

import numpy as np

import matplotlib.pyplot as plt

import heapq

import pandas as pd

from wetb.dlc import high_level

from wetb.fast.fast_io import load_output

from wetb.fatigue_tools.fatigue import eq_load, rainflow_astm, rainflow_windap, cycle_matrix

my_path = os.getcwd()

#Defining max, min, mean vectors variables
vec_max=np.zeros([1,31])
vec_min=np.zeros([1,31])
vec_mean=np.zeros([1,31])
windspeed=np.zeros([1,1])
uniclD=np.array('-', dtype=str)

Specific of DLCs
#Looping through the DLCs, the fst folders and the output files in them
for dir in os.listdir(my_path):
if dir.startswith('DLC') and os.path.isdir(os.path.join(my_path, dir)):
if dir.startswith('DLC31_NTM'):
continue
elif dir.startswith('DLC52"):
continue
for fin os.listdir(my_path +'/'+ dir):
#print(dir + "' + f)

if f.startswith('f"):

os.chdir(my_path+'/'+ dir +'/'+ f)

turbineModel="25kWTurbine'

statName= dir

initialization of variables

vec = np.zeros([600001,1])
vec_max = np.zeros([351,19])
vec_min = np.zeros([351,19])
vec_mean = np.zeros([351,19])

vec_abs = np.zeros([600001,31])

#windspeed = np.zeros([351,1])

windspeedl = np.zeros([600001,1])

H* H H*

i=0
for file in glob.glob(*.outb"):
data, info = load_output(file)
Statistics computation (including mean, max, min values)
vec_max1 = [np.max(data[:,[K]]) for k in range(0,len(data[1,:]))]
vec_minl = [np.min(data[:,[k]]) for k in range(0,len(data[1,:]))]
vec_meanl = [np.mean(data[:,[K]]) for k in range(0,len(data[1,:]))]
vec_absl = [np.max(np.abs([vec_max1[k],vec_minl[k]])) for k in range(0,len(data[1,:]))]
windspeed = np.vstack([windspeed,np.mean(np.sqrt(datal[:,[1]]**2 + data[:,[2]]**2 + data[:,[3]]**2))])
#concatenating (stacking) max, min, mean saved values from each i files after each loop
vec_max = np.vstack([vec_max,vec_max1[:]])
vec_min = np.vstack([vec_min,vec_min1[:]])
vec_mean = np.vstack([vec_mean,vec_meanl[:]])
Vvec_max = 1.35*vec_max
Vvec_min = 1.35*vec_min
Vvec_mean = 1.35*vec_mean

93

uniclD = np.vstack([uniclD, file[:-4]])
vec_abs[i] = vec_absl][]
save variables
os.chdir('../../Load_Comparison’)
vec_abs_s = [np.max(vec_abs[;,[K]]) for k in range(0,len(vec_abs[1,:]))]
np.savetxt(statName + '_max.txt', vec_abs_s, delimiter=',")
plot figures:
plt.close("all")
plt.rcParams['font.size'] = 28
idxFig=[4,5,6,7,8,9,10,11,12,13,14,17,18,19,20,21,22,23,24,25,26,27]
axisName=['RotTorq [KNm]','LSShftFxa [kN]','RotPwr [kKW]','RootFzcl [kN]','RootMxb1 [kNm]','RootMyb1
[KNm]','LSShftMxa [KNm]','LSSGagMya [KNm]','LSSGagMza [KNm]', TwrBsMxt [KNm]'," TwrBsMyt
[KNm]',"'YawBrFzn [kN]',"YawBrFxp [KN]',"YawBrFyp [KN]',"YawBrMzn [KNm]',"YawBrMxp [kKNm]',"YawBrMyp
[KNm]','RootFxb1 [KN]','RootFybl [KN]','RootMzcl [KNm]','LSShftFys [KN]','LSShftFzs [KN]','Q_DrTr
[rad]’,'QD_DrTr [rad/s]]
for i in range(0,len(idxFig)):
fig = plt.figure(figsize=(25,15))
plt.plot(windspeed,vec_max[:,idxFig[i]],'rs")
plt.plot(windspeed,vec_min[:,idxFig[i]],'bs")
plt.plot(windspeed,vec_mean[:,idxFig[i]],'ks")
plt.axis([2, 60, np.min(vec_min[:,idxFig[i]]), 1.1*np.max(vec_max[:,idxFig[i]])])
plt.grid(True)
plt.ylabel(axisName[i]+" incl. SF")
plt.xlabel('Wind Speed, [m/s]’)
plt.title(turbineModel)
plt.legend((‘'vec_max', 'vec_min', 'vec_mean’),
loc='best', shadow=None)
plt.show()
fig.savefig(my_path + ‘/Load_Comparison/'+ axisName[i]+ '.png’, dpi=fig.dpi)

94

A 5.3 Statistical computation Python script 3

Created on Thu Aug 02 11:04:41 2018

@author: Michael Keumatio Lontsie
import glob, os

import numpy as np

import matplotlib.pyplot as plt

from wetb.dlc import high_level

from wetb.fast.fast_io import load_output
from wetb.fatigue_tools.fatigue import eq_load, rainflow_astm, rainflow_windap, cycle_matrix
import heapq

import pandas as pd

import numpy as np

from fpdf import FPDF

import bottleneck as bn

my_path = os.getcwd()
#Defining max, min, mean vectors variables
vec_max=np.zeros([1,31])
vec_min=np.zeros([1,31])
vec_mean=np.zeros([1,31])
windspeed=np.zeros([1,1])
uniclD=np.array('-', dtype=str)
Vec_10min=np.zeros([1,10])
Vec_10max=np.zeros([1,10])
Specific of DLCs
#Looping through the DLCs, the fst folders and the output files in them
for dir in os.listdir(my_path):
if dir.startswith('DLC') and os.path.isdir(os.path.join(my_path, dir)):
if dir.startswith('DLC31_NTM'):
continue
elif dir.startswith('DLC52"):
continue
for fin os.listdir(my_path +'/'+ dir):
#print(dir + "' +)
if f.startswith('f"):
os.chdir(my_path+'/'+ dir +'/'+ f)
turbineModel="25kWTurbine'
statName= dir
initialization of variables
vec = np.zeros([600001,1])
vec_abs = np.zeros([600001,31])
#windspeed = np.zeros([351,1])
windspeedl = np.zeros([600001,1])

i=0
for file in glob.glob(*.out’):
data, info = load_output(file)
Statistics computation (including mean, max, min values)
vec_maxl = [np.max(datal:,[K]]) for k in range(0,len(data[1,:]))]
vec_minl = [np.min(data[:,[K]]) for k in range(0,len(data[1,:]))]
vec_meanl = [np.mean(data[:,[K]]) for k in range(0,len(data[1,:]))]
vec_absl = [np.max(np.abs([vec_max1[k],vec_min1[K]])) for k in range(0,len(data[1,:]))]
uniclD = np.vstack([uniclD, file[:-4]])
windspeed = np.vstack([windspeed,np.mean(np.sqrt(datal:,[1]]**2 + data[:,[2]]**2 + data[:,[3]]**2))])
#concatenating (stacking) max, min, mean saved values from each i files after each loop
vec_max = np.vstack([vec_max[:],vec_max1[:]])
vec_min = np.vstack([vec_min[:],vec_min1[:]])
vec_mean = np.vstack([vec_mean[:],vec_meani[:]])
vec_abs[i] = vec_absl][]
to remove the first "0" row
Vec_max = 1.35*vec_max[1:]
Vec_min = 1.35*vec_min[1:]
Vec_mean = 1.35*vec_mean|[1:]

95

plot figures:
#plt.close("all")
plt.rcParams['font.size’] = 16
#idxFig=[4,5,6,7,8,9,10,11,12,13,14,17,18,19,20,21,22,23,24,25,26,27]
#axisName=['RotTorqg [KNm]','LSShftFxa [KN]','RotPwr [KW]','RootFzcl [kN]','RootMxbl [kNm]','/RootMyb1
[KNm]','LSShftMxa [KNm]','LSSGagMya [kKNm]','LSSGagMza [KNm]', TwrBsMxt [kKNm]'," TwrBsMyt
[KNm]','YawBrFzn [kN]',"YawBrFxp [KN]',"YawBrFyp [KN]',"YawBrMzn [KNm]',"YawBrMxp [kKNm]',"YawBrMyp
[KNm]','RootFxb1 [KN]','RootFybl [KN]','RootMzcl [kKNm]','LSShftFys [KN]','LSShftFzs [KN]','Q_DrTr
[rad],'QD_DrTr [rad/s]]
idxFig=[6,4,5,26,27,10,11,12,23,24,7,8,9,25,18,19,17,20,21,22,13,14]
axisName=['RotPwr [kW]','RotTorq [KNm]','LSShftFxa [kN]','LSShftFys [kN]','LSShftFzs [KN]','LSShftMxa
[KNm]','LSSGagMya [kNm]','LSSGagMza [KNm]','RootFxb1 [kN]','RootFybl [KN]','RootFzcl [kN]','RootMxb1
[KNm]','RootMyb1 [KNm]','RootMzc1 [kNm]',"YawBrFxp [kN]',"YawBrFyp [KN]',"YawBrFzn [kKN]',"YawBrMzn
[KNm]',"'YawBrMxp [KNm]',"YawBrMyp [KNm]', TwrBsMxt [KNm]',' TwrBsMyt [KNm]','Q_DrTr [rad]’,'QD_DrTr [rad/s]]
for i in range(0,len(idxFig)):

#plots 10max

vec_max_i = Vec_max([:,idxFig[i]]

vec_10max_ind = heapqg.nlargest(10, range(len(vec_max_i)), vec_max_i.take)

vec_10max = Vec_max[vec_10max_ind,idxFig[i]]

fig = plt.figure(figsize=(15,25))
N = len(vec_10max)

x = range(N)

width = 0.5

plt.bar(x,vec_10max, width, color="blue")

plt.ylabel(axisName[i]+'incl. SF')

plt.xlabel('Maximum values')

Create the bars names

plt.xticks(x, uniclD[vec_10max_ind,0], color="black’, rotation=90)

Custom the subplot layout

plt.subplots_adjust(bottom=0.4, top=0.99)

plt.title(turbineModel)

fig.savefig(my_path + ‘/Load_Comparison/'+ axisName[i]+ 'Max.png', dpi=fig.dpi)

#plots 10min
vec_min_i = Vec_min[:,idxFig[i]]
vec_10min_ind = bn.argpartition(vec_min_i, 10)[:10]
vec_10min = bn.partition(vec_min_i, 10)[:10]
vvec_10min = np.sort(vec_10min)
k=10
vec_10min_ind = np.argpartition(vec_min_i, -k)
vec_10min = vec_min_i[vec_10min_ind[:K]]
fig = plt.figure(figsize=(15,25))
M = len(vec_10min)
y = range(M)
width = 0.5
plt.bar(y,vvec_10min, width, color="blue")
plt.ylim(plt.ylim()[::1])
plt.xlim(plt.xlim()[::1])
plt.ylabel(axisName[i]+" incl. SF")
plt.xlabel("Minimum values')
Create the bars names
plt.xticks(y, uniclD[vec_10min_ind,0], color="black’, rotation=90)
plt.title(turbineModel)
Custom the subplot layout
plt.subplots_adjust(bottom=0.4, top=0.99)
fig.savefig(my_path + ‘/Load_Comparison/'+ axisNamel[i]+ 'Min.png', dpi=fig.dpi)

H* H

B R T T T T R R R T TR R T
#PDF file for the extreme table

B R R T S T R T S T R R R R T
Vec_10min = np.hstack([Vec_10min[1:],vec_10min[:]])

Vec_10max = np.hstack([Vec_10max[1:],vec_10max[:]])

VVec_max= Vec_max([:,idxFig]

VVec_min= Vec_min[:,idxFig]

96

#VVec_max = Vec_max|0:,4:]

#VVec_min = Vec_min[0:,4:]

Bmax = np.max(VVec_max, axis=0)
Bmax_ind = np.argmax(VVec_max, axis=0)
BBmax = Bmax.tolist()

uniclDMax = uniclD[Bmax_ind,0]
UniclDMax = uniclDMax.tolist()

Bmin = np.min(VVec_min, axis=0)

Bmin_ind = np.argmax(VVec_min, axis=0)

BBmin = Bmin.tolist()

uniclDMin = unicID[Bmin_ind,0]

UnicIDMin = unicIDMin.tolist()

#axisNamel=['RotTorqg [KNm]','LSShftFxa [KN]','RotPwr [kW]','RootFzcl [KN]','RootMxbl [KNm]','RootMyb1
[KNm]','LSShftMxa [kKNm]','LSSGagMya [kNm]','LSSGagMza [KNm]', TwrBsMxt [kKNm]'," TwrBsMyt
[KNm]',"'YawBrFzn [kN]',"YawBrFxp [KN]',"YawBrFyp [KN]',"YawBrMzn [KNm]',"YawBrMxp [kKNm]',"YawBrMyp
[KNm]','RootFxb1 [KN]','RootFybl [KN]','RootMzcl [KNm]','LSShftFys [KN]','LSShftFzs [KN]]
axisNamel=['RotPwr [KW]','RotTorq [kKNm]','LSShftFxa [KN]','LSShftFys [KN]','LSShftFzs [kKN]','LSShftMxa
[KNm]','LSSGagMya [kNm]','LSSGagMza [KNm]','RootFxb1 [kN]','RootFyb1 [KN]','RootFzcl [kN]','RootMxbl
[KNm]','RootMyb1 [KNm]','RootMzcl [KNm]',"YawBrFxp [kN]',"YawBrFyp [KN]',"'YawBrFzn [KN]',"YawBrMzn
[KNm]',"YawBrMxp [kNm]',"YawBrMyp [KNm]',"'TwrBsMxt [kNm]', TwrBsMyt [kNm]']

dataset =

pd.DataFrame({'Channels":axisNamel,'Max':BBmax, SimsMax':UnicIDMax,'Min":BBmin,'SimsMin":UnicIDMin})
print(dataset)

dataset.to_csv(r'../../Load_Comparison/ExtremeTable.txt', header=True, index=None, mode='a’, sep="\t')

Creating a dataframe and saving as output.xIsx in current directory

#writer = pd.ExcelWriter('../../Load_Comparison/ExtremeTable.xIsx’)

#dataset.to_excel(writer,'Sheetl’)

#writer.save()

#read in the .xIsx file just created
#df_2 = pd.read_excel('../../Load_Comparison/ExtremeTable.xIsx")

#creating a pdf in called test.pdf in the current directory
pdf = FPDF()
pdf.add_page()
pdf.set_xy(0, 0)
pdf.set_font(‘arial’, 'B', 12)
#pdf.set_text_color(0,0,255)
pdf.cell(60)
pdf.cell(70, 30, 'Extreme Table', 0, 2, 'C")
pdf.cell(-50)
pdf.cell(30, 10, 'Channels', 1, 0, 'C)
pdf.set_fill_color(0,0,255) #to color the cells in Red,Green,Blue (RGB) order
pdf.cell(20, 10, 'Max’, 1, 0, 'C', fill=True)
pdf.cell(60, 10, 'simsMax’, 1, 0, 'C")
pdf.set_fill_color(255,0,0)
pdf.cell(20, 10, 'Min', 1, 0, 'C', fill=True)
pdf.cell(60, 10, 'simsMin’, 1, 2, 'C")
pdf.cell(-130)
pdf.set_font(‘arial’, ", 8)
for i in range(0, len(dataset)):
col_channels = str(dataset.Channels.locf[i])
col_Max = str(dataset.Max.loc[i])
col_simsMax = str(dataset.SimsMax.loc][i])
col_Min = str(dataset.Min.loc[i])
col_simsMin = str(dataset.SimsMin.loc[i])
pdf.cell(30,10, '%s' % (col_channels), 1, 0, 'C")
pdf.set_fill_color(0,0,255)
pdf.cell(20,10, '%s' % (col_Max), 1, 0, 'C', fill=True)
pdf.cell(60,10, '%s' % (col_simsMax), 1, 0, 'C")
pdf.set_fill_color(255,0,0)
pdf.cell(20,10, '%s' % (col_Min), 1, 0, 'C', fill=True)
pdf.cell(60,10, '%s' % (col_simsMin), 1, 2, 'C")
pdf.cell(-130)
pdf.output('../../Load_Comparison/ExtremeTable.pdf', 'F")

97

A 5.4 DLC Aeroelastic model sample page in PDF report File.

LSShftFxa (Low-speed shaft thrust force)

15 . VEC_MaEN '
« WeC_min
= wec_mean

10

N e

.I‘

" R B
2 RN A
£ SEPT IR A
= wrfl oot .
£ ll“:-:?-'ri:';,I
TR PR ii’ E':t

g et gt L
ottt L

-

-5

10 20 30 40 50 a0
Wind Spead, [m/s]

] 3 -1 3 x|] 3 E] a
" F

g i
E F
g & &4 § =5 4 & 8 y § & 3 & & B ¢ § 3
S - 1 BB
2§ 5 & 3
: ¥ £ E g E E i

98

Channels

RotPwr kW]

RofTorg [kMm]

LSShitFxa [kN]

LSShftFys [kN]

LSShitFzs [kN] -4

LSShfixa [kNm] 11

L55Gaghtya [kMm]4

L55Gaghza [kMm]4

RootFxb1 [kN] B

RootFyb1 [kN]

RootFzcl [kN] 21

RootM:xb1 [kMm]

RootMyb1 [kMm] 18

RootMzci [kMm]

YawBrFx=p [kM] 18

YawBrFyp [kMN]

YawBrFzn [kM] -13]

Y awBrkzn [kMm]

YawBrikxp [kNm] 11

Y awBrkyp [kMm]

TwrBsMxt [kNm] 27

TwrBsMyt [kNm] 35

Extreme Table

A 5.5 DLC Aeroelastic model results — Extreme Table.

simsMax

simsMin

VW25_00_fstinput_DLC22_13502_25 0

VW25_00_fstinput_DLC14_EDC+r+12

01 WVW25_00_fstinput_DLC22_13502_25_0 -8,

01 VW25 _D0_fstinput_DLC41_13772_3_0

VW25_00_fstinput_DLC41_13772_3_0 -1

02 VW25_D0_fstinput_DLC41_13772_3_0

VW25_00_fstinput_DLC&1_EWMO1_120

VW25_00_fstinput_DLCE1_EWMO1_120

01 VW25_00_fstinput_DLC22_13588_17_0 -5

01 WW25_00_fstinput_DLCS1_EWMSD_0

01 VW25_00_fstinput_DLC22_13582_25 0 -8,

01 VW25_D0_fstinput_DLC41_13772_3_0

01VW25_00_fstinput_DLC12_ECD+r-2.0_1+1

03 VW25_00_fstinput_DLCE1_EWMD1_30

01VW25_00_fstinput_DLC12_ECD+r-2.0_11

VW25_00_fstinput_DLCE1_EWMO1_80

b1 wW25_00_fstinput_DLCS1_EWMS0_352

VW25_00_fstinput_DLCS1_EWMSD_352

03 VW25_00_fstinput_DLC22_13581_3 D

VW25_00_fstinput_DLCE1_EWMO1_120

03 VW25_00_fstinput_DLC22_13581_23 0

VW25_00_fstinput_DLC14_EDC+r+12

VW25_00_fstinput_DLC22_13501_23 0

03 VW25_00_fstinput_DLCS1_EWMS0_352-1

WW25_00_fstinput_DLC22_13581_23_0

03 VW25_00_fstinput_DLC41_13772_3 D

VW25_00_fstinput_DLCE1_EWMO1_120

h02 WW25_00_fstinput_DLC41_13772_3 D

VW25_00_fstinput_DLC22_13581_23_0-11

01 VW25_00_fstinput_DLC22_13582_25 0-7.

VW25_00_fstinput_DLC22_13591_23_0-1

04 VW25_00_fstinput_DLC22_13581_23 0

03 WW25_00_fstinput_DLC41_13772_3_0 -2

99

VW25_00_fetinput_DLCS1_EWMSD_0

01VW25_D0_fstinput_DLC51_EWMS0_352

VW25_00_fstinput_DLC61_EWMO1_180

VW25_D0_fstinput_DLC41_13772_3_0

VW25_00_fstinput_DLCE1_EWMO1_120

VW25_D0_fstinput_DLC41_13772_3_0

01 VW25_00_fstinput_DLCE1_EWMO1_80

05 VW25_00_fstinput_DLCS1_EWMS0_0

01 VW25_00_fstinput_DLCE1_EWMO1_30

VW25_00_fstinput_DLCE1_EWMO1_30

02 VW25_D0_fstinput_DLC41_13772_3_0

